WorldWideScience

Sample records for hypoxic imaging agents

  1. Development of a real-time imaging system for hypoxic cell apoptosis

    Directory of Open Access Journals (Sweden)

    Go Kagiya

    2016-01-01

    Full Text Available Hypoxic regions within the tumor form due to imbalances between cell proliferation and angiogenesis; specifically, temporary closure or a reduced flow due to abnormal vasculature. They create environments where cancer cells acquire resistance to therapies. Therefore, the development of therapeutic approaches targeting the hypoxic cells is one of the most crucial challenges for cancer regression. Screening potential candidates for effective diagnostic modalities even under a hypoxic environment would be an important first step. In this study, we describe the development of a real-time imaging system to monitor hypoxic cell apoptosis for such screening. The imaging system is composed of a cyclic luciferase (luc gene under the control of an improved hypoxic-responsive promoter. The cyclic luc gene product works as a caspase-3 (cas-3 monitor as it gains luc activity in response to cas-3 activation. The promoter composed of six hypoxic responsible elements and the CMV IE1 core promoter drives the effective expression of the cyclic luc gene in hypoxic conditions, enhancing hypoxic cell apoptosis visualization. We also confirmed real-time imaging of hypoxic cell apoptosis in the spheroid, which shares properties with the tumor. Thus, this constructed system could be a powerful tool for the development of effective anticancer diagnostic modalities.

  2. Imaging tumor hypoxia: Blood-borne delivery of imaging agents is fundamentally different in hypoxia subtypes

    Directory of Open Access Journals (Sweden)

    Peter Vaupel

    2014-03-01

    Full Text Available Hypoxic tissue subvolumes are a hallmark feature of solid malignant tumors, relevant for cancer therapy and patient outcome because they increase both the intrinsic aggressiveness of tumor cells and their resistance to several commonly used anticancer strategies. Pathogenetic mechanisms leading to hypoxia are diverse, may coexist within the same tumor and are commonly grouped according to the duration of their effects. Chronic hypoxia is mainly caused by diffusion limitations resulting from enlarged intercapillary distances and adverse diffusion geometries and — to a lesser extent — by hypoxemia, compromised perfusion or long-lasting microregional flow stops. Conversely, acute hypoxia preferentially results from transient disruptions in perfusion. While each of these features of the tumor microenvironment can contribute to a critical reduction of oxygen availability, the delivery of imaging agents (as well as nutrients and anticancer agents may be compromised or remain unaffected. Thus, a critical appraisal of the effects of the various mechanisms leading to hypoxia with regard to the blood-borne delivery of imaging agents is necessary to judge their ability to correctly represent the hypoxic phenotype of solid malignancies.

  3. In vivo evaluation of a radiogallium-labeled bifunctional radiopharmaceutical, Ga-DOTA-MN2, for hypoxic tumor imaging.

    Science.gov (United States)

    Sano, Kohei; Okada, Mayumi; Hisada, Hayato; Shimokawa, Kenta; Saji, Hideo; Maeda, Minoru; Mukai, Takahiro

    2013-01-01

    On the basis of the findings obtained by X-ray crystallography of Ga-DOTA chelates and the drug design concept of bifunctional radiopharmaceuticals, we previously designed and synthesized a radiogallium-labeled DOTA chelate containing two metronidazole moieties, (67)Ga-DOTA-MN2, for hypoxic tumor imaging. As expected, (67)Ga-DOTA-MN2 exhibited high in vivo stability, although two carboxyl groups in the DOTA skeleton were conjugated with metronidazole moieties. In this study, we evaluated (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors. (67)Ga-labeling of DOTA-MN2 with (67)GaCl(3) was achieved with high radiochemical yield (>85%) by 1-min of microwave irradiation (50 W). The pharmacokinetics of (67)Ga-DOTA-MN2 were examined in FM3A tumor-bearing mice, and compared with those of (67)Ga-DOTA-MN1 containing one metronidazole unit and (67)Ga-DOTA. Upon administration, (67)Ga-DOTA-MN2 exhibited higher accumulation in the implanted tumors than (67)Ga-DOTA. Tumor-to-blood ratios of (67)Ga-DOTA-MN2 were about two-fold higher than those of (67)Ga-DOTA-MN1. Autoradiographic analysis showed the heterogeneous localization of (67)Ga-DOTA-MN2 in the tumors, which corresponds to hypoxic regions suggested by well-established hypoxia marker drug, pimonidazole. Furthermore, in positron emission tomography (PET) study, the tumors of mice administered (68)Ga-labeled DOTA-MN2 were clearly imaged by small-animal PET at 1 h after administration. This study demonstrates the potential usefulness of (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors and suggests that two functional moieties, such as metronidazole, can be conjugated to radiogallium-DOTA chelate without reducing the complex stability. The present findings provide useful information about the chemical design of radiogallium-labeled radiopharmaceuticals for PET and single photon emission computed tomography (SPECT) studies.

  4. Preparation of hypoxic imaging agents 99Tcm-MNLS and 99Tcm-MLS and their biodistribution in mice

    International Nuclear Information System (INIS)

    Zha Zhihao; Wang Jianjun; Zhu Lin

    2009-01-01

    To develop 99 Tc m labeled hypoxic agents,two phosphate-based chelating agents were coupled to metronidazole, 2- (2-methyl-5-nitro-1H-imidazol-1-yl) ethyl dihydrogen phosphate (MNLS) and its analog 2- (2-methyl-1H-imidazol-1-yl) ethyl dihydrogen phosphate (MLS) were synthesized based on the mechanism of prodrug. Labeling yield of these 99 Tc m complexes were more than 90% as proved by TLC. Paper electrophoresis showed that these complexes were neutral. Biodistribution of these complexes in tumor-bearing mice showed that the uptake of 99 Tc m -MNLS (120 min, 2.99 ± 0.25 ID%/g) in tumor was higher than that of 99 Tc m -HL91 (120 min, 0.93 ± 0.13 ID%/g) and 99 Tc m -MLS (120 min, 1.61 ± 0.13 ID%/g), and the uptake ratio of tumor to muscle and tumor to liver of 99 Tc m -MNLS (120 min, 5.90, 1.03) were higher than that of 99 Tc m -HL91 (120 min, 3.59, 0.17) and 99 Tc m -MLS (120 min, 5.40, 0.13). The higher tumor uptake for 99 Tc m -MNLS than 99 Tc m -MLS suggested that nitroimidazole was a key group for tumor accumulation. 99 Tc m -MNLS had higher tumor uptake and lower liver uptake, which had the potential for tumor imaging and was worth of further vestigation. (authors)

  5. The feasibility of a targeted ultrasound contrast agent carrying genes and cell-penetrating peptides to hypoxic HUVEC

    International Nuclear Information System (INIS)

    Tian Ju; Wang Zhigang; Ren Jianli; Zhang Qingfeng; Liu Li

    2012-01-01

    Objective: To prepare an anti-P-selectin targeted ultrasound contrast agent carrying genes and cell-penetrating peptides (CPP) and to investigate its feasibility of delivery to hypoxic human umbilical vein endothelial cells (HUVEC). Methods: Anti-P-selectin targeted ultrasound contrast agent carrying a green fluorescent protein gene (pEGFP-N1) and CPP was prepared by mechanical vibration and carbodiimide techniques. The appearance, distribution, concentration and diameter of the ultrasound contrast agent were measured. The gene and CPP distribution on the agent was investigated using confocal laser scanning microscopy (CLSM). The efficiency of the ultrasound contrast agent to carry the gene and CPP was investigated by fluorospectrophotometry. HUVEC were cultured in vitro and hypoxic HUVEC were prepared using hydrogen peroxide (H 2 O 2 ). Hypoxic HUVEC were randomly assigned targeted ultrasound contrast agents and non-targeted ultrasound contrast agents for transfection. The transfection effect of green fluorescent protein in the two groups was observed using fluorescence microscopy and flow cytometry. T-test and linear correlation analysis were used for statistical analysis. Results: The average diameter of anti-P-selectin targeted ultrasound contrast agents carrying gene and CPP was (2.15 ±0.36) μm and the concentration was (1.58 ± 0.23) × 10 7 /ml.The results of CLSM showed that gene and CPP were distributed on the shell of the agent. The gene encapsulation efficiency was 28% (y=0.932x-0.09, r=0.993, P<0.05), and the CPP encapsulation efficiency was 25% (y=5.875x-0.81, r=0.987, P<0.05). EGFP expression was observed using fluorescence microscopy in targeted ultrasound contrast agents and non-targeted ultrasound contrast agents. The average transfection efficiencies of targeted ultrasound contrast agents and non-targeted ultrasound contrast agents were (18.74 ± 0.47) % and (15.34 ± 0.22) % after 24 h (t=10.923, P<0.001). Conclusions: The in vitro studies

  6. Synthesis and radiolabelling of novel nitrogen mustards for the imaging of hypoxic tissue

    International Nuclear Information System (INIS)

    Falzon, C.; Ackermann, U.; Tochon-Danguy, H.J.; O'Keefe, G.J.; White, J.; Spratt, N.; Howells, D.; Scott, A.M.

    2005-01-01

    Hypoxic tissue is of great significance in stroke and oncology. Among the radiotracers currently used to detect hypoxia, derivatives based on the 2-nitro-imidazole ring such as FMISO or FAZA have received considerable attention in medical imaging. Unfortunately, due to slow clearance of these tracers from normoxic tissue a waiting period of two hours is required between tracer injection and the scanning of the patient. In addition the target to background ratio is low and the quality of the image is therefore poor. Nitrogen mustards are another class of compounds that have great affinity to hypoxic tissue. Derivatives of these compounds labelled with a positron emitting radionuclide, such as [ 18 F], may allow for the imaging of hypoxic regions in the ischemic penumbra. It therefore, may be a useful diagnostic tool in stroke. Radiolabeled N-(2-[ 18 F]-fluoroethyl)-N-(2-chloroethyl)-4-methylsulfinylaniline was successfully synthesised using a potassium fluoride kryptofix complex, giving the desired product in 40% radiochemical yield (10 min at 100 Degrees C). In vitro analysis to determine the stability of the radiotracer in plasma and saline indicated no defluorination. Biological evaluation studies of the radiotracer were undertaken using a rat stroke model (Middle cerebral Arterial Occlusion (MCAO)) to determine whether the ischemic penumbra can be imaged using PET. 150//Ci (5.5MBq) of the radiotracer was injected into the tail vein of the rat immediately after the MCAO. The rat was sacrificed 2 hours post injection and ex-vivo autoradiography was performed. Uptake of the radiotracer was observed in hypoxic regions of the brain (n=6). Dynamic PET images revealed that the ischemic penumbra can be imaged 15 minutes post injection of this tracer. With these promising results, we are now synthesizing other analogues to determine their relationship between selectivity for hypoxic tissue and brain uptake

  7. A novel nitroreductase-enhanced MRI contrast agent and its potential application in bacterial imaging

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2018-05-01

    Full Text Available Nitroreductases (NTRs are known to be able to metabolize nitro-substituted compounds in the presence of reduced nicotinamide adenine dinucleotide (NADH as an electron donor. NTRs are present in a wide range of bacterial genera and, to a lesser extent, in eukaryotes hypoxic tumour cells and tumorous tissues, which makes it an appropriate biomarker for an imaging target to detect the hypoxic status of cancer cells and potential bacterial infections. To evaluate the specific activation level of NTR, great efforts have been devoted to the development of fluorescent probes to detect NTR activities using fluorogenic methods to probe its behaviour in a cellular context; however, NTR-responsive MRI contrast agents are still by far underexplored. In this study, para-nitrobenzyl substituted T1-weighted magnetic resonance imaging (MRI contrast agent Gd-DOTA-PNB (probe 1 has been designed and explored for the possible detection of NTR. Our experimental results show that probe 1 could serve as an MRI-enhanced contrast agent for monitoring NTR activity. The in vitro response and mechanism of the NTR catalysed reduction of probe 1 have been investigated through LC–MS and MRI. Para-nitrobenzyl substituted probe 1 was catalytically reduced by NTR to the intermediate para-aminobenzyl substituted probe which then underwent a rearrangement elimination reaction to Gd-DOTA, generating the enhanced T1-weighted MR imaging. Further, LC–MS and MRI studies of living Escherichia coli have confirmed the NTR activity detection ability of probe 1 at a cellular level. This method may potentially be used for the diagnosis of bacterial infections. KEY WORDS: Nitroreductase, MRI contrast agent, Smart imaging probes, Bacterial imaging, Bacterial infection

  8. Attenuation of hypoxic current by intracellular applications of ATP regenerating agents in hippocampal CA1 neurons of rat brain slices.

    Science.gov (United States)

    Chung, I; Zhang, Y; Eubanks, J H; Zhang, L

    1998-10-01

    Hypoxia-induced outward currents (hyperpolarization) were examined in hippocampal CA1 neurons of rat brain slices, using the whole-cell recording technique. Hypoxic episodes were induced by perfusing slices with an artificial cerebrospinal fluid aerated with 5% CO2/95% N2 rather than 5% CO2/95% O2, for about 3 min. The hypoxic current was consistently and reproducibly induced in CA1 neurons dialysed with an ATP-free patch pipette solution. This current manifested as an outward shift in the holding current in association with increased conductance, and it reversed at -78 +/- 2.5 mV, with a linear I-V relation in the range of -100 to -40 mV. To provide extra energy resources to individual neurons recorded, agents were added to the patch pipette solution, including MgATP alone, MgATP + phosphocreatine + creatine kinase, or MgATP + creatine. In CA1 neurons dialysed with patch solutions including these agents, hypoxia produced small outward currents in comparison with those observed in CA1 neurons dialysed with the ATP-free solution. Among the above agents examined, whole-cell dialysis with MgATP + creatine was the most effective at decreasing the hypoxic outward currents. We suggest that the hypoxic hyperpolarization is closely related to energy metabolism in individual CA1 neurons, and that the energy supply provided by phosphocreatine metabolism may play a critical role during transient metabolic stress.

  9. New avenues in hypoxic cell sensitization

    International Nuclear Information System (INIS)

    Huilgol, N.G.; Chatterjee, N.A.; Singh, B.B.

    1995-01-01

    Hypoxic cells in tumors represent a population of cells that are resistant to radiotherapy. Bio-reductive agents like RSU 1069, RBU 6145 and EOg and vasoactive drugs in conjunction with hypoxic cell sensitizers are being evaluated as hypoxic cell cytotoxins. Chlorpromazine a membrane active drug and AK-2123- a nitrotriazole with a potential to deplete intracellular thiols induced vasoconstriction and sensitize hypoxic cells have stretched the boundaries of innovation. A preliminary experience with these drugs is discussed. 8 refs., 2 tabs., 2 figs

  10. Radiolabelling and evaluation of a novel sulfoxide as a PET imaging agent for tumor hypoxia

    International Nuclear Information System (INIS)

    Laurens, Evelyn; Yeoh, Shinn Dee; Rigopoulos, Angela; Cao, Diana; Cartwright, Glenn A.; O'Keefe, Graeme J.; Tochon-Danguy, Henri J.; White, Jonathan M.; Scott, Andrew M.; Ackermann, Uwe

    2014-01-01

    [ 18 F]FMISO is the most widely validated PET radiotracer for imaging hypoxic tissue. However, as a result of the pharmacokinetics of [ 18 F]FMISO a 2 h wait between tracer administration and patient scanning is required for optimal image acquisition. In order to develop hypoxia imaging agents with faster kinetics, we have synthesised and evaluated several F-18 labelled anilino sulfoxides. In this manuscript we report on the synthesis, in vitro and in vivo evaluation of a novel fluoroethyltriazolyl propargyl anilino sulfoxide. The radiolabelling of the novel tracer was achieved via 2-[ 18 F]fluoroethyl azide click chemistry. Radiochemical yields were 23 ± 4% based on 2-[ 18 F]fluoroethyl azide and 7 ± 2% based on K[ 18 F]F. The radiotracer did not undergo metabolism or defluorination in an in vitro assay using S9 liver fractions. Imaging studies using SK-RC-52 tumors in BALB/c nude mice have indicated that the tracer may have a higher pO 2 threshold than [ 18 F]FMISO for uptake in hypoxic tumors. Although clearance from muscle was faster than [ 18 F]FMISO, uptake in hypoxic tumors was slower. The average tumor to muscle ratio at 2 h post injection in large, hypoxic tumors with a volume greater than 686 mm 3 was 1.7, which was similar to the observed ratio of 1.75 for [ 18 F]FMISO. Although the new tracer showed improved pharmacokinetics when compared with the previously synthesised sulfoxides, further modifications to the chemical structure need to be made in order to offer significant in vivo imaging advantages over [ 18 F]FMISO

  11. Imaging and Targeting of Hypoxic Tumor Cells with Use of HIF-1-2

    International Nuclear Information System (INIS)

    Kizaka-Kondoh, Shinae; Harada, Hiroshi; Tanaka, Shotaro; Hiraoka, Masahiro

    2006-01-01

    This paper describes imaging (visualization) of transplanted tumor cells under hypoxia in vivo and molecular targeting to kill those cells by inducing their apoptosis. HIF (hypoxia inducible factor) concerned with angiogenesis is induced specifically in hypoxic tumor cells and its activity can be visualized by transfection of reporter vector construct of fluorescent protein GFP or luciferase. Authors established the transfected tumor cells with the plasmid p5HRE-luciferase and when transplanted in the nude mouse, those cells emitted light dependently to their hypoxic conditions, which could be visualized by in vivo imaging system (IVIS) with CCD camera. Authors prepared the oxygen-dependent degradation-procaspase 3-fusion protein (TOP3) to target the hypoxic tumor cells for enhancing their apoptotic signaling, whose apoptosis was actually observed by the IVIS. Reportedly, radiation transiently activates HIF-1 and combination treatment of radiation and TOP3 resulted in the enhanced death of tumor cells. Interestingly, the suppression of tumor growth lasted longer than expected, probably due to inhibition of angiogenesis. Authors called this anti-tumor strategy as the micro-environmental targeting. (T.I.)

  12. Nitroimidazoles and imaging hypoxia

    International Nuclear Information System (INIS)

    Nunn, A.; Linder, K.; Strauss, H.W.

    1995-01-01

    A class of compounds known to undergo different intracellular metabolism depending on the availability of oxygen in tissue, the nitroimidazoles, have been advocated for imaging hypoxic tissue. In the presence of normal oxygen levels the molecule is immediately reoxidized. In hypoxic tissue the low oxygen concentration is not able to effectively compete to reoxidize the molecule and further reduction appears to take place. The association is not irreversible. Nitroimidazoles for in vivo imaging using radiohalogenated derivatives of misonidazole have recently been employed in patients. Two major problems with fluoromisonidazole are its relatively low concentration within the lesion and the need to wait several hours to permit clearance of the agent from the normoxic background tissue. Even with high-resolution positron emission tomographic imaging, this combination of circumstances makes successful evaluation of hypoxic lesions a challenge. Single-photon agents, with their longer half-lives and comparable biological properties, offer a greater opportunity for successful imaging. In 1992 technetium-99m labeled nitroimidazoles were described that seem to have at least comparable in vivo characteristics. Laboratory studies have demonstrated preferential binding of these agents to hypoxic tissue in the myocardium, in the brain, and in tumors. These investigations indicate that imaging can provide direct evidence of tissue with low oxygen levels that is viable. Even from this early vantage point the utility of measuring tissue oxygen levels with external imaging suggests that hypoxia imaging could play a major role in clinical decision making. (orig./MG)

  13. Imaging Mass Spectrometry Revealed the Accumulation Characteristics of the 2-Nitroimidazole-Based Agent "Pimonidazole" in Hypoxia.

    Directory of Open Access Journals (Sweden)

    Yukiko Masaki

    Full Text Available Hypoxia, or low oxygen concentration, is a key factor promoting tumor progression and angiogenesis and resistance of cancer to radiotherapy and chemotherapy. 2-Nitroimidazole-based agents have been widely used in pathological and nuclear medicine examinations to detect hypoxic regions in tumors; in particular, pimonidazole is used for histochemical staining of hypoxic regions. It is considered to accumulate in hypoxic cells via covalent binding with macromolecules or by forming reductive metabolites after reduction of its nitro group. However, the detailed mechanism of its accumulation remains unknown. In this study, we investigated the accumulation mechanism of pimonidazole in hypoxic tumor tissues in a mouse model by mass spectrometric analyses including imaging mass spectrometry (IMS. Pimonidazole and its reductive metabolites were observed in the tumor tissues. However, their locations in the tumor sections were not similar to the positively stained areas in pimonidazole-immunohistochemistry, an area considered hypoxic. The glutathione conjugate of reduced pimonidazole, a low-molecular-weight metabolite of pimonidazole, was found in tumor tissues by LC-MS analysis, and our IMS study determined that the intratumor localization of the glutathione conjugate was consistent with the area positively immunostained for pimonidazole. We also found complementary localization of the glutathione conjugate and reduced glutathione (GSH, implying that formation of the glutathione conjugate occurred in the tumor tissue. These results suggest that in hypoxic tumor cells, pimonidazole is reduced at its nitro group, followed by conjugation with GSH.

  14. Preliminary study on hypoxic-ischemic encephalopathy in neonates with diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Wang Xiaoming; Chen Liying; Lin Nan; Guo Qiyong

    2005-01-01

    Objective: To evaluate hypoxic-ischemic encephalopathy (HIE) in neonates with diffusion-weighted MR imaging, and to explore the value and limitation of diffusion-weighted imaging (DWI) compared with conventional magnetic resonance imaging. Methods: Conventional magnetic resonance T 1 -weighted imaging (T 1 WI) and DWI (b=700 s/mm 2 ) were performed in 36 neonates with HIE (average age, 8.44 days; range, 3 hours to 22 days), and the cortex and subcortical white matter, deep white matter, basal ganglia and thalamus, cerebral ventricle, and extra-cerebral interspace etc were observed. Results: Signal abnormalities were shown on DWI with hypoxic-ischemic insults, which included diffuse brain damage (19.4%, 7/36): extensive high signals in the regional cortex, subcortical and deep white matter; localized brain damage: high signals along lateral ventricular wall and triangular part (27.8%, 10/36 ), and punctate high signals in the frontal deep white matter (5.6%, 2/36). On T 1 WI, the incidence of the corresponding changes were 16.7% (6/36), 36.1% (13/36), and 30.6%(11/36), respectively. Hemorrhagic lesions demonstrated high signals on T 1 WI and no signals on DWI. Conclusion: DWI was applicable for acute HIE, and T 1 WI was suitable for subacute and chronic HIE. (authors)

  15. USE OF DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING FOR REVEALING HYPOXIC-ISCHEMIC BRAIN LESIONS IN NEONATES

    Directory of Open Access Journals (Sweden)

    E. V. Shimchenko

    2014-01-01

    Full Text Available The article presents advantages of use of diffusion-weighted magnetic resonance imaging (DW MRI for revealing hypoxic-ischemic brain lesions in neonates. The trial included 97 neonates with perinatal brain lesion who had been undergoing treatment at a resuscitation department or neonatal pathology department in the first month of life. The article shows high information value of diffusion-weighted images (DWI for diagnostics of hypoxic-ischemic lesions in comparison with regular standard modes. In the event of no structural brain lesions of neonates, pronounced increase in signal characteristics revealed by DWI indicated considerable pathophysiological alterations. Subsequently, children developed structural alterations in the form of cystic encephalomalacia with expansion of cerebrospinal fluid spaces manifested with pronounced neurological deficit. DW MRI has been offered as a method of prognosticating further neurological development of children on early stages. 

