WorldWideScience

Sample records for hypoxic ischemic brain

  1. Perinatal Hypoxic-Ischemic brain injury; MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Woo; Seo, Chang Hye [Inje University Pusan Paik Hospital, Pusan (Korea, Republic of)

    1994-09-15

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult.

  2. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  3. Environmental enrichment promotes neural remodeling in newborn rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Chuanjun Liu; Yankui Guo; Yalu Li; Zhenying Yang

    2011-01-01

    We evaluated the effect of hypoxic-ischemic brain damage and treatment with early environmental enrichment intervention on development of newborn rats, as evaluated by light and electron microscopy and morphometry. Early intervention with environmental enrichment intelligence training attenuated brain edema and neuronal injury, promoted neuronal repair, and increased neuronal plasticity in the frontal lobe cortex of the newborn rats with hypoxic-ischemic brain damage.

  4. Using the endocannabinoid system as a neuroprotective strategy in perinatal hypoxic- ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Lara-Celador, I.; Go(n)i-de-Cerio, F.; Antonia Alvarez; Enrique Hilario

    2013-01-01

    One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic- ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.

  5. Experimental models of perinatal hypoxic-ischemic brain damage.

    Science.gov (United States)

    Vannucci, R C

    1993-01-01

    Animal research has provided important information on the pathogenesis of and neuropathologic responses to perinatal cerebral hypoxia-ischemia. In experimental animals, structural brain damage from hypoxia-ischemia has been produced in immature rats, rabbits, guinea pigs, sheep and monkeys (18, 20, 24, 25, 38). Of the several available animal models, the fetal and newborn rhesus monkey and immature rat have been studied most extensively because of their similarities to humans in respect to the physiology of reproduction and their neuroanatomy at or shortly following birth. Given the frequency of occurrence of human perinatal hypoxic-ischemic brain damage and the multiple, often severe neurologic handicaps which ensue in infants and children, it is not surprising that the above described animal models have been developed. These models have provided the basis for investigations to clarify not only physiologic and biochemical mechanisms of tissue injury but also the efficacy of specific management strategies. Hopefully, such animal research will continue to provide important information regarding how best to prevent or minimize the devastating consequences of perinatal cerebral hypoxia-ischemia.

  6. Hyperbaric oxygen suppresses hypoxic-ischemic brain damage in newborn rats.

    Science.gov (United States)

    Zhu, Min; Lu, Mengru; Li, Qing-Jie; Zhang, Zhuo; Wu, Zheng-Zheng; Li, Jie; Qian, Lai; Xu, Yun; Wang, Zhong-Yuan

    2015-01-01

    The optimal therapeutic time-window and protective mechanism of hyperbaric oxygen in hypoxic-ischemic brain damage remain unclear. This study aimed to determine the neuroprotective effects of hyperbaric oxygen. Following hypoxic-ischemic brain damage modeling in neonatal rats, hyperbaric oxygen was administered at 6, 24, 48, and 72 hours and 1 week after hypoxia, respectively, once daily for 1 week. Fourteen days after hypoxic-ischemic brain damage, cell density and apoptosis rate, number of Fas-L+, caspase-8+, and caspase-3+ neuronal cells, levels of nitric oxide, malondialdehyde, and superoxide dismutase in hippocampus were examined. Morris water maze test was conducted 28 days after insult. Significant improvements were found in cell density, rate of apoptosis, oxidative stress markers, FasL, and caspases in rats treated with hyperbaric oxygen within 72 hours compared to hypoxic-ischemic injury. Similarly, time-dependent behavioral amelioration was observed in pups treated with hyperbaric oxygen. Our findings suggest that hyperbaric oxygen protects against hypoxic-ischemic brain damage by inhibiting oxidative stress and FasL-induced apoptosis, and optimal therapeutic time window is within 72 hours after hypoxic-ischemic brain damage.

  7. Marine Compound Xyloketal B Reduces Neonatal Hypoxic-Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Ai-Jiao Xiao

    2014-12-01

    Full Text Available Neonatal hypoxic-ischemic encephalopathy causes neurodegeneration and brain injury, leading to sensorimotor dysfunction. Xyloketal B is a novel marine compound isolated from a mangrove fungus Xylaria species (no. 2508 with unique antioxidant effects. In this study, we investigated the effects and mechanism of xyloketal B on oxygen-glucose deprivation-induced neuronal cell death in mouse primary cortical culture and on hypoxic-ischemic brain injury in neonatal mice in vivo. We found that xyloketal B reduced anoxia-induced neuronal cell death in vitro, as well as infarct volume in neonatal hypoxic-ischemic brain injury model in vivo. Furthermore, xyloketal B improved functional behavioral recovery of the animals following hypoxic-ischemic insult. In addition, xyloketal B significantly decreased calcium entry, reduced the number of TUNEL-positive cells, reduced the levels of cleaved caspase-3 and Bax proteins, and increased the level of Bcl-2 protein after the hypoxic-ischemic injury. Our findings indicate that xyloketal B is effective in models of hypoxia-ischemia and thus has potential as a treatment for hypoxic-ischemic brain injury.

  8. Brain diffusivity in infants with hypoxic-ischemic encephalopathy following whole body hypothermia: preliminary results.

    Science.gov (United States)

    Artzi, Moran; Sira, Liat Ben; Bassan, Haim; Gross-Tsur, Varda; Berger, Irit; Marom, Ronella; Leitner, Yael; Bental, Yoram; Shiff, Yakov; Geva, Ronny; Weinstein, Maya; Bashat, Dafna Ben

    2011-10-01

    Hypoxic-ischemic encephalopathy is an important cause of neuropsychological deficits. Little is known about brain diffusivity in these infants following cooling and its potential in predicting outcome. Diffusion tensor imaging was applied to 3 groups: (1) three infants with hypoxic-ischemic encephalopathy: cooled; (2) three infants with hypoxic-ischemic encephalopathy: noncooled; and (3) four controls. Diffusivity values at the corticospinal tract, thalamus, and putamen were correlated with Apgar scores and early neurodevelopmental outcome. While cooled infants exhibited lower Apgar scores than noncooled infants, their developmental scores at a mean age of 8 months were higher. All groups differed in their diffusivity values with the cooled infants showing better values compared with the noncooled, correlating with early neurodevelopmental outcome. These preliminary results indicate that diffusion tensor imaging performed at an early age in infants with hypoxic-ischemic encephalopathy may forecast clinical outcome and support the neuroprotective effect of hypothermia treatment.

  9. Inhibition of inflammatory mediator release from microglia can treat ischemic/hypoxic brain injury★

    OpenAIRE

    Wang, Huaibo; Guo,Weitao; Liu, Hongliang; Zeng, Rong; Lu, Mingnan; Chen, Ziqiu; Xiao, Qixian

    2013-01-01

    Interleukin-1α and interleukin-1β aggravate neuronal injury by mediating the inflammatory reaction following ischemic/hypoxic brain injury. It remains unclear whether interleukin-1α and interleukin-1β are released by microglia or astrocytes. This study prepared hippocampal slices that were subsequently subjected to oxygen and glucose deprivation. Hematoxylin-eosin staining verified that neurons exhibited hypoxic changes. Results of enzyme-linked immunosorbent assay found that interleukin-1α a...

  10. Inhibition of inflammatory mediator release from microglia can treat ischemic/hypoxic brain injury★

    OpenAIRE

    Wang, Huaibo; Guo, Weitao; Liu, Hongliang; Zeng, Rong; Lu, Mingnan; Chen, Ziqiu; Xiao, Qixian

    2013-01-01

    Interleukin-1α and interleukin-1β aggravate neuronal injury by mediating the inflammatory reaction following ischemic/hypoxic brain injury. It remains unclear whether interleukin-1α and interleukin-1β are released by microglia or astrocytes. This study prepared hippocampal slices that were subsequently subjected to oxygen and glucose deprivation. Hematoxylin-eosin staining verified that neurons exhibited hypoxic changes. Results of enzyme-linked immunosorbent assay found that interleukin-1α a...

  11. Immunohistochemical investigation of hypoxic/ischemic brain damage in forensic autopsy cases.

    Science.gov (United States)

    Kitamura, O

    1994-01-01

    A neuropathological study of 41 forensic autopsy cases of hypoxic/ischemic brain damage has been undertaken, using immunohistochemical staining to detect the 70-kDa heat shock protein (hsp70) and the status of the glial cells. In cases surviving 2-5 h after hypoxic/ischemic injury, ischemic cell changes were seen whereas glial reactions were not apparent. In cases of longer survival, neuronal necrosis and a loss of neurons were seen, and these changes were accompanied by proliferation of glial fibrillary acidic protein (GFAP), vimentin-positive astrocytes and microglia which transformed into rod cells or lipid-laden macrophages. In cases with a history of hypoxic attacks, GFAP-positive and vimentin-negative astrocytes had proliferated in the CA3 and CA4 regions of hippocampus. The cases of severe hypoxic injury, such as an asthmatic attack and choking, showed no ischemic changes in the hippocampal neurons. On the other hand, the CA1 pyramidal cells showed neuronal necrosis in a patient suffering from tetralogy of Fallot (TOF), who survived for 2 h after a traffic accident. Therefore, it is suggested that even moderate hypoxic injury induces astrocytosis in the CA3 and CA4 regions and may affect the neuronal proteins and the metabolism, and that in cases with a history of hypoxic attacks neuronal damage may be severe even several hours after ischemic injury. The protein hsp70 expression was found in the CA2, CA3 and CA4 regions in cases of long-term survival after severe hypoxic/ischemic injury and in cases of alcoholic intake or toluene abuse just before acute death.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Preterm Hypoxic Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Krishna G Gopagondanahalli

    2016-10-01

    Full Text Available Hypoxic ischemic encephalopathy (HIE is a recognizable and defined clinical syndrome in term infants that results from a severe or prolonged hypoxic ischemic episode before or during birth. However, in the preterm infant, defining hypoxic ischemic injury, its clinical course, monitoring and outcomes remains complex. Few studies examine preterm HIE, and these are heterogeneous, with variable inclusion criteria and outcomes reported. We examine the available evidence that implies that the incidence of hypoxic ischemic insult in preterm infants is probably higher than recognized, and follows a more complex clinical course, with higher rates of adverse neurological outcomes, compared to term infants. This review aims to elucidate the causes and consequences of preterm hypoxia ischemia, the subsequent clinical encephalopathy syndrome, diagnostic tools and outcomes. Finally, we suggest a uniform definition for preterm HIE that may help in identifying infants most at risk of adverse outcomes and amenable to neuroprotective therapies.

  13. Role of gap junction and connexin-43 in hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Jieying Lin; Niyang Lin

    2006-01-01

    OBJECTEVE:Gap junctin (GJ)is the structural basis for direct intercellular communication of nerve cells . Connexin(Cx) is the protein subunit for constructling GJ channel. Among them, Cx43is closely related with nervous system. Both Cx43 and nervous system play an important role in the pathophysiological development of hypoxic-ischemic injury. We are in attempt to investigate GJ,Cx43 and their correlations with hypoxic-ischemic brain damage by research.DATA SOURCES:Using the terms "brain gap junction"in English and "gap junction"in Chinese, we searched the Medline database and Chinese BioMedical Literature Database as well as China Hospital Knowledge Database to identify the articles published from 1996 to 2006 about GJ and brain hypoxic-ischemic injury.STUDY SELECTION:The articles were selected firstly and abstracts of 250 articles were read thuugh.Articles in which the experimental design met randomized controlled principle were included,and study articles and case reports with repetitve contents were excluded.DATA EXTRACTION:Among 53 included correlative articles, 23 were excluded for repetitive contents and the other 30 were analyzed.DATA SYNTHESIS:GJ,widely esistling in nervous system,plays a key role in maintainling normal differentiation and development as well as physiological function brain tissue.GJ channel is a hydrophilic,low-selectivity and lowohmic channel, which can provide direct channel for intercellular substance transmission and information communication. It plays an important role in the differentiation and development of nerve cells and regulation of physiological function,The funtions of GJ channel are regulated by many factors,which invilved intracellular Ph value, Ca2+concentration, ATP concentration, phosphorylation of Cx, transchannel pressure,some neurohormonal factors,regulatory factors of protein and so on. Cx43 is the main component of GJ channel in the brain tissues. Its expression in the brain tissue of mammal is the strongest

  14. Role of Antioxidants in Neonatal Hypoxic?Ischemic Brain Injury: New Therapeutic Approaches

    OpenAIRE

    Arteaga, Olatz; ?lvarez, Antonia; Revuelta, Miren; Santaolalla, Francisco; Urtasun, Andoni; Hilario, Enrique

    2017-01-01

    Hypoxic?ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia?ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative ...

  15. Spatiotemporal Characteristics of Freezing of Gait in Patients After Hypoxic-Ischemic Brain Injury

    OpenAIRE

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Yong Wook

    2016-01-01

    Abstract The objective of this study was to investigate spatiotemporal characteristics with gait variability in patients with freezing of gait (FOG) after hypoxic-ischemic brain injury (HIBI). Eleven patients showing FOG after HIBI and 15 normal controls were consecutively enrolled. We performed gait analysis using a computerized gait system (VICON MX-T10 Motion Analysis System) and compared spatiotemporal characteristics and gait variability in both groups. Additionally, we performed correla...

  16. Inhibition of inflammatory mediator release from microglia can treat ischemic/hypoxic brain injury

    Institute of Scientific and Technical Information of China (English)

    Huaibo Wang; Weitao Guo; Hongliang Liu; Rong Zeng; Mingnan Lu; Ziqiu Chen; Qixian Xiao

    2013-01-01

    Interleukin-1α and interleukin-1β aggravate neuronal injury by mediating the inflammatory reaction following ischemic/hypoxic brain injury. It remains unclear whether interleukin-1α and interleukin-1β are released by microglia or astrocytes. This study prepared hippocampal slices that were subsequently subjected to oxygen and glucose deprivation. Hematoxylin-eosin staining verified that neurons exhibited hypoxic changes. Results of enzyme-linked immunosorbent assay found that interleukin-1α and interleukin-1β participated in this hypoxic process. Moreover, when hypoxic injury occurred in the hippocampus, the release of interleukin-1α and interleukin-1β was mediated by the P2X4 receptor and P2X7 receptor. Immunofluorescence staining revealed that during ischemia/hypoxia, the P2X4 receptor, P2X7 receptor, interleukin-1α and interleukin-1β expression was detectable in rat hippocampal microglia, but only P2X4 receptor and P2X7 receptor expression was detected in astrocytes. Results suggested that the P2X4 receptor and P2X7 receptor, respectively, mediated interleukin-1α and interleukin-1β released by microglia, resulting in hippocampal ischemic/hypoxic injury. Astrocytes were activated, but did not synthesize or release interleukin-1α and interleukin-1β.

  17. Hypoxic-ischemic encephalopathy with cystic brain stem necroses and thalamic calcifications in a preterm twin.

    Science.gov (United States)

    Peters, B; Walka, M M; Friedmann, W; Stoltenburg-Didinger, G; Obladen, M

    2000-06-01

    A severe and rare ischemic brain lesion in a preterm twin boy is reported. The boy was born after two weeks of anhydramnios and amnionic infection at 24 weeks of gestation. Following a difficult Caesarean section and prolonged umbilical cord compression he developed prenatal acidosis with an umbilical cord pH of 6.96. At the age of 7 h, heart rate variability narrowed due to severely disturbed brain stem function and the patient developed clinical signs of hypoxic-ischemic encephalopathy. Sonography demonstrated extensive symmetrical brain stem and basal ganglia lesions. After a prolonged comatose and apneic state, death occurred at the age of 25 days. Autopsy confirmed columnar bilateral cavitation of basal ganglia, diencephalon, brain stem and spinal gray matter, as well as focal calcifications in the palladium, thalamus, and brain stem. The findings highly resemble those observed after experimental or clinical cardiac arrest.

  18. Recent Information on the Pathogenesis and Treatment of Hypoxic-Ischemic Brain Lesions in Newborns

    Directory of Open Access Journals (Sweden)

    G. A. Karkashadze

    2016-01-01

    Full Text Available Hypoxic-ischemic brain lesions in children are the main environmental (non-genetic factor in forming severe neurological pathology with subsequent disability. Scientists see the improvement of therapeutic approaches in acute phase of the disease as a main way to reduce the severity of neurologic complications. Due to the achievements in neuroscience in the field of perinatal hypoxicischemic injury mechanisms, three energy phases of pathologic events deployment were identified: primary (up to 6 hours from the lesion, secondary (6 to 24–48 h after the lesion and distal tertiary (during few weeks, months. At the same time, necrosis, apoptosis, glutamate excitotoxicity, oxidative stress, inflammation, angiogenesis and neurogenesis make up separate links of destruction process. On the basis of new data on the pathogenesis of the disease, scientists from different countries have already offered modern treatment methods for perinatal hypoxic-ischemic injury with erythropoietin, allopurinol, melatonin, N-acetylcysteine, magnesium sulphate, albumin, -interferon, as well as with the help of controlled hypothermia, xenon, the use of stem cells, etc. This article presents a review of new data on pathogenesis and promising treatment methods for perinatal hypoxic-ischemic injuries.

  19. Effects of Graded Hypothermia on Hypoxic-ischemic Brain Damage in the Neonatal Rat

    Institute of Scientific and Technical Information of China (English)

    Xiao-yan Xia; Yi-xin Xia

    2011-01-01

    Objective To investigate the effect of graded hypothermia on neuropathologic alteratiors of neonatal rat brain after exposed to hypoxic-ischemic insult at 37℃, 33℃, 31℃, and 28℃, respectively, and to observe the effect of hypothermia on 72-kDa heat shock protein (HSP72) expression after hypoxic-ischemic insult. Methods Seven days old Wistar rats were subjected to unilateral common carotid artery ligation followed by exposure to hypoxia in 8% oxygen for 2 hours at 37℃, 33℃, 31℃, and 28℃, respectively. The brain temperature was monitored indirectly by inserting a mini-thermocouple probe into the temporal muscle during hypoxia. After hypoxia-ischemia their mortality was assessed. Neuronal damage was assessed with HE staining 72 hours after hypoxia. HSP72 expression at 0.5, 24, and 72 hours of recovery was immunohistochemically assessed using a monoclonal antibody to HSP72. Results Hypoxia-ischemia caused 10.5% (2/19) of mortality in rat of 37℃ group, but no death occurred in 33℃, 31℃ or 28℃ groups. HE staining showed neuropathologic damage was extensive in rats exposed to hypoxia-ischemia at 37℃ (more than 80.0%). The incidence of severe brain damage was significantly decreased in 33℃ (53.3%) and 31℃ groups (44.4%), and no histologic injury was seen in the 28℃ group of rats. Expression of HSP72 was manifest and persistent in the rat brain of 37℃ group, but minimum in the rat brain of 28℃ group. Conclusion Mild and moderate hypothermia might prevent cerebral visible neuropathologic damage associated with hypoxic-ischemic injury by decreasing stress response.

  20. Impact of perinatal systemic hypoxic-ischemic injury on the brain of male offspring rats: an improved model of neonatal hypoxic-ischemic encephalopathy in early preterm newborns.

    Directory of Open Access Journals (Sweden)

    Yuejun Huang

    Full Text Available In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.

  1. Impact of perinatal systemic hypoxic-ischemic injury on the brain of male offspring rats: an improved model of neonatal hypoxic-ischemic encephalopathy in early preterm newborns.

    Science.gov (United States)

    Huang, Yuejun; Lai, Huihong; Xu, Hongwu; Wu, Weizhao; Lai, Xiulan; Ho, Guyu; Chen, Yunbin; Ma, Lian

    2013-01-01

    In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE) in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND) 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.

  2. Pharmacological Neuroprotection after Perinatal Hypoxic-Ischemic Brain Injury

    NARCIS (Netherlands)

    Fan, Xiyong; Kavelaars, Annemieke; Heijnen, Cobi J.; Groenendaal, Floris; van Bel, Frank

    2010-01-01

    Perinatal hypoxia-ischemia (HI) is an important cause of neonatal brain injury. Recent progress in the search for neuroprotective compounds has provided us with several promising drugs to reduce perinatal HI-induced brain injury. In the early stage (first 6 hours after birth) therapies are concentra

  3. Role of Antioxidants in Neonatal Hypoxic-Ischemic Brain Injury: New Therapeutic Approaches.

    Science.gov (United States)

    Arteaga, Olatz; Álvarez, Antonia; Revuelta, Miren; Santaolalla, Francisco; Urtasun, Andoni; Hilario, Enrique

    2017-01-28

    Hypoxic-ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia-ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia-ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic-ischemic brain injury, in the light of the most recent advances.

  4. Estrogen inhibits lipid peroxidation after hypoxic-ischemic brain damage in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    Hui Zhu; Xiao Han; Dafeng Ji; Guangming Lv; Meiyu Xu

    2012-01-01

    Sprague-Dawley neonatal rats within 7 days after birth were used in this study. The left common carotid artery was occluded and rats were housed in an 8% O2 environment for 2 hours to establish a hypoxic-ischemic brain damage model. 17β-estradiol (1 × 10-5 M) was injected into the rat abdominal cavity after the model was successfully established. The left hemisphere was obtained at 12, 24, 48, 72 hours after operation. Results showed that malondialdehyde content in the left brain of neonatal rats gradually increased as modeling time prolonged, while malondialdehyde content of 17β-estrodial-treated rats significantly declined by 24 hours, reached lowest levels at 48 hours, and then peaked at 72 hours after injury. Nicotinamide-adenine dinucleotide phosphate histochemical staining showed the nitric oxide synthase-positive cells and fibers dyed blue/violet and were mainly distributed in the cortex, hippocampus and medial septal nuclei. The number of nitric oxide synthase-positive cells peaked at 48 hours and significantly decreased after 17β-estrodial treatment. Our experimental findings indicate that estrogen plays a protective role following hypoxic-ischemic brain damage by alleviating lipid peroxidation through reducing the expression of nitric oxide synthase and the content of malondialdehyde.

  5. Changes in cerebral oxidative metabolism during neonatal seizures following hypoxic ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Subhabrata Mitra

    2016-08-01

    Full Text Available Seizures are common following hypoxic ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain, however the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO] and hemodynamics during recurrent neonatal seizures following hypoxic ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude integrated electro-encephalogram (aEEG. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean EEG voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism.

  6. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment.

    Science.gov (United States)

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-02-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2), an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 10(6) bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2) for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage.

  7. Glucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE)

    Science.gov (United States)

    Harding, Benjamin; Conception, Katherine; Li, Yong; Zhang, Lubo

    2016-01-01

    Hypoxic-ischemic encephalopathy (HIE) resulting from asphyxia in the peripartum period is the most common cause of neonatal brain damage and can result in significant neurologic sequelae, including cerebral palsy. Currently therapeutic hypothermia is the only accepted treatment in addition to supportive care for infants with HIE, however, many additional neuroprotective therapies have been investigated. Of these, glucocorticoids have previously been shown to have neuroprotective effects. HIE is also frequently compounded by infectious inflammatory processes (sepsis) and as such, the infants may be more amenable to treatment with an anti-inflammatory agent. Thus, the present study investigated dexamethasone and hydrocortisone treatment given after hypoxic-ischemic (HI) insult in neonatal rats via intracerebroventricular (ICV) injection and intranasal administration. In addition, we examined the effects of hydrocortisone treatment in HIE after lipopolysaccharide (LPS) sensitization in a model of HIE and sepsis. We found that dexamethasone significantly reduced rat brain infarction size when given after HI treatment via ICV injection; however it did not demonstrate any neuroprotective effects when given intranasally. Hydrocortisone after HI insult also significantly reduced brain infarction size when given via ICV injection; and the intranasal administration showed to be protective of brain injury in male rats at a dose of 300 µg. LPS sensitization did significantly increase the brain infarction size compared to controls, and hydrocortisone treatment after LPS sensitization showed a significant decrease in brain infarction size when given via ICV injection, as well as intranasal administration in both genders at a dose of 300 µg. To conclude, these results show that glucocorticoids have significant neuroprotective effects when given after HI injury and that these effects may be even more pronounced when given in circumstances of additional inflammatory injury, such

  8. Hypoxic-ischemic changes in SIDS brains as demonstrated by a reduction in MAP2-reactive neurons.

    Science.gov (United States)

    Oehmichen, Manfred; Woetzel, Fabian; Meissner, Christoph

    2009-03-01

    Sudden infant death syndrome (SIDS) is characterized by a lack of any known morphological or functional organ changes that could explain the lethal process. In the present study we investigated the hypothesis of an association between hypoxic/ischemic injury and SIDS deaths. In a previous study, we could demonstrate by quantitative immunohistochemistry a distinct drop in microtubule-associated protein (MAP2) reactivity in neurons of adult, human brains secondary to acute hypoxic-ischemic injuries. Here we applied the same method on sections of the frontal cortex and hippocampus of 41 brains of infants younger than 1 year of age. For each brain area 100 selected neurons were evaluated for their MAP2 reactivity in the different layers of the frontal cortex and in the different segments of the hippocampus. Three groups were compared: (1) SIDS victims (n = 17), (2) infants with hypoxia/ischemia (control group one; n = 14), (3) infants without hypoxic/ischemic injury (control group two; n = 10). The SIDS group and hypoxic/ischemic group exhibited a general reduction in the number of MAP2 reactive neurons in comparison with the non-hypoxic/ischemic injury group. The SIDS group also had a significantly lower (P < 0.05) number of reactive neurons in the CA2 and CA3 areas of the hippocampus than did control group two. No difference was detected between the SIDS group and control group one. The SIDS brains were thus found to display hypoxic/ischemic features without however providing evidence as to the cause of the oxygen reduction.

  9. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    Institute of Scientific and Technical Information of China (English)

    Xianchao Li; Wensheng Hou; Xiaoying Wu; Wei Jiang; Haiyan Chen; Nong Xiao; Ping Zhou

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy-poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efifciencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migra-tion and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2, an increasing number of green lfuorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental ifndings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypox-ic-ischemic brain damage.

  10. Therapeutic administration of plasminogen activator inhibitor-1 prevents hypoxic-ischemic brain injury in newborns.

    Science.gov (United States)

    Yang, Dianer; Nemkul, Niza; Shereen, Ahmed; Jone, Alice; Dunn, R Scott; Lawrence, Daniel A; Lindquist, Diana; Kuan, Chia-Yi

    2009-07-08

    Disruption of the integrity of the blood-brain barrier (BBB) is an important mechanism of cerebrovascular diseases, including neonatal cerebral hypoxia-ischemia (HI). Although both tissue-type plasminogen activator (tPA) and matrix metalloproteinase-9 (MMP-9) can produce BBB damage, their relationship in neonatal cerebral HI is unclear. Here we use a rodent model to test whether the plasminogen activator (PA) system is critical for MMP-9 activation and HI-induced brain injury in newborns. To test this hypothesis, we examined the therapeutic effect of intracerebroventricular injection of plasminogen activator inhibitor-1 (PAI-1) in rat pups subjected to unilateral carotid artery occlusion and systemic hypoxia. We found that the injection of PAI-1 greatly reduced the activity of both tPA and urokinase-type plasminogen activator after HI. It also blocked HI-induced MMP-9 activation and BBB permeability at 24 h of recovery. Furthermore, magnetic resonance imaging and histological analysis showed the PAI-1 treatment reduced brain edema, axonal degeneration, and cortical cell death at 24-48 h of recovery. Finally, the PAI-1 therapy provided a dose-dependent decrease of brain tissue loss at 7 d of recovery, with the therapeutic window at 4 h after the HI insult. Together, these results suggest that the brain PA system plays a pivotal role in neonatal cerebral HI and may be a promising therapeutic target in infants suffering hypoxic-ischemic encephalopathy.

  11. An Isolation Method for Assessment of Brain Mitochondria Function in Neonatal Mice with Hypoxic-Ischemic Brain Injury

    Science.gov (United States)

    Caspersen, Casper S.; Sosunov, Alexander; Utkina-Sosunova, Irina; Ratner, Veniamin I.; Starkov, Anatoly A.; Ten, Vadim S.

    2010-01-01

    This work was undertaken to develop a method for the isolation of mitochondria from a single cerebral hemisphere in neonatal mice. Mitochondria from the normal mouse brain hemisphere isolated by the proposed method exhibited a good respiratory control ratio of 6.39 ± 0.53 during glutamate-malate-induced phosphorylating respiration. Electron microscopy showed intact mitochondria. The applicability of this method was tested on mitochondria isolated from naïve mice and their littermates subjected to hypoxic-ischemic insult. Hypoxic-ischemic insult prior to reperfusion resulted in a significant (p < 0.01) inhibition of phosphorylating respiration compared to naïve littermates. This was associated with a profound depletion of the ATP content in the ischemic hemisphere. The expression for Mn superoxide dismutase and cytochrome C (markers for the integrity of the mitochondrial matrix and outer membrane) was determined by Western blot to control for mitochondrial integrity and quantity in the compared samples. Thus, we have developed a method for the isolation of the cerebral mitochondria from a single hemisphere adapted to neonatal mice. This method may serve as a valuable tool to study mitochondrial function in a mouse model of immature brain injury. In addition, the suggested method enables us to examine the mitochondrial functional phenotype in immature mice with a targeted genetic alteration. PMID:18349523

  12. Fetal stress and programming of hypoxic/ischemic-sensitive phenotype in the neonatal brain: mechanisms and possible interventions.

    Science.gov (United States)

    Li, Yong; Gonzalez, Pablo; Zhang, Lubo

    2012-08-01

    Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxic-ischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other brain disorders.

  13. Neuroprotective Role of Nerve Growth Factor in Hypoxic-Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Antonio Chiaretti

    2013-06-01

    Full Text Available Hypoxic-ischemic brain injuries (HIBI in childhood are frequently associated with poor clinical and neurological outcome. Unfortunately, there is currently no effective therapy to restore neuronal loss and to determine substantial clinical improvement. Several neurotrophins, such as Nerve Growth Factor (NGF, Brain-Derived Neurotrophic Factor (BDNF, and Glial Derived Neurotrophic Factor (GDNF, play a key role in the development, differentiation, and survival of the neurons of the peripheral and central nervous system. Experimental animal studies demonstrated their neuroprotective role in HIBI, while only a few studies examined the neuroprotective mechanisms in patients with severe HIBI. We report two cases of children with HIBI and prolonged comatose state who showed a significant improvement after intraventricular NGF administration characterized by amelioration of electroencephalogram (EEG and cerebral perfusion at single-photon emission computed tomography (SPECT. The improvement in motor and cognitive functions of these children could be related to the neuroprotective role exerted by NGF in residual viable cholinergic neurons, leading to the restoration of neuronal networks in the damaged brain.

  14. Spatiotemporal Characteristics of Freezing of Gait in Patients After Hypoxic-Ischemic Brain Injury

    Science.gov (United States)

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Yong Wook

    2016-01-01

    Abstract The objective of this study was to investigate spatiotemporal characteristics with gait variability in patients with freezing of gait (FOG) after hypoxic-ischemic brain injury (HIBI). Eleven patients showing FOG after HIBI and 15 normal controls were consecutively enrolled. We performed gait analysis using a computerized gait system (VICON MX-T10 Motion Analysis System) and compared spatiotemporal characteristics and gait variability in both groups. Additionally, we performed correlation analysis to identify the gait parameters associated with severity of freezing, which we measured based on unified Parkinson disease Rating Scale subscore. Spatiotemporal characteristic of FOG patients showed increased stance time and double support phase and decreased swing time, single support phase, stride length, step length, and gait velocity compared with normal controls (P step length asymmetry were significantly increased in HIBI patients with FOG (P step length, and gait velocity variability in HIBI patients with FOG compared with normal controls (P step length, and single support phase to be spatiotemporal parameters related to FOG severity (P < 0.05). Our findings suggest that bilateral gait coordination deterioration plays a considerable role for pathophysiology of FOG in HIBI patients. Additional studies with a larger number of subjects are needed to further investigate the neural mechanism of FOG after HIBI. PMID:27175696

  15. Inhibition of miRNA-210 reverses nicotine-induced brain hypoxic-ischemic injury in neonatal rats

    Science.gov (United States)

    Wang, Lei; Ke, Jun; Li, Yong; Ma, Qinyi; Dasgupta, Chiranjib; Huang, Xiaohui; Zhang, Lubo; Xiao, DaLiao

    2017-01-01

    Maternal tobacco use in pregnancy increases the risk of neurodevelopmental disorders and neurobehavioral deficits in postnatal life. The present study tested the hypothesis that perinatal nicotine exposure exacerbated brain vulnerability to hypoxic-ischemic (HI) injury in neonatal rats through up-regulation of miR-210 expression in the developing brain. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps. Experiments of HI brain injury were performed in 10-day-old pups. Perinatal nicotine treatment significantly decreased neonatal body and brain weights, but increased the brain to body weight ratio. Perinatal nicotine exposure caused a significant increase in HI brain infarct size in the neonates. In addition, nicotine enhanced miR-210 expression and significantly attenuated brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase isoform B (TrkB) protein abundance in the brain. Of importance, intracerebroventricular administration of a miR-210 inhibitor (miR-210-LNA) significantly decreased HI-induced brain infarct size and reversed the nicotine-increased vulnerability to brain HI injury in the neonate. Furthermore, miR-210-LNA treatment also reversed nicotine-mediated down-regulation of BDNF and TrkB protein expression in the neonatal brains. These findings provide novel evidence that the increased miR-210 plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the brain. It represents a potential novel therapeutic approach for treatment of brain hypoxic-ischemic encephalopathy in the neonate-induced by fetal stress. PMID:28123348

  16. Fetal Stress and Programming of Hypoxic/Ischemic-Sensitive Phenotype in the Neonatal Brain: Mechanisms and Possible Interventions

    Science.gov (United States)

    Li, Yong; Gonzalez, Pablo; Zhang, Lubo

    2012-01-01

    Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxicischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other for brain disorders. PMID:22627492

  17. Gastrodin protects neonatal rat brain against hypoxic-ischemic encephalopathy Acute therapeutic drug effects

    Institute of Scientific and Technical Information of China (English)

    Yanjun Niu; Zhengyong Jin

    2008-01-01

    BACKGROUND:Pharmacological experiments have demonstrated that gastrodin has a protective effect on neonatal rat brain subjected to hypoxia-ischemia; however,the underlying mechanism has not been fully elucidated. OBJECTIVE:The aim of this study was to investigate the acute therapeutic effects of gastrodin by observing prostaglandin B2 and 6-keto-prostaglandin F 1 a in brain issue of neonatal rats that received gastrodin injections immediately after hypoxia-ischemia.DESIGN:Single-factor design.SETTING:Department of Pediatrics,Affiliated Hospital of Yanbian University. MATERIALS:This study was performed in the Laboratory of the Department of Pediatrics,Affiliated Hospital of Yanbian University(key laboratory of provincial Health Department)from April to December 2003.Fifty-five Wistar rats of either gender,aged 7 days,were provided by the Laboratory Animal Center of Affiliated Hospital of Yanbian University.The rats were randomly divided into normal control(n=10), model(n=15),gastrodin-treated(n=15),and Danshen-treated(n=15)groups.The protocol was performed in accordance with guidelines from the Institute of Health Sciences for the use and care of animals.The following reagents were.used:Gastrodin(Sancai Medicine Group Co.,Ltd.,Zhongshan,Guangdong Province,China;component:gastrodin),Danshen(Conba Stock Company,Jinhua,Zhengjiang Province,China; component:salvia miltiorrhiza),and reagent kits for 125I-prostaglandin B2 and 125I-6-prostaglandin F 1 a (Research and Development Center for Science and Technology,General Hospital of Chinese PLA). METHODS:Rats in the normal control group received no treatment.Rats in the remaining 3 groups were anesthetized,followed by ligation of the left common carotid artery.One hour later,the rats were placed in a closed hypoxic box and allowed to inhale 8% oxygen-air(2.0-3.0 L/min)for 2 hours to develop hypoxic-ischemic encephalopathy.Immediately after lesion,rats in the gastrodin and Danshen-treated groups were intraperitoneally

  18. Detection of hypoxic-ischemic brain injury with 3D-enhanced T2* weighted angiography (ESWAN) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gang, QiangQiang, E-mail: rousikang@163.com; Zhang, Jianing, E-mail: 1325916060@qq.com; Hao, Peng, E-mail: 1043600590@qq.com; Xu, Yikai, E-mail: yikaivip@163.com

    2013-11-01

    Objective: To demonstrate the use of 3D-enhanced T2* weighted angiography (ESWAN) imaging for the observation and quantification of the evolution of brain injury induced by a recently developed model of hypoxic-ischemic brain injury (HI/R) in neonatal piglets. Methods: For these experiments, newborn piglets were subjected to HI/R injury, during which ESWAN scanning was performed, followed by H and E staining and immunohistochemistry of AQP-4 expression. Results: In the striatum, values from T2* weighted magnetic resonance imaging (MRI) increased and reached their highest level at 3 days post injury, whereas T2* values increased and peaked at 24 h in the subcortical region. The change in T2* values was concordant with brain edema. Phase values in the subcortical border region were not dependent on time post-injury. Magnitude values were significantly different from the control group, and increased gradually over time in the subcortical border region. Susceptibility-weighted images (SWI) indicated small petechial hemorrhages in the striatum and thalamus, as well as dilated intramedullary veins. Conclusion: SWI images can be used to detect white and gray matter microhemorrhages and dilated intramedullary veins. The T2*, phase, and magnitude map can also reflect the development of brain injury. Our data illustrate that ESWAN imaging can increase the diagnostic sensitivity and specificity of MRI in neonatal hypoxic-ischemic encephalopathy.

  19. Negative regulation of miRNA-9 on oligodendrocyte lineage gene 1 during hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Lijun Yang; Hong Cui; Ting Cao

    2014-01-01

    Oligodendrocyte lineage gene 1 plays a key role in hypoxic-ischemic brain damage and myelin repair. miRNA-9 is involved in the occurrence of many related neurological disorders. Bioin-formatics analysis demonstrated that miRNA-9 complementarily, but incompletely, bound oligodendrocyte lineage gene 1, but whether miRNA-9 regulates oligodendrocyte lineage gene 1 remains poorly understood. Whole brain slices of 3-day-old Sprague-Dawley rats were cultured and divided into four groups:control group;oxygen-glucose deprivation group (treatment with 8% O2+ 92%N2 and sugar-free medium for 60 minutes);transfection control group (after oxygen and glucose deprivation for 60 minutes, transfected with control plasmid) and miRNA-9 transfection group (after oxygen and glucose deprivation for 60 minutes, transfected with miRNA-9 plasmid). From the third day of transfection, and with increasing culture days, oligodendrocyte lineage gene 1 expression increased in each group, peaked at 14 days, and then decreased at 21 days. Real-time quantitative PCR results, however, demonstrated that oligoden-drocyte lineage gene 1 expression was lower in the miRNA-9 transfection group than that in the transfection control group at 1, 3, 7, 14, 21 and 28 days after transfection. Results suggested that miRNA-9 possibly negatively regulated oligodendrocyte lineage gene 1 in brain tissues during hypoxic-ischemic brain damage.

  20. Molecular chaperones and hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Cong Hua

    2017-01-01

    Full Text Available Hypoxic-ischemic encephalopathy (HIE is a disease that occurs when the brain is subjected to hypoxia, resulting in neuronal death and neurological deficits, with a poor prognosis. The mechanisms underlying hypoxic-ischemic brain injury include excitatory amino acid release, cellular proteolysis, reactive oxygen species generation, nitric oxide synthesis, and inflammation. The molecular and cellular changes in HIE include protein misfolding, aggregation, and destruction of organelles. The apoptotic pathways activated by ischemia and hypoxia include the mitochondrial pathway, the extrinsic Fas receptor pathway, and the endoplasmic reticulum stress-induced pathway. Numerous treatments for hypoxic-ischemic brain injury caused by HIE have been developed over the last half century. Hypothermia, xenon gas treatment, the use of melatonin and erythropoietin, and hypoxic-ischemic preconditioning have proven effective in HIE patients. Molecular chaperones are proteins ubiquitously present in both prokaryotes and eukaryotes. A large number of molecular chaperones are induced after brain ischemia and hypoxia, among which the heat shock proteins are the most important. Heat shock proteins not only maintain protein homeostasis; they also exert anti-apoptotic effects. Heat shock proteins maintain protein homeostasis by helping to transport proteins to their target destinations, assisting in the proper folding of newly synthesized polypeptides, regulating the degradation of misfolded proteins, inhibiting the aggregation of proteins, and by controlling the refolding of misfolded proteins. In addition, heat shock proteins exert anti-apoptotic effects by interacting with various signaling pathways to block the activation of downstream effectors in numerous apoptotic pathways, including the intrinsic pathway, the endoplasmic reticulum-stress mediated pathway and the extrinsic Fas receptor pathway. Molecular chaperones play a key role in neuroprotection in HIE. In

  1. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage.

    Science.gov (United States)

    Feng, Zhichun; Liu, Jing; Ju, Rong

    2013-05-05

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  2. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Zhichun Feng; Jing Liu; Rong Ju

    2013-01-01

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2′-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2′- deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  3. Cortical hypoxic-ischemic brain damage in shaken-baby (shaken impact) syndrome: value of diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Parizel, Paul M.; Oezsarlak, Oezkan; Goethem, Johan W. van [Department of Radiology, University of Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium); Ceulemans, Berten; Laridon, Annick [Department of Pediatric Neurology, University of Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium); Jorens, Philippe G. [Department of Pediatric Intensive Care Medicine, University of Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium)

    2003-12-01

    Shaken-baby syndrome (SBS) is a type of child abuse caused by violent shaking of an infant, with or without impact, and characterized by subdural hematomas, retinal hemorrhages, and occult bone fractures. Parenchymal brain lesions in SBS may be missed or underestimated on CT scans, but can be detected at an earlier stage with diffusion-weighted MRI (DW-MRI) as areas of restricted diffusion. We demonstrate the value of DW-MRI in a 2-month-old baby boy with suspected SBS. The pattern of diffusion abnormalities indicates that the neuropathology of parenchymal lesions in SBS is due to hypoxic-ischemic brain injuries, and not to diffuse axonal injury. (orig.)

  4. Complement component c1q mediates mitochondria-driven oxidative stress in neonatal hypoxic-ischemic brain injury.

    Science.gov (United States)

    Ten, Vadim S; Yao, Jun; Ratner, Veniamin; Sosunov, Sergey; Fraser, Deborah A; Botto, Marina; Sivasankar, Baalasubramanian; Morgan, B Paul; Silverstein, Samuel; Stark, Raymond; Polin, Richard; Vannucci, Susan J; Pinsky, David; Starkov, Anatoly A

    2010-02-10

    Hypoxic-ischemic (HI) brain injury in infants is a leading cause of lifelong disability. We report a novel pathway mediating oxidative brain injury after hypoxia-ischemia in which C1q plays a central role. Neonatal mice incapable of classical or terminal complement activation because of C1q or C6 deficiency or pharmacologically inhibited assembly of membrane attack complex were subjected to hypoxia-ischemia. Only C1q(-/-) mice exhibited neuroprotection coupled with attenuated oxidative brain injury. This was associated with reduced production of reactive oxygen species (ROS) in C1q(-/-) brain mitochondria and preserved activity of the respiratory chain. Compared with C1q(+/+) neurons, cortical C1q(-/-) neurons exhibited resistance to oxygen-glucose deprivation. However, postischemic exposure to exogenous C1q increased both mitochondrial ROS production and mortality of C1q(-/-) neurons. This C1q toxicity was abolished by coexposure to antioxidant Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid). Thus, the C1q component of complement, accelerating mitochondrial ROS emission, exacerbates oxidative injury in the developing HI brain. The terminal complement complex is activated in the HI neonatal brain but appeared to be nonpathogenic. These findings have important implications for design of the proper therapeutic interventions against HI neonatal brain injury by highlighting a pathogenic priority of C1q-mediated mitochondrial oxidative stress over the C1q deposition-triggered terminal complement activation.

  5. Nerve protective effect of rhTPO and G-CSF on hypoxic ischemic brain damage in rats

    Institute of Scientific and Technical Information of China (English)

    Hong-Xia Zhou; Chun-Lai Zhang; Yue-Hong Li; Yu-Xin Zhang; Zi-Feng Wei; Xi Wang Meng Ling-Li

    2014-01-01

    Objective:To observe the protection effect of rhTPO and granulocyte colony stimulating factor (G-CSF) on brain nerve after hypoxic ischemic brain damage(HIBD) in neonatal rats, exploring new ways for the laboratory basis of treatment for hypoxic ischemic encephalopathy, and provide for possible.Methods:A total of120 newbornSD rats aging7 d were randomly divided into control group, model group,TPO group andG-CSF group, using the method of blockingleft carotid artery to establishHIBD model.The left carotid artery was only seperated rather than blocked in the control group; after modeling, saline injection, rhTPO treatment andG-CSF treatment were adopted in the model group,TPO group andG-CSF group respectively.Then10 rats of4 groups were executed atDay3,7,14 after modeling, brain tissue was extracted to observe the brain damage;Immunohistochemical method was used to observe the histopathological changes of brain tissue and changes of nest protein(nestin) expression.Results:Injured brain mass of model group,TPO group andG-CSF group were significantly higher than that of control group at corresponding time point(P<0.05).Injured brain mass ofTPO group andG-CSF group were significantly lower than that of model group(P<0.05), and with the increase of age, more significant increasing trend.AtDay3 after modeling, the expression of nestin positive cells in cerebral cortex of model group,TPO group andG-CSF group increased significantly than that of control group(P<0.05); nestin positive cells ofG-CSF group outnumberedTPO group significantly (P<0.05).Conclusions:The earlyTPO,G-CSF treatment ofHIBD rats can improve brain function after hypoxia ischemia by neural protection.G-CSF can promote the differentiation of neural cells proliferation, and reduce degeneration and necrosis of nerve cells.

  6. Nelfinavir inhibits intra-mitochondrial calcium influx and protects brain against hypoxic-ischemic injury in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Irina V Utkina-Sosunova

    Full Text Available Nelfinavir (NLF, an antiretroviral agent, preserves mitochondrial membranes integrity and protects mature brain against ischemic injury in rodents. Our study demonstrates that in neonatal mice NLF significantly limits mitochondrial calcium influx, the event associated with protection of the brain against hypoxic-ischemic insult (HI. Compared to the vehicle-treated mice, cerebral mitochondria from NLF-treated mice exhibited a significantly greater tolerance to the Ca(2+-induced membrane permeabilization, greater ADP-phosphorylating activity and reduced cytochrome C release during reperfusion. Pre-treatment with NLF or Ruthenium red (RuR significantly improved viability of murine hippocampal HT-22 cells, reduced Ca(2+ content and preserved membrane potential (Ψm in mitochondria following oxygen-glucose deprivation (OGD. Following histamine-stimulated Ca(2+ release from endoplasmic reticulum, in contrast to the vehicle-treated cells, the cells treated with NLF or RuR also demonstrated reduced Ca(2+ content in their mitochondria, the event associated with preserved Ψm. Because RuR inhibits mitochondrial Ca(2+ uniporter, we tested whether the NLF acts via the mechanism similar to the RuR. However, in contrast to the RuR, in the experiment with direct interaction of these agents with mitochondria isolated from naïve mice, the NLF did not alter mitochondrial Ca(2+ influx, and did not prevent Ca(2+ induced collapse of the Ψm. These data strongly argues against interaction of NLF and mitochondrial Ca(2+ uniporter. Although the exact mechanism remains unclear, our study is the first to show that NLF inhibits intramitochondrial Ca(2+ flux and protects developing brain against HI-reperfusion injury. This novel action of NLF has important clinical implication, because it targets a fundamental mechanism of post-ischemic cell death: intramitochondrial Ca(2+ overload → mitochondrial membrane permeabilization → secondary energy failure.

  7. Pontine axonal injury after brain trauma and nontraumatic hypoxic-ischemic brain damage.

    Science.gov (United States)

    Oehmichen, M; Meissner, C; Schmidt, V; Pedal, I; König, H G

    1999-01-01

    Experimental studies have shown that diffuse axonal injury is usually induced by positive or negative acceleration mechanisms. In order to determine the reliability of axonal injury (AI) as a marker of this type of traumatic insult, we compared cases of trauma-induced focal cortical hemorrhage without dural involvement (n = 67) with cases of trauma-induced subdural bleeding without cortical hemorrhage (n = 26). Both groups exhibited a wide range of post-traumatic survival times. The injuries in the first group were caused mainly by direct impact to the head, those in the second by acceleration/deceleration mechanisms. The investigations were based primarily on immunohistochemical demonstration of antibodies targeted to beta-amyloid precursor protein (beta-APP) in the pons as a marker of AI and the results were assessed semiquantitatively. No significant differences were found between the two groups. In both groups AI was detected in 80-100% of cases with survival times of more than 3 h and two thirds of all positive cases showed pronounced positivity. Additional comparison of cases of brain death due to mechanical trauma (n = 14) with cases of brain death due to non-mechanical trauma (n = 18) also disclosed no significant intergroup differences. Finally, investigations of the pons in cases of non-traumatic death due to cerebral hypoxia/ischemia (n = 51) demonstrated AI with the same frequency as in the other groups, although the expression tended to be less pronounced. Our results confirm that beta-APP expression in the pons is a reliable indicator of AI but does not discriminate between injuries caused by traumatic strain or shearing mechanisms and secondary damage due to cerebral hypoxia/ischemia or edema. In the large majority of cases with prolonged post-traumatic survival, it can therefore be assumed that AI in the pons is the consequence of primary and/or secondary events or a combination of both, as is common in non-missile head injury survived for more than

  8. Blocking lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-ischemic brain injury in newborns.

    Science.gov (United States)

    Yang, Dianer; Sun, Yu-Yo; Bhaumik, Siddhartha Kumar; Li, Yikun; Baumann, Jessica M; Lin, Xiaoyi; Zhang, Yujin; Lin, Shang-Hsuan; Dunn, R Scott; Liu, Chia-Yang; Shie, Feng-Shiun; Lee, Yi-Hsuan; Wills-Karp, Marsha; Chougnet, Claire A; Kallapur, Suhas G; Lewkowich, Ian P; Lindquist, Diana M; Murali-Krishna, Kaja; Kuan, Chia-Yi

    2014-12-03

    Intrauterine infection (chorioamnionitis) aggravates neonatal hypoxic-ischemic (HI) brain injury, but the mechanisms linking systemic inflammation to the CNS damage remain uncertain. Here we report evidence for brain influx of T-helper 17 (TH17)-like lymphocytes to coordinate neuroinflammatory responses in lipopolysaccharide (LPS)-sensitized HI injury in neonates. We found that both infants with histological chorioamnionitis and rat pups challenged by LPS/HI have elevated expression of the interleukin-23 (IL-23) receptor, a marker of early TH17 lymphocytes, in the peripheral blood mononuclear cells. Post-LPS/HI administration of FTY720 (fingolimod), a sphingosine-1-phosphate receptor agonist that blocks lymphocyte trafficking, mitigated the influx of leukocytes through the choroid plexus and acute induction of nuclear factor-κB signaling in the brain. Subsequently, the FTY720 treatment led to attenuated blood-brain barrier damage, fewer cluster of differentiation 4-positive, IL-17A-positive T-cells in the brain, less proinflammatory cytokine, and better preservation of growth and white matter functions. The FTY720 treatment also provided dose-dependent reduction of brain atrophy, rescuing >90% of LPS/HI-induced brain tissue loss. Interestingly, FTY720 neither opposed pure-HI brain injury nor directly inhibited microglia in both in vivo and in vitro models, highlighting its unique mechanism against inflammation-sensitized HI injury. Together, these results suggest that the dual hit of systemic inflammation and neonatal HI injury triggers early onset of the TH17/IL-17-mediated immunity, which causes severe brain destruction but responds remarkably to the therapeutic blockade of lymphocyte trafficking.

  9. Biomarkers of Hypoxic Ischemic Encephalopathy in Newborns

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2012-11-01

    Full Text Available As neonatal intensive care has evolved, the focus has shifted from improving mortality alone to an effort to improve both mortality and morbidity. The most frequent source of neonatal brain injury occurs as a result of hypoxic-ischemic injury. Hypoxic-ischemic injury occurs in about 2 of 1,000 full-term infants and severe injured infants will have lifetime disabilities and neurodevelopmental delays. Most recently, remarkable efforts toward neuroprotection have been started with the advent of therapeutic hypothermia and a key step in the evolution of neonatal neuroprotection is the discovery of biomarkers that enable the clinician-scientist to screen infants for brain injury, monitor progression of disease, identify injured brain regions, and assess efficacy of neuroprotective clinical trials. Lastly, biomarkers offer great hope identifying when an injury occurred shedding light on the potential pathophysiology and the most effective therapy. In this article, we will review biomarkers of HIE including S100b, neuron specific enolase, umbilical cord IL-6, CK-BB, GFAP, myelin basic protein, UCHL-1, and pNF-H. We hope to contribute to the awareness, validation and clinical use of established as well as novel neonatal brain injury biomarkers.

  10. Fibroblast growth factor-2 induced by enriched environment enhances angiogenesis and motor function in chronic hypoxic-ischemic brain injury.

    Directory of Open Access Journals (Sweden)

    Jung Hwa Seo

    Full Text Available This study aimed to investigate the effects of enriched environment (EE on promoting angiogenesis and neurobehavioral function in an animal model of chronic hypoxic-ischemic (HI brain injury. HI brain damage was induced in seven day-old CD-1® mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min. At six weeks of age, the mice were randomly assigned to either EE or standard cages (SC for two months. Rotarod, forelimb-use asymmetry, and grip strength tests were performed to evaluate neurobehavioral function. In order to identify angiogenic growth factors regulated by EE, an array-based multiplex ELISA assay was used to measure the expression in frontal cortex, striatum, and cerebellum. Among the growth factors, the expression of fibroblast growth factor-2 (FGF-2 was confirmed using western blotting. Platelet endothelial cell adhesion molecule-1 (PECAM-1 and α-smooth muscle actin (α-SMA were also evaluated using immunohistochemistry. As a result, mice exposed to EE showed significant improvements in rotarod and ladder walking performances compared to SC controls. The level of FGF-2 was significantly higher in the frontal cortex of EE mice at 8 weeks after treatment in multiplex ELISA and western blot. On the other hand, FGF-2 in the striatum significantly increased at 2 weeks after exposure to EE earlier than in the frontal cortex. Expression of activin A was similarly upregulated as FGF-2 expression pattern. Particularly, all animals treated with FGF-2 neutralizing antibody abolished the beneficial effect of EE on motor performance relative to mice not given anti-FGF-2. Immunohistochemistry showed that densities of α-SMA(+ and PECAM-1(+ cells in frontal cortex, striatum, and hippocampus were significantly increased following EE, suggesting the histological findings exhibit a similar pattern to the upregulation of FGF-2 in the brain. In conclusion, EE enhances endogenous angiogenesis and neurobehavioral functions

  11. Diffusion-weighted imaging in the evaluation of watershed hypoxic-ischemic brain injury in pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A.Y.; Zimmerman, R.A.; Haselgrove, J.C.; Bilaniuk, L.T.; Hunter, J.V. [Hospital of the Univ. of Pennsylvania (HUP), Philadelphia (United States). Dept. of Radiology

    2001-11-01

    The purpose of our study was to determine the usefulness of echo-planar diffusion-weighted imaging (EPDI) in the evaluation of watershed hypoxic-ischemic brain injury in pediatric patients. Eighteen patients ranging in age from 3 weeks to 12 years were evaluated for evidence of ischemic/infarction changes on conventional MR and EPDI. Included in the study group were five patients with sickle cell disease, four with congenital heart disease, four with hypotensive episodes with various etiologies, three with sepsis, and two with encephalitis or meningitis. Patients were examined 2 h to 6 days after the initial insult, with follow-up studies in four patients at 1 to 62 days after the initial examination. After conventional MR imaging (T1, FSE T2, and FLAIR), diffusion-weighted MR imaging was performed using high-speed, single-shot EP techniques with TR 6000, TE 144, matrix 96 x 128, FOV 23.3 x 31 and five b values of 0, 160, 360, 640, and 1,000 s/mm{sup 2}. EPDI demonstrated abnormally increased signal in watershed ischemic/infarction zones in all initial cases. Apparent diffusion coefficients (ADC) were obtained in 59 lesions. When compared with radiographically normal (on EPDI) contralateral brain parenchyma, 45 demonstrated a relatively decreased ADC, while eight had normal ({+-} 10 %) and six had increased ADC. In four cases, signal abnormalities on EPDI were not seen or exceeded that seen with conventional MR imaging. In the remaining cases, signal abnormalities were obvious on EPDI and more subtle on conventional MR imaging. Follow-up studies demonstrated resolution of abnormal EPDI signal with persistent abnormalities on conventional imaging in some cases, while others revealed an increase in size or number of EPDI signal abnormalities, suggesting ongoing acute ischemic/infarctive changes. EPDI is a rapid, sensitive technique for detecting watershed ischemic/infarction changes in pediatric patients with hypoperfusion episodes, at times before such changes are

  12. Dysregulation of FMRP/mTOR Signaling Cascade in Hypoxic-Ischemic Injury of Premature Human Brain.

    Science.gov (United States)

    Lechpammer, Mirna; Wintermark, Pia; Merry, Katherine M; Jackson, Michele C; Jantzie, Lauren L; Jensen, Frances E

    2016-03-01

    In this study the authors investigated whether dysregulation of the fragile X mental retardation protein and mammalian target of rapamycin signaling cascade can have a role in the pathogenesis of encephalopathy of prematurity following perinatal hypoxia-ischemia. The authors examined the brain tissue of newborns with encephalopathy and compared it to age-matched controls with normal brain development and adults. In normal controls, the fragile X mental retardation protein expression in cortical gray matter spiked 4-fold during 36-39 gestational weeks compared to the adult, with a concomitant suppression of p70S6K and S6. In encephalopathy cases, the developmental spike of fragile X mental retardation protein was not observed, and fragile X mental retardation protein levels remained significantly lower than in normal controls. Importantly, this fragile X mental retardation protein downregulation was followed by a significant overexpression of p70S6K and S6. These novel findings thus suggest that premature hypoxic-ischemic brain injury can affect the fragile X mental retardation protein/mammalian target of rapamycin pathway, as otherwise observed in inherited syndromes of cognitive disability and autism spectrum disorders.

  13. Animal models of hypoxic-ischemic brain injury%缺血缺氧性脑损伤动物模型

    Institute of Scientific and Technical Information of China (English)

    冷军; 刘慧娟; 王磊; 曹忠; 王敏

    2010-01-01

    The animal models of hypoxic-ischemic brain injury have been established inmany animals, such as monkeys, dogs, rats, mice, rabbits, and pigs. These models have provideda great deal of important information for neonatal hypoxic-ischemic brain injury. Howerver, thedifferent species vary in their susceptibility to the various types of ischemic insults. This articlereviews the animal models of hypoxic-ischemic brain injury in different species.%已在许多动物,如猴、狗、大鼠、小鼠、兔、猪等建立缺血缺氧性脑损伤动物模型.这些模型为新生儿缺血缺氧性脑损伤的研究提供了大量重要信息.但是,不同种属对各种类型缺血性损伤的易感性存在差异.文章对利用不同种属动物制作的缺血缺氧性脑损伤模型做了综述.

  14. Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury.

    Science.gov (United States)

    Daadi, Marcel M; Davis, Alexis S; Arac, Ahmet; Li, Zongjin; Maag, Anne-Lise; Bhatnagar, Rishi; Jiang, Kewen; Sun, Guohua; Wu, Joseph C; Steinberg, Gary K

    2010-03-01

    Hypoxic-ischemic (HI) brain injury in newborn infants represents a major cause of cerebral palsy, development delay, and epilepsy. Stem cell-based therapy has the potential to rescue and replace the ischemic tissue caused by HI and to restore function. However, the mechanisms by which stem cell transplants induce functional recovery are yet to be elucidated. In the present study, we sought to investigate the efficacy of human neural stem cells derived from human embryonic stem cells in a rat model of neonatal HI and the mechanisms enhancing brain repair. The human neural stem cells were genetically engineered for in vivo molecular imaging and for postmortem histological tracking. Twenty-four hours after the induction of HI, animals were grafted with human neural stem cells into the forebrain. Motor behavioral tests were performed the fourth week after transplantation. We used immunocytochemistry and neuroanatomical tracing to analyze neural differentiation, axonal sprouting, and microglia response. Treatment-induced changes in gene expression were investigated by microarray and quantitative polymerase chain reaction. Bioluminescence imaging permitted real time longitudinal tracking of grafted human neural stem cells. HI transplanted animals significantly improved in their use of the contralateral impeded forelimb and in the Rotorod test. The grafts showed good survival, dispersion, and differentiation. We observed an increase of uniformly distributed microglia cells in the grafted side. Anterograde neuroanatomical tracing demonstrated significant contralesional sprouting. Microarray analysis revealed upregulation of genes involved in neurogenesis, gliogenesis, and neurotrophic support. These results suggest that human neural stem cell transplants enhance endogenous brain repair through multiple modalities in response to HI.

  15. Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Sung-Rae Cho

    2016-09-01

    Full Text Available Transplantation of mesenchymal stem cells (MSCs has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min. At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS-control (CON, PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes.

  16. Spatiotemporal Characteristics of Freezing of Gait in Patients After Hypoxic-Ischemic Brain Injury: A Pilot Study.

    Science.gov (United States)

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Yong Wook

    2016-05-01

    The objective of this study was to investigate spatiotemporal characteristics with gait variability in patients with freezing of gait (FOG) after hypoxic-ischemic brain injury (HIBI).Eleven patients showing FOG after HIBI and 15 normal controls were consecutively enrolled. We performed gait analysis using a computerized gait system (VICON MX-T10 Motion Analysis System) and compared spatiotemporal characteristics and gait variability in both groups. Additionally, we performed correlation analysis to identify the gait parameters associated with severity of freezing, which we measured based on unified Parkinson disease Rating Scale subscore.Spatiotemporal characteristic of FOG patients showed increased stance time and double support phase and decreased swing time, single support phase, stride length, step length, and gait velocity compared with normal controls (P step length asymmetry were significantly increased in HIBI patients with FOG (P step length, and gait velocity variability in HIBI patients with FOG compared with normal controls (P step length, and single support phase to be spatiotemporal parameters related to FOG severity (P < 0.05).Our findings suggest that bilateral gait coordination deterioration plays a considerable role for pathophysiology of FOG in HIBI patients. Additional studies with a larger number of subjects are needed to further investigate the neural mechanism of FOG after HIBI.

  17. Radioiodinated tracers for the evaluation of dopamine receptors in the neonatal rat brain after hypoxic-ischemic injury

    Energy Technology Data Exchange (ETDEWEB)

    Zouakia, A. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Chalon, S. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Kung, H.F. (Hospital of the Univ. of Pennsylvania, Dept. of Radiology, Philadelphia, PA (United States)); Dognon, A.M. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Saliba, E. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Besnard, J.C. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France)); Guilloteau, D. (INSERM U316, Lab. de Biophysique Medicale et Pharmaceutique, 37 - Tours (France))

    1994-06-01

    In order to evaluate in vivo SPET for assessing cerebral function after hypoxic-ischemic injury in human neonates, we studied D[sub 1] and D[sub 2] dopamine receptors in a rat model. Seven-day-old rats underwent permanent unilateral common carotid ligation followed by exposure to 8% O[sub 2]. Two weeks later, in brains with no visible loss of hemispheric volume, striatal dopaminergic receptors were studied, with [[sup 125]I]TISCH and [[sup 125]I]IBZM for the D[sub 1] and D[sub 2] dopamine receptors, respectively. Using [[sup 125]I]TISCH, we observed no modifications of D[sub 1] receptors, but in contrast, ex vivo and in vitro autoradiographic experiments showed a 40% decrease in the striatal binding of [[sup 125]I]IBZM on both the ipsilateral and the contralateral side to the carotid ligation. These alterations were detected with IBZM, a D[sub 2] dopamine receptor ligand usable for SPET imaging. (orig./MG)

  18. Insight into hypoxic preconditioning and ischemic injury through determination of nPKCε-interacting proteins in mouse brain.

    Science.gov (United States)

    Feng, Sujuan; Li, Dongguo; Li, Yun; Yang, Xuan; Han, Song; Li, Junfa

    2013-08-01

    Cerebral hypoxic preconditioning (HPC) provides neuroprotection by intracellular signaling pathways. We previously demonstrated that novel protein kinase Cε (nPKCε) activation participated in cerebral HPC development. In this study, we explore the role of nPKCε in HPC-induced neuroprotection against middle cerebral artery occlusion (MCAO)-induced ischemic injury and identify its possible signaling molecules. A total of 131 adult male BALB/c mice were divided into eight groups: normoxic control (n=9), HPC (n=9), HPC+εV1-2 (n=13), Sham (n=19), HPC+sham (n=6), Ischemia (I, 6h MCAO, n=31), HPC+I (n=25) and HPC+εV1-2+I (n=19). nPKCε specific inhibitor εV1-2 was administered via intracerebroventricular injection. Western blot, 2,3,5-triphenyltetrazolium chloride staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were applied to determine nPKCε membrane translocation, infarction volume and programmed cell death (PCD), respectively. Two-dimensional gel electrophoresis (2-De) and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used to identify nPKCε-interacting proteins, followed by bioinformatics analysis of genee ontology (GO) to predict nPKCε-specific signaling pathways. Our results showed that HPC attenuates MCAO-induced brain injuries and stabilized nPKCεmembrane translocation in peri-infarct region, which was abolished by nPKCε-speecific inhibitor εV1-2. Proteomics analysis revealed 8 up- and 3 down-regulated nPKCε-interacting proteins both in cytosolic and particulate fractions of HPC mouse brain. GO analysis predicted 25 significant nPKCε-specific signaling pathways among the 16 identified nPKCε-interacting proteins in brain of HPC mice. This study is the first to report multiple nPKCε-interacting proteins and their signaling pathways in HPC mouse brain, suggesting that nPKCε signaling molecules is responsible for HPC-induced neuroprotection against cerebral ischemic

  19. Research progress in apoptosis and hypoxic - ischemic brain damage%缺氧缺血性脑损伤与凋亡的进展

    Institute of Scientific and Technical Information of China (English)

    陈敏榕; 陈燕惠

    2004-01-01

    Apoptosis is one of the most important causes, which results in the central neuronal system complication in hypoxic- ischemic brain damage (HIBD). Apoptosis occurs in the developing brain more than in the developed brain. Apoptosis can last several weeks and may be inverted its pathology by appropriate therapy. Caspase inhibitor, neurotrophic factors, anti-apoptosis gene Bcl-2, mild hypothermia, and early intervention play important roles in promoting neuronal cell survival and preventing from apoptosis through different mechanisms. It may be a new way for rehabilitation of HIBD.

  20. Influence of hyperbaric oxygen on the differentiation of hypoxic/ischemic brain-derived neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Zhengrong Peng; Sue Wang; Pingtian Xiao

    2009-01-01

    BACKGROUND: It has been previously shown that hyperbaric oxygen may promote proliferation of neural stem cells and reduce death of endogenous neural stem cells (NSCs).OBJECTIVE: To explore the effects of hyperbaric oxygen on the differentiation of hypoxic/ischemic brain-derived NSCs into neuron-like cells and compare with high-concentration oxygen and high pressure.DESIGN, TIME AND SETTING: An in vitro contrast study, performed at Laboratory of Neurology,Central South University between January and May 2006.MATERIALS: A hyperbaric oxygen chamber (YLC 0.5/1A) was provided by Wuhan Shipping Design Research Institute; mouse anti-rat microtubute-associated protein 2 monoclonal antibody by Jingmei Company, Beijing; mouse anti-rat glial fibrillary acidic protein monoclonal antibody by Neo Markers,USA; mouse anti-rat galactocerebroside monoclonal antibody by Santa Cruz Biotechnology Inc.,USA; and goat anti-mouse fluorescein isothiocyanate-labeled secondary antibody by Wuhan Boster Bioengineering Co., Ltd., China.METHODS: Brain-derived NSCs isolated from brain tissues of neonatal Sprague Dawiey rats werecloned and passaged, and assigned into five groups: normal control, model, high-concentration oxygen, high pressure, and hyperbaric oxygen groups. Cells in the four groups, excluding the normal control group, were incubated in serum-containing DMEM/F12 culture medium. Hypoxic/ischemic models of NSCs were established in an incubator comprising 93% N2, 5% CO2, and 2% O2.Thereafter, cells were continuously cultured as follows: compressed air (0.2 MPa, 1 hour, once a day)in the high pressure group, compressed air+a minimum of 80% O2 in the hyperbaric oxygen group,and a minimum of 80% O2 in the high-concentration oxygen group. Cells in the normal control and model groups were cultured as normal.MAIN OUTCOME MEASURES: At day 7 after culture, glial fibrillary acidic protein,microtubule-associated protein 2, and galactocerebroside immunofluorescence staining were examined to

  1. Can induced hypothermia be assured during brain MRI in neonates with hypoxic-ischemic encephalopathy?

    Energy Technology Data Exchange (ETDEWEB)

    Wintermark, Pia [Children' s Hospital Boston, Division of Newborn Medicine, Boston, MA (United States); Children' s Hospital Boston, Department of Radiology, Boston, MA (United States); Montreal Children' s Hospital, Division of Newborn Medicine, Montreal, QC (Canada); Labrecque, Michelle; Hansen, Anne [Children' s Hospital Boston, Division of Newborn Medicine, Boston, MA (United States); Warfield, Simon K.; DeHart, Stephanie [Children' s Hospital Boston, Department of Radiology, Boston, MA (United States)

    2010-12-15

    Until now, brain MRIs in asphyxiated neonates who are receiving therapeutic hypothermia have been performed after treatment is complete. However, there is increasing interest in utilizing early brain MRI while hypothermia is still being provided to rapidly understand the degree of brain injury and possibly refine neuroprotective strategies. This study was designed to assess whether therapeutic hypothermia can be maintained while performing a brain MRI. Twenty MRI scans were obtained in 12 asphyxiated neonates while they were treated with hypothermia. The median difference between esophageal temperature on NICU departure and return was 0.1 C (range: -0.8 to 0.8 C). We found that therapeutic hypothermia can be safely and reproducibly maintained during a brain MRI. Hypothermia treatment should not prevent obtaining an early brain MRI if clinically indicated. (orig.)

  2. Red photon treatment inhibits apoptosis via regulation of bcl-2 proteins and ROS levels, alleviating hypoxic-ischemic brain damage.

    Science.gov (United States)

    Jiang, W; Chen, L; Zhang, X J; Chen, J; Li, X C; Hou, W S; Xiao, N

    2014-05-30

    Therapeutic options for hypoxic-ischemic brain damage (HIBD) are scarce and inefficient. Recently, many studies have demonstrated that red photon plays an important role in anti-inflammatory processes as well as apoptosis, the main trait of HIBD. In this study, we investigated whether red photon can protect from HIBD in SD rats and oxygen-glucose deprivation (OGD) in PC12 cells. Apoptosis, mitochondrial transmembrane potential (MMP), and reactive oxygen species (ROS) rates were assessed in PC12 cells. We found that 6-h irradiation resulted in decreased MMP, ROS and apoptosis rates, although these changes were reversible with prolonged irradiation. Importantly, these effects were sustained for 2-8h upon quenching of the red photon. Similar trends were observed for protein and mRNA expression of bax and bcl-2, with short-term irradiation (6h) inhibiting apoptosis in PC12 Cells. However, long-term (>6h) irradiation caused cell damage. In vivo experiments, bax mRNA and protein levels were reduced after 7days in HIBD model rats treated with red photon, in contrast to bcl-2. Furthermore, we found that bax and bcl-2 were mainly expressed in pyramidal cells of the hippocampus CA1 and CA3. Importantly, Morris Water Maze test results revealed an improvement in learning ability and spatial memory in rats after irradiation. Overall, our data showed that short-term irradiation with red photon in the acute phase inhibits the mitochondrial apoptotic pathway via regulation of bcl-2-related proteins and reduction of ROS levels, thereby decreasing apoptosis in nerve cells and improving the neurological prognosis of HIBD.

  3. Pharmacotherapeutical reduction of post-hypoxic-ischemic brain injury in the newborn

    NARCIS (Netherlands)

    Peeters, C; van Bel, F

    2001-01-01

    Perinatal hypoxia-ischemia (PHI) is a major cause of morbidity and mortality. A substantial part of PHI-related brain damage occurs upon reperfusion and reoxygenation by the excess production of excitatory amino acids, free (pro)radicals and the release of cytokines, triggering programmed cell death

  4. The pentose phosphate pathway and pyruvate carboxylation after neonatal hypoxic-ischemic brain injury.

    Science.gov (United States)

    Brekke, Eva M F; Morken, Tora S; Widerøe, Marius; Håberg, Asta K; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-04-01

    The neonatal brain is vulnerable to oxidative stress, and the pentose phosphate pathway (PPP) may be of particular importance to limit the injury. Furthermore, in the neonatal brain, neurons depend on de novo synthesis of neurotransmitters via pyruvate carboxylase (PC) in astrocytes to increase neurotransmitter pools. In the adult brain, PPP activity increases in response to various injuries while pyruvate carboxylation is reduced after ischemia. However, little is known about the response of these pathways after neonatal hypoxia-ischemia (HI). To this end, 7-day-old rats were subjected to unilateral carotid artery ligation followed by hypoxia. Animals were injected with [1,2-(13)C]glucose during the recovery phase and extracts of cerebral hemispheres ipsi- and contralateral to the operation were analyzed using (1)H- and (13)C-NMR (nuclear magnetic resonance) spectroscopy and high-performance liquid chromatography (HPLC). After HI, glucose levels were increased and there was evidence of mitochondrial hypometabolism in both hemispheres. Moreover, metabolism via PPP was reduced bilaterally. Ipsilateral glucose metabolism via PC was reduced, but PC activity was relatively preserved compared with glucose metabolism via pyruvate dehydrogenase. The observed reduction in PPP activity after HI may contribute to the increased susceptibility of the neonatal brain to oxidative stress.

  5. 缺氧缺血性脑损伤%Hypoxic-Ischemic Brain Damage in Children

    Institute of Scientific and Technical Information of China (English)

    邹峥; 刘小惠; 邹大卫

    2011-01-01

    由于高代谢的需要,脑高度的依赖充分的氧供给,全脑性缺氧/缺血会导致快速的能量丧失,引起一连串的包括兴奋毒性损伤、炎症和凋亡所共同造成的脑损伤.围生期窒息复杂的先天性心脏病开放性手术及意外的捂热综合征均是酿成缺氧/缺血脑损伤的危险因素.缺氧/缺血愈久,损伤愈重,预后也愈差.因而需及早给予积极和恰当的治疗.%Due to its high metabolism demand, the brain is highly dependent on sufficient oxygen supply so that hypoxia - ischemia of the global brain results in a rapid depletion of energy stores that trigger a complex and cascade of celluar events including excitotoxic injury,inflammation and apoptosis of the brain tissue. Perinatal asphyxia complex congenital open heart surgery and muggy disease are risk factors to induce hypoxia - ischemia brain damage. Severity and duration determine the ultimate prognosis,so that the hypoxia - ischemia patients should be early,actively and properly treated.