  16. Preclinical assessment of hypoxic marker specificity and sensitivity

    International Nuclear Information System (INIS)

    Iyer, Renuka V.; Engelhardt, Edward L.; Stobbe, Corinne C.; Schneider, Richard F.; Chapman, J. Donald

    1998-01-01

    Purpose: In the search for a sensitive, accurate, and noninvasive technique for quantifying human tumor hypoxia, our laboratory has synthesized several potential radiodiagnostic agents. The purpose of this study was to assess and compare the hypoxic marking properties of both radioiodinated and Tc-99m labeled markers in appropriate test systems which can predict for in vivo activity. Materials and Methods: Preclinical assessment of hypoxic marker specificity and sensitivity employed three laboratory assays with tumor cells in vitro and in vivo. Radiolabeled marker uptake and/or binding to whole EMT-6 tumor cells under extremely hypoxic and aerobic conditions was measured and their ratio defined hypoxia-specific factor (HSF). Marker specificity to hypoxic tumor tissue was estimated from its selective avidity to two rodent tumors in vivo, whose radiobiologic hypoxic fractions (HF) had been measured. The ratios of % injected dose/gram (%ID/g) of marker at various times in EMT-6 tumor tissue relative to that in the blood and muscle of scid mice were used to quantify hypoxia-specific activity. This tumor in this host exhibited an average radiobiologic HF of ∼35%. As well, nuclear medicine images were acquired from R3327-AT (HF ≅15%) and R3327-H (no measurable HF) prostate carcinomas growing in rats to distinguish between marker avidity due to hypoxia versus perfusion. Results: The HSF for FC-103 and other iodinated markers were higher (5-40) than those for FC-306 and other Tc-99m labeled markers. The latter did not show hypoxia-specific uptake into cells in vitro. Qualitative differences were observed in the biodistribution and clearance kinetics of the iodinated azomycin nucleosides relative to the technetium chelates. The largest tumor/blood (T/B) and tumor/muscle (T/M) ratios were observed for compounds of the azomycin nucleoside class in EMT-6 tumor-bearing scid mice. These markers also showed a 3-4 x higher uptake into R3327-AT tumors relative to the well

  17. Potentially three distinct roles for hypoxic cell sensitizers in the clinic

    International Nuclear Information System (INIS)

    Chapman, J.D.; Raleigh, J.A.; Pedersen, J.E.; Ngan, J.; Shum, F.Y.

    1979-01-01

    Nitroaromatic drugs have been applied to radiation therapy on the basis of their effectiveness to enhance radiation damages selectively in hypoxic mammalian cells at nontoxic concentration. Such sensitizers could improve the rate of local tumor control by conventional radiotherapy in such cases that the resistance due to hypoxia in a limiting factor. The selective cytotoxicity of the drug to hypoxic cells is the second distinct action. A third potential role for nitroaromatic drugs could involve their use for the diagnosis of the number and location of hypoxic cells within tumors. The gain in therapeutic ratio by a factor from 5 to 10 is necessary before the full clinical impact of hypoxic cell radiosensitizers can be evaluated. The drugs selected for the use as clinical radiosensitizers were originally developed as the antibacterial agents with selective activity against anaerobes. The hypoxic cells in tumors are usually resistant to chemotherapy as well as resistant to radiation, and this specific drug action of sensitizers combined with that of an agent effective against oxygenated and cycling cells could possibly produce improved tumor cures. Electron-affinitive chemicals become selectively bound to the macromolecules of hypoxic mammalian cells by radiation-induced chemical reaction. This technique was used to identify by autoradiographic procedures the location of the radioactive nitrofurazone bound to hypoxic cells within multicellular spheroids. (Yamashita, S.)

  18. New strategy of cancer therapy by targeting the hypoxic circumstances

    International Nuclear Information System (INIS)

    Yasui, Hironobu; Yamamori, Tohru; Meike, Shunsuke; Eitaki, Masato; Kuwabara, Mikinori; Inanami, Osamu; Iizuka, Daisuke

    2010-01-01

    Described are studies on the sensitization of tumor cells in hypoxic circumstances (known as radio-resistant cells) by authors' recent molecular targeting to adaptive response as well as by the usual agents like nitro-imidazole compounds, and on the intermittent hypoxia, a new topic in this field. The hypoxia-inducible factor-1 (HIF-1) is a transcriptional factor and has been known to activate its many downstream genes to cause adoptive response of hypoxic cells. Authors have studied the anti-tumor and radiation sensitizing effects of ethynyl-cytidine (EC) which is found to suppress RNA synthesis through cytidine kinase (CK) inhibition, and the compound is of specificity to tumor cells as they have 5-10 times higher CK activity than normal cells. Authors have also found that EC is of the sensitizing efficacy to normoxic and hypoxic cells by enhancing the radiation-induced apoptosis essentially through inhibition of HIF-1 expression. Intermittent hypoxia in the tumor which has characteristic abnormal vascular morphology and function, occurs by the transient reduction of blood flow and occlusion of vessels in the tissue within minute to hour time cycles. Little is known about the regional hypoxic region and its distribution in the tumor due to difficulty of their detection and quantification. For this, authors have measured the temporal changes of oxygen levels in the mouse tumor with triaryl methyl radical, an oxygen-sensitive contrast compound continuously injected, by microwave-pulsed electron spin resonance imaging (EPRI). By superimposing the EPRI and T2-weighted MRI, the oxymetric imaging is possible in the tumor, which reveals the difference of oxygen level variation depending on the cell type and tissue size. Findings in the field are expected to give important information for more effective cancer therapy and its prognostic prediction in future. (T.T.)

  19. Autoradiographic imaging of cerebral ischemia using hypoxic marker: Tc-99m-HL91 in animal models

    International Nuclear Information System (INIS)

    Jiang, N.Y.; Zhu, C.S.; Hu, X.K.

    2002-01-01

    Objective: To explore the possibility of Tc-99m-HL91 imaging in detecting the ischemic penumbra during acute stoke. Methods: 16 Sprague-Dawley (SD) rats were divided into operation group (n=12) and pseudo-operation group (n=4) randomly. In operation group, 12 middle cerebral artery occlusion animal (MCAO) models were established by electrocautery. 4 rats in pseudo-operation group were treated as a control without occlusion. All animals were injected Tc-99m-HL91 intravenously 2 hours after occlusion. Animals were killed at different time after injection and brains were removed rapidly from the skull to do the autoradiographic study. Result: The ischemic territory accumulated more Tc-99m-HL91 than the opposite site in the autoradiogram at 1 hour after injection. The ischemic cerebral tissue can be visualized clearly. At 2, 4 hours after injection, the difference of accumulation of Tc-99m-HL91 in target and non-target site became more obvious. By using computer-enhanced imaging analysis, the optical density (OD) ratio differences between each subgroup of operation group and pseudo-operation group were all significant. Conclusion : Tc-99m-HL91 can be avidly taken up by ischemic penumbra. Tc-99m-HL91 is a potential agent for imaging hypoxic tissue, and Tc-99m-HL91 SPECT may be a promising imaging method in detecting the ischemic penumbra

  20. Autoradiographic imaging of cerebral ischaemia using hypoxic marker: 99mTc-HL91 in animal models

    International Nuclear Information System (INIS)

    Ningyi, J.; Cansheng, Z.; Xiaoke, H.

    2002-01-01

    Objective: To explore the possibility of 99mTc-HL91 imaging in detecting the ischemic penumbra during acute stoke. Methods 16 Sprague-Dawley (SD) rats were divided into operation group (n=12) and pseudo-operation group (n=4) randomly. In operation group, 12 middle cerebral artery occlusion animal (MCAO) models were established by electrocautery. 4 rats in pseudo-operation group were treated as a control without occlusion. All animals were injected 99mTc-HL91 intravenously 2 hours after occlusion. Animals were killed at different time after injection and brains were removed rapidly from the skull to do the autoradiographic study. Result The ischemic territory accumulated more 99mTc-HL91 than the opposite site in the autoradiogram at 1 hour after injection. The ischemic cerebral tissue can be visualized clearly. At 2, 4 hours after injection, the difference of accumulation of 99mTc-HL91 in target and non-target site became more obvious. By using computer-enhanced imaging analysis, the optical density (OD) ratio differences between each subgroup of operation group and pseudo-operation group were all significant. Conclusion 99mTc-HL91 can be avidly taken up by ischemic penumbra. 99mTc-HL91 is a potential agent for imaging hypoxic tissue, and 99mTc-HL91 SPECT may be a promising imaging method in detecting the ischemic penumbra

  1. Perinatal Hypoxic-Ischemic brain injury; MR findings

    International Nuclear Information System (INIS)

    Park, Dong Woo; Seo, Chang Hye

    1994-01-01

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult

  2. CT diagnosis of hypoxic ischemic encephalopathy

    International Nuclear Information System (INIS)

    Zhao Xiang; Ma Jiwei; Wu Lide

    2004-01-01

    Objective: To explore CT characteristics of hypoxic ischemic encephalopathy (HIE), and to improve the accuracy of CT diagnosis. Methods: 50 cases of neonatal asphyxia in perinatal period diagnosed as hypoxic ischemic encephalopathy by CT was analyzed. Results: The main manifestation of hypoxic ischemic encephalopathy is cerebral edema and intracranial hemorrhage. Focal or diffuse hypo-dense lesion and hyper-dense area in various location and morphology were seen on CT images. (1) Localized diffuse hypo-dense area in 1 or 2 cerebral lobe were found in 17 cases, and the lesions were localized in frontal lobe (n=6), in frontotemporal lobe (n=5), and in temporo-occipital lobe (n=6). (2) Hypo-density region involving more than three cerebral lobes were found in 18 cases, and abnormalities were found in frontotemporal and parietal lobe (n=8), accompanying with subarachnoid hemorrhage (n=2); in frontal, temporal and occipital lobe (n=6), in which cerebral hemorrhage was complicated (n=1); and in other cerebral lobe (n=4). (3) Diffuse low-density region in all cerebral lobe were found in 15 cases, in which subarachnoid hemorrhage was complicated in 4 cases, and ventricular hemorrhage was found in 2 case. Conclusion: CT imaging plays an important role in diagnosis of hypoxic ischemic encephalopathy and has shown its clinical value

  3. Detection of hypoxic-ischemic brain injury with 3D-enhanced T2* weighted angiography (ESWAN) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gang, QiangQiang, E-mail: rousikang@163.com; Zhang, Jianing, E-mail: 1325916060@qq.com; Hao, Peng, E-mail: 1043600590@qq.com; Xu, Yikai, E-mail: yikaivip@163.com

    2013-11-01

    Objective: To demonstrate the use of 3D-enhanced T2* weighted angiography (ESWAN) imaging for the observation and quantification of the evolution of brain injury induced by a recently developed model of hypoxic-ischemic brain injury (HI/R) in neonatal piglets. Methods: For these experiments, newborn piglets were subjected to HI/R injury, during which ESWAN scanning was performed, followed by H and E staining and immunohistochemistry of AQP-4 expression. Results: In the striatum, values from T2* weighted magnetic resonance imaging (MRI) increased and reached their highest level at 3 days post injury, whereas T2* values increased and peaked at 24 h in the subcortical region. The change in T2* values was concordant with brain edema. Phase values in the subcortical border region were not dependent on time post-injury. Magnitude values were significantly different from the control group, and increased gradually over time in the subcortical border region. Susceptibility-weighted images (SWI) indicated small petechial hemorrhages in the striatum and thalamus, as well as dilated intramedullary veins. Conclusion: SWI images can be used to detect white and gray matter microhemorrhages and dilated intramedullary veins. The T2*, phase, and magnitude map can also reflect the development of brain injury. Our data illustrate that ESWAN imaging can increase the diagnostic sensitivity and specificity of MRI in neonatal hypoxic-ischemic encephalopathy.

  4. Detection of hypoxic-ischemic brain injury with 3D-enhanced T2* weighted angiography (ESWAN) imaging

    International Nuclear Information System (INIS)

    Gang, QiangQiang; Zhang, Jianing; Hao, Peng; Xu, Yikai

    2013-01-01

    Objective: To demonstrate the use of 3D-enhanced T2* weighted angiography (ESWAN) imaging for the observation and quantification of the evolution of brain injury induced by a recently developed model of hypoxic-ischemic brain injury (HI/R) in neonatal piglets. Methods: For these experiments, newborn piglets were subjected to HI/R injury, during which ESWAN scanning was performed, followed by H and E staining and immunohistochemistry of AQP-4 expression. Results: In the striatum, values from T2* weighted magnetic resonance imaging (MRI) increased and reached their highest level at 3 days post injury, whereas T2* values increased and peaked at 24 h in the subcortical region. The change in T2* values was concordant with brain edema. Phase values in the subcortical border region were not dependent on time post-injury. Magnitude values were significantly different from the control group, and increased gradually over time in the subcortical border region. Susceptibility-weighted images (SWI) indicated small petechial hemorrhages in the striatum and thalamus, as well as dilated intramedullary veins. Conclusion: SWI images can be used to detect white and gray matter microhemorrhages and dilated intramedullary veins. The T2*, phase, and magnitude map can also reflect the development of brain injury. Our data illustrate that ESWAN imaging can increase the diagnostic sensitivity and specificity of MRI in neonatal hypoxic-ischemic encephalopathy

  5. Adrenal imaging agents

    International Nuclear Information System (INIS)

    Davis, M.A.; Hanson, R.N.; Holman, B.L.

    1980-01-01

    The goals of this proposal are the development of selenium-containing analogs of the aromatic amino acids as imaging agents for the pancreas and of the adrenal cortex enzyme inhibitors as imaging agents for adrenal pathology. The objects for this year include (a) the synthesis of methylseleno derivatives of phenylalanine and tryptophan, and (b) the preparation and evaluation of radiolabeled iodobenzoyl derivatives of the selenazole and thiazole analogs of metyrapone and SU-9055

  6. Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions

    International Nuclear Information System (INIS)

    Jain, Suneil; Coulter, Jonathan A.; Butterworth, Karl T.; Hounsell, Alan R.; McMahon, Stephen J.; Hyland, Wendy B.; Muir, Mark F.; Dickson, Glenn R.; Prise, Kevin M.; Currell, Fred J.; Hirst, David G.; O’Sullivan, Joe M.

    2014-01-01

    Background and purpose: Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored. Materials and methods: GNP uptake, localization, toxicity and radiosensitisation were assessed in vitro under oxic and hypoxic conditions. Results: GNP cellular uptake was significantly lower under hypoxic than oxic conditions. A significant reduction in cell proliferation in hypoxic MDA-MB-231 breast cancer cells exposed to GNPs was observed. In these cells significant radiosensitisation occurred in normoxia and moderate hypoxia. However, in near anoxia no significant sensitisation occurred. Conclusions: GNP uptake occurred in hypoxic conditions, causing radiosensitisation in moderate, but not extreme hypoxia in a breast cancer cell line. These findings may be important for the development of GNPs for cancer therapy

  7. Autoradiographic imaging of cerebral ischemia using hypoxic marker: 99mTc-HL91 in animal models

    International Nuclear Information System (INIS)

    Zhu Cansheng; Jiang Ningyi; Hu Xiaoke

    2001-01-01

    Objective: To explore the possibility of 99m Tc-HL91 imaging in detecting the ischemic penumbra during acute stoke. Methods; 16 Sprague-Dawley (SD) rats were divided into operation group (n=12) and pseudo-operation group (n=4) randomly. In operation group, 12 middle cerebral artery occlusion animal (MCAO) models were established by electrocautery. 4 rats in pseudo-operation group were treated as a control without occlusion. All animals were injected 99m Tc-HL91 intravenously 2 hours after occlusion. Animals were killed at different time after injection and brains were removed rapidly from the skull to do the autoradiographic study. Results: The ischemic territory accumulated more 99m Tc-HL91 than the opposite site in the autoradiogram at 1 hour after injection. The ischemic cerebral tissue can be visualized clearly. At 2, 4 hours after injection, the difference of accumulation of 99m Tc-HL91 in target and non-target site became more obvious. By using computer-enhanced imaging analysis, the optical density (OD) ratio differences between each subgroup of operation group and pseudo-operation group were all significant. The OD ratios (T/N) were 1.2691±0.0189, 1.3542±0.0119, 2.1201±0.0616, 2.5369±0.1214 respectively at 1, 2, 4 hours after 99m Tc-HL91 injection. Conclusion: 99m Tc-HL91 can be avidly taken up by ischemic penumbra. 99m Tc-HL91 is a potential agent for imaging hypoxic tissue, and 99m Tc-HL91 SPECT may be a promising imaging method in detecting the ischemic penumbra

  8. Azobenzene-caged sulforhodamine dyes: a novel class of ‘turn-on’ reactive probes for hypoxic tumor cell imaging

    Science.gov (United States)

    Chevalier, Arnaud; Piao, Wen; Hanaoka, Kenjiro; Nagano, Tetsuo; Renard, Pierre-Yves; Romieu, Anthony

    2015-12-01

    New sulforhodamine-based fluorescent ‘turn-on’ probes have been developed for the direct imaging of cellular hypoxia. Rapid access to this novel class of water-soluble ‘azobenzene-caged’ fluorophores was made possible through an easily-implementable azo-coupling reaction between a fluorescent primary arylamine derived from a sulforhodamine 101 scaffold (named SR101-NaphtNH 2 ) and a tertiary aniline whose N-substituents are neutral, cationic, or zwitterionic. The detection mechanism is based on the bioreductive cleavage of the azo bond that restores strong far-red fluorescence (emission maximum at 625 nm) by regenerating the original sulforhodamine SR101-NaphtNH 2 . This valuable fluorogenic response was obtained for the three ‘smart’ probes studied in this work, as shown by an in vitro assay using rat liver microsomes placed under aerobic and then under hypoxic conditions. Most importantly, the probe namely SR101-NaphtNH 2 -Hyp-diMe was successfully applied for imaging the hypoxic status of tumor cells (A549 cells).

  9. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging.

    Science.gov (United States)

    Daryaei, Iman; Pagel, Mark D

    2015-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a "double-agent" approach to molecular imaging. Exogenous T 2 -exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T 1 and T 2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as "secret agents" in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging.

  10. Hypoxic-Ischemic Encephalopathy With Clinical and Imaging Abnormalities Limited to Occipital Lobe.

    Science.gov (United States)

    Parmar, Hemant A; Trobe, Jonathan D

    2016-09-01

    The vulnerable brain areas in hypoxic-ischemic encephalopathy (HIE) following systemic hypotension are typically the neocortex, deep cerebral gray nuclei, hippocampus, cerebellum, and the parieto-occipital arterial border zone region. The visual cortex is not commonly recognized as a target in this setting. Single-institution review from 2007 to 2015 of patients who suffered cortical visual loss as an isolated clinical manifestation following systemic hypotension and whose brain imaging showed abnormalities limited to the occipital lobe. Nine patients met inclusion criteria. Visual loss at outset ranged from hand movements to 20/20, but all patients had homonymous field loss at best. In 1 patient, imaging was initially normal but 4 months later showed encephalomalacia. In 2 patients, imaging was initially subtle enough to be recognized as abnormal only when radiologists were advised that cortical visual loss was present. The occipital lobe may be an isolated target in HIE with cortical visual loss as the only clinical manifestation. Imaging performed in the acute period may appear normal or disclose abnormalities subtle enough to be overlooked. Radiologists informed of the clinical manifestations may be more attune to these abnormalities, which will become more apparent months later when occipital volume loss develops.

  11. Prostate Activated Prodrugs and Imaging Agents

    National Research Council Canada - National Science Library

    Jones, Graham B

    2004-01-01

    .... The substrate chosen was a 3 component system composed of a peptide sequence with affinity for PSA, an imaging agent and a deactivating bridge-linker, which electronically incapacitates the imaging agent...

  12. Seizure Severity Is Correlated With Severity of Hypoxic-Ischemic Injury in Abusive Head Trauma.

    Science.gov (United States)

    Dingman, Andra L; Stence, Nicholas V; O'Neill, Brent R; Sillau, Stefan H; Chapman, Kevin E

    2017-12-12

    The objective of this study was to characterize hypoxic-ischemic injury and seizures in abusive head trauma. We performed a retrospective study of 58 children with moderate or severe traumatic brain injury due to abusive head trauma. Continuous electroencephalograms and magnetic resonance images were scored. Electrographic seizures (51.2%) and hypoxic-ischemic injury (77.4%) were common in our cohort. Younger age was associated with electrographic seizures (no seizures: median age 13.5 months, interquartile range five to 25 months, versus seizures: 4.5 months, interquartile range 3 to 9.5 months; P = 0.001). Severity of hypoxic-ischemic injury was also associated with seizures (no seizures: median injury score 1.0, interquartile range 0 to 3, versus seizures: 4.5, interquartile range 3 to 8; P = 0.01), but traumatic injury severity was not associated with seizures (no seizures: mean injury score 3.78 ± 1.68 versus seizures: mean injury score 3.83 ± 0.95, P = 0.89). There was a correlation between hypoxic-ischemic injury severity and seizure burden when controlling for patient age (r s =0.61, P interquartile range 0 to 0.23 on magnetic resonance imaging done within two days versus median restricted diffusion ratio 0.13, interquartile range 0.01 to 0.43 on magnetic resonance imaging done after two days, P = 0.03). Electrographic seizures are common in children with moderate to severe traumatic brain injury from abusive head trauma, and therefore children with suspected abusive head trauma should be monitored with continuous electroencephalogram. Severity of hypoxic-ischemic brain injury is correlated with severity of seizures, and evidence of hypoxic-ischemic injury on magnetic resonance imaging may evolve over time. Therefore children with a high seizure burden should be reimaged to evaluate for evolving hypoxic-ischemic injury. Published by Elsevier Inc.

  13. Contrast Agent in Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Vu-Quang, Hieu

    2015-01-01

    Nanoparticles have been employed as contrast agent in magnetic resonance imaging (MRI) in order to improve sensitivity and accuracy in diagnosis. In addition, these contrast agents are potentially combined with other therapeutic compounds or near infrared bio-imaging (NIR) fluorophores to obtain...... theranostic or dual imaging purposes, respectively. There were two main types of MRI contrast agent that were synthesized during this PhD project including fluorine containing nanoparticles and magnetic nanoparticles. In regard of fluorine containing nanoparticles, there were two types contrast agent...... cancer cells for cancer diagnosis in MRI. F127-Folate coated SPION were stable in various types of suspension medium for over six months. They could specifically target folate receptor of cancer cells in vitro and in vivo thus enhancing the contrast in MRI T2/T2* weighted images. These are preliminary...

  14. Scintigraphic imaging of focal hypoxic tissue: development and clinical applications of 123I-IAZA

    Directory of Open Access Journals (Sweden)

    Leonard I. Wiebe

    2002-09-01

    Full Text Available Affected tissues in a number of diseases, including cancer, stroke, cardiac infarction and diabetes, develop focal tissue hypoxia during their progression. The presence of hypoxic tissue may make the disease refractory to therapy, as in the case of solid tumor therapy using low LET ionizing radiation. In other pathologies, the detection of viable but hypoxic tissues may serve as a prodromal indicator of developing disease (e.g. diabetes,or as a prognostic indicator for management of the disease (e.g. stroke. Over the past two decades, a number of hypoxia radioimaging agents have been developed and tested clinically. Of these, 18F-Fmiso and 123I-IAZA are the most widely used radiotracers for PET and SPECT/planar imaging, respectively. IAZA and Fmiso are a 2-nitroimidazoles that chemically bind to subcellular components of viable hypoxic tissues. They sensitize hypoxic tumour to the killing effects of ionizing radiation via mechanisms that mimic the radiosensitizing effects of oxygen, and are therefore called oxygen mimetics. The oxygen mimetic effect is attributable in large part to the covalent binding of reductively-activated nitroimidazole intermediates to critical cellular macromolecules. Nitroimidazoles labelled with gamma-emitting radionuclides (e.g. 18F-Fmiso and 123I-IAZA have been used as scintigraphic markers of tumour hypoxia, based on the need to identify radioresistant hypoxic tumour cells as part of the radiotherapy planning process. Broader interest in non-invasive, imaging-based identification of focal hypoxia in a number of diseases has extended hypoxia studies to include peripheral vascular disease associated with diabetes, rheumatoid arthritis, stroke, myocardial ischaemia, brain trauma and oxidative stress. In this review, the current status of hypoxia-selective studies with 123I-IAZA , an experimental diagnostic radiopharmaceutical, is reviewed with respect to its pre-clinical development and clinical applications.Os tecidos

  15. Intelligent Design of Nano-Scale Molecular Imaging Agents

    Directory of Open Access Journals (Sweden)

    Takeaki Ozawa

    2012-12-01

    Full Text Available Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs, biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  16. Quantification of ante-mortem hypoxic ischemic brain injury by post-mortem cerebral magnetic resonance imaging in neonatal encephalopathy.

    Science.gov (United States)

    Montaldo, Paolo; Chaban, Badr; Lally, Peter J; Sebire, Neil J; Taylor, Andrew M; Thayyil, Sudhin

    2015-11-01

    Post-mortem (PM) magnetic resonance imaging (MRI) is increasingly used as an alternative to conventional autopsy in babies dying from neonatal encephalopathy. However, the confounding effect of post-mortem changes on the detection of ante-mortem ischemic injury is unclear. We examined whether quantitative MR measurements can accurately distinguish ante-mortem ischemic brain injury from artifacts using post-mortem MRI. We compared PM brain MRI (1.5 T Siemens, Avanto) in 7 infants who died with neonatal encephalopathy (NE) of presumed hypoxic-ischemic origin with 7 newborn infants who had sudden unexplained neonatal death (SUND controls) without evidence of hypoxic-ischemic brain injury at autopsy. We measured apparent diffusion coefficients (ADCs), T1-weighted signal intensity ratios (SIRs) compared to vitreous humor and T2 relaxation times from 19 predefined brain areas typically involved in neonatal encephalopathy. There were no differences in mean ADC values, SIRs on T1-weighted images or T2 relaxation times in any of the 19 predefined brain areas between NE and SUND infants. All MRI images showed loss of cortical gray/white matter differentiation, loss of the normal high signal intensity (SI) in the posterior limb of the internal capsule on T1-weighted images, and high white matter SI on T2-weighted images. Normal post-mortem changes may be easily mistaken for ante-mortem ischemic injury, and current PM MRI quantitative assessment cannot reliably distinguish these. These findings may have important implications for appropriate interpretation of PM imaging findings, especially in medico-legal practice. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  17. Imaging efficacy of a targeted imaging agent for fluorescence endoscopy

    Science.gov (United States)

    Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.

  18. Improved radionuclide bone imaging agent injection needle withdrawal method can improve image quality

    International Nuclear Information System (INIS)

    Qin Yongmei; Wang Laihao; Zhao Lihua; Guo Xiaogang; Kong Qingfeng

    2009-01-01

    Objective: To investigate the improvement of radionuclide bone imaging agent injection needle withdrawal method on whole body bone scan image quality. Methods: Elbow vein injection syringe needle directly into the bone imaging agent in the routine group of 117 cases, with a cotton swab needle injection method for the rapid pull out the needle puncture point pressing, pressing moment. Improvement of 117 cases of needle injection method to put two needles into the skin swabs and blood vessels, pull out the needle while pressing two or more entry point 5min. After 2 hours underwent whole body bone SPECT imaging plane. Results: The conventional group at the injection site imaging agents uptake rate was 16.24%, improved group was 2.56%. Conclusion: The modified bone imaging agent injection needle withdrawal method, injection-site imaging agent uptake were significantly decreased whole body bone imaging can improve image quality. (authors)

  19. Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours

    International Nuclear Information System (INIS)

    Horsman, M.

    1996-01-01

    Oxygen deficient hypoxic cells, which are resistant to sparsely ionising radiation, have now been identified in most animal and some human solid tumours and will influence the response of those tumours to radiation treatment. This hypoxia can be either chronic, arising from an oxygen diffusion limitation, or acute, resulting from transient stoppages in microregional blood flow. Extensive experimental studies, especially in the last decade, have shown that nicotinamide and structurally related analogs can effectively sensitize murine tumours to both single and fractionated radiation treatments and that they do so in preference to the effects seen in mouse normal tissues. The earliest studies suggested that this enhancement of radiation damage was the result of an inhibition of the repair mechanisms. However, recent studies in mouse tumours have shown that these drugs prevent transient cessations in blood flow, thus inhibiting the development of acute hypoxia. This novel discovery led to the suggestion that the potential role of these agents as radiosensitizers would be when combined with treatments that overcame chronic hypoxia. The combined nicotinamide with hyperthermia proved that the enhancement of radiation damage by both agents together was greater than that seen with each agent alone. Similar results were later seen for nicotinamide combined with a perfluorochemical emulsion, carbogen breathing, and pentoxifylline, and in all these studies the effects in tumours were always greater than those seen in appropriate normal tissues. Of all the analogs, it is nicotinamide itself which has been the most extensively studied as a radiosensitizer in vivo and the one that shows the greatest effect in animal tumours. It is also an agent that has been well established clinically, with daily doses of up to 6 g, associated with a low incidence of side effects. This human dose is equivalent to 100-200 mg/kg in mice and such doses will maximally sensitize murine tumours to

  20. Understanding Hypoxic Drive and the Release of Hypoxic Vasoconstriction.

    Science.gov (United States)

    Inkrott, Jon C

    2016-01-01

    Understanding the hypoxic drive and release of hypoxic vasoconstriction in the chronic obstructive pulmonary disease population can be somewhat confusing and misunderstood. Furthermore, the hypoxic drive theory is one in which there really is no scientific evidence to support and yet continues to prosper in every aspect of care in regard to the chronic lung patient, from prehospital all the way to intensive care unit and home care therapy. This subject review will hopefully enhance some understanding of what exactly goes on with these patients and the importance of providing oxygen when it is desperately needed. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  1. Hypoxic radiosensitization: adored and ignored

    DEFF Research Database (Denmark)

    Overgaard, Jens

    2007-01-01

    resistance can be eliminated or modified by normobaric or hyperbaric oxygen or by the use of nitroimidazoles as hypoxic radiation sensitizers. More recently, attention has been given to hypoxic cytotoxins, a group of drugs that selectively or preferably destroys cells in a hypoxic environment. An updated......Since observations from the beginning of the last century, it has become well established that solid tumors may contain oxygen-deficient hypoxic areas and that cells in such areas may cause tumors to become radioresistant. Identifying hypoxic cells in human tumors has improved by the help of new...

  2. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    International Nuclear Information System (INIS)

    Bache, Matthias; Taubert, Helge; Vordermark, Dirk; Zschornak, Martin P; Passin, Sarina; Keßler, Jacqueline; Wichmann, Henri; Kappler, Matthias; Paschke, Reinhard; Kaluđerović, Goran N; Kommera, Harish

    2011-01-01

    Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. Under normoxic conditions, a half maximal inhibitory concentration (IC 50 ) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. Our results suggest that BA is capable

  3. [SOS response of DNA repair and genetic cell instability under hypoxic conditions].

    Science.gov (United States)

    Vasil'eva, S V; Strel'tsova, D A

    2011-01-01

    The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions.

  4. Multimodal nanoparticle imaging agents: design and applications

    Science.gov (United States)

    Burke, Benjamin P.; Cawthorne, Christopher; Archibald, Stephen J.

    2017-10-01

    Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  5. Introduction to altitude/hypoxic training symposium.

    Science.gov (United States)

    Wilber, Randall L

    2007-09-01

    Altitude/hypoxic training has traditionally been an intriguing and controversial area of research and sport performance. This controversial aspect was evident recently in the form of scholarly debates in highly regarded professional journals, as well as the World Anti-Doping Agency's (WADA) consideration of placing "artificially-induced hypoxic conditions" on the 2007 Prohibited List of Substances/Methods. In light of the ongoing controversy surrounding altitude/hypoxic training, this symposium was organized with the following objectives in mind: 1) to examine the primary physiological responses and underlying mechanisms associated with altitude/hypoxic training, including the influence of genetic predisposition; 2) to present evidence supporting the effect of altitude/hypoxic acclimatization on both hematological and nonhematological markers, including erythrocyte volume, skeletal muscle-buffering capacity, hypoxic ventilatory response, and physiological efficiency/economy; 3) to evaluate the efficacy of several contemporary simulated altitude modalities and training strategies, including hypoxic tents, nitrogen apartments, and intermittent hypoxic exposure (IHE) or training, and to address the legal and ethical issues associated with the use of simulated altitude; and 4) to describe different altitude/hypoxic training strategies used by elite-level athletes, including Olympians and military special forces. In addressing these objectives, papers will be presented on the topics of: 1) effect of hypoxic "dose" on physiological responses and sea-level performance (Drs. Benjamin Levine and James Stray-Gundersen), 2) nonhematological mechanisms of improved performance after hypoxic exposure (Dr. Christopher Gore), 3) application of altitude/hypoxic training by elite athletes (Dr. Randall Wilber), and 4) military applications of hypoxic training (Dr. Stephen Muza).

  6. The Correlation Between a Short-term Conventional Electroencephalography in the First Day of Life and Brain Magnetic Resonance Imaging in Newborns Undergoing Hypothermia for Hypoxic-Ischemic Encephalopathy.

    Science.gov (United States)

    Obeid, Rawad; Sogawa, Yoshimi; Gedela, Satyanarayana; Naik, Monica; Lee, Vince; Telesco, Richard; Wisnowski, Jessica; Magill, Christine; Painter, Michael J; Panigrahy, Ashok

    2017-02-01

    Electroencephalograph recorded in the first day of life in newborns treated with hypothermia for hypoxic-ischemic encephalopathy could be utilized as a predictive tool for the severity of brain injury on magnetic resonance imaging and mortality. We analyzed newborns who were admitted for therapeutic hypothermia due to hypoxic-ischemic encephalopathy. All enrolled infants underwent encephalography within the first 24 hours of life and underwent brain magnetic resonance imaging after rewarming. All encephalographs were independently reviewed for background amplitude, continuity, and variability. Brain injury determined by magnetic resonance imaging was scored using methods described by Bonifacio et al. Forty-one newborns were included in the study. Each encephalograph variable correlated significantly with the severity of injury on brain magnetic resonance imaging (P encephalopathy correlated with the extent of injury on brain magnetic resonance imaging. This information may be useful for families and aid guide clinical decision making. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Liposomes as carriers of imaging agents

    International Nuclear Information System (INIS)

    Caride, V.J.

    1985-01-01

    This review discusses the utilization of liposomes as imaging agents or as vehicles for contrast materials. The initial approach was the use of radiolabeled liposomes for scintigraphy. To this end liposomes were either labeled in the lipid membrane or aqueous radiotracers were incorporated inside the lipid vesicles. The lipid labeling provides a more stable association of the radioactive tracer and the lipid vesicles, while the use of water-soluble radiotracers provides a wider selection of compounds. Early attempts at selective tumor imaging using radiolabeled liposomes were unsuccessful. The use of monoclonal antibodies attached to liposomes offers new hopes. Several strategies have been proposed in this respect and several others can be envisioned. The use of liposomes permits the use of several administration routes for imaging agents. Of particular interest is the subcutaneous administration for lymph node visualization. Liposomes offer clear advantages over most radiocontrast agents for prolonged hepatosplenic contrast enhancement. This is particularly relevant in the diagnostic evaluation of the abdomen with computed tomography. Important research efforts are being conducted in this area. Two different approaches have been advanced: the incorporation of contrast agents into liposomes and the preparation of radiopaque liposomes from radiodense lipids. Nuclear magnetic resonance imaging can also benefit from contrast agents. Several centers are investigating this exciting field using liposomes loaded with paramagnetic elements.152 references

  8. Use of hypoxia imaging agent 99mTc-HL91 in rat cerebral ischemia models

    International Nuclear Information System (INIS)

    Zhou Ying; Qu Wanying; Li Meng; Chen Fang; Yao Zhiming; Zhu Ming; Zhu Lin

    1999-01-01

    Objective: To explore the possibility of diagnosis for cerebrovascular disease by a novel synthetic hypoxia agent 99m Tc-HL91 used in rat cerebral ischemia models. Methods: Pharmacological experiments of 99m Tc-HL91 were carried out including common properties, radiochemical purity, stability in vitro, anomalous toxicity test and biodistribution in mice. Fifteen cerebral ischemic rat models were established and received 99m Tc-HL91 scintigraphy. Results: 1) HL91 kits were labelled with 99m Tc easily and showed high radiochemical purity and stability. 2) Rapid clearance in blood, heart and lungs and high activity in liver, kidneys and intestines were observed. Relatively low uptake in brain was identified. 3) The radioactivity in ischemic brain tissue increased significantly at 4h postinjection in both rat images and isolated brain images. 4) The radioactivity ratios of lesion to normal brain tissue by drawing ROIs in isolated brain planar images were 0.98 +- 0.06, 0.99 +- 0.05, 1.29 +- 0.03, 1.56 +- 0.14 and 1.66 +- 0.06 at 1,2,4,8 and 12 h postinjection, respectively. There were significant differences among all groups except for 1 h and 2 h, 8 h and 12 h postinjection (P 99m Tc-HL91 in the hypoxic, ischemic brain tissue have been proved. It is appropriate to perform imaging at 4 h postinjection

  9. Smart Contrast Agents for Magnetic Resonance Imaging.

    Science.gov (United States)

    Bonnet, Célia S; Tóth, Éva

    2016-01-01

    By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.

  10. Liposome imaging agents in personalized medicine

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Hansen, Anders Elias; Gabizon, Alberto

    2012-01-01

    In recent years the importance of molecular and diagnostic imaging has increased dramatically in the treatment planning of many diseases and in particular in cancer therapy. Within nanomedicine there are particularly interesting possibilities for combining imaging and therapy. Engineered liposomes...... that selectively localize in tumor tissue can transport both drugs and imaging agents, which allows for a theranostic approach with great potential in personalized medicine. Radiolabeling of liposomes have for many years been used in preclinical studies for evaluating liposome in vivo performance and has been...... start to consider how to use imaging for patient selection and treatment monitoring in connection to nanocarrier based medicines. Nanocarrier imaging agents could furthermore have interesting properties for disease diagnostics and staging. Here, we review the major advances in the development...

  11. Hypoxic-ischemic encefalopathy: Clinical course and prognosis

    Directory of Open Access Journals (Sweden)

    Ćosić-Cerovac Nataša

    2003-01-01

    Full Text Available Background. Establishing the value of neurological examination, and additional diagnostic methods (ultrasonography and magnetic resonance imaging of the brain in the diagnosis and prognosis of hypoxic-ischemic encephalopathy and its treatment, tracking the clinical course, and making the prognosis of neurological development in newborn infants with hypoxic-ischemic encefalopathy. Methods. The group of 40 term newborn infants with suspected intrauterine asphyxia was examined. All the infants were prospectivelly followed untill the 3rd year of age at the Clinic for Neurology and Psychiatry for Children and Youth in order to estimate their neurological development and to diagnose the occurence of persistent neurological disorders. All the infants were analyzed by their gestational age and Apgar score in the 1st and the 5th minute of life. They were all examined neurologically and by ultrasonography in the first week of life and, repeatedly, at the age of 1, 3, 6, 9, 12, 18, as well as in the 24th month of life. They were treated by the standard methods for this disease. Finally, all the infants were examined neurologically and by magnetic resonance imaging of the brain in their 3rd year of age. On the basis of neurological finding infants were devided into 3 groups: infants with normal neurological finding, infants with mild neurological symptomatology, and infants with severe neurological disorders. Results. It was shown that neurological finding, ultrasonography and magnetic resonance imaging of the brain positively correlated with the later neurological development of the infants with hypoxic-ischemic encephalopathy. Conclusion. Only the combined use of these techniques had full diagnostic and prognostic significance emphasizing that the integrative approach was very important in the diagnosis of brain lesions in infants.

  12. Patterns of neonatal hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Vries, Linda S. de; Groenendaal, Floris

    2010-01-01

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  13. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  14. OUTCOMES in CHILDHOOD FOLLOWING THERAPEUTIC HYPOTHERMIA for NEONATAL HYPOXIC-ISCHEMIC ENCEPHALOPATHY (HIE)

    Science.gov (United States)

    Natarajan, Girija; Pappas, Athina; Shankaran, Seetha

    2017-01-01

    In this chapter we review the childhood outcomes of neonates with birth depression and/or hypoxic-ischemic encephalopathy. The outcomes of these children prior to the era of hypothermia for neuroprotection will first be summarized, followed by discussion of results from randomized controlled trials of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy. The predictors of outcome in childhood following neonatal HIE using clinical and imaging biomarkers following hypothermia therapy will be described. PMID:27863707

  15. Hypoxic tumor environments exhibit disrupted collagen I fibers and low macromolecular transport.

    Directory of Open Access Journals (Sweden)

    Samata M Kakkad

    Full Text Available Hypoxic tumor microenvironments result in an aggressive phenotype and resistance to therapy that lead to tumor progression, recurrence, and metastasis. While poor vascularization and the resultant inadequate drug delivery are known to contribute to drug resistance, the effect of hypoxia on molecular transport through the interstitium, and the role of the extracellular matrix (ECM in mediating this transport are unexplored. The dense mesh of fibers present in the ECM can especially influence the movement of macromolecules. Collagen 1 (Col1 fibers form a key component of the ECM in breast cancers. Here we characterized the influence of hypoxia on macromolecular transport in tumors, and the role of Col1 fibers in mediating this transport using an MDA-MB-231 breast cancer xenograft model engineered to express red fluorescent protein under hypoxia. Magnetic resonance imaging of macromolecular transport was combined with second harmonic generation microscopy of Col1 fibers. Hypoxic tumor regions displayed significantly decreased Col1 fiber density and volume, as well as significantly lower macromolecular draining and pooling rates, than normoxic regions. Regions adjacent to severely hypoxic areas revealed higher deposition of Col1 fibers and increased macromolecular transport. These data suggest that Col1 fibers may facilitate macromolecular transport in tumors, and their reduction in hypoxic regions may reduce this transport. Decreased macromolecular transport in hypoxic regions may also contribute to poor drug delivery and tumor recurrence in hypoxic regions. High Col1 fiber density observed around hypoxic regions may facilitate the escape of aggressive cancer cells from hypoxic regions.

  16. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions

    International Nuclear Information System (INIS)

    Ren Hongying; Cao Ying; Zhao, Qinjun; Li Jing; Zhou Cixiang; Liao Lianming; Jia Mingyue; Zhao Qian; Cai Huiguo; Han Zhongchao; Yang Renchi; Chen Guoqiang; Zhao, R.C.

    2006-01-01

    Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O 2 , bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G 2 /S/M phase cells increased evidently under 8% O 2 condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O 2 condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl 2 ) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation

  17. Magnetic resonance imaging contrast agents: Overview and perspectives

    International Nuclear Information System (INIS)

    Yan Guoping; Robinson, Leslie; Hogg, Peter

    2007-01-01

    Magnetic resonance imaging (MRI) is a non-invasive clinical imaging modality, which has become widely used in the diagnosis and/or staging of human diseases around the world. Some MRI examinations include the use of contrast agents. The categorizations of currently available contrast agents have been described according to their effect on the image, magnetic behavior and biodistribution in the body, respectively. In this field, superparamagnetic iron oxide particles and soluble paramagnetic metal chelates are two main classes of contrast agents for MRI. This review outlines the research and development of MRI contrast agents. In future, the ideal MRI contrast agent will be focused on the neutral tissue- or organ-targeting materials with high relaxivity and specificity, low toxicity and side effects, suitable long intravascular duration and excretion time, high contrast enhancement with low dose in vivo, and with minimal cost

  18. Turnover rate of hypoxic cells in solid tumors

    International Nuclear Information System (INIS)

    Ljungkvist, A.S.E.; Bussink, J.; Rijken, P.F.J.W.; Van Der Kogel, A.J.