  6. Isoflurane anesthesia initiated at the onset of reperfusion attenuates oxidative and hypoxic-ischemic brain injury.

    Directory of Open Access Journals (Sweden)

    Sergey A Sosunov

    Full Text Available This study demonstrates that in mice subjected to hypoxia-ischemia (HI brain injury isoflurane anesthesia initiated upon reperfusion limits a release of mitochondrial oxidative radicals by inhibiting a recovery of complex-I dependent mitochondrial respiration. This significantly attenuates an oxidative stress and reduces the extent of HI brain injury. Neonatal mice were subjected to HI, and at the initiation of reperfusion were exposed to isoflurane with or without mechanical ventilation. At the end of HI and isoflurane exposure cerebral mitochondrial respiration, H2O2 emission rates were measured followed by an assessment of cerebral oxidative damage and infarct volumes. At 8 weeks after HI navigational memory and brain atrophy were assessed. In vitro, direct effect of isoflurane on mitochondrial H2O2 emission was compared to that of complex-I inhibitor, rotenone. Compared to controls, 15 minutes of isoflurane anesthesia inhibited recovery of the compex I-dependent mitochondrial respiration and decreased H2O2 production in mitochondria supported with succinate. This was associated with reduced oxidative brain injury, superior navigational memory and decreased cerebral atrophy compared to the vehicle-treated HI-mice. Extended isoflurane anesthesia was associated with sluggish recovery of cerebral blood flow (CBF and the neuroprotection was lost. However, when isoflurane anesthesia was supported with mechanical ventilation the CBF recovery improved, the event associated with further reduction of infarct volume compared to HI-mice exposed to isoflurane without respiratory support. Thus, in neonatal mice brief isoflurane anesthesia initiated at the onset of reperfusion limits mitochondrial release of oxidative radicals and attenuates an oxidative stress. This novel mechanism contributes to neuroprotective action of isoflurane. The use of mechanical ventilation during isoflurane anesthesia counterbalances negative effect of isoflurane anesthesia on

  7. Brain metabolism in patients with vegetative state after post-resuscitated hypoxic-ischemic brain injury: statistical parametric mapping analysis of F-18 fluorodeoxyglucose positron emission tomography

    Institute of Scientific and Technical Information of China (English)

    Yong Wook Kim; Hyoung Seop Kim; Young-Sil An

    2013-01-01

    Background Hypoxic-ischemic brain injury (HIBI) after cardiopulmonary resuscitation is one of the most devastating neurological conditions that causing the impaired consciousness.However,there were few studies investigated the changes of brain metabolism in patients with vegetative state (VS) after post-resuscitated HIBI.This study aimed to analyze the change of overall brain metabolism and elucidated the brain area correlated with the level of consciousness (LOC) in patients with VS after post-resuscitated HIBI.Methods We consecutively enrolled 17 patients with VS after HIBI,who experienced cardiopulmonary resuscitation.Overall brain metabolism was measured by F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) and we compared regional brain metabolic patterns from t7 patients with those from 15 normal controls using voxel-by-voxel based statistical parametric mapping analysis.Additionally,we correlated the LOC measured by the JFK-coma recovery scale-revised of each patient with brain metabolism by covariance analysis.Results Compared with normal controls,the patients with VS after post-resuscitated HIBI revealed significantly decreased brain metabolism in bilateral precuneus,bilateral posterior cingulate gyrus,bilateral middle frontal gyri,bilateral superior parietal gyri,bilateral middle occipital gyri,bilateral precentral gyri (PFEw correctecd <0.0001),and increased brain metabolism in bilateral insula,bilateral cerebella,and the brainstem (PFEw correctecd <0.0001).In covariance analysis,the LOC was significantly correlated with brain metabolism in bilateral fusiform and superior temporal gyri (P uncorrected <0.005).Conclusions Our study demonstrated that the precuneus,the posterior cingulate area and the frontoparietal cortex,which is a component of neural correlate for consciousness,may be relevant structure for impaired consciousness in patient with VS after post-resuscitated HIBI.In post-resuscitated HIBI,measurement of brain

  8. Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury.

    Science.gov (United States)

    Hsueh, Yuan-Yu; Chang, Ya-Ju; Huang, Chia-Wei; Handayani, Fitri; Chiang, Yi-Lun; Fan, Shih-Chen; Ho, Chien-Jung; Kuo, Yu-Min; Yang, Shang-Hsun; Chen, Yuh-Ling; Lin, Sheng-Che; Huang, Chao-Ching; Wu, Chia-Ching

    2015-10-08

    Perinatal cerebral hypoxic-ischemic (HI) injury damages the architecture of neurovascular units (NVUs) and results in neurological disorders. Here, we differentiated adipose-derived stem cells (ASCs) toward the progenitor of endothelial progenitor cells (EPCs) and neural precursor cells (NPCs) via microenvironmental induction and investigated the protective effect by transplanting ASCs, EPCs, NPCs, or a combination of EPCs and NPCs (E+N) into neonatal HI injured rat pups. The E+N combination produced significant reduction in brain damage and cell apoptosis and the most comprehensive restoration in NVUs regarding neuron number, normal astrocytes, and vessel density. Improvements in cognitive and motor functions were also achieved in injured rats with E+N therapy. Synergistic interactions to facilitate transmigration under in vitro hypoxic microenvironment were discovered with involvement of the neuropilin-1 (NRP1) signal in EPCs and the C-X-C chemokine receptor 4 (CXCR4) and fibroblast growth factor receptor 1 (FGFR1) signals in NPCs. Therefore, ASCs exhibit great potential for cell sources in endothelial and neural lineages to prevent brain from HI damage.

  9. Prognostic value of brain proton MR spectroscopy and diffusion tensor imaging in newborns with hypoxic-ischemic encephalopathy treated by brain cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ancora, G. [Neonatal Intensive Care Unit, Department of Mother and Infant Infermi Hospital of Rimini, Rimini (Italy); Testa, C.; Tonon, C.; Manners, D.N.; Gramegna, L.L.; Lodi, R. [Department of Biomedical and Neuromotor Sciences University of Bologna, MR Functional Unit, Bologna (Italy); Grandi, S.; Sbravati, F.; Savini, S.; Corvaglia, L.T.; Faldella, G. [University of Bologna, Neonatology Unit, Department of Woman, Child and Adolescent Health, Bologna (Italy); Tani, G. [University of Bologna, Radiology Unit, Department of Woman, Child and Adolescent Health, Bologna (Italy); Malucelli, E. [University of Bologna, Department of Pharmacy and Biotechnologies, Bologna (Italy)

    2013-08-15

    MRI, proton magnetic resonance spectroscopy ({sup 1}H-MRS), and diffusion tensor imaging (DTI) have been shown to be of great prognostic value in term newborns with moderate-severe hypoxic-ischemic encephalopathy (HIE). Currently, no data are available on {sup 1}H-MRS and DTI performed in the subacute phase after hypothermic treatment. The aim of the present study was to assess their prognostic value in newborns affected by moderate-severe HIE and treated with selective brain cooling (BC). Twenty infants treated with BC underwent conventional MRI and {sup 1}H-MRS at a mean (SD) age of 8.3 (2.8) days; 15 also underwent DTI. Peak area ratios of metabolites and DTI variables, namely mean diffusivity (MD), axial and radial diffusivity, and fractional anisotropy (FA), were calculated. Clinical outcome was monitored until 2 years of age. Adverse outcome was observed in 6/20 newborns. Both {sup 1}H-MRS and DTI variables showed higher prognostic accuracy than conventional MRI. N-acetylaspartate/creatine at a basal ganglia localisation showed 100 % PPV and 93 % NPV for outcome. MD showed significantly decreased values in many regions of white and gray matter, axial diffusivity showed the best predictive value (PPV and NPV) in the genu of corpus callosum (100 and 91 %, respectively), and radial diffusivity was significantly decreased in fronto white matter (FWM) and fronto parietal (FP) WM. The decrement of FA showed the best AUC (0.94) in the FPWM. Selective BC in HIE neonates does not affect the early and accurate prognostic value of {sup 1}H-MRS and DTI, which outperform conventional MRI. (orig.)

  10. [Multicenter program for the integrated care of newborns with perinatal hypoxic-ischemic insult (ARAHIP)].

    Science.gov (United States)

    Arnáez, J; Vega, C; García-Alix, A; Gutiérrez, E P; Caserío, S; Jiménez, M P; Castañón, L; Esteban, I; Hortelano, M; Hernández, N; Serrano, M; Prada, T; Diego, P; Barbadillo, F

    2015-03-01

    Newborns with perinatal indicators of a potential hypoxic-ischemic event require an integrated care in order to control the aggravating factors of brain damage, and the early identification of candidates for hypothermia treatment. The application of a prospective, populational program that organizes and systematizes medical care during the first 6 hours of life to all newborns over 35 weeks gestational age born with indicators of a perinatal hypoxic-ischemic insult. The program includes 12 hospitals (91,217 m(2)); two level i centers, five level ii centers, and five level iii hospitals. The program establishes four protocols: a) detection of the newborn with a potential hypoxic-ischemic insult, b) surveillance of the neurological repercussions and other organ involvement, c) control and treatment of complications, d) procedures and monitoring during transport. From June 2011 to June 2013, 213 of 32325 newborns above 35 weeks gestational age met the criteria of a potential hypoxic-ischemic insult (7.4/1000), with 92% of them being cared for following the program specifications. Moderate-severe hypoxic-ischemic encephalopathy was diagnosed in 33 cases (1/1,000), and 31 out of the 33 received treatment with hypothermia (94%). The program for the Integrated Care of Newborns with Perinatal Hypoxic-Ischemic Insult has led to providing a comprehensive care to the newborns with a suspected perinatal hypoxic-ischemic insult. Aggravators of brain damage have been controlled, and cases of moderate-severe hypoxic-ischemic encephalopathy have been detected, allowing the start of hypothermia treatment within the first six hours of life. Populational programs are fundamental to reducing the mortality and morbidity of hypoxic-ischemic encephalopathy. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  11. Attenuation of reactive gliosis does not affect infarct volume in neonatal hypoxic-ischemic brain injury in mice.

    Directory of Open Access Journals (Sweden)

    Katarina Järlestedt

    Full Text Available BACKGROUND: Astroglial cells are activated following injury and up-regulate the expression of the intermediate filament proteins glial fibrillary acidic protein (GFAP and vimentin. Adult mice lacking the intermediate filament proteins GFAP and vimentin (GFAP(-/-Vim(-/- show attenuated reactive gliosis, reduced glial scar formation and improved regeneration of neuronal synapses after neurotrauma. GFAP(-/-Vim(-/- mice exhibit larger brain infarcts after middle cerebral artery occlusion suggesting protective role of reactive gliosis after adult focal brain ischemia. However, the role of astrocyte activation and reactive gliosis in the injured developing brain is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We subjected GFAP(-/-Vim(-/- and wild-type mice to unilateral hypoxia-ischemia (HI at postnatal day 9 (P9. Bromodeoxyuridine (BrdU; 25 mg/kg was injected intraperitoneally twice daily from P9 to P12. On P12 and P31, the animals were perfused intracardially. Immunohistochemistry with MAP-2, BrdU, NeuN, and S100 antibodies was performed on coronal sections. We found no difference in the hemisphere or infarct volume between GFAP(-/-Vim(-/- and wild-type mice at P12 and P31, i.e. 3 and 22 days after HI. At P31, the number of NeuN(+ neurons in the ischemic and contralateral hemisphere was comparable between GFAP(-/-Vim(-/- and wild-type mice. In wild-type mice, the number of S100(+ astrocytes was lower in the ipsilateral compared to contralateral hemisphere (65.0+/-50.1 vs. 85.6+/-34.0, p<0.05. In the GFAP(-/-Vim(-/- mice, the number of S100(+ astrocytes did not differ between the ischemic and contralateral hemisphere at P31. At P31, GFAP(-/-Vim(-/- mice showed an increase in NeuN(+BrdU(+ (surviving newly born neurons in the ischemic cortex compared to wild-type mice (6.7+/-7.7; n = 29 versus 2.9+/-3.6; n = 28, respectively, p<0.05, but a comparable number of S100(+BrdU(+ (surviving newly born astrocytes. CONCLUSIONS/SIGNIFICANCE: Our results suggest that

  12. Shear Stress Induces Differentiation of Endothelial Lineage Cells to Protect Neonatal Brain from Hypoxic-Ischemic Injury through NRP1 and VEGFR2 Signaling

    Directory of Open Access Journals (Sweden)

    Chia-Wei Huang

    2015-01-01

    Full Text Available Neonatal hypoxic-ischemic (HI brain injuries disrupt the integrity of neurovascular structure and lead to lifelong neurological deficit. The devastating damage can be ameliorated by preserving the endothelial network, but the source for therapeutic cells is limited. We aim to evaluate the beneficial effect of mechanical shear stress in the differentiation of endothelial lineage cells (ELCs from adipose-derived stem cells (ASCs and the possible intracellular signals to protect HI injury using cell-based therapy in the neonatal rats. The ASCs expressed early endothelial markers after biochemical stimulation of endothelial growth medium. The ELCs with full endothelial characteristics were accomplished after a subsequential shear stress application for 24 hours. When comparing the therapeutic potential of ASCs and ELCs, the ELCs treatment significantly reduced the infarction area and preserved neurovascular architecture in HI injured brain. The transplanted ELCs can migrate and engraft into the brain tissue, especially in vessels, where they promoted the angiogenesis. The activation of Akt by neuropilin 1 (NRP1 and vascular endothelial growth factor receptor 2 (VEGFR2 was important for ELC migration and following in vivo therapeutic outcomes. Therefore, the current study demonstrated importance of mechanical factor in stem cell differentiation and showed promising protection of brain from HI injury using ELCs treatment.

  13. Hypoxic-Ischemic Neonatal Encephalopathy: Animal Experiments for Neuroprotective Therapies

    Directory of Open Access Journals (Sweden)

    Hiroshi Sameshima

    2013-01-01

    Full Text Available Hypoxic-ischemic neonatal encephalopathy and ensuing brain damage is still an important problem in modern perinatal medicine. In this paper, we would like to share some of the results of our recent studies on neuroprotective therapies in animal experiments, as well as some literature reviews. From the basic animal studies, we have now obtained some possible candidates for therapeutic measures against hypoxic-ischemic neonatal encephalopathy. For example, they are hypothermia, rehabilitation, free radical scavenger, neurotrophic factors and growth factors, steroid, calcium channel blocker, vagal stimulation, some anti apoptotic agents, pre- and post conditioning, antioxidants, cell therapy with stem cells, modulators of K(+-ATP channels, and so on. Whether combination of these therapies may be more beneficial than any single therapy needs to be clarified. Hypoxia-ischemia is a complicated condition, in which the cause, severity, and time-course are different in each case. Likewise, each fetus has its own inherent potentials such as adaptation, preconditioning-tolerance, and intolerance. Therefore, further extensive studies are required to establish an individualized strategy for neuroprotection against perinatal hypoxic-ischemic insult.

  14. Altered protein markers related to neural plasticity and motor function following electro-acupuncture treatment in rat model of ischemic-hypoxic brain injury

    Institute of Scientific and Technical Information of China (English)

    Liping Zhang; Liping Zou

    2008-01-01

    BACKGROUND: Previous studies have demonstrated that acupuncture treatment could ameliorate impaired motor function, and these positive effects might be due to neural plasticity. OBJECTIVE: Myelin basic protein (MBP), microtubule-associated protein 2 (MAP2), growth-associated protein-43 (GAP-43), and synaptophysin (SYN) were selected as markers of neural remodeling, and expression of these markers was evaluated with regard to altered motor function following brain injury and acupuncture treatment. DESIGN, TIME AND SETTING: A completely randomized experiment was performed at the Central Laboratory of Peking University First Hospital from November 2006 to May 2007. MATERIALS: Twenty-four Sprague Dawley rat pups, aged 7 days, were selected for the present experiment. The left common carotid artery was ligated to establish a rat model of ischemic-hypoxic brain injury.METHODS: All animals were randomly divided into three groups: sham operation, model, and electro-acupuncture treatment, with 8 rats in each group. Rats in the model and electro-acupuncture treatment group underwent establishment of ischemic-hypoxic brain injury. Upon model established, rats underwent hypobaric oxygen intervention for 24 hours. Only the left common carotid artery was exposed in rats of the sham operation group, without model establishment or oxygen intervention. The rats in the electro-acupuncture treatment group were treated with electro-acupuncture. One acupuncture needle electrode was inserted into the subcutaneous layer at the Baihui and Dazhui acupoint. The stimulation condition of the electro-acupuncture simulator was set to an amplitude-modulated wave of 0-100% and alternative frequency of 100 cycles/second, as well as frequency-modulated wave of 2-100 Hz and an alternative frequency of 3 cycles/second. Maximal current through the two dectrodes was limited to 3-5 mA. The stimulation lasted for 30 minutes per day for 2 weeks. Rats in the sham operation and model groups were not treated

  15. Flaxseed mitigates brain mass loss, improving motor hyperactivity and spatial memory, in a rodent model of neonatal hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Mucci, Daniela de Barros; Fernandes, Flávia Spreafico; Souza, Amanda Dos Santos; Sardinha, Fátima Lúcia de Carvalho; Soares-Mota, Márcia; Tavares do Carmo, Maria das Graças

    2015-06-01

    Neonatal hypoxic-ischemic (HI) encephalopathy is a major cause of perinatal morbimortality. There is growing evidence that n-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), attenuate brain injury. This study aimed to investigate the possible neuroprotective effect of maternal intake of flaxseed, rich in DHA׳s precursor α-linolenic acid, in the young male offspring subjected to perinatal HI. Wistar rats were divided in six groups, according to maternal diet and offspring treatment at day 7: Control HI (CHI) and Flaxseed HI (FHI); Control Sham and Flaxseed Sham; Control Control and Flaxseed Control. Flaxseed diet increased offspring׳s hippocampal DHA content and lowered depressive behavior. CHI pups presented brain mass loss, motor hyperactivity and poor spatial memory, which were improved in FHI rats. Maternal flaxseed intake may prevent depressive symptoms in the offspring and promote neuroprotective effects, in the context of perinatal HI, improving brain injury and its cognitive and behavioral impairments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Use of estetrol with other steroids for attenuation of neonatal hypoxic-Ischemic brain injury: to combine or not to combine?

    Science.gov (United States)

    Tskitishvili, Ekaterine; Pequeux, Christel; Munaut, Carine; Viellevoye, Renaud; Nisolle, Michelle; Noël, Agnes; Foidart, Jean-Michel

    2016-01-01

    Estetrol (E4), estradiol (E2) and progesterone (P4) have important antioxidative and neuroprotective effects in neuronal system. We aimed to study the consequence of combined steroid therapy in neonatal hypoxic-ischemic encephalopathy (HIE). In vitro the effect of E4 combined with other steroids on oxidative stress and the cell viability in primary hippocampal cultures was evaluated by lactate dehydrogenase and cell survival assays. In vivo neuroprotective and therapeutic efficacy of E4 combined with other steroids was studied in HIE model of immature rats. The rat pups rectal temperature, body and brain weights were evaluated. The hippocampus and the cortex were investigated by histo/immunohistochemistry: intact cell number counting, expressions of markers for early gray matter lose, neuro- and angiogenesis were studied. Glial fibrillary acidic protein was evaluated by ELISA in blood samples. In vitro E4 and combinations of high doses of E4 with P4 and/or E2 significantly diminished the LDH activity and upregulated the cell survival.In vivopretreatment or treatment by different combinations of E4 with other steroids had unalike effects on body and brain weight, neuro- and angiogenesis, and GFAP expression in blood. The combined use of E4 with other steroids has no benefit over the single use of E4. PMID:27231853

  17. Use of estetrol with other steroids for attenuation of neonatal hypoxic-ischemic brain injury: to combine or not to combine?

    Science.gov (United States)

    Tskitishvili, Ekaterine; Pequeux, Christel; Munaut, Carine; Viellevoye, Renaud; Nisolle, Michelle; Noël, Agnes; Foidart, Jean-Michel

    2016-06-07

    Estetrol (E4), estradiol (E2) and progesterone (P4) have important antioxidative and neuroprotective effects in neuronal system. We aimed to study the consequence of combined steroid therapy in neonatal hypoxic-ischemic encephalopathy (HIE). In vitro the effect of E4 combined with other steroids on oxidative stress and the cell viability in primary hippocampal cultures was evaluated by lactate dehydrogenase and cell survival assays. In vivo neuroprotective and therapeutic efficacy of E4 combined with other steroids was studied in HIE model of immature rats. The rat pups rectal temperature, body and brain weights were evaluated.The hippocampus and the cortex were investigated by histo/immunohistochemistry: intact cell number counting, expressions of markers for early gray matter lose, neuro- and angiogenesis were studied. Glial fibrillary acidic protein was evaluated by ELISA in blood samples. In vitro E4 and combinations of high doses of E4 with P4 and/or E2 significantly diminished the LDH activity and upregulated the cell survival.In vivopretreatment or treatment by different combinations of E4 with other steroids had unalike effects on body and brain weight, neuro- and angiogenesis, and GFAP expression in blood. The combined use of E4 with other steroids has no benefit over the single use of E4.

  18. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12 expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury

    Directory of Open Access Journals (Sweden)

    Walker Aisha L

    2005-10-01

    Full Text Available Abstract Background Stromal cell-derived factor 1 (SDF-1 or CXCL12 is chemotaxic for CXCR4 expressing bone marrow-derived cells. It functions in brain embryonic development and in response to ischemic injury in helping guide neuroblast migration and vasculogenesis. In experimental adult stroke models SDF-1 is expressed perivascularly in the injured region up to 30 days after the injury, suggesting it could be a therapeutic target for tissue repair strategies. We hypothesized that SDF-1 would be expressed in similar temporal and spatial patterns following hypoxic-ischemic (HI injury in neonatal brain. Results Twenty-five 7-day-old C57BL/J mice underwent HI injury. SDF-1 expression was up regulated up to 7 days after the injury but not at the later time points. The chief sites of SDF-1 up regulation were astrocytes, their foot processes along blood vessels and endothelial cells. Conclusion The localization of SDF-1 along blood vessels in the HI injury zone suggests that these perivascular areas are where chemotaxic signaling for cellular recruitment originates and that reactive astrocytes are major mediators of this process. The associated endothelium is likely to be the site for vascular attachment and diapedesis of CXCR4 receptor expressing cells to enter the injured tissue. Here we show that, relative to adults, neonates have a significantly smaller window of opportunity for SDF-1 based vascular chemotaxic recruitment of bone marrow-derived cells. Therefore, without modification, following neonatal HI injury there is only a narrow period of time for endogenous SDF-1 mediated chemotaxis and recruitment of reparative cells, including exogenously administered stem/progenitor cells.

  19. Decreased levels of pNR1 S897 protein in the cortex of neonatal Sprague Dawley rats with hypoxic-ischemic or NMDA-induced brain damage

    Energy Technology Data Exchange (ETDEWEB)

    Hei, Ming-Yan; Tao, Hui-Kang; Tang, Qin; Yu, Bo; Zhao, Ling-Ling [Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan (China)

    2012-06-22

    Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA) receptor-1 at serine 897 (pNR1 S897) in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD), and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague-Dawley rats (13.12 ± 0.34 g) were randomly divided into normal control, phosphate-buffered saline (PBS) cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group) were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P > 0.05), whereas it was reduced in the ipsilateral cortex (P < 0.05). At 2 h after NMDA injection, the protein level of pNR1 S897 in the contralateral cortex was also not affected (P > 0.05). The levels in the ipsilateral cortex were decreased, but the change was not significant (P > 0.05). The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897.

  20. Decreased levels of pNR1 S897 protein in the cortex of neonatal Sprague Dawley rats with hypoxic-ischemic or NMDA-induced brain damage

    Directory of Open Access Journals (Sweden)

    Ming-Yan Hei

    2012-10-01

    Full Text Available Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA receptor-1 at serine 897 (pNR1 S897 in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD, and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague Dawley rats (13.12 ± 0.34 g were randomly divided into normal control, phosphate-buffered saline (PBS cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P > 0.05, whereas it was reduced in the ipsilateral cortex (P 0.05. The levels in the ipsilateral cortex were decreased, but the change was not significant (P > 0.05. The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897.

  1. Flunarizine and lamotngine propnyiaxis effects on neuron-specific enolase,S-100,and brain-specific creatine kinase in a fetal rat model of hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Li He; Jingyi Deng; Wendan He

    2008-01-01

    BACKGROUND:Calcium antagonists may act as neuroprotectants,diminishing the influx of calcium ions through voltage-sensitive calcium channels. When administered prophylactically,they display neuroprotective effects against hypoxic-ischemic brain damage in newborn rats.OBJECTIVE:To investigate the neuroprotective effects of flunarizine(FNZ),lamotrigine (LTG)and the combination of both drugs,on hypoxic-ischemic brain damage in fetal rats.DESIGN AND SETTING:This randomized,complete block design was performed at the Department of Pediatrics.Shenzhen Fourth People's Hospital,Guangdong Medical College.MATERIALS:Forty pregnant Wistar rats,at gestational day 20,were selected for the experiment and were randomly divided into FNZ,LTG,FNZ+LTG,and model groups,with 10 rats in each group.METHODS:Rats in the FNZ.LTG,and FNZ+LTG groups received intragastric injections of FNZ (0.5 mg/kg/d),LTG(10 mg/kg/d),and FNZ(0.5 mg/kg/d)+LTG(10 mg/kg/d),respectively.Drugs were administered once a day for 3 days prior to induction of hypoxia-ischemia.Rats in the modeJ group were not administered any drugs.Three hours after the final administration,eight pregnant rats from each group underwent model establishment hypoxia-ischemia brain damage to the fetal rats.Cesareans were performed at 6,12,24,and 48 hours later;and 5 fetal rats were removed from each mother and kept warm.Twe fetuses without model establishment were removed by planned cesarean at the same time and served as controls.A total of 0.3 mL serum was collected from fetal rats at 6,12,24,and 48 hours,respectively,following birth.MAIN OUTCOME MEASURES:Serum protein concentrations of neuron-specific enolase and S-100 were measured by ELISA.Serum concentrations of brain-specific creatine kinase were measured using an electrogenerated chemiluminescence method.RESULTS:Serum concentrations of neuron-specific enolase,S-100,and brain-specific creatine kinase were significantly higher in the hypoxic-ischemic fetal rats.compared with the non-hypoxic-ischemic

  2. Endogenous hypothermic response to hypoxia reduces brain injury: Implications for modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice.

    Science.gov (United States)

    Reinboth, Barbara S; Köster, Christian; Abberger, Hanna; Prager, Sebastian; Bendix, Ivo; Felderhoff-Müser, Ursula; Herz, Josephine

    2016-09-01

    Hypothermia treatment (HT) is the only formally endorsed treatment recommended for hypoxic-ischemic encephalopathy (HIE). However, its success in protecting against brain injury is limited with a number to treat of 7-8. The identification of the target mechanisms of HIE in combination with HT will help to explain ineffective therapy outcomes but also requires stable experimental models in order to establish further neuroprotective therapies. Despite clinical and experimental indications for an endogenous thermoregulatory response to HIE, the potential effects on HIE-induced brain injury have largely been neglected in pre-clinical studies. In the present study we analyzed gray and white matter injury and neurobehavioral outcome in neonatal mice considering the endogenous thermoregulatory response during HIE combined with HT. HIE was induced in postnatal day (PND) 9 C57BL/6 mice through occlusion of the right common carotid artery followed by one hour of hypoxia. Hypoxia was performed at 8% or 10% oxygen (O2) at two different temperatures based on the nesting body core temperature. Using the model which mimics the clinical situation most closely, i.e. through maintenance of the nesting temperature during hypoxia we compared two mild HT protocols (rectal temperature difference 3°C for 4h), initiated either immediately after HIE or with delay of 2h. Injury was determined by histology, immunohistochemistry and western blot analyses at PND 16 and PND 51. Functional outcome was evaluated by Rota Rod, Elevated Plus Maze, Open Field and Novel Object Recognition testing at PND 30-PND 36 and PND 44-PND 50. We show that HIE modeling in neonatal mice is associated with a significant endogenous drop in body core temperature by 2°C resulting in profound neuroprotection, expressed by reduced neuropathological injury scores, reduced loss of neurons, axonal structures, myelin and decreased astrogliosis. Immediately applied post-hypoxic HT revealed slight advantages over a delayed

  3. Interventional effect of laser acupoint radiation on the expression of Nissl body and brain-derived neurotrophic factor in newborn rat models with ischemic/hypoxic cerebral injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND:Some researches report that He-Ne laser can activate function of erythrocytes and increase content of blood and oxygen via bio-stimulating effect;therefore,it suspects that laser radiation at Baihui and Dazhui can partially increase blood circulation for oxygen-supplying content of brain and improve functional status of neurons.OBJECTIVE:To verify the effects of laser radiation at Baihui and Dazhui on the expression of Nissl body of brain tissue neurons and brain-derived neurotrophic factor (BDNF) in newborn rats with ischemic/hypoxic cerebral injury.DESIGN:Randomized controlled animal study.SETTING:Department of Neurological Histochemistry,Xianning University.MATERIALS:Forty Wistar rats of 7 - 8 days old,weighing 15 - 20 g and of both genders,were selected from Wuhan Experimental Animal Center.All the rats were randomly divided into sham operation group (n =8),model group (n =16) and radiation group (n =16).The experimental animals were disposed according to ethical criteria.BDNF kit was provided by Wuhan Boster Bioengineering Co.,Ltd.METHODS:The experiment was carried out in the Department of Neurological Histochemistry,Xianning University from April 2005 to October 2006.Rats in the radiation group and model group were performed with ligation of left common carotid artery,recovered at room temperature for 1-6 days,maintained in self-made hypoxic cabin under normal pressure and injected mixture gas (0.05 volume fraction of O2 and 0.92 volume fraction of N2) for 2 hours.In addition,rats in the sham operation group were treated with separation of left common carotid artery but not ligation and hypoxia.Rats in the model group were not given any treatment;while,rats in the radiation group were exposed with He-Ne laser of 63.28 nm in the wave length at Baihui and Dazhui acupoints on the second day after ischemia-hypoxia.The radiation was given for 10 minutes per day and once a day.Ten days were regarded as a course and the rats were exposed for 2 courses in

  4. Human insulin-like growth factor 1-transfected umbilical cord blood neural stem cell transplantation improves hypoxic-ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dengna Zhu; Yanjie Jia; Jun Wang; Boai Zhang; Guohui Niu; Yazhen Fan

    2011-01-01

    Human insulin-like growth factor 1-transfected umbilical cord blood neural stem cells were transplanted into a hypoxic-ischemic neonatal rat model via the tail vein.BrdU-positive cells at day 7post-transplantation,as well as nestin-and neuron specific enolase-positive cells at day 14 wereincreased compared with those of the single neural stem cell transplantation group.In addition,theproportion of neuronal differentiation was enhanced.The genetically modified cell-transplanted ratsexhibited enhanced performance in correctly crossing a Y-maze and climbing an angled slope compared with those of the single neural stem cell transplantation group.These results showed that human insulin-like growth factor 1-transfected neural stem cell transplantation promotes therecovery of the learning,memory and motor functions in hypoxic-ischemic rats.

  5. Semi-quantitative Assessment of Brain Maturation by Conventional Magnetic Resonance Imaging in Neonates with Clinically Mild Hypoxic-ischemic Encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Jie Gao; Qin-Li Sun; Yu-Miao Zhang; Yan-Yan Li; Huan Li; Xin Hou; Bo-Lang Yu

    2015-01-01

    Background:Mild hypoxic-ischemic encephalopathy (HIE) injury is becoming the major type in neonatal brain diseases.The aim of this study was to assess brain maturation in mild HIE neonatal brains using total maturation score (TMS) based on conventional magnetic resonance imaging (MRI).Methods:Totally,45 neonates with clinically mild HIE and 45 matched control neonates were enrolled.Gestated age,birth weight,age after birth and postmenstrual age at magnetic resonance (MR) scan were homogenous in the two groups.According to MR findings,mild HIE neonates were divided into three subgroups:Pattern Ⅰ,neonates with normal MR appearance; Pattern Ⅱ,preterm neonates with abnormal MR appearance; Pattern Ⅲ,full-term neonates with abnormal MR appearance.TMS and its parameters,progressive myelination (M),cortical infolding (C),involution of germinal matrix tissue (G),and glial cell migration bands (B),were employed to assess brain maturation and compare difference between HIE and control groups.Results:The mean of TMS was significantly lower in mild HIE group than it in the control group (mean ± standard deviation [SD] 11.62 ± 1.53 vs.12.36 ± 1.26,P < 0.001).In four parameters of TMS scores,the M and C scores were significantly lower in mild HIE group.Of the three patterns of mild HIE,Pattern Ⅰ (10 cases) showed no significant difference of TMS compared with control neonates,while Pattern Ⅱ (22 cases),Ⅲ (13 cases) all had significantly decreased TMS than control neonates (mean ± SD 10.56 ± 0.93 vs.11.48 ± 0.55,P < 0.05; 12.59 ± 1.28 vs.13.25 ± 1.29,P < 0.05).It was M,C,and GM scores that significantly decreased in Pattern Ⅱ,while for Pattern Ⅲ,only C score significantly decreased.Conclusions:The TMS system,based on conventional MRI,is an effective method to detect delayed brain maturation in clinically mild HIE.The conventional MRI can reveal the different retardations in subtle structures and development processes among the different patterns of

  6. MRI in paediatric hypoxic-ischemic disease, metabolic disorders and malformations-A review

    Energy Technology Data Exchange (ETDEWEB)

    Beitzke, Dietrich [Department of Radiology, Division of Neuroradiology, Medical University, Graz (Austria)], E-mail: dietrich.beitzke@meduni-graz.at; Simbrunner, Josef [Department of Radiology, Division of Neuroradiology, Medical University, Graz (Austria); Riccabona, Michael [Department of Radiology, Division of Paediatric Radiology, Medical University, Graz (Austria)

    2008-11-15

    MRI has become the most important modality in paediatric neuroimaging. It provides an excellent anatomical overview with good spatial and temporal resolution, allows investigations of the blood vessels, and - using technologies such as diffusion-weighted imaging and magnetic resonance spectroscopy - it allows quick and exact differentiation of ischemic, hypoxic, inflammatory, oncologic, traumatic and metabolic diseases. This review presents an overview of brain MRI in infants and children with suspected hypoxic-ischemic disease, metabolic disorders or (vascular) malformations, illustrating these issues by some MRI findings in selected important conditions and discussing some major clinical and pathophysiological aspects important for imaging.

  7. Effects of minocycline on learning and memory of mice following ischemic-hypoxic cerebral injuries

    Institute of Scientific and Technical Information of China (English)

    Hongling Fan; Yuanyin Zheng; Lijuan Xu; Zhichao Zhong; Shining Cai; Shuling Zhang; Quanzhong Chang

    2012-01-01

    An ischemic-hypoxic animal model was established using right common carotid artery occlusions and inhalation of low concentrations of oxygen in mice. At 10 days after the ischemic-hypoxic injuries, saline-treated mice exhibited significantly prolonged escape latencies in water-maze tests and significantly shorter memory latencies and more mistakes in step-down tests. In contrast, mice treated with 5 mg/kg minocycline exhibited significant reversals of each of these effects compared with the saline-treated control mice. Moreover, we found that minocycline can relieve brain water content and morphological changes in mice following ischemic-hypoxic cerebral injuries. Accordingly, our findings indicate that minocycline provides some protections against the deleterious effects of these injuries in mice.

  8. Monitoring of neurological parameters in newborns with hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Đinđić Jasmina

    2006-01-01

    Full Text Available Asphyxia i a condition caused by lack of oxygen in tissues and organs. The basic pathogenic mechanisms of asphyxia are: 1hypoxemia, 2 ischemia. The effects of perinatal asphyxia on the brain of a neonatal baby are critical in development of hypoxic-ischemic encephalopathy. The diagnosis of hypoxic-ischemic encephalopathy is based on clinical data including course of pregnancy and delivery (Apgar score and especially on the neurological status of the newborn (consciousness, tonus, convulsions, reflexes, vegetative functions, etc. and it can be confirmed by biochemical analysis and neurological examinations. The aim of this paper is to determine the importance of prenatal and perinatal risk factors for hypoxic-ischemic encephalopathy, as well as their effects on the development of neurological complications and further neurological problems. The research included 148 newborn infants born in the period from January 1, 1996 to January 1, 1999, with gestational age of 27 to 42 weeks, with hypoxic ischemic lesions of the central nervosus system. The control group included 58 children of the same age and the same gestation, with generalized hypotonia ("floppy infant" but without any signs of hypoxic ischemic lesions of the central nervous system. In the group of examined newborn infants with hypoxic ischemic lesions, from 149 children 1 (0.67% died, 87 (53.89% had normal findings, whereas the handicap was established in 61 (40.94%. Perinatal asphyxia affects the fetus and newborn infants not by individual factors, but with at least three or four associated factors. The disorders caused by asphyxia are in inverse proportion to the duration and intensity of hypoxic insults and the gestational age of the newborn. .

  9. Association of NOS3 gene variants and clinical contributors of hypoxic-ischemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmanić Šamija, R. [Department of Pediatrics, University Hospital Split, Split (Croatia); Primorac, D. [School of Medicine Split, University of Split, Split (Croatia); Department of Pediatrics, School of Medicine, University of Osijek, Osijek (Croatia); Eberly College of Science, Penn State University, University Park, PA (United States); St. Catherine Speciality Hospital, Zabok (Croatia); Rešić, B. [School of Medicine Split, University of Split, Split (Croatia); Pavlov, V. [Department of Neonatology, University Hospital Split, Split (Croatia); Čapkun, V. [Department of Nuclear Medicine, University Hospital Split, Split (Croatia); Punda, H. [School of Medicine Split, University of Split, Split (Croatia); Lozić, B. [Department of Pediatrics, University Hospital Split, Split (Croatia); Zemunik, T. [Department of Medical Biology, School of Medicine Split, University of Split, Split (Croatia)

    2014-08-15

    The aim of this study was to analyze the association of different clinical contributors of hypoxic-ischemic encephalopathy with NOS3 gene polymorphisms. A total of 110 children with hypoxic-ischemic encephalopathy and 128 control children were selected for this study. Association of gender, gestational age, birth weight, Apgar score, cranial ultrasonography, and magnetic resonance imaging findings with genotypic data of six haplotype-tagging single nucleotide polymorphisms and the most commonly investigated rs1800779 and rs2070744 polymorphisms was analyzed. The TGT haplotype of rs1800783, rs1800779, and rs2070744 polymorphisms was associated with hypoxic-ischemic encephalopathy. Children with the TGT haplotype were infants below 32 weeks of gestation and they had the most severe brain damage. Increased incidence of the TT genotype of the NOS3 rs1808593 SNP was found in the group of hypoxic-ischemic encephalopathy patients with medium and severe brain damage. The probability of brain damage was twice as high in children with the TT genotype than in children with the TG genotype of the same polymorphism. Furthermore, the T allele of the same polymorphism was twice as frequent in children with lower Apgar scores. This study strongly suggests associations of NOS3 gene polymorphism with intensity of brain damage and severity of the clinical picture in affected children.

  10. Association of NOS3 gene variants and clinical contributors of hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Kuzmanić Šamija, R; Primorac, D; Rešić, B; Pavlov, V; Čapkun, V; Punda, H; Lozić, B; Zemunik, T

    2014-10-01

    The aim of this study was to analyze the association of different clinical contributors of hypoxic-ischemic encephalopathy with NOS3 gene polymorphisms. A total of 110 children with hypoxic-ischemic encephalopathy and 128 control children were selected for this study. Association of gender, gestational age, birth weight, Apgar score, cranial ultrasonography, and magnetic resonance imaging findings with genotypic data of six haplotype-tagging single nucleotide polymorphisms and the most commonly investigated rs1800779 and rs2070744 polymorphisms was analyzed. The TGT haplotype of rs1800783, rs1800779, and rs2070744 polymorphisms was associated with hypoxic-ischemic encephalopathy. Children with the TGT haplotype were infants below 32 weeks of gestation and they had the most severe brain damage. Increased incidence of the TT genotype of the NOS3 rs1808593 SNP was found in the group of hypoxic-ischemic encephalopathy patients with medium and severe brain damage. The probability of brain damage was twice as high in children with the TT genotype than in children with the TG genotype of the same polymorphism. Furthermore, the T allele of the same polymorphism was twice as frequent in children with lower Apgar scores. This study strongly suggests associations of NOS3 gene polymorphism with intensity of brain damage and severity of the clinical picture in affected children.

  11. Association of NOS3 gene variants and clinical contributors of hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    R. Kuzmani? ?amija

    2014-10-01

    Full Text Available The aim of this study was to analyze the association of different clinical contributors of hypoxic-ischemic encephalopathy with NOS3 gene polymorphisms. A total of 110 children with hypoxic-ischemic encephalopathy and 128 control children were selected for this study. Association of gender, gestational age, birth weight, Apgar score, cranial ultrasonography, and magnetic resonance imaging findings with genotypic data of six haplotype-tagging single nucleotide polymorphisms and the most commonly investigated rs1800779 and rs2070744 polymorphisms was analyzed. The TGT haplotype of rs1800783, rs1800779, and rs2070744 polymorphisms was associated with hypoxic-ischemic encephalopathy. Children with the TGT haplotype were infants below 32 weeks of gestation and they had the most severe brain damage. Increased incidence of the TT genotype of the NOS3 rs1808593 SNP was found in the group of hypoxic-ischemic encephalopathy patients with medium and severe brain damage. The probability of brain damage was twice as high in children with the TT genotype than in children with the TG genotype of the same polymorphism. Furthermore, the T allele of the same polymorphism was twice as frequent in children with lower Apgar scores. This study strongly suggests associations of NOS3 gene polymorphism with intensity of brain damage and severity of the clinical picture in affected children.

  12. Neuroprotective and anti-inflammatory effects of the flavonoid-enriched fraction AF4 in a mouse model of hypoxic-ischemic brain injury.

    Directory of Open Access Journals (Sweden)

    Paul G W Keddy

    Full Text Available We report here neuroprotective and anti-inflammatory effects of a flavonoid-enriched fraction isolated from the peel of Northern Spy apples (AF4 in a mouse of model of hypoxic-ischemic (HI brain damage. Oral administration of AF4 (50 mg/kg, once daily for 3 days prior to 50 min of HI completely prevented motor performance deficits assessed 14 days later that were associated with marked reductions in neuronal cell loss in the dorsal hippocampus and striatum. Pre-treatment with AF4 (5, 10, 25 or 50 mg/kg, p.o.; once daily for 3 days produced a dose-dependent reduction in HI-induced hippocampal and striatal neuron cell loss, with 25 mg/kg being the lowest dose that achieved maximal neuroprotection. Comparison of the effects of 1, 3 or 7 doses of AF4 (25 mg/kg; p.o. prior to HI revealed that at least 3 doses of AF4 were required before HI to reduce neuronal cell loss in both the dorsal hippocampus and striatum. Quantitative RT-PCR measurements revealed that the neuroprotective effects of AF4 (25 mg/kg; p.o.; once daily for 3 days in the dorsal hippocampus were associated with a suppression of HI-induced increases in the expression of IL-1β, TNF-α and IL-6. AF4 pre-treatment enhanced mRNA levels for pro-survival proteins such as X-linked inhibitor of apoptosis and erythropoietin following HI in the dorsal hippocampus and striatum, respectively. Primary cultures of mouse cortical neurons incubated with AF4 (1 µg/ml, but not the same concentrations of either quercetin or quercetin-3-O-glucose or its metabolites, were resistant to cell death induced by oxygen glucose deprivation. These findings suggest that the inhibition of HI-induced brain injury produced by AF4 likely involves a transcriptional mechanism resulting from the co-operative actions of various phenolics in this fraction which not only reduce the expression of pro-inflammatory mediators but also enhance pro-survival gene signalling.

  13. Temporal characterization of microglia/macrophage phenotypes in a mouse model of neonatal hypoxic-ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Nina Hellström Erkenstam

    2016-12-01

    Full Text Available Immune cells display a high degree of phenotypic plasticity, which may facilitate their participation in both the progression and resolution of injury-induced inflammation. The purpose of this study was to investigate the temporal expression of genes associated with classical and alternative polarization phenotypes described for macrophages and to identify related cell populations in the brain following neonatal hypoxia-ischemia (HI. HI was induced in 9-day old mice and brain tissue was collected up to 7 d post-insult to investigate expression of genes associated with macrophage activation. Using cell-markers, CD86 (classic activa-tion and CD206 (alternative activation, we assessed temporal changes of CD11b+ cell populations in the brain and studied the protein expression of the immunomodulatory factor galectin-3 in these cells. HI induced a rapid regulation (6h of genes associated with both classical and alternative polarization phenotypes in the injured hemisphere. FACS analysis showed a marked increase in the number of CD11+CD86+ positive cells at 24 h after HI (+3,667 %, which was coupled with a relative suppression of CD11+CD206+ cells and cells that did not express either CD86 or CD206. The CD11+CD206+ popula-tion was mixed with some cells also expressing CD86. Confocal microscopy confirmed that a subset of cells expressed both CD86 and CD206, particularly in injured grey and white matter. Protein con-centration of galectin-3 was markedly increased mainly in the cell population lacking CD86 or CD206 in the injured hemisphere. These cells were predominantly resident microglia as very few galectin-3 positive cells co-localized with infiltrating myeloid cells in Lys-EGFP-ki mice after HI.In summary, HI was characterized by an early mixed gene response, but with a large expansion of mainly the CD86 positive population during the first day. However, the injured hemisphere also con-tained a subset of cells expressing both CD86 and CD206 and a

  14. Hypoxic-Ischemic Injury in the Developing Brain: The Role of Reactive Oxygen Species Originating in Mitochondria

    Directory of Open Access Journals (Sweden)

    Vadim S. Ten

    2012-01-01

    Full Text Available Mitochondrial dysfunction is the most fundamental mechanism of cell damage in cerebral hypoxia-ischemia and reperfusion. Mitochondrial respiratory chain (MRC is increasingly recognized as a source for reactive oxygen species (ROS in the postischemic tissue. Potentially, ROS originating in MRC can contribute to the reperfusion-driven oxidative stress, promoting mitochondrial membrane permeabilization. The loss of mitochondrial membranes integrity during reperfusion is considered as the major mechanism of secondary energy failure. This paper focuses on current data that support a pathogenic role of ROS originating from mitochondrial respiratory chain in the promotion of secondary energy failure and proposes potential therapeutic strategy against reperfusion-driven oxidative stress following hypoxia-ischemia-reperfusion injury of the developing brain.

  15. Hypoxic-ischemic injury in the developing brain: the role of reactive oxygen species originating in mitochondria.

    Science.gov (United States)

    Ten, Vadim S; Starkov, Anatoly

    2012-01-01

    Mitochondrial dysfunction is the most fundamental mechanism of cell damage in cerebral hypoxia-ischemia and reperfusion. Mitochondrial respiratory chain (MRC) is increasingly recognized as a source for reactive oxygen species (ROS) in the postischemic tissue. Potentially, ROS originating in MRC can contribute to the reperfusion-driven oxidative stress, promoting mitochondrial membrane permeabilization. The loss of mitochondrial membranes integrity during reperfusion is considered as the major mechanism of secondary energy failure. This paper focuses on current data that support a pathogenic role of ROS originating from mitochondrial respiratory chain in the promotion of secondary energy failure and proposes potential therapeutic strategy against reperfusion-driven oxidative stress following hypoxia-ischemia-reperfusion injury of the developing brain.

  16. Expression of Clock genes in the pineal glands of newborn rats with hypoxic-ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Bin Sun; Xing Feng; Xin Ding; Li Bao; Yongfu Li; Jun He; Meifang Jin

    2012-01-01

    Clock genes are involved in circadian rhythm regulation,and surviving newborns with hypoxic-ischemic encephalopathy may present with sleep-wake cycle reversal.This study aimed to determine the expression of the clock genes Clock and Bmall,in the pineal gland of rats with hypoxic-ischemic brain damage.Results showed that levels of Clock mRNA were not significantly changed within 48 hours after cerebral hypoxia and ischemia.Expression levels of CLOCK and BMAL1 protein were significantly higher after 48 hours.The levels of Bmall mRNA reached a peak at 36 hours,but were significantly reduced at 48 hours.Experimental findings indicate that Clock and Bmall genes were indeed expressed in the pineal glands of neonatal rats.At the initial stage (within 36 hours) of hypoxic-ischemic brain damage,only slight changes in the expression levels of these two genes were detected,followed by significant changes at 36 48 hours.These changes may be associated with circadian rhythm disorder induced by hypoxic-ischemic brain damage.

  17. Spatial Working Memory Deficits in Male Rats Following Neonatal Hypoxic Ischemic Brain Injury Can Be Attenuated by Task Modifications

    Directory of Open Access Journals (Sweden)

    Amanda L. Smith

    2014-04-01

    Full Text Available Hypoxia-ischemia (HI; reduction in blood/oxygen supply is common in infants with serious birth complications, such as prolonged labor and cord prolapse, as well as in infants born prematurely (<37 weeks gestational age; GA. Most often, HI can lead to brain injury in the form of cortical and subcortical damage, as well as later cognitive/behavioral deficits. A common domain of impairment is working memory, which can be associated with heightened incidence of developmental disorders. To further characterize these clinical issues, the current investigation describes data from a rodent model of HI induced on postnatal (P7, an age comparable to a term (GA 36–38 human. Specifically, we sought to assess working memory using an eight-arm radial water maze paradigm. Study 1 used a modified version of the paradigm, which requires a step-wise change in spatial memory via progressively more difficult tasks, as well as multiple daily trials for extra learning opportunity. Results were surprising and revealed a small HI deficit only for the final and most difficult condition, when a delay before test trial was introduced. Study 2 again used the modified radial arm maze, but presented the most difficult condition from the start, and only one daily test trial. Here, results were expected and revealed a robust and consistent HI deficit across all weeks. Combined results indicate that male HI rats can learn a difficult spatial working memory task if it is presented in a graded multi-trial format, but performance is poor and does not appear to remediate if the task is presented with high initial memory demand. Male HI rats in both studies displayed impulsive characteristics throughout testing evidenced as reduced choice latencies despite more errors. This aspect of behavioral results is consistent with impulsiveness as a core symptom of ADHD—a diagnosis common in children with HI insult. Overall findings suggest that task specific behavioral modifications are

  18. Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of nuclear factor (erythroid-derived 2)-like 2

    Science.gov (United States)

    Zhao, Hailin; Mitchell, Sian; Ciechanowicz, Sarah; Savage, Sinead; Wang, Tianlong; Ji, Xunming; Ma, Daqing

    2016-01-01

    Perinatal hypoxic ischaemic encephalopathy (HIE) has a high mortality rate with neuropsychological impairment. This study investigated the neuroprotective effects of argon against neonatal hypoxic-ischaemic brain injury. In vitro cortical neuronal cell cultures derived from rat foetuses were subjected to an oxygen and glucose deprivation (OGD) challenge for 90 minutes and then exposed to 70% argon or nitrogen with 5% carbon dioxide and balanced with oxygen for 2 hours. In vivo, seven-day-old rats were subjected to unilateral common carotid artery ligation followed by hypoxic (8% oxygen balanced with nitrogen) insult for 90 minutes. They were exposed to 70% argon or nitrogen balanced with oxygen for 2 hours. In vitro, argon treatment of cortical neuronal cultures resulted in a significant increase of p-mTOR and Nuclear factor (erythroid-derived 2)-like 2(Nrf2) and protection against OGD challenge. Inhibition of m-TOR through Rapamycin or Nrf2 through siRNA abolished argon-mediated cyto-protection. In vivo, argon exposure significantly enhanced Nrf2 and its down-stream effector NAD(P)H Dehydrogenase, Quinone 1(NQO1) and superoxide dismutase 1(SOD1). Oxidative stress, neuroinflammation and neuronal cell death were significantly decreased and brain infarction was markedly reduced. Blocking PI-3K through wortmannin or ERK1/2 through U0126 attenuated argon-mediated neuroprotection. These data provide a new molecular mechanism for the potential application of argon as a neuroprotectant in HIE. PMID:27016422

  19. Thioperamide treats neonatal hypoxic-ischemic encephalopathy by postsynaptic H1 receptors*

    Institute of Scientific and Technical Information of China (English)

    Feiyong Jia; Lin Du; Yunpeng Hao; Shicheng Liu; Ning Li; Huiyi Jiang

    2013-01-01

    Thioperamide, a selective histamine H3 receptor antagonist, can increase histamine content in the brain, improve brain edema, and exert a neuroprotective effect. This study aimed to examine the mechanism of action of thioperamide during brain edema in a rat model of neonatal hypoxic- is-chemic encephalopathy. Our results showed that thioperamide significantly decreased brain water content and malondialdehyde levels, while significantly increased histamine levels and superoxide dismutase activity in the hippocampus. This evidence demonstrates that thioperamide could pre-vent oxidative damage and attenuate brain edema fol owing neonatal hypoxic-ischemic encepha-lopathy. We further observed that changes in the above indexes occurred after combined treatment of thioperamide with the H1 receptor antagonist, pyrilamine, and the H2 receptor antagonist, ci-metidine. Experimental findings indicated that pyrilamine reversed the effects of thioperamide;however, cimetidine had no significant influence on the effects of thioperamide. Our present findings suggest that thioperamide can increase brain histamine content and attenuate brain edema and oxidative damage by acting in combination with postsynaptic H1 receptors in a rat model of neo-natal hypoxic-ischemic encephalopathy.

  20. Cortical region-specific engraftment of embryonic stem cell-derived neural progenitor cells restores axonal sprouting to a subcortical target and achieves motor functional recovery in a mouse model of neonatal hypoxic-ischemic brain injury.

    Science.gov (United States)

    Shinoyama, Mizuya; Ideguchi, Makoto; Kida, Hiroyuki; Kajiwara, Koji; Kagawa, Yoshiteru; Maeda, Yoshihiko; Nomura, Sadahiro; Suzuki, Michiyasu

    2013-01-01

    Hypoxic-ischemic encephalopathy (HIE) at birth could cause cerebral palsy (CP), mental retardation, and epilepsy, which last throughout the individual's lifetime. However, few restorative treatments for ischemic tissue are currently available. Cell replacement therapy offers the potential to rescue brain damage caused by HI and to restore motor function. In the present study, we evaluated the ability of embryonic stem cell-derived neural progenitor cells (ES-NPCs) to become cortical deep layer neurons, to restore the neural network, and to repair brain damage in an HIE mouse model. ES cells stably expressing the reporter gene GFP are induced to a neural precursor state by stromal cell co-culture. Forty-hours after the induction of HIE, animals were grafted with ES-NPCs targeting the deep layer of the motor cortex in the ischemic brain. Motor function was evaluated 3 weeks after transplantation. Immunohistochemistry and neuroanatomical tracing with GFP were used to analyze neuronal differentiation and axonal sprouting. ES-NPCs could differentiate to cortical neurons with pyramidal morphology and expressed the deep layer-specific marker, Ctip2. The graft showed good survival and an appropriate innervation pattern via axonal sprouting from engrafted cells in the ischemic brain. The motor functions of the transplanted HIE mice also improved significantly compared to the sham-transplanted group. These findings suggest that cortical region specific engraftment of preconditioned cortical precursor cells could support motor functional recovery in the HIE model. It is not clear whether this is a direct effect of the engrafted cells or due to neurotrophic factors produced by these cells. These results suggest that cortical region-specific NPC engraftment is a promising therapeutic approach for brain repair.

  1. Mitogen-Activated Protein Kinases and Hypoxic/Ischemic Nephropathy

    Directory of Open Access Journals (Sweden)

    Fengbao Luo

    2016-08-01

    Full Text Available Tissue hypoxia/ischemia is a pathological feature of many human disorders including stroke, myocardial infarction, hypoxic/ischemic nephropathy, as well as cancer. In the kidney, the combination of limited oxygen supply to the tissues and high oxygen demand is considered the main reason for the susceptibility of the kidney to hypoxic/ischemic injury. In recent years, increasing evidence has indicated that a reduction in renal oxygen tension/blood supply plays an important role in acute kidney injury, chronic kidney disease, and renal tumorigenesis. However, the underlying signaling mechanisms, whereby hypoxia alters cellular behaviors, remain poorly understood. Mitogen-activated protein kinases (MAPKs are key signal-transducing enzymes activated by a wide range of extracellular stimuli, including hypoxia/ischemia. There are four major family members of MAPKs: the extracellular signal-regulated kinases-1 and -2 (ERK1/2, the c-Jun N-terminal kinases (JNK, p38 MAPKs, and extracellular signal-regulated kinase-5 (ERK5/BMK1. Recent studies, including ours, suggest that these MAPKs are differentially involved in renal responses to hypoxic/ischemic stress. This review will discuss their changes in hypoxic/ischemic pathophysiology with acute kidney injury, chronic kidney diseases and renal carcinoma.

  2. Neonatal ischemic brain injury: what every radiologist needs to know

    Energy Technology Data Exchange (ETDEWEB)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E. [Seattle Children' s Hospital, University of Washington Medical Center, Department of Radiology, Seattle, WA (United States)

    2012-05-15

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  3. 缺氧缺血性脑损害患儿血小板参数变化的临床研究%Changes of platelet parameters in children with hypoxic-ischemic brain damage*

    Institute of Scientific and Technical Information of China (English)

    罗世永; 苏国生; 劳炳焕

    2012-01-01

    Objective To investigate the clinical significance of changes of platelet parameters in children with hypoxic ischemic brain damage. Methods 63 cases of children with hypoxic ischemic encephalopathy were enrolled as experiment group,and 60 cases of asphyxia children without brain damage were enrolled as control group. Changes of platelet parameters in these two groups were compared. Results Platelet counts(PLT) in experiment group in acute stage and convalescent period were significantly lower than that in control group,but mean platelet volume(MPV) and platelet distribution width(PDW) were significantly higher. Conclusion There might be changes of platelet parameters in children with hypoxic ischemic encephalopathy and those asphyxia children without brain damage,and changes might be more obvious in former. Detection of platelet parameters could be helpful for monito ring disease condition.%目的 探讨缺氧缺血性脑损害患儿血小板参数变化的临床意义.方法 选取临床确诊缺氧缺血性脑病患儿63例作为实验组,同时选取同期发生窒息但无脑损害的患儿60例作为对照组,比较两组急性期和恢复期血小板参数的变化情况.结果 实验组血小板计数急性期和恢复期均低于对照组,两组比较差异具有统计学意义(P<0.05);平均血小板体积及血小板分布宽度急性期和恢复期均高于对照组,两组比较差异具有统计学意义(P<0.05).结论 缺氧缺血性脑病和窒息但无脑损害患儿血小板参数均有不同程度的变化,但缺氧缺血性脑病患儿变化程度较明显,临床可作为一个辅助的监测指标.

  4. Comparison of detection results of hypoxic-ischemic encephalopathy at different degrees in infant patients between brain electrical activity mapping, transcranial Doppler sonography and computer tomography examinations

    Institute of Scientific and Technical Information of China (English)

    Dongruo He; Xiaoying Xu; Yinghui Zhang; Guochao Han

    2006-01-01

    BACKGROUND; It has been proved that brain electrical activity mapping (BEAM) and transcranial Doppler (TCD) detection can reflect the function of brain cell and its diseased degree of infant patients with moderate to severe hypoxic-ischemic encephalopathy (HIE).OBJECTIVE: To observe the abnormal results of HIE at different degrees detected with BEAM and TCD in infant patients, and compare the detection results at the same time point between BEAM, TCD and computer tomography (CT) examinations.DESTGN: Contrast observation.SETTING: Departments of Neuro-electrophysiology and Pediatrics, Second Affiliated Hospital of Qiqihar Medical College.PARTICTPANTS: Totally 416 infant patients with HIE who received treatment in the Department of Newborn Infants, Second Affiliated Hospital of Qiqihar Medical College during January 2001 and December 2005. The infant patients, 278 male and 138 female, were at embryonic 37 to 42 weeks and weighing 2.0 to 4.1 kg, and they were diagnosed with CT and met the diagnostic criteria of HIE of newborn infants compiled by Department of Neonatology, Pediatric Academy, Chinese Medical Association. According to diagnostic criteria, 130patients were mild abnormal, 196 moderate abnormal and 90 severe abnormal. The relatives of all the infant patients were informed of the experiment.METHODS: BEAM and TCD examinations were performed in the involved 416 infant patients with HIE at different degrees with DYD2000 16-channel BEAM instrument and EME-2000 ultrasonograph before preliminary diagnosis treatment (within 1 month after birth) and 1,3,6,12 and 24 months after birth, and detected results were compared between BEAM, TCD and CT examinations.MATN OUTCOME MEASURES: Comparison of detection results of HIE at different time points in infant patients between BEAM, TCD and CT examinations. RESULTS: All the 416 infant patients with HIE participated in the result analysis. ① Comparison of the detected results in infant patients with mild HIE at different

  5. Dietary interventions designed to protect the perinatal brain from hypoxic-ischemic encephalopathy--Creatine prophylaxis and the need for multi-organ protection.

    Science.gov (United States)

    Ellery, Stacey J; Dickinson, Hayley; McKenzie, Matthew; Walker, David W

    2016-05-01

    Birth asphyxia or hypoxia arises from impaired placental gas exchange during labor and remains one of the leading causes of neonatal morbidity and mortality worldwide. It is a condition that can strike in pregnancies that have been uneventful until these final moments, and leads to fundamental loss of cellular energy reserves in the newborn. The cascade of metabolic changes that occurs in the brain at birth as a result of hypoxia can lead to significant damage that evolves over several hours and days, the severity of which can be ameliorated with therapeutic cerebral hypothermia. However, this treatment is only applied to a subset of newborns that meet strict inclusion criteria and is usually administered only in facilities with a high level of medical surveillance. Hence, a number of neuropharmacological interventions have been suggested as adjunct therapies to improve the efficacy of hypothermia, which alone improves survival of the post-hypoxic infant but does not altogether prevent adverse neurological outcomes. In this review we discuss the prospect of using creatine as a dietary supplement during pregnancy and nutritional intervention that can significantly decrease the risk of brain damage in the event of severe oxygen deprivation at birth. Because brain damage can also arise secondarily to compromise of other fetal organs (e.g., heart, diaphragm, kidney), and that compromise of mitochondrial function under hypoxic conditions may be a common mechanism leading to damage of these tissues, we present data suggesting that dietary creatine supplementation during pregnancy may be an effective prophylaxis that can protect the fetus from the multi-organ consequences of severe hypoxia at birth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A Piglet Model of Neonatal Hypoxic-Ischemic Encephalopathy.

    Science.gov (United States)

    Kyng, Kasper J; Skajaa, Torjus; Kerrn-Jespersen, Sigrid; Andreassen, Christer S; Bennedsgaard, Kristine; Henriksen, Tine B

    2015-05-16

    Birth asphyxia, which causes hypoxic-ischemic encephalopathy (HIE), accounts for 0.66 million deaths worldwide each year, about a quarter of the world's 2.9 million neonatal deaths. Animal models of HIE have contributed to the understanding of the pathophysiology in HIE, and have highlighted the dynamic process that occur in brain injury due to perinatal asphyxia. Thus, animal studies have suggested a time-window for post-insult treatment strategies. Hypothermia has been tested as a treatment for HIE in pdiglet models and subsequently proven effective in clinical trials. Variations of the model have been applied in the study of adjunctive neuroprotective methods and piglet studies of xenon and melatonin have led to clinical phase I and II trials(1,2). The piglet HIE model is further used for neonatal resuscitation- and hemodynamic studies as well as in investigations of cerebral hypoxia on a cellular level. However, it is a technically challenging model and variations in the protocol may result in either too mild or too severe brain injury. In this article, we demonstrate the technical procedures necessary for establishing a stable piglet model of neonatal HIE. First, the newborn piglet (< 24 hr old, median weight 1500 g) is anesthetized, intubated, and monitored in a setup comparable to that found in a neonatal intensive care unit. Global hypoxia-ischemia is induced by lowering the inspiratory oxygen fraction to achieve global hypoxia, ischemia through hypotension and a flat trace amplitude integrated EEG (aEEG) indicative of cerebral hypoxia. Survival is promoted by adjusting oxygenation according to the aEEG response and blood pressure. Brain injury is quantified by histopathology and magnetic resonance imaging after 72 hr.

  7. Neonatal seizures and therapeutic hypothermia for hypoxic-ischemic encephalopathy

    OpenAIRE

    2014-01-01

    Neonatal seizures are associated with morbidity and mortality. Hypoxic-ischemic encephalopathy (HIE) is the most common cause of seizures in newborns. Neonatal animal models suggest that therapeutic hypothermia can reduce seizures and epileptiform activity in the setting of hypoxia-ischemia, however data from human studies have conflicting results. In this research highlight, we will discuss the findings of our recent study that demonstrated a decreased seizure burden in term newborns with mo...

  8. Early cerebral hemodynamic, metabolic and histological changes in hypoxic-ischemic fetal lambs during postnatal life

    Directory of Open Access Journals (Sweden)

    Carmen eRey-Santano

    2011-09-01

    Full Text Available The hemodynamic, metabolic and biochemical changes produce during transition from fetal to neonatal life could be aggravated if asphyctic event occur during fetal life. The aim of the study was to examine the regional cerebral blood flow (RCBF, histological changes, and cerebral brain metabolism in preterm lambs, and to analyze the role of oxidative stress for the first hours of postnatal life following severe fetal asphyxia. 18 chronically instrumented fetal lambs were assigned to: hypoxic-ischemic group, following fetal asphyxia animals were delivered and maintained on intermittent-positive-pressure-ventilation for 3 hours, and non-injured animals that were managed similarly to the previous group and used as control group. During hypoxic-ischemic insult, injured group developed acidosis, hypoxia, hypercapnia, latacidaemia and tachycardia in comparison to control group, without hypotension. Intermittent-positive-pressure-ventilation transiently improved gas exchange and cardiovascular parameters. After HI injury and during ventilation-support, the increased RCBF in inner zones was maintained for hypoxic-ischemic group, but cortical flow did not exhibit differences compared to the control group. Also, the increase of TUNEL positive cells (apoptosis and antioxidant enzymes, and decrease of ATP reserves was significantly higher in the brain regions where the RCBF were not increased.In conclusion, early metabolic, histological and hemodynamic changes involved in brain damage have been intensively investigated and reported in premature asphyctic lambs for the first 3 hours of postnatal life. Those changes have been described in human neonates, so our model could be useful to test the security and the effectiveness of different neuroprotective or ventilatory strategies when are applied in the first hours after fetal hypoxic-ischemic injury.

  9. Short-term effect of erythropoietin on brain lesions and aquaporin-4 expression in a hypoxic-ischemic neonatal rat model assessed by magnetic resonance diffusion weighted imaging and immunohistochemistry.

    Science.gov (United States)

    Brissaud, Olivier; Villega, Frédéric; Pieter Konsman, Jan; Sanchez, Stéphane; Raffard, Gérard; Franconi, Jean-Michel; Chateil, Jean-François; Bouzier-Sore, Anne-Karine

    2010-08-01

    Erythropoietin (Epo) is an endogenous cytokine that regulates hematopoiesis and is widely used to treat anemia. In addition, it has recently increased interest in the neurosciences since the new concept of Epo as a neuroprotective agent has emerged. The potential protective effect of human recombinant Epo (r-hu-Epo) on a hypoxic-ischemic (HI) pup rat model was studied. Cerebral HI was obtained by permanent left carotid artery ligature of pups followed by a 2-h hypoxia. Three hours after carotid occlusion, brain lesions were assessed by magnetic resonance diffusion weighted imaging. Intraperitoneal administration of r-hu-Epo (30,000 U/kg dose) limited both the HI-induced brain lesion area and the decrease in apparent diffusion coefficient (ADC) in the lesion. To identify potential mechanisms underlying the effects of Epo, immunohistochemical detection of caspase-3 and water channel protein aquaporin-4 (AQP4) were performed. No early apoptosis was detected, but up-regulation of AQP4 expression was observed in HI pups that received r-hu-Epo compared with HI animals without treatment. This study demonstrates an early neuroprotective effect of Epo with regard to brain lesion area and ADC values. One possible mechanism of Epo for decreasing brain edema and cellular swelling could be a better clearance of water excess in brain tissue, a process possibly mediated by AQP4.

  10. Ischemic preconditioning protects against ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Xiao-meng Ma

    2016-01-01

    Full Text Available In this study, we hypothesized that an increase in integrin αv ß 3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αv ß 3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αv ß 3 and vascular endothelial growth factor levels in the brain following ischemia.

  11. Matrix metaloproteinases activity during the evolution of hypoxic-ischemic brain damage in the immature rat. The effect of 1-methylnicotinamide (MNA).

    Science.gov (United States)

    Dragun, P; Makarewicz, D; Wójcik, L; Ziemka-Nałecz, M; Słomka, M; Zalewska, T

    2008-09-01

    Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that degrade the extracellular matrix and carry out key functions during brain development. Apart from a physiological role, excessive activation of MMPs in brain tissue has been postulated to represent a pathway for cell death arising from ischemia. To evaluate the possible involvement of MMPs in the perinatal brain asphyxia, we exposed 7-day-old rats to hypoxia-ischemia (HI). Unilateral HI was administered by ligation of the common carotid artery followed by hypoxia (7.4% O2/92.6% N2) for 65 minutes. This insult is known to produce brain damage confined to the cerebral hemisphere ipsilateral to the arterial occlusion in > 90% of animals. HI resulted in a significant elevation of MMP-2 and MMP-9 activity in the ipsilateral forebrain. The maximum activation was found at 48 hours and 7-14 days after the insult. These results suggest that early and late induction of MMPs may play a role in neuronal death as well as in repair processes. The treatment of animals subjected to HI with 1-methylnicotinamide (MNA), the anti-inflammatory agent, led to the inhibition of MMP-9 in an acute phase of ischemic damage and to the activation of MMP-2 in the later stages after injury. The timing of MMPs modulation by MNA may indicate its possible therapeutic implications.

  12. First autologous cell therapy of cerebral palsy caused by hypoxic-ischemic brain damage in a child after cardiac arrest-individual treatment with cord blood.

    Science.gov (United States)

    Jensen, A; Hamelmann, E

    2013-01-01

    Each year, thousands of children incur brain damage that results in lifelong sequelae. Therefore, based on experimental evidence, we explored the therapeutic potential of human cord blood, known to contain stem cells, to examine the functional neuroregeneration in a child with cerebral palsy after cardiac arrest. The boy, whose cord blood was stored at birth, was 2.5 years old and normally developed when global ischemic brain damage occurred resulting in a persistent vegetative state. Nine weeks later, he received autologous cord blood (91.7 mL, cryopreserved, 5.75 × 10e8 mononuclear cells) intravenously. Active rehabilitation (physio- and ergotherapy) was provided daily, follow-up at 2, 5, 12, 24, 30, and 40 months. At 2-months follow-up the boy's motor control improved, spastic paresis was largely reduced, and eyesight was recovered, as did the electroencephalogram. He smiled when played with, was able to sit and to speak simple words. At 40 months, independent eating, walking in gait trainer, crawling, and moving from prone position to free sitting were possible, and there was significantly improved receptive and expressive speech competence (four-word sentences, 200 words). This remarkable functional neuroregeneration is difficult to explain by intense active rehabilitation alone and suggests that autologous cord blood transplantation may be an additional and causative treatment of pediatric cerebral palsy after brain damage.

  13. Regional Differences in Susceptibility to Hypoxic-Ischemic Injury in the Preterm Brain: Exploring the Spectrum from White Matter Loss to Selective Grey Matter Injury in a Rat Model

    Directory of Open Access Journals (Sweden)

    D. B. Selip

    2012-01-01

    Full Text Available Models of premature brain injury have largely focused on the white matter injury thought to underlie periventricular leukomalacia (PVL. However, with increased survival of very low birth weight infants, injury patterns involving grey matter are now recognized. We aimed to determine how grey matter lesions relate to hypoxic-ischemic- (HI mediated white matter injury by modifying our rat model of PVL. Following HI, microglial infiltration, astrocytosis, and neuronal and axonal degeneration increased in a region-specific manner dependent on the severity of myelin loss in pericallosal white matter. The spectrum of injury ranged from mild, where diffuse white matter abnormalities were dominant and were associated with mild axonal injury and local microglial activation, to severe HI injury characterized by focal MBP loss, widespread neuronal degeneration, axonal damage, and gliosis throughout the neocortex, caudate putamen, and thalamus. In sum, selective regional white matter loss occurs in the preterm rat concomitantly with a clinically relevant spectrum of grey matter injury. These data demonstrate an interspecies similarity of brain injury patterns and further substantiates the reliable use of this model for the study of preterm brain injury.

  14. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Ying-bo Li

    2015-01-01

    Full Text Available Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10-80 µM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent experiments. Whole-cell patch clamp showed that neural stem cells induced by 20 µM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypoxic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  15. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Ying-bo Li; Yan Wang; Ji-ping Tang; Di Chen; Sha-li Wang

    2015-01-01

    Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10–80 μM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent exper-iments. Whole-cell patch clamp showed that neural stem cells induced by 20 μM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypox-ic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplantedvia intracerebroventricular injection. These tests conifrmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a signiifcantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-speciifc enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  16. Neuroprotective effects of volume-regulated anion channel blocker DCPIB on neonatal hypoxic-ischemic injury

    Institute of Scientific and Technical Information of China (English)

    Ammar ALIBRAHIM; Li-yan ZHAO; Christine You-jin BAE; Andrew BARSZCZYK; Christopher LF SUN; Guan-lei WANG; Hong-shuo SUN

    2013-01-01

    Aim:To evaluate the role of swelling-induced activation of volume-regulated anion channels (VRACs) in a neonatal hypoxic-ischemic injury model using the selective VRAC blocker 4-(2-butyl-6,7-dichloro-2-cyclopentyl-indan-1-on5-yl) oxobutyric acid (DCPIB).Methods:Cerebral hypoxic-ischemic injury was induced in 7-day-old mouse pups with Rice-Vannucci method.Prior to the onset of ischemia,the animals were ip administered DCPIB (10 mg/kg).The animals were sacrificed 24 h afterwards,coronal sections of the brains were cut and the areas of infarct were examined using TTC staining and an image-analysis system.Cultured PC12 cells were subjected to oxygen-glucose deprivation (OGD) for 4 h.The cellular viability was assessed using Cell Counting Kit 8.Intracellular chloride concentration [Clˉ]i was measured using 6-methoxy-N-ethylquinolinium iodide.Results:DCPIB-treated mice showed a significant reduction in hemispheric corrected infarct volume (26.65%+2.23%) compared to that in vehicle-treated mice (45.52%+1.45%,P<O.O01).DCPIB-treated mice also showed better functional recovery as they were more active than vehicle-treated mice at 4 and 24 h post injury.In cultured PC12 cells,DCPIB (10 μmol/L) significantly reduced OGD-induced cell death.Moreover,DCPIB (20 μmol/L) blocked hypotonic-induced decrease in [Clˉ]i in PC12 cells of both control and OGD groups.Conclusion:The results further support the pathophysiological role of VRACs in ischemic brain injury,and suggest DCPIB as a potential,easily administrable agent targeting VRACs in the context of perinatal and neonatal hypoxic-ischemic brain injury.

  17. Effects of pre- and postnatal protein malnutrition in hypoxic-ischemic rats.

    Science.gov (United States)

    Sanches, Eduardo Farias; Arteni, Nice Sarmento; Spindler, Christiano; Moysés, Felipe; Siqueira, Ionara Rodrigues; Perry, Marcos Luis; Netto, Carlos Alexandre

    2012-02-15

    Neonatal hypoxic-ischemic encephalopathy (HI) is a major cause of nervous system damage and neurological morbidity. Perinatal malnutrition affects morphological, biochemical and behavioral aspects of neural development, including pathophysiological cascades of cell death triggered by ischemic events, so modifying resulting brain damage. Female Wistar rats were subjected to protein restriction during pregnancy and lactation (control group: 25% soybean protein; malnourished group: 7%). Seven days after delivery (PND7), their offspring were submitted to unilateral cerebral HI; rats were then tested for sensorimotor (PND7 and PND60) and memory (PND60) functions. Offspring of malnourished mothers showed marked reduction in body weight starting in lactation and persisting during the entire period of observation. There was a greater sensorimotor deficit after HI in malnourished (M) animals, in righting reflex and in home bedding task, indicating an interaction between diet and hypoxia-ischemia. At PND60, HI rats showed impaired performance when compared to controls in training and test sessions of rota-rod task, however there was no effect of malnutrition per se. In the open field, nourished HI (HI-N) presented an increase in crossings number; this effect was not present in HI-M group. Surprisingly, HI-M rats presented a better performance in inhibitory avoidance task and a smaller hemispheric brain damage as compared to HI-N animals. Our data points to a possible metabolic adaptation in hypoxic-ischemic animals receiving protein malnutrition during pregnancy and lactation; apparently we observed a neuroprotective effect of diet, possibly decreasing the brain energy demand, under a hypoxic-ischemic situation. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Changes of biological clock protein in neonatal rats with hypoxic-ischemic brain damage%缺氧缺血性脑损伤新生大鼠松果体钟基因表达的变化

    Institute of Scientific and Technical Information of China (English)

    李永富; 金美芳; 孙斌; 冯星

    2013-01-01

    Objective To study the effects of biological clock protein on circadian disorders in hypoxic-ischemic brain damage ( HIBD) by examining levels of CLOCK and BMAL1 proteins in the pineal gland of neonatal rats. Methods Seventy-two 7-day-old Sprague-Dawley (SD) rats were randomly divided into sham-operated and HIBD groups. HIBD model was prepared according to the modified Levine method. Western blot analysis was used to measure the levels of CLOCK and BMAL1 in the pineal gland at 0, 2, 12, 24, 36 and 48 hours after operation. Results Both CLOCK and BMAL levels in the pineal gland increased significantly 48 hours after HIBD compared with the sham-operated group ( P 0. 05 ) . Conclusions Levels of CLOCK and BMAL1 proteins in the pineal gland of rats increase significantly 48 hours after HIBD, suggesting that both CLOCK and BMAL1 may be involved the regulatory mechanism of circadian disorders in rats with HIBD.%目的 观察缺氧缺血性脑损伤(hypoxic-ischemic brain damage,HIBD)新生大鼠松果体中CLOCK、BMAL1蛋白表达的变化,探讨钟基因表达异常在HIBD导致的昼夜节律紊乱中的作用.方法 72只7日龄新生Sprague-Dawley大鼠随机分为假手术组与HIBD模型组,每组36只.采用改良Levine法建立HIBD模型,用Western blot方法测定两组新生大鼠术后0、2、12、24、36、48 h松果体中CLOCK、BMAL1蛋白水平.结果 HIBD模型组松果体的CLOCK及BMAL1蛋白表达水平在HIBD后48 h高于假手术组(P<0.05),在0、2、12、24、36 h CLOCK及BMAL1蛋白表达水平与假手术组相比差异均无统计学意义(P>0.05).结论 HIBD新生大鼠松果体中CLOCK和BMAL1蛋白在损伤48 h后有显著升高,提示两者可能共同参与缺氧缺血时昼夜节律紊乱的发生.

  19. Apparent diffusion coefficient histogram analysis of neonatal hypoxic-ischemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Cauley, Keith A. [University of Massachusetts Medical School, Department of Radiology, Worcester, MA (United States); New York Presbyterian Hospital, Columbia University Medical Center, Department of Radiology, New York, NY (United States); Filippi, Christopher G. [New York Presbyterian Hospital, Columbia University Medical Center, Department of Radiology, New York, NY (United States)

    2014-06-15

    Diffusion-weighted imaging is a valuable tool in the assessment of the neonatal brain, and changes in diffusion are seen in normal development as well as in pathological states such as hypoxic-ischemic encephalopathy (HIE). Various methods of quantitative assessment of diffusion values have been reported. Global ischemic injury occurring during the time of rapid developmental changes in brain myelination can complicate the imaging diagnosis of neonatal HIE. To compare a quantitative method of histographic analysis of brain apparent coefficient (ADC) maps to the qualitative interpretation of routine brain MR imaging studies. We correlate changes in diffusion values with gestational age in radiographically normal neonates, and we investigate the sensitivity of the method as a quantitative measure of hypoxic-ischemic encephalopathy. We reviewed all brain MRI studies from the neonatal intensive care unit (NICU) at our university medical center over a 4-year period to identify cases that were radiographically normal (23 cases) and those with diffuse, global hypoxic-ischemic encephalopathy (12 cases). We histographically displayed ADC values of a single brain slice at the level of the basal ganglia and correlated peak (s-sD{sub av}) and lowest histogram values (s-sD{sub lowest}) with gestational age. Normative s-sD{sub av} values correlated significantly with gestational age and declined linearly through the neonatal period (r {sup 2} = 0.477, P < 0.01). Six of 12 cases of known HIE demonstrated significantly lower s-sD{sub av} and s-sD{sub lowest} ADC values than were reflected in the normative distribution; several cases of HIE fell within a 95% confidence interval for normative studies, and one case demonstrated higher-than-normal s-sD{sub av}. Single-slice histographic display of ADC values is a rapid and clinically feasible method of quantitative analysis of diffusion. In this study normative values derived from consecutive neonates without radiographic evidence of

  20. The neuroprotective effect of astaxanthin on newborn rat models of hypoxic-ischemic brain damage%虾青素对缺氧缺血性脑损伤新生大鼠模型的神经保护作用

    Institute of Scientific and Technical Information of China (English)

    林良烽

    2015-01-01

    背景:研究发现虾青素有良好的神经保护作用,但是对于其在新生儿缺氧缺血性损伤中的治疗作用,目前尚无相关报道。目的:构建缺氧缺血性脑损伤新生大鼠模型,观察虾青素对其产生的神经保护作用及作用的途径。方法:从98只7 d龄的SD乳鼠中随机取30只作为假手术组,其余大鼠结扎左颈总动脉2 h后,置于体积分数92%的特种标准气体、8%的氧气缺氧舱2 h建立缺血缺氧性脑损伤模型。假手术组仅分离颈总动脉,不予缺血缺氧处理。将造模成功的大鼠随机分为脑缺血缺氧组和虾青素治疗组,各30只。虾青素治疗组大鼠在脑缺血缺氧模型建成后立即通过腹腔注射80 mg/kg虾青素。结果与结论:与假手术组相比,脑缺血缺氧组大鼠缺血损伤区顶叶皮质中p-Akt、p-GSK3β、cleaved-caspase3蛋白的表达水平显著增加,Bcl-2蛋白的表达水平显著减少(P <0.05);与脑缺血缺氧组相比,虾青素治疗可以显著减少凋亡相关蛋白cleaved-caspase3蛋白的表达水平(P <0.05),显著上调Bcl-2蛋白的表达水平(P <0.05),明显减少凋亡细胞的数量(P <0.05)。提示虾青素可以显著改善新生大鼠缺氧缺血性脑损伤的预后及作用途径与上调Akt/GSK3β信号通路相关。%BACKGROUND:Several studies have demonstrated that astaxanthin has a good neuroprotective effect; however, the treatment effects of astaxanthin on newborns with hypoxic-ischemic brain damage have not been reported. OBJECTIVE: To build newborn rat models of hypoxic-ischemic brain damage, and investigate the neuroprotective effects of astaxanthin and the ways of action. METHODS: Thirty newborn Sprague-Dawley rats aged 7 days out of 98 were randomly taken as sham-operated group. The rest of rats were subjected to ligature of the left carotid artery for 2 hours and then placed in the hypoxic box containing 92% special standard gas and 8% oxygen to establish

  1. 新生儿缺氧缺血性脑病MSCT与临床分度对比研究%Correlation Study on MSCT Manifestation of the Brain Damage and the Clinical Degrees in Neonatal Hypoxic-ischemic Encephalopathy

    Institute of Scientific and Technical Information of China (English)

    王业庆; 卓果然

    2012-01-01

    Objective:To investigate the multi-slice spiral CT (MSCT) manifestation in neonatal hypoxic-ischemic encephalopathy, and help improve awareness of the disease and clinical diagnosis. Methods:The brain MSCT was performed in 63 cases of clinically confirmed HIE .The MSCT manifestation and clinical data were retrospectively analysis. Results:Divide the cases by CT degrees, 33 cases are mild, accounting for 52%, 22 cases are moderate, accounting for 35% 8 cases are severe, accounting for 13%. The brain CT performance of 63 patients were related to newborn’s year, checking time and cure. Conclusion:MSCT scan can accurately diagnose the extent of HIE and its complications, MSCT scanning has important significance in finding of brain injury, evolution of prognosis and conduction of therapeutic schemes.%目的:探讨新生儿缺血缺氧性脑病MSCT表现,以提高对该病的认识及诊断水平。方法:对临床诊断为HIE患儿的脑部分别进行MSCT检查,并回顾性分析63例患儿的CT影像及临床资料。结果:CT分度,轻度33例,占52%;中度22例,占35%;重度8例,占13%。63例患儿脑部CT表现与年龄、治疗情况、检查时间相关。结论:MSCT能够准确诊断HIE的病变范围及其并发症,MSCT对判断脑损害、评估临床预后及制订治疗方案有重要价值。

  2. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: Evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury.

    Science.gov (United States)

    Park, Kook In; Himes, B Timothy; Stieg, Philip E; Tessler, Alan; Fischer, Itzhak; Snyder, Evan Y

    2006-05-01

    Previously, we reported that, when clonal neural stem cells (NSCs) were transplanted into brains of postnatal mice subjected to unilateral hypoxic-ischemic (HI) injury (optimally 3-7 days following infarction), donor-derived cells homed preferentially (from even distant locations) to and integrated extensively within the large ischemic areas that spanned the hemisphere. A subpopulation of NSCs and host cells, particularly in the penumbra, "shifted" their differentiation towards neurons and oligodendrocytes, the cell types typically damaged following asphyxia and least likely to regenerate spontaneously and in sufficient quantity in the "post-developmental" CNS. That no neurons and few oligodendrocytes were generated from the NSCs in intact postnatal cortex suggested that novel signals are transiently elaborated following HI to which NSCs might respond. The proportion of "replacement" neurons was approximately 5%. Neurotrophin-3 (NT-3) is known to play a role in inducing neuronal differentiation during development and perhaps following injury. We demonstrated that NSCs express functional TrkC receptors. Furthermore, the donor cells continued to express a foreign reporter transgene robustly within the damaged brain. Therefore, it appeared feasible that neuronal differentiation of exogenous NSCs (as well as endogenous progenitors) might be enhanced if donor NSCs were engineered prior to transplantation to (over)express a bioactive gene such as NT-3. A subclone of NSCs transduced with a retrovirus encoding NT-3 (yielding >90% neurons in vitro) was implanted into unilaterally asphyxiated postnatal day 7 mouse brain (emulating one of the common causes of cerebral palsy). The subclone expressed NT-3 efficiently in vivo. The proportion of NSC-derived neurons increased to approximately 20% in the infarction cavity and >80% in the penumbra. The neurons variously differentiated further into cholinergic, GABAergic, or glutamatergic subtypes, appropriate to the cortex. Donor

  3. NEUROGENETIC ASPECTS OF PERINATAL HYPOXIC-ISCHEMIC AFFECTIONS OF THE CENTRAL NERVOUS SYSTEM

    Directory of Open Access Journals (Sweden)

    G. A. Karkashadze

    2016-01-01

    Full Text Available Neurogenetics is a thriving young science greatly contributing to the generally accepted concept of the brain development in health and disease. Thereby; scientists are not only able to highlight new key points in traditional ideas about the origin of diseases; but also to completely rethink their view on the problem of pathology development. In particular; new data on neurogenetics of perinatal affections of the central nervous system (CNS has appeared. Genetic factors in varying degrees affect perinatal hypoxic-ischemic CNS affections. Prematurity determination stays the most studied among them. Nevertheless; there is increasing evidence of significant epigenetic regulations of neuro-expression caused by hypoxia; malnutrition of a pregnant woman; stress; smoking; alcohol; drugs that either directly pathologically affect the developing brain; or form a brain phenotype sensitive to a perinatal CNS affection. New data obliges to change the approaches to prevention of perinatal CNS affections.

  4. Concepts of hypoxic NO signaling in remote ischemic preconditioning

    Institute of Scientific and Technical Information of China (English)

    Matthias; Totzeck; Ulrike; Hendgen-Cotta; Tienush; Rassaf

    2015-01-01

    Acute coronary syndromes remain a leading single cause of death worldwide. Therapeutic strategies to treat cardiomyocyte threatening ischemia/reperfusion injury are urgently needed. Remote ischemic preconditioning(r IPC) applied by brief ischemic episodes to heartdistant organs has been tested in several clinical studies, and the major body of evidence points to beneficial effects of r IPC for patients. The underlying signaling, however, remains incompletely understood. This relates particularly to the mechanism by which the protective signal is transferred from the remote site to the target organ. Many pathways have been forwarded but none can explain the protective effects completely. In light of recent experimental studies, we here outline the current knowledge relating to the generation of the protective signal in the remote organ, the signal transfer to the target organ and the transduction of the transferred signal into cardioprotection. The majority of studies favors a humoral factor that activates cardiomyocyte downstream signaling- receptor-dependent and independently. Cellular targets include deleterious calcium(Ca2+) signaling, reactive oxygen species, mitochondrial function and structure, and cellular apoptosis and necrosis. Following an outline of the existing evidence, we will furthermore characterize the existing knowledge and discuss future perspectives with particular emphasis on the interaction between the recently discovered hypoxic nitrite-nitric oxide signaling in r IPC. This refers to the protective role of nitrite, which can be activated endogenously using r IPC and which then contributes to cardioprotection by rIPC.

  5. Clinic-like animal model for causal-pathogenetical investigations of hypoxic-ischemic brain injuries. Combined application of the radioactive labelled microsphere method and Positron Emission Tomography. Kliniknahes Tiermodell fuer kausal-pathogenetische Untersuchungen hypoxisch-ischaemischer Hirnschaedigung. Kombinierter Einsatz von Mikrosphaeren-Methode und Positronen-Emissions-Tomographie

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, R.; Zwiener, U.; Bergmann, R. (Univ. Jena, Inst. fuer Pathologische Physiologie (Germany)); Manfrass, P.; Enghardt, W.; Fromm, W.D. (Zentralinstitut fuer Kernforschung, Bereich Festkoeper- und Kernphysik, Rossendorf (Germany)); Hoyer, D.; Guenther, K. (Leipzig Univ., Radiologische Klinik (Germany)); Schubert, H. (Univ. Jena, Tierexperimentelles Zentrum (Germany)); Beyer, R.; Beyer, G.J.; Steinbach, J.; Kretzschmer, M. (Zentralinstitut fuer Kernforschung, Bereich Radioaktive Isotope, Rossendorf (Germany))

    1990-01-01

    The complex nature of the pathogenesis in hypoxic-ischemic brain injuries equires the combined determination of the dynamics of main factors in these disturbing processes. The application of suitable methods for registration of such pathogenetic processes is shown in an adequate animal model for simulating the early hypoxic-ischemic brain injuries. That the radioactive labelled microsphere technique is suitable to comprehend quantitively the dynamics of the intracerebral redistribution of the circulating blood due to hypoxia/hypercapnia by simultaneous-multiple measuring of the regional cerebral blood flow. Therefore, at the first time an inadequate hypoxic-induced blood flow increase was shown in large parts of the forebrain in intrauterine growth retarded newborn piglets. For estimation of the regional cerebral glucose utilization in newborn piglets, the {sup 18}F-FDG Positron Emission Tomography is introduced. The measurements were carried out on a stationary high-density avalanche chamber (HIDAC) camera and yielded the fundamental application of this camera model for PET investigations also in the newborn brain due to the very good spatial resolution. (orig.).

  6. A Qualitative Study of Physician Perspectives on Prognostication in Neonatal Hypoxic Ischemic Encephalopathy.

    Science.gov (United States)

    Rasmussen, Lisa Anne; Bell, Emily; Racine, Eric

    2016-10-01

    Hypoxic ischemic encephalopathy is the most frequent cause of neonatal encephalopathy and yields a great degree of morbidity and mortality. From an ethical and clinical standpoint, neurological prognosis is fundamental in the care of neonates with hypoxic ischemic encephalopathy. This qualitative study explores physician perspectives about neurological prognosis in neonatal hypoxic ischemic encephalopathy. This study aimed, through semistructured interviews with neonatologists and pediatric neurologists, to understand the practice of prognostication. Qualitative thematic content analysis was used for data analysis. The authors report 2 main findings: (1) neurological prognosis remains fundamental to quality-of-life predictions and considerations of best interest, and (2) magnetic resonance imaging is presented to parents with a greater degree of certainty than actually exists. Further research is needed to explore both the parental perspective and, prospectively, the impact of different clinical approaches and styles to prognostication for neonatal hypoxic ischemic encephalopathy.

  7. Neuroinflammation and MMPs: potential therapeutic targets in neonatal hypoxic-ischemic injury

    OpenAIRE

    Pennypacker Keith R; Leonardo Christopher C

    2009-01-01

    Abstract Exposure to hypoxic-ischemic insults during the neonatal or perinatal developmental periods produces various forms of pathology. Injuries that occur in response to these events often manifest as severe cognitive and/or motor disturbances over time. Due to difficulties regarding the early diagnosis and treatment of hypoxic-ischemic injury, there is a growing need for effective therapies that can be delivered at delayed time points. Much of the research into mechanisms of neural injury...

  8. Differentiation between peritrigonal terminal zones and hypoxic-ischemic white matter injury on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Liauw, Lishya [Department of Radiology, C3Q, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands)], E-mail: l.liauw@rad.umcn.nl; Grond, Jeroen van der [Department of Radiology, C3Q, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands)], E-mail: j.van_der_grond@lumc.nl; Slooff, Valerie [Emma Children' s Hospital AMC, University of Amsterdam, P.O. Box 22700, 1100 DD Amsterdam (Netherlands)], E-mail: v.d.slooff@amc.uva.nl; Wiggers-de Bruine, Francisca [Department of Radiology, C3Q, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands)], E-mail: f.t.wiggers-de_bruine@lumc.nl; Laan, Laura [Department of Neurology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands)], E-mail: l.a.e.m.laan@lumc.nl; Cessie, Saskia le [Department of Medical Statistics and Bio-Informatics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden (Netherlands)], E-mail: c.le_cessie@lumc.nl; Buchem, Mark van [Department of Radiology, C3Q, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands)], E-mail: m.a.van_buchem@lumc.nl; Wezel-Meijler, Gerda van [Department of Neonatology, J6S-201, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands)], E-mail: g.van_wezel-meijler@lumc.nl

    2008-03-15

    The differentiation between terminal zones and pathological signal intensity changes on MRI of children and young adults is of diagnostic importance. We assessed the diagnostic value of several morphological features on MRI to differentiate between terminal zones and hypoxic-ischemic white matter injury. We selected all brain MRI examinations performed in subjects up to 20 years of age showing increased signal intensity on T2-weighted images in the peritrigonal areas. 75 individuals were assigned to a patient group (n = 28) if there was evidence of hypoxia-ischemia during the perinatal period or a control group (n = 47). Aspect, location, extent, shape, and borders of signal intensity changes in the peritrigonal areas were studied. Signal intensity of the peritrigonal areas was related to signal intensity of surrounding white matter. Presence of Virchow Robin spaces, hypoxic-ischemic abnormalities, and local atrophy were also recorded. Chi-squared tests assessed whether presence or absence of morphological characteristics differed between patients and controls. Logistic regression analysis studied which characteristics were best to discriminate between the two groups. Very high signal intensity of the peritrigonal areas on FLAIR (Odds Ratio 25) and presence of local atrophy (Odds Ratio 14.3) were best predictors to discriminate between the two groups.

  9. CT and MR in non-neonatal hypoxic-ischemic encephalopathy: radiological findings with pathophysiological correlations

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Leonardo Guilhermino; Portela, Luiz Antonio Pezzi [Hospital Alemao Oswaldo Cruz and Hospital do Coracao, Diagnostic Imaging Division, Sao Paulo (Brazil); Rovira, Alex [University Hospital Vall d' Hebron, MR Unit, Department of Radiology, Barcelona (Spain); Costa Leite, Claudia da [Clinics Hospital of the University of Sao Paulo, School of Medicine, Department of Radiology, Sao Paulo (Brazil); Lucato, Leandro Tavares [Hospital Alemao Oswaldo Cruz and Hospital do Coracao, Diagnostic Imaging Division, Sao Paulo (Brazil); Clinics Hospital of the University of Sao Paulo, School of Medicine, Department of Radiology, Sao Paulo (Brazil)

    2010-11-15

    Non-neonatal hypoxic-ischemic encephalopathy is a clinical condition often related to cardiopulmonary arrest that demands critical management and treatment decisions. Management depends mainly on the degree of neurological impairment and prognostic considerations. Computed tomography (CT) is often used to exclude associated or mimicking pathology. If any, only nonspecific signs such as cerebral edema, sulci effacement, and decreased gray matter (GM)/white matter (WM) differentiation are evident. Pseudosubarachnoid hemorrhage, a GM/WM attenuation ratio <1.18, and inverted GM attenuation are associated with a poor prognosis. Magnetic resonance (MR) imaging is more sensitive than CT in assessing brain damage in hypoxic-ischemic encephalopathy. Some MR findings have similarities to those seen pathologically, based on spatial distribution and time scale, such as lesions distributed in watershed regions and selective injury to GM structures. In the acute phase, lesions are better depicted using diffusion-weighted imaging (DWI) because of the presence of cytotoxic edema, which, on T2-weighted images, only become apparent later in the early subacute phase. In the late subacute phase, postanoxic leukoencephalopathy and contrast enhancement could be observed. In the chronic phase, atrophic changes predominate over tissue signal changes. MR can be useful for estimating prognosis when other tests are inconclusive. Some findings, such as the extent of lesions on DWI and presence of a lactate peak and depleted N-acetyl aspartate peak on MR spectroscopy, seem to have prognostic value. (orig.)

  10. The establishment of a hypoxic-ischemic brain damage model in preterm fetal rabbits%未成熟胎兔缺氧缺血性脑损伤模型的建立

    Institute of Scientific and Technical Information of China (English)

    南燕; 唐震海; 王能里; 柳艳丽; 叶伟; 林锦; 林振浪

    2014-01-01

    目的:建立合适的早产脑损伤动物模型。方法选择孕25 d的健康新西兰白兔32只,阻断孕兔子宫血供,致胎兔宫内缺氧缺血,阻断时间分别持续30 min、35 min、37 min、40 min,对照组不阻断子宫血供。所有孕兔分别在术后24 h (孕26 d,A组)、5 d(孕30 d,B组)行剖宫产,根据阻断时间共分8亚组,每亚组4只。记录新生兔的一般状况,评估胎龄30 d存活新生兔神经行为学,观察脑组织病理改变。结果 A组新生兔缺氧缺血30 min均存活,随时间延长(35~40 min),死胎率由31.0%升至100%,存活新生兔脑组织含水量、凋亡脑细胞数随时间推移逐渐增加,以上差异均有统计学意义(P均<0.05)。B组新生兔,缺氧缺血35和37 min的死胎率升高为50.0%和65.7%,存活兔的体质量均低于对照组,并有不同程度的神经行为学异常,以上差异均有统计学意义(P<0.05)。脑组织病理检查发现,B组脑白质损伤较A组更明显。结论孕25d持续阻断孕兔子宫血供35~37 min可造成部分死胎和宫内体质量增长迟缓,存活新生兔出现不同程度的神经行为学异常及脑白质损伤,可用于制备早产缺氧缺血性脑损伤动物模型。%Objective To establish an appropriate preterm hypoxic-ischemic brain injury animal model. Methods A total of 32 pregnant New Zealand white rabbits at gestational day 25 were selected. The uterine blood supply in pregnant rabbits was blocked for 30, 35, 37, 40 minutes respectively, while in the control group it was not blocked. Then the pregnant rabbits were subjected to cesarean section 24 hours (at embryonic day 26, A group) or 5 days (at embryonic day 30, B group) after the experimental procedure. The general conditions of the newborn rabbits were recorded. The degree of neurobehavioral impairment in newborn rabbits was evaluated. The histological changes of brain tissue were observed. Results In A group

  11. Mild hypoxemia during initial reperfusion alleviates the severity of secondary energy failure and protects brain in neonatal mice with hypoxic-ischemic injury.

    Science.gov (United States)

    Niatsetskaya, Zoya V; Charlagorla, Pradeep; Matsukevich, Dzmitry A; Sosunov, Sergey A; Mayurasakorn, Korapat; Ratner, Veniamin I; Polin, Richard A; Starkov, Anatoly A; Ten, Vadim S

    2012-02-01

    Reperfusion triggers an oxidative stress. We hypothesized that mild hypoxemia in reperfusion attenuates oxidative brain injury following hypoxia-ischemia (HI). In neonatal HI-mice, the reperfusion was initiated by reoxygenation with room air (RA) followed by the exposure to 100%, 21%, 18%, 15% oxygen for 60 minutes. Systemic oxygen saturation (SaO(2)), cerebral blood flow (CBF), brain mitochondrial respiration and permeability transition pore (mPTP) opening, markers of oxidative injury, and cerebral infarcts were assessed. Compared with RA-littermates, HI-mice exposed to 18% oxygen exhibited significantly decreased infarct volume, oxidative injury in the brain mitochondria and tissue. This was coupled with improved mitochondrial tolerance to mPTP opening. Oxygen saturation maintained during reperfusion at 85% to 95% was associated (r=0.57) with the best neurologic outcome. Exposure to 100% or 15% oxygen significantly exacerbated brain injury and oxidative stress. Compared with RA-mice, hyperoxia dramatically increased reperfusion CBF, but exposure to 15% oxygen significantly reduced CBF to values observed during the HI-insult. Mild hypoxemia during initial reperfusion alleviates the severity of HI-brain injury by limiting the reperfusion-driven oxidative stress to the mitochondria and mPTP opening. This suggests that at the initial stage of reperfusion, a slightly decreased systemic oxygenation (SaO(2) 85% to 95%) may be beneficial for infants with birth asphyxia.

  12. Mild hypothermia combined with neural stem cell transplantation for hypoxic-ischemic encephalopathy:neuroprotective effects of combined therapy

    Institute of Scientific and Technical Information of China (English)

    Lin Wang; Feng Jiang; Qifeng Li; Xiaoguang He; Jie Ma

    2014-01-01

    Neural stem cell transplantation is a useful treatment for ischemic stroke, but apoptosis often occurs in the hypoxic-ischemic environment of the brain after cell transplantation. In this study, we determined if mild hypothermia (27-28°C) can increase the survival rate of neural stem cells (1.0 × 105 /μL) transplanted into neonatal mice with hypoxic-ischemic encephalopathy. Long-term effects on neurological functioning of the mice were also examined. After mild hy-pothermia combined with neural stem cell transplantation, we observed decreased expression levels of inflammatory factor nuclear factor-kappa B and apoptotic factor caspase-3, reduced cerebral infarct volumes, increased survival rate of transplanted cells, and marked improvements in neurological function. Thus, the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation are superior to those of monotherapy. Moreover, our ifndings suggest that the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation on hypoxic-ischemic encephalopathy are achieved by anti-inlfammatory and an-ti-apoptotic mechanisms.

  13. Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Gabriel eGonzales-Portillo

    2014-08-01

    Full Text Available Treatments for neonatal hypoxic ischemic encephalopathy (HIE have been limited. The aim of this paper is to offer translational research guidance on stem cell therapy for neonatal HIE by examining clinically relevant animal models, practical stem cell sources, safety and efficacy of endpoint assays, as well as a general understanding of modes of action of this cellular therapy. In order to do so, we discuss the clinical manifestations of HIE, highlighting its overlapping pathologies with stroke providing insights on the potential of cell therapy, currently investigated in stroke, for HIE. To this end, we draw guidance from recommendations outlined in Stem cell Therapeutics as an Emerging Paradigm for Stroke or STEPS, which have been recently modified to Baby STEPS to cater for the neonatal symptoms of HIE. These guidelines recognized that neonatal HIE exhibits distinct disease symptoms from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, new information about recent clinical trials, and insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with HIE.

  14. Involvement of the JNK/FOXO3a/Bim Pathway in Neuronal Apoptosis after Hypoxic-Ischemic Brain Damage in Neonatal Rats.

    Directory of Open Access Journals (Sweden)

    Deyuan Li

    Full Text Available c-Jun N-terminal kinase (JNK plays a key role in the regulation of neuronal apoptosis. Previous studies have revealed that forkhead transcription factor (FOXO3a is a critical effector of JNK-mediated tumor suppression. However, it is not clear whether the JNK/FOXO3a pathway is involved in neuronal apoptosis in the developing rat brain after hypoxia-ischemia (HI. In this study, we generated an HI model using postnatal day 7 rats. Fluorescence immunolabeling and Western blot assays were used to detect the distribution and expression of total and phosphorylated JNK and FOXO3a and the pro-apoptotic proteins Bim and CC3. We found that JNK phosphorylation was accompanied by FOXO3a dephosphorylation, which induced FOXO3a translocation into the nucleus, resulting in the upregulation of levels of Bim and CC3 proteins. Furthermore, we found that JNK inhibition by AS601245, a specific JNK inhibitor, significantly increased FOXO3a phosphorylation, which attenuated FOXO3a translocation into the nucleus after HI. Moreover, JNK inhibition downregulated levels of Bim and CC3 proteins, attenuated neuronal apoptosis and reduced brain infarct volume in the developing rat brain. Our findings suggest that the JNK/FOXO3a/Bim pathway is involved in neuronal apoptosis in the developing rat brain after HI. Agents targeting JNK may offer promise for rescuing neurons from HI-induced damage.

  15. 近足月胎兔持续宫内缺氧缺血性脑损伤模型的建立%Establishment of intrauterine hypoxic-ischemic brain damage model in near term fetal rabbits

    Institute of Scientific and Technical Information of China (English)

    王能里; 南燕; 柳艳丽; 林素; 叶伟; 唐震海; 林锦; 林振浪

    2012-01-01

    目的:建立近足月(29 d胎龄)胎兔持续宫内缺氧缺血性脑损伤模型,为深入研究新生儿缺氧缺血性脑损伤发病机制和治疗提供合适模型.方法:选择孕29 d健康新西兰白兔24只,联合全身麻醉和腰麻对孕兔进行麻醉,从左侧股动脉插入4F Fogarty动脉取栓导管,实验组向导管球囊内注入生理盐水0.3 mL阻断孕兔子宫血供,阻断时间分别为20 min、25 min、28 min、30 min和40 min,每组4只;对照组插管后不注入生理盐水,共4只.24 h后行剖宫产,记录新生兔一般情况,评估新生兔神经行为学和脑组织病理学改变.结果:麻醉过程中孕兔生命体征稳定,未发生低氧血症,对麻醉耐受性良好.实验组向导管球囊内注入生理盐水0.3 mL后孕兔右侧股动脉搏动消失,血压测不出;而对照组血压无明显波动(P>0.05).持续阻断子宫血供导致胎兔和新生兔死亡,存活新生兔神经行为学异常,脑细胞发生凋亡.阻断子宫血供20 min时,未发现死胎,新生兔行为学和脑组织病理学改变不明显;阻断子宫血供25 min和28 min时,死胎率分别为12.9%和40.6%,存活新生兔出现不同程度的神经行为异常,脑组织切片发现神经元细胞肿胀,小胶质细胞活化,脑细胞凋亡;而阻断子宫血供超过30 min时,死胎率高达80.0%.结论:持续阻断孕兔子宫血供导致胎兔死亡、新生兔神经行为学异常及脑组织病理学改变,且不同阻断时间引起不同程度的脑损伤;持续阻断子宫血供25~28 min,可为缺氧缺血性脑损伤的相关研究提供合适的胎儿期全身性缺氧缺血性脑损伤胎兔模型.%AIM: To establish intrauterine hypoxic - ischemic brain damage ( HIBD) model in near term fetal rabbits at 29 d gestation age for the investigation of the pathogenesis and treatment of newborn HIBD . METHODS: Twenty - four pregnant New Zealand white rabbits at 29th gestational day were chosen for this project. Under combined general

  16. Emodin prevents hypoxic-ischemic neuronal injury Involvement of the activin A pathway

    Institute of Scientific and Technical Information of China (English)

    Hongliang Guo; Xiaoran Shen; Ye Xu; Junliang Yuan; Dongming Zhao; Wenli Hu

    2013-01-01

    Emodin, an extract of dried rhizomes and the root of the Rhizoma Polygoni Cuspidati, can protect neurons from hypoxic-ischemic brain damage. This study aimed to verify the underlying mechanism. After PC12 cells had differentiated into neuron-like cells under the induction of mouse nerve growth factor, cells were subjected to oxygen-glucose deprivation and treated with emodin. Results showed that the viability of neuron-like cells cultured under an ischemia-hypoxia environment decreased, while the expression of activin A and caspase-3 in cells increased. Emodin raised the survival rate of oxygen-glucose deprived neuron-like cells, increased activin A expression, and decreased caspase-3 expression. Experimental findings indicate that emodin can inhibit neuronal apoptosis and alleviate the injury of nerve cells after oxygen-glucose deprivation through the activin A pathway.

  17. Study on Therapeutic Effect of Tetramethylpyrazine on Hypoxic-Ischemic Encephalopathy of Newborn Infants

    Institute of Scientific and Technical Information of China (English)

    杨达胜; 王礼周; 李建国; 郭蕴琦

    2001-01-01

    @@The pathogenetic mechanism of neonatal hypoxic-ischemic encephalopathy (HIE) is complex and no specific effective therapeutic measure has been found so far. It's recently reported that the increase of intracellular calcium ion concentration resulting from the imequilibrium of intracellular and extracellular calcium ion, the opening of calcium channel and the influx of calcium ion is one of the important mechanisms of brain cell injury. Tetramethylpyrazine is one of the common medicine for treatment of cardiopathy, and encephalopathy, and has been verified to be a new-type antagonist of calcium channel(1). So, we chose neuron-specific enolase (NSE) and erythrocyte total calcium (EryCaT) as indexes to observe the curative effect of tetramethylpyrazine on HIE.

  18. Study on Therapeutic Effect of Tetramethylpyrazine on Hypoxic-Ischemic Encephalopathy of Newborn Infants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The pathogenetic mechanism of neonatal hypoxic-ischemic encephalopathy (HIE) is complex and no specific effective therapeutic measure has been found so far. It's recently reported that the increase of intracellular calcium ion concentration resulting from the imequilibrium of intracellular and extracellular calcium ion, the opening of calcium channel and the influx of calcium ion is one of the important mechanisms of brain cell injury. Tetramethylpyrazine is one of the common medicine for treatment of cardiopathy, and encephalopathy, and has been verified to be a new-type antagonist of calcium channel(1). So, we chose neuron-specific enolase (NSE) and erythrocyte total calcium (EryCaT) as indexes to observe the curative effect of tetramethylpyrazine on HIE.……

  19. Frequency of Hypoxic-Ischemic Encephalopathy Among Hospitalized Neonates in West Iran

    Directory of Open Access Journals (Sweden)

    Fatemeh Eghbalian

    2010-06-01

    Full Text Available Hypoxic-ischemic encephalopathy (HIE is brain damage from a shortage of oxygen or blood flow to the tissues[1,2] and is characterized by clinical and laboratory evidence of acute or subacute brain injury due to asphyxia[1-6]. It is a major contributor to neonatal death and morbidity[4-6]. 15%-20% of HIE cases die during the neonatal period and 30% of those who survive suffer from neurodevelopmental disorders[1,3,6].An estimated 23% of the 4 million neonatal deaths and 8% of all deaths at <5 years of age throughout the world each year are associated with signs of asphyxia at birth[1,4]. Even at referral centers in developed countries, death or moderate to severe disability occurs for 53% to 61% of infants diagnosed as having moderate to severe HIE[1,4,6]. Children with moderate/severe neonatal encephalopathy are at risk for reduced school performance, whereas those with mild encephalopathy have school performance scores similar to those of their peers[1,6]. HIE is one of the most common causes of cerebral palsy and other severe neurologic deficits in children occurring in two to nine of every 1000 live births [1-6]. The incidence of HIE reported in different studies varies widely[2-6], which may be explained by the selection criteria for studies of HIE during the neonatal period[3,4].The aim of the present study was to evaluate the frequency of hypoxic-ischemic encephalo-pathy in hospitalized neonates with seizure in Hamedan (west Iran in a two year period.This is a retrospective cross sectional study on 34 neonates from 2004 to 2006.Inclusion criteria were: all neonates with seizures due to HIE asphyxia having pH below 7, 5th minute Apgar score between 0 and 3, decreased muscle tone and consciousness, cortical atrophy in brain CT scan and multiple organ involvement (eg, kidney, lungs, liver, heart, intestines. Neonates with jitteriness were excluded from the study.The study was based on the recorded files of the patients. CT scan findings, blood

  20. 牛磺酸对哺乳动物大脑发育及抗缺氧缺血性脑损伤的作用%Effects of taurine on the development of the mammalian brain and anti-hypoxic ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    罗济璇; 舒斯云; 马林; 吴升

    2014-01-01

    As an inhibitory amino acid similar to gama-aminobutyric acid,taurine can activate the corticostriatal pathway as an endogenous ligand for glycine receptors,establishing equilibrium between the excitatory and inhibitory processes in the brain.In mammalian brains,taurine concentrations increase during the developmental period of the brain until weaning,and subsequently decline reaching stable concentrations in adulthood.With abilities of anti-oxidative stress,anti-inflammatory and anti-apoptosis,taurine can improve the hypoxic-ischemic brain injury,promote the proliferation and differentiation of neurons and affect brain development,It needs more investigations to prove when and how taurine supplementation during gestation,baby,children or adult can assist the development of the brain and prevent the damage of the brain from hypoxic and ischemic damage.%牛磺酸是存在于哺乳动物大脑中类似γ-氨基丁酸的抑制性氨基酸,可与甘氨酸受体结合激活皮质纹状体通路,发挥着平衡大脑兴奋性和抑制性过程的重要作用.它的浓度在哺乳动物大脑发育过程中持续升高至断奶期,到成年后达到稳定水平.牛磺酸具有强大的抗氧化应激、抗炎和抗凋亡作用,并且可以改善缺氧缺血性脑损伤,促进神经细胞增殖分化,影响胎儿脑发育.动物实验表明补充牛磺酸可促进新生儿脑发育,有保护或减轻脑缺氧缺血性和氧化应激脑损伤的作用.但对于人类能否补充牛磺酸来促进脑发育保护脑损伤,以及在何时补充、补充的剂量和途径的研究资料并不充分,有待于进一步深入研究.

  1. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Distefano, Giuseppe; Praticò, Andrea D

    2010-09-16

    Hypoxic-ischemic encephalopathy (HIE) is the most important cause of cerebral damage and long-term neurological sequelae in the perinatal period both in term and preterm infant. Hypoxic-ischemic (H-I) injuries develop in two phases: the ischemic phase, dominated by necrotic processes, and the reperfusion phase, dominated by apoptotic processes extending beyond ischemic areas. Due to selective ischemic vulnerability, cerebral damage affects gray matter in term newborns and white matter in preterm newborns with the typical neuropathological aspects of laminar cortical necrosis in the former and periventricular leukomalacia in the latter. This article summarises the principal physiopathological and biochemical processes leading to necrosis and/or apoptosis of neuronal and glial cells and reports recent insights into some endogenous and exogenous cellular and molecular mechanisms aimed at repairing H-I cerebral damage.

  2. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Praticò Andrea D

    2010-09-01

    Full Text Available Abstract Hypoxic-ischemic encephalopathy (HIE is the most important cause of cerebral damage and long-term neurological sequelae in the perinatal period both in term and preterm infant. Hypoxic-ischemic (H-I injuries develop in two phases: the ischemic phase, dominated by necrotic processes, and the reperfusion phase, dominated by apoptotic processes extending beyond ischemic areas. Due to selective ischemic vulnerability, cerebral damage affects gray matter in term newborns and white matter in preterm newborns with the typical neuropathological aspects of laminar cortical necrosis in the former and periventricular leukomalacia in the latter. This article summarises the principal physiopathological and biochemical processes leading to necrosis and/or apoptosis of neuronal and glial cells and reports recent insights into some endogenous and exogenous cellular and molecular mechanisms aimed at repairing H-I cerebral damage.

  3. Blood immunological parameters upon hypoxic-ischemic injuries of central nervous system in newborns and infants

    Directory of Open Access Journals (Sweden)

    Gulomjan Khalimbetov

    2012-05-01

    Full Text Available The paper studies interrelation between immune system condition and circulating concentrations of neuropeptides and neuron-specific enolase (NSE upon perinatal pathology in newborns and infants. Reactivity of cytokine and interleukin links of immune systems was found varying in newborns and infants with CNS hypoxic-ischemic pathology, accompanied by psychomotor retardation, a psycho-speech disorder, emotional and behavioral disorders (EBD and paroxysmal syndrome. At admission irrespectively of a syndrome type in the patients with CNS hypoxic-ischemic pathology, as compared with the patients in the control group, circulating TNF-α and IL-1 were found increased by 3.4-4.1 and 6.4-7.9 times, respectively. Release of S100 protein and NSE seems to be the underlying mechanism for enhancement of synthesis and/or release of TNF-α and IL-1 into circulation of patients with CNS hypoxic-ischemic pathology.

  4. Perinatal hypoxic-ischemic encephalopathy: severity determinants and outcomes

    Directory of Open Access Journals (Sweden)

    Liliana Teixeira

    2014-06-01

    Full Text Available Perinatal hypoxic-ischemic encephalopathy (HIE after perinatal asphyxia is one of the most critical pathologic conditions in neonatal medicine due to the potential for neurological sequelae in later life. The aim of our study is to identify the factors that are associated with a higher degree of severity in HIE and evaluate the outcomes. We performed a retrospective study of all newborns with HIE treated at our neonatal intensive care unit (NICU from January 2010 to December 2013. Data collected include information about prenatal period, peripartum period, demographic characteristics, admission and evolution during NICU stay and outcomes (assessed in three different times: at discharge, at 6-9 months and 18 months. Forty seven newborns were enrolled in our study, 11 (23.4% with mild HIE, 21 (44.7% with moderate HIE and 15 (31.9% with severe HIE. Prenatal, perinatal and demographic data showed no statistically significant differences between groups. Statistically significant differences were found in values of Thompson score (p < 0.0001, abnormal aEEG/EEG at admission (p = 0.025 and at 48 hours (p = 0.018, need of mechanical ventilation (p = 0.004, acute renal failure (p = 0.002 and length of stay (p = 0.038 with high rates in the moderate and severe HIE groups. Regarding the outcomes, statistically significant differences were found in the prevalence of death (p = 0.010; need of antiepileptic drugs at discharge (p = 0.001; motor deficits requiring physiotherapy (p = 0.046, abnormal deep tendon reflex (p = 0.006 and need of antiepileptic drugs (p = 0.001 at 6-9 months follow-up; and cerebral palsy with cognitive impairment at 18 months (p = 0.041 with high rates in the severe HIE group. These results suggest that Thompson score, abnormal aEEG/EEG at admission and at 48 hours, mechanical ventilation, acute renal failure and length of stay are associated with more severe HIE. We also concluded that more severe HIE reflects worse outcomes whereas

  5. IL-1beta, IL-6 and TNF-alpha and outcomes of neonatal hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Aly, Hany; Khashaba, Mohamed T; El-Ayouty, Mostafa; El-Sayed, Osman; Hasanein, Bothina M

    2006-04-01

    The role of cytokines in the pathogenesis of brain injury and their relation to neurological outcomes of asphyxiated neonates is not fully defined. We hypothesize that interleukin-1 beta (IL-1beta), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) in cerebrospinal fluid (CSF) correlate with the severity of brain injury and can predict neurological deficits in infants who suffered from hypoxic ischemic encephalopathy (HIE). A prospective study was conducted on 24 term infants diagnosed with HIE and 13 controls. HIE was clinically classified into mild, moderate and severe according to Sarnat and Sarnat grading. Blood and CSF samples were obtained from all infants in the first 24h of life as part of routine investigations for suspected meningitis and/or sepsis. Neurological examination and Denver Developmental Screening Test II (DDST II) were performed at 6 and 12 months of life. IL-1beta, IL-6 and TNF-alpha were all significantly increased in HIE infants when compared to control. IL-1beta in the CSF correlated with the severity of HIE (r=0.61, P=0.001) more than IL-6 (r=0.45, P=0.004) or TNF-alpha (r=0.47, P=0.003). IL-1beta exhibited the highest CSF/serum ratio among the three studied cytokines suggesting its local release in the brain after the initial hypoxic injury. Abnormal neurological findings and/or abnormal DDST II at 6 and 12 months were best predicted by IL-1beta in the CSF (sensitivity=88% and specificity=80%). This study confirms the role of IL-1beta in the ongoing neuronal injury that occurs in the latent phase following the original HIE insult.

  6. Ischemic-hypoxic mechanisms leading to hippocampal dysfunction as a consequence of status epilepticus.

    Science.gov (United States)

    Lucchi, Chiara; Vinet, Jonathan; Meletti, Stefano; Biagini, Giuseppe

    2015-08-01

    Status epilepticus (SE) is one of the recognized primary precipitating events that can lead to temporal lobe epilepsy (TLE) associated with hippocampal sclerosis. This type of epilepsy is characterized by poor response to drug treatment, often requiring surgical intervention to remove the mesial temporal regions involved in the seizure onset. However, even neurosurgery may not be completely successful. Thus, the prevention of hippocampal damage and epileptogenesis is currently evaluated as a possible alternative therapeutic approach to prevent the development of pharmacoresistant TLE. Lines of evidence suggest that ischemic-hypoxic lesions might occur in different brain regions, including the hippocampus, during SE. Especially in the hippocampal CA3 region, an ischemic-like lesion develops in the stratum lacunosum-moleculare and is mainly characterized by a loss of astrocytes and neuronal processes and increased immunostaining of pimonidazole which probes areas exposed to hypoxia. Interestingly, these mechanisms can contribute to neuronal cell loss and may be counteracted by drugs that can afford vascular protection, as in the case of ligands of the ghrelin receptor. Notably, some of the ghrelin receptor ligands possess a double edge effect, since they are anticonvulsant and vascular-protective, thus, potentially representing new tools to counteract the consequences of SE. This article is part of a Special Issue entitled "Status Epilepticus".

  7. Early Predictors of Neurodevelopmental Adverse Outcome in Term Infants with Postasphyxial Hypoxic Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Khaled Abdulqawi

    2011-11-01

    Full Text Available Background: Neonatal brain injury due to intrapartum asphyxia is an important cause of cerebral palsy, mental retardation, and epilepsy. In developing countries, the incidence of post asphyxial neurological damage is particularly high. Despite advances in perinatal care over the past three decades, the incidence of cerebral palsy attributed to birth asphyxia has not changed.Objectives: To predict the outcome of postasphyxial hypoxic ischemic encephalopathy early in the neonatal period, for proper counseling of the parents, to get benefit in clinical practice and to select patients who will benefit from recent management strategies.Study Design: This study was conducted on 63 asphyxiated full term newborn infants who developed Hypoxic-Ischemic Encephalopathy (HIE admitted at Neonatal Intensive Care Unit of Al-Jedaany Hospital, Jeddah, Kingdom Saudi Arabia in the period from May 2006 to January 2008. They were classified according to Sarnat and Sarrnat staging of HIE into the following: 16 with stage I, HIE (Group I, 19 with stage II, HIE (Group II and 20 with stage III, HIE (Group III. Twenty full term healthy newborn infants, age and weight-matched, were served as a control. All infants were subjected to the following tests: cord blood gases at birth, and Urine sample for testing urinary lactate / creatinine ratio. Also a real-time cranial ultrasonography was done for infants who had HIE. Follow up of the cases was done by the followings: A neurodevelopmental clinical evaluation every three months till the age of one year of life was done for the cases and control infants. An Electroencephalogram (EEG and auditory brainstem evoked response (ABR were done at the age of three months and a second ABR at the age of six months for cases with abnormal previous ABR. Results: Group III (stage III, HIE has significantly increased initial, maximum and day 7 HIE scores (16.4 ± 3.1, 18.15 ± 2.79 and 13 ± 5.79 respectively compared with group I&II. Also

  8. Cortical region-specific engraftment of embryonic stem cell-derived neural progenitor cells restores axonal sprouting to a subcortical target and achieves motor functional recovery in a mouse model of neonatal hypoxic-ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Mizuya eShinoyama

    2013-08-01

    Full Text Available Hypoxic–ischemic encephalopathy (HIE at birth could cause cerebral palsy, mental retardation, and epilepsy, which last throughout the individual’s lifetime. However, few restorative treatments for ischemic tissue are currently available. Cell replacement therapy offers the potential to rescue brain damage caused by HI and to restore motor function. In the present study, we evaluated the ability of embryonic stem cell-derived neural progenitor cells (ES-NPCs to become cortical deep layer neurons, to restore the neural network, and to repair brain damage in an HIE mouse model. ES cells stably expressing the reporter gene GFP are induced to a neural precursor state by stromal cell co-culture. Forty-hours after the induction of HIE, animals were grafted with ES-NPCs targeting the deep layer of the motor cortex in the ischemic brain. Motor function was evaluated 3 weeks after transplantation. Immunohistochemistry and neuroanatomical tracing with GFP were used to analyze neuronal differentiation and axonal sprouting. ES-NPCs could differentiate to cortical neurons with pyramidal morphology and expressed the deep layer-specific marker, Ctip2. The graft showed good survival and an appropriate innervation pattern via axonal sprouting from engrafted cells in the ischemic brain. The motor functions of the transplanted HIE mice also improved significantly compared to the sham-transplanted group. These findings suggest that cortical region specific engraftment of preconditioned cortical precursor cells could support motor functional recovery in the HIE model. It is not clear whether this is a direct effect of the engrafted cells or due to neurotrophic factors produced by these cells. These results suggest that cortical region-specific NPC engraftment is a promising therapeutic approach for brain repair.

  9. [Peculiarities of brain mechanisms of compensation of oxygen-dependent energy deficit, organization of emotions and cognitive activity at delayed consequences of perinatal lesion of CNS of the hypoxic-ischemic genesis in children of 3-6 years with delay of psychic development].

    Science.gov (United States)

    Ilyukhina, V A; Matveev, Yu K; Ivanova, T B; Koshulko, M A; Nurok, M Yu

    2014-01-01

    There are summarized results of studies on peculiarities of formation of compensatory-adaptive mechanisms of brain circulation and respiration at oxygen-dependent energy deficit in the 3-6-year old children with delayed consequences of perinatal CNS lesion of the hypoxic-ischemic genesis and delay of psychic development (DPD) with use of the systemic-integrative approach and of parameters of superslow information-control systems of brain and of organism. In the examined contingent of children, differences have been revealed in development of emotional sphere and the higher psychic functions depending on character of disorganization of regulatory CNS functions and of the type of formed compensatory-adaptive mechanisms of autoregulation of cerebral circulation and of the system of external respiration.

  10. Intranasal administration of aTf protects and repairs the neonatal white matter after a cerebral hypoxic-ischemic event.

    Science.gov (United States)

    Guardia Clausi, Mariano; Paez, Pablo M; Campagnoni, Anthony T; Pasquini, Laura A; Pasquini, Juana M

    2012-10-01

    Our previous studies showed that the intracerebral injection of apotransferrin (aTf) attenuates white matter damage and accelerates the remyelination process in a neonatal rat model of cerebral hypoxia-ischemia (HI) injury. However, the intracerebral injection of aTf might not be practical for clinical treatments. Therefore, the development of less invasive techniques capable of delivering aTf to the central nervous system would clearly aid in its effective clinical use. In this work, we have determined whether intranasal (iN) administration of human aTf provides neuroprotection to the neonatal mouse brain following a cerebral hypoxic-ischemic event. Apotransferrin was infused into the naris of neonatal mice and the HI insult was induced by right common carotid artery ligation followed by exposure to low oxygen concentration. Our results showed that aTf was successfully delivered into the neonatal HI brain and detected in the olfactory bulb, forebrain and posterior brain 30 min after inhalation. This treatment successfully reduced white matter damage, neuronal loss and astrogliosis in different brain regions and enhanced the proliferation and survival of oligodendroglial progenitor cells (OPCs) in the subventricular zone and corpus callosum (CC). Additionally, using an in vitro hypoxic model, we demonstrated that aTf prevents oligodendrocyte progenitor cell death by promoting their differentiation. In summary, these data suggest that iN administration of aTf has the potential to be used for clinical treatment to protect myelin and to induce remyelination in demyelinating hypoxic-ischemic events in the neonatal brain. Copyright © 2012 Wiley Periodicals, Inc.

  11. Post-hypoxic and ischemic neuroprotection of BMP-7 in the cerebral cortex and caudate-putamen tissue of rat.

    Science.gov (United States)

    Luan, Liju; Yang, Xiaomei; Zhou, Changman; Wang, Ke; Qin, Lihua

    2015-03-01

    Previous reports have indicated that exogenous bone morphogenetic protein-7 (BMP-7) has a neuroprotective effect after cerebral ischemia injury and promotes motor function recovery, but the appropriate BMP-7 concentration and time course are unclear. Here, we assessed endogenous BMP-7 expression in hypoxia and ischemia-damaged brain tissues and investigated the effects of different BMP-7 concentrations in pre- and post-hypoxic primary rat neurons. The results showed that BMP-7 expression was significantly higher in the ischemic hemisphere. The expressions of BMP-7 and caspase-3 were localized in the cytoplasm of the primary cerebral cortical and caudate-putamen neurons 24h after hypoxia/reoxygenation. After BMP-7 treatment, the number of caspase-3 positive neurons began to decrease with increasing BMP-7 concentrations up to 80ng/ml, but not beyond. Although the numbers of caspase-3-positive neurons between pre- and post-hypoxia/reoxygenation were not significantly different, more dendrites were observed in the groups treated prior to hypoxia/reoxygenation. These results suggest that increased BMP-7 expression can be induced in the cerebral cortex and caudate-putamen both in vivo and in vitro in hypoxic-ischemic states. The neuroprotective mechanism of BMP-7 may include apoptosis suppression, and its effect was enhanced from 40 to 80ng/ml. Pre-hypoxic BMP-7 treatment may be useful to stimulate dendrite sprouting in non-injured neurons.

  12. The study of influnce of hypothermia to the expression of P16 and Bcl-2 levels in different brain tissues of the rats with hypoxic-ischemic brain damage%亚低温对新生鼠缺氧缺血性脑损害不同脑区p16和Bcl-2表达的影响研究

    Institute of Scientific and Technical Information of China (English)

    郭亚乐; 李占魁; 李瑞林; 黄绍平; 周戬平

    2011-01-01

    [Objective] To investigate the protective effects of hypothermia to the grey matter and the periventricular white matter of the brains of the neonatal rats with hypoxic-ischemic brain damage(HIBD). [Methods] The 7d neonatal rats got the HIBD model. Hypothermias of 31 ℃, 34 ℃ were given to them for 3 h immediately after the operation. The degrees of grey of apoptosis, p16, bcl-2 of the cerebral cortex, the hippocampi tissue and the periventricular white matter in the brains of rats was used to observe when 24, 72, 168 h after the operation. [ Results] 1 )The degrees of grey of p16:It was higher in the HIBD group than that in the pseuoperation group, the peak was at 24 hours after HI, it was deduced in 31 ℃ group, it was not deduced in 34 ℃group,but the peak was delated. 2) The degrees of grey of apoptosis: It was the same as that of p16. 3) The degrees of grey of bcl-2: It was the same as that of p16,it were deduced 24, 72 hours after HI in the 34 ℃ hypothermia group. 4) Correlation: there were the correlation ships (P<0.01) between either two of the degrees of the greys of p16, apoptosis, bcl-2 in all the brain tissues. [Conclusions] Hypothermia intervention could obviously deduce the express of p16, bcl-2, deduce apoptosis or delate their peaks of neonatal rats, brains with HIBD, so protected their grey matter tissue and the white matter tissue.%[目的]探讨亚低温对新生大鼠缺氧缺血性脑损伤(hypoxic-ischemic brain damage,HIBD)后脑灰质、室周白质的保护作用.[方法]建立新生大鼠HIBD模型,31℃、34℃亚低温全身干预3 h,观察缺氧缺血(hypoxic-ische-mic,HI)后24 h、72 h、7 d脑皮质、海马、室周白质细胞凋亡、p16、bcl-2表达.[结果]1)p16灰度:模型组表达高于假手术组,HI后24 h达高峰,31℃组表达减少,34℃组总表达不减少,但在HI后24 h表达减少,高峰延迟;2)凋亡细胞灰度:与p16结果一致;3)bcl-2灰度:也与p16结果一致,34℃组术后24 h、HI后72 h

  13. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  14. Sex-dependent mitochondrial respiratory impairment and oxidative stress in a rat model of neonatal hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Demarest, Tyler G; Schuh, Rosemary A; Waddell, Jaylyn; McKenna, Mary C; Fiskum, Gary

    2016-06-01

    Increased male susceptibility to long-term cognitive deficits is well described in clinical and experimental studies of neonatal hypoxic-ischemic encephalopathy. While cell death signaling pathways are known to be sexually dimorphic, a sex-dependent pathophysiological mechanism preceding the majority of secondary cell death has yet to be described. Mitochondrial dysfunction contributes to cell death following cerebral hypoxic-ischemia (HI). Several lines of evidence suggest that there are sex differences in the mitochondrial metabolism of adult mammals. Therefore, this study tested the hypothesis that brain mitochondrial respiratory impairment and associated oxidative stress is more severe in males than females following HI. Maximal brain mitochondrial respiration during oxidative phosphorylation was two-fold more impaired in males following HI. The endogenous antioxidant glutathione was 30% higher in the brain of sham females compared to males. Females also exhibited increased glutathione peroxidase (GPx) activity following HI injury. Conversely, males displayed a reduction in mitochondrial GPx4 protein levels and mitochondrial GPx activity. Moreover, a 3-4-fold increase in oxidative protein carbonylation was observed in the cortex, perirhinal cortex, and hippocampus of injured males, but not females. These data provide the first evidence for sex-dependent mitochondrial respiratory dysfunction and oxidative damage, which may contribute to the relative male susceptibility to adverse long-term outcomes following HI. Lower basal GSH levels, lower post-hypoxic mitochondrial glutathione peroxidase (mtGPx) activity, and mitochondrial glutathione peroxidase 4 (mtGPx4) protein levels may contribute to the susceptibility of the male brain to oxidative damage and mitochondrial dysfunction following neonatal hypoxic-ischemia (HI). Treatment of male pups with acetyl-L-carnitine (ALCAR) protects against the loss of mtGPx activity, mtGPx4 protein, and increases in protein

  15. Evolution of the Therapeutic Effects of Induced Local Hypothermia in Neonates with Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    B. Basiri

    2011-04-01

    Full Text Available Introduction & Objective: Hypoxic-ischemic encephalopathy is one of the most important causes of permanent damage to brain tissue that redound to mortality and/or late sequelae such as cerebral palsy or delayed neural development. 15-20 percent of Hypoxic-ischemic encephalopathy (HIE cases die during neonatal period and 25-30 percent of those who survive suffer from neural development problems such as cerebral palsy and mental retardation. Hypothermia or lowering temperature of brain or total body is a new and promising treatment. The present study was done to assess therapeutic effects of induced local hypothermia in hypoxic-ischemic encephalopathy (HIE among neonates admitted to Fatemieh and Beset hospitals of Hamadan city.Materials & Method: The present study was performed as a randomized clinical trial upon 36 neonates who had inclusion criteria to be imported into the study. In the first 6 hours after birth, the neonates were randomly classified into two 18 person groups. In the control group the neonates were managed with routine treatments consisted of preservative measures and anti-convulsive treatments, if necessary. In the case group the neonates received induced local hypothermia for 6 hours in addition to routine therapeutic managements. The data were analyzed using SPSS Version 13.Results: 72.7% of the neonates of the case and control groups were male. There was no significant difference between the case and control groups in sex, birth weight, gestational age and perinatal obstetric complications. The mean duration of admission was 7.72±4.23 days in the case group and 10.06±5.99 days in the control group with no significant difference between the two groups (P=0.199. The mean time of starting oral feeding was 3.44±3.11 days and 4.53±2.74 days in the control and case groups respectively and this difference was not statistically significant either (P=0.737.The mean time of regaining consciousness was 3.72±3.19 days in the case

  16. Effect of NGF combined with citicoline + cerebroprotein hydrolysate on neurobehavioral development and serum indexes in neonatal hypoxic ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Jian-Ning Zhang

    2016-01-01

    Objective:To analyze the effect of NGF combined with citicoline + cerebroprotein hydrolysate on neurobehavioral development and serum indexes in neonatal hypoxic ischemic encephalopathy.Methods: A total of 68 children with neonatal hypoxic ischemic encephalopathy (HIE) were randomly divided into observation group and control group, control group received supportive treatment + NGF combined with citicoline therapy, observation group received supportive treatment + NGF combined with citicoline and cerebroprotein hydrolysate treatment, and then differences in the levels of neurobehavioral development, creatine kinase and brain band, illness-related indexes,etc. were compared between two groups. Results: Serum nerve indexes NSE and S100B levels as well as myocardial enzyme spectrum-related parameters CK, CK-BB and CK-MB levels of observation group after treatment were lower than those of control group (P<0.05); serum MBP, ET-1, NO and CO levels were lower than those of control group, and FN level was higher than that of control group (P<0.05). Conclusions: NGF combined with citicoline + cerebroprotein hydrolysate therapy for children with HIE can reduce brain tissue damage and optimize physical status, and it is of positive clinical significance.

  17. Maternal Cigarette Smoke Exposure Worsens Neurological Outcomes in Adolescent Offspring with Hypoxic-Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Yik L. Chan

    2017-09-01

    Full Text Available Hypoxic-ischemic (HI encephalopathy occurs in approximately 6 per 1000 term newborns leading to devastating neurological consequences, such as cerebral palsy and seizures. Maternal smoking is one of the prominent risk factors contributing to HI injury. Mitochondrial integrity plays a critical role in neural injury and repair during HI. We previously showed that maternal cigarette smoke exposure (SE can reduce brain mitochondrial fission and autophagosome markers in male offspring. This was accompanied by increased brain cell apoptosis (active caspase-3 and DNA fragmentation (TUNEL staining. Here, we aimed to investigate whether maternal SE leads to more severe neurological damage after HI brain injury in male offspring. Female BALB/c mice (8 weeks were exposed to cigarette smoke prior to mating, during gestation, and lactation. At postnatal day 10, half of the pups from each litter underwent left carotid artery occlusion, followed by exposure to 8% oxygen (92% nitrogen. At postnatal day 40–44, maternal SE reduced grip strength in grip traction and foot fault tests, which were also reduced by HI injury to similar levels regardless of the maternal group. Limb coordination was impaired by maternal SE which was not worsened by HI injury. Maternal SE increased anxiety level in the offspring, which was normalized by HI injury. Apoptosis markers were increased in different brain regions by maternal SE, with the cortex having further increased TUNEL by HI injury, along with increased markers of inflammation and mitophagy. We conclude that maternal SE can worsen HI-induced cellular damage in male offspring well into adolescence.

  18. Comparison of early and late MRI in neonatal hypoxic-ischemic encephalopathy using three assessment methods

    Energy Technology Data Exchange (ETDEWEB)

    Charon, Valerie; Proisy, Maia; Bruneau, Bertrand; Treguier, Catherine; Rozel, Celine [University Hospital, Department of Imaging, Hopital Sud, Rennes, Cedex 2 (France); Ferre, Jean-Christophe [University Hospital, Department of Neuroradiology, Hopital Pontchaillou, Rennes (France); Beuchee, Alain [University Hospital, Department of Neonatology, Hopital Sud, Rennes (France); Chauvel, Jennifer [Saint Brieuc Hospital, Department of Neonatology, Saint-Brieuc (France)

    2015-12-15

    There is no consensus on the optimum timing of MRI in neonates with hypoxic-ischemic encephalopathy treated with hypothermia. Reliable early imaging assessment might help managing treatment. To assess non-random differences between early and late MRI that might influence intensive-care decisions. This single-center retrospective study included all asphyxiated term neonates eligible for hypothermia treatment November 2009-July 2012. MRI scans were systematically performed at day 4 (early MRI) and day 11 of life as part of routine protocol. Two experienced pediatric radiologists reviewed both scans according to three assessment methods: a pattern classification, a scoring system and a simplified classification. Agreement between early and late imaging findings was assessed using Cohen's kappa coefficients. Thirty-three neonates were included. Interobserver agreement was excellent. Early MRI detected all severe injuries. Agreement between early and late MRI was excellent for the simplified classification (κ = 0.82), good for the pattern classification (κ = 0.64), and good to excellent for 3 scores out of 4 in the scoring system (κ = 0.70-0.89). Early MRI may provide valuable information about brain injury to help parents and neonatologists in intensive-care decisions at the end of hypothermia treatment. (orig.)

  19. Amplitude-integrated Electroencephalography in Full-term Newborns without Severe Hypoxic-ischemic Encephalopathy: Case Series

    OpenAIRE

    Osredkar,Damjan; Derganc, Metka; Paro-Panjan, Darja; Neubauer, David

    2006-01-01

    Aim: To assess the diagnostic value of amplitude-integrated electroencephalography (EEG) in comparison to standard EEG in newborns without severe hypoxic-ischemic encephalopathy who were at risk for seizures. Methods: The study included a consecutive series of 18 term newborns without severe hypoxic-ischemic encephalopathy, but with clinical signs suspicious of epileptic seizures, history of loss of social contact, disturbance of muscle tone, hyperirritability, and/or jitteriness. Amplitud...

  20. Effects of isoflurane postconditioning on mitochondrial permeability transition pore in brain tissues of neonatal rats with hypoxic-ischemic brain injury%异氟醚后处理对缺血缺氧性脑损伤新生大鼠脑组织线粒体通透性转换孔的影响

    Institute of Scientific and Technical Information of China (English)

    纪国余; 薛杭; 于威威; 季海音; 杨雅婷; 赵平

    2014-01-01

    Objective To evaluate the effects of isoflurane postconditioning on mitochondrial permeability transition pore (mPTP) in brain tissues of neonatal rats with hypoxic-ischemic brain injury.Methods One hundred and twenty 7-day-old Sprague-Dawley rats,weighing 12-16 g,were randomly divided into 4 groups (n =30 each) using a random number table:sham operation group (group S),isoflurane group (group I),hypoxicischemic brain injury group (group HIBI),and hypoxic-ischemic brain injury + isoflurane postconditioning group (group HI).To establish hypoxic-ischemic brain injury model in the neonatal rats,the left common carotid artery ligation was carried out,and then the rats were exposed to 8% O2 + 92% N2 at 37 ℃ for 2 h in HIBI and HI groups.The rats inhaled 1.5 % isoflurane for 30 min after the model was established in group HI.The rats only inhaled 1.5% isoflurane for 30 min in group I.At 24 h after the model was established,10 rats taken out randomly in each group were sacrificed and brains were removed to detect mPTP opening.At 7 days after the model was established,the survival rate was recorded in the rest rats.The rats were then sacrificed and brains were removed and the right and left cerebral hemispheres were weighed separately,and the ratio between left/right cerebral hemispheres was calculated.The density of normal neurons in ventral posterior inferior thalamic nucleus and hippocampal CA3 region in the left and right cerebral hemispheres were measured and the ratios of the density of normal neurons in the left to right cerebral hemisphere were calculated.Results There was no significant difference in the survival rate between the four groups (P > 0.05).Compared with group S,the ratios of the density of normal neurons in the left to right cerebral hemisphere,weight of left cerebral hemisphere,and ratio between left/right cerebral hemispheres were significantly decreased,and mPTP opening was increased in group HIBI (P < 0.05),and no significant changes

  1. Blood carbon dioxide levels and adverse outcome in neonatal hypoxic-ischemic encephalopathy.

    LENUS (Irish Health Repository)

    Nadeem, Montasser

    2012-01-31

    We investigated pCO(2) patterns and the relationship between pCO(2) levels and neurodevelopmental outcome in term infants with hypoxic-ischemic encephalopathy. Blood gases during the first 72 hours of life were collected from 52 infants with hypoxic-ischemic encephalopathy. Moderate hypocapnia (pCO(2) <3.3 kPa), severe hypocapnia (pCO(2) <2.6 kPa), and hypercapnia (pCO(2) >6.6 kPa) were correlated to neurodevelopmental outcome at 24 months. Normocapnia was documented in 416\\/551 (75.5%) of samples and was present during the entire 72 hours in only 6 out of 52 infants. Mean (standard deviation) pCO(2) values did not differ between infants with normal and abnormal outcomes: 5.43 (2.4) and 5.41 (2.03), respectively. There was no significant association between moderate hypocapnia, severe hypocapnia, or hypercapnia and adverse outcome (odds ratio [OR] = 1.84, 95% confidence interval [CI] = 0.49 to 6.89; OR = 3.16, CI = 0.14 to 28.45; and OR = 1.07, CI = 0.24 to 5.45, respectively). In conclusion, only one in nine newborns had normocapnia throughout the first 72 hours. Severe hypocapnia was rare and occurred only in ventilated babies. Hypercapnia and hypocapnia in infants with hypoxic-ischemic encephalopathy during the first 72 hours of life were not associated with adverse outcome.

  2. 脑源性神经营养因子及信号传导通路与缺氧缺血性脑损伤%Recent approach of brain-derived neurotrophic factor and signal transduction pathways in hypoxic ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    金宝

    2011-01-01

    Brain-derived neurotrophic factor(BDNF)belongs to the neurotrophin family and abundantly expressed in the nervous system.It plays an essential role in the survival,development,function,morphogenesis and plasticity of neurons by binding to the tyresine receptor kinase B(TrkB)and subsequent downstream activation of several signal transduction pathways in the nervous system. The PI3K/Akt and the MAPK/ERK DathWays ale two major intracellular signaling network activated by BDNF involved in survival of neurons.Becently.it is investigated that BDNF and TrkB are involved in the pathophysiology of hypoxic ischemic brain damage (HIBD)and in the mechanism of action of therapeutic agents.Therefore we image changing the internal or external condIitions can increase the expression of BDNF,thsu reduce the nervous system damage of HIBD.%脑源性神经营养因子(BDNF)是神经营养因子家族中最重要的一员,在神经系统分布广泛.BDNF通过激活酪氨酸受体激酶B(TrkB)及其信号传导通路对神经元的存活、生长、功能、形态和可塑性等起着重要的作用.PI3K/Akt和MAPK/ERK细胞内信号传导通路是BDNF发挥神经保护作用的两条主要途径.近年研究发现,BDNF及其TrkB水平的变化与缺氧缺血性脑损伤(HIBD)的病理生理和治疗机制有着密切的关系.因此,可以通过改变内部或外部条件来增加BDNF的表达,减轻HIBD的损伤.

  3. Relationship between electroencephalography and magnetic resonance imaging findings after hypoxic-ischemic encephalopathy at term.

    Science.gov (United States)

    El-Ayouty, Mostafa; Abdel-Hady, Hesham; El-Mogy, Sabry; Zaghlol, Hamed; El-Beltagy, Mohamed; Aly, Hany

    2007-09-01

    Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal morbidity and mortality. Electroencephalography (EEG) and brain magnetic resonance imaging (MRI) are frequently performed in these infants, but the prognostic value of the combined use of EEG and MRI needs additional exploration. The purpose of this study was to investigate, in neonates with HIE, the role of early EEG and conventional MRI in the prediction of infants at risk for persistent encephalopathy at 18 months of age. Thirty-four term infants with HIE were enrolled in this prospective study. EEG was recorded within the first 72 hours after birth and a brain MRI scan was done between 1 and 4 weeks of age. Denver Developmental Screening Test II was performed at 6, 12, and 18 months of age. Three infants (9%) had mild HIE, 21 infants (62%) had moderate HIE, and 10 infants (29%) had severe HIE. The EEG background was normal, moderately, severely, and extremely discontinuous in eight (24%), three (9%), sixteen (47%), and seven (20%) neonates, respectively. EEG background activities correlated significantly with HIE severity (p = 0.0001). MRI findings significantly correlated with EEG background (p = 0.001). Normal MRI scans and minimal basal ganglia lesions were always associated with normal EEG background. Patients with severe basal ganglia and thalamic lesions in MRI (n = 2) had extreme discontinuous EEG background. For the prediction of poor outcomes, abnormal EEG background activity had a sensitivity (Sn) = 100%, a specificity (Sp) = 100%, positive predictive value (PPV) = 100%, and negative predictive value (NPV) = 100%, whereas values of abnormal MRI scans were Sn of 100%, Sp = 43%, PPV = 82%, and NPV=100%. EEG background activity is the best element to predict abnormal outcomes. Severe basal ganglia and thalamic injuries on MRI scans are associated with poor outcomes. Otherwise, MRI does not contribute to the prediction of outcomes at 18 months of age.

  4. Neural Stem Cells and Ischemic Brain

    OpenAIRE

    Zhang, ZhengGang; Chopp, Michael

    2016-01-01

    Stroke activates neural stem cells in the ventricular-subventricular zone (V/SVZ) of the lateral ventricle, which increases neuroblasts and oligodendrocyte progenitor cells (OPCs). Within the ischemic brain, neural stem cells, neuroblasts and OPCs appear to actively communicate with cerebral endothelial cells and other brain parenchymal cells to mediate ischemic brain repair; however, stroke-induced neurogenesis unlikely plays any significant roles in neuronal replacement. In this mini-review...