    2003-01-01

    Most solid tumors contain hypoxic cells, and both the amount and duration of tumor hypoxia has been shown to influence the effect of radiation treatment negatively. It is important to understand the dynamic processes within the hypoxic cell population in non-treated tumors, and the effect of different treatment modalities on the kinetics of hypoxic cells to be able to design optimal combined modality treatments. The turnover rate of hypoxic cells was analyzed in three different solid tumor models with a double bio-reductive hypoxic marker assay with sequential injection of the two hypoxic markers. Previously it was shown that this assay could be used to detect both a decrease and an increase of tumor hypoxia in relation to the tumor vasculature with high spatial resolution. In this study the first hypoxic marker, pimonidazole, was administered at variable times relative to tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. The hypoxic cell turnover rate was calculated as the loss of pimonidazole positive cells relative to CCI-103F. The murine C38 line had the fastest hypoxic turnover rate of 60% /24h and the human xenograft line SCCNij3 had the slowest hypoxic turnover rate of 30% /24 h. The hypoxic turnover rate was most heterogeneous in the SCCNij3 line that even contained viable groups of cells that had been hypoxic for at least 5 days. The human xenograft line MEC82 fell in between with a hypoxic turnover rate of 50% /24 h. The hypoxic cell turnover was related to the potential tumor volume doubling time (Tpot) with a Tpot of 26h in C38 and 103h in SCCNij3. The dynamics of hypoxic cells, quantified with a double hypoxic marker method, showed large differences in hypoxic cell turnover rate and were related to Tpot

  19. Cerebral circulation and prognosis of the patients with hypoxic encephalopathy

    International Nuclear Information System (INIS)

    Nogami, Kenichiro; Fujii, Masami; Kashiwagi, Shiro; Sadamitsu Daikai; Maekawa, Tsuyoshi

    2000-01-01

    Recent progress in cardiopulmonary resuscitation techniques improved the survival rate of patients with acute cardiopulmonary disturbances. However, severe cerebral complications remained frequently in patients who survived the acute stage. Early prediction of cerebral prognosis is important to optimize the management of these patients. We examined the relations between radiological findings (Xe-CT and MRI) and cerebral prognosis. Patients included in this study were selected from all patients with hypoxic encephalopathy admitted to our hospital. There were 11 men and 10 women. Causes of hypoxic encephalopathy were heart disease (11 cases), suffocation (4 cases), CO intoxication (2 cases), asthma (1 case), pneumothorax (1 case), anaphyraxy shock (1 case) and electric shock (1 case). Xe-CT and MRI were carried out 3 weeks after the onset. Cerebral blood flow (CBF) of the patients was measured at rest and 15 minutes after intravenous administration of acetazolamide (1 g). The prognosis was evaluated 3 months after the onset in accordance with Glasgow Outcome Scale (GOS). Low hemispheric CBF (30 ml/100 g/min), poor reactivity of acetazolamide challenge test (10 ml/100 g/min), presence of hyperintensity areas in the basal ganglia in T1 weighted images (T1WI) and T2 weighted images (T2WI) are the factors associated with poor outcome in hypoxic encephalopathy. (author)

  20. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1

    Science.gov (United States)

    Harrison, Luke R.E.; Micha, Dimitra; Brandenburg, Martin; Simpson, Kathryn L.; Morrow, Christopher J.; Denneny, Olive; Hodgkinson, Cassandra; Yunus, Zaira; Dempsey, Clare; Roberts, Darren; Blackhall, Fiona; Makin, Guy; Dive, Caroline

    2011-01-01

    Solid tumors contain hypoxic regions in which cancer cells are often resistant to chemotherapy-induced apoptotic cell death. Therapeutic strategies that specifically target hypoxic cells and promote apoptosis are particularly appealing, as few normal tissues experience hypoxia. We have found that the compound ABT-737, a Bcl-2 homology domain 3 (BH-3) mimetic, promotes apoptotic cell death in human colorectal carcinoma and small cell lung cancer cell lines exposed to hypoxia. This hypoxic induction of apoptosis was mediated through downregulation of myeloid cell leukemia sequence 1 (Mcl-1), a Bcl-2 family protein that serves as a biomarker for ABT-737 resistance. Downregulation of Mcl-1 in hypoxia was independent of hypoxia-inducible factor 1 (HIF-1) activity and was consistent with decreased global protein translation. In addition, ABT-737 induced apoptosis deep within tumor spheroids, consistent with an optimal hypoxic oxygen tension being necessary to promote ABT-737–induced cell death. Tumor xenografts in ABT-737–treated mice also displayed significantly more apoptotic cells within hypoxic regions relative to normoxic regions. Synergies between ABT-737 and other cytotoxic drugs were maintained in hypoxia, suggesting that this drug may be useful in combination with chemotherapeutic agents. Taken together, these findings suggest that Mcl-1–sparing BH-3 mimetics may induce apoptosis in hypoxic tumor cells that are resistant to other chemotherapeutic agents and may have a role in combinatorial chemotherapeutic regimens for treatment of solid tumors. PMID:21393866

  1. Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (HIE).

    Science.gov (United States)

    Natarajan, Girija; Pappas, Athina; Shankaran, Seetha

    2016-12-01

    In this article, we review the childhood outcomes of neonates with birth depression and/or hypoxic-ischemic encephalopathy. The outcomes of these children prior to the era of hypothermia for neuroprotection will first be summarized, followed by discussion of results from randomized controlled trials of therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy. The predictors of outcome in childhood following neonatal HIE using clinical and imaging biomarkers following hypothermia therapy will be described. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Adapting radiotherapy to hypoxic tumours

    International Nuclear Information System (INIS)

    Malinen, Eirik; Soevik, Aste; Hristov, Dimitre; Bruland, Oeyvind S; Olsen, Dag Rune

    2006-01-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO 2 -related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO 2 -related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO 2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO 2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure

  3. Adapting radiotherapy to hypoxic tumours

    Science.gov (United States)

    Malinen, Eirik; Søvik, Åste; Hristov, Dimitre; Bruland, Øyvind S.; Rune Olsen, Dag

    2006-10-01

    In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO2-related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO2-related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure (fields

  4. The preparation and biological characterization of a new HL91-derivative for hypoxic imaging on stroke mice

    Energy Technology Data Exchange (ETDEWEB)

    Hsia, C.-C. [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taiwan (China); Institute of Nuclear Energy Research, Taiwan (China); Huang, F.-L.; Lin, C.-H.; Shen, L.-H. [Institute of Nuclear Energy Research, Taiwan (China); Wang, H.-E., E-mail: hewang@ym.edu.t [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taiwan (China)

    2010-09-15

    Aim: {sup 99m}Tc-HL91 (Prognox, GE-Healthcare) was the first nonnitro-aryl-based radiotracer for evaluating hypoxic fraction in neoplasm, stroke and myocardium infarction regions. However, the high hydrophilicity of {sup 99m}Tc-HL91 might hamper its penetration into cells. In this study, we prepared a new ligand 4,4,11,11-tetramethyl- 5,10-diazatetradecane- 3,12-dionedioxime (HL91-ET) with higher lipophilicity but structurally similar compared with that of HL91. The chemical and biological characterizations of {sup 99m}Tc-HL91-ET as a scintigraphic probe for hypoxia were performed with a stroke-bearing mouse model. Materials and Methods: HL91-ET was synthesized and formulated with stannous chloride and buffer to afford kits. After mixing with {sup 99m}Tc-pertechnetate, {sup 99m}Tc-HL91-ET can be prepared in high yield and high radiochemical purity (both >96%). The partition coefficient of {sup 99m}Tc-HL91-ET was determined in n-octanol/PBS system. Cellular uptake assays under normoxic and hypoxic conditions were performed in an oxygen-controlled CO{sub 2} incubator. Brain stroke in the mouse model was induced by the electrocautery of the middle cerebral artery. After intravenous injection of {sup 99m}Tc-HL91-ET into the Balb/c mouse suffering brain stroke, small-animal SPECT images were acquired at designated time points and autoradiography of the brain slides was conducted. Parallel studies of {sup 99m}Tc-HL91 were also conducted at the same conditions for comparison. Results: The higher partition coefficient of {sup 99m}Tc-HL91-ET (0.294{+-}0.007) indicated higher lipophlicity compared with that of {sup 99m}Tc-HL91 (0.089{+-}0.005). The {sup 99m}Tc-HL91-ET preparation was stable at ambient temperature for 24 h. Cellular uptake assay showed that {sup 99m}Tc-HL91-ET was less selectively retained in hypoxic cells than {sup 99m}Tc-HL91. The target-to-normal brain ratios derived from the autoradiograms of the brains of stroke mice were 1.31{+-}0.02 and 17

  5. The preparation and biological characterization of a new HL91-derivative for hypoxic imaging on stroke mice

    International Nuclear Information System (INIS)

    Hsia, C.-C.; Huang, F.-L.; Lin, C.-H.; Shen, L.-H.; Wang, H.-E.

    2010-01-01

    Aim: 99m Tc-HL91 (Prognox, GE-Healthcare) was the first nonnitro-aryl-based radiotracer for evaluating hypoxic fraction in neoplasm, stroke and myocardium infarction regions. However, the high hydrophilicity of 99m Tc-HL91 might hamper its penetration into cells. In this study, we prepared a new ligand 4,4,11,11-tetramethyl- 5,10-diazatetradecane- 3,12-dionedioxime (HL91-ET) with higher lipophilicity but structurally similar compared with that of HL91. The chemical and biological characterizations of 99m Tc-HL91-ET as a scintigraphic probe for hypoxia were performed with a stroke-bearing mouse model. Materials and Methods: HL91-ET was synthesized and formulated with stannous chloride and buffer to afford kits. After mixing with 99m Tc-pertechnetate, 99m Tc-HL91-ET can be prepared in high yield and high radiochemical purity (both >96%). The partition coefficient of 99m Tc-HL91-ET was determined in n-octanol/PBS system. Cellular uptake assays under normoxic and hypoxic conditions were performed in an oxygen-controlled CO 2 incubator. Brain stroke in the mouse model was induced by the electrocautery of the middle cerebral artery. After intravenous injection of 99m Tc-HL91-ET into the Balb/c mouse suffering brain stroke, small-animal SPECT images were acquired at designated time points and autoradiography of the brain slides was conducted. Parallel studies of 99m Tc-HL91 were also conducted at the same conditions for comparison. Results: The higher partition coefficient of 99m Tc-HL91-ET (0.294±0.007) indicated higher lipophlicity compared with that of 99m Tc-HL91 (0.089±0.005). The 99m Tc-HL91-ET preparation was stable at ambient temperature for 24 h. Cellular uptake assay showed that 99m Tc-HL91-ET was less selectively retained in hypoxic cells than 99m Tc-HL91. The target-to-normal brain ratios derived from the autoradiograms of the brains of stroke mice were 1.31±0.02 and 17.47±0.10 (n=3), respectively, at 2 h post injection of 99m Tc-HL91-ET and 99m Tc-HL91

  6. Cranial nerve contrast using nerve-specific fluorophores improved by paired-agent imaging with indocyanine green as a control agent

    Science.gov (United States)

    Torres, Veronica C.; Vuong, Victoria D.; Wilson, Todd; Wewel, Joshua; Byrne, Richard W.; Tichauer, Kenneth M.

    2017-09-01

    Nerve preservation during surgery is critical because damage can result in significant morbidity. This remains a challenge especially for skull base surgeries where cranial nerves (CNs) are involved because visualization and access are particularly poor in that location. We present a paired-agent imaging method to enhance identification of CNs using nerve-specific fluorophores. Two myelin-targeting imaging agents were evaluated, Oxazine 4 and Rhodamine 800, and coadministered with a control agent, indocyanine green, either intravenously or topically in rats. Fluorescence imaging was performed on excised brains ex vivo, and nerve contrast was evaluated via paired-agent ratiometric data analysis. Although contrast was improved among all experimental groups using paired-agent imaging compared to conventional, solely targeted imaging, Oxazine 4 applied directly exhibited the greatest enhancement, with a minimum 3 times improvement in CNs delineation. This work highlights the importance of accounting for nonspecific signal of targeted agents, and demonstrates that paired-agent imaging is one method capable of doing so. Although staining, rinsing, and imaging protocols need to be optimized, these findings serve as a demonstration for the potential use of paired-agent imaging to improve contrast of CNs, and consequently, surgical outcome.

  7. In vitro effects of piracetam on the radiosensitivity of hypoxic cells (adaptation of MTT assay to hypoxic conditions)

    International Nuclear Information System (INIS)

    Gheuens, E.E.O.; Bruijn, E.A. de; Van der Heyden, S.; Van Oosterom, A.T.; Lagarde, P.; Pooter, C.M.J. de; Chomy, F.

    1995-01-01

    This paper describes the adaptation of the MTT assay to hypoxic conditions in order to test the in vitro effect of piracetam on hypoxic cells and particularly on the radiosensitivity of hypoxic cells since this drug has shown clinical effect on acute and chronic hypoxia. The V79 cell line was selected by reference to preliminary hypoxic experiments using clonogenic assay and euoxic experiments using clonogenic and MTT assays. Cell growth and survival in our hypoxic conditions were assessed using MTT assay with an enclosure and special 48-well plates both made of glass. Growth curves on glass plates after 1-hour exposure to nitrogen versus air were comparable, so there is no bias effect due to gas composition. Survival curves using MTT versus reference clonogenic assay were comparable after radiation exposure in eu- and hypoxic conditions, and confirm the validity of our original technique for creating hypoxia. The Oxygen Enhancement Ratio was of about 3 for 1-hour hypoxic exposure. Piracetam gave no cytotoxic effect up to 10 mM of piracetam. Growth curves after continuous drug exposure and 1-hour euoxic versus hypoxic exposure gave no cytotoxic effect up to 10 mM of piracetam. Survival curves after continuous drug exposure to 10 mM of piracetam gave no significant effect on the radiosensitivity of hypoxic V79 cells using MTT or clonogenic assay. (author). 32 refs., 6 figs

  8. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hongying, Ren; Huiguo, Cai; Zhongchao, Han; Renchi, Yang; Zhao, Qinjun [State Key Lab of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin (China); Ying, Cao; Jing, Li [Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Cixiang, Zhou [Health Science Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Science-SSMU, Shanghai (China); Lianming, Liao; Mingyue, Jia [Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Qian, Zhao [Health Science Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Science-SSMU, Shanghai (China); Guoqiang, Chen [Health Science Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Science-SSMU, Shanghai (China); Zhao, R C [State Key Lab of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin (China); [Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)]. E-mail: chunhuaz@public.tpt.tj.cn

    2006-08-18

    Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O{sub 2}, bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G{sub 2}/S/M phase cells increased evidently under 8% O{sub 2} condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O{sub 2} condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl{sub 2}) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation.

  9. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-01-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, ∼4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  10. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-09-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.

  11. Meeting Report: High-Throughput Technologies for In Vivo Imaging Agents

    Directory of Open Access Journals (Sweden)

    Robert J. Gillies

    2005-04-01

    Full Text Available Combinatorial chemistry and high-throughput screening have become standard tools for discovering new drug candidates with suitable pharmacological properties. Now, those same technologies are starting to be applied to the problem of discovering novel in vivo imaging agents. Important differences in the biological and pharmacological properties needed for imaging agents, compared to those for a therapeutic agent, require new screening methods that emphasize those characteristics, such as optimized residence time and tissue specificity, that make for a good imaging agent candidate.

  12. Fundamental study of DSA images using gadolinium contrast agent

    International Nuclear Information System (INIS)

    Nagashima, Hiroyuki; Shiraishi, Akihisa; Igarashi, Hitoshi; Sakamoto, Hajime; Sano, Yoshitomo

    2002-01-01

    Most contrast agents used in digital subtraction angiography (DSA) are non-ionic iodinated contrast agents, which can cause severe side effects in patients with contraindications for iodine or allergic reactions to iodine. Therefore, DSA examinations using carbon dioxide gas or examinations done by magnetic resonance imaging (MRI) and ultrasound (US) were carried out in these patients. However, none of these examinations provided mages as clear as those of DSA with an iodinated contrast agent. We experienced DSA examination using a gadolinium contrast agent in a patient contraindicated for iodine. The patient had undergone MRI examination with a gadolinium contrast agent previously without side effects. The characteristics of gadolinium and the iodinated contrast agent were compared, and the DSA images obtained clinically using these media were also evaluated. The signal-to-noise (SN) ratio of the gadolinium contrast agent was the highest at tube voltages of 70 to 80 kilovolts and improved slightly when the image intensifier (I.I.) entrance dose was greater than 300 μR (77.4 nC/kg). The dilution ratios of five iodinated contrast agents showed the same S/N value as the undiluted gadolinium contrast agent. Clinically, the images obtained showed a slight decrease in contrast but provided the data necessary to make a diagnosis and made it possible to obtain interventional radiology (IVR) without any side effects. DSA examinations using a gadolinium contrast agent have some benefit with low risk and are thought to be useful for patients contraindicated for iodine. (author)

  13. Magnetic Resonance Imaging Contrast Agents: A Review of Literature

    Directory of Open Access Journals (Sweden)

    Zahra Sahraei

    2015-10-01

    Full Text Available  Magnetic Resonance Imaging (MRI contrast agents most commonly agents used in diagnosing different diseases. Several agents have been ever introduced with different peculiar characteristics. They vary in potency, adverse reaction and other specification, so it is important to select the proper agent in different situations. We conducted a systematic literature search in MEDLINE/PUBMED, Web of Science (ISI, Scopus,Google Scholar by using keywords "gadolinium" and "MRI contrast Medias", "Gadofosvest", "Gadobenate" and "Gadoxetate". The most frequent contrast media agents made based on gadolinium (Gd. These are divided into two categories based on the structure of their chelating parts, linear agents and macrocyclic agents. All characteristics of contrast media factors, including efficiency, kinetic properties, stability, side effects and the rate of resolution are directly related to the structure of chelating part of that formulation.In vitro data has shown that the macrocyclic compounds are the most stable Gd-CA as they do not bind to serum proteins, they all possess similar and relatively low relaxivity and the prevalence of Nephrogenic Systemic Fibrosis (NSF has decreased by increasing the use of macrocyclic agents in recent years. No cases of NSF have been recorded after the administration of any of the high-relaxivity protein interacting agents, the vascular imaging agent gadofosveset trisodium (Ablavar, the hepatic imaging agent gadoxetate meglumine (Eovist, and the multipurpose agent gadobenate dimeglumine (MultiHance. In pregnancy and lactating women, stable macrocyclic agent is recommended.

  14. Studies of 99mTc-BnAO (HL-91): a non-nitroaromatic compound for hypoxic cell detection

    International Nuclear Information System (INIS)

    Zhang, X.; Melo, T.; Ballinger, J.R.; Rauth, A.M.

    1998-01-01

    Purpose: Solid tumours of similar type and stage can vary widely in their hypoxic cell fraction. Such cells may be prognostic for aggressive, metastatic, and radiation-resistant disease. A 99m technetium ( 99m Tc)-labelled non-nitroaromatic agent, butyleneamine oxime ( 99m Tc-BnAO) or HL-91 (Amersham International, Inc., Amersham, UK) has been evaluated both in vitro and in vivo for its possible efficacy as a noninvasive marker for the clinical detection of hypoxic cells in solid tumours. Materials and Methods: Suspension cultures of Chinese hamster ovary (CHO) cells under controlled levels of oxygen were used to measure the oxygen dependency of 99m Tc-BnAO accumulation. V79 cells grown as multilayers on a semipermeable membrane served as an in vitro model for drug penetration through the extravascular space of the tumour. C3H mice bearing KHT-C leg tumours were the in vivo models for selective drug accumulation as a function of time after i.v. administration of 99m Tc-BnAO. Results: 99m Tc accumulated selectively in hypoxic vs. aerobic cells, resulting in a 9 ± 2-fold differential in radioactivity per cell at 4 h. The k m for this selective accumulation was 20 ppm of oxygen. The labelled drug was equally effective in penetrating the cellular multilayer under aerobic or hypoxic conditions. In vivo measurements indicated favourable labelling of solid tumours containing hypoxic cells with 1% of the total activity per g of tumour, a tumour-to-blood ratio of 1.2, and a tumour-to-muscle ratio of 4.6 at 4 to 6 h after drug administration. In contrast to more lipophilic 99m Tc- labelled compounds, excretion was primarily via the urinary tract. Nitro-L-arginine selectively increased solid tumour labelling over normal tissue. Conclusions: 99m Tc-BnAO or HL-91 is a promising agent for clinical studies of tumour hypoxia, although the mechanism of its selective hypoxic cell accumulation remains unexplained

  15. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.

    Science.gov (United States)

    Chan, Minnie; Almutairi, Adah

    2016-01-21

    In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.

  16. Radiolabelling and evaluation of novel haloethylsulfoxides as PET imaging agents for tumor hypoxia

    International Nuclear Information System (INIS)

    Laurens, Evelyn; Yeoh, Shinn Dee; Rigopoulos, Angela; Cao, Diana; Cartwright, Glenn A.; O'Keefe, Graeme J.; Tochon-Danguy, Henri J.; White, Jonathan M.; Scott, Andrew M.; Ackermann, Uwe

    2012-01-01

    The significance of imaging hypoxia with the PET ligand [ 18 F]FMISO has been demonstrated in a variety of cancers. However, the slow kinetics of [ 18 F]FMISO require a 2-h delay between tracer administration and patient scanning. Labelled chloroethyl sulfoxides have shown faster kinetics and higher contrast than [ 18 F]FMISO in a rat model of ischemic stroke. However, these nitrogen mustard analogues are unsuitable for routine production and use in humans. Here we report on the synthesis and in vitro and in vivo evaluation of two novel sulfoxides which we synthesised from a single precursor molecule via either 2-[ 18 F]fluoroethyl azide click chemistry or conventional nucleophilic displacement of a chloride leaving group. The yields of the click chemistry approach were 90±5% of [ 18 F] based on 2-[ 18 F]fluoroethyl azide, and the yields for the S N reaction were 15±5% of [ 18 F] based on K[ 18 F]F. Both radiotracers underwent metabolism in an in vitro assay using S9 liver fractions with biological half-lives of 32.39 and 43.32 min, respectively. Imaging studies using an SK-RC-52 tumor model in BALB/c nude mice have revealed that only [ 18 F] is retained in hypoxic tumors, whereas [ 18 F] is cleared from those tumors at a rate similar to that of muscle tissue. [ 18 F] has emerged as a promising new lead structure for further development of sulfoxide-based hypoxia imaging agents. In particular, the mechanism of uptake needs to be elucidated and changes to the chemical structure need to be made in order to reduce metabolism and improve radiotracer kinetics.

  17. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy

    International Nuclear Information System (INIS)

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-01-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties. (orig.)

  18. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Ewan [Bristol Royal Hospital for Children, Department of Pediatric Radiology, Bristol (United Kingdom); Andronikou, Savvas [Bristol Royal Hospital for Children, Department of Pediatric Radiology, Bristol (United Kingdom); University of Bristol, CRICBristol, Bristol (United Kingdom); Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade [University of Bristol, CRICBristol, Bristol (United Kingdom)

    2016-09-15

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties. (orig.)

  19. Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status

    International Nuclear Information System (INIS)

    Sprong, Debbie; Janssen, Hilde L.; Vens, Conchita; Begg, Adrian C.

    2006-01-01

    Purpose: To determine the role of DNA repair in hypoxic radioresistance. Methods and Materials: Chinese hamster cell lines with mutations in homologous recombination (XRCC2, XRCC3, BRAC2, RAD51C) or nonhomologous end-joining (DNA-PKcs) genes were irradiated under normoxic (20% oxygen) and hypoxic (<0.1% oxygen) conditions, and the oxygen enhancement ratio (OER) was calculated. In addition, Fanconi anemia fibroblasts (complementation groups C and G) were compared with fibroblasts from nonsyndrome patients. RAD51 foci were studied using immunofluorescence. Results: All hamster cell lines deficient in homologous recombination showed a decrease in OER (1.5-2.0 vs. 2.6-3.0 for wild-types). In contrast, the OER for the DNA-PKcs-deficient line was comparable to wild-type controls. The two Fanconi anemia cell strains also showed a significant reduction in OER. The OER for RAD51 foci formation at late times after irradiation was considerably lower than that for survival in wild-type cells. Conclusion: Homologous recombination plays an important role in determining hypoxic cell radiosensitivity. Lower OERs have also been reported in cells deficient in XPF and ERCC1, which, similar to homologous recombination genes, are known to play a role in cross-link repair. Because Fanconi anemia cells are also sensitive to cross-linking agents, this strengthens the notion that the capacity to repair cross-links determines hypoxic radiosensitivity

  20. Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents

    Science.gov (United States)

    Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit

    2018-02-01

    Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.