  5. NOC/oFQ and NMDA contribute to piglet hypoxic ischemic hypotensive cerebrovasodilation impairment.

    Science.gov (United States)

    Armstead, William M

    2002-05-01

    Previous studies have observed that hypotensive pial artery dilation was blunted after hypoxia-ischemia. In unrelated studies, the opioid nociceptin/orphanin FQ (NOC/oFQ) was observed to contribute to hypoxic ischemic impairment of N-methyl-D-aspartate (NMDA)-induced pial dilation. This study determined the contribution of NOC/oFQ and NMDA to hypoxic ischemic hypotensive cerebrovasodilation impairment in newborn pigs equipped with a closed cranial window. Global cerebral ischemia was produced via elevated intracranial pressure. Hypoxia decreased PO(2) to 33 +/- 3 mm Hg. Topical NOC/oFQ (10(-10) M), the cerebrospinal fluid concentration after hypoxia-ischemia, had no effect on pial artery diameter by itself but attenuated hypotension (mean arterial blood pressure decrease of 44 +/- 2%) -induced pial artery dilation (35 +/- 2% versus 22 +/- 3%). Hypotensive pial artery dilation was blunted by hypoxia-ischemia, but such dilation was partially protected by pretreatment with the putative NOC/oFQ receptor antagonist, [F/G] NOC/oFQ (1-13) NH(2) (10(-6) M; 29 +/- 2%, sham control; 7 +/- 2%, hypoxia-ischemia; and 13 +/- 2%, hypoxia-ischemia and [F/G] NOC/oFQ (1-13) NH(2)). Coadministration of the NMDA antagonist MK801 (10(-5) M) with NOC/oFQ(10(-10) M) partially prevented hypotensive pial dilation impairment. Similarly, pretreatment with MK801 partially protected hypoxic ischemia impairment of hypotensive pial dilation (35 +/- 2%, sham control; 7 +/- 1%, hypoxia-ischemia; 22 +/- 2%, hypoxia-ischemia + MK801). These data show that NOC/oFQ and NMDA contribute to hypoxic ischemic hypotensive cerebrovasodilation impairment. These data suggest that NOC/oFQ modulation of NMDA vascular activity also contributes to such hypotensive impairment.

  6. Enhanced neurogenesis in neonatal rats after hypoxic-ischemic brain damage%新生鼠脑缺氧缺血损伤后神经细胞再生增加

    Institute of Scientific and Technical Information of China (English)

    孟淑珍; 韩晓华; 韩玉昆

    2005-01-01

    injected intraperitonally daily between 2-6 days after operation or HI to label newly generated cells in both groups. Neurogenesis was examined by immunofluorescence assay 1 and 4 weeks after HI. Results Subventricular zone (SVZ) was obviously enlarged in the ischemic hemisphere but not in the contralateral hemisphere in the Experimental group 1 or 4 weeks after HI. The number of BrdU positive cells in the SVZ of the ischemic hemisphere in the Experimental group increased significantly compared with that in the Control group or that in the contralateral hemisphere 1 week after HI ( both P < 0.05). After 4 weeks of HI the number of BrdU positive cells in the ischemic hemisphere decreased compared with that 1 week after HI, but still remained significantly higher than that in the Control group ( P < 0. 05 ). The number of BrdU positive cells in the subgranular zone (SGZ) of the ischemic hemisphere increased 1 week after HI, being significantly higher than that in the Control group (P < 0.05 ). After 4 weeks of HI the number of BrdU positive cells in the SGZ of the ischemic hemisphere decreased compared with that 1 week after HI, but still was significantly higher than that in the Control group (P < 0.05 ).Some scattered BrdU positive cells were observed in the striatum or cortex of the ischemic hemisphere, particularly in periinfarct 1 or 4 weeks after HI. Conclusions Similar to the brain of adult rats, neurogenesis is enhanced in the brain of neonatal rats following HI. This result suggests that immature brain may have the capacity for self-repair.

  7. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants,. Inflammatory markers .... were then moved back to their respective dams and immediately ..... various pro-inflammatory cytokines is stimulated.

  8. Persimmon leaf flavonoid promotes brain ischemic tolerance**

    Institute of Scientific and Technical Information of China (English)

    Mingsan Miao; Xuexia Zhang; Ming Bai; Linan Wang

    2013-01-01

    Persimmon leaf flavonoid has been shown to enhance brain ischemic tolerance in mice, but its mechanism of action remains unclear. The bilateral common carotid arteries were occluded using a micro clip to block blood flow for 10 minutes. After 10 minutes of ischemic preconditioning, 200, 100, and 50 mg/kg persimmon leaf flavonoid or 20 mg/kg ginaton was intragastrical y administered per day for 5 days. At 1 hour after the final administration, ischemia/reperfusion models were estab-lished by blocking the middle cerebral artery for 2 hours. At 24 hours after model establishment, compared with cerebral ischemic rats without ischemic preconditioning or drug intervention, plasma endothelin, thrombomodulin and von Wil ebrand factor levels significantly decreased and intercel-lular adhesion molecule-1 expression markedly reduced in brain tissue from rats with ischemic pre-conditioning. Simultaneously, brain tissue injury reduced. Ischemic preconditioning combined with drug exposure noticeably improved the effects of the above-mentioned indices, and the effects of 200 mg/kg persimmon leaf flavonoid were similar to 20 mg/kg ginaton treatment. These results indicate that ischemic preconditioning produces tolerance to recurrent severe cerebral ischemia. However, persimmon leaf flavonoid can elevate ischemic tolerance by reducing inflammatory reactions and vascular endothelial injury. High-dose persimmon leaf flavonoid showed an identical effect to ginaton.

  9. Early biochemical indicators of hypoxic-ischemic encephalopathy after birth asphyxia.

    Science.gov (United States)

    Nagdyman, N; Kömen, W; Ko, H K; Müller, C; Obladen, M

    2001-04-01

    Hypoxic-ischemic encephalopathy (HIE) after perinatal asphyxia is a condition in which serum concentrations of brain-specific biochemical markers may be elevated. Neuroprotective interventions in asphyxiated newborns require early indicators of brain damage to initiate therapy. We examined brain-specific creatine kinase (CK-BB), protein S-100, and neuron-specific enolase in cord blood and 2, 6, 12, and 24 h after birth in 29 asphyxiated and 20 control infants. At 2 h after birth, median (quartiles) serum CK-BB concentration was 10.0 U/L (6.0-13.0 U/L) in control infants, 16.0 U/L (13.0-23.5 U/L) in infants with no or mild HIE, and 46.5 U/L (21.4-83.0 U/L) in infants with moderate or severe HIE. Serum protein S-100 was 1.6 microg/L (1.4-2.5 microg/L) in control infants, 2.9 microg/L (1.8-4.7 microg/L) in asphyxiated infants with no or mild HIE, and 17.0 microg/L (3.2-34.1 microg/L) in infants with moderate or severe HIE 2 h after birth. No significant difference was detectable in serum neuron-specific enolase between infants with no or mild and moderate or severe HIE 2 and 6 h after birth. A combination of serum protein S-100 (cutoff value, 8.5 microg/L) and CK-BB (cutoff value, 18.8 U/L) 2 h after birth had the highest predictive value (83%) and specificity (95%) of predicting moderate and severe HIE. Cord blood pH (cutoff value, 17 mM) increase the predictive values of protein S-100 and CK-BB. We conclude that elevated serum concentrations of protein S-100 and CK-BB reliably indicate moderate and severe HIE as early as 2 h after birth.

  10. Critical role of neuronal pentraxin 1 in mitochondria-mediated hypoxic-ischemic neuronal injury.

    Science.gov (United States)

    Al Rahim, Md; Thatipamula, Shabarish; Hossain, Mir Ahamed

    2013-02-01

    Developing brain is highly susceptible to hypoxic-ischemic (HI) injury leading to severe neurological disabilities in surviving infants and children. Previously, we have reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of long-pentraxin family, following HI neuronal injury. Here, we investigated how this specific signal is propagated to cause the HI neuronal death. We used wild-type (WT) and NP1 knockout (NP1-KO) mouse hippocampal cultures, modeled in vitro following exposure to oxygen glucose deprivation (OGD), and in vivo neonatal (P9-10) mouse model of HI brain injury. Our results show induction of NP1 in primary hippocampal neurons following OGD exposure (4-8 h) and in the ipsilateral hippocampal CA1 and CA3 regions at 24-48 h post-HI compared to the contralateral side. We also found increased PTEN activity concurrent with OGD time-dependent (4-8 h) dephosphorylation of Akt (Ser473) and GSK-3β (Ser9). OGD also caused a time-dependent decrease in the phosphorylation of Bad (Ser136), and Bax protein levels. Immunofluorescence staining and subcellular fractionation analyses revealed increased mitochondrial translocation of Bad and Bax proteins from cytoplasm following OGD (4 h) and simultaneously increased release of Cyt C from mitochondria followed by activation of caspase-3. NP1 protein was immunoprecipitated with Bad and Bax proteins; OGD caused increased interactions of NP1 with Bad and Bax, thereby, facilitating their mitochondrial translocation and dissipation of mitochondrial membrane potential (ΔΨ(m)). This NP1 induction preceded the increased mitochondrial release of cytochrome C (Cyt C) into the cytosol, activation of caspase-3 and OGD time-dependent cell death in WT primary hippocampal neurons. In contrast, in NP1-KO neurons there was no translocation of Bad and Bax from cytosol to the mitochondria, and no evidence of ΔΨ(m) loss, increased Cyt C release and caspase-3 activation following OGD; which resulted in

  11. Enhanced reactivity of Alz-50 antibody in brains of sudden infant death syndrome victims versus brains with lethal hypoxic/ischemic injury. Diagnostic significance after application of the ImmunoMax technique on routine paraffin material.

    Science.gov (United States)

    Oehmichen, M; Theuerkauf, I; Bajanowski, T; Merz, H; Meissner, C

    1998-03-01

    Alz-50 antibody is immunoreactive with brain tissue of subjects with Alzheimer's disease and can also be demonstrated by immunocytochemistry in neurons of vibratome-prepared brain tissue of victims of sudden infant death syndrome (SIDS). The application of a slightly modified ImmunoMax method enabled us to demonstrate Alz-50 immunoreactivity in paraffin-embedded material. The Alz-50 epitope was detected in the hippocampus region and in nuclei of the medulla oblongata at the level of the inferior olivary protuberance in three diagnostic groups: victims of SIDS (n = 10), infants dying of subacute hypoxia/ischemia with subsequent (re-)perfusion (n = 9), and infants dying of acute ischemia without (re-) perfusion (n = 7). Quantitative evaluation of the hippocampal cortex and the nucleus olivaris inferior disclosed a significantly (P < 0.05) higher percentage of Alz-50-reactive neurons in SIDS cases than in the control groups (hippocampal cortex and the nucleus olivaris; SIDS victims: median = 100%; subacute hypoxia/ischemia: median = 33.6-81%; acute ischemia: median = 89.2-99%). Semiquantitative analysis revealed an equally pronounced preponderance of Alz-50-reactive neurons in SIDS victims versus the control groups. This greater expression in SIDS victims may be due to an ongoing hypoxia/ischemia during agony, but the present paucity of knowledge prohibits definitive elucidation. Nevertheless, the method described here appears to offer the realistic possibility of distinguishing SIDS cases from cases of sudden death in infants due to other causes, i.e., it offers for the first time a positive criterion for the diagnosis of SIDS.

  12. The Relationship between Plasma Endothelin and Hypoxic- Ischemic Encephalopathy in 70 Tibetan Neonates of Plateau Area

    Institute of Scientific and Technical Information of China (English)

    DEJI Meiduo; ZHAO Rong; ZHAO Min; WU Sulan

    2002-01-01

    Objective To discuss the dynamic changing characteristics of plasma endothelin in Tibetan neonates of plateau area with hypoxic - ischemic encephalopathy. Methods Plasma ET level has been determined for 10 days 72 hours after birth by radioimmunoassay in 70 tibetan neonates with HIE.The control group consisted of 20 healthy neonates. Results During acute stage, plasma ET levels of mild, moderate and severe groups were significantly higher that of control group (P < 0.001 ). During acute stage, plasma ET level was closely related with the severity of HIE. Severer HIE was, higher ET level. Conclusion ET was involved in the regulation of HIE.

  13. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury

    Directory of Open Access Journals (Sweden)

    Eridan Rocha-Ferreira

    2016-01-01

    Full Text Available Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.

  14. Effect of dexamethasone on myelin basic protein (MBP) in brain tissues after hypoxic-ischemic brain damage%地塞米松干预对缺氧缺血性脑损伤脑组织髓鞘碱性蛋白的影响

    Institute of Scientific and Technical Information of China (English)

    江莲; 郑伟; 张会芬; 戎小平; 刁玉巧; 陈健

    2008-01-01

    目的 探讨地塞米松(dexamethasone,Dex)在缺氧缺血性脑损伤(hypoxic ischemicbrain damage,HIBD)中的作用及可能机制.方法 通过建立大鼠HIBD模型,分为Dex大剂量预处理组、Dex小剂量预处理组、Dex大剂量治疗组、Dex小剂量治疗组、生理盐水组和正常对照组,检测血清及脑组织髓鞘碱性蛋白(myelin basic protein,MBP)、白介素-1β(interleukin-1β IL-1β)、凋亡细胞计数和脑组织病理改变.结果 (1)与生理盐水组比较,不同剂量Dex干预组和治疗组脑组织病变均减轻,表现神经元树突复旧,尼氏体增多;(2)HIBD后3 d生理盐水组血清、脑组织MBP、IL-1β的含量(5.88±0.46,34.25±4.65;127.97±16.60,1060.33±42.22)及脑组织凋亡细胞计数(13.27±0.90,11.05±1.23)较正常对照组(2.01±0.12,10.24±1.75;41.21±4.02,221.10±30.57及0.75±0.17)显著增加,P0.05;大剂量组较小剂量组作用更明显;(4)Dex预处理组、治疗组的脑组织凋亡细胞计数(7.92±1.64和8.97±0.81)显著低于生理盐水组(13.27±0.90),P<0.05;预处理组较治疗组下降更为明显,P<0.05;大剂量组较小剂量组作用更明显.结论 血清MBP含量的变化可反映脑白质损伤的程度;Dex可能是通过抑制IL-1β的过度表达,减轻炎症级联反应从而起到脑损伤的保护作用.%Objective To explore the possible mechanisms of the neuroprotective effect of dexamethasone(DEX) on neonatal rats with cerebral bypoxia-ischemia. Methods Sprague-Dawley (SD) pregnant rats were made to hypoxic ischemic brain damage (HIBD) model and randomly divided into: pretreatment groups of different doses (L-Dexl group, H-Dexl group); treatment groups of different doses (L-Dex2 group, H-Dex2 group); isotonic saline group (NS group) and normal group (NOR). The expressions of interleukin-1β(IL-1β) and myelin basic protein (MBP) in serum and brain tissue were measured, the number of apoptosis cells in brain tissue was counted, and the pathological changes of brain

  15. A clinical observation of effect of early intervention for preventing brain palsy of children with hypoxic-ischemic encephalopathy%早期干预对预防HIE患儿脑瘫发生的临床分析

    Institute of Scientific and Technical Information of China (English)

    倪仙玉; 闫红霞; 沈鹏; 赵战绒; 郝荣; 秦红; 王琪; 南娜

    2011-01-01

    Objective To observe therapeutic effect of early intervention for children with hypoxic-ischemic encephalopathy (HIE) and to reduce disability rate of the disease. Methods 67 children with HIE who admitted to department of neonatology of our hospital and were excluded congenital malformations and hereditary and metabolic diseases in a period from Dec. , 2005 to Feb. , 2010 were divided into early intervention group ( n = 39 ) and control group ( n = 28 ). The children with HIE in the early intervention group received early intervention from the neonatal period and the children in the cotrol group were just fed conventionally and didn't receive any interventions.At 3 months and 6 months of age, the children in the two groups were assessed with Gesell Developmental Diagnosis Scale (GDDS).Results At 3 months of age, the GDDS scores in person-reacting ability and action ability of the children in the early intervention group were higher than those in the control group and there were significant differences between the two groups ( t = 1.73, 1.80 respectively, both P < 0.05 ), while in GDDS scores in material-reacting ability and language ability there were no significanfi differences between the two groups. At 6 months of age, the GDDS scores in all four domains of the children in the early intervention group were higher than those in the control group and there were significant differences between the two groups (t = 11.58, 5.51, 3.95, 6.53 respectively, ali P <0. 05 ). At 1 year of age, the number of children with cerebral palsy in the intervention group was significantly less than the control group (X2 = 4.6752, P < 0.05 ). Conclusion Early intervention can improve prognosis of children with HIE and reduce incidence rate of disability.%目的 观察早期干预对缺氧缺血性脑病患儿的疗效、旨在降低残障率.方法 2005年12月~2010年2月在咸阳市儿童医院新生儿科住院治疗并来儿保康复科做早期干预的缺氧缺血性脑

  16. Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice.

    Science.gov (United States)

    Wei, Ning; Yu, Shan Ping; Gu, Xiaohuan; Taylor, Tammi M; Song, Denise; Liu, Xin-Feng; Wei, Ling

    2013-01-01

    Stem cell transplantation therapy has emerged as a potential treatment for ischemic stroke and other neurodegenerative diseases. Effective delivery of exogenous cells and homing of these cells to the lesion region, however, have been challenging issues that hinder the efficacy and efficiency of cell-based therapy. In the present investigation, we tested a delayed treatment of noninvasive and brain-targeted intranasal delivery of bone marrow mesenchymal stem cells (BMSCs) in a mouse focal cerebral ischemia model. The investigation tested the feasibility and effectiveness of intranasal delivery of BMSCs to the ischemic cortex. Hypoxia preconditioning (HP) of BMSCs was performed before transplantation in order to promote their survival, migration, and homing to the ischemic brain region after intranasal transplantation. Hoechst dye-labeled normoxic- or hypoxic-pretreated BMSCs (1 × 10(6) cells/animal) were delivered intranasally 24 h after stroke. Cells reached the ischemic cortex and deposited outside of vasculatures as early as 1.5 h after administration. HP-treated BMSCs (HP-BMSCs) showed a higher level of expression of proteins associated with migration, including CXC chemokine receptor type 4 (CXCR4), matrix metalloproteinase 2 (MMP-2), and MMP-9. HP-BMSCs exhibited enhanced migratory capacities in vitro and dramatically enhanced homing efficiency to the infarct cortex when compared with normoxic cultured BMSCs (N-BMSCs). Three days after transplantation and 4 days after stroke, both N-BMSCs and HP-BMSCs decreased cell death in the peri-infarct region; significant neuroprotection of reduced infarct volume was seen in mice that received HP-BMSCs. In adhesive removal test of sensorimotor functional assay performed 3 days after transplantation, HP-BMSC-treated mice performed significantly better than N-BMSC- and vehicle-treated animals. These data suggest that delayed intranasal administration of stem cells is feasible in the treatment of stroke and hypoxic

  17. Proinflammatory Cytokines, Enolase and S-100 as Early Biochemical Indicators of Hypoxic-Ischemic Encephalopathy Following Perinatal Asphyxia in Newborns

    Directory of Open Access Journals (Sweden)

    Verónica Chaparro-Huerta

    2017-02-01

    Conclusion: The role of cytokines after hypoxic-ischemic insult has been determined in studies of transgenic mice that support the use of these molecules as candidate biomarkers. Similarly, S-100 and enolase are considered promising candidates because these markers have been correlated with tissue damage in different experimental models.

  18. Influence of inhibition of nitric oxide synthesis on cardiac function in the newborn lamb after hypoxic-ischemic injury

    NARCIS (Netherlands)

    Dorrepaal, C.A.; Bel, F. van; Steendijk, P.; Shadid, M.; Velde, E.T. van de; Baan, J.

    2000-01-01

    The aim of the present study was to investigate the effect of immediate post-hypoxic-ischemic (HI) inhibition of nitric oxide synthesis by N(ω)- nitro-L-arginine (NLA) on cardiac function and reactive oxygen species production. Fifteen newborn lambs were subjected to severe HI. Upon resuscitation 5

  19. White matter apoptosis is increased by delayed hypothermia and rewarming in a neonatal piglet model of hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Wang, B; Armstrong, J S; Reyes, M; Kulikowicz, E; Lee, J-H; Spicer, D; Bhalala, U; Yang, Z-J; Koehler, R C; Martin, L J; Lee, J K

    2016-03-01

    Therapeutic hypothermia is widely used to treat neonatal hypoxic ischemic (HI) brain injuries. However, potentially deleterious effects of delaying the induction of hypothermia and of rewarming on white matter injury remain unclear. We used a piglet model of HI to assess the effects of delayed hypothermia and rewarming on white matter apoptosis. Piglets underwent HI injury or sham surgery followed by normothermic or hypothermic recovery at 2h. Hypothermic groups were divided into those with no rewarming, slow rewarming at 0.5°C/h, or rapid rewarming at 4°C/h. Apoptotic cells in the subcortical white matter of the motor gyrus, corpus callosum, lateral olfactory tract, and internal capsule at 29h were identified morphologically and counted by hematoxylin & eosin staining. Cell death was verified by terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL) assay. White matter neurons were also counted, and apoptotic cells were immunophenotyped with the oligodendrocyte marker 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase). Hypothermia, slow rewarming, and rapid rewarming increased apoptosis in the subcortical white matter relative to normothermia (ppiglets had more apoptosis in the lateral olfactory tract than those that were rewarmed (ppiglets had more apoptosis than shams after normothermia, slow rewarming, and rapid rewarming (ppiglet model of HI; in some regions these temperature effects are independent of HI. Vulnerable cells include myelinating oligodendrocytes. This study identifies a deleterious effect of therapeutic hypothermia in the developing brain.

  20. DHA对新生大鼠缺氧缺血性脑损伤后远期学习记忆障碍的影响%Effect of docosahexaenoic acid on long-term learning and memory disorders after hypoxic ischemic brain damage in rats

    Institute of Scientific and Technical Information of China (English)

    曾成; 舒斯云; 黄玉莎; 程燕; 陈君; 王斌

    2016-01-01

    Objective To explore the effect of docosahexaenoic acid (DHA) on long-term learning and memory disorders and potential mechanism in rats after hypoxic ischemic brain damage. Methods Sixty neonatal 7-day-old SD rats were ramdonly divided into three groups: group S (sham operation+vehicle treatment), group C (hypoxic-ischemic brain damage [HIBD]+vehicle treatment) and group D (HIBD+DHA treatment). After left common carotid artery was isolated and ligated for 2.5 h, rats of group C and group D were put into a condition which oxygen concentration was about 8%for 2 h;rats in the group S were only isolated the left carotid artery, without ligation or hypoxia treatment;rats in the group D were intraperitoneally injected DHA of 15 mg/kg after modeling, and rats in the group S and group C were intraperitoneally injected equivalent volume of vehcle, once a day for 10 consecutive days. The pathomorphology changes of the hypocampal CA1 area, and marginal division of striatum were observed by Nissl staining 48 h after modling; the apoptosis cells were measured by TUNEL;immunohistochemical method was used to detect the expressions of Bax and Caspase-3 positive cells in the two brain areas. Morris water maza test was used to evaluate the long-term lerning and momory functions of 2-month-old rats, and the expressions of N-methyl-D-aspartate receptor 1 (NMDAR1) positive cells were detected by immunohistochemical method. Results The pathomorphology damage was significantly improved, the expressions of Bax and Caspase-3 positive cells and the neuron apoptosis in hypocampal CA1 areas and marginal division of striatum in group D were all signficantly decreased as compared with those in the group C (P<0.05). Rats in group D had significantly decreased escape latency as compared with those in group C in Morris water maze test (P<0.05), and the expression of NMDAR1 positive cells in the two brain areas of group D was significantly increased as compared with that in the group C (P<0

  1. Neuroprotective effects of electro acupuncture on hypoxic-ischemic encephalopathy in newborn rats Ass.

    Science.gov (United States)

    Xu, Tao; Li, Wenjie; Liang, Yiqun; Yang, Zhonghua; Liu, Jingdong; Wang, Yejun; Su, Nailun

    2014-11-01

    Hypoxic-ischemic encephalopathy (HIE) is a common and potentially devastating condition in the neonate, associated with high mortality and morbidity. Effective treatment options are limited and therefore alternative therapies such as acupuncture are increasingly used. Previous studies have shown that electro acupuncture promoted proliferation of neural progenitor cell and increased expression of neurotrophic factor in HIE. However, effects of electro acupuncture on downstream signaling pathways have been rarely researched. So, in the present study, we aimed to evaluate the neuroprotective effects of electro acupuncture on HIE and to further investigate the role of GDNF family receptor member RET and its key downstream PI3-K/Akt pathway in the process. A rat HIE model was constructed by the left common carotid artery (LCCA) ligation method in combination with hypoxic treatment. Considering that Baihui (GV20), Dazhui (GV14), Quchi (LI11) and Yongquan (KI1) are commonly used in clinics for stroke treatment and are easy to locate, we chose the above four acupoints as the combination for electro acupuncture treatment which was performed once a day for different time periods. Hematoxylin-eosin (HE) staining and transmission electron microscopy results showed that electro acupuncture could ameliorate neurologic damage and alleviate the degenerative changes of ultra structure of cortical neurons in rats subjected to HIE. And the longer acupuncture treatment lasted, the better its therapeutic effect would be. This was accompanied by gradually increased expression of GDNF family receptor RET at the mRNA level and its downstream signaling Akt at the protein level in the ischemic cortex. These findings suggest that electro acupuncture shows neuroprotective effects in HIE, which at least in part is attributed to activation of PI3-K/Akt signaling pathway.

  2. Neurovascular Regulation in the Ischemic Brain

    Science.gov (United States)

    Jackman, Katherine

    2015-01-01

    Abstract Significance: The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. Recent Advances and Critical Issues: The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. Future Directions: Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory. Antioxid. Redox Signal. 22, 149–160. PMID:24328757

  3. The neuroprotective mechanism of brain ischemic preconditioning

    Institute of Scientific and Technical Information of China (English)

    Xiao-qian LIU; Rui SHENG; Zheng-hong QIN

    2009-01-01

    Brain ischemia is one of the most common causes of death and the leading cause of adult disability in the world. Brain ischemic pre- conditioning (BIP) refers to a transient, sublethal ischemia which results in tolerance to later, otherwise lethal, cerebral ischemia. Many attempts have been made to understand the molecular and cellular mechanisms underlying the neuroprotection offered by ischemic preconditioning. Many studies have shown that neuroprotective mechanisms may involve a series of molecular regulatory pathways including activation of the N-methyI-D-aspartate (NMDA) and adenosine receptors; activation of intracellular signaling pathways such as mitogen activated protein kinases (MAPK) and other protein kinases; upregulation of Bcl-2 and heat shock proteins (HSPs); and activation of the ubiquitin-proteasome pathway and the autophagic-lysosomal pathway. A better understanding of the processes that lead to cell death after stroke as well as of the endogenous neuroprotective mechanisms by which BIP protects against brain ischemic insults could help to develop new therapeutic strategies for this devastating neurological disease. The purpose of the present review is to summarize the neuroprotective mechanisms of BIP and to discuss the possibility of mimicking ischemic preconditioning as a new strategy for preventive treatment of ischemia.

  4. Mesenchymal stem cells protect neurons against hypoxic-ischemic injury via inhibiting parthanatos, necroptosis, and apoptosis, but not autophagy.

    Science.gov (United States)

    Kong, Deyan; Zhu, Juehua; Liu, Qian; Jiang, Yongjun; Xu, Lily; Luo, Ning; Zhao, Zhenqiang; Zhai, Qijin; Zhang, Hao; Zhu, Mingyue; Liu, Xinfeng

    2017-03-01

    Cellular therapy with mesenchymal stem cells (MSCs) protects cortical neurons against hypoxic-ischemic injury of stroke. Although sorts of efforts have been made to confirm the neuroprotective effect of MSCs on neurons against hypoxic-ischemic injury, the mechanism is until now far away from clear. Here in this study, oxygen-glucose deprivation (OGD)-injured neuron model was applied to mimic the neuronal hypoxic-ischemic injury in vitro. Co-culturing with MSCs in a transwell co-culture system, the OGD injured neurons were rescued by 75.0 %. Further data demonstrated that co-culturing with MSCs protected the cortical neurons from the OGD-induced parthanatos by alleviating apoptosis-inducing factor (AIF) nuclear translocation; attenuated the neuronal necroptosis by down-regulating the expression of the two essential kinases in necroptosis, receptor interacting protein kinase1 (RIP1) and 3 (RIP3); rescued the neurons from apoptosis by deactivating caspase-3; whilst performed no significant influence on OGD-induced neuronal autophagy, according to its failed regulation on Beclin1. In conclusion, MSCs potentially protect the cortical neurons from OGD-injury in vitro, through rescuing neurons from the cell death of parthanatos, necroptosis, and apoptosis, but not autophagy, which could provide some evidence to the mechanism explanation on stem cell treatment for ischemic stroke.

  5. The Association between NOS3 Gene Polymorphisms and Hypoxic-Ischemic Encephalopathy Susceptibility and Symptoms in Chinese Han Population

    Directory of Open Access Journals (Sweden)

    Yongqin Wu

    2016-01-01

    Full Text Available Endothelial NOS (NOS3 has a potential role in the prevention of neuronal injury in hypoxic-ischemic encephalopathy (HIE. Thus, we aimed to explore the association between NOS3 gene polymorphisms and HIE susceptibility and symptoms in a Chinese Han population. Three single nucleotide polymorphisms (SNPs in the NOS3 gene, rs1800783, rs1800779, and rs2070744, were detected in 226 children with HIE and 212 healthy children in a Chinese Han population. Apgar scores and magnetic resonance image scans were used to estimate the symptoms and brain damage. The association analyses were conducted by using SNPStats and SPSS 18.0 software. The genotype and allele distributions of rs1800779 and rs1799983 displayed no significant differences between the patients and the controls, while the rs2070744 allele distribution was significantly different (corrected P=0.009. For clinical characteristics, the rs2070744 genotype distribution was significantly different in patients with different Apgar scores (≤5, TT/TC/CC = 6/7/5; 6~7, TT/TC/CC = 17/0/0; 8~9, TT/TC/CC = 6/2/0; 10, TT/TC/CC = 7/1/0; corrected P=0.006 in the 1001 to 1449 g birth weight subgroup. The haplotype test did not show any associations with the risk and clinical characteristics of HIE. The results suggest that NOS3 gene SNP rs2070744 was significantly associated with HIE susceptibility and symptom expression in Chinese Han population.

  6. The Association between NOS3 Gene Polymorphisms and Hypoxic-Ischemic Encephalopathy Susceptibility and Symptoms in Chinese Han Population.

    Science.gov (United States)

    Wu, Yongqin; Zhu, Zhiling; Fang, Xiaoxia; Yin, Ling; Liu, Yuxia; Xu, Shouxia; Li, Aixue

    2016-01-01

    Endothelial NOS (NOS3) has a potential role in the prevention of neuronal injury in hypoxic-ischemic encephalopathy (HIE). Thus, we aimed to explore the association between NOS3 gene polymorphisms and HIE susceptibility and symptoms in a Chinese Han population. Three single nucleotide polymorphisms (SNPs) in the NOS3 gene, rs1800783, rs1800779, and rs2070744, were detected in 226 children with HIE and 212 healthy children in a Chinese Han population. Apgar scores and magnetic resonance image scans were used to estimate the symptoms and brain damage. The association analyses were conducted by using SNPStats and SPSS 18.0 software. The genotype and allele distributions of rs1800779 and rs1799983 displayed no significant differences between the patients and the controls, while the rs2070744 allele distribution was significantly different (corrected P = 0.009). For clinical characteristics, the rs2070744 genotype distribution was significantly different in patients with different Apgar scores (≤5, TT/TC/CC = 6/7/5; 6~7, TT/TC/CC = 17/0/0; 8~9, TT/TC/CC = 6/2/0; 10, TT/TC/CC = 7/1/0; corrected P = 0.006) in the 1001 to 1449 g birth weight subgroup. The haplotype test did not show any associations with the risk and clinical characteristics of HIE. The results suggest that NOS3 gene SNP rs2070744 was significantly associated with HIE susceptibility and symptom expression in Chinese Han population.

  7. 新生儿缺氧缺血性脑病颅脑MRI-Apgar评分、血清NSE相关性研究%Study on brain MRI and its relations to Apgar scores, serum level of NSE in patients with neonatal hypoxic ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    丁燕霞; 李晓春

    2011-01-01

    Objective To invastigate the change of cerebral MRI of neonatal Hypoxic Is-chemic Encephalopathy(HIE), and the relation between the serum neuron - specific enolase(NSE) and Apgar scores. Methods One hundred HIE cases were chosen as experimental group, including 50 preterm cases and 50 term neonates. Based the degree of MRI, the subjects in the experimental group were classified into HIE mild and HIE moderate and severe. Another forty normal ones were chosen as control group. Blood samples were collected in all the research objects for NSE detecting. MRI was performed 3~7 days after birth in the experimental group. Results In full term neonates and preterm neonates, as the aggravation of the degrees of MRI, the serum NSE levels got increased and Apgar scores got decreased. Compared with the control group and the HIE mild group, the NSE levels in the HIE moderate and severe group had significant differences. However, the differences between the mild HIE group and the control group was insignificant. Differences of 5 min Apgar score between any two groups were significant. Conclusion Serum NSE level and Apgar score can be used as the early objective markers for evaluating the prognosis of brain damage in hypoxic is-chemic encephalopathy, and they are concordance with the cerebral MRI degrees. We can perform early diagnosis and evaluation of HIE by utilizing the two indexes.%目的 探讨新生儿缺氧缺血性脑病(HIE)颅脑磁共振成像(MRI)改变与血清神经元特异性烯醇化酶(NSE)及新生儿评分(Apgar评分)之间的关系.方法 选取HIE患儿100例(早产儿50例,足月儿50例)为实验组,依据颅脑MRI表现程度分为轻度HIE和中重度HIE组;另选同期非HIE新生儿40例为对照组,均在其生后行Apgar评分、检测血清NSE浓度,并于生后3~7 d行颅脑MRI检查.结果 HIE足月儿和早产儿随着MRI表现程度加重,血清NSE值逐渐增高,Apgar评分逐渐降低.中重度组与轻度组、对照组相比NSE水平

  8. Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: role of 5HT(1A) and CB2 receptors.

    Science.gov (United States)

    Pazos, M Ruth; Mohammed, Nagat; Lafuente, Hector; Santos, Martin; Martínez-Pinilla, Eva; Moreno, Estefania; Valdizan, Elsa; Romero, Julián; Pazos, Angel; Franco, Rafael; Hillard, Cecilia J; Alvarez, Francisco J; Martínez-Orgado, Jose

    2013-08-01

    The mechanisms underlying the neuroprotective effects of cannabidiol (CBD) were studied in vivo using a hypoxic-ischemic (HI) brain injury model in newborn pigs. One- to two-day-old piglets were exposed to HI for 30 min by interrupting carotid blood flow and reducing the fraction of inspired oxygen to 10%. Thirty minutes after HI, the piglets were treated with vehicle (HV) or 1 mg/kg CBD, alone (HC) or in combination with 1 mg/kg of a CB₂ receptor antagonist (AM630) or a serotonin 5HT(1A) receptor antagonist (WAY100635). HI decreased the number of viable neurons and affected the amplitude-integrated EEG background activity as well as different prognostic proton-magnetic-resonance-spectroscopy (H(±)-MRS)-detectable biomarkers (lactate/N-acetylaspartate and N-acetylaspartate/choline ratios). HI brain damage was also associated with increases in excitotoxicity (increased glutamate/N-acetylaspartate ratio), oxidative stress (decreased glutathione/creatine ratio and increased protein carbonylation) and inflammation (increased brain IL-1 levels). CBD administration after HI prevented all these alterations, although this CBD-mediated neuroprotection was reversed by co-administration of either WAY100635 or AM630, suggesting the involvement of CB₂ and 5HT(1A) receptors. The involvement of CB₂ receptors was not dependent on a CBD-mediated increase in endocannabinoids. Finally, bioluminescence resonance energy transfer studies indicated that CB₂ and 5HT(1A) receptors may form heteromers in living HEK-293T cells. In conclusion, our findings demonstrate that CBD exerts robust neuroprotective effects in vivo in HI piglets, modulating excitotoxicity, oxidative stress and inflammation, and that both CB₂ and 5HT(1A) receptors are implicated in these effects.

  9. Early clinical signs in neonates with hypoxic ischemic encephalopathy predict an abnormal amplitude-integrated electroencephalogram at age 6 hours

    OpenAIRE

    Horn, Alan R; Swingler, George H; Myer, Landon; Linley, Lucy L; Raban, Moegammad S; Joolay, Yaseen; Harrison, Michael C; Chandrasekaran, Manigandan; Rhoda, Natasha R; Robertson, Nicola J.

    2013-01-01

    Background An early clinical score predicting an abnormal amplitude-integrated electroencephalogram (aEEG) or moderate-severe hypoxic ischemic encephalopathy (HIE) may allow rapid triage of infants for therapeutic hypothermia. We aimed to determine if early clinical examination could predict either an abnormal aEEG at age 6 hours or moderate-severe HIE presenting within 72 hours of birth. Methods Sixty infants ≥ 36 weeks gestational age were prospectively enrolled following suspected intrapar...

  10. Immediate hypothermia reduces cardiac troponin I after hypoxic-ischemic encephalopathy in newborn pigs.

    Science.gov (United States)

    Liu, Xun; Tooley, James; Løberg, Else M; Suleiman, M Saadeh; Thoresen, Marianne

    2011-10-01

    Neonatal hypoxic-ischemic encephalopathy (HIE) is a clinically defined neurological condition after lack of oxygen and often associated with cardiac dysfunction in term infants. Therapeutic hypothermia (HT) after birth is neuroprotective in infants with HIE. However, it is not known whether HT is also cardioprotective. Four newborn pigs were used in the pilot study and a further 18 newborn pigs [randomly assigned to 72 h normothermia (NT) or 24 h HT followed by 48 h NT] were subjected to global HIE insults. Serum cTnI was measured before and post the HIE insult. Blood pressure, inotropic support, blood gases, and heart rate (HR) were recorded throughout. Cardiac pathology was assessed from histological sections. Cooling reduced serum cTnI levels significantly in HT pigs by 6 h (NT, 1.36 ± 0.67; HT, 0.34 ± 0.23 ng/mL; p = 0.0009). After rewarming, from 24 to 30 h postinsult, HR and cTnI increased in the HT group; from HR[24 h] = 117 ± 22 to HR[30 h] = 218 ± 32 beats/min (p = 0.0002) and from cTnI[24 h] = 0.23 ± 0.12 to cTnI[30 h] = 0.65 ± 0.53 ng/mL, (p = 0.05). There were fewer ischemic lesions on cardiac examination (37%) in the HT group compared with the NT group (70%). HT (24 h) pigs did not have the postinsult cTnI increase seen in NT-treated pigs. There was a trend that HT improved cardiac pathology in this 3-d survival model.

  11. Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, Jill B. de; Hendrikse, Jeroen [University Medical Center Utrecht, Department of Radiology, HP E 01.132, P.O. Box 85500, Utrecht (Netherlands); Petersen, Esben T. [University Medical Center Utrecht, Department of Radiology, HP E 01.132, P.O. Box 85500, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiotherapy, Utrecht (Netherlands); Vries, Linda S. de; Bel, Frank van; Alderliesten, Thomas; Negro, Simona; Groenendaal, Floris; Benders, Manon J.N.L. [Wilhelmina Children' s Hospital/University Medical Center Utrecht, Department of Neonatology, Utrecht (Netherlands)

    2015-01-15

    Hyperperfusion may be related to outcome in neonates with hypoxic-ischemic encephalopathy (HIE). The purpose of this study was to evaluate whether arterial spin labelling (ASL) perfusion is associated with outcome in neonates with HIE and to compare the predictive value of ASL MRI to known MRI predictive markers. Twenty-eight neonates diagnosed with HIE and assessed with MR imaging (conventional MRI, diffusion-weighted MRI, MR spectroscopy [MRS], and ASL MRI) were included. Perfusion in the basal ganglia and thalami was measured. Outcome at 9 or 18 months of age was scored as either adverse (death or cerebral palsy) or favourable. The median (range) perfusion in the basal ganglia and thalami (BGT) was 63 (28-108) ml/100 g/min in the neonates with adverse outcome and 28 (12-51) ml/100 g/min in the infants with favourable outcome (p < 0.01). The area-under-the-curve was 0.92 for ASL MRI, 0.97 for MRI score, 0.96 for Lac/NAA and 0.92 for ADC in the BGT. The combination of Lac/NAA and ASL MRI results was the best predictor of outcome (r {sup 2} = 0.86, p < 0.001). Higher ASL perfusion values in neonates with HIE are associated with a worse neurodevelopmental outcome. A combination of the MRS and ASL MRI information is the best predictor of outcome. (orig.)

  12. Phenobarbital and temperature profile during hypothermia for hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Sant'Anna, Guilherme; Laptook, Abbot R; Shankaran, Seetha; Bara, Rebecca; McDonald, Scott A; Higgins, Rosemary D; Tyson, Jon E; Ehrenkranz, Richard A; Das, Abhik; Goldberg, Ronald N; Walsh, Michele C

    2012-04-01

    Data from the whole-body hypothermia trial was analyzed to examine the effects of phenobarbital administration prior to cooling (+PB) on the esophageal temperature (T (e)) profile, during the induction phase of hypothermia. A total of 98 infants were analyzed. At enrollment, +PB infants had a higher rate of severe hypoxic-ischemic encephalopathy and clinical seizures and lower T (e) and cord pH than infants that have not received phenobarbital (-PB). There was a significant effect of phenobarbital itself and an interaction between phenobarbital and time in the T (e) profile. Mean T (e) in the +PB group was lower than in the -PB group, and the differences decreased over time. In +PB infants, the time to surpass target T (e) of 33.5°C and to reach the minimum T (e) during overshoot were shorter. In conclusion, the administration of phenobarbital before cooling was associated with changes that may reflect a reduced thermogenic response associated with barbiturates.

  13. Clinical analysis of the early comprehensive intervention on hypoxic ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Xu-E Li; Yi-MinDu; Yan-JuGuo; Zhi-QingWu; Su-GeHao

    2015-01-01

    Objective:To explore the clinical efficacy of the early comprehensive intervention on hypoxic ischemic encephalopathy (HIE).Methods:HIE children who were admitted in our department from March, 2014 to May, 2015 were included in the study and randomized into the observation group and the control group. The patients in the control group were given routine fluid infusion, electrolyte disturbance correcting, blood sugar maintaining, convulsion controlling, intracranial pressure reducing, hormone, mannitol, vitamins, infection preventing, and other treatments. Based on the treatments given in the control group, the patients in the observation group were given the comprehensive intervention. After treatment, the serum related indicators, NBNA, and DQ in the two groups were observed.Results:The levels of serum AST, LDH, CK, and CK-MB in the observation group were significantly lower than those in the control group (P0.05). NBNA score in the observation group was significantly superior to that in the control group (P<0.05). DQ values at 3, 6, 12, 18, and 24 months in the observation group were significantly higher than those in the control group (P<0.05).Conclusions:Early comprehensive intervention on HIE patients can effectively reduce the serum cardiac enzyme levels, increase the therapeutic effect, improve the intelligence and motor development levels and DQ in order to enhance the living qualities.

  14. Association of NOS3 tag polymorphisms with hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Kuzmanić Samija, Radenka; Primorac, Dragan; Resić, Biserka; Lozić, Bernarda; Krzelj, Vjekoslav; Tomasović, Maja; Stoini, Eugenio; Samanović, Ljubo; Benzon, Benjamin; Pehlić, Marina; Boraska, Vesna; Zemunik, Tatijana

    2011-06-01

    To test the association of NOS3 gene with hypoxic-ischemic encephalopathy (HIE). The study included 110 unrelated term or preterm born children (69 boys and 41 girls) with HIE and 128 term and preterm born children (60 boys and 68 girls) without any neurological problems after the second year of life. Children with perinatal HIE fulfilled the diagnostic criteria for perinatal asphyxia. All children were admitted to the Clinical Hospital Split between 1992 and 2008. We analyzed 6 tagging single nucleotide polymorphisms (SNP) within NOS3 gene (rs3918186, rs3918188, rs1800783, rs1808593, rs3918227, rs1799983), in addition to previously confirmed NOS3-associated SNP rs1800779. Genotyping was conducted using real-time polymerase chain reaction (PCR). Association analyses were performed according to allelic and genotypic distribution. Allelic test did not show any SNP association with HIE. SNP rs1808593 showed genotype association (P=0.008) and rs1800783-rs1800779 TG haplotype showed an association with HIE (PNOS3 polymorphisms with HIE.

  15. Ischemic preconditioning reduces ischemic brain injury by suppressing nuclear factor kappa B expression and neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Songsheng Shi; Weizhong Yang; Xiankun Tu; Chunmei Chen; Chunhua Wang

    2013-01-01

    Ischemic stroke induces a series of complex pathophysiological events including blood-brain barrier disruption, inflammatory response and neuronal apoptosis. Previous studies demonstrate that ischemic preconditioning attenuates ischemic brain damage via inhibiting blood-brain barrier disruption and the inflammatory response. Rats underwent transient (15 minutes) occlusion of the bilateral common carotid artery with 48 hours of reperfusion, and were subjected to permanent middle cerebral artery occlusion. This study explored whether ischemic preconditioning could reduce ischemic brain injury and relevant molecular mechanisms by inhibiting neuronal apoptosis. Results found that at 72 hours following cerebral ischemia, myeloperoxidase activity was enhanced, malondialdehyde levels increased, and neurological function was obviously damaged. Simultaneously, neuronal apoptosis increased, and nuclear factor-κB and cleaved caspase-3 expression was significantly increased in ischemic brain tissues. Ischemic preconditioning reduced the cerebral ischemia-induced inflammatory response, lipid peroxidation, and neurological function injury. In addition, ischemic preconditioning decreased nuclear factor-κB p65 and cleaved caspase-3 expression. These results suggested that ischemic preconditioning plays a protective effect against ischemic brain injury by suppressing the inflammatory response, reducing lipid peroxidation, and neuronal apoptosis via inhibition of nuclear factor-κB and cleaved caspase-3 expression.

  16. [Hypoxic brain injuries notified to the Danish Patient Insurance Association during 1992-2004. Secondary publication

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.

    2008-01-01

    We investigated the files of the Danish Patient Insurance Association for newborns suffering from hypoxic brain injuries. From 1992 to 2004, a total of 127 approved claims concerning peripartum hypoxic injury were registered. Thirty-eight newborns died and the majority of the 89 surviving children...

  17. [Hypoxic brain injuries notified to the Danish Patient Insurance Association during 1992-2004. Secondary publication

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.;

    2008-01-01

    We investigated the files of the Danish Patient Insurance Association for newborns suffering from hypoxic brain injuries. From 1992 to 2004, a total of 127 approved claims concerning peripartum hypoxic injury were registered. Thirty-eight newborns died and the majority of the 89 surviving childre...

  18. Neuroprotective role of ibuprofen in hypoxic-ischemic brain damage in neonatal rats%布洛芬对新生大鼠缺氧缺血后脑损伤的保护作用

    Institute of Scientific and Technical Information of China (English)

    乔丽丽; 沈伟勤

    2013-01-01

    Objective To investigate neuroprotective effect of ibuprofen on neonatal rats brain damage after hypoxia-ischemia (HI). Methods Fourty 7-day-old mice were divided to normal saline (NS) group, ibuprofen group, HI+NS group, and Hl+ibuprofen group. The HI+NS group and Hl+ibuprofen group subjected to unilateral ligation of the left common carotid artery (ischemia) and 50 min of hypoxia for set up HI model. An initial dose of ibuprofen lOOmg/kg was administered 2 hours after HI followed by a maintenance dose 50mg/kg every 24 hours for 6 days in Hl+ibuprofen group and ibupreofen group. The mice were sacrificed 7 days after HI. The grey matter, microtubule-associated protein-2 (MAP-2) and white matter, myeline basic protein (MBP) and neurofilameng (NF) injury were detected by immunohistochemical staining. The number of galectin-3 positive cells were counted in Cortex, DG, CA area. Results In NS group and ibuprofen group, the grey matter was normal and does not appear infarct. In Hl+ibuprofen group, the infarct area was (33.18+4.57) mm and the infarct volume was (39.18+4.29) mm3. In HI+NS group, the infarct area was (35.23+4.15) mm2 and the infarct volume was (40.23+4.65) mm3. There was no difference between two groups (t=34.54, 42.38, P>0.05). In Hl+ibuprofen group, the loss of MBP was (42.32+7.56)% and the loss of neurofilament (NF) was (40.34+6.83)%. In HI+NS group, the loss of MBP was (31.34+5.67)% and the loss of NF was (30.82+5.24)%. There were significant differences between two groups (t=13.51, 11.56, P0.05).HI+生理盐水组脑白质MBP损失为(42.32±7.56)%,NF为(40.34±6.83)%;HI+布洛芬组分别为(31.34±5.67)%、(30.82±5.24)%,两组差异有统计学意义(t=13.51、11.56,P均<0.05).HI+布洛芬组Cortex区的galectin-3细胞较HI+生理盐水组明显下降,差异有统计学意义(U=11.52,P<0.05).结论 布洛芬对HI后大脑的白质有明显保护作用,可能与降低小胶质细胞活性有关;但对大脑灰质无明显保护作用.

  19. Aquaporin-4 and ischemic brain edema

    Institute of Scientific and Technical Information of China (English)

    Saihong Dun; Yang Guo

    2007-01-01

    OBJECTIVE: To investigate the relationship of aquaporin 4 (AQP4) and brain edema.DATA SOURCES: Using the terms of "aquaporin-4, brain edema", we searched PubMed database to identify studies published from January 1997 to April 2006 in the English languages. Meanwhile, we also searched China National Knowledge Infrastructure (CNKI) for related studies.STUDY SELECTION: The collected data were selected firstly. Studies on AQP4 and brain edema were chosen and their full-texts were searched for, and those with repetitive or review studies were excluded.DATA EXTRACTION: Totally 146 related studies were collected, 42 of them were involved and the other 104 studies were used for reading reference data.DATA SYNTHESIS: AQP4 is a selective water permeable integral membrane protein. It is mainly expressed in astrocytes and ependymocyte, and is the important structural basis for water regulation and transportation between glial cells and cerebrospinal fluid or vessels. Phosphorylation is involved in the regulation of AQP4.AQP4 participates in the formation of brain edema caused by various factors. Studies on the structure and pathological changes of AQP4 are still in the initial stage, and the role and mechanism of AQP4 in the formation of brain edema is very unclear.CONCLUSION: AQP4 plays a critical regulating role in the formation of ischemic brain edema, but whether it is regulated by drugs lacks reliable evidence.

  20. MODEST HYPOTHERMIA PROVENTS APOPTOSIS IN A NEONATAL RAT MODEL OF HYPOXIC-ISCHEMIC BRAINDAMAGE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Recent studies in neonatal animals have shown that even slightly decreasing in brain or core temperature could ameliorate the damage resulting from hypoxic-ischemia insults. But the influence of hypothermia which had been used after the end of hypoxia-ischemia of the model hypoxia-ischemia brain damage(HIBD)was unknown. This research wanted to investigate whether hypothermia of defferent begin time after HIBD still could protect the brain in neonatal rats. Methods Pericranial temperatures were adjusted to 31 C in neonatal rats immediately or 2h after the end of hypoxia-ischemia(HI),the number of apoptosis cells in HIBD rats' brain had been counted,rat pups' storing food ability had been observed. Results Apoptosis increased obviously when rat pups were 8 days old, while hypothermia reduced apoptosis ,and postponed apoptosis expression in group that 31 C hypothermia was used immediately or 1h after the end of HI,and hypothermia improved the rat pups' storing food ability. This effect was more obviously in the group that hypothermia was used immediately after the HI than in the group that hypothermia was used 1h after the HI. But the protective effect was not clear in the group that hypothermia was used 2 h after the HI. Conclusion Hypothermia which was used within 1h after the end of HI could protect the HIBD neonatal rat pups brain, this effect was more obviously in the hypothermia be used early after the end of HI group than in the hypothermia be used late after the end of HI group.

  1. Quantification of structural changes in the corpus callosumin children with profound hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Stivaros, Stavros M. [Manchester Academic Health Science Centre, Academic Unit of Paediatric Radiology, Royal Manchester Children' s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester (United Kingdom); University of Manchester, Centre for Imaging Sciences, Institute of Population Health, Manchester (United Kingdom); Radon, Mark R. [The Walton Centre NHS Foundation Trust, Department of Neuroradiology, Liverpool (United Kingdom); Mileva, Reneta; Gledson, Ann; Keane, John A. [University of Manchester, School of Computer Science, Manchester (United Kingdom); Connolly, Daniel J.A.; Batty, Ruth [Sheffield Children' s Hospital NHS Foundation Trust, Department of Neuroradiology, Sheffield (United Kingdom); Cowell, Patricia E. [University of Sheffield, Department of Human Communication Sciences, Sheffield (United Kingdom); Hoggard, Nigel; Griffiths, Paul D. [University of Sheffield, Academic Unit of Radiology, Sheffield (United Kingdom); Wright, Neville B.; Tang, Vivian [Manchester Academic Health Science Centre, Academic Unit of Paediatric Radiology, Royal Manchester Children' s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester (United Kingdom)

    2016-01-15

    Birth-related acute profound hypoxic-ischaemic brain injury has specific patterns of damage including the paracentral lobules. To test the hypothesis that there is anatomically coherent regional volume loss of the corpus callosum as a result of this hemispheric abnormality. Study subjects included 13 children with proven acute profound hypoxic-ischaemic brain injury and 13 children with developmental delay but no brain abnormalities. A computerised system divided the corpus callosum into 100 segments, measuring each width. Principal component analysis grouped the widths into contiguous anatomical regions. We conducted analysis of variance of corpus callosum widths as well as support vector machine stratification into patient groups. There was statistically significant narrowing of the mid-posterior body and genu of the corpus callosum in children with hypoxic-ischaemic brain injury. Support vector machine analysis yielded over 95% accuracy in patient group stratification using the corpus callosum centile widths. Focal volume loss is seen in the corpus callosum of children with hypoxic-ischaemic brain injury secondary to loss of commissural fibres arising in the paracentral lobules. Support vector machine stratification into the hypoxic-ischaemic brain injury group or the control group on the basis of corpus callosum width is highly accurate and points towards rapid clinical translation of this technique as a potential biomarker of hypoxic-ischaemic brain injury. (orig.)

  2. Magnetic resonance imaging (MRI) and prognostication in neonatal hypoxic-ischemic injury: a vignette-based study of Canadian specialty physicians.

    Science.gov (United States)

    Bell, Emily; Rasmussen, Lisa Anne; Mazer, Barbara; Shevell, Michael; Miller, Steven P; Synnes, Anne; Yager, Jerome Y; Majnemer, Annette; Muhajarine, Nazeem; Chouinard, Isabelle; Racine, Eric

    2015-02-01

    Magnetic resonance imaging (MRI) could improve prognostication in neonatal brain injury; however, factors beyond technical or scientific refinement may impact its use and interpretation. We surveyed Canadian neonatologists and pediatric neurologists using general and vignette-based questions about the use of MRI for prognostication in neonates with hypoxic-ischemic injury. There was inter- and intra-vignette variability in prognosis and in ratings about the usefulness of MRI. Severity of predicted outcome correlated with certainty about the outcome. A majority of physicians endorsed using MRI results in discussing prognosis with families, and most suggested that MRI results contribute to end-of-life decisions. Participating neonatologists, when compared to participating pediatric neurologists, had significantly less confidence in the interpretation of MRI by colleagues in neurology and radiology. Further investigation is needed to understand the complexity of MRI and of its application. Potential gaps relative to our understanding of the ethical importance of these findings should be addressed.

  3. Expression of bone morphogenetic protein 7 in the cerebral cortex of rats after ischemic-hypoxic injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Some researches demonstrate that exogenous bone morphogenetic protein 7 (BMP-7) can protect ischemic cerebral nerve tissue and promote recovery of motor energy function; however, there is lack of direct evidences of endogenous BMP-7 effect.OBJECTIVE: To observe the expression of endogenous BMP-7 in nerve tissue with ischemic-hypoxic injury and investigate the possible effects on damaged nerve tissue.DESIGN: Observational contrast animal study.SETTING: Department of Anatomy and Histoembryology, Peking University Health Science Center.MATERIALS: The experiment was carried out in the Nerve Researching Laboratory of Anatomy Department, Peking University Health Science Center from October 2006 to March 2007. A total of 25 adult male SD rats weighing 250 - 300 g and several newborn SD rats were selected from Experimental Animal Center, Peking University Health Science Center. Rabbit-anti-BMP-7 polyclonal antibody was provided by Wuhan Boster Company.METHODS: ① Adult rats were randomly divided into ischemia group (n =10), sham operation group (n =10) and normal group (n =5). Right external-internal carotid artery occlusion was used to infarct middle cerebral artery of adult rats in the ischemia group so as to copy focal cerebral infarction models. Line cork was inserted in crotch of internal and external carotid artery of adult rats in the sham operation group, while adult rats in the normal group were not given any treatments. ② Cerebral cortex of newborn rats was separated to obtain cell suspension. Cells which were cultured for 10 days were divided into control group and hypoxia/reoxygenation group. And then, cells in the hypoxia/reoxygenation group were cultured in hypoxic incubator for 4 hours and given reoxygenation for 24 hours.MAIN OUTCOME MEASURES: Immunohistochemical method was used to measure expression of BMP-7 in cerebral cortex at 24 hours after ischemia/reperfusion culture and in primary hypoxic culture.RESULTS: ① At 24 hours after

  4. Cost-effective therapeutic hypothermia treatment device for hypoxic ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Allen RH

    2013-01-01

    Full Text Available John J Kim,1,2 Nathan Buchbinder,1,† Simon Ammanuel,1,4,5,† Robert Kim,1,† Erika Moore,1 Neil O'Donnell,1 Jennifer K Lee,3 Ewa Kulikowicz,3 Soumyadipta Acharya,1 Robert H Allen,1,9 Ryan W Lee,6,7 Michael V Johnston4–81Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, 2The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins University School of Medicine, 3Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, 4Kennedy Krieger Institute, 5Hugo W Moser Research Institute, 6Department of Neurology, 7Department of Pediatrics, 8Department of Physical Medicine and Rehabilitation Johns Hopkins University School of Medicine, Baltimore, MD; 9Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA†These authors contributed equally to this workAbstract: Despite recent advances in neonatal care and monitoring, asphyxia globally accounts for 23% of the 4 million annual deaths of newborns, and leads to hypoxic-ischemic encephalopathy (HIE. Occurring in five of 1000 live-born infants globally and even more in developing countries, HIE is a serious problem that causes death in 25%–50% of affected neonates and neurological disability to at least 25% of survivors. In order to prevent the damage caused by HIE, our invention provides an effective whole-body cooling of the neonates by utilizing evaporation and an endothermic reaction. Our device is composed of basic electronics, clay pots, sand, and urea-based instant cold pack powder. A larger clay pot, lined with nearly 5 cm of sand, contains a smaller pot, where the neonate will be placed for therapeutic treatment. When the sand is mixed with instant cold pack urea powder and wetted with water, the device can extract heat from inside to outside and maintain the inner pot at 17°C for more than 24 hours with monitoring by LED lights and thermistors

  5. Cost-effective therapeutic hypothermia treatment device for hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Kim, John J; Buchbinder, Nathan; Ammanuel, Simon; Kim, Robert; Moore, Erika; O'Donnell, Neil; Lee, Jennifer K; Kulikowicz, Ewa; Acharya, Soumyadipta; Allen, Robert H; Lee, Ryan W; Johnston, Michael V

    2013-01-01

    Despite recent advances in neonatal care and monitoring, asphyxia globally accounts for 23% of the 4 million annual deaths of newborns, and leads to hypoxic-ischemic encephalopathy (HIE). Occurring in five of 1000 live-born infants globally and even more in developing countries, HIE is a serious problem that causes death in 25%-50% of affected neonates and neurological disability to at least 25% of survivors. In order to prevent the damage caused by HIE, our invention provides an effective whole-body cooling of the neonates by utilizing evaporation and an endothermic reaction. Our device is composed of basic electronics, clay pots, sand, and urea-based instant cold pack powder. A larger clay pot, lined with nearly 5 cm of sand, contains a smaller pot, where the neonate will be placed for therapeutic treatment. When the sand is mixed with instant cold pack urea powder and wetted with water, the device can extract heat from inside to outside and maintain the inner pot at 17°C for more than 24 hours with monitoring by LED lights and thermistors. Using a piglet model, we confirmed that our device fits the specific parameters of therapeutic hypothermia, lowering the body temperature to 33.5°C with a 1°C margin of error. After the therapeutic hypothermia treatment, warming is regulated by adjusting the amount of water added and the location of baby inside the device. Our invention uniquely limits the amount of electricity required to power and operate the device compared with current expensive and high-tech devices available in the United States. Our device costs a maximum of 40 dollars and is simple enough to be used in neonatal intensive care units in developing countries.

  6. 神经生长因子对缺氧缺血性脑损伤患者闪光视觉诱发电位的影响%Impact of nerve growth factor on flash-visual evoked potential in patients with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    黄杰; 周艳

    2004-01-01

    BACKGROUND: Flash-visual evoked potential(F-VEP) is a new easy practicable method in the clinical evaluation of the functional status of central nervous system in paediatrics at present.OBJECTIVE: To investigate the sensitivity of F-VEP in the reflection of hypoxic-ischemic brain damage(HIBD) in neonatal rats for studying the protective effect of nerve growth factor(NGF) on neonatal HIBD rats, which is aimed to provide a theoretical gist in early diagnosis and intervention in neonatal HIBD.DESIGN: A complete randomised controlled trial.SETTING and PARTICIPANTS: Study was conducted in the Department of Paediatrics of the Second Affiliated Hospital of Nanjing Medical University. A total of 60 7-day old SD rats in either gender with a mass from 14 g to 18 g were obtained from the experimental animal centre of Nanjing Medical University, which were SPF experimental animals fed in barrier environment.INTERVENTIONS: A total of 40 rats were randomly allocated into two groups after the establishment of HIBD animal model: HIBD model without treatment group(HIBD group, n=20) and HIBD model NGF treatment group(NGF group, n = 20) and another 20 rats were set in normal control group (control group).MAIN OUTCOME MEASURES: To observe the alteration of F-VEP in control group as well as after HIBD, and the impact of NGF on the increase of mass, mortality, brain weight of left and right side and F-VEP wave in neonatal HIBD rats.RESULTS: Rats in NGF group had an increase of( 11.9 ± 3.5) g in mass, the mortality rate was 5% during the study, and the brain weight of the HIBD side (left side) was(0. 59 ±0.02), which all had signiticant differences compared with that of HIBD group( P < 0. 01). There was no significant difference of the brain weight between right and left side in NGF group but there was significance in HIBD group, which were[(3.39 ±0. 10) g and(0. 57 ±0.05) g] respectively(P < 0.01) . The F-VEP latencies immediately after HIBD in both NGF group and HIBD group[(36

  7. Mapping the Knowledge Structure of Neonatal Hypoxic-Ischemic Encephalopathy Over the Past Decade: A Co-word Analysis Based on Keywords.

    Science.gov (United States)

    Huang, Jichong; Tang, Jun; Qu, Yi; Zhang, Li; Zhou, Yan; Bao, Shan; Mu, Dezhi

    2016-05-01

    The aim of this study was to analyze the knowledge structure and report the evolution of hypoxic-ischemic encephalopathy research over the past decade based on co-word analysis. Scientific publications focusing on neonatal hypoxic-ischemic encephalopathy were searched from the Web of Science database (January 2005 to December 2014). The keywords from these articles were extracted, and a knowledge network based on these keywords was built using Ucinet6.212 and NetDraw2.084 software. A total of 1892 papers were included, and 39 high-frequency keywords were defined. "HIE" and "neonate" located at the center of the knowledge network. Etiology and pathogenesis, clinical manifestation, and therapy were researched more widely in the network than other aspects of hypoxic-ischemic encephalopathy. This co-word analysis provides an overview of neonatal hypoxic-ischemic encephalopathy research and suggests that the etiology, clinical manifestation, and therapy of hypoxic-ischemic encephalopathy have become research cores over the past decade.

  8. 促红细胞生成素对缺氧缺血性脑损伤新生大鼠水通道蛋白4表达的影响%Effect of Erythropoietin on Expression of Aquaporin 4 in Neonatal Rats with Hypoxic-Ischemic Brain Damage

    Institute of Scientific and Technical Information of China (English)

    邵长荣; 姜红

    2012-01-01

    -rin 4 (AQP - 4) in brain tissue of neonatal rats with hypoxic - ischemic brain damage ( HIBD). Methods One hundred seven - day - old Sprague - Dawley(SD) rats were randomly divided into sham - operated group, control group, EPO low - dose group, EPO medium - dose group, EPO high - dose group( each group had 20 cases). The right carotid artery of rats in sham - operated group were only isolated, without ischemia,hypoxia and medication,while the other 4 groups were made by shearing right arteria carotis communis and breathing 80 mL · L-1 oxygen and 920 mL · L-1 nitrogen for 2 h. Then EPO low - dose group,EPO medium - dose group,EPO high - dose group received an intra-peritoneal injection of EPO with dose of 1 000 IU · kg-1,2 500 11) · kg-1, and 5 000 IU · kg -1 respectively in 0 hour,1 day,3 days,5 days. The other 2 groups received equivalent saline at the same time. Ten rats in each group were randomly executed on the 3rd and 7th day after the hypoxic - ischemic operation( n = 10). The AQP -4 expression in neonatal rats brain was examined by using immunohistochemical technique and image quantitative analysis respectively on the 3rd,7th day after the operation. Results 1. The number of AQP -4 positive cells in control group[(42.60±4.82) cells] was significantly higher than that in other groups on the 3rd day[ (26.60 ±4.67) cells,(36.60 ±3.97) cells, (20.80 ±7.90) cells, (23.00 ±9.60) cells, P, 0.05). 2. The number of AQP -4 positive cells in control group[(46. 20 ±5. 07) cells] was higher than that in sham - operated group,EPO medium - dose group and EPO high —dose group on the 7th day[ (16. 80 ±4.65) cells, (33.20 ±4.38) cells, (25-60 ±7.63) cells,P. <0.05]. The number of AQP-4 positive cells in EPO high -dose group was less than that in EPO medium -dose group,and that in EPO medium-dose group was less than that in EPO low -dose group,too(Pa <0.05). By HE staining, the damage of brain tissue in the hippocampal region in EPO low - dose group, EPO medium

  9. Clinical hypoxic-ischemic encephalopathy score of the Iberoamerican Society of Neonatology (Siben: A new proposal for diagnosis and management

    Directory of Open Access Journals (Sweden)

    José Maria Rodriguez Perez

    Full Text Available Summary Hypoxic ischemic encephalopathy is a major complication of perinatal asphyxia, with high morbidity, mortality and neurologic sequelae as cerebral palsy, mostly in poor or developing countries. The difficulty in the diagnosis and management of newborns in these countries is astonishing, thus resulting in unreliable data on this pathology and bad outcomes regarding mortality and incidence of neurologic sequelae. The objective of this article is to present a new clinical diagnostic score to be started in the delivery room and to guide the therapeutic approach, in order to improve these results.

  10. [Application of pulse-coupled neural network combined with genetic algorithm on MR images of hypoxic-ischemic encephalopathy].

    Science.gov (United States)

    Liu, Li; Shi, Haiying; Huo, Liqin; Zhang, Feng; Zheng, Chongxun; You, Jia; He, Xining; Zhang, Jie

    2011-10-01

    This paper is to provide a basis for the establishment of an early diagnostic system for hypoxic-ischemic encephalopathy (HIE) by performing segmentation and feature extraction of lesions on the MR images of neonatal babies with HIE. The segmentation on MR images of HIE based on the genetic algorithm (GA) combined with a pulse-coupled neural network (PCNN) were carried out. There were better segmentation results by using PCNN segmentation based on GA than PCNN segmentation with fixed parameters. The data suggested that a PCNN based on GA could provide effective assistance for diagnosis and research.

  11. Neuroprotective properties of Melissa officinalis after hypoxic-ischemic injury both in vitro and in vivo.

    Science.gov (United States)

    Bayat, Mohammad; Azami Tameh, Abolfazl; Hossein Ghahremani, Mohammad; Akbari, Mohammad; Mehr, Shahram Ejtemaei; Khanavi, Mahnaz; Hassanzadeh, Gholamreza

    2012-10-03

    Brain ischemia initiates several metabolic events leading to neuronal death. These events mediate large amount of damage that arises after some neurodegenerative disorders as well as transient brain ischemia. Melissa officinalis is considered as a helpful herbal plant in the prevention of various neurological diseases like Alzheimer that is related with oxidative stress. We examined the effect of Melissa officinalis on hypoxia induced neuronal death in a cortical neuronal culture system as in vitro model and transient hippocampal ischemia as in vivo model. Transient hippocampal ischemia was induced in male rats by tow vessel-occlusion for 20 min. After reperfusion, the histopathological changes and the levels inflammation, oxidative stress status, and caspase-3 activity in hippocampus were measured. Cytotoxicity assays showed a significant protection of a 10 μg/ml dose of Melissa against hypoxia in cultured neurons which was confirmed by a conventional staining (PMelissa treatment decrease caspase3 activity (PMelissa oil has also inhibited malon dialdehyde level and attenuated decrease of Antioxidant Capacity in the hippocampus. Pro-inflammatory cytokines TNF-α, IL-1β and HIF-1α mRNA levels were highly increased after ischemia and treatment with Melissa significantly suppressed HIF-1α gene expression (PMelissa officinalis could be considered as a protective agent in various neurological diseases associated with ischemic brain injury.

  12. Neuroprotective properties of Melissa officinalis after hypoxic-ischemic injury both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Bayat Mohammad

    2012-10-01

    Full Text Available Abstract Background Brain ischemia initiates several metabolic events leading to neuronal death. These events mediate large amount of damage that arises after some neurodegenerative disorders as well as transient brain ischemia. Melissa officinalis is considered as a helpful herbal plant in the prevention of various neurological diseases like Alzheimer that is related with oxidative stress. Methods We examined the effect of Melissa officinalis on hypoxia induced neuronal death in a cortical neuronal culture system as in vitro model and transient hippocampal ischemia as in vivo model. Transient hippocampal ischemia was induced in male rats by tow vessel-occlusion for 20 min. After reperfusion, the histopathological changes and the levels inflammation, oxidative stress status, and caspase-3 activity in hippocampus were measured. Results Cytotoxicity assays showed a significant protection of a 10 μg/ml dose of Melissa against hypoxia in cultured neurons which was confirmed by a conventional staining (P Discussion Results showed that Melissa officinalis could be considered as a protective agent in various neurological diseases associated with ischemic brain injury.

  13. Neuroprotective properties of Melissa officinalis after hypoxic-ischemic injury both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Mahnaz Khanavi

    2012-10-01

    Full Text Available Brain ischemia initiates several metabolic events leading to neuronal death. These events mediate large amount of damage that arises after some neurodegenerative disorders as well as transient brain ischemia. Melissa officinalis is considered as a helpful herbal plant in the prevention of various neurological diseases like Alzheimer that is related with oxidative stress.MethodsWe examined the effect of Melissa officinalis on hypoxia induced neuronal death in a cortical neuronal culture system as in vitro model and transient hippocampal ischemia as in vivo model. Transient hippocampal ischemia was induced in male rats by tow vessel-occlusion for 20 min. After reperfusion, the histopathological changes and the levels inflammation, oxidative stress status, and caspase-3 activity in hippocampus were measured.ResultsCytotoxicity assays showed a significant protection of a 10 mug/ml dose of Melissa against hypoxia in cultured neurons which was confirmed by a conventional staining (P<0.05. Melissa treatment decrease caspase3 activity (P<0.05 and TUNEL-positive cells significantly (P<0.01. Melissa oil has also inhibited malon dialdehyde level and attenuated decrease of Antioxidant Capacity in the hippocampus. Pro-inflammatory cytokines TNF-alpha, IL-1beta and HIF-1alpha mRNA levels were highly increased after ischemia and treatment with Melissa significantly suppressed HIF-1alpha gene expression (P<0.05.DiscussionResults showed that Melissa officinalis could be considered as a protective agent in various neurological diseases associated with ischemic brain injury.

  14. Complement in the Homeostatic and Ischemic Brain

    Science.gov (United States)

    Alawieh, Ali; Elvington, Andrew; Tomlinson, Stephen

    2015-01-01

    The complement system is a component of the immune system involved in both recognition and response to pathogens, and it is implicated in an increasing number of homeostatic and disease processes. It is well documented that reperfusion of ischemic tissue results in complement activation and an inflammatory response that causes post-reperfusion injury. This occurs following cerebral ischemia and reperfusion and triggers secondary damage that extends beyond the initial infarcted area, an outcome that has rationalized the use of complement inhibitors as candidate therapeutics after stroke. In the central nervous system, however, recent studies have revealed that complement also has essential roles in synaptic pruning, neurogenesis, and neuronal migration. In the context of recovery after stroke, these apparent divergent functions of complement may account for findings that the protective effect of complement inhibition in the acute phase after stroke is not always maintained in the subacute and chronic phases. The development of effective stroke therapies based on modulation of the complement system will require a detailed understanding of complement-dependent processes in both early neurodegenerative events and delayed neuro-reparatory processes. Here, we review the role of complement in normal brain physiology, the events initiating complement activation after cerebral ischemia-reperfusion injury, and the contribution of complement to both injury and recovery. We also discuss how the design of future experiments may better characterize the dual role of complement in recovery after ischemic stroke. PMID:26322048

  15. Long-Term Neuropathological Changes Associated with Cerebral Palsy in a Nonhuman Primate Model of Hypoxic-Ischemic Encephalopathy.

    Science.gov (United States)

    McAdams, Ryan M; Fleiss, Bobbi; Traudt, Christopher; Schwendimann, Leslie; Snyder, Jessica M; Haynes, Robin L; Natarajan, Niranjana; Gressens, Pierre; Juul, Sandra E

    2017-01-01

    Cerebral palsy (CP) is the most common motor disability in childhood, with a worldwide prevalence of 1.5-4/1,000 live births. Hypoxic-ischemic encephalopathy (HIE) contributes to the burden of CP, but the long-term neuropathological findings of this association remain limited. Thirty-four term Macaca nemestrina macaques were included in this long-term neuropathological study: 9 control animals delivered by cesarean section and 25 animals with perinatal asphyxia delivered by cesarean section after 15-18 min of umbilical cord occlusion (UCO). UCO animals were randomized to saline (n = 11), therapeutic hypothermia (TH; n = 6), or TH + erythropoietin (Epo; n = 8). Epo was given on days 1, 2, 3, and 7. Animals had serial developmental assessments and underwent magnetic resonance imaging with diffusion tensor imaging at 9 months of age followed by necropsy. Histology and immunohistochemical (IHC) staining of brain and brainstem sections were performed. All UCO animals demonstrated and met the standard diagnostic criteria for human neonates with moderate-to-severe HIE. Four animals developed moderate-to-severe CP (3 UCO and 1 UCO + TH), 9 had mild CP (2 UCO, 3 UCO + TH, 3 UCO + TH + Epo, and 1 control), and 2 UCO animals died. None of the animals treated with TH + Epo died, had moderate-to-severe CP, or demonstrated signs of long-term neuropathological toxicity. Compared to animals grouped together as having no CP (no-CP; controls and mild CP only), animals with CP (moderate and severe) demonstrated decreased fractional anisotropy of multiple white-matter tracts including the corpus callosum and internal capsule, when using Tract-Based Spatial Statistics (TBSS). Animals with CP had decreased staining for cortical neurons and increased brainstem glial scarring compared to animals without CP. The cerebellar cell density of the internal granular layer and white matter was decreased in CP animals compared to that in control animals without CP. In this nonhuman primate HIE

  16. Effect of acute hypoxic shock on the rat brain morphology and tripeptidyl peptidase I activity.

    Science.gov (United States)

    Petrova, Emilia B; Dimitrova, Mashenka B; Ivanov, Ivaylo P; Pavlova, Velichka G; Dimitrova, Stella G; Kadiysky, Dimitar S

    2016-06-01

    Hypoxic events are known to cause substantial damage to the hippocampus, cerebellum and striatum. The impact of hypoxic shock on other brain parts is not sufficiently studied. Recent studies show that tripeptidyl peptidase I (TPPI) activity in fish is altered after a hypoxic stress pointing out at a possible enzyme involvement in response to hypoxia. Similar studies are not performed in mammals. In this work, the effect of sodium nitrite-induced acute hypoxic shock on the rat brain was studied at different post-treatment periods. Morphological changes in cerebral cortex, cerebellum, medulla oblongata, thalamus, mesencephalon and pons were assessed using silver-copper impregnation for neurodegeneration. TPPI activity was biochemically assayed and localized by enzyme histochemistry. Although less vulnerable to oxidative stress, the studied brain areas showed different histopathological changes, such as neuronal loss and tissue vacuolization, dilatation of the smallest capillaries and impairment of neuronal processes. TPPI activity was strictly regulated following the hypoxic stress. It was found to increase 12-24h post-treatment, then decreased followed by a slow process of recovery. The enzyme histochemistry revealed a temporary enzyme deficiency in all types of neurons. These findings indicate a possible involvement of the enzyme in rat brain response to hypoxic stress.

  17. Early application of nerve growth factor affects serum inflammatory cytokine levels in neonatal hypoxic ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: It has been demonstrated that there are changes of various cytokines, chemokines and adhesion factors in neonatal hypoxic ischemic encephalopathy (HIE). What are the changes of interleukin-6 and interleukin-18 in serum of HIE neonates.OBJECTIVE: To observe the dynamic changes of interleukin-6 and interleukin-18 in peripheral serum at different time after HIE in neonates, and analyze the possible therapeutic efficacy of early application of NGF.DESIGN: A non-randomized controlled observation synchronically.SETTING: Department of Neonatology, Sun Yat-sen Hospital affiliated to Sun Yat-sen University.PARTICIPANTS: Sixty neonates with HIE were selected from the Department of Neonatology, Sun Yat-sen Hospital affiliated to Sun Yat-sen University from January 2004 to October 2006, including 32 boys and 28 girls, who were all accorded with the diagnostic standards for moderate to severe HIE. The neonates were divided into two groups NGF-treated group (n =30), HIE group (n =30). The HIE neonates in the NGF-treated group were given routine treatment and intramuscular injection of NGF within 24 hours after birth. Those in the HIE group were given routine treatments. Meanwhile, 30 apneic normal neonates (17 boys and 13 girls) at the same period were selected as the control group. The gestational age was 37 - 42 weeks in all the three groups, the body mass at birth was 2 500 - 4 000 g. Informed contents were obtained from the relatives of all the enrolled neonates.METHODS: The HIE neonates in the NGF-treated group were given routine treatment and intramuscular injection of NGF (2 000 U) within 24 hours after birth, once a day, 10 days as a course. Those in the HIE group were given routine treatments. Blood samples (3 mL) were drawn from femoral vein in all the neonates 1, 3 and 7 days after birth. The levels of interleukin-6 and interleukin-18 in serum were detected with enzyme-linked immunoabsorbent assay (ELISA).MAIN OUTCOME MEASURES: Serum levels of interlenkin

  18. Neuroprotective body hypothermia among newborns with hypoxic ischemic encephalopathy: three-year experience in a tertiary university hospital. A retrospective observational study

    Directory of Open Access Journals (Sweden)

    Mauricio Magalhães

    Full Text Available CONTEXT AND OBJECTIVE:Neonatal hypoxic-ischemic encephalopathy is associated with high morbidity and mortality. Studies have shown that therapeutic hypothermia decreases neurological sequelae and death. Our aim was therefore to report on a three-year experience of therapeutic hypothermia among asphyxiated newborns.DESIGN AND SETTING:Retrospective study, conducted in a university hospital.METHODS:Thirty-five patients with perinatal asphyxia undergoing body cooling between May 2009 and November 2012 were evaluated.RESULTS:Thirty-nine infants fulfilled the hypothermia protocol criteria. Four newborns were removed from study due to refractory septic shock, non-maintenance of temperature and severe coagulopathy. The median Apgar scores at 1 and 5 minutes were 2 and 5. The main complication was infection, diagnosed in seven mothers (20% and 14 newborns (40%. Convulsions occurred in 15 infants (43%. Thirty-one patients (88.6% required mechanical ventilation and 14 of them (45% were extubated within 24 hours. The duration of mechanical ventilation among the others was 7.7 days. The cooling protocol was started 1.8 hours after birth. All patients showed elevated levels of creatine phosphokinase, creatine phosphokinase- MB and lactate dehydrogenase. There was no severe arrhythmia; one newborn (2.9% presented controlled coagulopathy. Four patients (11.4% presented controlled hypotension. Twenty-nine patients (82.9% underwent cerebral ultrasonography and 10 of them (34.5% presented white matter hyper-echogenicity. Brain magnetic resonance imaging was performed on 33 infants (94.3% and 11 of them (33.3% presented hypoxic-ischemic changes. The hospital stay was 23 days. All newborns were discharged. Two patients (5.8% needed gastrostomy.CONCLUSION:Hypothermia as therapy for asphyxiated newborns was shown to be safe.

  19. Apparent diffusion coefficient in quantitative analysis of brain injury in term neonates with hypoxic-ischemic encephalopathy%应用表观弥散系数定量分析缺血缺氧性脑病新生儿的脑损伤

    Institute of Scientific and Technical Information of China (English)

    赵博; 张雪宁; 徐国萍; 孟华伟

    2014-01-01

    Objective Applying diffusion weighted image (DWI) and apparent diffusion coefficient (ADC) to analyze brain injury caused by hypoxic-ischemic encephalopathy (HIE) in term neonates.Methods From June 1,2010 to January 5,2011,thirty-eight full term neonates with HIE were hospitalized in the Second Hospital of Tianjin Medical University.Those with nervous system diseases were excluded.The 38 cases were divided to mild HIE group (n=24) and moderate-to-severe HIE group (n=14).The control group included 10 normal full term neonates without history of asphyxia.All babies were scanned by magnetic resonance imaging (MRI).Spin echo-echo planar imaging sequence was used for DWI images.ADC values of nine regions (frontal lobe gray matter,frontal white matter,parietal gray matter,parietal white matter,corona radiata,caudate nucleus,putamen,posterior limb of the internal capsule and thalamus) were measured.MRI and DWI images were compared.ADC values were compared by analysis of variance and Student-Newman-Keuls test.Results ADC values of the nine indicated regions (frontal lobe gray matter,frontal white matter,parietal gray matter,parietal white matter,corona radiata,caudate nucleus,putamen,posterior limb of the internal capsule and thalamus) were (1.37±0.07),(1.81±0.12),(1.35±0.10),(1.84±0.09),(1.23±0.11),(1.28±0.09),(1.18±0.08),(1.05±0.07) and (1.15±0.08) ×10-3 mm2/s in control group,(1.28±0.11),(1.60±0.15),(1.27±0.09),(1.59±0.20),(1.19±0.15),(1.19±0.13),(1.11±0.09),(0.97±0.11) and (1.06±0.12) ×10-3 mm2/s in mild HIE group,and (1.18±0.14),(1.51±0.22),(1.19±0.09),(1.56±0.19),(1.03±0.16),(1.08±0.07),(1.02±0.07),(0.87±0.09) and (0.96±0.12) × 10-3 mm2/s in moderate-to-severe HIE group.ADC values among the three groups had statistical difference (F=3.89,3.21,4.05,3.30,3.28,3.27,4.12,4.75and 4.72,all P<0.05).ADC values of frontal lobe gray matter,frontal white matter,parietal gray matter,parietal white matter,putamen,posterior limb of the internal

  20. Influences of Hypoxic-ischemic Brain Damage on Pineal Arylalkylamine-N-acetyltransferase mRNA Expression and Plasma Melatonin Level in Neonatal Rats%缺氧缺血对新生大鼠松果体芳香烷基胺-N-乙酰基转移酶

    Institute of Scientific and Technical Information of China (English)

    丁欣; 姜善雨; 冯星; 何军; 孙斌; 朱雪明

    2011-01-01

    Objective To elucidate the influences of hypoxic-ischemic brain damage (HIBD) on pineal function of melatonin synthesis and explore the possible significance of pineal function alterations in HIBD.Methods Sixty seven-day-old rats were randomly divided into 2 groups: the HIBD group and sham-operated group.Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was used to measure the melatonin-synthetase-arylalkylamine-N-acetyltransferase (AANAT) mRNA expressions in pineal gland.Radioimmunoassay (RIA) was used to measure the plasma melatonin levels.Results ( 1 ) The AANAT mRNA expression 6 h, 12 h, 24 h after HIBD were lower than those in the corresponding sham-operated groups( P <0.05 or 0.01 ) ,and no significant difference was found among different time points in the sham-operated groups; (2) The plasma melatonin levels 12 h, 24 h after HIBD were lower than those in the corresponding sham-operated groups.The melatonin levels at different time points in the sham-operated group were similar.Conclusions Pineal melatonin-synthesis is impaired on early stage of HIBD.Alternation of the protective process of endogenous MLT might be involved in pathogenic mechanism of early HIBD.%目的 了解缺氧缺血性脑损伤(HIBD)对松果体芳香烷基胺-N-乙酰基转移酶(AANAT)mRNA表达和血浆褪黑素(MLT)含量的影响,探讨松果体功能改变在HIBD中的意义.方法 选取7日龄SD大鼠60只随机分成HIBD模型组和假手术组.HIBD模型组按改良Levine法建立,然后用半定量逆转录聚合酶链反应(RT-PCR)和放免技术分别测定并比较两组缺氧缺血后0 h、6 h、12 h、24h、48 h松果体中AANAT mRNA的表达水平及血浆MLT的浓度.结果 (1)松果体中AANAT mRNA的表达在HIBD后6 h、12 h、24 h低于对应假手术组(P<0.05或<0.01);假手术组各时点之间AANAT mRNA的表达水平无明显变化(P>0.05).(2)血浆MLT浓度在HIBD后12 h、24 h均低于对应假手术组(P<0.01);假手术组

  1. 蛋白激酶R样内质网激酶的磷酸化对缺氧缺血性脑损伤新生大鼠脑神经细胞凋亡的影响%The role of phosphorylated protein kinase R-like ER kinase in brain tissue of hypoxic-ischemic neonatal rats and the following effect on neuronic apoptosis

    Institute of Scientific and Technical Information of China (English)

    顾卉; 纪莲; 黄天楚; 梅妍; 袁正伟

    2015-01-01

    Objective To investigate the effect and mechanism of phosphorylated protein kinase R-like ER kinase(p-PERK) and C/EBP homologous protein(CHOP) after hypoxic-ischemic brain damage ( HIBD) . Methods Neonatal 7-day-old Sprague Dawley rats were divided into sham-operation control group and HIBD group( n=30 per group) . Each group was divided into 0 h,6 h and 24 h subgroup after operation ( n=10 per group) . The ratio of apoptosis of brain cell was measured by flow cytometer and the expression of p-PERK and CHOP were detected by Western blot. Results (1)Apoptosis cell appeared at 6 h in HIBD group,the ratio of cell apoptosis was(2. 17 ± 0. 19)%. The apoptosis cell obvious increased at 24 h,the ratio of cell apoptosis was(13. 42 ± 0. 83)%. There was a significant increase in the ratio of apoptosis after HIBD 6 h and 24 h, as compared with sham-operation control group [ ( 0. 57 ± 0. 06 )%( P 0.05)。与假手术组比较,HIBD组各时间点二者的表达均明显上升,差异有统计学意义(P<0.01)。(3)缺氧缺血后各时间点磷酸化的PERK 的表达和 CHOP 的表达呈正相关(r=0.997,P<0.05)。结论脑缺氧缺血后,随着凋亡的出现,磷酸化的PERK 和 CHOP 表达水平升高,提示 PERK-CHOP通路的活化可能参与了新生大鼠 HIBD 神经细胞凋亡的发生。

  2. Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling

    DEFF Research Database (Denmark)

    Westberg, Johan A; Serlachius, Martina; Lankila, Petri

    2007-01-01

    . Increased expression of IL-6 is evident, particularly in the lungs of animals subjected to hypoxic preconditioning. Stanniocalcin-1 (STC-1) is a 56-kDa homodimeric glycoprotein originally discovered in bony fish, where it regulates calcium/phosphate homeostasis and protects against toxic hypercalcemia. We...... mRNA levels in brains of wild-type and IL-6 deficient mice. Furthermore, we monitored the Stc-1 response in brains of wild-type and transgenic mice, overexpressing IL-6 in the astroglia, before and after induced brain injury. RESULTS: Hypoxic preconditioning induced an upregulated expression of Stc......-1 in brains of wild-type but not of IL-6-deficient mice. Induced brain injury elicited a stronger STC-1 response in brains of transgenic mice, with targeted astroglial IL-6 expression, than in brains of wild-type mice. Moreover, IL-6 induced STC-1 expression via MAPK signaling in neural Paju cells...

  3. Dedifferentiated Fat Cells as a Novel Source for Cell Therapy to Target Neonatal Hypoxic-Ischemic Encephalopathy.

    Science.gov (United States)

    Mikrogeorgiou, Alkisti; Sato, Yoshiaki; Kondo, Taiki; Hattori, Tetsuo; Sugiyama, Yuichiro; Ito, Miharu; Saito, Akiko; Nakanishi, Keiko; Tsuji, Masahiro; Kazama, Tomohiko; Kano, Koichiro; Matsumoto, Taro; Hayakawa, Masahiro

    2017-03-09

    Neonatal hypoxic-ischemic (HI) encephalopathy (HIE) remains a major cause of mortality and persistent neurological disabilities in affected individuals. At present, hypothermia is considered to be the only applicable treatment option, although growing evidence suggests that cell-based therapy might achieve better outcomes. Dedifferentiated fat (DFAT) cells are derived from mature adipocytes via a dedifferentiation strategy called ceiling culture. Their abundance and ready availability might make them an ideal therapeutic tool for the treatment of HIE. In the present study, we aimed to determine whether the outcome of HIE can be improved by DFAT cell treatment. HI injury was achieved by ligating the left common carotid artery in 7-day-old rat pups, followed by 1-h exposure to 8% O2. Subsequently, the severity of damage was assessed by diffusion-weighted magnetic resonance imaging to assign animals to equivalent groups. 24 h after hypoxia, DFAT cells were injected at 105 cells/pup into the right external jugular vein. To evaluate brain damage in the acute phase, a group of animals was sacrificed 48 h after the insult, and paraffin sections of the brain were stained to assess several acute injury markers. In the chronic phase, the behavioral outcome was measured by performing a series of behavioral tests. From the 24th day of age, the sensorimotor function was examined by evaluating the initial forepaw placement on a cylinder wall and the latency to falling from a rotarod treadmill. The cognitive function was tested with the novel object recognition (NOR) test. In vitro conditioned medium (CM) prepared from cultured DFAT cells was added at various concentrations to neuronal cell cultures, which were then exposed to oxygen-glucose deprivation (OGD). The number of cells that stained positive for the apoptosis marker active caspase-3 decreased by 73 and 52% in the hippocampus and temporal cortex areas of the brain, respectively, in the DFAT-treated pups. Similarly, the

  4. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  5. 枸橼酸咖啡因对新生大鼠缺氧缺血性脑损伤后髓鞘碱性蛋白的影响%Effects of caffeine citrate on myelin basic protein in neonatal rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    徐发林; 程慧清; 王彩红; 张彦华; 郭佳佳

    2015-01-01

    目的:研究枸橼酸咖啡因对新生大鼠缺氧缺血性脑损伤(HIBD)后脑白质髓鞘碱性蛋白(MBP)表达的影响及其相关机制。方法将48只7日龄Sprague-Dawley新生大鼠随机分为假手术组、HIBD组和枸橼酸咖啡因干预组,每组16只。左侧颈总动脉结扎并缺氧(80 mL/L氧气和920 mL/L氮气)2 h制作HIBD模型;假手术组仅分离左侧颈总动脉,不行结扎及缺氧处理;干预组在缺氧缺血前、缺氧缺血后0、24、48、72 h给予枸橼酸咖啡因(20 mg/kg)腹腔注射,HIBD组分别在同一时间点以等量生理盐水行替代腹腔注射。各组大鼠于12日龄处死,采用免疫组织化学法检测左侧脑皮层下白质MBP的表达;实时荧光定量逆转录聚合酶链式反应技术(Real-time PCR)检测各组大鼠左侧脑组织腺苷A1受体(A1R)和A2a受体(A2aR)mRNA的含量。结果 HIBD组左侧脑皮质下白质MBP表达较假手术组明显减少(P<0.05),干预组较HIBD组MBP表达增多,但仍低于假手术组(P<0.05);HIBD组A1R mRNA较假手术组显著上调(P<0.05),干预组A1R mRNA较HIBD组显著下降(P<0.05)。结论枸橼酸咖啡因能减轻缺氧缺血后新生大鼠脑白质损伤,这种保护作用可能与下调腺苷A1R表达有关。%Objective To study the effects of caffeine citrate on myelin basic protein (MBP) expression in the cerebral white matter of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the related mechanism. Methods Forty-eight seven-day-old Sprague-Dawley neonatal rats were randomly assigned to 3 groups:sham operation (n=16), HIBD (n=16) and HIBD+caffeine citrate (n=16). The rats in the HIBD and HIBD+caffeine citrate groups were subjected to left common carotid artery ligation, and then were exposed to 80 mL/L oxygen and 920 mL/L nitrogen for 2 hours to induce HIBD. The rats in the sham operation group were only subjected to a sham operation, without the left common

  6. Comparison of selective head cooling therapy and whole body cooling therapy in newborns with hypoxic ischemic encephalopathy: short term results

    Science.gov (United States)

    Atıcı, Aytuğ; Çelik, Yalçın; Gülaşı, Selvi; Turhan, Ali Haydar; Okuyaz, Çetin; Sungur, Mehmet Ali

    2015-01-01

    Aim: In this study, it was aimed to investigate which method was superior by applying selective head cooling or whole body cooling therapy in newborns diagnosed with moderate or severe hypoxic ischemic encephalopathy. Materials and Method: Newborns above the 35th gestational age diagnosed with moderate or severe hypoxic ischemic encephalopathy were included in the study and selective head cooling or whole body cooling therapy was performed randomly. The newborns who were treated by both methods were compared in terms of adverse effects in the early stage and in terms of short-term results. Ethics committee approval was obtained for the study (06.01.2010/35). Results: Fifty three babies diagnosed with hypoxic ischemic encephalopathy were studied. Selective head cooling was applied to 17 babies and whole body cooling was applied to 12 babies. There was no significant difference in terms of adverse effects related to cooling therapy between the two groups. When the short-term results were examined, it was found that the hospitalization time was 34 (7–65) days in the selective head cooling group and 18 (7–57) days in the whole body cooling group and there was no significant difference between the two groups (p=0.097). Four patients in the selective head cooling group and two patients in the whole body cooling group were discharged with tracheostomy because of the need for prolonged mechanical ventilation and there was no difference between the groups in terms of discharge with tracheostomy (p=0.528). Five patients in the selective head cooling group and three patients in the whole body cooling group were discharged with a gastrostomy tube because they could not be fed orally and there was no difference between the groups in terms of discharge with a gastrostomy tube (p=0.586). One patient who was applied selective head cooling and one patient who was applied whole body cooling died during hospitalization and there was no difference between the groups in terms of

  7. Analysis of 127 peripartum hypoxic brain injuries from closed claims registered by the Danish Patient Insurance Association

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.

    2008-01-01

    : The authors retrospectively investigated peripartum hypoxic brain injuries registered by the Danish Patient Insurance Association. RESULTS: From 1992 to 2004, 127 approved claims concerning peripartum hypoxic brain injuries were registered and subsequently analysed. Thirty-eight newborns died, and a majority...

  8. Effects of platelet derived growth factor on brain cell apoptosis rate and serum neuron-specific enolase after hypoxic-ischemic brain damage in neonatal rats%血小板生长因子对缺氧缺血性脑损伤新生鼠脑细胞凋亡率和血清神经元特异性烯醇化酶的影响

    Institute of Scientific and Technical Information of China (English)

    周春清; 许锋; 姜红; 薛永梅

    2011-01-01

    目的 研究血小板源性生长因子(platelet derived growth factor,PDGF)对缺氧缺血性脑损伤(hypoxic-ischemic brain damage,HIBD)的新生鼠神经细胞凋亡率及血清神经元特异性烯醇化酶(neuron-specific enolase,NSE)浓度的影响,进而探讨其对HIBD的神经保护作用. 方法 7日龄新生Wistar大鼠48只制备HIBD模型,并分为PDGF治疗组和生理盐水对照组,每组各24只.另取24只为假手术组.治疗组在缺氧缺血后即刻给PDGF-BB 50 ng/kg腹腔注射.对照组和假手术组腹腔注射等体积的生理盐水.每组于处置后12、24和72 h随机取8只处死,留血清标本,酶联免疫吸附法检测大鼠血清标本NSE浓度;取右侧大脑组织制备脑细胞悬液,双染法流式细胞仪检测脑细胞凋亡率.采用单因素方差分析及q检验进行统计学分析. 结果 (1)脑细胞凋亡率:治疗组[(6.09±0.70)%、(9.67±1.52)%和(14.15±1.52)%]和对照组[(8.00±1.10)%、(11.45±2.42)%和(22.90±2.03)%]3个时点的脑细胞凋亡率均较假手术组(2.11±0.54)%、(2.34±0.46)%和(2.21±0.49)%]显著增加(P均<0.01或<0.05),治疗组较对照组各时点脑细胞凋亡率均明显降低(P均<0.01或<0.05),3组大鼠在12、24、72 h时的组间比较差异均有统计学意义(F=39.01、66.60、194.20,P均<0.01).(2)血清NSE浓度:各时点对照组[(10.04±0.19) μg/L、(9.33±0.15)μg/L和(8.36±0.16)μg/L]和治疗组[(8.43±0.17)μg/L、(6.73±0.16) μg/L和(6.12±0.13)μg/L]较假手术组[(4.22±0.53)μg/L、(3.96±0.60) μg/L和(3.59±0.55) μg/L]NSE浓度增加(P均<0.01),治疗组较对照组各时点NSE浓度降低(P均<0.01),3组大鼠在12、24、72h组间比较差异均有统计学意义(F=371.25、245.61、236.22,P均<0.01). 结论 PDGF能抑制新生大鼠HIBD后神经细胞凋亡及降低血清NSE浓度,对HIBD新生大鼠有神经保护作用.%Objective To investigate the effects of platelet derived growth factor (PDGF) on brain cell

  9. Expression of Caspase-12 in neonatal rats with hypoxic-ischemic brain damage and the effect of Shenfu injection%缺氧缺血性脑损伤新生大鼠Caspase-12的表达及参附注射液对其的影响

    Institute of Scientific and Technical Information of China (English)

    吴宏伟; 王军; 王伟; 高继生; 杨秋丽

    2012-01-01

    Objective: To research the expression of Caspase - 12 in hippocampal neuronal cells of neonatal rats with hypoxic - ischemic brain damage ( HIBD) and the effect of Shenfu injection, and explore the probable mechanism of apoptosis after HIBD and the neuro-protective mechanism of Shenfu injection. Methods; The neonatal seven - day - old SD rats were randomly divided into sham operation group (S group) , normal saline control group (C group) , Shenfu treatment group (SF group) , then the rats in each group was divided into 3 -hour subgroup, 6 - hour subgroup, 12 - hour subgroup, 24 - hour subgroup, 3 - day subgroup, and 7 - day subgroup, 8 rats in each subgroup , Rice method was used to establish HIBD models of neonatal rats, the brain tissue samples of right hippocampus were obtained for homogenate, reverse transcription - polymerase chain reaction ( RTPCR) was used to detect the expression of Caspase - 12 mRNA,Western blot was used to detect the expression of Caspase - 12 pro-tein, and TUNEL method was used to detect the change of apoptotic morphology. Results: The expression level of Caspase - 12 mRNA in S group was the lowest, the expression levels of Caspase - 12 mRNA in C group and SF group peaked at 12 hours, and the expression levels of Caspase - 12 mRNA in SF group at 6 hours, 12 hours, 24 hours, and 3 days were statistically significantly lower than those in C group (P <0. 01) ; the expression level of Caspase - 12 protein in S group was the lowest, the expression levels of Caspase - 12 protein at 3 hours after hypoxia and ischemia in C group and SF group were statistically significantly higher than that in S group (P <0. 01) , which peaked at 24 hours, and on the seventh day, the expression levels of Caspase - 12 protein in C group and SF group were still statistically significantly higher than that in S group (P <0. 01) , the expression levels of Caspase - 12 protein at 12 hours, 24 hours, and 3 days in SF group were statistically significantly lower than

  10. A clinically relevant model of perinatal global ischemic brain damage in rats.

    Science.gov (United States)

    Yang, Ting; Zhuang, Lei; Terrando, Niccolò; Wu, Xinmin; Jonhson, Mark R; Maze, Mervyn; Ma, Daqing

    2011-04-06

    We have designed a clinically relevant model of perinatal asphyxia providing intrapartum hypoxia in rats. On gestation day 22 SD rats were anesthetized and the uterine horns were exteriorized and placed in a water bath at 37°C for up to 20min. After this, pups were delivered from the uterus and manually stimulated to initiate breathing in an incubator at 37°C for 1 h in air. Brains were harvested and stained with cresyl violet, caspase-3, and TUNEL to detect morphological and apoptotic changes on postnatal days (PND) 1, 3, and 7. Separate cohorts were maintained until PND 50 and tested for learning and memory using Morris water maze (WM). Survival rate was decreased with longer hypoxic time, and 100% mortality was noted when hypoxia time was beyond 18min. Apoptosis was increased with the duration of hypoxia with neuronal loss and cell shrinkage in the CA1 of hippocampus. The time taken for the juveniles to locate the hidden platform during WM was increased in animals subjected to hypoxia. These data demonstrate that perinatal ischemic injury leads to neuronal death in the hippocampus and long-lasting cognitive dysfunction. This model mimics hypoxic ischemic encephalopathy in humans and may be appropriate for investigating therapeutic interventions. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Ischemic postconditioning protects against ischemic brain injury by up-regulation of acid-sensing ion channel 2a

    Institute of Scientific and Technical Information of China (English)

    Wang-sheng Duanmu; Liu Cao; Jing-yu Chen; Hong-fei Ge; Rong Hu; Hua Feng

    2016-01-01

    Ischemic postconditioning renders brain tissue tolerant to brain ischemia, thereby alleviating ischemic brain injury. However, the exact mechanism of action is still unclear. In this study, a rat model of global brain ischemia was subjected to ischemic postconditioning treat-ment using the vessel occlusion method. After 2 hours of ischemia, the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds. This procedure was repeated six times. Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia, and up-regulate acid-sensing ion channel 2a expression at the mRNA and protein level. These ifndings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippo-campus after global brain ischemia, which promotes neuronal tolerance to ischemic brain injury.

  12. Effects of xenon and hypothermia on cerebrovascular pressure reactivity in newborn global hypoxic-ischemic pig model.

    Science.gov (United States)

    Chakkarapani, Elavazhagan; Dingley, John; Aquilina, Kristian; Osredkar, Damjan; Liu, Xun; Thoresen, Marianne

    2013-11-01

    Autoregulation of cerebral perfusion is impaired in hypoxic-ischemic encephalopathy. We investigated whether cerebrovascular pressure reactivity (PRx), an element of cerebral autoregulation that is calculated as a moving correlation coefficient between averages of intracranial and mean arterial blood pressure (MABP) with values between -1 and +1, is impaired during and after a hypoxic-ischemic insult (HI) in newborn pigs. Associations between end-tidal CO2, seizures, neuropathology, and PRx were investigated. The effect of hypothermia (HT) and Xenon (Xe) on PRx was studied. Pigs were randomized to Sham, and after HI to normothermia (NT), HT, Xe or xenon hypothermia (XeHT). We defined PRx >0.2 as peak and negative PRx as preserved. Neuropathology scores after 72 hours of survival was grouped as 'severe' or 'mild.' Secondary PRx peak during recovery, predictive of severe neuropathology and associated with insult severity (P=0.05), was delayed in HT (11.5 hours) than in NT (6.5 hours) groups. Seizures were associated with impaired PRx in NT pigs (P=0.0002), but not in the HT/XeHT pigs. PRx was preserved during normocapnia and impaired during hypocapnia. Xenon abolished the secondary PRx peak, increased (mean (95% confidence interval (CI)) MABP (6.5 (3.8, 9.4) mm Hg) and cerebral perfusion pressure (5.9 (2.9, 8.9) mm Hg) and preserved the PRx (regression coefficient, -0.098 (95% CI (-0.18, -0.01)), independent of the insult severity.

  13. Role of microglia in the process of inflammation in the hypoxic developing brain.

    Science.gov (United States)

    Deng, Yi Yu; Lu, Jia; Ling, Eng-Ang; Kaur, Charanjit

    2011-06-01

    The developing brain is susceptible to hypoxic damage because of its high oxygen and energy requirements. Hypoxia-induced inflammatory response has been recognized as one of the main culprits in the development of hypoxic brain injury. In this regard, a hallmark feature is microglial activation which results in overproduction of inflammatory cytokines, free radicals and nitric oxide. Concomitantly, activated microglia exhibit enhanced expression of ion channels such as Kv1.2, Kv1.1 and Nav which further promote the release of inflammatory cytokines, chemokines and reactive oxygen species. Through the above-mentioned inflammatory mediators, activated microglia induce neuronal loss, axonal damage and oligodendroglial death along with myelination disturbances. Our recent studies have extended that tumor necrosis factor-alpha, interleukin-1beta, monocyte chemoattractant protein-1 and macrophage colony stimulating factor produced by activated microglia are linked to the pathogenesis of periventricular white matter damage in the hypoxic brain. It is envisaged that a better understanding of the interactions between microglia and neurons, axons and oligodendrocytes is key to the development of effective preventive and therapeutic strategies for mitigation of hypoxic brain injury.

  14. Hypoxic-state estimation of brain cells by using wireless near-infrared spectroscopy.

    Science.gov (United States)

    Kuo, Jinn-Rung; Lin, Bor-Shyh; Cheng, Chih-Lun; Chio, Chung-Ching

    2014-01-01

    Near-infrared spectroscopy (NIRS) is a modern measuring technology in neuroscience. It can be used to noninvasively measure the relative concentrations of oxyhemoglobin (OxyHb) and deoxyhemoglobin (DeoHb), which can reflect information related to cerebral blood volume and cerebral oxygen saturation. Therefore, it has the potential for noninvasive monitoring of cerebral ischemia. However, there is still a lack of reliable physiological information on the relationship between the concentrations of OxyHb and DeoHb in cerebral blood and the exact hypoxic state of brain cells under cerebral ischemia. In this study, we describe a wireless multichannel NIRS system, which we designed to noninvasively monitor the relative concentrations of OxyHb and DeoHb in bilateral cerebral blood before, during, and after middle cerebral artery occlusion. By comparing the results with the lactate/pyruvate ratio measured by microdialysis, we investigated the correlation between the relative concentrations of OxyHb and DeoHb in cerebral blood and the hypoxic state of brain cells. The results showed that the relationship between the concentration changes of DeoHb in cerebral blood and the hypoxic state of brain cells was significant. Therefore, by monitoring the changes in concentrations of DeoHb, the wireless NIRS can be used to estimate the hypoxic state of brain cells indirectly.

  15. 多巴胺受体调节对新生大鼠缺氧缺血性脑损伤后焦虑样行为的影响%Impact of dopamine receptor modulation on reduced anxiety-like behavior in neonatal rats after hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    陶惠康; 汤琴; 戴津津; 李媛媛; 黑明燕

    2014-01-01

    Objective To observe the long-term changes in anxiety-like behavior and tyrosine hydroxylase (TH) expression in the substantia nigra (SN) after hypoxic-ischemic brain damage (HIBD) in a neonatal rat model and to further explore the relationship between dopamine (DA) level and long-term anxiety-like behavior using the DA receptor (DAR) antagonist. Methods Seven-day-old (P7) neonatal Sprague-Dawley (SD) rats were randomized into normal control, sham-operated, HIBD and HIBD+DAR antagonist groups. HIBD model was prepared by ligating the right common carotid artery and 8%hypoxia exposure. The rats in the sham-operated group were sham-operated and were not subjected to right common carotid artery ligation and hypoxia exposure. The DAR antagonist was injected intraperitoneally before and after inducing HIBD. The same amount of normal saline was given to the other three groups as a control. Anxiety-like behavior was evaluated by elevated plus maze test, and TH expression in the SN was measured by immunohistochemistry on P14, P21, and P28. Results On P21 and P28, the time spent in the open arms and the percentage of open arms entries in the HIBD group were signiifcantly increased compared with those in the normal control, sham-operated and HIBD+DAR antagonist groups (P<0.05);in addition, the HIBD+DAR antagonist group showed a signiifcantly longer time spent in the open arms than the normal control group (P<0.05). On P14, P21, and P28, TH expression in the HIBD and HIBD+DAR antagonist groups was signiifcantly lower than that in the normal control and sham-operated groups, and TH level in the HIBD group was signiifcantly lower than that in the HIBD+DAR antagonist group (P<0.05). Conclusions DAR antagonist allows the restoration of anxiety-like behavior and alleviates the damage to dopaminergic neurons in SD rats after HIBD.%目的:观察缺氧缺血性脑损伤(HIBD)新生大鼠远期黑质酪氨酸羟化酶(TH)的表达及焦虑样行为的变化以及多巴胺

  16. 促红细胞生成素对新生鼠缺氧缺血性脑损伤后5-溴-2-脱氧尿嘧啶核苷表达的影响%Effects of erythropoietin on the expression of 5 -bromo -2 -deoxyuridine in subgranular zone of neonatal rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    段淼; 曹云涛

    2015-01-01

    目的:探讨促红细胞生成素( EPO)对新生鼠缺氧缺血性脑损伤( HIBD)后海马颗粒下带(SGZ)5-溴-2-脱氧尿嘧啶(BrdU)表达的影响。方法选择7日龄新生Wistar大鼠制备新生鼠HIBD动物模型,按照体重将新生鼠随机分为假手术组、HIBD模型组、EPO实验组( EPO 5 U・ g-1・ d-1×14 d)。在术后第14天、第21天、第28天,动态检测海马SGZ区BrdU阳性细胞数。结果海马SGZ区BrdU阳性细胞表达:3组新生大鼠在术后第14至28天,BrdU阳性细胞数随着新生鼠日龄增加而明显减少( P<0.01);在术后第14天、第21天、第28天,3组新生大鼠的海马SGZ区BrdU阳性细胞数以EPO实验组最多,其次为HIBD模型组,假手术组最少。在术后第21天,假手术组、HIBD模型组、EPO实验组的海马SGZ区BrdU阳性细胞数分别为8.08±1.62,25.71±4.18,32.21±8.63。在术后第14天、第21天,3组间两两比较差异有统计学意义( P<0.01);术后第28天,实验组与模型组比较差异有统计学意义( P<0.05)。结论新生鼠HIBD早期给予EPO干预治疗对新生鼠缺氧缺血性脑损伤可能有神经保护作用。%Objective To investigate the effect of erythropoietin( EPO) on the expression of 5-bromo-2-deoxyuridine( BrdU) in subgranular zone ( SGZ ) of neonatal rats with hypoxic -ischemic brain damage ( HIBD).Methods Animal HIBD model of seven-day-old newborn Wistar rat was made, and then the model rats were randomly divided into two groups: the model group of HIBD and the EPO trial group ( EPO 5 U・ g-1・ d-1 for 14 d).The expressions of BrdU in dentate gy-rus were examined with immunohistochemical staining and image quanti-tative analysis in fourteen days, twenty -first days and twenty -eight days after the operation.Results The expression of BrdU in SGZ: The number of BrdU -positive cell in SGZ of hippocampal region was gra-dually decreasing accompany

  17. Calpain-1在缺氧缺血性脑损伤新生大鼠心肌中的表达及意义%Expressions of calpain-1mRNA and protein in myocardium of rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    赵红; 徐梅; 初桂兰

    2011-01-01

    Objective: To detect the expressions of calpain-lmRNA and protein in myocardium of rats with hypoxic-ischemic brain damage (HIBD).Methods: HIBD model was made by modified rice of 7-day-old Wistar rats, 64 rats were randomly divided into eight groups: control group and groups with 2 h、 12 h、24 h、2 d、3 d、5 d and 7 d of exposure to HIBD.Apoptosis index (AI) was detected by TUNEL.RT-PCR and Western blot were applied to detect the gene and protein expressions of calpain-1.Results:Apoptosis cells were found sporadically in control group and significantly higher in HIBD groups (P<0.01).AI was increased at 2 h and reached peak at 3 d,and it was decreased at 7 d but still more than that in control group (P<0.01).The expression of Calpain-1 mRNA began to increase at 12 h after HIBD and reached peak at 2 d (0.5400±0.0848, P<0.01), and then decreased but remained in a higher level than that of the con trol group until 5 d after HIBD (P<0.01); calpain-1 protein activation began to increase at 2 h after HIBD(P<0.05) and reached peak at 3 d(P<0.001), and it was still in higher level at 5 d (P<0.001) and same as the control at 7 d (P>0.05).The expressions of Calpain-1 mRNA and protein activation were positively correlated with AI (r=0.786,P<0.01; r=0.853,P<0.01).Conclusion: Apoptosis cells and the expressions of calpain-1 are increased in myocardium of neonatal rats with HIBD, showing positive correlation with AI.%目的:了解缺氧缺血性脑损伤(HIBD)新生大鼠心肌细胞凋亡和Calpain-l表达的变化.方法:采用改良的Rice法构建新生大鼠HIBD模型,64只大鼠随机分为对照组和HIBD后2、12、24 h及2、3、5、7 d组.应用TUNEL法检测心肌细胞凋亡情况,并计数凋亡指数(AI),RT-PCR法和Westem blot法检测各组大鼠心肌中Calpain-1mRNA及蛋白活性的变化.结果:对照组偶见凋亡细胞,HIBD组凋亡细胞均明显增多(P<0.01),3 d达凋亡高峰(P<0.001),此后开始降低,7 d

  18. Expression of Alzheimer's disease risk genes in ischemic brain degeneration.

    Science.gov (United States)

    Ułamek-Kozioł, Marzena; Pluta, Ryszard; Januszewski, Sławomir; Kocki, Janusz; Bogucka-Kocka, Anna; Czuczwar, Stanisław J

    2016-12-01

    We review the Alzheimer-related expression of genes following brain ischemia as risk factors for late-onset of sporadic Alzheimer's disease and their role in Alzheimer's disease ischemia-reperfusion pathogenesis. More recent advances in understanding ischemic etiology of Alzheimer's disease have revealed dysregulation of Alzheimer-associated genes including amyloid protein precursor, β-secretase, presenilin 1 and 2, autophagy, mitophagy and apoptosis. We review the relationship between these genes dysregulated by brain ischemia and the cellular and neuropathological characteristics of Alzheimer's disease. Here we summarize the latest studies supporting the theory that Alzheimer-related genes play an important role in ischemic brain injury and that ischemia is a needful and leading supplier to the onset and progression of sporadic Alzheimer's disease. Although the exact molecular mechanisms of ischemic dependent neurodegenerative disease and neuronal susceptibility finally are unknown, a downregulated expression of neuronal defense genes like alfa-secretase in the ischemic brain makes the neurons less able to resist injury. The recent challenge is to find ways to raise the adaptive reserve of the brain to overcome such ischemic-associated deficits and support and/or promote neuronal survival. Understanding the mechanisms underlying the association of these genes with risk for Alzheimer's disease will provide the most meaningful targets for therapeutic development to date. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Ginsenoside-Rb1 Protects Hypoxic- and Ischemic-Damaged Cardiomyocytes by Regulating Expression of miRNAs

    Directory of Open Access Journals (Sweden)

    Xu Yan

    2015-01-01

    Full Text Available Ginsenoside (GS-Rb1 is one of the most important active compounds of ginseng, with extensive evidence of its cardioprotective properties. However, the miRNA mediated mechanism of GS-Rb1 on cardiomyocytes remains unclear. Here, the roles of miRNAs in cardioprotective activity of GS-Rb1 were investigated in hypoxic- and ischemic-damaged cardiomyocytes. Neonatal rat cardiomyocytes (NRCMs were first isolated, cultured, and then incubated with or without GS-Rb1 (2.5–40 μM in vitro under conditions of hypoxia and ischemia. Cell growth, proliferation, and apoptosis were detected by MTT and flow cytometry. Expressions of various microRNAs were analyzed by real-time PCR. Compared with that of the control group, GS-Rb1 significantly decreased cell death in a dose-dependent manner and expressions of mir-1, mir-29a, and mir-208 obviously increased in the experimental model groups. In contrast, expressions of mir-21 and mir-320 were significantly downregulated and GS-Rb1 could reverse the differences in a certain extent. The miRNAs might be involved in the protective effect of GS-Rb1 on the hypoxia/ischemia injuries in cardiomyocytes. The effect might be based on the upregulation of mir-1, mir-29a, and mir-208 and downregulation of mir-21 and mir-320. This might provide us a new target to explore the novel strategy for ischemic cardioprotection.

  20. Peptidylarginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates.

    Science.gov (United States)

    Lange, Sigrun; Rocha-Ferreira, Eridan; Thei, Laura; Mawjee, Priyanka; Bennett, Kate; Thompson, Paul R; Subramanian, Venkataraman; Nicholas, Anthony P; Peebles, Donald; Hristova, Mariya; Raivich, Gennadij

    2014-08-01

    Neonatal hypoxic ischaemic (HI) injury frequently causes neural impairment in surviving infants. Our knowledge of the underlying molecular mechanisms is still limited. Protein deimination is a post-translational modification caused by Ca(+2) -regulated peptidylarginine deiminases (PADs), a group of five isozymes that display tissue-specific expression and different preference for target proteins. Protein deimination results in altered protein conformation and function of target proteins, and is associated with neurodegenerative diseases, gene regulation and autoimmunity. In this study, we used the neonatal HI and HI/infection [lipopolysaccharide (LPS) stimulation] murine models to investigate changes in protein deimination. Brains showed increases in deiminated proteins, cell death, activated microglia and neuronal loss in affected brain areas at 48 h after hypoxic ischaemic insult. Upon treatment with the pan-PAD inhibitor Cl-amidine, a significant reduction was seen in microglial activation, cell death and infarct size compared with control saline or LPS-treated animals. Deimination of histone 3, a target protein of the PAD4 isozyme, was increased in hippocampus and cortex specifically upon LPS stimulation and markedly reduced following Cl-amidine treatment. Here, we demonstrate a novel role for PAD enzymes in neural impairment in neonatal HI Encephalopathy, highlighting their role as promising new candidates for drug-directed intervention in neurotrauma. Hypoxic Ischaemic Insult (HI) results in activation of peptidylarginine deiminases (PADs) because of calcium dysregulation. Target proteins undergo irreversible changes of protein bound arginine to citrulline, resulting in protein misfolding. Infection in synergy with HI causes up-regulation of TNFα, nuclear translocation of PAD4 and change in gene regulation as a result of histone deimination. Pharmacological PAD inhibition significantly reduced HI brain damage.

  1. Persimmon leaf flavonoid induces brain ischemic tolerance in mice

    Institute of Scientific and Technical Information of China (English)

    Mingsan Miao; Xuexia Zhang; Linan Wang

    2013-01-01

    The persimmon leaf has been shown to improve cerebral ischemic outcomes; however, its mechanism of action remains unclear. In this study, mice were subjected to 10 minutes of ischemic preconditioning, and persimmon leaf flavonoid was orally administered for 5 days. Results showed that the persimmon leaf flavonoid significantly improved the content of tissue type plasminogen activator and 6-keto prostaglandin-F1 α in the cerebral cortex, decreased the content of thromboxane B2, and reduced the content of plasminogen activator inhibitor-1 in mice. Following optical microscopy, persimmon leaf flavonoid was also shown to reduce cell swelling and nuclear hyperchromatism in the cerebral cortex and hippocampus of mice. These results suggested that persimmon leaf flavonoid can effectively inhibit brain thrombosis, improve blood supply to the brain, and relieve ischemia-induced pathological damage, resulting in brain ischemic tolerance.

  2. Protective Effects of N-Acetyl-L-Cysteine in Human Oligodendrocyte Progenitor Cells and Restoration of Motor Function in Neonatal Rats with Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Dongsun Park

    2015-01-01

    Full Text Available Objective. Since oligodendrocyte progenitor cells (OPCs are the target cells of neonatal hypoxic-ischemic encephalopathy (HIE, the present study was aimed at investigating the protective effects of N-acetyl-L-cysteine (NAC, a well-known antioxidant and precursor of glutathione, in OPCs as well as in neonatal rats. Methods. In in vitro study, protective effects of NAC on KCN cytotoxicity in F3.Olig2 OPCs were investigated via MTT assay and apoptotic signal analysis. In in vivo study, NAC was administered to rats with HIE induced by hypoxia-ischemia surgery at postnatal day 7, and their motor functions and white matter demyelination were analyzed. Results. NAC decreased KCN cytotoxicity in F3.Olig2 cells and especially suppressed apoptosis by regulating Bcl2 and p-ERK. Administration of NAC recovered motor functions such as the using ratio of forelimb contralateral to the injured brain, locomotor activity, and rotarod performance of neonatal HIE animals. It was also confirmed that NAC attenuated demyelination in the corpus callosum, a white matter region vulnerable to HIE. Conclusion. The results indicate that NAC exerts neuroprotective effects in vitro and in vivo by preserving OPCs, via regulation of antiapoptotic signaling, and that F3.Olig2 human OPCs could be a good tool for screening of candidates for demyelinating diseases.

  3. Expressions of Per1 and Cry1 in the pineal gland of neonatal rats with hypoxic-ischemic brain damage%缺氧缺血性脑损伤新生大鼠松果体钟基因Per1和Cry1表达的变化

    Institute of Scientific and Technical Information of China (English)

    余剑; 冯星; 孙斌; 王莹; 丁欣; 金美芳; 倪宏; 朱雪明

    2013-01-01

    目的 观察缺氧缺血性脑损伤(HIBD)新生大鼠松果体中Per1 mRNA、Cry1 mRNA表达水平及PER1和CRY1蛋白合成水平的变化,探讨钟基因表达异常在HIBD导致的昼夜节律紊乱中可能扮演的重要角色.方法将7日龄新生SD大鼠72只,随机分为2组(HIBD组36只,对照组36只).HIBD模型按改良Levine法建立.用半定量反转录(RT)-PCR和Western blot法分别测定HIBD模型制备后0、2、12、24、36、48 h2组新生大鼠松果体中Per1 mRNA和Cry1 mRNA以及PER1、CRY1蛋白合成水平,并比较2组之间的差异.结果 1.HIBD组Per1 mRNA的表达水平在HIBD模型制备后24、36、48 h均显著高于对照组(P均<0.05),0、2、12h与对照组相比差异均无统计学意义(P均>0.05);HIBD模型制备后24 h Per1 mRNA水平开始升高,36 h到达高峰,持续至48 h.2.HIBD组Cry1 mRNA的表达水平在HIBD模型制备后12、24、36 h均显著高于对照组(P均<0.05),0、2、48 h与对照组相比差异均无统计学意义(P均>0.05);HIBD模型制备后12 h Cry1 mRNA水平开始升高,24h到达高峰,持续至36 h.3.HIBD组PER1蛋白水平在HIBD模型制备后36 h显著高于对照组(P<0.05),0、2、12、24、48 h与对照组相比差异均无统计学意义(P均>0.05).4.HIBD组CRY1蛋白水平在HIBD模型制备后2、12、24h均显著高于对照组(P均<0.05),0、36、48 h与对照组相比差异均无统计学意义(P均>0.05);HIBD模型制备后2 h CRY1蛋白水平开始升高,24 h到达高峰,36 h降至正常.结论 HIBD对新生大鼠松果体细胞中Per1 mRNA、Cry1 mRNA和PER1、CRY1蛋白水平均有显著影响,生物钟系统的紊乱可能与HIBD的发病有关.%Objective To explore the effects of clock genes on circadian disorder in hypoxic-ischemic brain damage(HIBD) by comparing the level of PER1,CRY1 synthesis and the expression of Per1 mRNA,Cry1 mRNA in pineal gland of neonatal rats with HIBD.Methods Seven-day-old Sprague-Dawley (SD) rats were randomly divided into

  4. Apoptosis and Acute Brain Ischemia in Ischemic Stroke.

    Science.gov (United States)

    Radak, Djordje; Katsiki, Niki; Resanovic, Ivana; Jovanovic, Aleksandra; Sudar-Milovanovic, Emina; Zafirovic, Sonja; Mousad, Shaker A; Isenovic, Esma R

    2017-01-01

    Apoptosis may contribute to a significant proportion of neuron death following acute brain ischemia (ABI), but the underlying mechanisms are still not fully understood. Brain ischemia may lead to stroke, which is one of the main causes of long-term morbidity and mortality in both developed and developing countries. Therefore, stroke prevention and treatment is clinically important. There are two important separate areas of the brain during ABI: the ischemic core and the ischemic penumbra. The ischemic core of the brain experiences a sudden reduction of blood flow, just minutes after ischemic attack with irreversible injury and subsequent cell death. On the other hand, apoptosis within the ischemic penumbra may occur after several hours or days, while necrosis starts in the first hours after the onset of ABI in the ischemic core. ABI is characterized by key molecular events that initiate apoptosis in many cells, such as overproduction of free radicals, Ca2+ overload and excitotoxicity. These changes in cellular homeostasis may trigger either necrosis or apoptosis, which often depends on cell type, cell age, and location in the brain. Apoptosis results in DNA fragmentation, degradation of cytoskeletal and nuclear proteins, cross-linking of proteins, formation of apoptotic bodies, expression of ligands for phagocytic cell receptors and finally uptake by phagocytic cells. This review focuses on recent findings based on animal and human studies regarding the apoptotic mechanisms of neuronal death following ABI and the development of potential neuroprotective agents that reduce morbidity. The effects of statins on stroke prevention and treatment as well as on apoptotic mediators are also considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Unilateral hypoxic-ischemic injury in young children from abusive head trauma, lacking craniocervical vascular dissection or cord injury

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Alexander M.; Thompson, Linda R.; Truwit, Charles L.; Velders, Scott; Karagulle, Ayse; Kiragu, Andrew [University of Minnesota Medical School, Department of Radiology, Hennepin County Medical Center, Minneapolis, MN (United States)

    2008-02-15

    Abusive head trauma (AHT) in young children usually has a severe outcome when associated with hypoxic-ischemic encephalopathy (HIE), which is best characterized by MRI in the acute or subacute phase utilizing diffusion-weighted imaging (DWI). HIE in this setting has been hypothesized to result from stretching of the spinal cord, brainstem, or vasculature. To provide clinical correlation in patients with unilateral HIE and to postulate a mechanism in the setting of suspected AHT. IRB approval was obtained. Over a 5-year period, the medical records and images were reviewed of the 53 children {<=}3 years of age who presented with acute head trauma according to the hospital registry. The children were subselected in order to determine how many suffered either HIE or AHT, and to detect those with unilateral HIE. In 11 of the 53 children, the etiology of the head trauma was highly suspicious for abuse. In 38 the head trauma was accidental and in 4 the trauma was of unknown etiology and at the time of this report was unresolved legally. Of the 53, 4 suffered HIE confirmed by CT or MRI. In three of these four with HIE the trauma was considered highly suspicious for AHT. Two of these three were the only patients with unilateral HIE, and both (7 months and 14 months of age) presented with early subacute phase HIE seen on DW MRI (range 4-7 days) and are described in detail with clinical correlation. The third child with AHT and HIE had bilateral findings. In the fourth patient the HIE was bilateral and was considered accidental. The work-up for both patients with unilateral HIE included head CT, craniocervical MRI, and craniocervical MR angiography (MRA). In both, there was mostly unilateral, deep white matter restricted diffusion, with subdural hematomas that were small compared to the extent of hypoxic-ischemic insult, and no skull fracture. Craniocervical MRA and axial thin-section fat-saturation images were negative for dissection, brainstem, or cord injury. Legal

  6. Acute high-altitude hypoxic brain injury Identification of ten differential proteins

    Institute of Scientific and Technical Information of China (English)

    Jianyu Li; Yuting Qi; Hui Liu; Ying Cui; Li Zhang; Haiying Gong; Yaxiao Li; Lingzhi Li; Yongliang Zhang

    2013-01-01

    Hypobaric hypoxia can cause severe brain damage and mitochondrial dysfunction, and is involved in hypoxic brain injury. However, little is currently known about the mechanisms responsible for mi-tochondrial dysfunction in hypobaric hypoxic brain damage. In this study, a rat model of hypobaric hypoxic brain injury was established to investigate the molecular mechanisms associated with mi-tochondrial dysfunction. As revealed by two-dimensional electrophoresis analysis, 16, 21, and 36 differential protein spots in cerebral mitochondria were observed at 6, 12, and 24 hours post-hypobaric hypoxia, respectively. Furthermore, ten protein spots selected from each hypobaric hypoxia subgroup were similarly regulated and were identified by mass spectrometry. These de-tected proteins included dihydropyrimidinase-related protein 2, creatine kinase B-type, isova-leryl-CoA dehydrogenase, elongation factor Ts, ATP synthase beta-subunit, 3-mercaptopyruvate sulfurtransferase, electron transfer flavoprotein alpha-subunit, Chain A of 2-enoyl-CoA hydratase, NADH dehydrogenase iron-sulfur protein 8 and tropomyosin beta chain. These ten proteins are al involved in the electron transport chain and the function of ATP synthase. Our findings indicate that hypobaric hypoxia can induce the differential expression of several cerebral mitochondrial proteins, which are involved in the regulation of mitochondrial energy production.

  7. Efficacy of passive hypothermia and adverse events during transport of asphyxiated newborns according to the severity of hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Carreras, Nuria; Alsina, Miguel; Alarcon, Ana; Arca-Díaz, Gemma; Agut, Thais; García-Alix, Alfredo

    2017-08-18

    To determine if the efficacy of passive hypothermia and adverse events during transport are related to the severity of neonatal hypoxic-ischemic encephalopathy. This was a retrospective study of 67 infants with hypoxic-ischemic encephalopathy, born between April 2009 and December 2013, who were transferred for therapeutic hypothermia and cooled during transport. Fifty-six newborns (84%) were transferred without external sources of heat and 11 (16%) needed an external heat source. The mean temperature at departure was 34.4±1.4°C and mean transfer time was 3.3±2.0h. Mean age at arrival was 5.6±2.5h. Temperature at arrival was between 33 and 35°C in 41 (61%) infants, between 35°C and 36.5°C in 15 (22%) and transport is greater in newborns with severe hypoxic-ischemic encephalopathy and those with more severe acidosis at birth. The most common adverse events during transport are related to physiological deterioration and bleeding from the endotracheal tube. This observation provides useful information to identify those asphyxiated infants who require closer clinical surveillance during transport. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  8. Brain mechanisms of hypoxic preconditioning%低氧预适应的脑机制

    Institute of Scientific and Technical Information of China (English)

    吕国蔚; 崔秀玉; 赵兰峰; 安仰原; 高翠英

    2004-01-01

    A concept ot tissue adaptation to hypoxia( i.e. hypoxic preconditioning) was developed and its corresponding animal models were reproduced in 1966s. The methods of model reproduction in rat, rabbit, and mouse in particular and the main results are brifly introduced in this review. The tolerance to hypoxia o{ preconditioned animals is significantly increased. Regular changes in animals' behavior, neurophysiology, respiratory and circulatory physiology, neuromorphology in vivo and {unction of brain and spinal cord in vitro are briefly demonstrated. The protective effects in vivo and in vitro of homogenate extract taken from the brain o{ preconditioned animals, neurochemcals and molecular neurobiolcgical alterations are briefly presented. The essence and significance of tissue adaption to hypoxia/hypoxic preconditioning are discussed in the review in terms of evolution and practical implication.

  9. Early prediction of the injuried regions in neonatal brain with hypoxic-ischemic encephalopathy by diffusion weighted imaging and measuring their apparent diffusion coefficient%弥散加权成像早期预测新生儿缺氧缺血性脑损伤区域及其表观弥散系数值改变

    Institute of Scientific and Technical Information of China (English)

    蔡清; 薛辛东; 富建华; 刘春丽; 轩哲; 张磊

    2011-01-01

    区域大部分为丘脑-中央沟周围皮层,仅少数为皮层及皮层下白质.中度HIE患儿的损伤区域较多样,依次为皮层及皮层下白质、脑室周围白质和丘脑-中央沟周围皮层.HIE患儿的DWI图像异常部位及未见异常部位的ADC值均有不同程度的下降.%Objective To elucidate that diffusion weighted imaging (DWI) can be used to predict the injured regions of neonatal brain with hypoxic-ischemic encephalopathy (HIE) in the early phase of injury, and to measure the apparent diffusion coefficient (ADC) values in the multiple regions of the brain.Method The participants in this study were twenty-six infants with HIE from neonatology ward hospitalized between July 2006 and July 2009.Nineteen patients had severe HIE, and seven had moderate HIE.DWI and conventional magnetic resonance imaging (MRI) were performed for each case within the first 72 hrs.The ADC values of eight regions of interest (ROIs) were measured in ten cases with severe HIE ( ADC values group). ROIs included posterior limb of internal capsule (PLIC), ventrolateral thalami, basal ganglia, perirolandic cortex, occipital cortex, centrum semiovale, brainstem, and frontal white matter.Twelve neonates were enrolled as the control subjects.Results During the first 72 hfs, the conventional MR1 of 26 patients showed subarachnoid hemorrhage in 5, subdural hemorrhage in 2, and mild high signal intensity in the cortex of only one patient.In the 19 cases with severe HIE, abnormal signal intensities were seen in ventrolateral thalami and perirolandie cortex of 17 patients ( 89% ), and the remaining 2 infants showed abnormal cortex and subcortical white matter.In 7 cases with moderate HIE, 4 had abnormal signal intensity in the cortex and subcortical white matter, 2 had abnormal periventricular white matter, and only one showed abnormal signal intensity in the ventrolateral thalami and perirolandic cortex.In the ADC values group, the average ADC values of posterior limb of

  10. Influence of Micro - RNA Targeting at β - catenin Gene on Proliferation of Rats Neural Stem Cells after Hypoxic - Ischemic Brain Damage and Expressions of Ngn1, BMP4 Gene in Vitro%靶向大鼠β-catenin基因的小RNA对离体缺氧缺血性脑损伤大鼠神经干细胞分化及Ngn1、BMP4基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    张晓英; 徐佩茹; 多力坤; 刘玉; 孙光辉

    2012-01-01

    目的 探讨缺氧缺血性脑损伤(HIBD)大鼠神经干细胞(NSCs)修复损伤的可能机制.方法 传至2、3代的SD大鼠NSCs随机为空白对照组(未转染质粒者,CON),转染阴性对照质粒组(ncNSCs)和转染β-catenin siRNA真核表达质粒组(siNSCs),分别在不同脑组织匀浆上清液中培养,以模拟HIBD及正常脑内微环境.应用免疫荧光方法观察各组NSCs的分化情况;应用反转录PCR、Western blot法检测NSCs Ngn1,BMP4基因表达情况.结果 与CON组比较,ncNSCs分化为神经元和少突胶质细胞的百分比明显增加(Pa<0.05),其中HIBD组增加较多;ncNSCs分化为星形胶质细胞的百分比显著减少(P<0.05).与CON组相比,siN-SCs分化为神经元的百分比显著减少(P<0.01),分化为星形胶质细胞的百分比显著增加(P<0.01);少突胶质细胞的分化增加,但少于ncNSCs组(P<0.01),其中HIBD组分化为神经元和少突胶质细胞较多.与CON组比较,ncNSCs Ngn1 mRNA和Ngn1蛋白的表达显著增加(Pa<0.01),而BMP4 mRNA和BMP4蛋白的表达均显著减少(Pa<0.01);与CON组和ncNSCs组比较,siNSCs的Ngn1 mRNA和Ngn1蛋白表达显著减少(Pa<0.01),BMP4 mRNA和BMP4蛋白的表达显著增加(Pa<0.01),2个siNSCs组间Ngn1和BMP4的表达差异无统计学意义.结论 HIBD时受损的脑组织可进行自主修复,与β-catenin促进ncNSCs向神经元分化有关,BMP4和Ngn1在HIBD大鼠NSCs的增殖分化中起重要的协调作用.%Objective To investigate the roles of β - catenin in hypoxic - ischemic brain damage (HIBD) induced neurogenesis. Methods Rats NSCs were divided into 5 groups randomized, then cultured in the supernatant of brain homogenate to simulate micro - environment of HIBD and normal brain. Immunocytochemical staining was performed simultaneously on the 5 groups of NSCs on precoated chamber slides to detect the differentiation of NSCs. Quantitative reverse transcription polymerase chain reaction was used to detect the

  11. Acetylation of histones in neocortex and hippocampus of rats exposed to different modes of hypobaric hypoxia: Implications for brain hypoxic injury and tolerance.

    Science.gov (United States)

    Samoilov, Mikhail; Churilova, Anna; Gluschenko, Tatjana; Vetrovoy, Oleg; Dyuzhikova, Natalia; Rybnikova, Elena

    2016-03-01

    Acetylation of nucleosome histones results in relaxation of DNA and its availability for the transcriptional regulators, and is generally associated with the enhancement of gene expression. Although it is well known that activation of a variety of pro-adaptive genes represents a key event in the development of brain hypoxic/ischemic tolerance, the role of epigenetic mechanisms, in particular histone acetylation, in this process is still unexplored. The aim of the present study was to investigate changes in acetylation of histones in vulnerable brain neurons using original well-standardized model of hypobaric hypoxia and preconditioning-induced tolerance of the brain. Using quantitative immunohistochemistry and Western blot, effects of severe injurious hypobaric hypoxia (SH, 180mm Hg, 3h) and neuroprotective preconditioning mode (three episodes of 360mm Hg for 2h spaced at 24h) on the levels of the acetylated proteins and acetylated H3 Lys24 (H3K24ac) in the neocortex and hippocampus of rats were studied. SH caused global repression of the acetylation processes in the neocortex (layers II-III, V) and hippocampus (CA1, CA3) by 3-24h, and this effect was prevented by the preconditioning. Moreover, hypoxic preconditioning remarkably increased the acetylation of H3K24 in response to SH in the brain areas examined. The preconditioning hypoxia without subsequent SH also stimulated acetylation processes in the neocortex and hippocampus. The moderately enhanced expression of the acetylated proteins in the preconditioned rats was maintained for 24h, whereas acetylation of H3K24 was intense but transient, peaked at 3h. The novel data obtained in the present study indicate that large activation of the acetylation processes, in particular acetylation of histones might be essential for the development of brain hypoxic tolerance.

  12. Defining the critical hypoxic threshold that promotes vascular remodeling in the brain.

    Science.gov (United States)

    Boroujerdi, Amin; Milner, Richard

    2015-01-01

    In animal models, hypoxic pre-conditioning confers protection against subsequent neurological insults, mediated in part through an extensive vascular remodeling response. In light of the therapeutic potential of this effect, the goal of this study was to establish the dose-response relationship between level of hypoxia and the extent of cerebrovascular modeling, and to define the mildest level of hypoxia that promotes remodeling. Mice were exposed to different levels of continuous hypoxia (8-21% O2) for seven days before several aspects of vascular remodeling were evaluated, including endothelial proliferation, total vascular area, arteriogenesis, and fibronectin/α5β1 integrin expression. For most events, the threshold level of hypoxia that stimulated remodeling was 12-13% O2. Interestingly, many parameters displayed a biphasic dose-response curve, with peak levels attained at 10% O2, but declined thereafter. Further analysis in the 12-13% O2 range revealed that vascular remodeling occurs by two separate mechanisms: (i) endothelial hyperplasia, triggered by a hypoxic threshold of 13% O2, which leads to increased capillary growth, and (ii) endothelial hypertrophy, triggered by a more severe hypoxic threshold of 12% O2, which leads to expansion of large vessels and arteriogenesis. Taken together, these results define the hypoxic thresholds for vascular remodeling in the brain, and point to two separate mechanisms mediating this process.

  13. Neuronal activity and ion homeostasis in the hypoxic brain

    NARCIS (Netherlands)

    Zandt, B.

    2014-01-01

    The interruption of blood flow to the brain as occurs in cardiac arrest and stroke results within minutes in irreversible damage. The development of neuroprotective treatments that prevent cell damage after stroke has so far largely been unsuccessful, while we still have an incomplete understanding

  14. Changes in hippocampal neurons and memory function during the developmental stage of newborn rats with hypoxic-ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Chuanjun Liu; Yue Li; Huiying Gao

    2006-01-01

    BACKGROUND: Under the normal circumstance, there exist some synapses with inactive functions in central nervous system (CNS), but these functions are activated following nerve injury. At the early stage of brain injury, the abnormal functions of brain are varied, and they have very strong plasticity and are corrected easily.OBJECTTVE: To observe the changes of neuronal morphology in hippocampal CA1 region and memory function in newborn rats with hypoxic-ischemic encephalopathy(HIE) from ischemia 6 hours to adult.DESTGN: Completely randomized grouping, controlled experiment.SETTING: Taian Health Center for Women and Children; Taishan Medical College.MATERTALS: Altogether 120 seven-day-old Wistar rats, of clean grade, were provided by the Experimental Animal Center, Shandong University of Traditional Chinese Medicine. Synaptophysin (SYN) polyclonal antibody was provided by Maixin Biological Company, Fuzhou.METHODS: This experiment was carried out in the Laboratory of Morphology, Taishan Medical College between October 2000 and December 2003. ① The newborn rats were randomly divided into 2 groups: model group and control group, 60 rats in each group. Five rats were chosen from each group at postoperative 6 hours, 24hours, 72 hours, 7 days, 2 weeks and 3 weeks separately for immunohistochemical staining. Fifteen newborn rats were chosen from each group at postoperative 4 weeks and 2 months separately for testing memory ability(After test, 5 rats from each group were sacrificed and used for immunohistochemical staining) ② The right common carotid artery of newborn rats of model group was ligated under the sthetized status. After two hours of incubation, the rats were placed for 2 hours in a container filled with nitrogen oxygen atmosphere containing 0.08 volume fraction of oxygen, thus, HIE models were created; As for the newborn rats in the control group, only blood vessels were isolated, and they were not ligated and hypoxia-treated. ③Thalamencephal tissue

  15. Chick embryos have the same pattern of hypoxic lower-brain activation as fetal mammals.

    Science.gov (United States)

    Landry, Jeremy P; Hawkins, Connor; Lee, Aaron; Coté, Alexandra; Balaban, Evan; Pompeiano, Maria

    2016-01-01

    cFos expression (indicating a particular kind of neuronal activation) was examined in embryonic day (E) 18 chick embryos after exposure to 4 h of either normoxia (21% O2), modest hypoxia (15% O2), or medium hypoxia (10% O2). Eight regions of the brainstem and hypothalamus were surveyed, including seven previously shown to respond to hypoxia in late-gestation mammalian fetuses (Breen et al., 1997; Nitsos and Walker, 1999b). Hypoxia-related changes in chick embryo brain activation mirrored those found in fetal mammals with the exception of the medullary Raphe, which showed decreased hypoxic activation, compared with no change in mammals. This difference may be explained by the greater anapyrexic responses of chick embryos relative to mammalian fetuses. Activation in the A1/C1 region was examined in more detail to ascertain whether an O2-sensitive subpopulation of these cells containing heme oxygenase 2 (HMOX2) may drive hypoxic brain responses before the maturation of peripheral O2-sensing. HMOX2-positive and -negative catecholaminergic cells and interdigitating noncatecholaminergic HMOX2-positive cells all showed significant changes in cFos expression to hypoxia, with larger population responses seen in the catecholaminergic cells. Hypoxia-induced activation of lower-brain regions studied here was significantly better correlated with activation of the nucleus of the solitary tract (NTS) than with that of HMOX2-containing A1/C1 neurons. Together, these observations suggest that (1) the functional circuitry controlling prenatal brain responses to hypoxia is strongly conserved between birds and mammals, and (2) NTS neurons are a more dominant driving force for prenatal hypoxic cFos brain responses than O2-sensing A1/C1 neurons.

  16. Sildenafil Enhances Quantity of Immature Neurons and Promotes Functional Recovery in the Developing Ischemic Mouse Brain.

    Science.gov (United States)

    Engels, Jonas; Elting, Natalie; Braun, Lisa; Bendix, Ivo; Herz, Josephine; Felderhoff-Müser, Ursula; Dzietko, Mark

    2017-01-01

    Hypoxic-ischemic (HI) injury to the developing brain occurs in 1 out of 1,000 live births and remains a major cause of significant morbidity and mortality. A large number of survivors suffer from long-term sequelae including seizures and neurological deficits. However, the pathophysiological mechanisms of recovery after HI insult are not clearly understood, and preventive measures or clinical treatments are nonexistent or not sufficiently effective in the clinical setting. Sildenafil as a specific phosphodiesterase 5 inhibitor leads to increased levels of the second messenger cyclic guanosine monophosphate (cGMP) and promotes functional recovery and neurogenesis after ischemic injury to the adult brain. Here, we investigated the effect of sildenafil treatment on activation of intracellular signaling pathways, histological and neurogenic response including functional recovery after an ischemic insult to the developing brain. Nine-day-old C57BL/6 mice were subjected either to sham operation or underwent ligation of the right common carotid artery followed by hypoxia (8%) for 60 min. Animals were either administered sildenafil (10 mg/kg, i.p.) or vehicle 2 h after hypoxia. A subgroup of animals received multiple injections of 10 mg/kg daily on 5 consecutive days. Pups were either perfusion fixed at postnatal days 14 or 47 for immunohistochemical analysis, or brains were dissected 2, 6, 12, and 24 h after the end of hypoxia and analyzed for cGMP, pAkt, pGSK-3β, and β-catenin by means of ELISA or immunoblotting. In addition, behavioral studies using the wire hang test and elevated plus maze were conducted 21 and 38 days after HI injury. Based on cresyl violet staining, single or multiple sildenafil injections did not reveal any differences in injury scoring compared to sham animals. However, cerebral levels of cGMP were altered after sildenafil therapy. Treatment significantly increased numbers of immature neurons, as indicated by doublecortin immunoreactivity in the

  17. Fetal heart rate patterns in neonatal hypoxic-ischemic encephalopathy: relationship with early cerebral activity and neurodevelopmental outcome.

    LENUS (Irish Health Repository)

    Murray, Deirdre M

    2009-09-01

    Despite widespread use of fetal heart rate monitoring, the timing of injury in hypoxic-ischemic encephalopathy (HIE) remains unclear. Our aim was to examine fetal heart rate patterns during labor in infants with clinical and electroencephalographic (EEG) evidence of HIE and to relate these findings to neurodevelopmental outcome. Timing of onset of pathological cardiotocographs (CTGs) was determined in each case by two blinded reviewers and related to EEG grade at birth and neurological outcome at 24 months. CTGs were available in 35 infants with HIE (17 mild, 12 moderate, 6 severe on EEG). Admission CTGs were normal in 24\\/35 (69%), suspicious in 8\\/35 (23%), and pathological in 3\\/35 (8%). All CTGs developed nonreassuring features prior to delivery. Three patterns of fetal heart rate abnormalities were seen: group 1, abnormal CTGs on admission in 11\\/35 (31%); group 2, normal CTGs on admission with gradual deterioration to pathological in 20\\/35 cases (57%); and group 3, normal CTGs on admission with acute sentinel events in 4\\/35 (11.5%). The median (interquartile range) duration between the development of pathological CTGs and delivery was 145 (81, 221) minutes in group 2 and 22 (12, 28) minutes in group 3. There was no correlation between duration of pathological CTG trace and grade of encephalopathy (R = 0.09, P = 0.63) or neurological outcome (P = 0.75). However, the grade of encephalopathy was significantly worse in group 3 (P = 0.001), with a trend to worse outcomes. The majority of infants with HIE have normal CTG traces on admission but develop pathological CTG patterns within hours of delivery. More severe encephalopathy was associated with normal admission CTG and acute sentinel events shortly before delivery.

  18. Fetal heart rate patterns in neonatal hypoxic-ischemic encephalopathy: relationship with early cerebral activity and neurodevelopmental outcome.

    LENUS (Irish Health Repository)

    Murray, Deirdre M

    2012-01-31

    Despite widespread use of fetal heart rate monitoring, the timing of injury in hypoxic-ischemic encephalopathy (HIE) remains unclear. Our aim was to examine fetal heart rate patterns during labor in infants with clinical and electroencephalographic (EEG) evidence of HIE and to relate these findings to neurodevelopmental outcome. Timing of onset of pathological cardiotocographs (CTGs) was determined in each case by two blinded reviewers and related to EEG grade at birth and neurological outcome at 24 months. CTGs were available in 35 infants with HIE (17 mild, 12 moderate, 6 severe on EEG). Admission CTGs were normal in 24\\/35 (69%), suspicious in 8\\/35 (23%), and pathological in 3\\/35 (8%). All CTGs developed nonreassuring features prior to delivery. Three patterns of fetal heart rate abnormalities were seen: group 1, abnormal CTGs on admission in 11\\/35 (31%); group 2, normal CTGs on admission with gradual deterioration to pathological in 20\\/35 cases (57%); and group 3, normal CTGs on admission with acute sentinel events in 4\\/35 (11.5%). The median (interquartile range) duration between the development of pathological CTGs and delivery was 145 (81, 221) minutes in group 2 and 22 (12, 28) minutes in group 3. There was no correlation between duration of pathological CTG trace and grade of encephalopathy (R = 0.09, P = 0.63) or neurological outcome (P = 0.75). However, the grade of encephalopathy was significantly worse in group 3 (P = 0.001), with a trend to worse outcomes. The majority of infants with HIE have normal CTG traces on admission but develop pathological CTG patterns within hours of delivery. More severe encephalopathy was associated with normal admission CTG and acute sentinel events shortly before delivery.