  1. Tc-99m imaging agents

    International Nuclear Information System (INIS)

    Weininger, J.; Trumper, J.

    1984-01-01

    A wide range of pharmaceuticals for labeling with Tc-99m, developed by the Soreq Radiopharmaceuticals Department, is described. Details of the production and quality control of 13 kits are given, as well as the range of results required for consistently high quality imaging agents

  2. Evaluation of nitrobenzimidazoles as hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Wright, J.; Frank, L.R.; Bush, D.; Harrison, G.H.

    1983-01-01

    Radiobiological and pharmacokinetic assays were performed to determine the potential of 2-nitrobenzimidazole (NBI) as a hypoxic cell radiosensitizing agent. As judged by comparing survival curve slopes of Serratia marcescens irradiated under aerated and hypoxic conditions, the NBI enhancement ratio (ER) at 2 mM concentration was 2.4 +- 0.2, compared with an oxygen enhancement ratio of 3.3 +- 0.3. 2,5-Dinitrobenzimidazole (DNBI) was investigated in vitro; its ER was 3.0 +- 0.3 at 4 mM concentration. Very poor tissue penetration of DNBI precluded further testing in vivo. Acute toxic signs appeared in C3H/HeJ mice following ip injection of NBI at 100 mg/kg. These would be partly attributable to the stress caused by the high pH of the injection vehicle. The LD 50 was estimated to be 125 to 150 mg/kg. Mammary adenocarcinoma tumors grown in the flanks of these mice exhibited maximum NBI levels at 5 min postinjection (ip). Peak tumor radiosensitization occurred in the interval between 5 and 10 min postinjection. The ER for tumor regrowth delay was 2.1 +- 0.3 following 50 mg/kg injected into mice 5 min before irradiation. Functional evaluation up to 40 days after treatment revealed no evidence of neurological deficit

  3. Evaluation of nitrobenzimidazoles as hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Wright, J.; Frank, L.R.; Bush, D.; Harrison, G.H.

    1983-01-01

    Radiobiological and pharmacokinetic assays were performed to determine the potential of 2-nitrobenzimidazole (NBI) as a hypoxic cell radiosensitizing agent. As judged by comparing survival curve slopes of Serratia marcescens irradiated under aerated and hypoxic conditions, the NBI enhancement ratio (ER) at 2 mM concentration was 2.4 +/- 0.2, compared with an oxygen enhancement ratio of 3.3 +/- 0.3. 2,5-Dinitrobenzimidazole (DNBI) was investigated in vitro; its ER was 3.0 +/- 0.3 at 4 mM concentration. Very poor tissue penetration of DNBI precluded further testing in vivo. Acute toxic signs appeared in C3H/HeJ mice following ip injection of NBI at 100 mg/kg. These would be partly attributable to the stress caused by the high pH of the injection vehicle. The LD50 was estimated to be 125-150 mg/kg. Mammary adenocarcinoma tumors grown in the flanks of these mice exhibited maximum NBI levels at 5 min postinjection (ip). Peak tumor radiosensitization occurred in the interval between 5 and 10 min postinjection. The ER for tumor regrowth delay was 2.1 +/- 0.3 following 50 mg/kg injected into mice 5 min before irradiation. Functional evaluation up to 40 days after treatment revealed no evidence of neurological deficit

  4. Nanoparticles as image enhancing agents for ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jun [Biomedical Engineering Department, Ohio State University, 270 Bevis Hall, 1080 Carmack Rd, Columbus, OH 43210 (United States); Levine, Andrea L [Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Rd, Columbus, OH 43210 (United States); Mattoon, John S [Department of Veterinary Clinical Sciences, Ohio State University, 1151 Veterinary Hospital, 601 Vernon Tharp St., Columbus, OH 43210 (United States); Yamaguchi, Mamoru [Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Rd, Columbus, OH 43210 (United States); Lee, Robert J [Division of Pharmaceutics, College of Pharmacy, NCI Comprehensive Cancer Center, and NSF Nanoscale Science and Engineering Center, Ohio State University, 500 West 12th Avenue, Columbus, OH 43210 (United States); Pan Xueliang [Department of Statistics, Ohio State University, 1958 Neil Avenue, Columbus, OH 43210 (United States); Rosol, Thomas J [Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Rd, Columbus, OH 43210 (United States)

    2006-05-07

    Nanoparticles have drawn great attention as targeted imaging and/or therapeutic agents. The small size of the nanoparticles allows them to target cells that are beyond capillary vasculature, such as cancer cells. We investigated the effect of solid nanoparticles for enhancing ultrasonic grey scale images in tissue phantoms and mouse livers in vivo. Silica nanospheres (100 nm) were dispersed in agarose at 1-2.5% mass concentration and imaged by a high-resolution ultrasound imaging system (transducer centre frequency: 30 MHz). Polystyrene particles of different sizes (500-3000 nm) and concentrations (0.13-0.75% mass) were similarly dispersed in agarose and imaged. Mice were injected intravenously with nanoparticle suspensions in saline. B-mode images of the livers were acquired at different time points after particle injection. An automated computer program was used to quantify the grey scale changes. Ultrasonic reflections were observed from nanoparticle suspensions in agarose gels. The image brightness, i.e., mean grey scale level, increased with particle size and concentration. The mean grey scale of mouse livers also increased following particle administration. These results indicated that it is feasible to use solid nanoparticles as contrast enhancing agents for ultrasonic imagin000.

  5. MRI patterns of hypoxic-ischemic brain injury in preterm and full term infants – classical and less common MR findings

    International Nuclear Information System (INIS)

    Cabaj, Astra; Bekiesińska-Figatowska, Monika; Mądzik, Jaroslaw

    2012-01-01

    Hypoxic-ischemic brain injury occurring in antenatal, perinatal or early postnatal period constitutes an important diagnostic problem in both term and prematurely born neonates. Over the past several years magnetic resonance imaging (MRI) has become relatively easily accessible in Poland. On the basis of the central nervous system MRI, the experienced radiologist are able to determine the location of the hypoxic-ischemic lesions, their extent and evolution. Therefore he can help clinicians to answer the question whether the brain damage of the newborn is responsible for its clinical condition and he can contribute to determining the prognosis of the infant’s future development. The aim of this study is to present the current knowledge of different types of hypoxic-ischemic brain lesions based on our personal experience and MR images from the archives of the Department of Diagnostic Imaging at the Institute of Mother and Child

  6. A comparison of positron-emitting blood pool imaging agents

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Kulprathipanja, S.; Evans, G.; Elmaleh, D.

    1979-01-01

    The three agents, 11 C-carboxyhaemoglobin, 68 Ga-transferrin and 68 Ga-labelled red cells have been compared in dogs to assess their relative merits for blood-pool imaging. For 1 h following administration of each agent, periodic blood samples were withdrawn for counting in a NaI (Tl) well counter while conventional two-dimensional images were obtained simultaneously on the Massachusetts General Hospital positron camera. Count rates in regions about the heart, liver and spleen were obtained for each image. The disappearance of blood activity as shown from the results of counting the blood samples and from the counting rates in regions about the heart was found to be identical within experimental error for the three agents. In the liver and spleen regions, the highest count rates were obtained with 68 Ga-transferrin and the lowest with 68 Ga-labelled red cells; count rates in these regions with labelled red cells were virtually constant throughout the 1 h study. It may be concluded that with the exceptions noted above, the three agents are approximately equivalent for blood-pool imaging. (author)

  7. Hypoxic-cell sensitizers

    International Nuclear Information System (INIS)

    Dische, S.

    1983-01-01

    There is now 6 years of clinical experience with misonidazole as a hypoxic-cell sensitizer. Neurotoxicity limits the total dose which may be given, and so relatively low concentrations of radiosensitizing drugs are likely to be achieved in hypoxic cells in man as compared with those in animal tumors. It is likely that benefit will only be shown in those situations where radioresistant hypoxic cells strongly dominate as a cause of radiation failure. Many clinical trials are underway, and thus far some show no benefit while in others there is a definite advantage to the patients given the drug. These trials must be continued to their conclusion, but misonidazole must be regarded as the first of a series of radiosensitizers to reach the clinic for trial. There is a promise of more effective drugs becoming available within the next few years. Those showing a lower lipophilicity than misonidazole have been found to have a shorter half-life and a lower uptake in neural tissue in animal studies. One such drug, desmethylmisonidazole, is presently undergoing clinical trial

  8. Hypoxic cell turnover in different solid tumor lines

    International Nuclear Information System (INIS)

    Ljungkvist, Anna S.E.; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-01-01

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h

  9. Term Neonate with Atypical Hypoxic-Ischemic Encephalopathy Presentation: A Case Report.

    Science.gov (United States)

    Townley, Nick; McNellis, Emily; Sampath, Venkatesh

    2017-07-01

    We describe a case of atypical hypoxic-ischemic encephalopathy (HIE) in a neonate following a normal pregnancy and delivery who was found to have an umbilical vein thrombosis. The infant arrived to our center with continuous bicycling movement of her lower extremities. She had a continuous electroencephalogram that showed burst suppression and magnetic resonance imaging of the brain showed diffusely abnormal cerebral cortical/subcortical diffusion restriction which may be secondary hypoxic-ischemic injury. Interestingly, a pathology report noted a focal umbilical vein thrombosis appearing to have compressed an umbilical artery with associated arterial dissection and hematoma. Our case illustrates how umbilical venous or arterial thrombosis may be associated with HIE and refractory seizures.

  10. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  11. Cardiac biomarkers in neonatal hypoxic ischaemia.

    LENUS (Irish Health Repository)

    Sweetman, D

    2012-04-01

    Following a perinatal hypoxic-ischaemic insult, term infants commonly develop cardiovascular dysfunction. Troponin-T, troponin-I and brain natriuretic peptide are sensitive indicators of myocardial compromise. The long-term effects of cardiovascular dysfunction on neurodevelopmental outcome following perinatal hypoxic ischaemia remain controversial. Follow-up studies are warranted to ensure optimal cardiac function in adulthood. CONCLUSION: Cardiac biomarkers may improve the diagnosis of myocardial injury, help guide management, estimate mortality risk and may also aid in longterm neurodevelopmental outcome prediction following neonatal hypoxic-ischaemia.

  12. Evaluation of potential gastrointestinal contrast agents for echoplanar MR imaging

    International Nuclear Information System (INIS)

    Reimer, P.; Schmitt, F.; Ladebeck, R.; Graessner, J.; Schaffer, B.

    1993-01-01

    The purpose of this study was to investigate approved aqueous gastrointestinal contrast agents for use in abdominal EPI. Conventional and echoplanar MR imaging experiments were performed with 1.0 Tesla whole body systems. Phantom measurements of Gastrografin, barium sulfate suspension, oral gadopentetate dimeglumine, water, and saline were performed. Signal intensity (SI) of aqueous oral barium sulfate and iodine based CT contrast agents was lower on conventional spin-echo (SE), Flash, and Turbo-Flush images than on EP images. The contrast agents exhibited higher SI on T2-weighted SE PE images and TI-time dependence on inversion recovery EP-images. The barium sulfate suspension was administered in volunteers to obtain information about bowel lumen enhancement and susceptibility artifacts. Oral administration of the aqueous barium sulfate suspension increased bowel lumen signal and reduced susceptibility artifacts. (orig.)

  13. Further evidence for the absence of a hypoxic fraction in the 9L rat tumour multicellular spheroid system

    International Nuclear Information System (INIS)

    Gutin, P.H.; Barcellos, M.H.; Shrieve, D.C.; Sano, Y.; Bernstein, M.; Deen, D.F.

    1982-01-01

    The 9L gliosarcoma is an N-methylnitrosourea-induced rat brain tumour that has served as a predictive model for the efficacy of various chemotherapeutic agents against human brain tumours. Because it is one of two known animal tumour models that has no hypoxic fraction, the 9L model is of questionable value for the study of the radiobiology of hypoxic cell sensitizers. Hypoxic 9L monolayer cells are sensitive to misonidazole, as shown by the abrupt decrease in survival after a 2-4 h radiation exposure. However, when 9L spheroids in the size ranges of 200-300, 300-400, 500-600 and 1027+-33μm were incubated in euoxic spinner culture for up to 96 h in 1.5 or 3.0 mM misonidazole, there was no effect on the survival of the dissociated cells over a dose range 0-20 Gy. It is concluded that, in view of the demonstrated sensitivity to misonidazole of hypoxic 9L cells in monolayer culture, this finding provides further evidence that there are no hypoxic cells even in large 9L spheroids with a histologically distinct zone of central necrosis. Moreover, 9L spheroids irradiated in the presence of 3.0 mM misonidazole showed no dose enhancement. (U.K.)

  14. Evaluation of 2-amino-5-nitrothiazole as a hypoxic cell radiosensitizer

    International Nuclear Information System (INIS)

    Rockwell, S.; Mroczkowski, Z.; Rupp, W.D.

    1982-01-01

    The nitroheterocyclic compound 2-amino-5-nitrothiazole (ANT) was evaluated as a hypoxic radiosensitizer. Experiments with bacteria showed that this agent was similar to misonidozole in radiosensitizing activity, but was less cytotoxic and less mutagenic than misonidazole. Experiments with EMT6 tumor cells in culture showed ANT to be an effective hypoxic radiosensitizer, although slightly less active than misonidazole, and to be less cytotoxic than misonidazole. ANT was more toxic to mice than misonidazole and produced a spectrum of symptoms, including hyperactivity and agitation, different from those of misonidazole. The toxicities of ANT and misonidazole were additive. The maximum levels of ANT achieveable in the tumors after ip injection of nontoxic doses of drug were low ( -4 M) and the radiosensitization obtainable with the drug in vivo was inferior to that obtainable with misonidazole. These findings suggest that nitrothiazoles might be an interesting class of nitroheterocyclic radiosensitizers, but that molecules with increased solubility and improved pharmacokinetics would be necessary for efficacy in vivo

  15. Hyperthermia and chemotherapy agent

    International Nuclear Information System (INIS)

    Roizin-Towle, L.; Hall, E.J.

    1981-01-01

    The use of chemotherapeutic agents for the treatment of cancer dates back to the late 19th century, but the modern era of chemotherapy drugs was ushered in during the 1940's with the development of the polyfunctional alkylating agent. Since then, numerous classes of drugs have evolved and the combined use of antineoplastic agents with other treatment modalities such as radiation or heat, remains a large relatively unexplored area. This approach, combining local hyperthermia with chemotherapy agents affords a measure of targeting and selective toxicity not previously available for drugs. In this paper, the effects of adriamycin, bleomycin and cis-platinum are examined. The adjuvant use of heat may also reverse the resistance of hypoxic cells noted for some chemotherapy agents

  16. Modular strategies for PET imaging agents

    International Nuclear Information System (INIS)

    Hooker, J.M.

    2010-01-01

    In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging.

  17. N-ethylmaleimide sensitization of x-irradiated hypoxic Chinese hamster cells

    International Nuclear Information System (INIS)

    Kimler, B.F.; Sinclair, W.K.; Elkind, M.M.

    1977-01-01

    Chinese hamster cells were x irradiated either aerobically or hypoxically, after flushing with nitrogen plus carbon dioxide. In agreement with earlier data, for asynchronous cells, the oxygen enhancement ratio (OER) was approximately three. If the sulfhydryl-binding agent N-ethylmaleimide (NEM) was present during or immediately after irradiation, the principal effect was a pronounced decrease in the extrapolation number of the survival curve of NEM-treated cells compared to nontreated cells. This was observed with hypoxic as well as aerobic cells and the OER for NEM-treated cells was also about three. For NEM treatments which were essentially nontoxic, NEM acts synergistically with X rays, suggestive of an inhibition by NEM of a cell's ability to repair sublethal damage. For synchronous cells obtained by mitotic selection, a result consistent with the above was obtained; a dose three times as large was necessary to reduce survival to the same level for hypoxic cells as for aerobic cells, whether or not the cells were treated with NEM. Thus the OER was independent of NEM treatment throughout the cell cycle, with the possible exception of mitosis which could not be studied with the methods used. It is concluded that the action of NEM at low concentrations (0.75 μM) is largely independent of oxygen tension. Oxygen acts to produce more damage per unit dose in the cell while NEM sensitizes apparently by preventing the repair of sublethal damage

  18. A novel class of antitumor prodrug, 1-(2'-oxopropyl)-5-fluorouracil (OFU001), that releases 5-fluorouracil upon hypoxic irradiation

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Zhou, Ling; Hatta, Hiroshi; Mori, Mayuko; Nishimoto, Sei-ichi

    2000-01-01

    We have been developing prodrugs of anticancer agents such as 5-fluorouracil (5-FU) that are activated by irradiation under hypoxic conditions via one-electron reduction. Among them, OFU001 [1-(2'-oxopropyl)-5-fluorouracil] is a prototype radiation-activated prodrug. In this study, we investigated the radiation chemical reactivity and the biological effects of OFU001. This prodrug is presumed to release 5-FU through incorporation of hydrated electrons into the antibonding σ * orbital of the C(1')-N(1) bond. Hydrated electrons are active species derived from radiolysis of water, but are readily deactivated by O 2 into superoxide anion radicals (O 2 - ·) under conditions of aerobic irradiation. Therefore, 5-FU release occurs highly specifically upon irradiation under hypoxic conditions. OFU001 dissolved in phosphate buffer released 5-FU with a G-value (mol number of molecules that are decomposed or produced by 1 J of absorbed radiation energy) of 1.9 x 10 -7 mol/J following hypoxic irradiation, while the G-value for 5-FU release was 1.0 x 10 -8 mol/J following aerobic irradiation. However, the G-values for decomposition of OFU001 were almost the same, i.e., 3.4 x 10 -7 mol/J following hypoxic irradiation and 2.5 x 10 -7 mol/J following aerobic irradiation. When hypoxically irradiated (7.5-30 Gy) OFU001 was added to murine SCCVII cells for 1-24 h, a significant cell-killing effect was observed. The degree of this cytotoxicity was consistent with that of authentic 5-FU at the corresponding concentrations. On the other hand, cytotoxicity was minimal when the cells were treated with aerobically irradiated or unirradiated OFU001. This compound had no radiosensitizing effect against SCCVII cells under either aerobic or hypoxic conditions when the drug was removed immediately after irradiation. Since hypoxia is generally most marked in tumors and irradiation is applied at the tumor site, this concept of prodrug design appears to be potentially useful for selective tumor

  19. Advanced Contrast Agents for Multimodal Biomedical Imaging Based on Nanotechnology.

    Science.gov (United States)

    Calle, Daniel; Ballesteros, Paloma; Cerdán, Sebastián

    2018-01-01

    Clinical imaging modalities have reached a prominent role in medical diagnosis and patient management in the last decades. Different image methodologies as Positron Emission Tomography, Single Photon Emission Tomography, X-Rays, or Magnetic Resonance Imaging are in continuous evolution to satisfy the increasing demands of current medical diagnosis. Progress in these methodologies has been favored by the parallel development of increasingly more powerful contrast agents. These are molecules that enhance the intrinsic contrast of the images in the tissues where they accumulate, revealing noninvasively the presence of characteristic molecular targets or differential physiopathological microenvironments. The contrast agent field is currently moving to improve the performance of these molecules by incorporating the advantages that modern nanotechnology offers. These include, mainly, the possibilities to combine imaging and therapeutic capabilities over the same theranostic platform or improve the targeting efficiency in vivo by molecular engineering of the nanostructures. In this review, we provide an introduction to multimodal imaging methods in biomedicine, the sub-nanometric imaging agents previously used and the development of advanced multimodal and theranostic imaging agents based in nanotechnology. We conclude providing some illustrative examples from our own laboratories, including recent progress in theranostic formulations of magnetoliposomes containing ω-3 poly-unsaturated fatty acids to treat inflammatory diseases, or the use of stealth liposomes engineered with a pH-sensitive nanovalve to release their cargo specifically in the acidic extracellular pH microenvironment of tumors.

  20. Ultrasound contrast-agent improves imaging of lower limb occlusive disease

    DEFF Research Database (Denmark)

    Eiberg, J P; Hansen, M A; Jensen, F

    2003-01-01

    to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA).......to evaluate if ultrasound contrast-agent infusion could improve duplex-ultrasound imaging of peripheral arterial disease (PAD) and increase the agreement with digital subtraction arteriography (DSA)....

  1. Technetium SPECT agents for imaging heart and brain

    International Nuclear Information System (INIS)

    Linder, K.E.

    1990-01-01

    One major goal of radiopharmaceutical research has been the development of technetium-based perfusion tracers for SPECT imaging of the heart and brain. The recent clinical introduction of the technetium complexes HM-PAO, ECD and DMG-2MP for brain imaging, and of CDO-MEB and MIBI for heart imaging promises to revolutionize the field of nuclear medicine. All of these agents appear to localize in the target tissue in proportion to blood flow, but their mechanisms of localization and/or retention may differ quite widely. In this talk, a survey of the new technetium SPECT agents will be presented. The inorganic and biological chemistry of these complexes, mechanisms of uptake and retention, QSAR studies, and potential clinical applications are discussed

  2. Hypoxic training: Clinical benefits on cardiometabolic risk factors.

    Science.gov (United States)

    Wee, Justin; Climstein, Mike

    2015-01-01

    The main aim of this review was to evaluate the effectiveness of hypoxic training on the modulation of cardiometabolic risk factors. Literature review. An electronic search encompassing five databases (PUBMED, EMBASE, MEDLINE, CINAHL, and SPORTDiscus) was conducted. A total of 2138 articles were retrieved. After excluding non-relevant articles, duplications and outcomes not related to cardiometabolic risk factors, 25 articles were chosen for review. Body weight and body composition were reported to be significantly improved when hypoxic training (≥1700 m) was used in conjunction with exercise regimes, at least three times a week, however extreme altitudes (>5000 m) resulted in a loss of fat-free muscle mass. Fasting blood glucose levels generally improved over time (≥21 days) at moderate levels of altitude (1500 m-3000 m), although reductions in blood glucose tolerance were observed when subjects were exposed to extreme hypoxia (>4000 m). Resting systolic and diastolic blood pressure levels improved as much as 26 mmHg and 13 mmHg respectively, with hypoxic training (1285 m-2650 m) in medicated, stable hypertensive subjects. Effects of hypoxic training when used in combination with exercise training on cholesterol levels were mixed. While there were improvements in total cholesterol (-4.2% to -30%) and low-density lipoprotein (-2.6% to -14.3%) reported as a result of hypoxic training, available evidence does not substantiate hypoxic training for the improvement of high-density lipoprotein and triglycerides. In conclusion, hypoxic training may be used as an adjunct treatment to modify some cardiometabolic risk factors. Measurement of hypoxic load may be used to individualize and ascertain appropriate levels of hypoxic training. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Association of NOS3 gene variants and clinical contributors of hypoxic-ischemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmanić Šamija, R. [Department of Pediatrics, University Hospital Split, Split (Croatia); Primorac, D. [School of Medicine Split, University of Split, Split (Croatia); Department of Pediatrics, School of Medicine, University of Osijek, Osijek (Croatia); Eberly College of Science, Penn State University, University Park, PA (United States); St. Catherine Speciality Hospital, Zabok (Croatia); Rešić, B. [School of Medicine Split, University of Split, Split (Croatia); Pavlov, V. [Department of Neonatology, University Hospital Split, Split (Croatia); Čapkun, V. [Department of Nuclear Medicine, University Hospital Split, Split (Croatia); Punda, H. [School of Medicine Split, University of Split, Split (Croatia); Lozić, B. [Department of Pediatrics, University Hospital Split, Split (Croatia); Zemunik, T. [Department of Medical Biology, School of Medicine Split, University of Split, Split (Croatia)

    2014-08-15

    The aim of this study was to analyze the association of different clinical contributors of hypoxic-ischemic encephalopathy with NOS3 gene polymorphisms. A total of 110 children with hypoxic-ischemic encephalopathy and 128 control children were selected for this study. Association of gender, gestational age, birth weight, Apgar score, cranial ultrasonography, and magnetic resonance imaging findings with genotypic data of six haplotype-tagging single nucleotide polymorphisms and the most commonly investigated rs1800779 and rs2070744 polymorphisms was analyzed. The TGT haplotype of rs1800783, rs1800779, and rs2070744 polymorphisms was associated with hypoxic-ischemic encephalopathy. Children with the TGT haplotype were infants below 32 weeks of gestation and they had the most severe brain damage. Increased incidence of the TT genotype of the NOS3 rs1808593 SNP was found in the group of hypoxic-ischemic encephalopathy patients with medium and severe brain damage. The probability of brain damage was twice as high in children with the TT genotype than in children with the TG genotype of the same polymorphism. Furthermore, the T allele of the same polymorphism was twice as frequent in children with lower Apgar scores. This study strongly suggests associations of NOS3 gene polymorphism with intensity of brain damage and severity of the clinical picture in affected children.