  19. NOC/oFQ PKC-dependent superoxide generation contributes to hypoxic-ischemic impairment of NMDA cerebrovasodilation.

    Science.gov (United States)

    Armstead, W M

    2000-12-01

    This study determined whether nociceptin/orphanin FQ (NOC/oFQ) generates superoxide anion (O(2)(-)) in a protein kinase C (PKC)-dependent manner and whether such production contributes to hypoxic-ischemic (H-I) impairment of N-methyl-D-aspartate (NMDA)-induced pial artery dilation in newborn pigs equipped with closed cranial windows. Superoxide dismutase (SOD)-inhibitable nitroblue tetrazolium (NBT) reduction was an index of O(2)(-) generation. Under non-H-I conditions, topical NOC/oFQ (10(-10) M, concentration present in cerebrospinal fluid after I or H-I) increased SOD-inhibitable NBT reduction from 1 +/- 1 to 20 +/- 3 pmol/mm(2). PKC inhibitors staurosporine and chelerythrine (10(-7) M) blunted NBT reduction (1 +/- 1 to 7 +/- 2 pmol/mm(2) for chelerythrine), whereas the NOC/oFQ receptor antagonist [F/G]NOC/oFQ (1-13)-NH(2) (10(-6) M) blocked NBT reduction. [F/G]NOC/oFQ(1-13)-NH(2) and staurosporine also blunted the NBT reduction observed after I or H-I. NMDA (10(-8), 10(-6) M)-induced pial artery dilation was reversed to vasoconstriction after H-I. The NOC/oFQ antagonist staurosporine and free radical scavengers partially prevented this impaired dilation (sham: 9 +/- 1 and 16 +/- 1; H-I: -5 and -10 +/- 1; H-I staurosporine pretreated: 3 +/- 1 and 6 +/- 1%). These data show that NOC/oFQ increased O(2)(-) production in a PKC-dependent manner and contributed to this production after insult and that NOC/oFQ contributed to impaired NMDA-induced pial artery dilation after H-I, suggesting, therefore, that PKC-dependent O(2)(-) generation by NOC/oFQ links NOC/oFQ release to impaired NMDA dilation after H-I.

  20. Clinical Value of CT for Neonatal Hypoxic Ischemic Encephalopathy%CT对新生儿缺氧缺血性脑病的临床应用价值

    Institute of Scientific and Technical Information of China (English)

    刘义康; 余红胜; 吉六舟

    2013-01-01

    Objective To study the clinical value of CT diagnosis and prognosis of hypoxic ischemic encephalopathy (HIE)in neonate.Methods Retrospective analysis of CT images of 40 cases diagnosed with HIE clinically or by CT was performed,and CT examinations were carried out before and after the systematic treatment.Results In the 40 cases,CT examination proved that there were 14 ones of mild brain injuries,17 ones of moderate injuries and 9 ones of severe injuries.The CT follow-up proved that for the patients with mild injuries,the low-density region shrinked or disappeared and SAH was absorbed,and that 15 patients with moderate injuries recovered,and that the remained 2 patients with moderated injuries and 9 ones with severe injuries progressed into encephalomalacia,brain atrophy,hydrocephalus,cerebral tissue calcification and etc.Conclusion CT examination can reflect the degree and dynamic changes of brain injuries of HIE,and thus can lay a foundation for clinical diagnosis as well as the evaluation of the curative effect and prognosis.%目的:研究CT对新生儿缺氧缺血性脑病(HIE)的诊断及预后表现,探讨CT对该病的临床应用价值.方法:回顾分析40例临床及CT诊断为HIE病例的CT影像资料,所有病例均经系统治疗前、后CT检查.结果:40例患儿治疗前CT初诊脑轻度损害14例、中度损害17例、重度损害9例;系统治疗后随访复查CT显示脑轻度损害病例脑实质低密度范围逐渐缩小或消失,SAH吸收,直至完全恢复正常.中度损害恢复正常15例,余下2例及9例重度损害演变为脑软化、脑萎缩、脑积水、脑组织钙化等.结论:CT检查能真实反映HIE脑组织损害程度及动态变化,可为临床诊断、疗效观察及预后评价提供影像学依据.

  1. Sex Differences in Behavioral Outcomes Following Temperature Modulation During Induced Neonatal Hypoxic Ischemic Injury in Rats

    Directory of Open Access Journals (Sweden)

    Amanda L. Smith

    2015-05-01

    Full Text Available Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.

  2. Combination treatment of hypothermia and mesenchymal stromal cells amplifies neuroprotection in primary rat neurons exposed to hypoxic-ischemic-like injury in vitro: role of the opioid system.

    Directory of Open Access Journals (Sweden)

    Yuji Kaneko

    Full Text Available This study was designed to reveal the therapeutic regimen and mechanism of action underlying hypothermia treatment in combination with stem cell transplantation for ameliorating neonatal hypoxic-ischemic-like injury. Primary rat neurons were exposed to oxygen-glucose deprivation (OGD, which produced hypoxic-ischemic-like injury in vitro, then incubated at 25°C (severe hypothermia, 34°C (moderate hypothermia, and 37°C (normothermia with or without subsequent co-culture with mesenchymal stromal cells (MSCs. Combination treatment of moderate hypothermia and MSCs significantly improved cell survival and mitochondrial activity after OGD exposure. The exposure of delta opioid human embryonic kidney cells (HEK293 to moderate hypothermia attenuated OGD-mediated cell alterations, which were much more pronounced in HEK293 cells overexpressing the delta opioid receptor. Further, the addition of delta opioid peptide to 34°C hypothermia and stem cell treatment in primary rat neurons showed synergistic neuroprotective effects against OGD which were significantly more robust than the dual combination of moderate hypothermia and MSCs, and were significantly reduced, but not completely abolished, by the opioid receptor antagonist naltrexone altogether implicating a ligand-receptor mechanism of neuroprotection. Further investigations into non-opioid therapeutic signaling pathways revealed growth factor mediation and anti-apoptotic function accompanying the observed therapeutic benefits. These results support combination therapy of hypothermia and stem cells for hypoxic-ischemic-like injury in vitro, which may have a direct impact on current clinical trials using stand-alone hypothermia or stem cells for treating neonatal encephalopathy.

  3. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    Science.gov (United States)

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia.

  4. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2016-08-05

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba{sup 2+}-sensitive inward rectifier K{sup +} current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca{sup 2+} imaging study revealed that the hypoxic stress enhanced store-operated Ca{sup 2+} (SOC) entry, which was significantly reduced in the presence of 100 μM Ba{sup 2+}. On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba{sup 2+}. We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca{sup 2+} entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca{sup 2+} (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC

  5. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain.

    Directory of Open Access Journals (Sweden)

    Yiyu Deng

    Full Text Available Hypoxic exposure in the perinatal period causes periventricular white matter damage (PWMD, a condition associated with myelination abnormalities. Under hypoxic conditions, glial cells were activated and released a large number of inflammatory mediators in the PWM in neonatal brain, which may result in oligodendrocyte (OL loss and axonal injury. This study aims to determine if astrocytes are activated and generate proinflammatory cytokines that may be coupled with the oligodendroglial loss and hypomyelination observed in hypoxic PWMD. Twenty-four 1-day-old Wistar rats were exposed to hypoxia for 2 h. The rats were then allowed to recover under normoxic conditions for 7 or 28 days before being killed. Another group of 24 rats kept outside the chamber was used as age-matched controls. Upregulated expression of TNF-α and IL-1β was observed in astrocytes in the PWM of P7 hypoxic rats by double immunofluorescence, western blotting and real time RT-PCR. This was linked to apoptosis and enhanced expression of TNF-R1 and IL-1R1 in APC(+ OLs. PLP expression was decreased significantly in the PWM of P28d hypoxic rats. The proportion of myelinated axons was markedly reduced by electron microscopy (EM and the average g-ratios were higher in P28d hypoxic rats. Upregulated expression of TNF-α and IL-1β in primary cultured astrocytes as well as their corresponding receptors in primary culture APC(+ oligodendrocytes were detected under hypoxic conditions. Our results suggest that following a hypoxic insult, astrocytes in the PWM of neonatal rats produce inflammatory cytokines such as TNF-α and IL-1β, which induce apoptosis of OLs via their corresponding receptors associated with them. This results in hypomyelination in the PWM of hypoxic rats.

  6. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system.

    Directory of Open Access Journals (Sweden)

    Francisco Jose Alvarez

    Full Text Available Hypoxia-ischemia (HI is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets.Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs of newborn piglets exposed to acute hypoxia/ischemia (n = 6 and a control group with no such exposure (n = 10. ABRs were recorded for both ears before the start of the experiment (baseline, after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury.Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant.The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

  7. Hypoxic induction of caspase-11/caspase-1/interleukin-1beta in brain microglia.

    Science.gov (United States)

    Kim, Nam-Gon; Lee, Heasuk; Son, Eunyung; Kwon, Oh-Young; Park, Jae-Yong; Park, Jae-Hoon; Cho, Gyeong Jae; Choi, Wan Sung; Suk, Kyoungho

    2003-06-10

    Caspase-11 is an inducible protease that plays an important role in both inflammation and apoptosis. Inflammatory stimuli induce and activate caspase-11, which is required for the activation of caspase-1 or interleukin-1beta (IL-1beta) converting enzyme (ICE). Caspase-1 in turn mediates the maturation of proinflammatory cytokines such as IL-1beta, which is one of the crucial mediators of neurodegeneration in the central nervous system. Here, we report that hypoxic exposure of cultured brain microglia (BV-2 mouse microglia cells and rat primary microglial cultures) induces expression and activation of caspase-11, which is accompanied by activation of caspase-1 and secretion of mature IL-1beta and IL-18. Hypoxic induction of caspase-11 was observed in both mRNA and protein levels, and was mediated through p38 mitogen-activated protein kinase pathway. Transient global ischemia in rats also induced caspase-11 expression and IL-1beta production in hippocampus supporting our in vitro findings. Caspase-11-expressing cells in hippocampus were morphologically identified as microglia. Taken together, our results indicate that hypoxia induces a sequential event-caspase-11 induction, caspase-1 activation, and IL-1beta release-in brain microglia, and point out the importance of initial caspase-11 induction in hypoxia-induced inflammatory activation of microglia.

  8. NOC/oFQ contributes to hypoxic-ischemic impairment of N-methyl-D-aspartate-induced cerebral vasodilation.

    Science.gov (United States)

    Armstead, W M

    2000-06-16

    Previous studies in piglets show that either hypoxia, ischemia-reperfusion (I+R) or combined hypoxia-ischemia-reperfusion (H+I+R) attenuated N-methyl-D-aspartate (NMDA)-induced pial artery dilation. This study was designed to determine the contribution of the newly described opioid nociceptin orphanin FQ (NOC/oFQ) to hypoxic-ischemic impairment of NMDA induced cerebral vasodilation in piglets equipped with a closed cranial window. Global cerebral ischemia was produced via elevated intracranial pressure. Hypoxia decreased P(O(2)) to 35+/-3 mmHg with unchanged P(CO(2)). I+R elevated CSF NOC/oFQ from 67+/-4 to 266+/-29 pg/ml ( approximately 10(-10) M) while H+I+R elevated CSF NOC/oFQ to 483+/-67 pg/ml within 1 h of reperfusion. Such elevated NOC/oFQ levels returned to control within 4 h in I+R animals and within 12 h in H+I+R animals. Topical NOC/oFQ (10(-10) M) had no effect on pial artery diameter by itself but attenuated NMDA (10(-8), 10(-6) M) induced pial dilation (control, 9+/-1 and 16+/-1; coadministered NOC/oFQ, 5+/-1 and 10+/-1%). NMDA induced pial artery dilation was attenuated by I+R or H+I+R; but such dilation was partially restored by pretreatment with the putative NOC/oFQ antagonist [F/G] NOC/oFQ (1-13) NH(2) (10(-6) M) (control, 9+/-1 and 16+/-1; I+R, 3+/-1 and 5+/-1; I+R+NOC/oFQ antagonist, 6+/-1 and 11+/-1%) Similar results were obtained for glutamate. These data suggest that NOC/oFQ release contributes to impaired NMDA and glutamate-induced cerebrovasodilation following I+R or H+I+R.

  9. Electroencephalogram and magnetic resonance imaging comparison as a predicting factor for neurodevelopmental outcome in hypoxic ischemic encephalopathy infant treated with hypothermia

    Directory of Open Access Journals (Sweden)

    Francesca Del Balzo

    2014-10-01

    Full Text Available Hypoxic-ischemic encephalopathy (HIE is an important cause of acute neurological damage in newborns at (or near term. Several trials in recent years have shown that moderate hypothermia by total body cooling or selective head is an effective intervention to reduce mortality and major disability in infants survived a perinatal hypoxic-ischemic attack. Follow-up in these patients is very important to establish neurodevelopmental outcome, and specific markers can lead us to detect predicting sign for good or poor outcome. We reported a few cases of newborn with HIE treated with hypothermia, in whom the comparison between electroencephalogram (EEG and magnetic resonance imaging (MRI represents the first marker for neurodevelopment outcome prediction. The continuous EEG monitoring showed a depressed EEG activity with diffuse burst depression in 7 patients. No epileptic abnormalities were registered. In 10 out of 20 patients no abnormalities of the background activity and no epileptic abnormalities were observed. We found that a depressed EEG activity during the first 72 h of life and a diffused alteration of basal ganglia at MRI were correlated with a poor neurodevelopmental outcome at 18 months of follow-up.

  10. 大麻素在围产期缺血缺氧性脑损伤的保护作用%Cannabinoid as a neuroprotective strategy in perinatal hypoxic-ischemic injury

    Institute of Scientific and Technical Information of China (English)

    Daniel Alonso-Alconada; Antonia Alvarez; Enrique Hilario

    2011-01-01

    Perinatal hypoxia-ischemia remains the single most important cause of brain injury in the newborn,leading to death or lifelong sequelae.Because of the fact that there is still no specific treatment for perinatal brain lesions due to the complexity of neonatal hypoxic-ischemic pathophysiology,the search of new neuroprotective therapies is of great interest.In this regard,therapeutic possibilities of the endocannabinoid system have grown lately.The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury,acting as a natural neuroprotectant.Concerning perinatal asphyxia,the neuroprotective role of this endogenous system is emerging these years.The present review mainly focused on the current knowledge of the cannabinoids as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.%围产期缺血缺氧一直是引起新生儿脑损伤的首要因素,往往导致死亡或终生后遗症.由于新生儿缺血缺氧性脑损伤的病理复杂性,目前还没有针对此病的特定疗法.因此,寻找新的神经保护性疗法正日益引起研究者的关注.在哺乳动物体内,大麻素系统能调节大范围的生理过程,而且在不同类型的急性脑损伤中也具有神经保护作用.近几年的研究表明,内源性大麻素系统在围产期窒息中也扮演着神经保护者的角色.本文主要就大麻素作为一种新的治疗策略在围产期缺血缺氧性脑损伤中的神经保护作用做一综述.

  11. Animal Models of Cerebral Palsy: Hypoxic Brain Injury in the Newborn

    Directory of Open Access Journals (Sweden)

    Mark Daniel WILSON

    2015-06-01

    Full Text Available How to Cite This Article: Wilson MD. Animal Models of Cerebral Palsy: Hypoxic Brain Injury in the Newborn. Iran J Child Neurol. Spring2015; 9(2:9-16.AbstractObjectiveHypoxic insults are implicated in the spectrum of fetal disorders, including cerebral palsy (CP. In view of the major contribution of intrapartum risk factors and prematurity to subsequent neurological morbidity and mortality in humans, this study aimed to clarify the pathophysiology of brain injury, especially periventricular white matter damage (WMD, that occur in utero to the immature and near-term fetal CNS.Materials & MethodsAn evaluation of the resulting neurological and behavioural phenotype in the newborn was performed by utilising a battery of neurobehavioural tests, including the Morris water-maze and the open-field test, followed by cerebral MRI and histopathology.ResultsThis study used a murine model to examine the deleterious effects of WMD brought about by cerebral hypoxia-ischemia (HI and the characteristic features of CP in mice. Murine models have proven themselves valuable in the area of experimental neuroscience.Conclusion Hypoxia-treated mice were observed to demonstrate a significant neurofunctional deficit compared with sham mice on two behavioral measures. Indeed, different brain regions, including the sensorimotor cortex, the striatum, and the hippocampus were noticeably damaged after HI insult, as determined by both MRI and histopathology. These results, albeit qualitative in nature, appear to support the pre-existing finding that the long-term neurofunctional outcome in animal subjects with CP is strongly associated with the anatomical extent and pattern of cerebral damage as determined by both delayed neuroimaging and histopathology.

  12. BDNF Pretreatment of Human Embryonic-Derived Neural Stem Cells Improves Cell Survival and Functional Recovery After Transplantation in Hypoxic-Ischemic Stroke.

    Science.gov (United States)

    Rosenblum, Sahar; Smith, Tenille N; Wang, Nancy; Chua, Joshua Y; Westbroek, Erick; Wang, Kendrick; Guzman, Raphael

    2015-01-01

    Intra-arterial neural stem cell (NSC) therapy has the potential to improve long-term outcomes after stroke. Here we evaluate if pretreatment of NSCs with brain-derived neurotrophic factor (BDNF) prior to transplantation improves cell engraftment and functional recovery following hypoxic-ischemic (HI) stroke. Human embryonic-derived NSCs with or without BDNF pretreatment (1 h, 100 ng/ml) were transplanted 3 days after HI stroke. Functional recovery was assessed using the horizontal ladder test. Cell engraftment was evaluated using bioluminescence imaging (BLI) and histological counts of SC121(+) cells. Fluoro-Jade C (FJC) and NeuN stains were used to evaluate neuroprotection. The effect of BDNF on NSCs was analyzed using a migration assay, immunocytochemistry, Luminex proteomic assay, and RT-qPCR.BLI analysis demonstrated significantly higher photon flux in the BDNF-treated NSC group compared to untreated NSC (p = 0.049) and control groups (p = 0.0021) at 1 week after transplantation. Immunohistochemistry confirmed increased transplanted cell survival in the cortex (p = 0.0126) and hippocampus (p = 0.0098) of animals injected with BDNF-treated NSCs compared to untreated NSCs. Behavioral testing revealed that the BDNF-treated NSC group demonstrated increased sensorimotor recovery compared to the untreated NSC and control groups (p < 0.001) over the 1-month period (p < 0.001) following transplantation. A significant improvement in performance was found in the BDNF-treated NSC group compared to the control group at 14, 21, and 28 (p < 0.05) days after transplantation. The cortex and hippocampus of the BDNF-treated NSC group had significantly more SC121(+) NSCs (p = 0.0125, p = 0.0098), fewer FJC(+) neurons (p = 0.0370, p = 0.0285), and a higher percentage of NeuN(+) expression (p = 0.0354) in the cortex compared to the untreated NSC group. BDNF treatment of NSCs resulted in significantly greater migration to SDF-1, secretion of M-CSF, VEGF, and expression of CXCR4

  13. Presumptive Ischemic Brain Infarction in a Dog with Evans’ Syndrome

    Directory of Open Access Journals (Sweden)

    Angelo Pasquale Giannuzzi

    2014-01-01

    Full Text Available A ten-year-old neutered female mixed breed dog was referred for pale mucous membrane and acute onset of right prosencephalic clinical signs. Brain magnetic resonance imaging was suggestive for right middle cerebral artery ischemic stroke. Based on cell blood count, serum biochemistry and serologic tests and flow cytometric detection of anti-platelets and anti-red blood cells antibodies, a diagnosis of immunomediated haemolytic anemia associated with thrombocytopenia of suspected immunomediated origin was done. Immunosuppresive therapy with prednisone was started and the dog clinically recovered. Two months later complete normalization of CBC and serum biochemistry was documented. The dog remained stable for 7 months without therapy; then she relapsed. CBC revealed mild regenerative anemia with spherocytosis and thrombocytopenia. A conclusive Evans’ syndrome diagnosis was done and prednisone and cyclosporine treatment led to normalization of physical and CBC parameters. The dog is still alive at the time the paper submitted. Possible thrombotic etiopathogenetic mechanisms are illustrated in the paper and the authors suggest introducing Evans’ syndrome in the differential diagnosis list for brain ischemic stroke in dogs.

  14. Suppression of Etk/Bmx protects against ischemic brain injury.

    Science.gov (United States)

    Chen, Kai-Yun; Wu, Chung-Che; Chang, Cheng-Fu; Chen, Yuan-Hao; Chiu, Wen-Ta; Lou, Ya-Hsin; Chen, Yen-Hua; Shih, Hsiu-Ming; Chiang, Yung-Hsiao

    2012-01-01

    Etk/Bmx (epithelial and endothelial tyrosine kinase, also known as BMX), a member of the Tec (tyrosine kinase expressed in hepatocellular carcinoma) family of protein-tyrosine kinases, is an important regulator of signal transduction for the activation of cell growth, differentiation, and development. We have previously reported that activation of Etk leads to apoptosis in MDA-MB-468 cells. The purpose of this study was to examine the role of Etk in neuronal injury induced by H(2)O(2) or ischemia. Using Western blot analysis and immunohistochemistry, we found that treatment with H(2)O(2) significantly enhanced phosphorylation of Etk and its downstream signaling molecule Stat1 in primary cortical neurons. Inhibiting Etk activity by LFM-A13 or knocking down Etk expression by a specific shRNA increased the survival of primary cortical neurons. Similarly, at 1 day after a 60-min middle cerebral artery occlusion (MCAo) in adult rats, both phosphorylated Etk and Stat1 were coexpressed with apoptotic markers in neurons in the penumbra. Pretreatment with LFM-A13 or an adenoviral vector encoding the kinase deletion mutant Etkk attenuated caspase-3 activity and infarct volume in ischemic brain. All together, our data suggest that Etk is activated after neuronal injury. Suppressing Etk activity protects against neurodegeneration in ischemic brain.

  15. General anesthetics inhibit erythropoietin induction under hypoxic conditions in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Tomoharu Tanaka

    Full Text Available BACKGROUND: Erythropoietin (EPO, originally identified as a hematopoietic growth factor produced in the kidney and fetal liver, is also endogenously expressed in the central nervous system (CNS. EPO in the CNS, mainly produced in astrocytes, is induced under hypoxic conditions in a hypoxia-inducible factor (HIF-dependent manner and plays a dominant role in neuroprotection and neurogenesis. We investigated the effect of general anesthetics on EPO expression in the mouse brain and primary cultured astrocytes. METHODOLOGY/PRINCIPAL FINDINGS: BALB/c mice were exposed to 10% oxygen with isoflurane at various concentrations (0.10-1.0%. Expression of EPO mRNA in the brain was studied, and the effects of sevoflurane, halothane, nitrous oxide, pentobarbital, ketamine, and propofol were investigated. In addition, expression of HIF-2α protein was studied by immunoblotting. Hypoxia-induced EPO mRNA expression in the brain was significantly suppressed by isoflurane in a concentration-dependent manner. A similar effect was confirmed for all other general anesthetics. Hypoxia-inducible expression of HIF-2α protein was also significantly suppressed with isoflurane. In the experiments using primary cultured astrocytes, isoflurane, pentobarbital, and ketamine suppressed hypoxia-inducible expression of HIF-2α protein and EPO mRNA. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that general anesthetics suppress activation of HIF-2 and inhibit hypoxia-induced EPO upregulation in the mouse brain through a direct effect on astrocytes.

  16. CT影像在新生儿缺氧缺血性脑病的价值及预后%The Value and Prognosis of CT Image in Hypoxic-ischemic Encephalopathy

    Institute of Scientific and Technical Information of China (English)

    侯文光; 陈晓明; 林铁华

    2013-01-01

    Objective:To explore the clinical value and significance of CT image in hypoxic-ischemic encephalopathy,and to evaluate its prognosis and outcome situation.Methods:The data of 138 patients with hypoxic-ischemic encephalopathy from January 2006 to December 2011 were analyzed retrospectively, there were 77 males and 61 females,aged ranged from 2 h to 40 days[(8.00±1.25)d].All patients were followed up 18 to 24 months.Results:138 cases,according to the CT image results pointed mild in 78 cases,accounting for 56.52%;Moderate 29 cases,accounting for 21.04%;Severe 31 cases,accounting for 22.46%;Follow-up review showed mild group CT check all returned to normal,moderate group limited brain atrophy or brain atrophy performance,severe group had a wide range of softening of the brain,brain atrophy and residual sequelae.Conclusion:CT image for hypoxic-ischemic encephalopathy(HIE) is highly sensitive, especially HIE early indispensable preferred inspection methods,in combination with clinical manifestations of the make the right dividing,the clinical treatment on certain guiding significance,to evaluate the prognosis and outcome is active.%  目的:探讨CT影像在新生儿缺氧缺血性脑病(HIE)的临床价值及意义,进而评价其预后及转归情况。方法:回顾性分析2006年1月-2011年12月138例新生儿缺氧缺血性脑病患儿的临床资料,其中男77例,女61例,年龄最小为出生2 h,最大40 d,平均(8.00±1.25)d。所有患儿定期随访时间为18~24个月。结果:根据CT影像检查结果,138例患儿,轻度78例,占56.52%;中度29例,占21.01%;重度31例,占22.46%。随访复查显示:78轻度患儿CT检查全部恢复正常,29例中度患儿有局限性脑萎缩或脑萎缩表现;31重度患儿有较大范围脑软化、脑萎缩等后遗症残留。结论:CT影像检查对新生儿缺氧缺血性脑病高度敏感,特别是HIE早期不可缺少的首选检查方法,同时结合临床表

  17. Small vessel ischemic disease of the brain and brain metastases in lung cancer patients.

    Directory of Open Access Journals (Sweden)

    Peter J Mazzone

    Full Text Available BACKGROUND: Brain metastases occur commonly in patients with lung cancer. Small vessel ischemic disease is frequently found when imaging the brain to detect metastases. We aimed to determine if the presence of small vessel ischemic disease (SVID of the brain is protective against the development of brain metastases in lung cancer patients. METHODOLOGY/PRINCIPAL FINDINGS: A retrospective cohort of 523 patients with biopsy confirmed lung cancer who had received magnetic resonance imaging of the brain as part of their standard initial staging evaluation was reviewed. Information collected included demographics, comorbidities, details of the lung cancer, and the presence of SVID of the brain. A portion of the cohort had the degree of SVID graded. The primary outcome measure was the portion of study subjects with and without SVID of the brain who had evidence of brain metastases at the time of initial staging of their lung cancer.109 patients (20.8% had evidence of brain metastases at presentation and 345 (66.0% had evidence of SVID. 13.9% of those with SVID and 34.3% of those without SVID presented with brain metastases (p<0.0001. In a model including age, diabetes mellitus, hypertension, hyperlipidemia, and tobacco use, SVID of the brain was found to be the only protective factor against the development of brain metastases, with an OR of 0.31 (0.20, 0.48; p<0.001. The grade of SVID was higher in those without brain metastases. CONCLUSIONS/SIGNIFICANCE: These findings suggest that vascular changes in the brain are protective against the development of brain metastases in lung cancer patients.

  18. 高压氧治疗新生儿缺氧缺血性脑病39例%Therapy of hyperbaric oxygenation for 39 children with hypoxic and ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    周宝华; 裴颖; 刘俊礼

    2003-01-01

    @@ BACKGROUND: Hypoxic and ischemic encephalopathy(HIE) of new-born is thought as a severe disease with organ suf-fering anoxic and iscbemic injury caused by perinatal asphyxi-a. Now it is generally recognized that HIE serves as a main factorleading to the sequela of death and disableement of new-born.

  19. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Tornabene, Erica; Brodin, Birger

    2016-01-01

    Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food...... and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding...... of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain...

  20. 纳洛酮联合脑活素治疗新生儿HIE效果分析%Combination therapy with naloxone and cerebrolysin for hypoxic-ischemic encephalopathy in neonates

    Institute of Scientific and Technical Information of China (English)

    杜宝风; 王丽艳; 韩爱娜

    2011-01-01

    Objective To explore the efficacy of naloxone combined with cerebrolysin for hypoxic-ischemic encephalopathy in neonates. Methods 162 neonate patients were ramdonly assigned to receive oxygen inhalation, control of liquid intake, dehydration, anti-convulsion, energy mixture, citicoline,and naloxone (control group), or the former therapy plus cerebrolysin (study group, 81 neonates). The efficacy was assessed in the two goroups according to the clinical manifestations and incidence of sequelae. Results The efficacy was obviously greater in the study group than in the control group (96.3% vs. 88.9% for the effective rate, P<0.05) and the incidence of sequelae was lower. Conclusions Naloxone combined with cerebrolysin has a synergetic effect on the treatment of hypoxic-ischemic encephalopathy in neonates. It can improve blood perfusion into the ischemic areas of the brain, promote neural cellular metabolism, improve prognosis, and reduce nervous system sequelae.%目的 探讨纳洛酮联合脑活察治疗新生儿缺氧缺血性脑病的临床效果.方法 将我科缺氧缺血性脑病患儿随机分为治疗组和对照组各81例,对照组给予吸氧、限制液体入量、脱水、止痉及能量合剂、胞二磷胆碱、纳络酮,治疗组在此疗法基础上加用脑活素治疗.根据临床表现、后遗症发生情况等综合评价临床效果.结果 治疗组总有效率96.3%,对照组有效率88.9%.治疗组临床疗效明显高于对照组(P<0.05),后遗症的发生率低.结论 纳洛酮联合脑活素治疗新生儿缺氧缺血性脑病有协同作用,能改善脑缺血区血流灌注,促进神经细胞代谢,改善预后,减少神经系统后遗症.

  1. Pre-Ischemic Treadmill Training for Prevention of Ischemic Brain Injury via Regulation of Glutamate and Its Transporter GLT-1

    Directory of Open Access Journals (Sweden)

    Jingchun Guo

    2012-07-01

    Full Text Available Pre-ischemic treadmill training exerts cerebral protection in the prevention of cerebral ischemia by alleviating neurotoxicity induced by excessive glutamate release following ischemic stroke. However, the underlying mechanism of this process remains unclear. Cerebral ischemia-reperfusion injury was observed in a rat model after 2 weeks of pre-ischemic treadmill training. Cerebrospinal fluid was collected using the microdialysis sampling method, and the concentration of glutamate was determined every 40 min from the beginning of ischemia to 4 h after reperfusion with high-performance liquid chromatography (HPLC-fluorescence detection. At 3, 12, 24, and 48 h after ischemia, the expression of the glutamate transporter-1 (GLT-1 protein in brain tissues was determined by Western blot respectively. The effect of pre-ischemic treadmill training on glutamate concentration and GLT-1 expression after cerebral ischemia in rats along with changes in neurobehavioral score and cerebral infarct volume after 24 h ischemia yields critical information necessary to understand the protection mechanism exhibited by pre-ischemic treadmill training. The results demonstrated that pre-ischemic treadmill training up-regulates GLT-1 expression, decreases extracellular glutamate concentration, reduces cerebral infarct volume, and improves neurobehavioral score. Pre-ischemic treadmill training is likely to induce neuroprotection after cerebral ischemia by regulating GLT-1 expression, which results in re-uptake of excessive glutamate.

  2. Beneficial effect of medicinal plants on the contractility of post-hypoxic isolated guinea pig atria - Potential implications for the treatment of ischemic-reperfusion injury.

    Science.gov (United States)

    Bipat, Robbert; Toelsie, Jerry R; Magali, Indira; Soekhoe, Rubaina; Stender, Karin; Wangsawirana, Angelique; Oedairadjsingh, Krishan; Pawirodihardjo, Jennifer; Mans, Dennis R A

    2016-08-01

    Context Ischemic-reperfusion injury is accompanied by a decreased contractility of the myocardium. Positive-inotropic agents have proven useful for treating this condition but may exert serious side-effects. Objective In this study, aqueous preparations from Abelmoschus esculentus L. Moench (Malvaceae), Annona muricata L. (Annonaceae), Bixa orellana L. (Bixaceae), Cecropia peltata L. (Moraceae), Erythrina fusca Lour. (Fabaceae), Psidium guajava L. (Myrtaceae) and Terminalia catappa L. (Combretaceae) were evaluated for their ability to improve the decreased contractility of isolated guinea pig atria after hypoxic stress. Materials and methods Guinea pig atria isolated in Ringer-Locke buffer gassed with 100% O2 at 30 °C were exposed for 5 min to hypoxia, then allowed to recover in oxygenated buffer alone or containing a single plant extract (0.001-1 mg/mL). The contractility (g/s) and beating frequency (beats/min), as well as troponin C contents of the bathing solution (ng/mL), were determined and expressed as means ± SDs. Results The extracts of A. muricata, B. orellana, C. peltata and T. catappa caused an increase in the contractility compared to untreated atria of 340 ± 102%, 151 ± 13%, 141 ± 14% and 238 ± 44%, respectively. However, the latter two preparations increased the troponin C contents of the bathing solution to 36 ± 11 and 69 ± 33, compared to the value of 11 ± 3 ng/mL found with untreated atria. Conclusions Preparations from A. muricata and B. orellana may possess positive-inotropic properties which may improve the contractility of the post-hypoxic myocardium. Studies to assess their usefulness in ischemic-reperfusion injury are warranted.

  3. Investigation of the effect and mechanism of hyperbaric oxygenation therapy on neonatal hypoxic-ischemic encepha-lopathy with SPECT%新生儿缺氧缺血脑病高压氧治疗SPECT研究

    Institute of Scientific and Technical Information of China (English)

    贾少微; 易治; 廖建湘

    2001-01-01

    目的应用SPECT评价新生儿缺氧缺血脑病HBO的疗效,探讨治疗机理.方法研究对象34例新生儿,正常新生儿组3例,HBO组HIE患儿20例,对照组HIE患儿11例.2组HIE患儿在治疗前和治疗后各接受一次SPECT检查.结果治疗前SPECT示31例HIE患儿有46个大小不同的局灶性血流灌注和功能缺损或低下区.HBO组HIE患儿经1~2个疗程的HBO治疗后,脑内原有局灶性血流灌注和功能缺损或低下区缩小或消失.对照组的HIE患儿虽也有一定好转,但恢复程度不及HBO组,2组之间的疗效差异显著(P<0.01).结论 HBO治疗HIE患儿疗效显著,主要是通过增加脑组织增加局部脑血流灌注和含氧量,来改善脑细胞的缺氧状态,激发脑细胞的活性,促进损伤脑细胞的修复.%Objective To evaluate the effect of HBO on neonatal hypoxic-ischemic encephalopathy with SPECT, and to explore the mechanisms.Methods The research subjects were totally 34 newborn babies, including 3 normal neonates. The group treated with HBO included 20 babies with HIE, and the control group contained 11 HIE babies. All babies in both groups received SPECT exams before and after the treatments. Results SPECT before treatment showed 46 foci of low perfusion and functional defect or insufficiencies in 31 HIE babies. SPECT after 1-2 period of treatments of HBO therapy in HIE babies showed disappeared or reduced low perfusion and functional defect or insufficiency in the brains. The HIE babies in the control group showed improvement with less degree than HBO treated babies. There were significant differences (P<0.01) between two groups. Conclusion The effect of HBO on HIE babies were prominent. The treatment can improve the hypoxic status of brain cell through increase the regional cerebral blood flow perfusion and oxygen content of the brain tissue, then provoked the brain cells activities, and at last, enhance the repair of the injured brain cells.

  4. Multimodal nanoprobes evaluating physiological pore size of brain vasculatures in ischemic stroke models.

    Science.gov (United States)

    Zheng, Shuyan; Bai, Ying-Ying; Changyi, Yinzhi; Gao, Xihui; Zhang, Wenqing; Wang, Yuancheng; Zhou, Lu; Ju, Shenghong; Li, Cong

    2014-11-01

    Ischemic stroke accounts for 80% strokes and originates from a reduction of cerebral blood flow (CBF) after vascular occlusion. For treatment, the first action is to restore CBF by thrombolytic agent recombinant tissue-type plasminogen activator (rt-PA). Although rt-PA benefits clinical outcome, its application is limited by short therapeutic time window and risk of brain hemorrhage. Different to thrombolytic agents, neuroprotectants reduce neurological injuries by blocking ischemic cascade events such as excitotoxicity and oxidative stress. Nano-neuroprotectants demonstrate higher therapeutic effect than small molecular analogues due to their prolonged circulation lifetime and disrupted blood-brain barrier (BBB) in ischemic region. Even enhanced BBB permeability in ischemic territories is verified, the pore size of ischemic vasculatures determining how large and how efficient the therapeutics can pass is barely studied. In this work, nanoprobes (NPs) with different diameters are developed. In vivo multimodal imaging indicates that NP uptakes in ischemic region depended on their diameters and the pore size upper limit of ischemic vasculatures is determined as 10-11 nm. Additionally, penumbra defined as salvageable ischemic tissues performed a higher BBB permeability than infarct core. This work provides a guideline for developing nano-neuroprotectants by taking advantage of the locally enhanced BBB permeability in ischemic brain tissues.

  5. A specific dietary intervention to restore brain structure and function after ischemic stroke

    NARCIS (Netherlands)

    Wiesmann, M.; Zinnhardt, B.; Reinhardt, D.; Eligehausen, S.; Wachsmuth, L.; Hermann, S.; Dederen, P.J.; Hellwich, M.; Kuhlmann, M.T.; Broersen, L.M.; Heerschap, A.; Jacobs, A.H.; Kiliaan, A.J.

    2017-01-01

    Occlusion of the middle cerebral artery (MCAo) is among the most common causes of ischemic stroke in humans. Cerebral ischemia leads to brain lesions existing of an irreversibly injured core and an ischemic boundary zone, the penumbra, containing damaged but potentially salvageable tissue. Using a t

  6. Value of Whole Brain Computed Tomography Perfusion for Predicting Outcome after TIA or Minor Ischemic Stroke

    NARCIS (Netherlands)

    Van Den Wijngaard, Ido R.; Algra, Ale; Lycklama À Nijeholt, Geert J.; Boiten, Jelis; Wermer, Marieke J H; Van Walderveen, Marianne A A

    2015-01-01

    Introduction About 15% of patients with transient ischemic attack (TIA) or minor ischemic stroke have functional impairment after 3 months. We studied the role of whole brain computed tomography perfusion (WB-CTP) in the emergency diagnosis of TIA or minor stroke in predicting disability at 3 months

  7. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    Science.gov (United States)

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women.

  8. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    Science.gov (United States)

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population.

  9. Correlation between Nerve Growth Factor (NGF) with Brain Derived Neurotropic Factor (BDNF) in Ischemic Stroke Patient

    OpenAIRE

    Islam, Andi Asadul

    2016-01-01

    - The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient's onset...

  10. Evidence for a therapeutic effect of Braintone on ischemic brain damage***

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Qin; Yu Luo; Weiwei Gu; Lei Yang; Xikun Shen; Zhenlun Gu; Huiling Zhang; Xiumei Gao

    2013-01-01

    This study used a novel combination of in vivo and in vitro experiments to show that Braintone had neuroprotective effects and clarified the molecular mechanisms underlying its efficacy. The Chinese herbal extract Braintone is composed of Radix Rhodiolase Essence, Radix Notoginseng Essence, Folium Ginkgo Essence and Rhizoma Chuanxiong. In vivo experiments showed that cerebral in-farction volume was reduced, hemispheric water content decreased, and neurological deficits were al eviated in a rat model of permanent middle cerebral artery occlusion after administration of 87.5, 175 or 350 mg/kg Braintone for 7 consecutive days. Western blot analysis showed that Braintone enhanced the expression of hypoxia-inducible factor 1α, heme oxygenase-1 and vascular endothe-lial growth factor in the ischemic cortex of these rats. The 350 mg/kg dose of Braintone produced the most dramatic effects. For the in vitro experiments, prior to oxygen-glucose deprivation, rats were intragastrical y injected with 440, 880 or 1 760 mg/kg Braintone to prepare a Braintone-co-ntaining serum, which was used to pre-treat human umbilical vein endothelial cel s for 24 hours. Human umbilical vein endothelial cel injury was al eviated with this pre-treatment. Western blot and real-time PCR analysis showed that the Braintone-containing serum increased the levels of hypox-ia-inducible factor 1α mRNA and protein, heme oxygenase-1 protein and vascular endothelial growth factor mRNA in oxygen-glucose deprived human umbilical vein endothelial cel s. The 1 760 mg/kg dose produced the greatest increases in expression. Col ectively, these experimental findings suggest that Braintone has neuroprotective effects on ischemia-induced brain damage via the up-regulation of hypoxia-inducible factor 1α, heme oxygenase-1 and vascular endothelial growth factor expression in vascular endothelial cel s.

  11. Involvement of caspase-1 proteases in hypoxic brain injury. effects of their inhibitors in developing neurons.

    Science.gov (United States)

    Bossenmeyer-Pourié, C; Koziel, V; Daval, J L

    2000-01-01

    To further explore the contribution of caspase-1/interleukin-1beta-convening enzyme in the consequences of hypoxia in developing brain neurons, its temporal expression profile was analysed by immunohistochemistry and western blotting in cultured neurons from the embryonic rat forebrain subjected to a hypoxic stress (95% N2/5% CO2 for 6 h), and proteolytic activity of caspase-1 was monitored as a function of time by measuring the degradation of a selective colorimetric substrate (N-acetyl-Tyr-Val-Ala-Asp-p-nitroanilide). In addition, the influence of pre- and posthypoxic treatments by caspase-1 inhibitors (N-acetyl-Tyr-Val-Ala-Asp-aldehyde and N-acetyl-Tyr-Val-Ala-Asp-chloromethylketone) was tested on cell outcome. Hypoxia led to delayed apoptotic neuronal death, with an elevation of the expression of both pro-caspase-1 and caspase-1 active cleavage product (ICE p20) for up to 96 h after cell reoxygenation. As reflected by cleavage of the specific substrate, caspase-1 activity progressively increased between 24 h and 96 h posthypoxia, and was blocked by inhibitors in a dose-dependent fashion. The inhibitory compounds, including when given 24 h after hypoxia, prevented neuronal death, reduced apoptosis hallmarks and also increased the number of mitotic neurons, suggesting they might promote neurogenesis. Similar observations were made when neurons were exposed to a sublethal hypoxia (i.e. 3 h). These data emphasize the participation of caspase-1 in neuronal injury consecutive to oxygen deprivation, and provide new insight into the possible cellular mechanisms by which caspase inhibitors may protect developing brain neurons.

  12. Ischemic stroke and incomplete infarction

    DEFF Research Database (Denmark)

    Garcia, Javier; Lassen, N A; Weiller, C

    1996-01-01

    The concept of selective vulnerability or selective loss o f individual neurons, with survival of glial and vascular elements as one of the consequences of a systemic ischemic-hypoxic insult (eg, transient cardiac arrest or severe hypotension), has been recognized for decades. In contrast, select......, selective neuronal death as one of the lesions that may develop in the brain after occluding an intracranial artery is an idea not readily acknowledged in the current medical literature dealing with human stroke....

  13. [Hemo- and neurodynamics of the human brain during exposure to moderate hypoxic hypoxia].

    Science.gov (United States)

    Alekseev, D A; Zubarev, A F; Krupina, T N; Iarullin, Kh Kh; Kuznets, E I

    1984-01-01

    Synchronous electro- and rheoencephalography were used to study tolerance to moderate hypoxic hypoxia for 30 min at an altitude of 5000 m without additional oxygen supply. As test subject, men with autonomic-vascular dystonia (29-39 years old), 15 men over 40 (41-56 years old), and 16 essentially healthy controls (23-36 years old) were used. The aged volunteers (41-56 years old) did not differ from the controls with respect to their tolerance to hypoxic hypoxia. The men with early symptoms of hypertonic-type dystonia also showed high tolerance to hypoxic hypoxia. The subjects with hypotonic-type dystonia displayed lower tolerance.

  14. Conditional discrimination and reversal in amnesia subsequent to hypoxic brain injury or anterior communicating artery aneurysm rupture

    Science.gov (United States)

    Myers, C.E.; DeLuca, J.; Hopkins, R.O.; Gluck, M.A.

    2007-01-01

    Human anterograde amnesia can develop following bilateral damage to the hippocampus and medial temporal lobes, as in hypoxic brain injury, or following damage to the basal forebrain, as following anterior communicating artery (ACoA) aneurysm rupture. In both cases, the mnestic deficit may be similar when assessed by standard neuropsychological measures. However, animal and computational models suggest that there are qualitative differences in the pattern of impaired and spared memory abilities following damage to hippocampus versus basal forebrain. Here, we show such a dissociation in human amnesia using a single two-stage task, involving conditional discrimination and reversal. Consistent with a prior study, 10 individuals with anterograde amnesia subsequent to hypoxic brain injury were spared on acquisition but impaired at reversal. However, 10 individuals with amnesia subsequent to ACoA aneurysm showed the opposite pattern of impaired acquisition but spared reversal. The differences between groups cannot be easily ascribed to severity of mnestic or cognitive deficit, since the two amnesic groups performed similarly on neuropsychological tests of memory, intelligence and attention. The results illustrate qualitative differences in memory impairments in hypoxic and ACoA amnesics and highlight the importance of considering etiology in evaluating mnemonic deficits in amnesic populations. PMID:15885718

  15. Crosstalk between microglia and T cells contributes to brain damage and recovery after ischemic stroke.

    Science.gov (United States)

    Wang, Sunwei; Zhang, He; Xu, Yun

    2016-06-01

    To summarize available knowledge regarding the crosstalk, thereby providing a more detailed explanation for the mechanism of brain damage and recovery after ischemic stroke. An extensive review of the literature on the crosstalk between microglia and T cells in ischemic stroke was performed. We review the relevant publications in PubMed database. After cerebral ischemia, microglia are activated and peripheral T cells infiltrated into the brain. The crosstalk between microglia and T cells has both pro-inflammatory and anti-inflammatory effects in the inflammation after stroke. The crosstalk between M1 and Th1/Th17 cells promotes immune response after stroke and contributes to brain damage, while the crosstalk between M2 and Th2/Treg cells plays an anti-inflammatory role and contributes to brain recovery. Meanwhile, the crosstalk can be regulated by many factors, in both contact dependent and non-contact dependent way. Inflammation mediated by microglia crosstalking to T cells contributes to brain damage and recovery after ischemic stroke. Extensive evidence supports a critical role for the crosstalk of microglia and T cells in the prognosis of brain injury after ischemic stroke. The regulation of the crosstalk may provide a potential therapeutic target for improving the ischemic brain damage.

  16. Serum Markers of Apoptosis in Traumatic and Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    N. N. Yepifantseva

    2009-01-01

    Full Text Available Objective: to study the time course of changes and relationship of the serum indicators of apoptotic processes in neurore-suscitation patients. Subjects and methods. Thirty-eight neuroresuscitation patients, including 14 patients with severe brain injury (SBI (mean age 41.4±4.3 years and 24 patients with strokes (mean age 53.8±2.5 years, were examined. The group of patients with strokes was divided into 2 subroups: 1 11 patients with ischemic strokes (IS and 2 13 with hemorrhagic strokes (HS. The Glasgow coma scores for admission consciousness loss were 7.6±0.8 in the SBI group and 9.5±0.7 in the stroke group; mortality was 28.6 and 37.5%, respectively. A control group included 16 subjects (mean age 47.9±3.8 years. The investigators measured the serum levels of FAS antigen and its ligand (sAPO-I/FAS and sFAS-L, cas-pase-1/ICE, sCD40 (Bender MedSystem, Austria and hTRAIL (Biosource, Belgium by solid-phase immunoassay in neuroresuscitation patients on days 1, 7, and 14 of the acute period of diseases. They used statistical methods, such as Wilcoxon-Mann-Whitney U-test, Spearman’s rank correlation test. Results. A reduction in hTRAIL was observed in all the groups. There was a decrease in serum sCD40 in strokes on days 1 to 14 and in SBI on days 7 to 14. An increase in caspase 1/ICE was seen in HS in the first 24 hours, in IS on days 1 to 7, and in SBI on days 1 to 14. The most pronounced rise in caspase-1/ICE was induced by ischemic brain lesion within the first week of disease. A prolonged increase up to 2 weeks was noted in SBI. No rise in serum FAS-L was found in the examinees. The time course of changes in sAPO-I/FAS was different in all the groups. The most marked, moderate, and none reductions were revealed in HS, IS, and SBI, respectively. There was a pronounced serum sAPO-I/FAS increase in SBI within the first 24 hours. Assessment of correlations between the serum indicators of apoptosis revealed that there were differences in the

  17. Pre-ischemic treadmill training alleviates brain damage via GLT-1-mediated signal pathway after ischemic stroke in rats.

    Science.gov (United States)

    Wang, X; Zhang, M; Yang, S-D; Li, W-B; Ren, S-Q; Zhang, J; Zhang, F

    2014-08-22

    Physical exercise could play a neuroprotective role in both human and animals. However, the involved signal pathways underlying the neuroprotective effect are still not well established. This study was to investigate the possible signal pathways involved in the neuroprotection of pre-ischemic treadmill training after ischemic stroke. Seventy-two SD rats were randomly assigned into three groups (n=24/group): sham surgery group, middle cerebral artery occlusion (MCAO) group and MCAO with exercise group. Following three weeks of treadmill training exercise, ischemic stroke was induced by occluding the middle cerebral artery (MCA) in rat for 2 h, followed by reperfusion. Twenty-four hours after MCAO/reperfusion, 12 rats in each group were evaluated for neurological deficit scores and then sacrificed to measure the infarct volume (n=6) and cerebral edema (n=6). Six rats in each group were sacrificed to measure the expression level of glutamate transporter-1 (GLT-1), protein kinase C-α (PKC-α), Akt, and phosphatidylinositol 3 kinase (PI3K) (n=6). Two hundred and eighty minutes (4.67 h) after occlusion, six rats in each group were decapitated to detect the mRNA expression level of metabotropic glutamate receptor 5 (mGluR5) and N-methyl-D-aspartate receptor subunit type 2B (NR2B) (n=6).The results demonstrated that pre-ischemic treadmill training exercise reduced brain infarct volume, cerebral edema and neurological deficits, also decreased the over expression of PKC-α and increased the expression level of GLT-1, Akt and PI3K after ischemic stroke (pdamage after ischemic stroke, which might be involved in two signal pathways: PKC-α-GLT-1-Glutamate and PI3K/Akt-GLT-1-Glutamate.

  18. Clinical and Diagnostic Value of CT in Neonates with Hypoxic Ischemic Encephalopathy%新生儿缺氧缺血性脑病的临床与CT诊断价值

    Institute of Scientific and Technical Information of China (English)

    张宗权; 刘文军; 刘克平; 冯黎明

    2016-01-01

    Objective To observe the change of neonatal hypoxic ischemic encephalopathy (HIE) of CT and diagnostic value. Methods The clinical and MSCT imaging data of 45 cases with HIE were retrospectively analyzed. Results CT could clearly show the brain parenchymal changes caused by brain ischemia and hypoxia, range and degree of involvement, and intracranial hemorrhage, deformity. Conclusion The use of CT technology, could signiifcantly improve the clinical accuracy of HIE diagnosis, and would have important diagnostic values on cerebral edema, infarction, intracranial hemorrhage and parts of the scope and type, and clinical signiifcance on the prognosis of HIE.%目的:探讨新生儿缺氧缺血性脑病的CT改变及诊断价值。方法对45例缺氧缺血性脑病(HIE)的临床及CT影像资料进行回顾分析。结果 CT能够清楚显示颅脑缺氧缺血后引起的脑实质改变,病变累及范围及程度,以及颅内出血、畸形等。结论运用CT检查技术,能够明显提高临床对HIE诊断的准确率,并对脑水肿、梗死及颅内出血的部位、范围及类型都具有明确的诊断价值,对HIE预后有着十分重要的临床意义。

  19. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-09-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.

  20. Central role of maladapted astrocytic plasticity in ischemic brain edema formation

    Directory of Open Access Journals (Sweden)

    Yu-Feng eWang

    2016-05-01

    Full Text Available Brain edema formation and the ensuing brain damages are the major cause of high mortality and long term disability following the occurrence of ischemic stroke. In this process, oxygen and glucose deprivation and the ensuing reperfusion injury play primary roles. In response to the ischemic insult, the neurovascular unit experiences both intracellular and extracellular edemas; the two processes are interactive closely under the driving of maladapted astrocytic plasticity. The astrocytic plasticity includes both morphologic and functional plasticity. The former involves a reactive gliosis and the ensuing glial retraction. It relates to the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly K+ and glutamate, as well as the integrity of the blood-brain barrier. The latter involves the expression and activity of a series of ion and water transport proteins. These molecules are grouped together around glial fibrillary acidic protein and water channel protein aquaporin 4 to form functional networks, regulate hydromineral balance across cell membranes and maintain the integrity of the blood-brain barrier. Intense ischemic challenges can disrupt these capacities of astrocytes and result in their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only disrupt the hydromineral homeostasis across astrocyte membrane and the blood-brain barrier, but also lead to disorders of the whole neurovascular unit. This review focuses on how the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain edema formation.

  1. Denver developmental screening test II for early identification of the infants who will develop major neurological deficit as a sequalea of hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Hallioglu, O; Topaloglu, A K; Zenciroglu, A; Duzovali, O; Yilgor, E; Saribas, S

    2001-08-01

    The primary aim of this study was to find widely available, inexpensive, and non-invasive parameters for early identification or prediction of the infants with hypoxic-ischemic encephalopathy (HIE) who will have a severe adverse outcome (classified as death or a major neurological deficit). Fifty-seven full-term or near-term newborn infants with a diagnosis of HIE were consecutively admitted to the neonatal intensive care unit and studied. Occurrence of seizures during the first 24 h, cranial ultrasonography (US) findings within the first 5 days of life, and Denver developmental screening test II (DDST II) at 6 months of age, were analyzed in relation to mortality and neurological status at 2 years of age. Of the 57 infants, 10 were lost to follow-up. Twenty of the remaining 47 infants had a severe adverse outcome. Among the predictors of severe adverse outcome, occurrence of seizures was found to have a poor predictive accuracy. Cranial US had 100% sensitivity, however with a rather low specificity (55%). However, DDST II at 6 months of age, yielded a very high predictive accuracy (sensitivity=100%, specificity=95%). We conclude that DDST II at 6 months of age could be used in predicting severe neurological outcome in infants with HIE.

  2. Intraperitoneal administration of thioredoxin decreases brain damage from ischemic stroke.

    Science.gov (United States)

    Wang, Bin; Tian, Shilai; Wang, Jiayi; Han, Feng; Zhao, Lei; Wang, Rencong; Ning, Weidong; Chen, Wei; Qu, Yan

    2015-07-30

    Recent studies demonstrate that Thioredixin (Trx) possesses a neuronal protective effect and closely relates to oxidative stress and apoptosis of cerebral ischemia injury. The present study was conducted to validate the neuroprotective effect of recombinant human Trx-1 (rhTrx-1) and its potential mechanisms against ischemia injury at middle cerebral artery occlusion (MCAO) in mice. rhTrx-1 was administrated intraperitoneally at a dose of 5, 10 and 20mg/kg 30 min before MCAO in mice, and its neuronal protective effect was evaluated by neurological deficit score, brain dry-wet weight, 2,3,5-triphenyltetrazolium chloride (TTC) staining. The protein carbonyl content and HO-1 were detected to investigate its potential anti-oxidative and anti-inflammatory property, and the anti-apoptotic ability of rhTrx-1 was assessed by casepase-3 and TUNEL staining. The results demonstrated that rhTrx-1 significantly improved neurological functions and reduced cerebral infarction and apoptotic cell death at 24h after MCAO. Moreover, rhTrx-1 resulted in a significant decrease in carbonyl contents and HO-1 against oxidative stress, which turned to be fast reduction during the first 24h and tended to be stable from 24h to 72h after MCAO. The study shows that rhTrx-1 exerts an neuroprotective effect in cerebral ischemia injury. The anti-oxidative, anti-apoptotic and anti-inflammatory properties of rhTrx-1 are more likely to succeed as a therapeutic approach to diminish oxidative stress-induced neuronal apoptotic cell death in acute ischemic stroke.

  3. An update on brain imaging in transient ischemic attack.

    Science.gov (United States)

    Souillard-Scemama, R; Tisserand, M; Calvet, D; Jumadilova, D; Lion, S; Turc, G; Edjlali, M; Mellerio, C; Lamy, C; Naggara, O; Meder, J-F; Oppenheim, C

    2015-02-01

    Neuroimaging is critical in the evaluation of patients with transient ischemic attack (TIA) and MRI is the recommended modality to image an ischemic lesion. The presence of a diffusion (DWI) lesion in a patient with transient neurological symptoms confirms the vascular origin of the deficit and is predictive of a high risk of stroke. Refinement of MR studies including high resolution DWI and perfusion imaging using either MRI or CT further improve the detection of ischemic lesions. Rapid etiological work-up includes non-invasive imaging of cervical and intracranial arteries to search for symptomatic stenosis/occlusion associated with an increased risk of stroke.

  4. Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat.

    Science.gov (United States)

    Pulsinelli, W A; Waldman, S; Rawlinson, D; Plum, F

    1982-11-01

    We compared the effects of glucose injection with those of saline or mannitol on ischemic brain damage and brain water content in a four-vessel occlusion (4-VO) rat model, which simultaneously causes severe forebrain ischemia and moderate hindbrain ischemia. Glucose given before onset of ischemia was followed by severe brain injury, with necrosis of the majority of neocortical neurons and glia, substantial neuronal damage throughout the remainder of forebrain, and severe brain edema. By comparison, saline injection before forebrain ischemia resulted in only scattered ischemic damage confined to neurons and no change in the brain water content. Mannitol injection before 4-VO or D-glucose injection during or after 4-VO produced no greater forebrain damage than did the saline injection. Morphologic damage in the cerebellum, however, was increased by D-glucose injection given either before or during 4-VO. The results demonstrate that hyperglycemia before severe brain ischemia or during moderate ischemia markedly augments morphologic brain damage.

  5. The Protective Effect of Rosuvastatin on Ischemic Brain Injury and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the protective effect of rosuvastatin on ischemic brain injury and its mechanism,in on ischemic brain injury and its mechanism,focal cerebral ischemia/reperfusion was induced by occlusion of the middle cerebral artery (MCA)-luminal filament technique. The cerebral blood flow was monitored with laser-Doppler flowmetry (LDF). The slices of brain tissue were stained with cresyl-violet. The cerebral e quantified with ImageJ software. The expressions of endothelial NO synthase (eNOS) and activated caspase-3 were detected with Western blot. The inducible NO were immunohistochemically observed. The results demonstrated that rosuvastatin (20 mg/kg) could remarkably decrease infarct volume and cerebral edema after MCAO ots showed that the expression of eNOS in cerebral cortex before and after ischemia was (100±43.3) %, (1668.9±112.2) % respectively (P<0.001), rosuvastatin gulated the expression of eNOS in non-ischemic cortex (P<0.001), whereas in ischemic cortex of rosuvastatin group the expression of eNOS was (1678.8±121.3) %. There was no hemic cortex, nonetheless the expression of activated caspase-3 increased after ischemia, and rosuvastatin significantly diminished it (P<0.01). Immunoaled no iNOS-positive cells in non-ischemic brain area, while in ischemic brain area the number of iNOS positive cells went up, and rosuvastatin could significantly reduced them.'s neural protection on ischemic brain injury are to enhance expression of eNOS, to inhibit expression of iNOS and activated caspase-3.mia/reperfusion; NOS; caspase-3

  6. Effect of different methods of hypoxic exercise training on free radical oxidation and antioxidant enzyme activity in the rat brain

    Science.gov (United States)

    LI, JIE; WANG, YUXIA

    2013-01-01

    The effects of different modes of hypoxic exercise training on free radical production and antioxidant enzyme activity in the brain of rats were investigated in this study. A total of 40 healthy 2-month-old male Wister rats were randomly assigned to 5 groups according to different training modes. Endurance training sessions were performed for 5 weeks under different normoxic (atmospheric pressure ~632 mmHg, altitude ~1,500 m) and hypoxic conditions (atmospheric pressure ~493 mmHg, altitude ~3,500 m) at the same relative intensity. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activity and the malondialdehyde (MDA) content of the brain were evaluated by spectrophotometric analysis. Compared to the low-training low (LL) group, the SOD activity was significantly increased by 68.73, 54.28 and 304.02% in the high-training high (HH), high-training low (HL) and high-exercise high-training low (HHL) groups, respectively. However, no obvious change was observed for the low-training high (LH) group. In comparison to the LL group, the GSH-Px activity was found to be significantly higher in the HH, HL, LH and HHL groups. Similarly, in comparison to the LL group, the CAT activity exhibited a significant increase in the HH, HL, LH and HHL groups. Compared to the LL group, the MDA content was significantly increased in the HH, HL and HHL groups, although no significant difference was detected for the LH group. Following exhaustive exercise, the antioxidant enzyme activities in the rat brains were immediately improved in all the hypoxia modes. Moreover, the free radical production was increased after all the modes of hypoxic exercise training, with the LH mode being the only exception. PMID:24649054

  7. [Neonatal hypoxic-ischemic nephropathy and urinary diagnostic indices: the utility of measuring tubular enzymes (NAG and AAP)].

    Science.gov (United States)

    Bertotti, A; De Marchi, S; Brovedani, P; Gaeta, G; Peratoner, L; Mangiarotti, M A

    1990-01-01

    Feto-neonatal hypoxia can cause a functional kidney impairment, which is often temporary and not clinically overt, but sometimes leading to acute renal failure. Hypoxic stress may result in a tubulo-interstitial damage, and kidney tubular enzymes determination has proved to be an easy, early, and non invasive method to define a tubular interstitial lesion. A major target of nephrotoxicity is the proximal tubular cell: alterations in brush-border membrane and cytoplasm result in increased turnover processes in the kidney cortex, following by a corresponding increased excretion of alanine-aminopeptidase (AAP) and N-acetyl-glucosaminidase (NAG) from the proximal tubular cells, long before glomerular or tubular functions are impaired. AAP and NAG excretion is directly correlated with the strength and the duration of toxic alteration of the proximal tubule. NAG and AAP have been already studied in the adults and the children; they have been chosen for this investigation with a double aim: 1) to define the amount of their urinary excretion in relation with gestational age at birth; 2) to evaluate if in the newborn, independently of the gestational age, their urinary concentration may be increased by ischaemic conditions caused by hypoxia. We studied 52 healthy newborns (7 preterm of 33-36 weeks and 45 full-term) and 16 newborns with feto-neonatal hypoxia (8 preterm of 26-36 weeks and full-term) at the forth day of life. Urinary NAG and AAP were assayed by colorimetric methods and the results expressed as mU/mg. creatininuria.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Free radical reaction in ischemic rat brain. ESR-CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kayama, Takamasa [Yamagata Univ. (Japan). School of Medicine

    1998-07-01

    Free radical change in images of rat brain during brain ischemia was observed by using a rapid scan L-band ESR-CT system. Male Wistar rats weighing 200 g were used. Rats were divided into three groups according to the duration of occlusion of 2, 4, and 8 hr as well as a control, sham-operated group. C-PROXYL dissolved in saline solution was used as an imaging agent and injected intraperitoneally in a volume of 3 ml at a concentration of 0.3 M at the beginning of reperfusion. ESR-CT imaging was performed 20 min after injection of C-PROXYL. In the sham-operated group, histological examination disclosed no ischemic lesion. Because C-PROXYL does not pass the blood-brain barrier, no brain image was obtained. In the 2 hr occlusion ischemic group, histological findings revealed spongioid change at the dorsal putamen. The ESR-CT image showed a small spot of uptake of nitroxide radicals in the area of the presumed left putamen which corresponded to the histological ischemic lesion. In the 8 hr occlusion group, the ischemic lesion was found even in the cerebral cortex. The image of nitroxide radical in the brain again closely corresponded to the histological ischemic area and occupied most of the left cerebral hemisphere. However, the area of ESR-CT image was wider than that of histological ischemic lesion. This may be because C-PROXYL leakage in the ischemic lesion diffuses and also because the extent of the efficiency of scavenging free radicals may decline. (K.H.)

  9. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1.

    Science.gov (United States)

    Peng, Zhifeng; Li, Jiefei; Li, Yun; Yang, Xuan; Feng, Sujuan; Han, Song; Li, Junfa

    2013-10-01

    Understanding the molecular mechanism of cerebral hypoxic preconditioning (HPC)-induced endogenous neuroprotection may provide potential therapeutic targets for ischemic stroke. By using bioinformatics analysis, we found that miR-181b, one of 19 differentially expressed miRNAs, may target aconitate hydratase (ACO2), heat shock protein A5 (HSPA5), and ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) among 26 changed protein kinase C isoform-specific interacting proteins in HPC mouse brain. In this study, the role of miR-181b in oxygen-glucose deprivation (OGD)-induced N2A cell ischemic injury in vitro and mouse middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury in vivo, and its regulation of ACO2, HSPA5, and UCHL1 were further determined. We found that miR-181b expression levels significantly decreased in mouse brain following MCAO and in OGD-treated N2A cells. Up- and downregulation of miR-181b by transfection of pre- or anti-miR-181b could negatively regulate HSPA5 and UCHL1 (but not ACO2) protein levels as well as N2A cell death and programmed cell death in OGD-treated N2A cells. By using a T7 promoter-driven control dual luciferase assay, we confirmed that miR-181b could bind to the 3'-untranslated rergions of HSPA5 and UCHL1 mRNAs and repress their translations. miR-181b antagomir reduced caspase-3 cleavage and neural cell loss in cerebral ischemic cortex and improved neurological deficit of mice after MCAO. In addition, HSPA5 and UCHL1 short interfering RNAs (siRNAs) blocked anti-miR-181b-mediated neuroprotection against OGD-induced N2A cell injury in vitro. These results suggest that the downregulated miR-181b induces neuroprotection against ischemic injury through negatively regulating HSPA5 and UCHL1 protein levels, providing a potential therapeutic target for ischemic stroke.

  10. Ischemic injury suppresses hypoxia-induced electrographic seizures and the background EEG in a rat model of perinatal hypoxic-ischemic encephalopathy

    OpenAIRE

    2015-01-01

    The relationship among neonatal seizures, abnormalities of the electroencephalogram (EEG), brain injury, and long-term neurological outcome (e.g., epilepsy) remains controversial. The effects of hypoxia alone (Ha) and hypoxia-ischemia (HI) were studied in neonatal rats at postnatal day 7; both models generate EEG seizures during the 2-h hypoxia treatment, but only HI causes an infarct with severe neuronal degeneration. Single-channel, differential recordings of acute EEG seizures and backgrou...

  11. Changes in resting-state brain function of pilots after hypoxic exposure based on methods for fALFF and ReHo analysis

    Directory of Open Access Journals (Sweden)

    Jie LIU

    2015-07-01

    Full Text Available Objective The objective of this study was to evaluate the basic changes in brain activity of pilots after hypoxic exposure with the use of resting-state functional magnetic resonance imaging (rs-fMRI and regional homogeneity (ReHo method. Methods Thirty healthy male pilots were successively subjected to normal and hypoxic exposure (with an oxygen concentration of 14.5%. Both the fALFF and ReHo methods were adopted to analyze the resting-state functional MRI data before and after hypoxic exposure of the subjects, the areas of the brain with fALFF and ReHo changes after hypoxic exposure were observed. Results  After hypoxic exposure, the pulse was 64.0±10.6 beats/min, and the oxygen saturation was 92.4%±3.9% in these 30 pilots, and it was lower than those before exposure (71.4±10.9 beats/min, 96.3%±1.3%, P<0.05. Compared with the condition before hypoxic exposure, the fALFF value was decreased in superior temporal gyri on both sides and the right superior frontal gyrus, and increase in the left precuneus, while the value of ReHo was decreased in the right superior frontal gyrus (P<0.05. No brain area with an increase in ReHo value was found. Conclusions Hypoxic exposure could significantly affect the brain functions of pilots, which may contribute to change in their cognitive ability. DOI: 10.11855/j.issn.0577-7402.2015.06.18

  12. UCH-L1 and GFAP Serum Levels in Neonates with Hypoxic-Ischemic Encephalopathy: A single center pilot study

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2014-12-01

    Full Text Available Objective - We examined two potential biomarkers of brain damage in HIE neonates: glial fibrillary acidic protein (GFAP; a marker of gliosis and ubiquitin C-terminal hydrolase L1 (UCH-L1; a marker of neuronal injury. We hypothesized the biomarkers would be measurable in cord blood of healthy neonates and could serve as a normative reference for brain injury in HIE infants. Further, we hypothesized that serum samples of HIE neonates would have higher levels and would correlate with brain damage on MRI and later developmental outcomes.Study Design - Serum UCH - L1 and GFAP concentrations from HIE neonates(n = 16 were compared with controls(n = 11.Pearson correlation coefficients and a mixed model design examined the relationship between biomarker concentrations of HIE neonates and brain damage(MRI and developmental outcomes(Bayley - III.Result– Both biomarkers were detected in cord blood from control subjects.UCH - L1 concentrations were higher in HIE neonates(p < 0.001 and associated with cortical injury(p < 0.055 and later motor and cognitive developmental outcomes(p < 0.05.The temporal change in GFAP concentrations from birth to 96 hours of age predicted motor developmental outcomes(p < 0.05 and injury to the basal ganglia and white matter.Conclusion– UCH - L1 concentrations correlated with cortical injury and developmental delays and GFAP concentrations correlated with basal ganglia and white matter injury and motor delay in HIE affected patients.Researchers should continue to explore UCH - L1 and GFAP as promising serum biomarkers of brain damage and predictors of neurodevelopmental outcomes in neonates with HIE.

  13. Thompson评分在新生儿缺氧缺血性脑病中的应用%Application of Thompson score in neonatal hypoxic-ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    石芸; 李思秀

    2016-01-01

    Objective To explore the value of Thompson score in 5 hours after birth for hypoxic-ischemic encephalopathy (HIE) in early diagnosis, predicting severity and prognosis.Method Prospectively select neonates with birth asphyxia and abnormal nervous system performance in 5 hours after birth in the neonatal department of our hospital. Thompson score at age 3~5 hours and ambulatory electroencephalogram (AEEG) were recorded.Result 13 patients were dead, with Thompson score all≥ 21. As compared with Thompson score<7, the mothers whose babies with Thompson score≥7 had more pregnancy complications and/or abnormal events during baby birth; the Apgar scores at 1 and 5 minutes were lower; babies need more CPAP, ventilation and medication, more developed to medium-severe HIE , had abnormal AEEG and severely abnormal AEEG. The sensitivity of Thompson score in predicting severe HIE and in predicting the abnormal AEEG outcome are 96.9% and 94.8%; their specificity are 90.9% and 73.9% respectively.Conclusion Thompson score can be used as a method to rapid, economic predict severe HIE and abnormal AEEG. In our study, Thompson score may be more economic, accurately and convenient for clinician in HIE severity prediction than AEEG.%目的:探讨出生后早期行Thompson评分在诊断新生儿缺氧缺血性脑病(hypoxic-ischemic encephalopathy,HIE)的程度及预后判断中的价值。方法选择本院存在产时窒息史且出生5小时内出现异常神经系统表现的新生儿进行Thompson评分,并随访动态脑电图(ambulatory electroencephalogram,AEEG)变化。结果13例新生儿死亡,其Thompson评分均≥21分。相对于Thompson评分<7分组,Thompson评分≥7分组母亲更容易合并妊娠并发症和(或)产时特殊情况,新生儿1分钟、5分钟Apgar评分更低,更需要持续正压通气、机械通气和药物支持,发展成中重度HIE的比例更高,异常AEEG的比例更多,更易出

  14. Differential Temporal Evolution Patterns in Brain Temperature in Different Ischemic Tissues in a Monkey Model of Middle Cerebral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Zhihua Sun

    2012-01-01

    Full Text Available Brain temperature is elevated in acute ischemic stroke, especially in the ischemic penumbra (IP. We attempted to investigate the dynamic evolution of brain temperature in different ischemic regions in a monkey model of middle cerebral artery occlusion. The brain temperature of different ischemic regions was measured with proton magnetic resonance spectroscopy (1H MRS, and the evolution processes of brain temperature were compared among different ischemic regions. We found that the normal (baseline brain temperature of the monkey brain was 37.16°C. In the artery occlusion stage, the mean brain temperature of ischemic tissue was 1.16°C higher than the baseline; however, this increase was region dependent, with 1.72°C in the IP, 1.08°C in the infarct core, and 0.62°C in the oligemic region. After recanalization, the brain temperature of the infarct core showed a pattern of an initial decrease accompanied by a subsequent increase. However, the brain temperature of the IP and oligemic region showed a monotonously and slowly decreased pattern. Our study suggests that in vivo measurement of brain temperature could help to identify whether ischemic tissue survives.

  15. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats.

    Science.gov (United States)

    Mestriner, Régis Gemerasca; Miguel, Patrícia Maidana; Bagatini, Pamela Brambilla; Saur, Lisiani; Boisserand, Lígia Simões Braga; Baptista, Pedro Porto Alegre; Xavier, Léder Leal; Netto, Carlos Alexandre

    2013-05-01

    Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults.

  16. Application of spiral CT examination in neonatal hypoxic-ischemic encephalopathy%螺旋CT检查在新生儿缺血缺氧性脑病中的应用

    Institute of Scientific and Technical Information of China (English)

    刘学荣; 贺杰

    2013-01-01

    目的探讨新生儿缺血缺氧性脑病(hypoxie-ischemic enceph-alopathy,HIE)的螺旋CT表现特点及其应用价值。方法回顾性分析60例HIE的CT表现,依据病灶范围观察轻度至重度HIE的CT表现特征。结果60例临床诊断为HIE的患者中54例有异常CT表现,6例未见异常。51例病变CT值在10~18HU之间,3例病变CT值在18~21HU之间。脑实质出血1例,蛛网膜下腔出血者4例。复查外部性脑积水4例,脑软化5例、脑萎缩1例。结论螺旋CT检查对HIE的诊断具有较高的准确性,可对临床的治疗及预后提供真实而客观的依据%Objective To investigate the spiral CT performance features of neonatal hypoxic-ischemic encephalopathy (HIE) and its application value. Methods The CT performance of 60 patients with HIE was analyzed retrospectively and the CT performance features of mild to severe HIE were observed according to the lesion range. Results Of the 60 patients clinically diagnosed with HIE, 54 patients had abnormal CT performance and 6 patients did not. Fifty-one patients had a CT value ranging from 18-21HU. Brain parenchyma bleeding was found in 1 patient and subarachnoid hemorrhage was found in 4 patients. Reexamination found external hydrocephalus in 4 patients, encephalomalacia in 5 patients and cerebral atrophy in 1 patient. Conclusion Spiral CT examination is accurate in the diagnosis of HIE and can provide true and objective basis for clinical treatment and prognosis.

  17. Human Umbilical Cord Blood CD34-Positive Cells as Predictors of the Incidence and Short-Term Outcome of Neonatal Hypoxic-Ischemic Encephalopathy: A Pilot Study

    Science.gov (United States)

    Nasr Eldin, Mohamed Hassan; Amer, Hanaa A.; Abdelhamid, Adel E.; El Houssinie, Moustafa; Ibrahim, Abir

    2017-01-01

    Background and Purpose Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of neurological handicap in developing countries. Human umbilical cord blood (hUCB) CD34-positive (CD34+) stem cells exhibit the potential for neural repair. We tested the hypothesis that hUCB CD34+ stem cells and other cell types [leukocytes and nucleated red blood cells (NRBCs)] that are up-regulated during the acute stage of perinatal asphyxia (PA) could play a role in the early prediction of the occurrence, severity, and mortality of HIE. Methods This case-control pilot study investigated consecutive neonates exposed to PA. The hUCB CD34+ cell count in mononuclear layers was assayed using a flow cytometer. Twenty full-term neonates with PA and 25 healthy neonates were enrolled in the study. Results The absolute CD34+ cell count (p=0.02) and the relative CD34+ cell count (CD34+%) (p<0.001) in hUCB were higher in the HIE patients (n=20) than the healthy controls. The hUCB absolute CD34+ cell count (p=0.04), CD34+% (p<0.01), and Hobel risk scores (p=0.04) were higher in patients with moderate-to-severe HIE (n=9) than in those with mild HIE (n=11). The absolute CD34+ cell count was strongly correlated with CD34+% (p<0.001), Hobel risk score (p=0.04), total leukocyte count (TLC) (p<0.001), and NRBC count (p=0.01). CD34+% was correlated with TLC (p=0.02). Conclusions hUCB CD34+ cells can be used to predict the occurrence, severity, and mortality of neonatal HIE after PA. PMID:28079317

  18. Prognostic value of diffusion-weighted imaging summation scores or apparent diffusion coefficient maps in newborns with hypoxic-ischemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Cavalleri, Francesca; Todeschini, Alessandra [Azienda Unita Sanitaria Locale di Modena, Neuroradiology Unit, Department of Neuroscience, Nuovo Ospedale Civile S. Agostino Estense di Modena, Modena (Italy); Lugli, Licia; Pugliese, Marisa; Della Casa, Elisa; Gallo, Claudio; Frassoldati, Rossella; Ferrari, Fabrizio [Modena University Hospital, Institute of Pediatrics and Neonatal Medicine and NICU, Modena (Italy); D' Amico, Roberto [University of Modena and Reggio Emilia, Department of Clinical and Diagnostic Medicine and Public Health, Modena (Italy)

    2014-09-15

    The diagnostic and prognostic assessment of newborn infants with hypoxic-ischemic encephalopathy (HIE) comprises, among other tools, diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps. To compare the ability of DWI and ADC maps in newborns with HIE to predict the neurodevelopmental outcome at 2 years of age. Thirty-four term newborns with HIE admitted to the Neonatal Intensive Care Unit of Modena University Hospital from 2004 to 2008 were consecutively enrolled in the study. All newborns received EEG, conventional MRI and DWI within the first week of life. DWI was analyzed by means of summation (S) score and regional ADC measurements. Neurodevelopmental outcome was assessed with a standard 1-4 scale and the Griffiths Mental Developmental Scales - Revised (GMDS-R). When the outcome was evaluated with a standard 1-4 scale, the DWI S scores showed very high area under the curve (AUC) (0.89) whereas regional ADC measurements in specific subregions had relatively modest predictive value. The lentiform nucleus was the region with the highest AUC (0.78). When GMDS-R were considered, DWI S scores were good to excellent predictors for some GMDS-R subscales. The predictive value of ADC measurements was both region- and subscale-specific. In particular, ADC measurements in some regions (basal ganglia, white matter or rolandic cortex) were excellent predictors for specific GMDS-R with AUCs up to 0.93. DWI S scores showed the highest prognostic value for the neurological outcome at 2 years of age. Regional ADC measurements in specific subregions proved to be highly prognostic for specific neurodevelopmental outcomes. (orig.)

  19. Migration of neural stem cells to ischemic brain regions in ischemic stroke in rats.

    Science.gov (United States)

    Dai, Jiong; Li, Shan-Quan; Qiu, Yong-Ming; Xiong, Wen-Hao; Yin, Yu-Hua; Jia, Feng; Jiang, Ji-Yao

    2013-09-27

    An established rat model of ischemic stroke, produced by temporary middle cerebral artery occlusion and reperfusion (MCAO/R), was used in the evaluation of organ migration of intra-arterial (IA) transplantation of neural stem cells (NSCs). Immediately after transplantation, ischemic rats (n=8) transplanted with either NSCs (MCAO/R+NSC group) or NSC growth medium (MCAO/R+medium group) exhibited neurological dysfunction but rats in a sham+NSCs group (n=5) did not. During the post-operative period, neurological function improved to a similar extent in both MCAO/R groups. At 10 and 14 days post-transplantation, neurological function in the MCAO/R+NSC group was superior to that in the MCAO/R+medium group (pcells had begun differentiating into neurons and astrocytes. Rat NSCs can migrate into the ischemic region, survive, and differentiate into astrocytes and neurons, and thereby potentially improve neurologic function after cerebral ischemia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. The role of autophagic and lysosomal pathways in ischemic brain injury******

    Institute of Scientific and Technical Information of China (English)

    Zhaohua Gu; Nan Shi; Qian Zhang; Wei Zhang; Meizhen Zhao; Xiaojiang Sun; Yinyi Sun; Kangyong Liu; Fen Wang; Ting Zhang; Qiang Li; Liwei Shen; Ling Zhou; Liang Dong

    2013-01-01

    Autophagy is involved in neural cel death after cerebral ischemia. Our previous studies showed that rapamycin-induced autophagy decreased the rate of apoptosis, but the rate of apoptosis was creased after the autophagy inhibitor, 3-methyladenine, was used. In this study, a suture-occluded method was performed to generate a rat model of brain ischemia. Under a transmission electron microscope, autophagic bodies and autophagy lysosomes were markedly accumulated in neurons at 4 hours post brain ischemic injury, with their numbers gradual y reducing over time. Western blotting demonstrated that protein levels of light chain 3-II and cathepsin B were significantly in-creased within 4 hours of ischemic injury, but these levels were not persistently upregulated over time. Confocal microscopy showed that autophagy was mainly found in neurons with positive light chain 3 signal. Injection of rapamycin via tail vein promoted the occurrence of autophagy in rat brain tissue after cerebral ischemia and elevated light chain 3 and cathepsin B expression. However, in-jection of 3-methyladenine significantly diminished light chain 3-II and cathepsin B expression. Results verified that autophagic and lysosomal activity is increased in ischemic neurons. Abnormal components in cel s can be eliminated through upregulating cel autophagy or inhibiting autophagy after ischemic brain injury, resulting in a dynamic balance of substances in cel s. Moreover, drugs that interfere with autophagy may be potential therapies for the treatment of brain injury.

  1. Neuron-specific enolase in cerebrospinal fluid and plasma of patients with acute ischemic brain disease

    Directory of Open Access Journals (Sweden)

    Selaković Vesna M.

    2003-01-01

    Full Text Available The objective of this research was to determine the dynamics of change of neuron-specific enolase concentration in patients with acute ischemic brain disease in cerebrospinal fluid and plasma. The study included 103 patients, their mean age 58-66 years. The control group consisted of 16 patients, of matching age and sex, with radicular lesions of discal origin, subjected to diagnostic radiculography. Concentration of neuron-specific enolase was measured by a flouroimmunometric method. The results showed that the concentration of neuron-specific enolase in cerebrospinal fluid and plasma of patients with brain ischemic disease within first seven days significantly increased compared to the control. The highest increase of concentration was established in brain infarction, somewhat lower in reversible ischemic attack, and the lowest in transient ischemic attack. Maximal concentration was established on the 3rd-4th day upon the brain infarction. Neuron-specific enolase concentration in cerebrospinal fluid and plasma may be an indicator of pathophysiological processes in the acute phase of brain ischemia and is significant in early diagnostics and therapy of the disease.

  2. Blood-Brain Barrier Alterations Provide Evidence of Subacute Diaschisis in an Ischemic Stroke Rat Model

    Science.gov (United States)

    Garbuzova-Davis, Svitlana; Rodrigues, Maria C. O.; Hernandez-Ontiveros, Diana G.; Tajiri, Naoki; Frisina-Deyo, Aric; Boffeli, Sean M.; Abraham, Jerry V.; Pabon, Mibel; Wagner, Andrew; Ishikawa, Hiroto; Shinozuka, Kazutaka; Haller, Edward; Sanberg, Paul R.; Kaneko, Yuji; Borlongan, Cesario V.

    2013-01-01

    Background Comprehensive stroke studies reveal diaschisis, a loss of function due to pathological deficits in brain areas remote from initial ischemic lesion. However, blood-brain barrier (BBB) competence in subacute diaschisis is uncertain. The present study investigated subacute diaschisis in a focal ischemic stroke rat model. Specific focuses were BBB integrity and related pathogenic processes in contralateral brain areas. Methodology/Principal Findings In ipsilateral hemisphere 7 days after transient middle cerebral artery occlusion (tMCAO), significant BBB alterations characterized by large Evans Blue (EB) parenchymal extravasation, autophagosome accumulation, increased reactive astrocytes and activated microglia, demyelinization, and neuronal damage were detected in the striatum, motor and somatosensory cortices. Vascular damage identified by ultrastuctural and immunohistochemical analyses also occurred in the contralateral hemisphere. In contralateral striatum and motor cortex, major ultrastructural BBB changes included: swollen and vacuolated endothelial cells containing numerous autophagosomes, pericyte degeneration, and perivascular edema. Additionally, prominent EB extravasation, increased endothelial autophagosome formation, rampant astrogliosis, activated microglia, widespread neuronal pyknosis and decreased myelin were observed in contralateral striatum, and motor and somatosensory cortices. Conclusions/Significance These results demonstrate focal ischemic stroke-induced pathological disturbances in ipsilateral, as well as in contralateral brain areas, which were shown to be closely associated with BBB breakdown in remote brain microvessels and endothelial autophagosome accumulation. This microvascular damage in subacute phase likely revealed ischemic diaschisis and should be considered in development of treatment strategies for stroke. PMID:23675488

  3. Blood-brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model.

    Directory of Open Access Journals (Sweden)

    Svitlana Garbuzova-Davis

    Full Text Available BACKGROUND: Comprehensive stroke studies reveal diaschisis, a loss of function due to pathological deficits in brain areas remote from initial ischemic lesion. However, blood-brain barrier (BBB competence in subacute diaschisis is uncertain. The present study investigated subacute diaschisis in a focal ischemic stroke rat model. Specific focuses were BBB integrity and related pathogenic processes in contralateral brain areas. METHODOLOGY/PRINCIPAL FINDINGS: In ipsilateral hemisphere 7 days after transient middle cerebral artery occlusion (tMCAO, significant BBB alterations characterized by large Evans Blue (EB parenchymal extravasation, autophagosome accumulation, increased reactive astrocytes and activated microglia, demyelinization, and neuronal damage were detected in the striatum, motor and somatosensory cortices. Vascular damage identified by ultrastuctural and immunohistochemical analyses also occurred in the contralateral hemisphere. In contralateral striatum and motor cortex, major ultrastructural BBB changes included: swollen and vacuolated endothelial cells containing numerous autophagosomes, pericyte degeneration, and perivascular edema. Additionally, prominent EB extravasation, increased endothelial autophagosome formation, rampant astrogliosis, activated microglia, widespread neuronal pyknosis and decreased myelin were observed in contralateral striatum, and motor and somatosensory cortices. CONCLUSIONS/SIGNIFICANCE: These results demonstrate focal ischemic stroke-induced pathological disturbances in ipsilateral, as well as in contralateral brain areas, which were shown to be closely associated with BBB breakdown in remote brain microvessels and endothelial autophagosome accumulation. This microvascular damage in subacute phase likely revealed ischemic diaschisis and should be considered in development of treatment strategies for stroke.

  4. Type 2 diabetes is not a risk factor for asymptomatic ischemic brain lesion. The Funagata study

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Tamotsu; Daimon, Makoto; Eguchi, Hideyuki; Hosoya, Takaaki; Kawanami, Toru; Kurita, Keiji; Tominaga, Makoto; Kato, Takeo [Yamagata Univ. (Japan). School of Medicine

    2002-05-01

    The purpose of this study is to clarify whether type 2 diabetes (DM) is a risk factor for asymptomatic (silent) ischemic brain lesion, which is controversial at present. The subjects (n=187), who showed normal results on both neurological and neuropsychological examinations, underwent a 75-g OGTT and were examined by brain MRI on T1-weighted, T2-weighted, and FLAIR (fluid-attenuated inversion recovery) images. Their brain MRIs were evaluated quantitatively with the ischemia rating scale defined here. The subjects were grouped based on their glucose tolerance: normal glucose tolerance (NGT) (n=48), impaired glucose tolerance (IGT) (n=62), and DM (n=65). The subjects with DM were further divided based on their duration of illness: 20 with short duration (short DM: 1.3{+-}0.8 years) and 45 with long duration (long DM; 8.9{+-}5.4 years). Ages were matched among the groups. The percentages of individuals with asymptomatic ischemic brain lesion were 81% in NGT, 74% in IGT, 65% in short DM, and 78% in long DM. No significant difference was observed among the groups in terms of the percentage. Namely, even in individuals with a long history of DM without clinical stroke, the prevalence of asymptomatic ischemic brain lesion was not different from that of the other groups. Multiple regression and multiple logistic regression analyses showed that age and hypertension were significant independent risk factors for asymptomatic ischemic brain lesion, whereas hypercholesterolemia, smoking, and glucose intolerance, including IGT, short DM and long DM, were not. DM is not a risk factor for asymptomatic ischemic brain lesion. (author)

  5. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain.

    Science.gov (United States)

    Lin, Chi-Hsin; Wang, Chen-Hsuan; Hsu, Shih-Lan; Liao, Li-Ya; Lin, Ting-An; Hsueh, Chi-Mei

    2016-01-01

    The protective value of neuron-derived conditioned medium (NCM) in cerebral ischemia and the underlying mechanism(s) responsible for NCM-mediated brain protection against cerebral ischemia were investigated in the study. NCM was first collected from the neuronal culture growing under the in vitro ischemic condition (glucose-, oxygen- and serum-deprivation or GOSD) for 2, 4 or 6 h. Through the focal cerebral ischemia (bilateral CCAO/unilateral MCAO) animal model, we discovered that ischemia/reperfusion (I/R)-induced brain infarction was significantly reduced by NCM, given directly into the cistern magna at the end of 90 min of CCAO/MCAO. Immunoblocking and chemical blocking strategies were applied in the in vitro ischemic studies to show that NCM supplement could protect microglia, astrocytes and neurons from GOSD-induced cell death, in a growth factor (TGFβ1, NT-3 and GDNF) and p-ERK dependent manner. Brain injection with TGFβ1, NT3, GDNF and ERK agonist (DADS) alone or in combination, therefore also significantly decreased the infarct volume of ischemic brain. Moreover, NCM could inhibit ROS but stimulate IL-1β release from GOSD-treated microglia and limit the infiltration of IL-β-positive microglia into the core area of ischemic brain, revealing the anti-oxidant and anti-inflammatory activities of NCM. In overall, NCM-mediated brain protection against cerebral ischemia has been demonstrated for the first time in S.D. rats, due to its anti-apoptotic, anti-oxidant and potentially anti-glutamate activities (NCM-induced IL-1β can inhibit the glutamate-mediated neurotoxicity) and restriction upon the infiltration of inflammatory microglia into the core area of ischemic brain. The therapeutic potentials of NCM, TGFβ1, GDNF, NT-3 and DADS in the control of cerebral ischemia in human therefore have been suggested and require further investigation.

  6. Sildenafil enhances neurogenesis and oligodendrogenesis in ischemic brain of middle-aged mouse.

    Directory of Open Access Journals (Sweden)

    Rui Lan Zhang

    Full Text Available Adult neural stem cells give rise to neurons, oligodendrocytes and astrocytes. Aging reduces neural stem cells. Using an inducible nestin-CreER(T2/R26R-yellow fluorescent protein (YFP mouse, we investigated the effect of Sildenafil, a phosphodiesterase type 5 (PDE5 inhibitor, on nestin lineage neural stem cells and their progeny in the ischemic brain of the middle-aged mouse. We showed that focal cerebral ischemia induced nestin lineage neural stem cells in the subventricular zone (SVZ of the lateral ventricles and nestin expressing NeuN positive neurons and adenomatous polyposis coli (APC positive mature oligodendrocytes in the ischemic striatum and corpus callosum in the aged mouse. Treatment of the ischemic middle-aged mouse with Sildenafil increased nestin expressing neural stem cells, mature neurons, and oligodendrocytes by 33, 75, and 30%, respectively, in the ischemic brain. These data indicate that Sildenafil amplifies nestin expressing neural stem cells and their neuronal and oligodendrocyte progeny in the ischemic brain of the middle-aged mouse.

  7. Therapeutic Effect of Caffeine Treatment Immediately Following Neonatal Hypoxic-Ischemic Injury on Spatial Memory in Male Rats

    Directory of Open Access Journals (Sweden)

    R. Holly Fitch

    2013-03-01

    Full Text Available Hypoxia Ischemia (HI refers to the disruption of blood and/or oxygen delivery to the brain. Term infants suffering perinatal complications that result in decreased blood flow and/or oxygen delivery to the brain are at risk for HI. Among a variety of developmental delays in this population, HI injured infants demonstrate subsequent memory deficits. The Rice-Vannucci rodent HI model can be used to explore behavioral deficits following early HI events, as well as possible therapeutic agents to help reduce deleterious outcomes. Caffeine is an adenosine receptor antagonist that has recently shown promising results as a therapeutic agent following HI injury. The current study sought to investigate the therapeutic benefit of caffeine following early HI injury in male rats. On post-natal day (P 7, HI injury was induced (cauterization of the right common carotid artery, followed by two hours of 8% oxygen. Male sham animals received only a midline incision with no manipulation of the artery followed by room air exposure for two hours. Subsets of HI and sham animals then received either an intraperitoneal (i.p. injection of caffeine (10 mg/kg, or vehicle (sterile saline immediately following hypoxia. All animals later underwent testing on the Morris Water Maze (MWM from P90 to P95. Results show that HI injured animals (with no caffeine treatment displayed significant deficits on the MWM task relative to shams. These deficits were attenuated by caffeine treatment when given immediately following the induction of HI. We also found a reduction in right cortical volume (ipsilateral to injury in HI saline animals as compared to shams, while right cortical volume in the HI caffeine treated animals was intermediate. These findings suggest that caffeine is a potential therapeutic agent that could be used in HI injured infants to reduce brain injury and preserve subsequent cognitive function.

  8. [Pathophysiology of brain injury and targets of treatment in acute ischemic stroke].

    Science.gov (United States)

    Tanaka, Kortaro

    2013-01-01

    Brain is very vulnerable to ischemia, and exhibits various functional impairments in a flow-dependent manner. After onset of ischemia, the following cascade ensues propagating from the ischemic core to the surrounding area; ischemic depolarization, excitatory cellular injury induced by Ca(2+) and glutamate, oxidative injury induced by reactive oxygen species including various free radicals, secondary microcirculatory disturbance, edema formation, apoptosis and inflammation. Intrinsic protective responses are also activated at the periphery of ischemic area. From the clinical view point, urgent detection of "penumbra" area by imaging modalities such as diffusion-perfusion mismatch and rescuing this area from evolving into irreversible damage (infarction) are the most important issues. Therapeutic targets in the acute phase of cerebral infarction consist of vascular therapy including acute thrombolysis, prevention of microcirculatory disturbance, protection of blood brain barrier and promotion of collateral blood flow, and cellular therapy such as neuroprotective measures aiming at neurovascular unit.

  9. The effects of rehabilitation intervention without intermission to infant hypoxic ischemic encephalopathy%不间断康复干预对新生儿缺氧缺血性脑病的影响

    Institute of Scientific and Technical Information of China (English)

    张敬芳; 张瑞玲

    2002-01-01

    Background:With the setting up of the custodial room to infant serious illness,many infant patients with hypoxic ischemic encephalopathy(HIE) has survived.It has been reported that long term prognosis of serious HIE infant patients is bad and its percentage has gone to 73.6% (including sequela and death).Therefore how to improve these infant patients' prognosis are more and more thought highly of.We exerted intervention treatments in 12 months without intermission on 27 infant patients, and got significant effects.

  10. Visualization of damaged brain tissue after ischemic stroke with cobalt-55 positron emission tomography

    NARCIS (Netherlands)

    Jansen, H M; Pruim, J; vd Vliet, A M; Paans, A M; Hew, J M; Franssen, E J; de Jong, B M; Kosterink, J G; Haaxma, R; Korf, J

    1994-01-01

    UNLABELLED: In animal experiments, the radionuclide 55Co2+ has been shown to accumulate in degenerating cerebral tissue similar to Ca2+. METHODS: The potential role of 55Co2+ for in vivo brain PET imaging was investigated in four patients after ischemic stroke. RESULTS: PET showed uptake of 55Co2+ i

  11. Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage.

    Science.gov (United States)

    Bae, Ok-Nam; Majid, Arshad

    2013-08-21

    Urgent need exists for new therapeutic options in ischemic stroke. We recently demonstrated that carnosine, an endogenous dipeptide consisting of alanine and histidine, is robustly neuroprotective in ischemic brain injury and has a wide clinically relevant therapeutic time window. The precise mechanistic pathways that mediate this neuroprotective effect are not known. Following in vivo administration, carnosine is hydrolyzed into histidine, a precursor of histamine. It has been hypothesized that carnosine may exert its neuroprotective activities through the histidine/histamine pathway. Herein, we investigated whether the neuroprotective effect of carnosine is mediated by the histidine/histamine pathway using in vitro primary astrocytes and cortical neurons, and an in vivo rat model of ischemic stroke. In primary astrocytes, carnosine significantly reduced ischemic cell death after oxygen-glucose deprivation, and this effect was abolished by histamine receptor type I antagonist. However, histidine or histamine did not exhibit a protective effect on ischemic astrocytic cell death. In primary neuronal cultures, carnosine was found to be neuroprotective but histamine receptor antagonists had no effect on the extent of neuroprotection. The in vivo effect of histidine and carnosine was compared using a rat model of ischemic stroke; only carnosine exhibited neuroprotection. Taken together, our data demonstrate that although the protective effects of carnosine may be partially mediated by activity at the histamine type 1 receptor on astrocytes, the histidine/histamine pathway does not appear to play a critical role in carnosine induced neuroprotection.

  12. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Shaheen E Lakhan

    2013-04-01

    Full Text Available Ischemic stroke continues to be one of the most challenging diseases in translational neurology. Tissue-type plasminogen activator (tPA remains the only approved treatment for acute ischemic stroke, but its use is limited to the first hours after stroke onset due to an increased risk of hemorrhagic transformation over time resulting in enhanced brain injury. In this review we discuss the role of matrix metalloproteinases (MMPs in blood-brain barrier (BBB disruption as a consequence of ischemic stroke. MMP-9 in particular appears to play an important role in tPAassociated hemorrhagic complications.Reactive oxygen species (ROS can enhance the effects of tPA on MMP activation through the loss of caveolin-1, a protein encoded in the cav-1 gene that serves as a critical determinant of BBB permeability. This review provides an overview of MMPs' role in BBB breakdown during acute ischemic stroke. The possible role of MMPs in combination treatment of acute ischemic stroke is also examined.

  13. C-fos protein expression in the anterior amygdaloid area and nc. accumbens in the hypoxic rat brain

    Directory of Open Access Journals (Sweden)

    Babović Siniša S.

    2014-01-01

    Full Text Available Introduction. By examining the production of c-Fos protein, we analyzed the response to the ischemic attack in different brain tissue, two of which are regions of the limbic system: the anterior amygdaloid area and nc. accumbens. Material and Methods. We used the model of rat brain ischemia - four-vessel occlusion, and Pulsinelli’s method. The rats were treated in two ways, according to which they were divided into two groups: a total ischemia (ligation of four blood vessels, i.e. electrocauterization of the vertebral artery with bilateral ligation of the carotid artery - the so-called R-group rats, and transient ischemic attack (ligation of four blood vessels, i.e. electrocauterization of the vertebral artery, with mutual re-ligation of the carotid arteries in the form of transient ischemia - the so-called T-group rats, which can also be called “pre-conditioned group”. Both groups had their own control group. Conclusion. We have concluded that parts of the brain with an important role for the survival have a strong expression of c-fos gene.

  14. The effects of ultrasound on BBB integration in ischemic brain injury model

    Directory of Open Access Journals (Sweden)

    Shuaib A.

    2008-06-01

    Full Text Available Background: Ultrasound (US has been used in neuroprotection after cerebral ischemia, however the mechanism of action remains unclearly. We have previously shown the protective effect of ultrasound on infarction volume and brain edema in ischemic brain injured at normothermic condition. Ultrasound may also amplify the effect of fibrinolytic medications in thrombolysis process .We have also shown that hyperthermia can exacerbate cerebral ischemic injury and that the efficacy of tissue plasminogen activator (tPA is reduced in the presence of hyperthermia. In this study, the effects of US alone or in combination with tPA on brain ischemic injury were evaluated.Methods: Focal ischemic brain injury was induced by emblazing a pre-formed clot into the middle cerebral artery in rats. Principally, we examined whether US can reduce the perfusion deficits and, the damage of blood- brain barrier (BBB in the ischemic injured brain. There are two series of experiments at this study .in the first series, animals were randomly assigned to four groups (n=7 per group as follows: 1-control (saline, 2-US (1W/cm2, 10 duty cycle , 3- US+high- tPA (1W/cm2, 10 duty cycle +20 mg/kg and 4- high -tPA (20 mg/kg. We also examined the effects of US and tPA on BBB integrity after ischemic injury. The animals were assigned into four groups (n=7 per group, treatment is the same as above. BBB permeability was assessed by the Evans blue (EB extravasations method at 8 h after MCA occlusion. BBB permeability was evaluated by fluorescent detection of extravagated Evans blue dye and Perfusion deficits were analyzed using an Evans blue staining procedure. The perfused microvessels in the brain were visualized using fluorescent microscopy. Areas of perfusion deficits in the brain were traced, calculated and expressed in mm2.Results: The results showed that US improved neurological deficits significantly (p<0.05. The administration of US significantly decreased perfusion deficits and BBB

  15. A new approach to ischemic brain edema and infarct

    Institute of Scientific and Technical Information of China (English)

    Zhai Yu; Jin Jia Xing; Liu De Ha

    2000-01-01

    Objective: To study the feasibility and efficiency of treatment in the patients with acute moderate and severe ischemic stroke with Neurotropin for its principle of inhibiting cerebral edema and repairing injured neurons. Methods: A randomized controlled trial with Neurotropin was performed in 50 patients admitted within 48h after an acute internal carotid artery infarction, Neurological deficits score ( Europe Stroke Scale-ESS ) <80 marks and the area of infarct and edema>2.25cm2. There were 31 patients in the Neurotropin group and 19 patients in the control group. Basic treatment was Troxerutin 250 mg intravenous drip per day for 21 days in two groups. Additionally, the patients in the Neurotropin group were intravenous injected 106 ampoule Neurotropin (3.6 unit per ampoule), divided into 11 days. We evaluated Neurological deficits score (ESS), ability of daily living (ADL)- Barthel Index, the size and average CT density of infarct and edema area on CT scan during different treatment stage and analyzed.them with statistics. Results: The percentage of improved patients (complete and partial recovery) reaches 64.5% in the Neurotropin group and 31.6% in the control group. The size of the infarct and edema area on CT scan is significantly reduced only in the Neurotropin group after treatment. The average range reduced is 28% on day 11 and 41.5% on day 21, and the average CT density in the Neurotropin group is more advanced than in the control group after onset. Conclusion: Neurotropin can be used as an effective therapy in acute ischemic stroke and ischemic cerebral edema.

  16. The value of brainstem evoked potential in clinical decision of a patient with hypoxic-ischemic encephalopathy O valor do potencial evocado auditivo em decisão clínica em paciente com síndrome hipóxico-isquêmica

    Directory of Open Access Journals (Sweden)

    Anna Lecticia R. Pinto

    2007-09-01

    Full Text Available Establishing a prognosis for hypoxic-ischemic encephalopathy during the neonatal period is extremely difficult, as the neuroplasticity of the developing brain makes it almost impossible to measure the affected area. This case report describes a newborn with severe perinatal asphyxia and neonatal neurological syndrome including absent suck reflex. Normal brainstem auditory evoked potential led the diagnosis towards a transitory dysfunction of deglutition, and the subject received daily stimulation in the hospital environment. Suck developed satisfactorily by day of life 30 and the patient was released without having to be tube fed. Neurophysiologic tests can be of value in the clinical decisions and analysis of functional prognosis of patients with hypoxic-ischemic encephalopathy.Estabelecer o prognóstico da encefalopatia hipóxico-isquêmica durante o período neonatal é extremamente difícil, devido à neuroplasticidade do cérebro em desenvolvimento que impede a medida exata das áreas afetadas. Este relato descreve um recém-nascido a termo com grave asfixia perinatal e síndrome neurológica pós-natal, incluindo ausência do reflexo de sucção. O potencial evocado auditivo do tronco cerebral foi normal, sugerindo o diagnóstico de disfunção transitória da deglutição. Após estimulação diária no hospital a sucção foi obtida satisfatoriamente, e o paciente recebeu alta sem necessidade de alimentação enteral. Os testes neurofisiológicos podem ser de grande valor em decisões clínicas e análise funcional prognóstica de pacientes com encefalopatia hipóxico-isquêmica.

  17. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats.

    Science.gov (United States)

    Jiang, Y; Wei, N; Lu, T; Zhu, J; Xu, G; Liu, X

    2011-01-13

    Inflammation plays a vital role in the pathogenesis of ischemic stroke. Brain-derived neurotrophic factor (BDNF) may protect brain tissues from ischemic injury. In this study, we investigated whether intranasal BDNF exerted neuroprotection against ischemic insult by modulating the local inflammation in rats with ischemic stroke. Rats were subjected to temporary occlusion of the right middle cerebral artery (120 min) and intranasal BDNF or vehicle was adminstrated 2 h after reperfusion. Infarct volume and neuron injury were measured using triphenyltetrazolium chloride, Nissl staining and TUNEL assay, respectively. Microglia were detected by immunohistofluorescence. Tumor necrosis factor-α, interleukin10 and mRNAs were evaluated by enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction. DNA-binding activity of nuclear factor-kappa B was measured by electrophoretic mobility shift assay. BDNF level in brain tissues was markedly raised following intranasal administration. There were more Nissl positive and less TUNEL positive neurons in BDNF group than in control group while intranasal BDNF did not reduce the infarct volume significantly (n=6, 0.27±0.04 vs. 0.24±0.05, P>0.05). BDNF increased the number of activated microglia (OX-42 positive) and phagocytotic microglia (ED1 positive). BDNF suppressed tumor necrosis factor-α and mRNA expression while increasing the interleukin10 and mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B (n=6, 49.78±1.23 vs. 52.89±1.64, PBDNF might protect the brain against ischemic insult by modulating local inflammation via regulation of the levels of cellular, cytokine and transcription factor in the experimental stroke.

  18. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2016-01-01

    Full Text Available Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047 and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010. Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  19. Publication trends in studies examining radix notoginseng as a treatment for ischemic brain injury

    Science.gov (United States)

    Li, Haiping; Qiang, Luo; Zhang, Chunyang; Wang, Chaohui; Mu, Zhenxing; Jiang, Ligang

    2014-01-01

    Acute ischemic stroke has become a major disease burden with high mortality and morbidity rates. There is a lack of evidence-based medicine confirming the efficacy of common treatments. Panax notoginseng saponins, the main active ingredient of radix notoginseng, have a neuroprotective role in ischemic brain injury, and have been popularized as a maintenance treatment for acute cerebral infarction and its sequelae. We conducted literature searches on the Web of Science, ClinicalTrials.gov, Cochrane Collaboration, CNKI, Wanfang and the China Scientific & Technological Achievements Database and analyzed the experimental and clinical outcomes of studies investigating the use of radix notoginseng in the treatment of ischemic brain injury to improve the understanding of relevant research trends and existing problems. We found that over the past 10 years, China has maintained its interest in Panax notoginseng research, while such studies are scarce on the Web of Science. However, Chinese researchers often focus on the neuroprotective role of radix notoginseng in ischemic brain injury, but there are no large-scale clinical data to confirm its efficacy and safety. There remains a need for more rigorous large-sample randomized controlled clinical trials with long-term follow-up, to determine whether radix notoginseng lowers stroke recurrence and improves patient's quality of life. PMID:25368652

  20. Regional brain structural abnormality in ischemic stroke patients:a voxel-based morphometry study

    Institute of Scientific and Technical Information of China (English)

    Ping Wu; Lin Chen; Lin Bai; Juan Nie; San Zhang; Yan Xiong; Yu Bai; Can-xin Yin; Fan-rong Liang; Yu-mei Zhou; Fang Zeng; Zheng-jie Li; Lu Luo; Yong-xin Li; Wei Fan; Li-hua Qiu; Wei Qin

    2016-01-01

    Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed signiifcantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clin-ical rating scales of the Fugl-Meyer Motor Assessment (r = –0.609,P = 0.047) and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deifciency scale (r = –0.737,P = 0.010). Our ifndings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  1. Publication trends in studies examining radix notoginseng as a treatment for ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Haiping Li; Luo Qiang; Chunyang Zhang; Chaohui Wang; Zhenxing Mu; Ligang Jiang

    2014-01-01

    Acute ischemic stroke has become a major disease burden with high mortality and morbidity rates. There is a lack of evidence-based medicine conifrming the efifcacy of common treatments. Panax notoginseng saponins, the main active ingredient of radix notoginseng, have a neuro-protective role in ischemic brain injury, and have been popularized as a maintenance treatment for acute cerebral infarction and its sequelae. We conducted literature searches on the Web of Science, ClinicalTrials.gov, Cochrane Collaboration, CNKI, Wanfang and the China Scientific&Technological Achievements Database and analyzed the experimental and clinical outcomes of studies investigating the use of radix notoginseng in the treatment of ischemic brain injury to improve the understanding of relevant research trends and existing problems. We found that over the past 10 years, China has maintained its interest in Panax notoginseng research, while such studies are scarce on the Web of Science. However, Chinese researchers often focus on the neuroprotective role of radix notoginseng in ischemic brain injury, but there are no large-scale clinical data to conifrm its efifcacy and safety. There remains a need for more rigorous large-sam-ple randomized controlled clinical trials with long-term follow-up, to determine whether radix notoginseng lowers stroke recurrence and improves patient’s quality of life.

  2. Treatment with Isorhamnetin Protects the Brain Against Ischemic Injury in Mice.

    Science.gov (United States)

    Zhao, Jin-Jing; Song, Jin-Qing; Pan, Shu-Yi; Wang, Kai

    2016-08-01

    Ischemic stroke is a major cause of morbidity and mortality, yet lacks effective neuroprotective treatments. The aim of this work was to investigate whether treatment with isorhamnetin protected the brain against ischemic injury in mice. Experimental stroke mice underwent the filament model of middle cerebral artery occlusion with reperfusion. Treatment with isorhamnetin or vehicle was initiated immediately at the onset of reperfusion. It was found that treatment of experimental stroke mice with isorhamnetin reduced infarct volume and caspase-3 activity (a biomarker of apoptosis), and improved neurological function recovery. Treatment of experimental stroke mice with isorhamnetin attenuated cerebral edema, improved blood-brain barrier function, and upregulated gene expression of tight junction proteins including occludin, ZO-1, and claudin-5. Treatment of experimental stroke mice with isorhamnetin activated Nrf2/HO-1, suppressed iNOS/NO, and led to reduced formation of MDA and 3-NT in ipsilateral cortex. In addition, treatment of experimental stroke mice with isorhamnetin suppressed activity of MPO (a biomarker of neutrophil infiltration) and reduced protein levels of IL-1β, IL-6, and TNF-α in ipsilateral cortex. Furthermore, it was found that treatment of experimental stroke mice with isorhamnetin reduced mRNA and protein expression of NMDA receptor subunit NR1 in ipsilateral cortex. In conclusion, treatment with isorhamnetin protected the brain against ischemic injury in mice. Isorhamnetin could thus be envisaged as a countermeasure for ischemic stroke but remains to be tested in humans.

  3. Prediction of Outcome in Neonates with Hypoxic-Ischemic Encephalopathy II: Role of Amplitude-Integrated Electroencephalography and Cerebral Oxygen Saturation Measured by Near-Infrared Spectroscopy.

    Science.gov (United States)

    Goeral, Katharina; Urlesberger, Berndt; Giordano, Vito; Kasprian, Gregor; Wagner, Michael; Schmidt, Lisa; Berger, Angelika; Klebermass-Schrehof, Katrin; Olischar, Monika

    2017-07-14

    Few data have been published on the combined use of amplitude-integrated electroencephalography (aEEG) and near-infrared spectroscopy (NIRS) for outcome prediction in neonates cooled for hypoxic-ischemic encephalopathy (HIE). Our aim was to evaluate the predictive values and the most powerful predictive combinations of single aEEG and NIRS parameters and the respective cut-off values with regard to short-term outcomes in HIE II. aEEG and NIRS were prospectively studied at the Medical University of Vienna in the first 102 h of life with regard to magnetic resonance imaging (MRI). Thirty-two neonates diagnosed with HIE II treated with hypothermia were investigated. The measurement period was divided into 6-h epochs. According to MRI, 2 outcome groups were defined and predictive values of aEEG parameters, regional cerebral oxygen saturation (rScO2), and the additional value of both methods combined were studied. Receiver operating curves (ROC) were obtained and area under the curve (AUC) values were calculated. ROC were then used to detect the optimal cut-off points, sensitivity, specificity, positive predictive values, and negative predictive values. At all time epochs, combined parameter scores were more predictive than single parameter scores. The highest AUC were observed between 18 and 60 h of cooling for the aEEG summation score (0.72-0.84) and for (background pattern + seizures) × rScO2 (0.79-0.85). At 42-60 h sensitivity was similar between those 2 scores (87.5-90.0%), but the addition of NIRS to aEEG led to an increase in specificity (from 52.4-59.1% to 72.7-90.5%). In HIE II, aEEG and NIRS are important predictors of short-term outcome. The combination of both methods improves prognostication. The highest predictive abilities were observed between 18 and 60 h of cooling. © 2017 S. Karger AG, Basel.

  4. CT Diagnosis of Neonatal Hypoxic-ischemic Encephalopathy%新生儿缺氧缺血性脑病的CT诊断

    Institute of Scientific and Technical Information of China (English)

    乔志刚

    2013-01-01

      目的:通过运用 CT 扫描判断新生儿缺氧缺血性脑病(HIE)的临床特征,探讨 CT 扫描对 HIE 的临床价值.方法:回顾性分析笔者所在医院2009-2011年3月收治的 HIE 患儿58例的 CT 表现、损伤程度及合并颅内出血的类型.结果:经 CT 诊断的58例 HIE 患儿中,轻度25例(43.10%),中度18例(31.03%),重度15例(25.87%);经随访复查,58例 HIE 患儿轻度 CT 阳性率12.00%;中度 CT 阳性率44.44%;重度 CT 阳性率53.33%.结论:CT 扫描能够准确判断 HIE 的临床特征,并为进一步确定此病的损伤范围、程度、分类以及合并症,并制定合理的诊疗方案提供科学依据,有较好的临床价值.%Objective:Through the use of CT scan to determine clinical features of neonatal hypoxic-ischemic encephalopathy(HIE),to explore the clinical value of the HIE.Methods:Retrospective analysis the CT feature,the degree of injury and the type of intracranial hemorrhage of 58 cases with HIE in our hospital from 2009 to March 2011.Results:The diagnosis by CT in 58 cases of HIE,mild 25 cases(43.10%) and 18 cases,moderate (31.03%),severe in 15 cases (25.87%),by the follow-up review,58 cases of mild HIE CT the positive rate of 12.00%;moderate CT-positive rate of 44.44%;severe CT-positive rate of 53.33%.Conclusion:CT scan can accurately determine the clinical features of HIE,and to further determine the damage range of the disease,the degree of classification,and complications,and to provide a scientific basis for rational treatment programs,it has better clinical value.

  5. Bryostatin Improves Survival and Reduces Ischemic Brain Injury in Aged Rats After Acute Ischemic Stroke

    National Research Council Canada - National Science Library

    Tan, Zhenjun; Turner, Ryan C; Leon, Rachel L; Li, Xinlan; Hongpaisan, Jarin; Zheng, Wen; Logsdon, Aric F; Naser, Zachary J; Alkon, Daniel L; Rosen, Charles L; Huber, Jason D

    2013-01-01

    BACKGROUND AND PURPOSE—Bryostatin, a potent protein kinase C (PKC) activator, has demonstrated therapeutic efficacy in preclinical models of associative memory, Alzheimer disease, global ischemia, and traumatic brain injury...

  6. Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.

    Science.gov (United States)

    Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari

    2013-10-01

    Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly.

  7. Defining acute ischemic stroke tissue pathophysiology with whole brain CT perfusion.

    Science.gov (United States)

    Bivard, A; Levi, C; Krishnamurthy, V; Hislop-Jambrich, J; Salazar, P; Jackson, B; Davis, S; Parsons, M

    2014-12-01

    This study aimed to identify and validate whole brain perfusion computed tomography (CTP) thresholds for ischemic core and salvageable penumbra in acute stroke patients and develop a probability based model to increase the accuracy of tissue pathophysiology measurements. One hundred and eighty-three patients underwent multimodal stroke CT using a 320-slice scanner within 6hours of acute stroke onset, followed by 24hour MRI that included diffusion weighted imaging (DWI) and dynamic susceptibility weighted perfusion imaging (PWI). Coregistered acute CTP and 24hour DWI was used to identify the optimum single perfusion parameter thresholds to define penumbra (in patients without reperfusion), and ischemic core (in patients with reperfusion), using a pixel based receiver operator curve analysis. Then, these results were used to develop a sigma curve fitted probability based model incorporating multiple perfusion parameter thresholds. For single perfusion thresholds, a time to peak (TTP) of +5seconds best defined the penumbra (area under the curve, AUC 0.79 CI 0.74-0.83) while a cerebral blood flow (CBF) of acute ischemic core (AUC 0.73, CI 0.69-0.77). The probability model was more accurate at detecting the ischemic core (AUC 0.80 SD 0.75-0.83) and penumbra (0.85 SD 0.83-0.87) and was significantly closer in volume to the corresponding reference DWI (P=0.031). Whole brain CTP can accurately identify penumbra and ischemic core using similar thresholds to previously validated 16 or 64 slice CTP. Additionally, a novel probability based model was closer to defining the ischemic core and penumbra than single thresholds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Clinical Application of Citicoline in the Treatment of Neonatal Hypoxic Ischemic Encephalopathy%胞磷胆碱治疗新生儿缺氧缺血性脑病的临床应用

    Institute of Scientific and Technical Information of China (English)

    邓纲

    2016-01-01

    Objective To analyze the clinical application value of the citicoline in the treatment of neonatal hypoxic ischemic encephalopathy .Method 24 cases of neonatal hypoxic ischemic encephalopathy were divided into study group and control group, 12 cases in each group.The control group uses the conventional symptomatic treatment.On the basis of the control group, study group was given citicoline treatment.The condition of the two groups were observed and compared.Result The total effective rate in the study group was signiifcantly higher than that in the control group,and the data were statistically signiifcant (P < 0.05). In the treatment effect of the patients with different condition of hypoxic ischemic encephalopathy, the total effective rate of the study group was also higher than that of the control group, and the data were statistically signiifcant (P < 0.05).The incidence rate of the study group was lower than that of the control group, and the data were statistically signiifcant (P< 0.05).Conclusion Patients of neonatal hypoxic ischemic encephalopathy with citicoline treatment on the basis of conventional symptomatic treatment achieve the effect which is better than patients of neonatal hypoxic ischemic encephalopathy with pure symptomatic treatment.%目的:对胞磷胆碱在新生儿缺氧缺血性脑病治疗中的临床应用价值进行分析。方法24例新生儿缺氧缺血性脑病患儿分为研究组和对照组,每组12例,对照组采用常规对症治疗,在对照组的基础上给予研究组胞磷胆碱治疗,对两组各项情况进行观察和对比。结果研究组获得的治疗总有效率明显高于对照组,对比数据具有统计学差异(P<0.05)。在不同病情缺氧缺血性脑病患儿获得的治疗效果上,研究组获得的治疗总有效率也均高于对照组,对比数据具有统计学差异(P<0.05)。研究组后遗症发生率低于对照组,对比数据具有统计学差异(P<0.05)

  9. Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain.

    Science.gov (United States)

    Kaur, Charanjit; Sivakumar, Viswanathan; Zou, Zhirong; Ling, Eng-Ang

    2014-01-01

    The developing cerebellum is extremely vulnerable to hypoxia which can damage the Purkinje neurons. We hypothesized that this might be mediated by tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) derived from activated microglia as in other brain areas. One-day-old rats were subjected to hypoxia following, which the expression changes of various proteins in the cerebellum including hypoxia inducible factor-1α, TNF-α, IL-1β, TNF-R1 and IL-1R1 were analyzed. Following hypoxic exposure, TNF-α and IL-1β immunoexpression in microglia was enhanced coupled by that of TNF-R1 and IL-1R1 in the Purkinje neurons. Along with this, hypoxic microglia in vitro showed enhanced release of TNF-α and IL-1β whose receptor expression was concomitantly increased in the Purkinje neurons. In addition, nitric oxide (NO) level was significantly increased in the cerebellum and cultured microglia subjected to hypoxic exposure. Moreover, cultured Purkinje neurons treated with conditioned medium derived from hypoxic microglia underwent apoptosis but the incidence was significantly reduced when the cells were treated with the same medium that was neutralized with TNF-α/IL-1β antibody. We conclude that hypoxic microglia in the neonatal cerebellum produce increased amounts of NO, TNF-α and IL-1β which when acting via their respective receptors could induce Purkinje neuron death.

  10. Whole-Brain CT Perfusion to Quantify Acute Ischemic Penumbra and Core.

    Science.gov (United States)

    Lin, Longting; Bivard, Andrew; Krishnamurthy, Venkatesh; Levi, Christopher R; Parsons, Mark W

    2016-06-01

    Purpose To validate the use of perfusion computed tomography (CT) with whole-brain coverage to measure the ischemic penumbra and core and to compare its performance to that of limited-coverage perfusion CT. Materials and Methods Institutional ethics committee approval and informed consent were obtained. Patients (n = 296) who underwent 320-detector CT perfusion within 6 hours of the onset of ischemic stroke were studied. First, the ischemic volume at CT perfusion was compared with the penumbra and core reference values at magnetic resonance (MR) imaging to derive CT perfusion penumbra and core thresholds. Second, the thresholds were tested in a different group of patients to predict the final infarction at diffusion-weighted imaging 24 hours after CT perfusion. Third, the change in ischemic volume delineated by the optimal penumbra and core threshold was determined as the brain coverage was gradually reduced from 160 mm to 20 mm. The Wilcoxon signed-rank test, concordance correlation coefficient (CCC), and analysis of variance were used for the first, second, and third steps, respectively. Results CT perfusion at penumbra and core thresholds resulted in the least volumetric difference from MR imaging reference values with delay times greater than 3 seconds and delay-corrected cerebral blood flow of less than 30% (P = .34 and .33, respectively). When the thresholds were applied to the new group of patients, prediction of the final infarction was allowed with delay times greater than 3 seconds in patients with no recanalization of the occluded artery (CCC, 0.96 [95% confidence interval: 0.92, 0.98]) and with delay-corrected cerebral blood flow less than 30% in patients with complete recanalization (CCC, 0.91 [95% confidence interval: 0.83, 0.95]). However, the ischemic volume with a delay time greater than 3 seconds was underestimated when the brain coverage was reduced to 80 mm (P = .04) and the core volume measured as cerebral blood flow less than 30% was

  11. APPLIED STUDY ON BRAIN ATLAS AFTER AND BEFORE TREATMENT BY SIBELIUM IN ISCHEMIC VASCULAR DIZZINESS

    Institute of Scientific and Technical Information of China (English)

    LIU Mingshun; LI Laiyou; LIU Qiuying; LIU Qinyrui; GU Lanjie

    2003-01-01

    目的:探讨西比灵的临床疗效和脑电地形图的应用价值.方法:应用西比灵治疗300例缺血性血管性头晕患者,通过临床症征和脑电地形图观察其疗效.结果:西比灵治疗缺血性血管性头晕有效率为100%,脑电地形图在治疗前后有明显改变.结论:西比灵是治疗缺血性血管性头晕的较理想药物.脑电地形图是观察西比灵疗效和作用机理的有效指标.%Objective: To explore clinical curative effect of sibelium and applied value of brain atlas. Methods: 300 patients with ischemic vascular dizziness were treated by sibelium. The curative effect of sibelium was observated by clinical symptom and sigh and brain atlas. Results: The effective rate of sibelium in treatment of ischemic vascular dizziness was 100%. The change of brain atlas was obvious before and after treatment. Conclusion: Sibelium was an ideal drug in treatment of ischemic vascular dizziness. Brain atlas was an effective index in observation of curative effect and mechanism of action of sibelium.

  12. Correlation between Nerve Growth Factor (NGF with Brain Derived Neurotropic Factor (BDNF in Ischemic Stroke Patient

    Directory of Open Access Journals (Sweden)

    Joko Widodo

    2016-05-01

    Full Text Available Background: The neurotrophins nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient’s onset: 7-30 and over 30 days. Methods: This is cross sectional study on 46 subjects aged 38 – 74 years old with ischemic stroke from The Indonesian Central Hospital of Army Gatot Subroto Jakarta. Diagnosis of ischemic stroke was made using clinical examination and magnetic resonance imaging (MRI by neurologist. Subjects were divided into 2 groups based on stroke onset: 7 – 30 days (Group A: 19 subjects and > 30 days (Group B: 27 Subjects. Serum NGF levels were measured with ELISA method and BDNF levels were measured using multiplex method with Luminex Magpix. Results: Levels of NGF and BDNF were significantly different between onset group A and B (NGF p= 0.022, and BDNF p=0.008, with mean levels NGF in group A higher than group B, indicating that BDNF levels is lower in group A than group B. There was no significant correlation between NGF and BDNF levels in all groups. Conclusion: The variations in neurotrophic factor levels reflect an endogenous attempt at neuroprotection against biochemical and molecular changes after ischemic stroke. NGF represents an early marker of brain injury while BDNF recovery is most prominent during the first 14 days after onsite but continuous for more than 30 days. There is no significant correlation between NGF and BDNF in each group.  

  13. Role of IL-1alpha and IL-1beta in ischemic brain damage.

    Science.gov (United States)

    Boutin, H; LeFeuvre, R A; Horai, R; Asano, M; Iwakura, Y; Rothwell, N J

    2001-08-01

    The cytokine interleukin-1 (IL-1) has been strongly implicated in the pathogenesis of ischemic brain damage. Evidence to date suggests that the major form of IL-1 contributing to ischemic injury is IL-1beta rather than IL-1alpha, but this has not been tested directly. The objective of the present study was to compare the effects of transient cerebral ischemia [30 min middle cerebral artery occlusion (MCAO)] on neuronal injury in wild-type (WT) mice and in IL-1alpha, IL-1beta, or both IL-1alpha and IL-1beta knock-out (KO) mice. Mice lacking both forms of IL-1 exhibited dramatically reduced ischemic infarct volumes compared with wild type (total volume, 70%; cortex, 87% reduction). Ischemic damage compared with WT mice was not significantly altered in mice lacking either IL-1alpha or IL-1beta alone. IL-1beta mRNA, but not IL-1alpha or the IL-1 type 1 receptor, was strongly induced by MCAO in WT and IL-1alpha KO mice. Administration (intracerebroventricularly) of recombinant IL-1 receptor antagonist significantly reduced infarct volume in WT (-32%) and IL-1alpha KO (-48%) mice, but had no effect on injury in IL-1beta or IL-1alpha/beta KO mice. These data confirm that IL-1 plays a major role in ischemic brain injury. They also show that chronic deletion of IL-1alpha or IL-1beta fails to influence brain damage, probably because of compensatory changes in the IL-1 system in IL-1alpha KO mice and changes in IL-1-independent mediators of neuronal death in IL-1beta KO mice.

  14. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke.

    Science.gov (United States)

    Wang, Yuechun; Reis, Cesar; Applegate, Richard; Stier, Gary; Martin, Robert; Zhang, John H

    2015-10-01

    In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on

  15. Growth Factors for the Treatment of Ischemic Brain Injury (Growth Factor Treatment

    Directory of Open Access Journals (Sweden)

    Amara Larpthaveesarp

    2015-04-01

    Full Text Available In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS diseases. These growth factors include erythropoietin (EPO, vascular endothelial growth factor (VEGF, brain-derived neurotrophic factor (BDNF, and insulin-like growth factor (IGF-1, among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans.

  16. Growth factors for the treatment of ischemic brain injury (growth factor treatment).

    Science.gov (United States)

    Larpthaveesarp, Amara; Ferriero, Donna M; Gonzalez, Fernando F

    2015-04-30

    In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans.

  17. Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade.

    Science.gov (United States)

    Barakat, Waleed; Safwet, Nancy; El-Maraghy, Nabila N; Zakaria, Mohamed N M

    2014-02-01

    Stroke is the second leading cause of death in industrialized countries and the most frequent cause of permanent disability in adults worldwide. The final outcome of stroke is determined not only by the volume of the ischemic core, but also by the extent of secondary brain damage inflicted to penumbral tissues by brain swelling, impaired microcirculation, and inflammation. The only drug approved for the treatment ischemic stroke is recombinant tissue plasminogen activator (rt-PA). The current study was designed to investigate the protective effects of candesartan (0.15 mg/kg, orally) and glycyrrhizin (30 mg/kg, orally) experimentally-induced ischemic brain damage in C57BL/6 mice (middle cerebral artery occlusion, MCAO) in comparison to the effects of a standard neuroprotective drug (cerebrolysin, 7.5 mg/kg, IP). All drugs were administered 30 min before and 24h after MCAO. Both candesartan and glycyrrhizin ameliorated the deleterious effects of MCAO as indicated by the improvement in the performance of the animals in behaviour tests, reduction in brain infarction, neuronal degeneration, and leukocyte infiltration. In addition, MCAO induced a significant upregulation in the different elements of the TLR pathway including TLR-2 and TLR-4, Myd88, TRIF and IRF-3 and the downstream effectors TNF-α, IL-1β, IL-6 and NF-kB. All these changes were significantly ameliorated by treatment with candesartan and glycyrrhizin. The results of the current study represent a new indication for both candesartan and glycyrrhizin in the management of ischemic stroke with effects comparable to those of the standard neuroprotective drug cerebrolysin.

  18. Bryostatin improves survival and reduces ischemic brain injury in aged rats following acute ischemic stroke

    Science.gov (United States)

    Tan, Zhenjun; Turner, Ryan C.; Leon, Rachel L.; Li, Xinlan; Hongpaisan, Jarin; Zheng, Wen; Logsdon, Aric F.; Naser, Zachary J.; Alkon, Daniel L.; Rosen, Charles L.; Huber, Jason D.

    2014-01-01

    Background and Purpose Bryostatin, a potent protein kinase C (PKC) activator, has demonstrated therapeutic efficacy in preclinical models of associative memory, Alzheimer's disease, global ischemia, and traumatic brain injury. In this study, we tested the hypothesis that administration of bryostatin provides a therapeutic benefit in reducing brain injury and improving stroke outcome using a clinically relevant model of cerebral ischemia with tissue plasminogen activator (tPA) reperfusion in aged rats. Methods Acute cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery (MCAO) in 18-20 month old female Sprague-Dawley rats using an autologous blood clot with tPA-mediated reperfusion. Bryostatin was administered at 6 h post-MCAO then at 3, 6, 9, 12, 15, and 18 d after MCAO. Functional assessment was conducted at 2, 7, 14, and 21 d after MCAO. Lesion volume and hemispheric swelling/atrophy were performed at 2, 7, and 21 d post-MCAO. Histological assessment of PKC isozymes was performed at 24 h post-MCAO. Results Bryostatin-treated rats showed improved survival post-MCAO, especially during the first 4 d. Repeated administration of bryostatin post-MCAO resulted in reduced infarct volume, hemispheric swelling/atrophy, and improved neurological function at 21 d post-MCAO. Changes in PKC alpha expression and PKC epsilon expression in neurons were noted in bryostatin-treated rats at 24 h post-MCAO. Conclusions Repeated bryostatin administration post-MCAO protected the brain from severe neurological injury post-MCAO. Bryostatin treatment improved survival rate, reduced lesion volume, salvaged tissue in infarcted hemisphere by reducing necrosis and peri-infarct astrogliosis, and improved functional outcome following MCAO. PMID:24172582

  19. Bryostatin improves survival and reduces ischemic brain injury in aged rats after acute ischemic stroke.

    Science.gov (United States)

    Tan, Zhenjun; Turner, Ryan C; Leon, Rachel L; Li, Xinlan; Hongpaisan, Jarin; Zheng, Wen; Logsdon, Aric F; Naser, Zachary J; Alkon, Daniel L; Rosen, Charles L; Huber, Jason D

    2013-12-01

    Bryostatin, a potent protein kinase C (PKC) activator, has demonstrated therapeutic efficacy in preclinical models of associative memory, Alzheimer disease, global ischemia, and traumatic brain injury. In this study, we tested the hypothesis that administration of bryostatin provides a therapeutic benefit in reducing brain injury and improving stroke outcome using a clinically relevant model of cerebral ischemia with tissue plasminogen activator reperfusion in aged rats. Acute cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery (MCAO) in 18- to 20-month-old female Sprague-Dawley rats using an autologous blood clot with tissue plasminogen activator-mediated reperfusion. Bryostatin was administered at 6 hours post-MCAO, then at 3, 6, 9, 12, 15, and 18 days after MCAO. Functional assessment was conducted at 2, 7, 14, and 21 days after MCAO. Lesion volume and hemispheric swelling/atrophy were performed at 2, 7, and 21 days post-MCAO. Histological assessment of PKC isozymes was performed at 24 hours post-MCAO. Bryostatin-treated rats showed improved survival post-MCAO, especially during the first 4 days. Repeated administration of bryostatin post-MCAO resulted in reduced infarct volume, hemispheric swelling/atrophy, and improved neurological function at 21 days post-MCAO. Changes in αPKC expression and εPKC expression in neurons were noted in bryostatin-treated rats at 24 hours post-MCAO. Repeated bryostatin administration post-MCAO protected the brain from severe neurological injury post-MCAO. Bryostatin treatment improved survival rate, reduced lesion volume, salvaged tissue in infarcted hemisphere by reducing necrosis and peri-infarct astrogliosis, and improved functional outcome after MCAO.

  20. Ischemic Postconditioning Alleviates Brain Edema After Focal Cerebral Ischemia Reperfusion in Rats Through Down-Regulation of Aquaporin-4.

    Science.gov (United States)

    Han, Dong; Sun, Miao; He, Ping-Ping; Wen, Lu-Lu; Zhang, Hong; Feng, Juan

    2015-07-01

    Cerebral edema is a serious complication associated with cerebral ischemia/reperfusion (I/R). Aquaporin-4 (AQP4) plays a role in generating postischemic edema after reperfusion. Recently, ischemic postconditioning (Postcond) has been shown to produce neuroprotective effects and reduce brain edema in rats after cerebral I/R. It is unclear if ischemic Postcond alleviates brain edema injury through regulation of AQP4. In this study, middle cerebral artery occlusion (MCAO) was induced in rats by filament insertion for 2 h following 24-h reperfusion: ischemic Postcond treatment was performed before reperfusion in the experimental group. We used the wet-dry weight ratio and transmission electron microscopy to evaluate brain edema after 24 h of reperfusion. We used immunohistochemistry and Western blot analyses to evaluate the distribution and expression of AQP4. Ischemic Postcond significantly reduced the water content of the brain tissue and swelling of the astrocytic foot processes. AQP4 expression increased in the I/R and Postcond groups compared to the sham group, but it decreased in the Postcond group compared to the I/R group. The results of our study suggest that ischemic Postcond effectively reduces brain edema after reperfusion by inhibiting AQP4 expression. The data in this study support the use of ischemic Postcond for alleviating brain edema after cerebral I/R.

  1. Memory deficit associated with increased brain proinflammatory cytokine levels and neurodegeneration in acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Bruno Silva

    2015-08-01

    Full Text Available The present study aimed to investigate behavioral changes and neuroinflammatory process following left unilateral common carotid artery occlusion (UCCAO, a model of cerebral ischemia. Post-ischemic behavioral changes following 15 min UCCAO were recorded 24 hours after reperfusion. The novel object recognition task was used to assess learning and memory. After behavioral test, brains from sham and ischemic mice were removed and processed to evaluate central nervous system pathology by TTC and H&E techniques as well as inflammatory mediators by ELISA. UCCAO promoted long-term memory impairment after reperfusion. Infarct areas were observed in the cerebrum by TTC stain. Moreover, the histopathological analysis revealed cerebral necrotic cavities surrounded by ischemic neurons and hippocampal neurodegeneration. In parallel with memory dysfunction, brain levels of TNF-a, IL-1b and CXCL1 were increased post ischemia compared with sham-operated group. These findings suggest an involvement of central nervous system inflammatory mediators and brain damage in cognitive impairment following unilateral acute ischemia.

  2. Protective role for type 4 metabotropic glutamate receptors against ischemic brain damage.

    Science.gov (United States)

    Moyanova, Slavianka G; Mastroiacovo, Federica; Kortenska, Lidia V; Mitreva, Rumiana G; Fardone, Erminia; Santolini, Ines; Sobrado, Mónica; Battaglia, Giuseppe; Bruno, Valeria; Nicoletti, Ferdinando; Ngomba, Richard T

    2011-04-01

    We examined the influence of type 4 metabotropic glutamate (mGlu4) receptors on ischemic brain damage using the permanent middle cerebral artery occlusion (MCAO) model in mice and the endothelin-1 (Et-1) model of transient focal ischemia in rats. Mice lacking mGlu4 receptors showed a 25% to 30% increase in infarct volume after MCAO as compared with wild-type littermates. In normal mice, systemic injection of the selective mGlu4 receptor enhancer, N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-caboxamide (PHCCC; 10  mg/kg, subcutaneous, administered once 30  minutes before MCAO), reduced the extent of ischemic brain damage by 35% to 45%. The drug was inactive in mGlu4 receptor knockout mice. In the Et-1 model, PHCCC administered only once 20  minutes after ischemia reduced the infarct volume to a larger extent in the caudate/putamen than in the cerebral cortex. Ischemic rats treated with PHCCC showed a faster recovery of neuronal function, as shown by electrocorticographic recording and by a battery of specific tests, which assess sensorimotor deficits. These data indicate that activation of mGlu4 receptors limit the development of brain damage after permanent or transient focal ischemia. These findings are promising because selective mGlu4 receptor enhancers are under clinical development for the treatment of Parkinson's disease and other central nervous system disorders.

  3. Vascular Endothelial Growth Factor and Brain-Derived Neurotropic Factor Levels in Ischemic Stroke Subject

    Directory of Open Access Journals (Sweden)

    Andri Hidayat

    2016-08-01

    Full Text Available BACKGROUND: Vascular endothelial growth factor (VEGF and brain-derived neurotropic factor (BDNF present during early neuronal development and play important roles in the process of neurorepairing includes angiogenesis, neurogenesis and neuronal plasticity after ischemic stroke. In this study, we observed VEGF and BDNF levels of subjects with ischemic stroke in different onset time. METHODS: A cross sectional study was designed. Study subjects were 51 ischemic stroke subjects, aged 30-80 years old, recruited from Gatot Subroto Army Central Hospital, Jakarta, Indonesia. Ischemic stroke was diagnosed by neurologist, based on clinical examination and magnetic resonance imaging (MRI result. Subjects were divided into 3 groups based on onset time of stroke: 30 days (Group C. VEGF and BDNF levels from serum were measured using lumine Magpix. The data was analyzed for comparison and correlation. RESULTS: VEGF and BDNF levels of group B and C were significantly different with p=0.034 and p=0.007, respectively. Group B had the highest VEGF levels, whereas Group C had the highest BDNF level. VEGF and BDNF levels in each group were not significantly correlated. CONCLUSION: Each stage of time after ischemic stroke has different recovery activities like angiogenesis, neurogenesis and plasticity. Angiogenesis process was optimum in 7-30 days after onset. in more than 30 days onset, Low VEGF with high BDNF have important role in a long period of time after the onset of stroke in the regeneration and repair, such as maintaining neuronal survival and plasticity. KEYWORDS: ischemic stroke, VEGF, BDNF

  4. DRα1-MOG-35-55 Reduces Permanent Ischemic Brain Injury.

    Science.gov (United States)

    Wang, Jianyi; Ye, Qing; Xu, Jing; Benedek, Gil; Zhang, Haiyue; Yang, Yuanyuan; Liu, Huan; Meza-Romero, Roberto; Vandenbark, Arthur A; Offner, Halina; Gao, Yanqin

    2017-06-01

    Stroke induces a catastrophic immune response that involves the global activation of peripheral leukocytes, especially T cells. The human leukocyte antigen-DRα1 domain linked to MOG-35-55 peptide (DRα1-MOG-35-55) is a partial major histocompatibility complex (MHC) class II construct which can inhibit neuroantigen-specific T cells and block binding of the cytokine/chemokine macrophage migration inhibitory factor (MIF) to its CD74 receptor on monocytes and macrophages. Here, we evaluated the therapeutic effect of DRα1-MOG-35-55 in a mouse model of permanent distal middle cerebral artery occlusion (dMCAO). DRα1-MOG-35-55 was administered to WT C57BL/6 mice by subcutaneous injection starting 4 h after the onset of ischemia followed by three daily injections. We demonstrated that DRα1-MOG-35-55 post treatment significantly reduced brain infarct volume, improved functional outcomes, and inhibited the accumulation of CD4(+) and CD8(+) T cells and expression of pro-inflammatory cytokines in the ischemic brain 96 h after dMCAO. In addition, DRα1-MOG-35-55 treatment shifted microglia/macrophages in the ischemic brain to a beneficial M2 phenotype without changing their total numbers in the brain or blood. This study demonstrates for the first time the therapeutic efficacy of the DRα1-MOG-35-55 construct in dMCAO across MHC class II barriers in C57BL/6 mice. This MHC-independent effect obviates the need for tissue typing and will thus greatly expedite treatment with DRα1-MOG-35-55 in human stroke subjects. Taken together, our findings suggest that DRα1-MOG-35-55 treatment may reduce ischemic brain injury by regulating post-stroke immune responses in the brain and the periphery.

  5. Effect of brain-derived neurotropic factor released from hypoxic astrocytes on gamma-aminobutyric acid type A receptor function in normal hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai

    2011-01-01

    Astrocytes can release increased levels of brain-derived neurotrophic factor during cerebral ischemia, but it is unclear whether brain-derived neurotrophic factor affects γ-aminobutyric acid type A receptor function in normal neurons. Results from this study demonstrated that γ-aminobutyric acid at 100 μmol/L concentration raised the intracellular calcium level in neurons treated with medium from cultured hypoxic astrocytes, and the rise in calcium level could be inhibited by γ-aminobutyric acid type A receptor antagonist bicuculline or brain-derived neurotrophic factor receptor antagonist k252a. Γ-aminobutyric acid type A-gated current induced by 100 μmol/L γ-aminobutyric acid was in an inward direction in physiological conditions, but shifted to the outward direction in neurons when treated with the medium from cultured hypoxic astrocytes, and this effect could be inhibited by k252a. The reverse potential was shifted leftward to -93 Mv, which could be inhibited by k252a and Na+-K+-Cl- cotransporter inhibitor bumetanide. Brain-derived neurotrophic factor was released from hypoxic astrocytes at a high level. It shifted the reverse potential of γ-aminobutyric acid type A-gated currents leftward in normal neurons by enhancing the function of Na+-K+-Cl- cotransporter, and caused γ-aminobutyric acid to exert an excitatory effect by activating γ-aminobutyric acid type A receptor.

  6. Hyperbaric oxygen therapy for promoting the intellectual rehabilitation of infants with severe hypoxic-ischemic encephalopathy A 5-year follow-up

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: It has been reported that early intervention of hyperbaric oxygen (HBO) can promote the intellectual rehabilitation of infants with severe hypoxic-ischemic encephalopathy (HIE) and can prevent mental retardation recently. However, the prior observations on the therapeutic effect almost were short-term.How about the observations on prospective efficacy and the following up on systematic intelligence test? OBJECTIVE: To investigate the short-term and long-term effects of HBO therapy on the promotion of the intellectual rehabilitation in infants with severe HIE.DESIGN: A comparative observation.SETTING: Department of Pediatrics, Affiliated Hospital, Qingdao University Medical College.PARTICIPANTS: Forty-seven infants with severe HIE (35 males and 12 females) were treated with HBO in the Department of Pediatrics, the Affiliated Hospital of the Medical College of Qingdao University from October 1996 to July 1999. All of them were consistent with the diagnostic criteria and clinical grading on severe HIE which were designed by Chinese Medical Association pediatrics committee neonate group in Hangzhou, October, 1996. Informed contents were obtained from the relatives of all the infants.METHODS: ① Grouping: The infants were randomly divided into two groups according to the order of admission, those of odd numbers were HBO group (n =24) and those of even numbers were control group(n =23). All the infants were treated with routine therapy for 3 months, in addition to HBO therapy in the HBO group, once a day for 4 courses of 10 days with the interval of 10 - 15 days since 8 to 10 days after birth. HBO chamber produced by the 701 Institute of China Ship Industry Company was used, and the therapy pressure was 0.14 - 0.16 Mpa, and the time of compression and decompression were both 15 minutes while voltage-stabilizing was 30 minutes. ② In order to evaluate the short-term and long-term effects of HBO on intellectual rehabilitation in infants with HIE, neonatal

  7. A Newborn Case of Hypoxic-Ischemic Encephalopathy Accompanied with 46,XX,-21,+t(21;21)%新生儿缺氧性脑病伴46,XX,-21,+t(21;21)罕见核型一例

    Institute of Scientific and Technical Information of China (English)

    付建华; 宁建英; 张青; 付睿婷; 李露霞

    2003-01-01

    This report describes a cytogenetic aberration in one neonatal patient with hypoxic-ischemic encephalopathy. A rare karyotype,46,XX, -21, +t(21;21), was detected. This de nono chromosomal abnormality may be caused by the meiotic non-disjunction of chromosomes during gametogenesis along with the formation of Robertsonian translocation between homologous chromosome 21.

  8. Brain Connectivity and Functional Recovery in Patients With Ischemic Stroke.

    Science.gov (United States)

    Almeida, Sara Regina Meira; Vicentini, Jessica; Bonilha, Leonardo; De Campos, Brunno M; Casseb, Raphael F; Min, Li Li

    2017-01-01

    Brain mapping studies have demonstrated that functional poststroke brain reorganization is associated with recovery of motor function. Nonetheless, the specific mechanisms associated with functional reorganization leading to motor recovery are still partly unknown. In this study, we performed a cross-sectional evaluation of poststroke subjects with the following goals: (1) To assess intra- and interhemispheric functional brain activation patterns associated with motor function in poststroke patients with variable degrees of recovery; (2) to investigate the involvement of other nonmotor functional networks in relationship with recovery. We studied 59 individuals: 13 patients with function Rankin > 1 and Barthel function with Rankin 0-1 and Barthel = 100; and 27 healthy controls. All subjects underwent structural and functional magnetic resonance imaging (3T Philips Achieva, Holland) using the same protocol (TR = 2 seconds, TE = 30 ms, FOV = 240 × 240 × 117, slice = 39). Resting state functional connectivity was used by in-house software, based on SPM12. Among patients with and without preserved function, the functional connectivity between the primary motor region (M1) and the contralateral hemisphere was increased compared with controls. Nonetheless, only patients with decreased function exhibited decreased functional connectivity between executive control, sensorimotor and visuospatial networks. Functional recovery after stroke is associated with preserved functional connectivity of motor to nonmotor networks. Copyright © 2016 by the American Society of Neuroimaging.

  9. The neurobehavioral effect of Citicoline on hypoxic ischemic encephalopathy in neonatal%胞二磷胆碱对新生儿缺氧缺血性脑病神经行为的影响分析

    Institute of Scientific and Technical Information of China (English)

    王建国

    2011-01-01

    目的:探讨胞二磷胆碱对新生儿缺氧缺血性脑病神经行为的影响.方法:回顾性分析新生儿缺氧缺血性脑病患儿的临床治疗效果与神经行为影响结果,其中采用神经节苷脂治疗(对照组)32例,采用胞二磷胆碱治疗(治疗组)32例.结果:治疗组总有效率明显高于对照组,差异有统计学意义(X2=6.235 3,P<0.05).两组患儿在治疗前相关指标无差异.治疗后两组患儿在NABA评分、一般状态、原始反射之间的差异有统计学意义(t=7.852 1、6.235 3、6.3632,P<0.05),而主动肌张力、被动肌张力的差异无统计学意义(t=0.236 2、0.365 2,P>0.05).结论:临床在新生儿缺氧缺血性脑病综合治疗的基础上,尽早应用胞二磷胆碱治疗,会提高治疗有效率与改善预后,可推广应用.%Objective: To investigate the neurohehavioral effect of Citicoline on hypoxic ischemic encephalopathy in neonatal. Methods: To analyae neonatal hypoxic ischemic encephalopathy and the clinical treatment of the results of neurohehavioral effect, including treated by the Oganglioside (the control group) with 32 cases, and treated by the citicoline (the treatment group) with 32 cases. Resullts: The total effective rate of the treatment group was significantly higher than that of the control group (x2=6.235 3, P<0.05). The NABA valuse, capacity, performance status of the two groups had significantly difference (t=7.852 1. 6.235 3, 6.363 2, P<0.05). and active muscle tone, passive muscle tension of the two groups had not significantly different (t=0.236 2, 0.365 2, P>0.05). Conclusion: Citicoline on hypoxic ischemic encephalopathy in neonatal will improve efficiency and the prognosis, it can be generalized.

  10. The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke.

    Science.gov (United States)

    Wu, Long-Jun; Wu, Gongxiong; Akhavan Sharif, M Reza; Baker, Amanda; Jia, Yonghui; Fahey, Frederic H; Luo, Hongbo R; Feener, Edward P; Clapham, David E

    2012-03-04

    Phagocytic cell NADPH oxidase (NOX) generates reactive oxygen species (ROS) as part of innate immunity. Unfortunately, ischemia can also induce this pathway and inflict damage on native cells. The voltage-gated proton channel Hv1 enables NOX function by compensating cellular loss of electrons with protons. Accordingly, we investigated whether NOX-mediated brain damage in stroke can be inhibited by suppression of Hv1. We found that mouse and human brain microglia, but not neurons or astrocytes, expressed large Hv1-mediated currents. Hv1 was required for NOX-dependent ROS generation in brain microglia in situ and in vivo. Mice lacking Hv1 were protected from NOX-mediated neuronal death and brain damage 24 h after stroke. These results indicate that Hv1-dependent ROS production is responsible for a substantial fraction of brain damage at early time points after ischemic stroke and provide a rationale for Hv1 as a therapeutic target for the treatment of ischemic stroke.

  11. Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema.