  4. Association of NOS3 gene variants and clinical contributors of hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Kuzmanić Šamija, R.; Primorac, D.; Rešić, B.; Pavlov, V.; Čapkun, V.; Punda, H.; Lozić, B.; Zemunik, T.

    2014-01-01

    The aim of this study was to analyze the association of different clinical contributors of hypoxic-ischemic encephalopathy with NOS3 gene polymorphisms. A total of 110 children with hypoxic-ischemic encephalopathy and 128 control children were selected for this study. Association of gender, gestational age, birth weight, Apgar score, cranial ultrasonography, and magnetic resonance imaging findings with genotypic data of six haplotype-tagging single nucleotide polymorphisms and the most commonly investigated rs1800779 and rs2070744 polymorphisms was analyzed. The TGT haplotype of rs1800783, rs1800779, and rs2070744 polymorphisms was associated with hypoxic-ischemic encephalopathy. Children with the TGT haplotype were infants below 32 weeks of gestation and they had the most severe brain damage. Increased incidence of the TT genotype of the NOS3 rs1808593 SNP was found in the group of hypoxic-ischemic encephalopathy patients with medium and severe brain damage. The probability of brain damage was twice as high in children with the TT genotype than in children with the TG genotype of the same polymorphism. Furthermore, the T allele of the same polymorphism was twice as frequent in children with lower Apgar scores. This study strongly suggests associations of NOS3 gene polymorphism with intensity of brain damage and severity of the clinical picture in affected children

  5. Electroencephalogram and magnetic resonance imaging comparison as a predicting factor for neurodevelopmental outcome in hypoxic ischemic encephalopathy infant treated with hypothermia

    Directory of Open Access Journals (Sweden)

    Francesca Del Balzo

    2014-10-01

    Full Text Available Hypoxic-ischemic encephalopathy (HIE is an important cause of acute neurological damage in newborns at (or near term. Several trials in recent years have shown that moderate hypothermia by total body cooling or selective head is an effective intervention to reduce mortality and major disability in infants survived a perinatal hypoxic-ischemic attack. Follow-up in these patients is very important to establish neurodevelopmental outcome, and specific markers can lead us to detect predicting sign for good or poor outcome. We reported a few cases of newborn with HIE treated with hypothermia, in whom the comparison between electroencephalogram (EEG and magnetic resonance imaging (MRI represents the first marker for neurodevelopment outcome prediction. The continuous EEG monitoring showed a depressed EEG activity with diffuse burst depression in 7 patients. No epileptic abnormalities were registered. In 10 out of 20 patients no abnormalities of the background activity and no epileptic abnormalities were observed. We found that a depressed EEG activity during the first 72 h of life and a diffused alteration of basal ganglia at MRI were correlated with a poor neurodevelopmental outcome at 18 months of follow-up.

  6. Dinitrobenzamide mustard prodrugs - hypoxic cytotoxins and dual substrates for E.coli nitroreductase

    International Nuclear Information System (INIS)

    Patterson, A.V.; Hogg, A.; Pullen, S.; Degenkolbe, A.; Li, D.; Chappell, A.; Ying, S.; Atwell, G.J.; Denny, W.A.; Anderson, R.F.; Wilson, W.R.

    2003-01-01

    selectivity for E.coli NTR (A549NTR). Four compounds were identified as dual P450R/NTR substrates and were evaluated in vivo for hypoxic cytotoxicity in the Rif-1 murine tumour excision assay. Oxic tumour cells are sterilised through the application of 15Gy and the impact of post-irradiation prodrug administration upon the hypoxic cell subpopulation was quantitated. Two DNBMs (SN 27744 and SN 27762) were found to be highly active and another (SN 27645) had modest activity. A secondary in vivo screening using the human A549 xenograft excision assay ± 20Gy (± P450R overexpression) revealed a similar SAR. Notably, overexpression of P450R was not mandatory for in vivo activity. We have identified several DNBMs with the potential for activation by NTR 'armed' CRAds whilst independently functioning as hypoxic cytotoxins. These prodrugs may have utility in circumstances where vector geometry is constrained and hypoxic tumour cells are distal from viral deposition and spread. We are currently developing an NTR 'armed' variant of the CRAd, ONYX-411, to test these observations. However the NTR-independent activity of these prodrugs provides an opportunity for their early development as single-agents for use in radiotherapy

  7. Chemical sensitizers for hypoxic cells: a decade of experience in clinical radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dische, S [Mount Vernon Hospital, Northwood (UK)

    1985-02-01

    The clinical work with chemical agents to restore the radiosensitivity of hypoxic cells began in 1973 with metronidazole, misonidazole was first given in 1974. The results so far recorded of the clinical trials with misonidazole have been generally disappointing. Hypoxic cells must exist in all human tumours presenting for treatment and it is, however, probable that the oxygen effect is an important one at all dose fractionation regimes employed in radiotherapy but, after conventional fractionated radiotherapy, hypoxia may be a reason for failure in only a proportion of cases. The most important factor underlying the failure of misonidazole to acheive useful advantage is undoubtedly the low radiosensitizing concentrations achievable with the permitted dose of this neurotoxic drug. New drugs are under development and some have different dose-limiting toxicity. Those showing promise at this time are the Stanford compound, SR-2508 and the Roche compounds, Ro 03-8799. It is possible that the greatest sensitization with the greatest tolerance will be achieved by a combination of drugs.

  8. Apparent diffusion coefficient histogram analysis of neonatal hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Cauley, Keith A.; Filippi, Christopher G.

    2014-01-01

    Diffusion-weighted imaging is a valuable tool in the assessment of the neonatal brain, and changes in diffusion are seen in normal development as well as in pathological states such as hypoxic-ischemic encephalopathy (HIE). Various methods of quantitative assessment of diffusion values have been reported. Global ischemic injury occurring during the time of rapid developmental changes in brain myelination can complicate the imaging diagnosis of neonatal HIE. To compare a quantitative method of histographic analysis of brain apparent coefficient (ADC) maps to the qualitative interpretation of routine brain MR imaging studies. We correlate changes in diffusion values with gestational age in radiographically normal neonates, and we investigate the sensitivity of the method as a quantitative measure of hypoxic-ischemic encephalopathy. We reviewed all brain MRI studies from the neonatal intensive care unit (NICU) at our university medical center over a 4-year period to identify cases that were radiographically normal (23 cases) and those with diffuse, global hypoxic-ischemic encephalopathy (12 cases). We histographically displayed ADC values of a single brain slice at the level of the basal ganglia and correlated peak (s-sD av ) and lowest histogram values (s-sD lowest ) with gestational age. Normative s-sD av values correlated significantly with gestational age and declined linearly through the neonatal period (r 2 = 0.477, P av and s-sD lowest ADC values than were reflected in the normative distribution; several cases of HIE fell within a 95% confidence interval for normative studies, and one case demonstrated higher-than-normal s-sD av . Single-slice histographic display of ADC values is a rapid and clinically feasible method of quantitative analysis of diffusion. In this study normative values derived from consecutive neonates without radiographic evidence of ischemic injury are correlated with gestational age, declining linearly throughout the perinatal period. This

  9. In vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent

    Science.gov (United States)

    2016-11-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0242 TITLE: In Vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent PRINCIPAL...TITLE AND SUBTITLE In vivo Photoacoustic Imaging of Prostate Cancer Using T argeted Contrast Agent 5a. CONTRACT NUMBER W81XWH-14-1-0242 5b. GRANT...diagnose prostate cancer based on the near-infrared optical absorption of either endogenous tissue constituents or exogenous contrast agents . Although

  10. Methylation-mediated silencing of miR-124 facilitates chondrogenesis by targeting NFATc1 under hypoxic conditions.

    Science.gov (United States)

    Gong, Ming; Liang, Tangzhao; Jin, Song; Dai, Xuejun; Zhou, Zhiyu; Gao, Manman; Huang, Sheng; Luo, Jiaquan; Zou, Lijin; Zou, Xuenong

    2017-01-01

    Chondrogenic differentiation of mesenchymal stem cells is regulated by many different pathways. Recent studies have established that hypoxia and epigenetic alterations potently affect expression of chondrogenesis marker genes. Sox9 is generally regarded as a master regulator of chondrogenesis and microRNA-124 (miRNA-124) regulates gene expression in murine bone marrow-derived mesenchymal stem cells. Therefore, in this study we investigated whether epigenetic regulation of miRNA-124 could affect the expression of Sox9 and thereby regulate chondrogenesis. A cell pellet culture model was used to induce chondrogenesis in C3H10T1/2 cells under hypoxic conditions (2% O 2 ) to determine the effects of hypoxia on miR-124 expression and DNA methylation. The expression of miR-124 was significantly downregulated under hypoxic conditions compared to normoxic conditions (21% O 2 ). The expression of chondrogenesis marker genes was significantly increased under hypoxic conditions. Bisulfite sequencing of the CpG islands in the promoter region of miR-124-3 showed that CpG methylation was significantly increased under hypoxic conditions. Treating the cells with the DNA demethylating agent 5'-AZA significantly increased miR-124 expression and decreased expression of markers of chondrogenesis. Overexpressing miR-124 under hypoxic conditions inhibited NFATc1 reporter activity. NFATc1 was shown to bind to the promoter region of Sox9. Taken together, our data provide evidence that miR-124 acts as an inhibitor of NFATc1. Under hypoxic conditions when miR-124 is downregulated by methylation of CpG islands in the promoter, NFATc1 can bind to the Sox9 promoter and induce the expression of Sox9 leading to chondrogenesis. These results support the role of epigenetic regulation in establishing and maintaining a chondrogenic phenotype.

  11. Selective toxicity of 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide toward hypoxic mammalian cells

    International Nuclear Information System (INIS)

    Rauth, A.M.; Mohindra, J.K.

    1981-01-01

    The chemotherapeutic agent 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DTIC) is used in the treatment of malignant melanoma where response rates of 15 to 30% have been reported. Some current interest exists in combining DTIC chemotherapy with localized high-dose (800 rads)-per-fraction radiotherapy in the treatment of unresectable metastatic melanoma. The present work investigates the radiosensitizing and chemotherapeutic properties of DTIC in an in vitro system using Chinese hamster ovary or HeLa cells and in vivo, using the KHT transplantable murine tumor. No evidence of a radiosensitizing effect of DTIC was found towards hypoxic or aerobic cells either in vitro or in vivo. In vitro, high drug concentrations (1 mg/ml) were approximately 5 times more effective in killing hypoxic Chinese hamster ovary or HeLa cells than in killing aerobic cells over exposure times of 0 to 12 hr. The degree of toxicity was drug dose and temperature dependent but was not highly dependent on cell number or cell type. In vivo plasma levels of DTIC were measured with high-pressure liquid chromatography after i.p. injection of drug into C3H mice. At the highest drug doses tested, near the 50% lethal dose in mice for DTIC (0.5 mg/g), the drug was toxic to both aerobic and hypoxic tumor cells with some evidence of increased toxicity towards hypoxic cells. The present work suggests that DTIC may be more efficiently activated under hypoxic conditions as compared to aerobic conditions. The increased toxicity of DTIC under hypoxic versus aerobic conditions may prove to be a feature of this drug that can be exploited in its clinical use and in the design of new analogs of DTIC

  12. Hypoxic hypoxia as a means of modifying radiosensibility

    International Nuclear Information System (INIS)

    Neumeister, K.; Niemiec, C.; Bolck, M.; Jahns, J.; Kamprad, F.; Arnold, P.; Johannsen, U.; Koch, F.; Mehlhorn, G.

    1977-01-01

    Following an overview of the various possibilities of creating hypoxia in mammals, the problem of reducing radioresistance of hypoxic tumor cells is treated. Furthermore, the results of irradiation experiments with mice, rats and pigs breathing hypoxic mixtures of O 2 and N 2 are given and discussed with a view to applying hypoxic hypoxia in the radiotherapy of human tumors. (author)

  13. Radioresistance and hypoxic cells

    International Nuclear Information System (INIS)

    Ando, Koichi

    1989-01-01

    Current progress to explore further understanding of tumor hypoxia was reviewed. At subcellular level, hypoxia induces specific proteins, inhibits DNA synthesis as well as initiation of DNA replicon. Radioresistant characteristics of hypoxic cells is questioned in condition where irradiated cells were kept hypoxia during colony formation. Chronically hypoxic cells recovered from the inner layer of V79 multicellular spheroids are more sensitive to radiation than those from the oxic, outer layer. A novel sandwich culture method, which enables to reoxygenate chronic hypoxia, implies that chronically hypoxic cells are less sensitive to radiation after reoxygenation than oxic cells. For in vivo tumor, two types of tumor hypoxia are reported: diffusion-limited, chronic hypoxia and perfusion-limited, acute hypoxia. Evidence supporting the existence of perfusion-limited hypoxia is provided by an elegant method using vital staining and cell sorter. Data of our own laboratory also implies 2 types of tumor hypoxia; fractional hypoxia and incomplete hypoxia. Fractional hypoxia corresponds to a radioresistant tail on a biphasic tumor cell survival curves while tumors with incomplete hypoxia demonstrate only single component with radioresistant characteristics, instead. (author)

  14. Examining multi-component DNA-templated nanostructures as imaging agents

    Science.gov (United States)

    Jaganathan, Hamsa

    2011-12-01

    Magnetic resonance imaging (MRI) is the leading non-invasive tool for disease imaging and diagnosis. Although MRI exhibits high spatial resolution for anatomical features, the contrast resolution is low. Imaging agents serve as an aid to distinguish different types of tissues within images. Gadolinium chelates, which are considered first generation designs, can be toxic to health, while ultra-small, superparamagnetic nanoparticles (NPs) have low tissue-targeting efficiency and rapid bio-distribution, resulting to an inadequate detection of the MRI signal and enhancement of image contrast. In order to improve the utility of MRI agents, the challenge in composition and structure needs to be addressed. One-dimensional (1D), superparamagnetic nanostructures have been reported to enhance magnetic and in vivo properties and therefore has a potential to improve contrast enhancement in MRI images. In this dissertation, the structure of 1D, multi-component NP chains, scaffolded on DNA, were pre-clinically examined as potential MRI agents. First, research was focused on characterizing and understanding the mechanism of proton relaxation for DNA-templated NP chains using nuclear magnetic resonance (NMR) spectrometry. Proton relaxation and transverse relaxivity were higher in multi-component NP chains compared to disperse NPs, indicating the arrangement of NPs on a 1D structure improved proton relaxation sensitivity. Second, in vitro evaluation for potential issues in toxicity and contrast efficiency in tissue environments using a 3 Tesla clinical MRI scanner was performed. Cell uptake of DNA-templated NP chains was enhanced after encapsulating the nanostructure with layers of polyelectrolytes and targeting ligands. Compared to dispersed NPs, DNA-templated NP chains improved MRI contrast in both the epithelial basement membrane and colon cancer tumors scaffolds. The last part of the project was focused on developing a novel MRI agent that detects changes in DNA methylation

  15. Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI.

    Science.gov (United States)

    Zheng, Y; Wang, X-M

    2017-04-01

    As amide proton transfer imaging is sensitive to protein content and intracellular pH, it has been widely used in the nervous system, including brain tumors and stroke. This work aimed to measure the lactate content and amide proton transfer values in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model by using MR spectroscopy and amide proton transfer imaging. From 58 healthy neonatal piglets (3-5 days after birth; weight, 1-1.5 kg) selected initially, 9 piglets remained in the control group and 43 piglets, in the hypoxic-ischemic brain injury group. Single-section amide proton transfer imaging was performed at the coronal level of the basal ganglia. Amide proton transfer values of the bilateral basal ganglia were measured in all piglets. The ROI of MR spectroscopy imaging was the right basal ganglia, and the postprocessing was completed with LCModel software. After hypoxic-ischemic insult, the amide proton transfer values immediately decreased, and at 0-2 hours, they remained at their lowest level. Thereafter, they gradually increased and finally exceeded those of the control group at 48-72 hours. After hypoxic-ischemic insult, the lactate content increased immediately, was maximal at 2-6 hours, and then gradually decreased to the level of the control group. The amide proton transfer values were negatively correlated with lactate content ( r = -0.79, P < .05). This observation suggests that after hypoxic-ischemic insult, the recovery of pH was faster than that of lactate homeostasis. © 2017 by American Journal of Neuroradiology.

  16. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2016-01-01

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba 2+ -sensitive inward rectifier K + current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca 2+ imaging study revealed that the hypoxic stress enhanced store-operated Ca 2+ (SOC) entry, which was significantly reduced in the presence of 100 μM Ba 2+ . On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba 2+ . We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca 2+ entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca 2+ (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC channels were not affected by hypoxia.

  17. [Autonomic regulation at emotional stress under hypoxic conditions in the elderly with physiological and accelerated aging: effect of hypoxic training].

    Science.gov (United States)

    Os'mak, E D; Asanov, É O

    2014-01-01

    The effect of hypoxic training on autonomic regulation in psycho-emotional stress conditions in hypoxic conditions in older people with physiological (25 people) and accelerated (28 people) aging respiratory system. It is shown that hypoxic training leads to an increase in vagal activity indicators (HF) and reduced simpatovagal index (LF/HF), have a normalizing effect on the autonomic balance during stress loads in older people with different types of aging respiratory system.

  18. Improvement of post-hypoxic action myoclonus with levetiracetam add-on therapy: A case report

    Directory of Open Access Journals (Sweden)

    Božić Ksenija

    2014-01-01

    Full Text Available Introduction. Chronic post-anoxic myoclonus, also known as Lance-Adams syndrome, may develop following hypoxic brain injury, and is resistant to pharmacological therapy. Case report. The patient we presented developed post-anoxic action myoclonus with severe, completely incapacitating myoclonic jerks. Myoclonus did not respond to the treatment with commonly used agents, i.e. valproate and clonazepam alone or in combination. Improvement of the action myoclonus was observed only after adding levetiracetam. Conclusion. Although Lance-Adams syndrome may not be fully curable at this point, levetiracetam appears to be a promising agent that can significantly improve functional level and overall quality of life of patients with this disorder.

  19. Modified natural nanoparticles as contrast agents for medical imaging

    NARCIS (Netherlands)

    Cormode, David P.; Jarzyna, Peter A.; Mulder, Willem J. M.; Fayad, Zahi A.

    2010-01-01

    The development of novel and effective contrast agents is one of the drivers of the ongoing improvement in medical imaging. Many of the new agents reported are nanoparticle-based. There are a variety of natural nanoparticles known, e.g. lipoproteins, viruses or ferritin. Natural nanoparticles have

  20. Radioprotection in E. coli by an agent from M. radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L S; Gersten, D M; Bruce, A K [State Univ. of New York, Buffalo (USA). Dept. of Biology

    1978-10-01

    An agent extracted from the radioresistant bacterium M. radiodurans was found to protect several strains of E. coli from X-radiation. Optimal radioprotection was observed when the repair-proficient B/r strain was irradiated in the presence of the agent under hypoxic conditions. It is proposed that this agent acts to modify damage incurred in the presence of reduced oxygen concentrations so that this damage might be subsequently repaired.

  1. Role of magnetic resonance imaging in biometric evaluation of corpus callosum in hypoxic ischemic encephalopathy patients

    Directory of Open Access Journals (Sweden)

    Amit Garhwal

    2017-01-01

    Full Text Available Background: Corpus callosum (CC has an important role in establishing hemispheric lateralization of function. Significance of this structure which is the primary white matter commissure of the brain lies in the fact that damage to the CC during development has been found to be associated with poor neurological outcome and neuropsychological performance. Magnetic resonance imaging (MRI can precisely detect, localize, and evaluate damage to CC in hypoxic-ischemic encephalopathy (HIE patients and assist in reaching to at an accurate anatomical diagnosis, thus heeling in further management of the patient. Objectives: The objective of this study is to analyze the effect of HIE on CC morphometry by assessing various diameters of CC. Materials and Methods: Fifty-four patients with history of hypoxic-ischemic injury referred to the Department of Radiodiagnosis were included in the study. All the patients were made to undergo MRI of the brain using Siemens Symphony Magnetom 1.5 Tesla scanner after taking informed consent for the same. The findings of MRI brain were assessed and analyzed. Data analysis was done using percentages of different diagnosis and outcomes made by MRI brain were computed and compiled. Results: In the present study, male predominance is seen, 77.78% patients were male and 22.22% were female. In the present study, maximum numbers of patients were <1 year of age (37.04%. In the present study, we see that the isthmus was the most commonly affected portion of CC. Children who did not cry at birth, born with low birth weight, low Apgar score were positively correlated with severity of damage to CC. Conclusion: From the present study, it was noted that MRI is very efficient tool in evaluating morphometry of CC in HIE. Its noninvasiveness and no exposure to ionizing radiation is an added advantage. However, experience and understanding of the principles are essential for accurate diagnosis.

  2. Novel MR imaging contrast agents for cancer detection

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2009-05-01

    Full Text Available

    • BACKGROUND: Novel potential MR imaging contrast agents Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd-TCP, Gd-hematoporphyrin (Gd-H, Gd-DTPA-9.2.27 against melanoma, Gd-DTPA-WM53 against leukemia and Gd-DTPAC595 against breast cancer cells were synthesized and applied to mice with different human cancer cells (melanoma MM-138, leukemia HL-60, breast MCF-7. The relaxivity, the biodistribution, T1 relaxation times, and signal enhancement of the contrast agents are presented and the results are compared.
    • METHODS: After preparation of contrast agents, the animal studies were performed. The cells (2×106 cells were injected subcutaneously in the both flanks of mice. Two to three weeks after tumor plantation, when the tumor diameter was 2-4 mm, mice were injected with the different contrast agents. The animals were sacrificed at 24 hr post IP injection followed by removal of critical organs. The T1 relaxation times and signal intensities of samples were measured using 11.4 T magnetic field and Gd concentration were measured using UV-spectrophotometer.
    • RESULTS: For Gd-H, the percent of Gd localized to the tumors measured by UV-spect was 28, 23 and 21 in leukemia, melanoma and breast cells, respectively. For Gd-TCP this amount was 21%, 18% and 15%, respectively. For Gd-DTPA-9.2.27, Gd-DTPA-WM53 and Gd-DTPA-C595 approximately 35%, 32% and 27% of gadolinium localized to their specific tumor, respectively.
    • CONCLUSION: The specific studied conjugates showed good tumor uptake in the relevant cell lines and low levels of Gd in the liver, kidney and spleen. The studied agents have considerable promise for further diagnosis applications of MR imaging.
    • KEYWORDS: Magnetic Resonance, Imaging, Monoclonal Antibody, Contrast Agents, Gadolinium, Early Detection of Cancer.

  3. Contrasts agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bonnet, P.A.; Fernandez, J.P.; Milhavet, J.C.; Chapat, J.P.; Almes, C.; Bruel, J.M.; Rouanet, J.P.; Lamarque, J.L.

    1984-01-01

    Changing different parameters involved in imaging procedures, paramagnetic substances provide contrast enhancement in MRI. Contrast agents presently studied in animals and clinical trials, are either salts or complexes of mineral ions either nitroxide stable free radicals. Their development should extend the possibilities of tissular characterization and fonctional or metabolic evaluation of the MRI [fr

  4. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors.

    Science.gov (United States)

    Espinoza, I; Peschke, P; Karger, C P

    2015-01-01

    In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the model, tumor shrinkage was

  5. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors

    International Nuclear Information System (INIS)

    Espinoza, I.; Peschke, P.; Karger, C. P.

    2015-01-01

    Purpose: In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. Methods: A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. Results: The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the

  6. Agentes antineoplásicos biorredutíveis: uma nova alternativa para o tratamento de tumores sólidos

    Directory of Open Access Journals (Sweden)

    Oliveira Renata Barbosa de

    2002-01-01

    Full Text Available A problem often encountered in cancer therapy is the presence of tumor cell subpopulation that are resistant to treatment. Solid tumors frequently contain hypoxic cells that are resistant to killing by ionizing radiation and also by many chemotherapeutic agents. However, these hypoxic cells can be exploited for therapy by non-toxic hypoxic-activated prodrugs. Bioreductive drugs require metabolic reduction to generate cytotoxic metabolites. This process is facilitated by appropriate reductases and the lower oxygen conditions present in solid tumors. The unique presence of hypoxic cells in human tumors provides an important target for selective cancer therapy.

  7. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kyung-Soo [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Park, Jun-Ik [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Dao, Trong Tuan; Oh, Won Keun [BK21 Project Team, College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Kang, Chi-Dug, E-mail: kcdshbw@pusan.ac.kr [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Sun-Hee, E-mail: ksh7738@pusan.ac.kr [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of)

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  8. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    International Nuclear Information System (INIS)

    Hong, Kyung-Soo; Park, Jun-Ik; Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won; Dao, Trong Tuan; Oh, Won Keun; Kang, Chi-Dug; Kim, Sun-Hee

    2012-01-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  9. Microscopic validation of whole mouse micro-metastatic tumor imaging agents using cryo-imaging and sliding organ image registration

    OpenAIRE

    Liu, Yiqiao; Zhou, Bo; Qutaish, Mohammed; Wilson, David L.

    2016-01-01

    We created a metastasis imaging, analysis platform consisting of software and multi-spectral cryo-imaging system suitable for evaluating emerging imaging agents targeting micro-metastatic tumor. We analyzed CREKA-Gd in MRI, followed by cryo-imaging which repeatedly sectioned and tiled microscope images of the tissue block face, providing anatomical bright field and molecular fluorescence, enabling 3D microscopic imaging of the entire mouse with single metastatic cell sensitivity. To register ...

  10. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2016-08-05

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba{sup 2+}-sensitive inward rectifier K{sup +} current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca{sup 2+} imaging study revealed that the hypoxic stress enhanced store-operated Ca{sup 2+} (SOC) entry, which was significantly reduced in the presence of 100 μM Ba{sup 2+}. On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba{sup 2+}. We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca{sup 2+} entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca{sup 2+} (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC

  11. Apparent diffusion coefficient histogram analysis of neonatal hypoxic-ischemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Cauley, Keith A. [University of Massachusetts Medical School, Department of Radiology, Worcester, MA (United States); New York Presbyterian Hospital, Columbia University Medical Center, Department of Radiology, New York, NY (United States); Filippi, Christopher G. [New York Presbyterian Hospital, Columbia University Medical Center, Department of Radiology, New York, NY (United States)

    2014-06-15

    Diffusion-weighted imaging is a valuable tool in the assessment of the neonatal brain, and changes in diffusion are seen in normal development as well as in pathological states such as hypoxic-ischemic encephalopathy (HIE). Various methods of quantitative assessment of diffusion values have been reported. Global ischemic injury occurring during the time of rapid developmental changes in brain myelination can complicate the imaging diagnosis of neonatal HIE. To compare a quantitative method of histographic analysis of brain apparent coefficient (ADC) maps to the qualitative interpretation of routine brain MR imaging studies. We correlate changes in diffusion values with gestational age in radiographically normal neonates, and we investigate the sensitivity of the method as a quantitative measure of hypoxic-ischemic encephalopathy. We reviewed all brain MRI studies from the neonatal intensive care unit (NICU) at our university medical center over a 4-year period to identify cases that were radiographically normal (23 cases) and those with diffuse, global hypoxic-ischemic encephalopathy (12 cases). We histographically displayed ADC values of a single brain slice at the level of the basal ganglia and correlated peak (s-sD{sub av}) and lowest histogram values (s-sD{sub lowest}) with gestational age. Normative s-sD{sub av} values correlated significantly with gestational age and declined linearly through the neonatal period (r {sup 2} = 0.477, P < 0.01). Six of 12 cases of known HIE demonstrated significantly lower s-sD{sub av} and s-sD{sub lowest} ADC values than were reflected in the normative distribution; several cases of HIE fell within a 95% confidence interval for normative studies, and one case demonstrated higher-than-normal s-sD{sub av}. Single-slice histographic display of ADC values is a rapid and clinically feasible method of quantitative analysis of diffusion. In this study normative values derived from consecutive neonates without radiographic evidence of

  12. Further characterization of 4-bromomisonidazole as a potential detector of hypoxic cells

    International Nuclear Information System (INIS)

    Rasey, J.S.; Krohn, K.A.; Grunbaum, Z.; Conroy, P.J.; Bauer, K.; Sutherland, R.M.

    1985-01-01

    [ 14 C]Bromomisonidazole was prepared by direct bromination of [ring-2] [ 14 C]misonidazole in dioxane. The uptake and binding of the two labeled sensitizers were compared in vitro in 1-mm EMT-6 spheroids which contain a necrotic core. Using liquid scintillation counting it was shown that spheroids incubated with 50 μM [ 14 C]bromomisonidazole concentrated drug above levels in the medium by 1 1/2 hr and achieved maximum concentration by 10 hr with no further increase at 23 hr. Spheroids incubated with 50 μM[ 14 C]misonidazole may concentrate the sensitizer more slowly but ultimately reached the same fivefold increase over levels in the medium by 23 hr as was observed for bromomisonidazole. Autoradiographs prepared from spheroids after incubation with [ 14 C]misonidazole or [ 14 C]bromomisonidazole showed silver grains preferentially located over viable hypoxic cells in the inner half of the spheroid rim adjacent to the necrotic center, with lower grain density over nonviable necrotic areas and many fewer grains over oxic cells at the periphery of the spheroid. The data support the potential of radiolabled bromomisonidazole for in vivo imaging pending additional studies of the metabolism of this agent

  13. Contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Karadjian, V.

    1987-01-01

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes [fr

  14. Hypoxic training methods for improving endurance exercise performance

    Directory of Open Access Journals (Sweden)

    Jacob A. Sinex

    2015-12-01

    Full Text Available Endurance athletic performance is highly related to a number of factors that can be altered through altitude and hypoxic training including increases in erythrocyte volume, maximal aerobic exercise capacity, capillary density, and economy. Physiological adaptations in response to acute and chronic exposure to hypoxic environments are well documented and range from short-term detrimental effects to longer-term adaptations that can improve performance at altitude and in sea-level competitions. Many altitude and hypoxic training protocols have been developed, employing various combinations of living and training at sea-level, low, moderate, and high altitudes and utilizing natural and artificial altitudes, with varying degrees of effectiveness. Several factors have been identified that are associated with individual responses to hypoxic training, and techniques for identifying those athletes most likely to benefit from hypoxic training continue to be investigated. Exposure to sufficiently high altitude (2000–3000 m for more than 12 h/day, while training at lower altitudes, for a minimum of 21 days is recommended. Timing of altitude training related to competition remains under debate, although general recommendations can be considered.

  15. [Follow-up of newborns with hypoxic-ischaemic encephalopathy].

    Science.gov (United States)

    Martínez-Biarge, M; Blanco, D; García-Alix, A; Salas, S

    2014-07-01

    Hypothermia treatment for newborn infants with hypoxic-ischemic encephalopathy reduces the number of neonates who die or have permanent neurological deficits. Although this therapy is now standard of care, neonatal hypoxic-ischaemic encephalopathy still has a significant impact on the child's neurodevelopment and quality of life. Infants with hypoxic-ischaemic encephalopathy should be enrolled in multidisciplinary follow-up programs in order to detect impairments, to initiate early intervention, and to provide counselling and support for families. This article describes the main neurodevelopmental outcomes after term neonatal hypoxic-ischaemic encephalopathy. We offer recommendations for follow-up based on the infant's clinical condition and other prognostic indicators, mainly neonatal neuroimaging. Other aspects, such as palliative care and medico-legal issues, are also briefly discussed. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  16. Progress of study on the dopamine D4 receptor imaging agent

    International Nuclear Information System (INIS)

    Tian Haibin; Zhang Lan; Zhang Chunfu; Li Junling; Yin Duanzhi

    2001-01-01

    Dopamine receptors were originally classified into five receptors subtypes, the dopamine D 4 receptor was included. Schizophrenic pathophysiology may be associated with expression and function of the dopamine D 4 receptor; it is of great importance to study the imaging agent of dopamine D 4 receptor. The study on radioactivity distribution and metabolize of radioligand remains hampered by the lack radioligand for the D 4 receptor which can be labeled using suitable nuclei. This paper reviews the progress of study on the dopamine D 4 receptor imaging agent, with particular emphasis vary nuclei, for example 11 C, 18 F, 123 I, labeled D 4 receptor ligands, antagonists and analogs as PET or SPECT imaging agents. Authors estimated affinity and selectivity of radioligands for the dopamine D 4 receptor in laboratory animal tests

  17. Hypoxic enhancement of exosome release by breast cancer cells

    International Nuclear Information System (INIS)

    King, Hamish W; Michael, Michael Z; Gleadle, Jonathan M

    2012-01-01

    Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Breast cancer cell lines were cultured under either moderate (1% O 2 ) or severe (0.1% O 2 ) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant. Exposure of three different breast cancer cell lines to moderate (1% O 2 ) and severe (0.1% O 2 ) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release

  18. Dynamic fluorescence imaging with molecular agents for cancer detection

    Science.gov (United States)

    Kwon, Sun Kuk

    Non-invasive dynamic optical imaging of small animals requires the development of a novel fluorescence imaging modality. Herein, fluorescence imaging is demonstrated with sub-second camera integration times using agents specifically targeted to disease markers, enabling rapid detection of cancerous regions. The continuous-wave fluorescence imaging acquires data with an intensified or an electron-multiplying charge-coupled device. The work presented in this dissertation (i) assessed dose-dependent uptake using dynamic fluorescence imaging and pharmacokinetic (PK) models, (ii) evaluated disease marker availability in two different xenograft tumors, (iii) compared the impact of autofluorescence in fluorescence imaging of near-infrared (NIR) vs. red light excitable fluorescent contrast agents, (iv) demonstrated dual-wavelength fluorescence imaging of angiogenic vessels and lymphatics associated with a xenograft tumor model, and (v) examined dynamic multi-wavelength, whole-body fluorescence imaging with two different fluorescent contrast agents. PK analysis showed that the uptake of Cy5.5-c(KRGDf) in xenograft tumor regions linearly increased with doses of Cy5.5-c(KRGDf) up to 1.5 nmol/mouse. Above 1.5 nmol/mouse, the uptake did not increase with doses, suggesting receptor saturation. Target to background ratio (TBR) and PK analysis for two different tumor cell lines showed that while Kaposi's sarcoma (KS1767) exhibited early and rapid uptake of Cy5.5-c(KRGDf), human melanoma tumors (M21) had non-significant TBR differences and early uptake rates similar to the contralateral normal tissue regions. The differences may be due to different compartment location of the target. A comparison of fluorescence imaging with NIR vs. red light excitable fluorescent dyes demonstrates that NIR dyes are associated with less background signal, enabling rapid tumor detection. In contrast, animals injected with red light excitable fluorescent dyes showed high autofluorescence. Dual

  19. Hypoxic stress-induced changes in ribosomes of maize seedling roots

    International Nuclear Information System (INIS)

    Bailey-Serres, J.; Freeling, M.

    1990-01-01

    The hypoxic stress response of Zea mays L. seedling roots involves regulation of gene expression at transcriptional and posttranscriptional levels. We investigated the effect of hypoxia on the translational machinery of seedling roots. The levels of monoribosomes and ribosomal subunits increased dramatically within 1 hour of stress. Prolonged hypoxia resulted in continued accumulation of nontranslating ribosomes, as well as increased levels of small polyribosomes. The return of seedlings to normal aerobic conditions resulted in recovery of normal polyribosome levels. Comparison of ribosomal proteins from control and hypoxic roots revealed differences in quantity and electrophoretic mobility. In vivo labeling of roots with [ 35 S]methionine revealed variations in newly synthesized ribosomal proteins. In vivo labeling of roots with [ 32 P]orthophosphate revealed a major reduction in the phosphorylation of a 31 kilodalton ribosomal protein in hypoxic stressed roots. In vitro phosphorylation of ribosomal proteins by endogenous kinases was used to probe for differences in ribosome structure and composition. The patterns of in vitro kinased phosphoproteins of ribosomes from control and hypoxic roots were not identical. Variation in phosphoproteins of polyribosomes from control and hypoxic roots, as well as among polyribosomes from hypoxic roots were observed. These results indicate that modification of the translational machinery occurs in response to hypoxic stress

  20. Bimodal MR-PET agent for quantitative pH imaging

    Science.gov (United States)

    Frullano, Luca; Catana, Ciprian; Benner, Thomas; Sherry, A. Dean; Caravan, Peter

    2010-01-01

    Activatable or “smart” magnetic resonance contrast agents have relaxivities that depend on environmental factors such as pH or enzymatic activity, but the MR signal depends on relaxivity and agent concentration – two unknowns. A bimodal approach, incorporating a positron emitter, solves this problem. Simultaneous positron emission tomography (PET) and MR imaging with the biomodal, pH-responsive MR-PET agent GdDOTA-4AMP-F allows direct determination of both concentration (PET) and T1 (MRI), and hence pH. PMID:20191650

  1. Spectral Imaging Technology-Based Evaluation of Radiation Treatment Planning to Remove Contrast Agent Artifacts.

    Science.gov (United States)

    Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni

    2016-10-01

    This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.

  2. Microbubbles as contrast agent for in-line x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    Xi Yan; Zhao Jun; Tang Rongbiao; Wang Yujie

    2011-01-01

    In the present study, we investigated the potential of gas-filled microbubbles as contrast agents for in-line x-ray phase-contrast imaging (PCI) in biomedical applications. When imaging parameters are optimized, the microbubbles function as microlenses that focus the incoming x-rays to form bright spots, which can significantly enhance the image contrast. Since microbubbles have been shown to be safe contrast agents in clinical ultrasonography, this contrast-enhancement procedure for PCI may have promising utility in biomedical applications, especially when the dose of radiation is a serious concern. In this study, we performed both numerical simulations and ex vivo experiments to investigate the formation of the contrast and the effectiveness of microbubbles as contrast agents in PCI.

  3. Application of altitude/hypoxic training by elite athletes.

    Science.gov (United States)

    Wilber, Randall L

    2007-09-01

    At the Olympic level, differences in performance are typically less than 0.5%. This helps explain why many contemporary elite endurance athletes in summer and winter sport incorporate some form of altitude/hypoxic training within their year-round training plan, believing that it will provide the "competitive edge" to succeed at the Olympic level. The purpose of this paper is to describe the practical application of altitude/hypoxic training as used by elite athletes. Within the general framework of the paper, both anecdotal and scientific evidence will be presented relative to the efficacy of several contemporary altitude/hypoxic training models and devices currently used by Olympic-level athletes for the purpose of legally enhancing performance. These include the three primary altitude/hypoxic training models: 1) live high+train high (LH+TH), 2) live high+train low (LH+TL), and 3) live low+train high (LL+TH). The LH+TL model will be examined in detail and will include its various modifications: natural/terrestrial altitude, simulated altitude via nitrogen dilution or oxygen filtration, and hypobaric normoxia via supplemental oxygen. A somewhat opposite approach to LH+TL is the altitude/hypoxic training strategy of LL+TH, and data regarding its efficacy will be presented. Recently, several of these altitude/hypoxic training strategies and devices underwent critical review by the World Anti-Doping Agency (WADA) for the purpose of potentially banning them as illegal performance-enhancing substances/methods. This paper will conclude with an update on the most recent statement from WADA regarding the use of simulated altitude devices.

  4. Design and Optimization of Gadolinium Based Contrast Agents for Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Pereira, G.A.; Geraldes, C.F.G.C.; University of Coimbra

    2007-01-01

    The role of Gd 3+ chelates as contrast agents in Magnetic Resonance Imaging is discussed. The theory describing the different contributions to paramagnetic relaxation relevant to the understanding of the molecular parameters determining the relativity of those Gd 3+ chelates, is presented. The experimental techniques used to obtain those parameters are also described. Then, the various approaches taken to optimize those parameters, leading to maximum relativity (efficiency) of the contrast agents, are also illustrated with relevant examples taken from the literature. The various types of Gd 3+ -based agents, besides non-specific and hepatobiliary agents, are also discussed, namely blood pool, targeting, responsive and paramagnetic chemical shift saturation transfer (PARACEST) agents. Finally, a perspective is presented of some of the challenges lying ahead in the optimization of MRI contrast agents to be useful in Molecular Imaging. (author)

  5. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  6. Hypoxic sensitizers (A review)

    International Nuclear Information System (INIS)

    Ohno, Tadao; Shikita, Mikio

    1976-01-01

    Since the early works of Bridges (1960) and Adams (1963), electron-affinic compounds have long been the subject of a number of studies in the search for a drug which sensitizes radio-resistant hypoxic tumor cells for improvement of radiotherapy of cancer. However, clinical application of this kind of drugs has been hampered by the fact that most of the compounds which exhibited radiosensitizing action in vitro exerted no such action against hypoxic tumor cells in vivo, because of rapid metabolical decomposition or because of great toxicity in vivo. Low solubility of these compounds in aqueous solution was another problem which made it difficult to use the compounds in proper concentrations. The authors have found that furylfuramide (AF-2), possesses a typical radiosensitizing potency. The radiosensitizing action of AF-2 was demonstrated in hypoxic yeasts as well as in mouse leukemic cells (L-5178 Y). Injection of 4.7 μg of AF-2 into a mouse mammary carcinoma 5 min before a single dose (3500 rad) of x-irradiation reduced regrowth of the tumors to a greater extent than irradiation alone, giving an enhancing ratio of 1.6. The effect of AF-2 was insignificant when radiation was given in divided doses (800 rad for 5 times) with the drug injected each time prior to irradiation. (auth.)

  7. The clinical use of contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bydder, G.M.

    1987-01-01

    Interest in the use of external agents to increase tissue contrasts has come from many sources dating back to the earliest work in NMR, to animal studies and to the widespread use of contrast agents in conventional radiological practice. The first clinical magnetic resonance images were published in 1980 and in the following year a brief account of the use of the paramagnetic agents in human volunteers was established. It was apparent relatively early in the development of magnetic resonance imaging (MRI) that a high level of soft tissue contrast was available de novo and the need for externally administered agents might therefore be small. This observation was tempered by the fact that separation of tumour from oedema was frequently better with contrast enhanced CT X-ray than with unenhanced MRI and that of a contrast agent might therefore be needed for MRI. At the end of 1983 the first parenteral agent gadoliminum diethylene triamine pentaacetic acid (Gd-DTPA) was used in volunteers and clinical studies began in 1984. At the present time only molecular O/sub 2/, oral iron compounds and Gd-DTPA are in clinical use although there are a number of other agents which have been used in animals and some of these may become available for clinical use in the foreseeable future

  8. Toxic clinical hypoxic radiation sensitizers plus radiation-induced toxicity

    International Nuclear Information System (INIS)

    Richmond, R.C.

    1984-01-01

    The operational definition espoused twelve years ago that clinical hypoxic radiation sensitizers should be nontoxic interferes with the recognition and research of useful radiation sensitizers. Eight years ago the toxic antitumor drug cis-dichlorodiammineplatinum(II) was reported to be a hypoxic radiation sensitizer and the selective antitumor action of this drug was stressed as potentially creating tumor-targeted radiation sensitization. This rationale of oxidative antitumor drugs as toxic and targeted clinical sensitizers is useful, and has led to the study reported here. The antitumor drug cis-(1,1-cyclobutane-dicarboxylato)diammineplatinum(II), or JM-8, is being tested in clinical trials. Cells of S. typhimurium in PBS in the presence of 0.2mM JM-8 are found to be sensitized to irradiation under hypoxic, but not oxic, conditions. JM-8 is nontoxic to bacteria at this concentration, but upon irradiation the JM-8 solution becomes highly toxic. This radiation induced toxicity of JM-8 preferentially develops from hypoxic solution, and thus contributes to the rationale of hypoxic tumor cell destruction

  9. Changes in resting-state brain function of pilots after hypoxic exposure based on methods for fALFF and ReHo analysis

    Directory of Open Access Journals (Sweden)

    Jie LIU

    2015-07-01

    Full Text Available Objective The objective of this study was to evaluate the basic changes in brain activity of pilots after hypoxic exposure with the use of resting-state functional magnetic resonance imaging (rs-fMRI and regional homogeneity (ReHo method. Methods Thirty healthy male pilots were successively subjected to normal and hypoxic exposure (with an oxygen concentration of 14.5%. Both the fALFF and ReHo methods were adopted to analyze the resting-state functional MRI data before and after hypoxic exposure of the subjects, the areas of the brain with fALFF and ReHo changes after hypoxic exposure were observed. Results  After hypoxic exposure, the pulse was 64.0±10.6 beats/min, and the oxygen saturation was 92.4%±3.9% in these 30 pilots, and it was lower than those before exposure (71.4±10.9 beats/min, 96.3%±1.3%, P<0.05. Compared with the condition before hypoxic exposure, the fALFF value was decreased in superior temporal gyri on both sides and the right superior frontal gyrus, and increase in the left precuneus, while the value of ReHo was decreased in the right superior frontal gyrus (P<0.05. No brain area with an increase in ReHo value was found. Conclusions Hypoxic exposure could significantly affect the brain functions of pilots, which may contribute to change in their cognitive ability. DOI: 10.11855/j.issn.0577-7402.2015.06.18

  10. Effect of fractionated hyperthermia on hypoxic cells in vitro

    International Nuclear Information System (INIS)

    Nielson, O.S.