    Science.gov (United States)

    Penet, Marie-France; Viola, Angèle; Confort-Gouny, Sylviane; Le Fur, Yann; Duhamel, Guillaume; Kober, Frank; Ibarrola, Danielle; Izquierdo, Marguerite; Coltel, Nicolas; Gharib, Bouchra; Grau, Georges E; Cozzone, Patrick J

    2005-08-10

    The first in vivo magnetic resonance study of experimental cerebral malaria is presented. Cerebral involvement is a lethal complication of malaria. To explore the brain of susceptible mice infected with Plasmodium berghei ANKA, multimodal magnetic resonance techniques were applied (imaging, diffusion, perfusion, angiography, spectroscopy). They reveal vascular damage including blood-brain barrier disruption and hemorrhages attributable to inflammatory processes. We provide the first in vivo demonstration for blood-brain barrier breakdown in cerebral malaria. Major edema formation as well as reduced brain perfusion was detected and is accompanied by an ischemic metabolic profile with reduction of high-energy phosphates and elevated brain lactate. In addition, angiography supplies compelling evidence for major hemodynamics dysfunction. Actually, edema further worsens ischemia by compressing cerebral arteries, which subsequently leads to a collapse of the blood flow that ultimately represents the cause of death. These findings demonstrate the coexistence of inflammatory and ischemic lesions and prove the preponderant role of edema in the fatal outcome of experimental cerebral malaria. They improve our understanding of the pathogenesis of cerebral malaria and may provide the necessary noninvasive surrogate markers for quantitative monitoring of treatment.

  12. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    Science.gov (United States)

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution. PMID:27403202

  13. In-111-labeled leukocyte brain SPECT imaging. Clinical significance in evaluating acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Fujinuma, Kunihiko [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine

    2002-02-01

    Many experimental studies have demonstrated that leukocyte infiltration plays an important role in the progression of ischemic cellular damage or post perfusion brain injury. However, only a few clinical studies have been reported. The purpose of this study is to evaluate the clinical significance of leukocyte accumulation in the ischemic brain tissue. Seventy six patients (49 men, 27 women; mean age: 65.5{+-}13.9 years) with acute ischemic stroke were studied by leukocyte brain SPECT imaging. A diagnosis included cardioembolism (n=46), atherothrombotic infarction (n=24), TIA (n=3) and lacuna (n=3). Immediately after the CBF study using Tc-99m-ECD (600 MBq), indium-111-labeled autologous leukocytes were injected. A brain scan for leukocytes was performed 48 hours later. The leukocyte-SPECT study was made 11.1{+-}7.7 days after the onset of stroke. Regional accumulation of leukocytes in the ischemic tissue was evaluated both by visual assessment and by measuring the hemispheric asymmetry index for leukocyte (AI-leuko), and was evaluated by comparison with variable factors including age, gender, infarction size, hemorrhagic transformation, timing of study after the onset, type of stroke and functional outcome. Of the 61 patients with acute ischemic stroke within 2 weeks of onset, 28 patients showed the accumulation of leukocytes in the central zone of ischemia. Six of 7 patients with repeated studies showed a reduction in leukocyte accumulation with time after the onset. Factors significantly associated with the higher accumulation of leukocyte included cardioembolic stroke, larger size of infarct, presence of hemorrhagic transformation and significant reduction in flow. In the 61 patients within 2 weeks of onset, the functional outcome was significantly correlated with the accumulation of leukocyte (p<0.001). The accumulation of leukocytes was seen more in patients with embolic stroke, larger infarction, and hemorrhagic transformation. The higher accumulation

  14. Endogenous level of TIGAR in brain is associated with vulnerability of neurons to ischemic injury.

    Science.gov (United States)

    Cao, Lijuan; Chen, Jieyu; Li, Mei; Qin, Yuan-Yuan; Sun, Meiling; Sheng, Rui; Han, Feng; Wang, Guanghui; Qin, Zheng-Hong

    2015-10-01

    In previous studies, we showed that TP53-induced glycolysis and apoptosis regulator (TIGAR) protects neurons against ischemic brain injury. In the present study, we investigated the developmental changes of TIGAR level in mouse brain and the correlation of TIGAR expression with the vulnerability of neurons to ischemic injury. We found that the TIGAR level was high in the embryonic stage, dropped at birth, partially recovered in the early postnatal period, and then continued to decline to a lower level in early adult and aged mice. The TIGAR expression was higher after ischemia/reperfusion in mouse brain 8 and 12 weeks after birth. Four-week-old mice had smaller infarct volumes, lower neurological scores, and lower mortality rates after ischemia than 8- and 12-week-old mice. TIGAR expression also increased in response to oxygen glucose deprivation (OGD)/reoxygenation insult or H2O2 treatment in cultured primary neurons from different embryonic stages (E16 and E20). The neurons cultured from the early embryonic period had a greater resistance to OGD and oxidative insult. Higher TIGAR levels correlated with higher pentose phosphate pathway activity and less oxidative stress. Older mice and more mature neurons had more severe DNA and mitochondrial damage than younger mice and less mature neurons in response to ischemia/reperfusion or OGD/reoxygenation insult. Supplementation of cultured neurons with nicotinamide adenine dinuclectide phosphate (NADPH) significantly reduced ischemic injury. These results suggest that TIGAR expression changes during development and its expression level may be correlated with the vulnerability of neurons to ischemic injury.

  15. Association of reduced folate carrier-1 (RFC-1) polymorphisms with ischemic stroke and silent brain infarction.

    Science.gov (United States)

    Cho, Yunkyung; Kim, Jung O; Lee, Jeong Han; Park, Hye Mi; Jeon, Young Joo; Oh, Seung Hun; Bae, Jinkun; Park, Young Seok; Kim, Ok Joon; Kim, Nam Keun

    2015-01-01

    Stroke is the second leading cause of death in the world and in South Korea. Ischemic stroke and silent brain infarction (SBI) are complex, multifactorial diseases influenced by multiple genetic and environmental factors. Moderately elevated plasma homocysteine levels are a major risk factor for vascular diseases, including stroke and SBI. Folate and vitamin B12 are important regulators of homocysteine metabolism. Reduced folate carrier (RFC), a bidirectional anion exchanger, mediates folate delivery to a variety of cells. We selected three known RFC-1 polymorphisms (-43C>T, 80A>G, 696T>C) and investigated their relationship to cerebral infarction in the Korean population. We used the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to analyze associations between the three RFC-1 polymorphisms, disease status, and folate and homocysteine levels in 584 ischemic stroke patients, 353 SBI patients, and 505 control subjects. The frequencies of the RFC-1 -43TT, 80GG, and 696CC genotypes differed significantly between the stroke and control groups. The RFC-1 80A>G substitution was also associated with small artery occlusion and SBI. In a gene-environment analysis, the RFC-1 -43C>T, 80A>G, and 696T>C polymorphisms in the ischemic stroke group had combined effects with all environmental factors. In summary, we found that the RFC-1 -43C>T, 80A>G, and 696T>C polymorphisms may be risk factors for ischemic stroke.

  16. Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

    NARCIS (Netherlands)

    van Velthoven, Cindy T. J.; Sheldon, R. Ann; Kavelaars, Annemieke; Derugin, Nikita; Vexler, Zinaida S.; Willemen, Hanneke L. D. M.; Maas, Mirjam; Heijnen, Cobi J.; Ferriero, Donna M.

    2013-01-01

    Background and Purpose-Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulati

  17. Evidence that the EphA2 receptor exacerbates ischemic brain injury.

    Directory of Open Access Journals (Sweden)

    John Thundyil

    Full Text Available Ephrin (Eph signaling within the central nervous system is known to modulate axon guidance, synaptic plasticity, and to promote long-term potentiation. We investigated the potential involvement of EphA2 receptors in ischemic stroke-induced brain inflammation in a mouse model of focal stroke. Cerebral ischemia was induced in male C57Bl6/J wild-type (WT and EphA2-deficient (EphA2(-/- mice by middle cerebral artery occlusion (MCAO; 60 min, followed by reperfusion (24 or 72 h. Brain infarction was measured using triphenyltetrazolium chloride staining. Neurological deficit scores and brain infarct volumes were significantly less in EphA2(-/- mice compared with WT controls. This protection by EphA2 deletion was associated with a comparative decrease in brain edema, blood-brain barrier damage, MMP-9 expression and leukocyte infiltration, and higher expression levels of the tight junction protein, zona occludens-1. Moreover, EphA2(-/- brains had significantly lower levels of the pro-apoptotic proteins, cleaved caspase-3 and BAX, and higher levels of the anti-apoptotic protein, Bcl-2 as compared to WT group. We confirmed that isolated WT cortical neurons express the EphA2 receptor and its ligands (ephrin-A1-A3. Furthermore, expression of all four proteins was increased in WT primary cortical neurons following 24 h of glucose deprivation, and in the brains of WT mice following stroke. Glucose deprivation induced less cell death in primary neurons from EphA2(-/- compared with WT mice. In conclusion, our data provide the first evidence that the EphA2 receptor directly contributes to blood-brain barrier damage and neuronal death following ischemic stroke.

  18. Compromised Blood-Brain Barrier Competence in Remote Brain Areas in Ischemic Stroke Rats at Chronic Stage

    Science.gov (United States)

    Garbuzova-Davis, Svitlana; Haller, Edward; Williams, Stephanie N.; Haim, Eithan D.; Tajiri, Naoki; Hernandez-Ontiveros, Diana G.; Frisina-Deyo, Aric; Boffeli, Sean M.; Sanberg, Paul R.; Borlongan, Cesario V.

    2014-01-01

    Stroke is a life threatening disease leading to long-term disability in stroke survivors. Cerebral functional insufficiency in chronic stroke might be due to pathological changes in brain areas remote from initial ischemic lesion, i.e. diaschisis. Previously, we showed that the damaged blood-brain barrier (BBB) was implicated in subacute diaschisis. The present study investigated BBB competence in chronic diaschisis using a transient middle cerebral artery occlusion (tMCAO) rat model. Our results demonstrated significant BBB damage mostly in the ipsilateral striatum and motor cortex in rats at 30 days after tMCAO. The BBB alterations were also determined in the contralateral hemisphere via ultrastructural and immunohistochemical analyses. Major BBB pathological changes in contralateral remote striatum and motor cortex areas included: (1) vacuolated endothelial cells containing large autophagosomes, (2) degenerated pericytes displaying mitochondria with cristae disruption, (3) degenerated astrocytes and perivascular edema, (4) Evans Blue extravasation, and (5) appearance of parenchymal astrogliosis. Importantly, discrete analyses of striatal and motor cortex areas revealed significantly higher autophagosome accumulation in capillaries of ventral striatum and astrogliosis in dorsal striatum in both cerebral hemispheres. These widespread microvascular alterations in ipsilateral and contralateral brain hemispheres suggest persistent and/or continued BBB damage in chronic ischemia. The pathological changes in remote brain areas likely indicate chronic ischemic diaschisis, which should be considered in the development of treatment strategies for stroke. PMID:24610730

  19. Expression of hypoxia inducible factor-1 alpha and ischemic erythropoietin tolerance in the brain of cerebral ischemic tolerance model rats

    Institute of Scientific and Technical Information of China (English)

    Renliang Zhao; Ruijian Dong; Zhongling Sun

    2006-01-01

    BACKGROUND: Hypoxia inducible factor-1 alpha (HIF-1 α) and erythropoietin(EPO), possessing neuroprotective effect in the cerebral ischemia, might play an important role in the formation of cerebral ischemic tolerance (IT).OBJECTIVE:To observe the neuroprotective effect of cerebral ischemic preconditioning(IPC) of rats, and the expression and mechanism of HIF-1α and target gene erythropoietin in the brain tissue following the formation of cerebral IT.DESIGN :A randomized and controlled observation.SETTING: Department of Neurology, the Affiliated Hospital of Medical College, Qingdao University.MATERIALS: Totally 84 enrolled adult healthy male Wistar rats of clean grade, weighing 250 to 300 g, were provided by the Animal Experimental Department, Tongji Medical College of Huazhong University of Science and Technology. Ready-to-use SABC reagent kit and rabbit anti-rat HIF-1α monoclonal antibody were purchased from Boshide Bioengineering Co. Ltd (Wuhan); Rabbit anti-rat EPO monoclonal antibody was purchased from Santa Cruz Company (USA).METHODS: This experiment was carried out in the Department of Anatomy, Medical College, Qingdao University during March 2005 to March 2006. ① The 84 rats were divided into 3 groups by a lot: IPC group (n=40),sham-operation group (n=40) and control group (n=4). In the IPC group, middle cerebral artery was occluded for 2 hours respectively on the 1st, 3rd, 7th, 14th and 21st days of the reperfusion following 10-minute preischemia was made using a modified middle cerebral artery second suture method from Zea-Longa. The rats were sacrificed 22 hours after reperfusion in the end of middle cerebral artery occlusion (MCAO). That was to say,after 10-minute preischemia, suture was exited to the external carotid artery and embedded subcutaneously.Middle cerebral artery was occluded again to form the second reperfusion at the set time point after reperfusion. Twenty-two hours later, rats were sacrificed; In the sham-operation group

  20. Foxg1 mRNA overexpression in neonatal rats following hypoxic brain injury

    Institute of Scientific and Technical Information of China (English)

    Luquan Li; Yi Zheng; Guoliang Mo; Fang Li; Jialin Yu

    2011-01-01

    Forkhead box G1 (Foxg1) is expressed during the embryonic stage and in postnatal brain regions sensitive to hypoxia/ischemia injury,such as the hippocampus and cerebral cortex.To date,very little is known about Foxg 1 expression changes in the brain following hypoxia injury (HI).The present study measured Foxg 1 mRNA expression using reverse-transcription polymerase chain reaction on days 3,7,14,28,and 56 following HI to determine self-restorative features in the injured brain.In addition,mRNA expression of other related layer markers,such as Reelin,RORB,Foxp1,Foxp2,ER81,and Otx-1,was detected following HI.Results revealed significantly decreased Foxg1 mRNA expression at 3 days after HI,which significantly increased by 56 days.Reelin and Foxp2 mRNA expression were upregulated until 56 days after HI,but Foxp1 and ER81 mRNA expression decreased from day 14 to 56 following HI.In addition,Otx-1 and RORB mRNA expression decreased from day 3 to 28 after HI.These findings revealed Fxog1 mRNA overexpression and varying degrees of restoration in the neonatal rat brain following HI.

  1. Oxidative Stress in Ischemic Brain Damage: Mechanisms of Cell Death and Potential Molecular Targets for Neuroprotection

    Science.gov (United States)

    Chen, Hai; Yoshioka, Hideyuki; Kim, Gab Seok; Jung, Joo Eun; Okami, Nobuya; Sakata, Hiroyuki; Maier, Carolina M.; Narasimhan, Purnima; Goeders, Christina E.

    2011-01-01

    Abstract Significant amounts of oxygen free radicals (oxidants) are generated during cerebral ischemia/reperfusion, and oxidative stress plays an important role in brain damage after stroke. In addition to oxidizing macromolecules, leading to cell injury, oxidants are also involved in cell death/survival signal pathways and cause mitochondrial dysfunction. Experimental data from laboratory animals that either overexpress (transgenic) or are deficient in (knock-out) antioxidant proteins, mainly superoxide dismutase, have provided strong evidence of the role of oxidative stress in ischemic brain damage. In addition to mitochondria, recent reports demonstrate that NADPH oxidase (NOX), an important pro-oxidant enzyme, is also involved in the generation of oxidants in the brain after stroke. Inhibition of NOX is neuroprotective against cerebral ischemia. We propose that superoxide dismutase and NOX activity in the brain is a major determinant for ischemic damage/repair and that these major anti- and pro-oxidant enzymes are potential endogenous molecular targets for stroke therapy. Antioxid. Redox Signal. 14, 1505–1517. PMID:20812869

  2. The effects of early exercises intervention for nervous movement functional recovery on neonate hypoxic ischemic encephalopathy%早期运动干预对新生儿缺氧缺血性脑病神经运动功能恢复的影响

    Institute of Scientific and Technical Information of China (English)

    肖绪武; 孙长凯; 刁敬军; 孙健梅

    2008-01-01

    Objective To investigate the assistant method for improving and promoting nervous movement functional recovery on neonate hypoxie ischemic encephalopathy. Methods Eighty-five patients with neonate hypoxic ischemic encephalopathy were divided into two groups: observed group (45 cases) and control group(40 cases). Observed group added early exercises intervention on basis of routine synthetic drug treatment, compared to control group which just purely synthetic drug treatment with neonatal behavior neurological assessment (NBNA), mental development index (MDI) and psychomotor development index (PDI). Results NBNA at 14 days [(38.84±1.56)scores] in observed group was significantly higher than that in control group [(36.12±2.23)scores]. PDI at 6, 12 months and MDI at 12 months in observed group were significantly higher than those in control group. Conclusion Early exercises intervention can promote nervous movement functional recovery on neonate hypoxic ischemic encephalopathy, prevent or lessen brain injury sequels, elevate life quality for patients with neonate hypoxic ischemic encephalopathy.%目的 探讨改善和促进新生儿缺氧缺血性脑病神经运动功能恢复的辅助疗法.方法 将85例新生儿缺氧缺血性脑病患儿随机分为两组:观察组(45例)和对照组(40例),观察组在常规综合药物治疗的基础上加用早期运动干预,对照组单纯常规综合药物治疗.比较两组新生儿行为神经评分(NBNA)、智力发育指数(MDI)和精神运动发育指数(PDI).结果 出生后7 d两组患儿NBNA比较差异无统计学意义,14 d观察组[(38.84±1.56)分]较对照组[(36.12±2.23)分]明显增高,两组比较差异有统计学意义.6个月两组MDI比较,差异无统计学意义,而PDI比较差异有统计学意义[(90.11±9.97)分和(86.35±11.26)分];12个月观察组MDI、PDI均较对照组明显增高,差异有统计学意义.结论 早期运动干预可促进新生儿缺氧缺血性脑病患儿神经运动功

  3. Neuroprotection of GST, an extract of traditional Chinese herb, against ischemic brain injury induced by transient brain ischemia and reperfusion in rat hippocampus.

    Science.gov (United States)

    Sun, Ya-Feng; Pei, Dong-Sheng; Zhang, Qing-Xiu; Zhang, Guang-Yi

    2008-06-01

    In this study, we investigated the effect of GST, an extract of Chinese traditional herb, on transient brain ischemia/reperfusion-induced neuronal cell death. Immunoblotting was used to detect the phosphorylation of MLK, JNK and c-jun. Transient (15 minutes) brain ischemia was induced by the four-vessel occlusion in Sprague-Dawley rats. GST was administrated to the SD rats 20 minutes before ischemia or 1 hour after ischemia. Our data showed that the pretreatment of GST could inhibit phosphorylation of MLK, JNK and c-jun. Moreover, GST showed potent neuroprotective effects on ischemic brain damage in vivo and administration of it 1 hour after ischemia also achieved the protective effects. These results indicate that GST has a prominent neuroprotection action against brain ischemic damage and provides a promising therapeutic approach for ischemic brain injury.

  4. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation.

    Science.gov (United States)

    Miró-Mur, Francesc; Pérez-de-Puig, Isabel; Ferrer-Ferrer, Maura; Urra, Xabier; Justicia, Carles; Chamorro, Angel; Planas, Anna M

    2016-03-01

    Acute stroke induces a local inflammatory reaction causing leukocyte infiltration. Circulating monocytes are recruited to the ischemic brain and become tissue macrophages morphologically indistinguishable from reactive microglia. However, monocytes are a heterogeneous population of cells with different functions. Herein, we investigated the infiltration and fate of the monocyte subsets in a mouse model of focal brain ischemia by permanent occlusion of the distal portion of the middle cerebral artery. We separated two main subtypes of CD11b(hi) monocytes according to their expression of the surface markers Ly6C and CD43. Using adoptive transfer of reporter monocytes and monocyte depletion, we identified the pro-inflammatory Ly6C(hi)CD43(lo)CCR2(+) subset as the predominant monocytes recruited to the ischemic tissue. Monocytes were seen in the leptomeninges from where they entered the cortex along the penetrating arterioles. Four days post-ischemia, they had invaded the infarcted core, where they were often located adjacent to blood vessels. At this time, Iba-1(-) and Iba-1(+) cells in the ischemic tissue incorporated BrdU, but BrdU incorporation was rare in the reporter monocytes. The monocyte phenotype progressively changed by down-regulating Ly6C, up-regulating F4/80, expressing low or intermediate levels of Iba-1, and developing macrophage morphology. Moreover, monocytes progressively acquired the expression of typical markers of alternatively activated macrophages, like arginase-1 and YM-1. Collectively, the results show that stroke mobilized immature pro-inflammatory Ly6C(hi)CD43(lo) monocytes that acutely infiltrated the ischemic tissue reaching the core of the lesion. Monocytes differentiated to macrophages with features of alternative activation suggesting possible roles in tissue repair during the sub-acute phase of stroke.

  5. Expression of brain-derived neurotrophic factor in rat hippocampus following focal cerebral ischemic injury

    Institute of Scientific and Technical Information of China (English)

    Yingping Li; Ruifang Guo; Kaifeng Lu

    2008-01-01

    BACKGROUND: The functional role of brain-derived neurotrophic factor (BDNF) is enhanced following cerebral ischemic injury providing neurons with an important self-protection mechanism in early stage ischemia/hypoxia.OBJECTIVE: To investigate the expression pattern of BDNF in different rat hippocampal regions following focal cerebral ischemic injury.DESIGN, TIME AND SETTING: We performed a comparative and neurobiological study of animals in the Department of Histology and Embryology and the Central Laboratory, Hebei Medical University from March to December 2003.MATERIALS: Forty healthy Sprague Dawley rats were randomly divided into a cerebral ischemla group and a sham operation group, with 20 rats per group.METHODS: In the cerebral ischemia group, we occluded the right middle cerebral artery with a suture,threading it to a depth of 17-19 mm. In the sham operation group, the threading depth was approximately 10 mm.MAIN OUTCOME MEASURES: We analyzed the expression of BDNF in different hippocampal regions by immunohistochemical staining of brain sections taken on post-operative days 7, 14, 21 and 30.RESULTS: Sham operation group: We observed a number of a few BDNF-positive cells with light staining in the hippocampal CAI CA4 regions and dentate gyrus. Cerebral ischemia group: compared with the sham operation group, BDNF increased on day 7, significantly increased on day 14, and reached a peak on day 21 (P < 0.05). Furthermore, immunologically reactive products were darkly stained, and neurons had long axons.BDNF was particularly highly expressed in the hippocampal CA3 and CA4 regions and dentate gyrus.CONCLUSION: Cerebral ischemic injury can damage hippocampal neurons. Neurons can increase their anti-ischemic capacity by increasing BDNF expression in the hippocampal CA3 and CA4 regions and dentate gyrus.

  6. The protective effects of dexmedetomidine on ischemic brain injury: A meta-analysis.

    Science.gov (United States)

    Jiang, Lianxiang; Hu, Meizhu; Lu, Yan; Cao, Ya; Chang, Yan; Dai, Zeping

    2017-08-01

    Intracranial lesions, trauma or surgery-related damage activate immune inflammation and neuroendocrine responses, causing ischemic brain injury. Studies have shown that inflammatory cascade mediated by neuroendocrine hormones and proinflammatory mediators is implicated in the pathophysiology of ischemic brain injury. Alpha2-adrenoceptor agonists, dexmedetomidine, is widely used as neuroprotectants in anesthesia practice. However, it is still lack of a comprehensive meta-analysis to evaluate the neuroprotection of dexmedetomidine against ischemic brain injury via suppressing these two physiological responses. Searched the Cochrane Library, Pub-Med, EMBASE, EBSCO, Ovid, Chinese biological and medical database (CBM). Related literatures published in English or Chinese before January 2017 were enrolled. We assessed the quality of eligible studies and synthesized predefined outcomes with a random-effects model or fixed-effects model. Nineteen Randomized Controlled Trials including 879 patients were included. Findings for meta-analysis of various outcomes were summarised. Primary results shown that compared with placebo, dexmedetomidine reduced a surge of TNF-α [SMD=-2.34, 95%CI (-3.25, -1.44)], IL-6 [SMD=-2.44, 95%CI (-3.40, -1.47)], S100-β [SMD=-2.73, 95%CI (-3.65, -1.82)], NSE [SMD=-1.69, 95%CI (-2.77, -0.61)], cortisol [SMD=-2.48, 95%CI (-3.38, -1.58)] and glucose [SMD=-1.44, 95%CI (-1.85, -1.04)]; maintained the level of SOD [SMD=1.36, 95%CI (0.62, 2.10)]; decreased the rise in CRP level at postoperative one day. In response to stress reaction, dexmedetomidine attenuated the stress-related increasing of MAP, HR and intracranial pressure without significant effects on cerebral oxygen metabolism. Alpha2-adrenoceptor agonists, dexmedetomidine, could reduce the release of inflammatory mediators and neuroendocrine hormones as well as maintain intracranial homoeostasis, alleviating ischemic brain injury and exerting an effect on brain protection. Copyright © 2017

  7. Acute hyperglycemia worsens ischemic stroke-induced brain damage via high mobility group box-1 in rats.

    Science.gov (United States)

    Huang, Jingyang; Liu, Baoyi; Yang, Chenghui; Chen, Haili; Eunice, Dzivor; Yuan, Zhongrui

    2013-10-16

    Hyperglycemia adversely affects the outcome of ischemic stroke. Extracellular HMGB1 plays a role in aggravating brain damage in the postischemic brain. The aim of this study was to determine whether the extracellular HMGB1 is involved in the worsened ischemic damage during hyperglycemic stroke. Male Wistar rats underwent middle cerebral artery occlusion (MCAO) for 90 min with reperfusion. Acute hyperglycemia was induced by an injection of 50% dextrose. Rats received glycyrrhizin, a specific HMGB1 inhibitor, or vehicle. HMGB-1 in cerebrospinal fluid and in brain parenchyma was detected at 2 or 4 h post-reperfusion. Neurological deficits, infarct volume and cerebral edema were assessed 24 h post-MCAO the disruption of blood-brain barrier (BBB) and the expression of tight junction protein Occludin were measured at 4 h post-reperfusion. Hyperglycemia enhanced the early release of HMGB1 from ischemic brain tissue, which was accompanied by increased infarct volume, neurological deficit, cerebral edema and BBB disruption. Glycyrrhizin alleviated the aggravation of infarct volume, neurological deficit, cerebral edema and BBB disruption by decreasing the degradation of tight junction protein Occludin in the ischemic hemisphere of hyperglycemic rats. In conclusion, enhanced early extracellular release of HMGB1 might represent an important mechanism for worsened ischemic damage, particularly early BBB disruption, during hyperglycemic stroke. An HMGB1 inhibitor glycyrrhizin is a potential therapeutic option for hyperglycemic stroke.

  8. Overproduction of nitric oxide intensifies brain infarction and cerebrovascular damage through reduction of claudin-5 and ZO-1 expression in striatum of ischemic brain.

    Science.gov (United States)

    Mohammadi, Mohammad Taghi

    2016-11-01

    Nitric oxide (NO) overproduction has been demonstrated from different NO-synthase overexpression or hyperactivity after brain ischemia. Here, we examined the effects of inhibition of NO overproduction on brain infarction, cerebrovascular damage and expression of claudin-5 and zonula occludens-1 (ZO-1) in striatum of ischemic brain. The experiment was performed in three groups of rats; sham, control ischemia and ischemic treatment. Brain ischemia was induced by 60min of middle cerebral artery occlusion (MCAO) followed by 24h of reperfusion. Treated rats received L-NAME 30min before induction of ischemia (1mg/kg, i.p.). Infarct volume and histopathological changes of ischemic striatum were assessed by TTC and LFB staining methods, respectively. Ultimately, quantitative RT-PCR was used for assessment of claudins-5 and ZO-1 expression. MCAO in the control group induced infarction (135±25mm(3)) at large areas of striatum in accompany with neuronal damages, whereas L-NAME significantly reduced infarction (87±16mm(3)) and neuronal injuries. The mRNA of ZO-1 and claudin-5 decreased in ischemic striatum, whereas inhibition of NO overproduction by L-NAME attenuated this reduction for these genes. Our findings indicated that NO overproduction after brain ischemia plays a crucial role in neuronal damage especially at striatal regions. Hence, inhibition of excessive NO production may save striatal cerebrovascular integrity of ischemic brain.

  9. Role of Antioxidants in Neonatal Hypoxic–Ischemic Brain Injury: New Therapeutic Approaches

    Science.gov (United States)

    Arteaga, Olatz; Álvarez, Antonia; Revuelta, Miren; Santaolalla, Francisco; Urtasun, Andoni; Hilario, Enrique

    2017-01-01

    Hypoxic–ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia–ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia–ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic–ischemic brain injury, in the light of the most recent advances. PMID:28134843

  10. [Neurotoxic effect of toluene on background of prenatal hypoxic brain damage to white rats].

    Science.gov (United States)

    Vokina, V A; Sosedova, L M; Rukavishnikov, V S; Iakimova, N L; Lizarev, A V

    2014-01-01

    Comparative study covered influence of toluene on behavioral parameters, cognitive abilities and brain bioelectric activity in white rats with normal embryonic development or with prenatal hypoxia. Prenatal hypoxia was simulated by subcutaneous injection of 50 mg/kg sodium nitrite into female white rats on day 13-14 of gestation. The offspring at the age of 2, 5-3 months was exposed to toluene (concentration of 560 mg/m3, 4 hours per day, 5 days per week, over 4 weeks). After the exposure, the animals were estimated for individual and intraspecific behaviour in "open fields and "resident-intruder" tests, for cognitive abilities in "radial maze" training, EEG with visual and auditory evoked potentials. Acute hypoxia at early stages of organogenesis appeared to be burdening factor and to influence consequences of toluene intoxication.

  11. [CREB activation is a key player for ischemic tolerance in the brain].

    Science.gov (United States)

    Kitagawa, Kazuo; Sasaki, Tsutomu; Terasaki, Yasukazu; Yagita, Yoshiki; Mochizuki, Hideki

    2012-01-01

    Ischemic tolerance is as powerful and reproducible for neuro-protection as hypothermia. Several pathways could be involved in acquisition of ischemic tolerance. CREB is an abundant transcription factor in the brain and plays critical role on synaptic plasticity and neuronal survival. CREB activation has been also shown to be involved in ischemic tolerance. Ischemia or oxygen-glucose deprivation leads to release of glutamate, which binds to synaptic NMDA receptor. Then, influx of calcium ions into intracellular space activates calcium-calmodulin dependent protein kinase (CaMK). CaMK I/IV phosphorylates Ser 133 of CREB, and Thr 484 of salt-inducible kinase (SIK). Phosphorylation of SIK2 at Thr 484 triggers degradation of SIK2 through ubiquitin proteasome system. SIK2 maintains the phosphorylation level of CREB-regulated transcriptional co-activator (CRTC). Degradation of SIK2 induces dephosphorylation of CRTC1, and moves CRTC1 from cytoplasm into nucleus. Thus CRTC1 binds to basic ZIP domain of CREB. Both Ser133 phosphorylation and CRTC1 bound to the basic ZIP domain of CREB enhances CRE-mediated transcription, induces gene expression of survival factors, and renders the neurons resistant to subsequent severe ischemia.

  12. An emboligenic pulmonary abscess leading to ischemic stroke and secondary brain abscess

    Directory of Open Access Journals (Sweden)

    Albrecht Philipp

    2012-11-01

    Full Text Available Abstract Background Ischemic stroke by septic embolism occurs primarily in the context of infective endocarditis or in patients with a right-to-left shunt and formation of a secondary cerebral abscess is a rare event. Erosion of pulmonary veins by a pulmonary abscess can lead to transcardiac septic embolism but to our knowledge no case of septic embolic ischemic stroke from a pulmonary abscess with secondary transformation into a brain abscess has been reported to date. Case presentation We report the case of a patient with a pulmonary abscess causing a septic embolic cerebral infarction which then transformed into a cerebral abscess. After antibiotic therapy and drainage of the abscess the patient could be rehabilitated and presented an impressive improvement of symptoms. Conclusion Septic embolism should be considered as cause of ischemic stroke in patients with pulmonary abscess and can be followed by formation of a secondary cerebral abscess. Early antibiotic treatment and repeated cranial CT-scans for detection of a secondary abscess should be performed.

  13. Neutrophil recruitment to the brain in mouse and human ischemic stroke.

    Science.gov (United States)

    Perez-de-Puig, Isabel; Miró-Mur, Francesc; Ferrer-Ferrer, Maura; Gelpi, Ellen; Pedragosa, Jordi; Justicia, Carles; Urra, Xabier; Chamorro, Angel; Planas, Anna M

    2015-02-01

    Neutrophils are rapidly recruited in response to local tissue infection or inflammation. Stroke triggers a strong inflammatory reaction but the relevance of neutrophils in the ischemic brain is not fully understood, particularly in the absence of reperfusion. We investigated brain neutrophil recruitment in two murine models of permanent ischemia induced by either cauterization of the distal portion of the middle cerebral artery (c-MCAo) or intraluminal MCA occlusion (il-MCAo), and three fatal cases of human ischemic stroke. Flow cytometry analyses revealed progressive neutrophil recruitment after c-MCAo, lesser neutrophil recruitment following il-MCAo, and absence of neutrophils after sham operation. Confocal microscopy identified neutrophils in the leptomeninges from 6 h after the occlusion, in the cortical basal lamina and cortical Virchow-Robin spaces from 15 h, and also in the cortical brain parenchyma at 24 h. Neutrophils showed signs of activation including histone-3 citrullination, chromatin decondensation, and extracellular projection of DNA and histones suggestive of extracellular trap formation. Perivascular neutrophils were identified within the entire cortical infarction following c-MCAo. After il-MCAo, neutrophils prevailed in the margins but not the center of the cortical infarct, and were intraluminal and less abundant in the striatum. The lack of collaterals to the striatum and a collapsed pial anastomotic network due to brain edema in large hemispheric infarctions could impair neutrophil trafficking in this model. Neutrophil extravasation at the leptomeninges was also detected in the human tissue. We concluded that neutrophils extravasate from the leptomeningeal vessels and can eventually reach the brain in experimental animal models and humans with prolonged arterial occlusion.

  14. Measurement of blood–brain barrier permeability in acute ischemic stroke using standard first-pass perfusion CT data ☆

    OpenAIRE

    Nguyen, Giang Truong; Coulthard, Alan; Wong, Andrew; Sheikh, Nabeel; Henderson, Robert; O'Sullivan, John D.; Reutens, David C.

    2013-01-01

    Background and purpose Increased blood–brain barrier permeability is believed to be associated with complications following acute ischemic stroke and with infarct expansion. Measurement of blood–brain barrier permeability requires a delayed image acquisition methodology, which prolongs examination time, increasing the likelihood of movement artefacts and radiation dose. Existing quantitative methods overestimate blood–brain barrier permeability when early phase CT perfusion data are used. The...

  15. Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke

    Science.gov (United States)

    2011-01-01

    Background Although free radicals have been reported to play a role in the expansion of ischemic brain lesions, the effect of free radical scavengers is still under debate. In this study, the temporal profile of ischemic stroke lesion sizes was assessed for more than one year to evaluate the effect of edaravone which might reduce ischemic damage. Methods We sequentially enrolled acute ischemic stroke patients, who admitted between April 2003 and March 2004, into the edaravone(-) group (n = 83) and, who admitted between April 2004 and March 2005, into the edaravone(+) group (n = 93). Because, edaravone has been used as the standard treatment after April 2004 in our hospital. To assess the temporal profile of the stroke lesion size, the ratio of the area [T2-weighted magnetic resonance images (T2WI)/iffusion-weighted magnetic resonance images (DWI)] were calculated. Observations on T2WI were continued beyond one year, and observational times were classified into subacute (1-2 months after the onset), early chronic (3-6 month), late chronic (7-12 months) and old (≥13 months) stages. Neurological deficits were assessed by the National Institutes of Health Stroke Scale upon admission and at discharge and by the modified Rankin Scale at 1 year following stroke onset. Results Stroke lesion size was significantly attenuated in the edaravone(+) group compared with the edaravone(-) group in the period of early and late chronic observational stages. However, this reduction in lesion size was significant within a year and only for the small-vessel occlusion stroke patients treated with edaravone. Moreover, patients with small-vessel occlusion strokes that were treated with edaravone showed significant neurological improvement during their hospital stay, although there were no significant differences in outcome one year after the stroke. Conclusion Edaravone treatment reduced the volume of the infarct and improved neurological deficits during the subacute period, especially

  16. Cerebrolysin enhances neurogenesis in the ischemic brain and improves functional outcome after stroke.

    Science.gov (United States)

    Zhang, Chunling; Chopp, Michael; Cui, Yisheng; Wang, Lei; Zhang, Ruilan; Zhang, Li; Lu, Mei; Szalad, Alexandra; Doppler, Edith; Hitzl, Monika; Zhang, Zheng Gang

    2010-11-15

    Cerebrolysin is a peptide preparation mimicking the action of neurotrophic factors and has beneficial effects on neurodegenerative diseases and stroke. The present study investigated the effect of Cerebrolysin on neurogenesis in a rat model of embolic middle cerebral artery occlusion (MCAo). Treatment with Cerebrolysin at doses of 2.5 and 5 ml/kg significantly increased the number of bromodeoxyuridine-positive (BrdU(+)) subventricular zone (SVZ) neural progenitor cells and doublecortin (DCX) immunoreactivity (migrating neuroblasts) in the ipsilateral SVZ and striatal ischemic boundary 28 days after stroke when the treatment was initiated 24 hr after stroke. The treatment also reduced TUNEL(+) cells by ∼50% in the ischemic boundary. However, treatment with Cerebrolysin at a dose of 2.5 ml/kg initiated at 24 and 48 hr did not significantly reduce infarct volume but substantially improved neurological outcomes measured by an array of behavioral tests 21 and 28 days after stroke. Incubation of SVZ neural progenitor cells from ischemic rats with Cerebrolysin dose dependently augmented BrdU(+) cells and increased the number of Tuj1(+) cells (a marker of immature neurons). Blockage of the PI3K/Akt pathway abolished Cerebrolysin-increased BrdU(+) cells. Moreover, Cerebrolysin treatment promoted neural progenitor cell migration. Collectively, these data indicate that Cerebrolysin treatment when initiated 24 and 48 hr after stroke enhances neurogenesis in the ischemic brain and improves functional outcome and that Cerebrolysin-augmented proliferation, differentiation, and migration of adult SVZ neural progenitor cells contribute to Cerebrolysin-induced neurogenesis, which may be related to improvement of neurological outcome. The PI3K/Akt pathway mediates Cerebrolysin-induced progenitor cell proliferation.

  17. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Ewan [Bristol Royal Hospital for Children, Department of Pediatric Radiology, Bristol (United Kingdom); Andronikou, Savvas [Bristol Royal Hospital for Children, Department of Pediatric Radiology, Bristol (United Kingdom); University of Bristol, CRICBristol, Bristol (United Kingdom); Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade [University of Bristol, CRICBristol, Bristol (United Kingdom)

    2016-09-15

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties. (orig.)

  18. Neuroprotección en la encefalopatia hipóxico isquémica perinatal: Tratamientos con eficacia clínica demostrada y perspectivas futuras Neuroprotection in perinatal hypoxic-ischemic encephalopathy: Effective treatment and future perspectives

    Directory of Open Access Journals (Sweden)

    Agustín Legido

    2007-01-01

    Full Text Available El objetivo de este trabajo es revisar el resultado de estudios clínicos recientes que han demostrado el efecto neuroprotector de algunas terapias en la encefalopatía hipóxico-isquémica (EHI perinatal y presentar las perspectivas futuras de otras investigaciones clínicas y experimentales. Terapias con eficacia clínica demostrada. Alopurinol: Bloquea la producción de radicales libres tras hipoxia-isquemia. En un estudio reciente, los niños con corazón izquierdo hipoplásico tratados con alopurinol, pero no aquéllos con otras cardiopatías, tuvieron un número significativamente menor de complicaciones que los controles, incluyendo muerte, convulsiones, coma o problemas cardíacos. Opiáceos: En otro estudio reciente, un grupo de recién nacidos con EHI tratados con morfina o fentanil tuvieron un grado menor de lesión cerebral en la RMN y un mejor pronóstico neurológico. Hipotermia: Tanto la hipotermia localizada (cerebral como la sistémica (todo el cuerpo tienen un efecto neuroprotector en recién nacidos seleccionados tras sufrir EHI. Perspectivas Futuras. Fármacos antiepilépticos. Estos tienen mecanismos de acción múltiple que pueden bloquear la cascada bioquímica de lesión neuronal en EHI. Otras modalidades terapéuticas. Entre ellas hay que destacar el estudio de la terapia neuroprotectora combinada, los factores de crecimiento, la terapia genética, el transplante de células madre y la vacunación neuroprotectora. En conclusión, un mejor conocimiento de los mecanismos moleculares de la patogenia de la EHI y mejores estudios clínicos con terapias neuroprotectoras abrirá nuevas posibilidades terapéuticas aplicables en la práctica clínica. Todo ello mejorará sin lugar a duda el pronóstico de los recién nacidos con EHI.The aim of this paper is to review the results of recent clinical studies of some therapies that have demonstrated a neuroprotective effect in perinatal hypoxic-ischemic encephalopathy (HIE and to

  19. 吗啡预处理诱导小鼠离体海马脑片氧糖剥夺耐受中PKCδ的作用%Effect of PKCdeta on cerebral ischemic/hypoxic tolerance induced by morphine preconditioning

    Institute of Scientific and Technical Information of China (English)

    刘雅; 韩松; 李俊发; 纪方; 张炳熙

    2011-01-01

    目的 探讨吗啡预处理诱导小鼠离体海马脑片氧糖剥夺耐受形成的机制.方法 以离体小鼠海马脑片氧糖剥夺(OGD)模拟脑缺血再灌注损伤模型,以孵育液乳酸脱氢酶(LDH)漏出率及脑片细胞存活率为指标,探讨吗啡3 μmol/L预处理对不同程度OGD损伤小鼠海马脑片神经元的保护作用,用Western blot检测PKCδ表达.结果 吗啡预处理明显提高OGD 5、10及20 min脑片细胞存活率,使孵育液LDH漏出减少(P<0.05).OGD后即刻和再灌注2 h后,缺糖缺氧组PKCδ膜相关成分蛋白表达明显增高,同时胞质部分蛋白表达明显减少(P<0.05),吗啡预处理对PKCδ膜转位变化无明显影响.结论 吗啡预处理减轻小鼠离体海马脑片20 min以内氧糖剥夺损伤,其机制可能与PKCδ的膜转位激活无关.%Objective To determine the mechanism of morphine preconditioning(MP) on brain ischemic/hypoxic tolerance in the hippocampus slices of mouse.Methods Hippocampus slices were exposed to oxygen-glucose deprivation(OGD) to mimic ischemia-reperfusion injury in vitro.The injuries were assessed by lactic dehydrogenase (LDH) release rate and cell survival rate of slices 2,3,5-triphenyltetrazolium chloride (TTC) to evaluate the protective effects of MP.Western blot analysis was used to identify the expression of PKCδ.Results In hippocampal slices preconditioned with morphine, cell survival rate was increased and LDH release rate was decreased significantly compared with OGD 5 min, 10 min and 20 min (P < 0.05 ).Immediately and at the end of 2 h reperfusion after OGD 10 min, the particulate fraction of PKCδ increased significantly, concomitantly with a corresponding decrease in the cytosolic fraction (P < 0.05).The increased membrane translocation of PKCδ was not inhibited by MP.Conclusion MP can reduce OGD-induced neuronal injuries, the protective effects were observed for periods of OGD equal to or shorter than 20 min.PKCδ membrane translocation might not be

  20. Association between neuroserpin and molecular markers of brain damage in patients with acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Leira Rogelio

    2011-05-01

    Full Text Available Abstract Background Neuroserpin has shown neuroprotective effects in animal models of cerebral ischemia and has been associated with functional outcome after ischemic stroke. Our aim was to study whether neuroserpin serum levels could be associated to biomarkers of excitotoxicity, inflammation and blood brain barrier disruption. Methods We prospectively included 129 patients with ischemic stroke (58.1% male; mean age, 72.4 ± 9.6 years not treated with tPA within 12 hours (h of symptoms onset (mean time, 4.7 ± 2.1 h. Poor functional outcome at 3 months was considered as a modified Rankin scale score >2. Serum levels of neuroserpin, Interleukin 6 (IL-6, Intercellular adhesion molecule-1 (ICAM-1, active Matrix metalloproteinase 9 (MMP-9, and cellular fibronectin (cFn (determined by ELISA and glutamate (determined by HPLC were measured on admission, 24 and 72 h. The main variable was considered the decrease of neuroserpin levels within the first 24 h. ROC analysis was used to select the best predictive value for neuroserpin to predict poor functional outcome due to a lack of linearity. Results The decrease of neuroserpin levels within the first 24 h was negatively correlated with serum levels at 24 hours of glutamate (r = -0.642, IL-6 (r = -0.678, ICAM-1 (r = -0.345, MMP-9 (r = -0.554 and cFn (r = -0.703 (all P Conclusions These findings suggest that neuroprotective properties of neuroserpin may be related to the inhibition of excitotoxicity, inflammation, as well as blood brain barrier disruption that occur after acute ischemic stroke.

  1. RESVERATROL PRECONDITIONING INDUCES A NOVEL EXTENDED WINDOW OF ISCHEMIC TOLERANCE IN THE MOUSE BRAIN

    Science.gov (United States)

    Koronowski, Kevin B.; Dave, Kunjan R.; Saul, Isabel; Camarena, Vladimir; Thompson, John W.; Neumann, Jake T.; Young, Juan I.; Perez-Pinzon, Miguel A.

    2015-01-01

    Background and Purpose Prophylactic treatments that afford neuroprotection against stroke may emerge from the field of preconditioning. Resveratrol mimics ischemic preconditioning, reducing ischemic brain injury when administered two days prior to global ischemia in rats. This protection is linked to Sirt1 and enhanced mitochondrial function possibly through its repression of UCP2. BDNF is another neuroprotective protein associated with Sirt1. In this study we sought to identify the conditions of resveratrol preconditioning (RPC) that most robustly induce neuroprotection against focal ischemia in mice. Methods We tested four different RPC paradigms against a middle cerebral artery occlusion (MCAo) model of stroke. Infarct volume and neurological score were calculated 24 hours following MCAo. Sirt1-chromatin binding was evaluated by ChIP-qPCR. Percoll gradients were used to isolate synaptic fractions and changes in protein expression were determined via Western blot analysis. BDNF concentration was measured using a BDNF-specific ELISA assay. Results While repetitive RPC induced neuroprotection from MCAo, strikingly one application of RPC 14 days prior to MCAo showed the most robust protection, reducing infarct volume by 33% and improving neurological score by 28%. Fourteen days following RPC, Sirt1 protein was increased 1.5 fold and differentially bound to the UCP2 and BDNF promoter regions. Accordingly, synaptic UCP2 protein decreased by 23% and cortical BDNF concentration increased 26%. Conclusions RPC induces a novel extended window of ischemic tolerance in the brain that lasts for at least 14 days. Our data suggest that this tolerance may be mediated by Sirt1, through upregulation of BDNF and downregulation of UCP2. PMID:26159789

  2. Immediate Remote Ischemic Postconditioning Reduces Brain Nitrotyrosine Formation in a Piglet Asphyxia Model.

    Science.gov (United States)

    Rocha-Ferreira, Eridan; Rudge, Brogan; Hughes, Michael P; Rahim, Ahad A; Hristova, Mariya; Robertson, Nicola J

    2016-01-01

    Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention that could be administered as an alternative to cooling in cases of perinatal hypoxia-ischemia (HI). In the current study we hypothesized that RIPostC in the piglet model of birth asphyxia confers protection by reducing nitrosative stress and subsequent nitrotyrosine formation, as well as having an effect on glial immunoreactivity. Postnatal day 1 (P1) piglets underwent HI brain injury and were randomised to HI (control) or HI + RIPostC. Immunohistochemistry assessment 48 hours after HI revealed a significant decrease in brain nitrotyrosine deposits in the RIPostC-treated group (p = 0.02). This was accompanied by a significant increase in eNOS expression (p piglet model of neonatal asphyxia, which appears to be mediated by modulation of nitrosative stress, despite glial activation.

  3. Cortical neurogenesis in adult rats after ischemic brain injury:most new neurons fail to mature

    Institute of Scientific and Technical Information of China (English)

    Qing-quan Li; Guan-qun Qiao; Jun Ma; Hong-wei Fan; Ying-bin Li

    2015-01-01

    The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial ifbrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identiifed using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromode-oxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial ifbrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our ifndings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  4. Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury.

    Science.gov (United States)

    Yildirim, Ferah; Gertz, Karen; Kronenberg, Golo; Harms, Christoph; Fink, Klaus B; Meisel, Andreas; Endres, Matthias

    2008-04-01

    Acetylation/deactylation of histones is an important mechanism to regulate gene expression and chromatin remodeling. We have previously demonstrated that the HDAC inhibitor trichostatin A (TSA) protects cortical neurons from oxygen/glucose deprivation in vitro which is mediated--at least in part--via the up regulation of gelsolin expression. Here, we demonstrate that TSA treatment dose-dependently enhances histone acetylation in brains of wildtype mice as evidenced by immunoblots of total brain lysates and immunocytochemical staining. Along with increased histone acetylation dose-dependent up regulation of gelsolin protein was observed. Levels of filamentous actin were largely decreased by TSA pre-treatment in brain of wildtype but not gelsolin-deficient mice. When exposed to 1 h filamentous occlusion of the middle cerebral artery followed by reperfusion TSA pre-treated wildtype mice developed significantly smaller cerebral lesion volumes and tended to have improved neurological deficit scores compared to vehicle-treated mice. These protective effects could not be explained by apparent changes in physiological parameters. In contrast to wildtype mice, TSA pre-treatment did not protect gelsolin-deficient mice against MCAo/reperfusion suggesting that enhanced gelsolin expression is an important mechanism by which TSA protects against ischemic brain injury. Our results suggest that HDAC inhibitors such as TSA are a promising therapeutic strategy for reducing brain injury following cerebral ischemia.

  5. Epsilon PKC increases brain mitochondrial SIRT1 protein levels via heat shock protein 90 following ischemic preconditioning in rats.

    Directory of Open Access Journals (Sweden)

    John W Thompson

    Full Text Available Ischemic preconditioning is a neuroprotective mechanism whereby a sublethal ischemic exposure is protective against a subsequent lethal ischemic attack. We previously demonstrated that SIRT1, a nuclear localized stress-activated deacetylase, is vital for ischemic preconditioning neuroprotection. However, a recent study demonstrated that SIRT1 can also localize to the mitochondria. Mitochondrial localized SIRT1 may allow for a direct protection of mitochondria following ischemic preconditioning. The objective of this study was to determine whether ischemic preconditioning increases brain mitochondrial SIRT1 protein levels and to determine the role of PKCɛ and HSP90 in targeting SIRT1 to the mitochondria. Here we report that preconditioning rats, with 2 min of global cerebral ischemia, induces a delayed increase in non-synaptic mitochondrial SIRT1 protein levels which was not observed in synaptic mitochondria. This increase in mitochondrial SIRT1 protein was found to occur only in neuronal cells and was mediated by PKCε activation. Inhibition of HSP90, a protein chaperone involved in mitochondrial protein import, prevented preconditioning induced increases in mitochondrial SIRT1 and PKCε protein. Our work provides new insights into a possible direct role of SIRT1 in modulating mitochondrial function under both normal and stress conditions, and to a possible role of mitochondrial SIRT1 in activating preconditioning induced ischemic tolerance.

  6. Intranasal administration of human MSC for ischemic brain injury in the mouse: in vitro and in vivo neuroregenerative functions.

    Directory of Open Access Journals (Sweden)

    Vanessa Donega

    Full Text Available Intranasal treatment with C57BL/6 MSCs reduces lesion volume and improves motor and cognitive behavior in the neonatal hypoxic-ischemic (HI mouse model. In this study, we investigated the potential of human MSCs (hMSCs to treat HI brain injury in the neonatal mouse. Assessing the regenerative capacity of hMSCs is crucial for translation of our knowledge to the clinic. We determined the neuroregenerative potential of hMSCs in vitro and in vivo by intranasal administration 10 d post-HI in neonatal mice. HI was induced in P9 mouse pups. 1×10(6 or 2×10(6 hMSCs were administered intranasally 10 d post-HI. Motor behavior and lesion volume were measured 28 d post-HI. The in vitro capacity of hMSCs to induce differentiation of mouse neural stem cell (mNSC was determined using a transwell co-culture differentiation assay. To determine which chemotactic factors may play a role in mediating migration of MSCs to the lesion, we performed a PCR array on 84 chemotactic factors 10 days following sham-operation, and at 10 and 17 days post-HI. Our results show that 2×10(6 hMSCs decrease lesion volume, improve motor behavior, and reduce scar formation and microglia activity. Moreover, we demonstrate that the differentiation assay reflects the neuroregenerative potential of hMSCs in vivo, as hMSCs induce mNSCs to differentiate into neurons in vitro. We also provide evidence that the chemotactic factor CXCL10 may play an important role in hMSC migration to the lesion site. This is suggested by our finding that CXCL10 is significantly upregulated at 10 days following HI, but not at 17 days after HI, a time when MSCs no longer reach the lesion when given intranasally. The results described in this work also tempt us to contemplate hMSCs not only as a potential treatment option for neonatal encephalopathy, but also for a plethora of degenerative and traumatic injuries of the nervous system.

  7. 个性化护理对新生儿缺氧缺血性脑病21例的护理效果体会%Nursing experience of personalized nursing on 21 cases of hypoxic-ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    王素芹; 郭丽

    2014-01-01

    Objective To investigate the effect of personalized nursing on hypoxic-ischemic encephalopathy(HIE). Methods Divided 42 patients with hypoxic-ischemic encephalopathy into nursing group and control group. Traditional nursing was given to control group. Personalized nursing was given to nursing group. Therapeutic effect and sequela rate was observed. Results Mental development index(MDI) and motor development index(PDI) in nursing group were higher than in control group. By contrast, the variation in scores had statistical significance. (P<0.05). Follow-up 6 months to 2 years, there were 1 mentally retarded, 2 cerebral palsy in the nursing group, the sequela rate was 9.5%. There were 2 mentally retarded, 2 visual impairment and 2 cerebral palsy in the control group, the sequela rate was 28.6%. By contrast, the variation in scores had statistical significance. (P<0.05). Conclusion Personalized nursing on patient with hypoxic-ischemic encephalopathy can improve their living quality and decrease the sequela rate. It can also reduce the economic burden for the patients’family, so it is worthy of clinical promotion.%目的:观察个性化护理对新生儿缺氧缺血性脑病(HIE)的护理效果。方法42例HIE患者随机分为护理组和对照组,每组21例。对照组患者予以常规护理,护理组患者在此基础上予以针对性个性化护理,观察两组患者的疗效和后遗症发生情况。结果护理组患者在出生后6个月和24个月的智力发育指数(MDI)和运动发育指数(PDI)得分均高于对照组患者,差异有统计学意义(P<0.05)。随访时间从6个月~2年。护理组患者发生智力低下1例,脑瘫1例,后遗症发生率9.5%;对照组患者发生智力低下2例,视力障碍2例,脑瘫2例,后遗症发生率28.6%。两组比较差异有统计学意义(P<0.05)。结论针对新生儿缺氧缺血性脑病患者的具体情况制定个性化护理方案,对于提高患者生活质量、降低后

  8. Application of the evidence-based nursing care to the neonates with hypoxic-ischemic encephalopathy%循证护理在缺氧缺血性脑病新生儿护理中的应用

    Institute of Scientific and Technical Information of China (English)

    石小娟; 袁瑞琴; 谢华蓉

    2011-01-01

    Objective: To evaluate the application effect of evidence - based nursing care in the neonatal care of hypoxic - ischemic encephalopathy. Methods: 74 neonates with hypoxic - ischemic encephalopathy were randomly divided into an observation group and a control group ( 37 neonates in each group ). The routine nursing care and evidence - based nursing care were respectively implemented in the control group and the observation group. The total effective rate of the treatment, incidence of complications , hospitalization days, satisfaction of the patient s families and the scores of MDI, PDI and Gesell scale respectively in 3,9,15 months before and after the implementation of nursing care were statistically processed and compared between the two groups. Results: The total effective rate of the treatment and satisfaction of the patients families were higher and the incidence of complications, hospitalization days were lower and shorter in the observation group than the control group ( P<0.05 ); the scoring of MDI, PDI and Gesell scale in 3 ,9,15 months after nursing care was superior in the observation group to the control group ( P <0. 05 ). Conclusion: The evidence - based nursing care has a good effect in the care of neonates with hypoxic - ischemic encephalopathy and can improve their quality of life and prognosis.%目的:探讨循证护理在缺氧缺血性脑病新生儿护理中的应用效果.方法:将74例缺氧缺血性脑病新生儿随机分为观察组和对照组各37例,对照组给予常规护理,观察组给予循证护理,将两组患者的治疗总有效率、并发症发生率、住院时间、家属满意率及护理前后3、9、15个月的MDI、PDI、Gesell量表评分进行统计及比较.结果:观察组治疗总有效率及家属满意度高于对照组、并发症发生率低于对照组、住院时间短于对照组(P<0.05),护理后3、9、15个月的MDI、PDI、Gesell量表评分均优于对照组(P<0.05).结论:循证护理在缺氧

  9. Effect of evidence-based nursing used in neonates with hypoxic ischemic encephalopathy in nursing experience%循证护理在缺氧缺血性脑病新生儿护理中的应用效果

    Institute of Scientific and Technical Information of China (English)

    刘颖

    2015-01-01

    Objective To explore the effect of evidence-based nursing used in neonates with hypoxic ischemic encephalopathy in nursing experience.Methods 75 cases obstetrics neonatal hypoxic ischemic encephalopathy in our hospital from 2012 January to 2013 October were collected and randomly divided into the observation group (38 cases) and control group(37 cases). Complications of clinical curative effect, two groups of children,hospitalization time and satisfaction of parents, at the time of admissionand after 1 years, the mental development index (MDI) and psychomotor development index (PDI) were all observed.ResultsThe total effective rate of observation group was 92.11%, It was significantly higher than the control group (81.08), the difference was significant (P0.05); After follow-up 1 years later, the observation group had 1 cases died(2.63%), the control group had 2 cases of death(5.41%), two mortality rate have no significant difference(P>0.05). After 1 years of treatment were observed in group MDI and PDI scores were significantly higher than those in the control group(P<0.05). Conclusion On neonatal hypoxic ischemic encephalopathy using evidence-basednursing in the method can effectively improve the quality of survival in children with obvious curative effect, long-term.%目的:探讨循证护理在缺氧缺血性脑病新生儿护理中的应用效果。方法选取2012年1月~2013年10月我院产科的缺氧缺血性脑病新生儿75例,随机分为观察组38例及对照组37例。对两组患儿临床疗效、并发症、住院时间及家长满意度,入院时及1年后智能发育指数(MDI)和运动发育指数(PDI)等进行观察。结果观察组的总有效率为92.11%,明显高于对照组的81.08%,两组比较差异有统计学意义(P<0.05)。观察组的并发症发生率低于对照组,两组比较差异有统计学意义(P<0.05)。住院时间短于对照组,家长满意度高于对照组,两组比较

  10. CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation.

    Science.gov (United States)

    Long, Aaron; Park, Ji H; Klimova, Nina; Fowler, Carol; Loane, David J; Kristian, Tibor

    2017-01-01

    Several enzymes in cellular bioenergetics metabolism require NAD(+) as an essential cofactor for their activity. NAD(+) depletion following ischemic insult can result in cell death and has been associated with over-activation of poly-ADP-ribose polymerase PARP1 as well as an increase in NAD(+) consuming enzyme CD38. CD38 is an NAD(+) glycohydrolase that plays an important role in inflammatory responses. To determine the contribution of CD38 activity to the mechanisms of post-ischemic brain damage we subjected CD38 knockout (CD38KO) mice and wild-type (WT) mice to transient forebrain ischemia. The CD38KO mice showed a significant amelioration in both histological and neurologic outcome following ischemic insult. Decrease of hippocampal NAD(+) levels detected during reperfusion in WT mice was only transient in CD38KO animals, suggesting that CD38 contributes to post-ischemic NAD(+) catabolism. Surprisingly, pre-ischemic poly-ADP-ribose (PAR) levels were dramatically higher in CD38KO animals compared to WT animals and exhibited reduction post-ischemia in contrast to the increased levels in WT animals. The high PAR levels in CD38 mice were due to reduced expression levels of poly-ADP-ribose glycohydrolase (PARG). Thus, the absence of CD38 activity can not only directly affect inflammatory response, but also result in unpredicted alterations in the expression levels of enzymes participating in NAD(+) metabolism. Although the CD38KO mice showed significant protection against ischemic brain injury, the changes in enzyme activity related to NAD(+) metabolism makes the determination of the role of CD38 in mechanisms of ischemic brain damage more complex.

  11. Influence of early intervention on intelligence development of infant with hypoxic-ischemic encephalopathy.%早期干预对新生儿缺氧缺血性脑病智能发育的影响

    Institute of Scientific and Technical Information of China (English)

    栗绪娥; 郭月香; 于菊梅

    2011-01-01

    Objective:To discuss the effect of early nursing intervention on intelligence development of infant with hypoxic - ischemic encephalopathy. Methods: 168 children patients were divided into intervention group( n =88 ) and control group( n =80 ) at random. The patients in the control group received normal treatment and feeding guidance,while the patients in the intervention group received support nursing ,at the same time given health education and family nursing guidance for the parents. To test the intelligence development for the children patients at difference times , such as 3 months, six months and 12 months. To observe the occur of cerebral palsy. Results:The occur rate of cerebral palsy in intervention group was lower than in control group( P <0.01 ). The adaptability, gross motor, fine motor, language and behavior of patients in intervention group has significant sense compared with control group( P <0.01 or P <0.05 ). Conclusion:Early nursing intervention could promote behabior and intelligence development of infant with hypoxic - ischemic encephalopathy.%目的:探讨早期护理干预对新生儿缺氧缺血性脑病行为智能发育的影响.方法:将168例缺氧缺血性脑病患儿分为干预组(88例)和对照组(80例).对照组在常规的治疗基础上给予一般的喂养知识指导;干预组患儿住院后即提供发育支持护理,同时对家长进行健康宣教,出院时给予家庭护理指导.在3个月、6个月、12个月时对两组患儿进行智能测试,并统计两组患儿脑瘫发生情况.结果:干预组脑瘫发生率低于对照组,差异有显著性意义(P<0.01);在适应性、大运动、精细运动、语言和行为动作5个方面与对照组比,差异有统计学意义(P<0.05).结论:早期护理干预可促进缺氧缺血性脑病患儿的行为智能发育.

  12. 谷氨酸受体阻滞剂对缺氧缺血性脑病神经细胞凋亡的影响%Influence of glutamate receptor blocker on the apoptosis of hypoxic ischemic encephalopathy nerve cells

    Institute of Scientific and Technical Information of China (English)

    阎娜; 安丽; 王平; 郑媛

    2013-01-01

    [目的] 探讨谷氨酸受体阻滞剂(GYKI52466)对缺氧缺血性脑病(hypoxic-ischemic encephalopathy,HIE)新生大鼠脑细胞凋亡的抑制作用. [方法] 体内实验:将新生大鼠随机分为空白对照组(N组)、缺氧缺血性脑损伤组(H组)与GYKI52466干预组(G组).造模后给药,观察各组大鼠的神经行为学异常及超微结构变化.体外实验:将各组新生大鼠的脑细胞制成单细胞悬液,培养4d后,N组给予正常环境培养,H组给予缺氧缺糖环境,G组给予缺氧缺糖环境后添加GYKI52466培养,6h后比较各组细胞生长状态,采用流式细胞仪进行脑细胞凋亡分析. [结果] 体内实验:神经行为学观察,G组与H组相比,异常神经行为学有所改善;电镜下观察,H组神经元细胞核结构破坏,核膜破裂、核仁轻度皱缩,而G组结构趋向完整.体外实验:与模型组相比,G组的细胞凋亡数明显减少,数值差异有高度统计学意义(P<0.001). [结论] 谷氨酸受体阻滞剂GYKI25466有效的减轻新生大鼠缺氧缺血性脑病时异常的神经行为学表现和病理学改变,抑制神经细胞细胞凋亡,证实GYKI25466具有一定的神经保护作用.%[Objective] To evaluate the inhibition of the glutamate receptor blocker(GYKI52466) on the apoptosis of hypoxic ischemic encephalopathy(HIE) newborn rats' nerve cells. [Methods

  13. Loss of IRF2BP2 in Microglia Increases Inflammation and Functional Deficits after Focal Ischemic Brain Injury.

    Science.gov (United States)

    Cruz, Shelly A; Hari, Aswin; Qin, Zhaohong; Couture, Pascal; Huang, Hua; Lagace, Diane C; Stewart, Alexandre F R; Chen, Hsiao-Huei

    2017-01-01

    Ischemic stroke causes neuronal cell death and triggers a cascade of inflammatory signals that contribute to secondary brain damage. Microglia, the brain-resident macrophages that remove dead neurons, play a critical role in the brain's response to ischemic injury. Our previous studies showed that IRF2 binding protein 2 (IRF2BP2) regulates peripheral macrophage polarization, limits their inflammatory response and reduces susceptibility to atherosclerosis. Here, we show that loss of IRF2BP2 in microglia leads to increased inflammatory cytokine expression in response to lipopolysaccharide challenge and impaired activation of anti-inflammatory markers in response to interleukin-4 (IL4) stimulation. Focal ischemic brain injury of the sensorimotor cortex induced by photothrombosis caused more severe functional deficits in mice with IRF2BP2 ablated in macrophages/microglia, associated with elevated expression of inflammatory cytokines in the brain. These mutant mice had larger infarctions 4 days after stroke associated with fewer anti-inflammatory M2 microglia/macrophages recruited to the peri-infarct area, suggesting an impaired clearance of injured tissues. Since IRF2BP2 modulates interferon signaling, and interferon beta (IFNβ) has been reported to be anti-inflammatory and reduce ischemic brain injury, we asked whether loss of IRF2BP2 in macrophages/microglia would affect the response to IFNβ in our stroke model. IFNβ suppressed inflammatory cytokine production of macrophages and reduced infarct volumes at 4 days after photothrombosis in wild type mice. The anti-inflammatory effect of IFNβ was lost in IRF2BP2-deficient macrophages and IFNβ failed to protect mice lacking IRF2BP2 in macrophages/microglia from ischemic injury. In summary, IRF2BP2 expression in macrophages/microglia is important to limit inflammation and stroke injury, in part by mediating the beneficial effect of IFNβ.

  14. Neuroprotection by Methylene Blue in Cerebral Global Ischemic Injury Induced Blood-Brain Barrier Disruption and Brain Pathology: A Review.

    Science.gov (United States)

    Wiklund, Lars; Sharma, Aruna; Sharma, Hari Shanker

    2016-01-01

    Transient global ischemic cerebral injury is a consequence of cardiac arrest and accounts for approximately 450,000 annual deaths with a mortality of approximately 90%. Serious morbidity follows for many of the survivors and up to 16% of patients achieving restoration of spontaneous circulation develop brain death. Other survivors are left with persistent cognitive impairment such as memory and sensimotor deficits, reducing quality of life and resulting in heavy costs on society. Many studies over the years have been devoted to improving outcome after cardiac arrest and have, to a certain degree succeeded, especially locally in areas where improvement of ambulance organizations have been effective. In spite of this serious problems remain and the chances of cerebral survival need to increase if over-all results, i.e. survival as well as cognitive function, are to improve. Methylene blue, a textile dye synthesized in the late 19th century has also been used in medicine for different purposes. One of its effects is to increase systemic blood pressure, but other effects have been documented, among which are its neuroprotective effects well-noted during the last few years. In this review we have appraised these findings in relation to global ischemic injury.

  15. Non-Gaussian diffusion imaging for enhanced contrast of brain tissue affected by ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Farida Grinberg

    Full Text Available Recent diffusion MRI studies of stroke in humans and animals have shown that the quantitative parameters characterising the degree of non-Gaussianity of the diffusion process are much more sensitive to ischemic changes than the apparent diffusion coefficient (ADC considered so far as the "gold standard". The observed changes exceeded that of the ADC by a remarkable factor of 2 to 3. These studies were based on the novel non-Gaussian methods, such as diffusion kurtosis imaging (DKI and log-normal distribution function imaging (LNDFI. As shown in our previous work investigating the animal stroke model, a combined analysis using two methods, DKI and LNDFI provides valuable complimentary information. In the present work, we report the application of three non-Gaussian diffusion models to quantify the deviations from the Gaussian behaviour in stroke induced by transient middle cerebral artery occlusion in rat brains: the gamma-distribution function (GDF, the stretched exponential model (SEM, and the biexponential model. The main goal was to compare the sensitivity of various non-Gaussian metrics to ischemic changes and to investigate if a combined application of several models will provide added value in the assessment of stroke. We have shown that two models, GDF and SEM, exhibit a better performance than the conventional method and allow for a significantly enhanced visualization of lesions. Furthermore, we showed that valuable information regarding spatial properties of stroke lesions can be obtained. In particular, we observed a stratified cortex structure in the lesions that were well visible in the maps of the GDF and SEM metrics, but poorly distinguishable in the ADC-maps. Our results provided evidence that cortical layers tend to be differently affected by ischemic processes.

  16. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Larsen, B; Herning, M;

    1983-01-01

    ischemic low flow areas were a constant finding in the collaterally perfused tissue. In 6 of the patients, the collaterally perfused part of the brain had low flow values comparable to those of an "ischemic penumbra" (viable, but functionally depressed brain tissue due to inadequate perfusion......In a group of 48 patients with completed stroke, 8 patients had viable collaterally perfused brain tissue which was accessible for rCBF recordings with a two dimensional technique. All 8 had deep subcortical infarcts on CT-scan, and angiographic occlusion of the arteries normally supplying...... the infarcted territory. The brain tissue overlying the deep infarcts appeared normal on CT-scan and was supplied by collateral circulation. rCBF was measured in all within 72 hours after the stroke. The intra-carotid Xe-133 injection method and a 254 multidetector camera were used to study rCBF. Relatively...

  17. Molecular dialogues between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair

    Science.gov (United States)

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-01-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228

  18. 单唾液酸四已糖神经节苷酯联合胞二磷胆碱治疗中、重度新生儿缺氧缺血性脑病的疗效分析%Effects of Monosialotetrahexosylganglioside Combined with Citicoline in Treatment of Maderate and Severe Neonatal Hypoxic-Ischemic Emcephalopathy

    Institute of Scientific and Technical Information of China (English)

    管玉成; 曹甦

    2014-01-01

    Objective:To investigate the clinical effieacy of the Monosialotetrahexosylganglioside(GM-1) combined with citicoline in the treatment of severe neonatal hypoxic-ischemic encephalopathy(HIE). Method:From January 2010 to January 2010 ,the data of 98 children with severe HIE were retrospectively analyzed in department of pediatric in our hospital. All the cases were treated by three in the support and the basis of the three symptomatic .The control group(n=49) was treated with citicoline(CDPC)together with conventional trerapy for HIE. The treatment group(n=49)was treated with GM-1 on the basis of the control group. The symptoms and signs of the two groups were observed.Brain CT and the neonatal behavioral neurological assessment(NBNA)scores of the two groups were evaluated. Result:The total effective rate in the observation group was 93.86%,significantly higher than that in the control group. Brain CT changes in treatment group was better than that in the control group.The NBNA scores(2 d)in the treatment group was no significant difference,the NBNA scores(7,14,28 d)were significantly higher than those in the control group(P0.05),生后7、14、28 d评分治疗组明显高于对照组,差异均具有统计学意义(P<0.05)。结论:GM-1与CDPC合用可发挥协同作用,促进受损神经细胞功能修复,逆转脑缺氧缺血后神经功能障碍,显著提高脑机能,可明显改善中重度HIE的临床症状,适于临床推广。

  19. Effect of Electroacupuncture on Rat Ischemic Brain Injury: Importance of Stimulation Duration

    Directory of Open Access Journals (Sweden)

    Fei Zhou

    2013-01-01

    Full Text Available We explored the optimal duration of electroacupuncture (EA stimulation for protecting the brain against ischemic injury. The experiments were carried out in rats exposed to right middle cerebral artery occlusion (MCAO for 60 min followed by 24-hr reperfusion. EA was delivered to “Shuigou” (Du 26 and “Baihui” (Du 20 acupoints with sparse-dense wave (5/20 Hz at 1.0 mA for 5, 15, 30, and 45 min, respectively. The results showed that 30 min EA, starting at 5 minutes after the onset of MCAO (EA during MCAO or 5 minutes after reperfusion (EA after MCAO, significantly reduced ischemic infarct volume, attenuated neurological deficits, and decreased death rate with a larger reduction of the ischemic infarction in the former group. Also in the group of EA during MCAO, this protective benefit was positively proportional to the increase in the period of stimulation, that is, increased protection in response to EA from 5- to 30-min stimulation. In all groups, EA induced a significant increase in cerebral blood flow and promoted blood flow recovery after reperfusion, and both blood flow volume and blood cell velocity returned to the preischemia level in a short period of time. Surprisingly, EA for 45 min did not show reduction in the neurological deficits or the infarct volume and instead demonstrated an increase in death rate in this group. Although EA for 45 min still increased the blood flow during MCAO, it led to a worsening of perfusion after reperfusion compared to the group subjected only to ischemia. The neuroprotection induced by an “optimal” period (30 min of EA was completely blocked by Naltrindole, a δ-opioid receptor (DOR antagonist (10 mg/kg, i.v.. These findings suggest that earlier EA stimulation leads to better outcomes, and that EA-induced neuroprotection against ischemia depends on an optimal EA-duration via multiple pathways including DOR signaling, while “over-length” stimulation exacerbates the ischemic

  20. Implications of MMP9 for Blood Brain Barrier Disruption And Hemorrhagic Transformation Following Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Renee Jade Turner

    2016-03-01

    Full Text Available Numerous studies have documented increases in matrix metalloproteinases (MMPs, specifically MMP-9 levels following stroke, with such perturbations associated with disruption of the blood brain barrier (BBB, increased risk of hemorrhagic complications and worsened outcome. Despite this, controversy remains as to which cells release MMP-9 at the normal and pathological BBB, with even less clarity in the context of stroke. This may be further complicated by the influence of tissue plasminogen activator (tPA treatment. The aim of the present review is to examine the relationship between neutrophils, MMP-9 and tPA following ischemic stroke to elucidate which cells are responsible for the increases in MMP-9 and resultant barrier changes and hemorrhage observed following stroke.

  1. Implications of MMP9 for Blood Brain Barrier Disruption and Hemorrhagic Transformation Following Ischemic Stroke

    Science.gov (United States)

    Turner, Renée J.; Sharp, Frank R.

    2016-01-01

    Numerous studies have documented increases in matrix metalloproteinases (MMPs), specifically MMP-9 levels following stroke, with such perturbations associated with disruption of the blood brain barrier (BBB), increased risk of hemorrhagic complications, and worsened outcome. Despite this, controversy remains as to which cells release MMP-9 at the normal and pathological BBB, with even less clarity in the context of stroke. This may be further complicated by the influence of tissue plasminogen activator (tPA) treatment. The aim of the present review is to examine the relationship between neutrophils, MMP-9 and tPA following ischemic stroke to elucidate which cells are responsible for the increases in MMP-9 and resultant barrier changes and hemorrhage observed following stroke. PMID:26973468