    1981-01-01

    The lethal response of asynchronous exponentially growing mouse lung (L1A2) cells heated to 42 0 C under hypoxic conditions was demonstrated in vitro. Acutely hypoxic cells (i.e. heated immediately after 30 min of N 2 +CO 2 gassing) and aerobic cells treated under the same extracellular pH were equally sensitive to a single hyperthermic treatment, and incubation under hypoxia for up to 24 hours prior to treatment did not influence cell survival. Similarly, under controlled pH conditions (pH within 7.0 to 7.4) recovery from hyperthermic damage demonstrated by two-dose hyperthermic fractionation (each of 1.5 hours at 42 0 C) was identical in hypoxic and aerobic cells, and the highest recovery was found at a 10-hour interval Preheating for 1.5 hours at 42 0 C induced thermal resistance. to a second treatment at 42 0 C (thermotolerance). At the 10-hour interval the degree of thermotolerance was not influenced by incubation under hypoxic conditions (thermotolerance ratio, TTR = 4.7 in both aerobic and hypoxic cells). The data indicate that hypoxic conditions do not influence the heat response in L1A2 cells to either a single or a two-dose fractionated hyperthermic treatment in which hypoxia or aerobic conditions were maintained in the interval between the heat treatments. (author)

  11. Synchrotron-based DEI for bio-imaging and DEI-CT to image phantoms with contrast agents

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Zhong, Zhong; Takeda, Tohoru; Gigante, Giovanni E.

    2012-01-01

    The introduction of water, physiological, or iodine as contrast agents is shown to enhance minute image features in synchrotron-based X-ray diffraction radiographic and tomographic imaging. Anatomical features of rat kidney, such as papillary ducts, ureter, renal artery and renal vein are clearly distinguishable. Olfactory bulb, olfactory tact, and descending bundles of the rat brain are visible with improved contrast. - Highlights: ► Distinguishable anatomical structures features of rat kidney and rat brain are acquired with Sy-DEI in planar mode. ► Images of a small brain phantom and cylindrical phantom are acquired in tomography mode (Sy-DEI-CT) with contrast agents. ► Sy-DEI and Sy-DEI-CT techniques provide new source of information related to biological microanatomy.

  12. In vivo imaging agents: an international market report

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this study is to provide a global perspective of the in vivo imaging agents business to market planning executives who are working for companies that develop, produce and distribute various types of in vivo imaging agents. Others that could find this study useful include investment bankers, regulatory and governmental authorities and purchasers of these products. The study attempts to diligently provide market data by type for important geographic markets - Western Europe, the U.S.A., and Japan. A competitive intelligence section which discusses companies involved in these markets constitutes the last part of this study. These profiles are not intended to extensively evaluate each company's marketing strengths or strategies but to provide a general idea of the market presence and prospects. A combination of primary and secondary research is used for all findings. (author)

  13. Sulphonylurea drugs reduce hypoxic damage in the isolated perfused rat kidney.

    Science.gov (United States)

    Engbersen, R; Moons, M M; Wouterse, A C; Dijkman, H B; Kramers, C; Smits, P; Russel, F G

    2000-08-01

    Sulphonylurea drugs have been shown to protect against hypoxic damage in isolated proximal tubules of the kidney. In the present study we investigated whether these drugs can protect against hypoxic damage in a whole kidney preparation. Tolbutamide (200 microM) and glibenclamide (10 microM) were applied to the isolated perfused rat kidney prior to changing the gassing from oxygen to nitrogen for 30 min. Hypoxic perfusions resulted in an increased fractional excretion of glucose (FE % glucose 14.3+/-1.5 for hypoxic perfusions vs 4.9+/-1.6 for normoxic perfusions, mean +/- s.e. mean, P<0.05), which could be completely restored by 200 microM tolbutamide (5.7+/-0.4 for tolbutamide vs 14.3+/-1.5 for untreated hypoxic kidneys, P<0.01). Furthermore, tolbutamide reduced the total amount of LDH excreted in the urine (220+/-100 mU for tolbutamide vs. 1220+/-160 mU for untreated hypoxic kidneys, P<0.01). Comparable results were obtained with glibenclamide (10 microM). In agreement with the effect on functional parameters, ultrastructural analysis of proximal tubules showed increased brush border preservation in tolbutamide treated kidneys compared to untreated hypoxic kidneys. We conclude that glibenclamide and tolbutamide are both able to reduce hypoxic damage to proximal tubules in the isolated perfused rat kidney when applied in the appropriate concentrations.

  14. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Science.gov (United States)

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  15. Imaging efficiency of an X-ray contrast agent-incorporated polymeric microparticle.

    Science.gov (United States)

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-01-01

    Biocompatible polymeric encapsulants have been widely used as a delivery vehicle for a variety of drugs and imaging agents. In this study, X-ray contrast agent (iopamidol) is encapsulated into a polymeric microparticle (polyvinyl alcohol) as a particulate flow tracer in synchrotron X-ray imaging system. The physical properties of the designed microparticles are investigated and correlated with enhancement in the imaging efficiency by experimental observation and theoretical interpretation. The X-ray absorption ability of the designed microparticle is assessed by Beer-Lambert-Bouguer law. Particle size, either in dried state or in solvent, primarily dominates the X-ray absorption ability under the given condition, thus affecting imaging efficiency of the designed X-ray contrast flow tracers. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells.

    Science.gov (United States)

    Filipp, Fabian V; Scott, David A; Ronai, Ze'ev A; Osterman, Andrei L; Smith, Jeffrey W

    2012-05-01

    The tricarboxylic acid (TCA) cycle is the central hub of oxidative metabolism, running in the classic forward direction to provide carbon for biosynthesis and reducing agents for generation of ATP. Our metabolic tracer studies in melanoma cells showed that in hypoxic conditions the TCA cycle is largely disconnected from glycolysis. By studying the TCA branch point metabolites, acetyl CoA and citrate, as well as the metabolic endpoint glutamine and fatty acids, we developed a comprehensive picture of the rewiring of the TCA cycle that occurs in hypoxia. Hypoxic tumor cells maintain proliferation by running the TCA cycle in reverse. The source of carbon for acetyl CoA, citrate, and fatty acids switches from glucose in normoxia to glutamine in hypoxia. This hypoxic flux from glutamine into fatty acids is mediated by reductive carboxylation. This reductive carboxylation is catalyzed by two isocitrate dehydrogenases, IDH1 and IDH2. Their combined action is necessary and sufficient to effect the reverse TCA flux and maintain cellular viability. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  17. Hybrid TiO2 -Ruthenium Nano-photosensitizer Synergistically Produces Reactive Oxygen Species in both Hypoxic and Normoxic Conditions.

    Science.gov (United States)

    Gilson, Rebecca C; Black, Kvar C L; Lane, Daniel D; Achilefu, Samuel

    2017-08-28

    Photodynamic therapy (PDT) is widely used to treat diverse diseases, but its dependence on oxygen to produce cytotoxic reactive oxygen species (ROS) diminishes the therapeutic effect in a hypoxic environment, such as solid tumors. Herein, we developed a ROS-producing hybrid nanoparticle-based photosensitizer capable of maintaining high levels of ROS under both normoxic and hypoxic conditions. Conjugation of a ruthenium complex (N3) to a TiO 2 nanoparticle afforded TiO 2 -N3. Upon exposure of TiO 2 -N3 to light, the N3 injected electrons into TiO 2 to produce three- and four-fold more hydroxyl radicals and hydrogen peroxide, respectively, than TiO 2 at 160 mmHg. TiO 2 -N3 maintained three-fold higher hydroxyl radicals than TiO 2 under hypoxic conditions via N3-facilitated electron-hole reduction of adsorbed water molecules. The incorporation of N3 transformed TiO 2 from a dual type I and II PDT agent to a predominantly type I photosensitizer, irrespective of the oxygen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hypothermia therapy for newborns with hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Silveira, Rita C; Procianoy, Renato S

    2015-01-01

    Therapeutic hypothermia reduces cerebral injury and improves the neurological outcome secondary to hypoxic ischemic encephalopathy in newborns. It has been indicated for asphyxiated full-term or near-term newborn infants with clinical signs of hypoxic-ischemic encephalopathy (HIE). A search was performed for articles on therapeutic hypothermia in newborns with perinatal asphyxia in PubMed; the authors chose those considered most significant. There are two therapeutic hypothermia methods: selective head cooling and total body cooling. The target body temperature is 34.5 °C for selective head cooling and 33.5 °C for total body cooling. Temperatures lower than 32 °C are less neuroprotective, and temperatures below 30 °C are very dangerous, with severe complications. Therapeutic hypothermia must start within the first 6h after birth, as studies have shown that this represents the therapeutic window for the hypoxic-ischemic event. Therapy must be maintained for 72 h, with very strict control of the newborn's body temperature. It has been shown that therapeutic hypothermia is effective in reducing neurologic impairment, especially in full-term or near-term newborns with moderate hypoxic-ischemic encephalopathy. Therapeutic hypothermia is a neuroprotective technique indicated for newborn infants with perinatal asphyxia and hypoxic-ischemic encephalopathy. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  19. Inhibition of glycolysis by misonidazole in hypoxic cells

    International Nuclear Information System (INIS)

    Ling, L.; Sutherland, R.

    1984-01-01

    Inhibition of glycolysis has been postulated to be a mechanism of misonidazole (MISO) toxicity in hypoxic cells. To investigate the effect of MISO on glycolysis, glucose transport and its consumption and lactate formation were measured. Exponential EMT6 cells (10/sup 6/ cells/ml) were made hypoxix by continuous gassing in 3% CO/sub 2/ in N/sub 2/. They were then treated with 5mM MISO for various times, then washed and analysed for their rates of anaerobic glycolysis. Glucose and lactate content were determined enzymatically. The rates of both glucose consumption and lactate formation decreased after 30 min hypoxic incubation with MISO. After 90 min, the rates were not measurable even though the cells still excluded Trypan Blue. There was, however, a parallel decrease in plating efficiency. These data suggest that the inhibition of glycolysis is an important mechanism of hypoxic toxicity of MISO. To locate the site of inhibition, studies were initiated to look at glucose transport by following the uptake of /sup 14/-C-3-0-methyl-glucose, a nonmetabolised glucose analog. Results obtained so far indicate that up to 90 min of hypoxic incubation with MISO, there was no change in the kinetics of the uptake of his analog. Therefore, the results showed that in hypoxic cells treated with MISO, the glucose transport system was unaffected. However, there was a rapid decrease in anaerobic glycolysis

  20. Gadolinium-based contrast agents in pediatric magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gale, Eric M.; Caravan, Peter [Massachusetts General Hospital, Harvard Medical School, Department of Radiology, The Martinos Center for Biomedical Imaging, Boston, MA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); McDonald, Robert J. [College of Medicine, Mayo Clinic, Department of Radiology, Rochester, MN (United States); Winfeld, Matthew [University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (United States); Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Pediatric Radiology, Cincinnati, OH (United States); Gee, Michael S. [MassGeneral Hospital for Children, Harvard Medical School, Division of Pediatric Imaging, Department of Radiology, Boston, MA (United States)

    2017-05-15

    Gadolinium-based contrast agents can increase the accuracy and expediency of an MRI examination. However the benefits of a contrast-enhanced scan must be carefully weighed against the well-documented risks associated with administration of exogenous contrast media. The purpose of this review is to discuss commercially available gadolinium-based contrast agents (GBCAs) in the context of pediatric radiology. We discuss the chemistry, regulatory status, safety and clinical applications, with particular emphasis on imaging of the blood vessels, heart, hepatobiliary tree and central nervous system. We also discuss non-GBCA MRI contrast agents that are less frequently used or not commercially available. (orig.)

  1. Comparison of positive and negative enteral contrast agents for MR imaging of the abdomen

    International Nuclear Information System (INIS)

    Kaminsky, S.; Langer, M.

    1994-01-01

    Following oral administration of a buffered gadopentetate-dimeglumine solution (Magnevist enteral R , 1 mmol/l, 6-17 ml/kg) T 1 -, proton-density- and T 2 -weighted spin-echo images of abdominal and retroperitoneal lesions were acquired (0.5 T). Gadopentetate is a signal-enhancing, positive MR contrast agent, intraluminar air served as a model of a signal-free, negative agent. In 21 patients contrast/noise ratios of gadopentetate and air versus lesions and fat were compared quantitatively (t-test). In T 1 - and T 2 -weighted images contrast/noise ratios of gadopentetate versus lesions were significantly higher than those of air. In proton-density images there was no significant difference. In T 1 - and proton-density images contrast/noise ratios of air versus abdominal fat were significantly higher than those of gadopentetate, in T 2 -weighted images gadopentetate had a significantly higher contrast/noise ratio than air. Signal-enhancing positive contrast agents seem advantageous over signal-free negative enteral MR contrast agents. (orig.) [de

  2. In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy.

    Science.gov (United States)

    Uddin, Md Imam; Evans, Stephanie M; Craft, Jason R; Capozzi, Megan E; McCollum, Gary W; Yang, Rong; Marnett, Lawrence J; Uddin, Md Jashim; Jayagopal, Ashwath; Penn, John S

    2016-08-05

    Ischemia-induced hypoxia elicits retinal neovascularization and is a major component of several blinding retinopathies such as retinopathy of prematurity (ROP), diabetic retinopathy (DR) and retinal vein occlusion (RVO). Currently, noninvasive imaging techniques capable of detecting and monitoring retinal hypoxia in living systems do not exist. Such techniques would greatly clarify the role of hypoxia in experimental and human retinal neovascular pathogenesis. In this study, we developed and characterized HYPOX-4, a fluorescence-imaging probe capable of detecting retinal-hypoxia in living animals. HYPOX-4 dependent in vivo and ex vivo imaging of hypoxia was tested in a mouse model of oxygen-induced retinopathy (OIR). Predicted patterns of retinal hypoxia were imaged by HYPOX-4 dependent fluorescence activity in this animal model. In retinal cells and mouse retinal tissue, pimonidazole-adduct immunostaining confirmed the hypoxia selectivity of HYPOX-4. HYPOX-4 had no effect on retinal cell proliferation as indicated by BrdU assay and exhibited no acute toxicity in retinal tissue as indicated by TUNEL assay and electroretinography (ERG) analysis. Therefore, HYPOX-4 could potentially serve as the basis for in vivo fluorescence-based hypoxia-imaging techniques, providing a tool for investigators to understand the pathogenesis of ischemic retinopathies and for physicians to address unmet clinical needs.

  3. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].

    Science.gov (United States)

    Shiraishi, Kouichi

    2013-01-01

    We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.

  4. Radiosensitization of hypoxic tumor cells in vitro by nitric oxide

    International Nuclear Information System (INIS)

    Griffin, Robert J.; Makepeace, Carol M.; Hur, Won-Joo; Song, Chang W.

    1996-01-01

    Purpose: The effects of nitric oxide (NO) on the radiosensitivity of SCK tumor cells in oxic and hypoxic environments in vitro were studied. Methods and Materials: NO was delivered to cell suspensions using the NO donors 2,2-diethyl-1-nitroso-oxyhydrazine sodium salt (DEA/NO), and a spermine/nitric oxide complex (SPER/NO), which release NO at half-lives of 2.1 min and 39 min at pH 7.4, respectively. The cells were suspended in media containing DEA/NO or SPER/NO for varying lengths of time under oxic or hypoxic conditions, irradiated, and the clonogenicity determined. Results: Both compounds markedly radiosensitized the hypoxic cells. The drug enhancement ratios (DER) for 0.1, 1.0, and 2.0 mM DEA/NO were 2.0, 2.3 and 3.0, respectively, and those for 0.1, 1.0, and 2.0 mM SPER/NO were 1.6, 2.3, and 2.8, respectively. Aerobic cells were not radiosensitized by DEA/NO or SPER/NO. When DEA/NO and SPER/NO were incubated in solution overnight to allow release of NO, they were found to have no radiosensitizing effect under hypoxic or oxic conditions indicating the sensitization by the NO donors was due to the NO molecule released from these drugs. At the higher concentrations, SPER/NO was found to be cytotoxic in aerobic conditions but not in hypoxic conditions. DEA/NO was only slightly toxic to the cells in both aerobic and hypoxic conditions. Conclusions: NO released from NO donors DEA/NO and SPER/NO is as effective as oxygen to radiosensitize hypoxic cells in vitro. Its application to the radiosensitization of hypoxic cells in solid tumors remains to be investigated

  5. Gadolinium-porphyrins: new potential magnetic resonance imaging contrast agents for melanoma detection

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2006-11-01

    Full Text Available BACKGROUND: Two new porphyrin-based magnetic resonance imaging (MRI contrast agents, Gd-hematoporphyrin (Gd-H and Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd-TCP were synthesized and tested in nude mice with human melanoma (MM-138 xenografts as new melanoma contrast agents. METHODS: Subcutaneous xenografts of human melanoma cells (MM-138 were studied in 30 (five groups of six nude mice. The effect of different contrast agents (Gd-TCP, Gd-H, GdCl3 and Gd-DTPA on proton relaxation times was measured in tumors and other organs. T1 values, signal enhancement and the Gd concentration for different contrast agent solutions were also investigated. RESULTS: The porphyrin agents showed higher relaxivity compared to the clincal agent, Gd-DTPA. A significant 16% and 21% modification in T1 relaxation time of the water in human melanoma tumors grafted in the nude mice was revealed 24 hours after injection of Gd-TCP and Gd-H, respectively. The percentage of injected Gd localized to the tumor measured by inductively coupled plasma atomic emission spectrometry (ICP-AES was approximately 21% for Gd-TCP and 28% for Gd-H which were higher than that of Gd-DTPA (10%. CONCLUSIONS: The high concentration of Gd in the tumor is indicative of a selective retention of the compounds and indicates that Gd-TCP and Gd-H are promising MR imaging contrast agents for melanoma detection. Gd-porphyrins have considerable promise for further diagnostic applications in magnetic resonance imaging. KEY WORDS: MRI, porphyrin-based contrast agent, hematoporphyrin, melanoma.

  6. Hypoxic conditioning as a new therapeutic modality

    Directory of Open Access Journals (Sweden)

    Samuel eVerges

    2015-06-01

    Full Text Available Preconditioning refers to a procedure by which a single noxious stimulus below the threshold of damage is applied to the tissue in order to increase resistance to the same or even different noxious stimuli given above the threshold of damage. Hypoxic preconditioning relies on complex and active defenses that organisms have developed to counter the adverse consequences of oxygen deprivation. The protection it confers against ischemic attack for instance as well as the underlying biological mechanisms have been extensively investigated in animal models. Based on these data, hypoxic conditioning (consisting in recurrent exposure to hypoxia has been suggested a potential non-pharmacological therapeutic intervention to enhance some physiological functions in individuals in whom acute or chronic pathological events are anticipated or existing. In addition to healthy subjects, some benefits have been reported in patients with cardiovascular and pulmonary diseases as well as in overweight and obese individuals. Hypoxic conditioning consisting in sessions of intermittent exposure to moderate hypoxia repeated over several weeks may induce hematological, vascular, metabolic and neurological effects. This review addresses the existing evidence regarding the use of hypoxic conditioning as a potential therapeutic modality and emphasizes on many remaining issues to clarify and future researches to be performed in the field.

  7. Doppler imaging of hypoxic-ischemic encephalopathy in term neonates on the first day of life

    International Nuclear Information System (INIS)

    Wilczynska, M.; Stefanczyk, L.; Zieba, K.; Bieganski, T.; Gulczynska, E.

    2004-01-01

    Hypoxic-ischaemic encephalopathy (HIE) is the most important neurological cause of mortality and poor neurodevelopmental outcome in neonates and infants. The aim of the study was to perform routine transfontanellar US brain scanning together with doppler evaluation of blood flow in anterior cerebral artery in the group of neonates with perinatal asphyxia studied at the first day of their life. The study group consisted of asphyxiated neonates (n=11), birth weight 3576,0 ± 426,0 g, gestational age 39,4 ± 1,1 weeks, pH of cord arterial blood 6,89 ± 0,45, 1 st minute Apgar score 2 points. The control group were healthy neonates (n=20), , birth weight 3354,0 ± 378,0 g, gestational age 38,9 ± 1,8 weeks, pH of cord arterial blood 7,28 ± 0,41, 1 st minute Apgar score 8 points. As compared to healthy children asphyxiated neonates had significantly decreased RI value (right cerebral artery 0,53 ± 0,02 vs. 0,72 ± 0,02; left cerebral artery 0,55 ± 0,02 vs. 0,73 ± 0,02), despite not all of them had obvious HIE features in routine US examination. None of these neonates lived longer than 10 days. Doppler examination of cerebral blood flow in term neonates born with perinatal asphyxia could be valuable complementary method of US imaging, especially in those patients with very discreet or absent HIE features in routine US scan. Results of doppler imaging could serve as prognostic factor for clinical outcome. (author)

  8. 64Cu loaded liposomes as positron emission tomography imaging agents

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Binderup, Tina; Rasmussen, Palle

    2011-01-01

    applicable as PET imaging agents. We show the utility of the 64Cu-liposomes for quantitative in vivo imaging of healthy and tumor-bearing mice using PET. This remote loading method is a powerful tool for characterizing the in vivo performance of liposome based nanomedicine, and has great potential...

  9. Postnatal morphology of hematoencephalic barrier in hypoxic lesion

    Directory of Open Access Journals (Sweden)

    E. V. Kikhtenko

    2012-12-01

    Full Text Available In infants with perinatal hypoxic lesion of the central nervous system swelling and death of the endothelium, thickening of the capillary basement membranes, karyorrhexis and plasmorrhexis of astrocytes are observed. The severity and degree of pathological changes depends on the time of hypoxic exposure (antenatal or intrapartum period and the term of postnatal life.

  10. Satellite-based empirical models linking river plume dynamics with hypoxic area andvolume

    Science.gov (United States)

    Satellite-based empirical models explaining hypoxic area and volume variation were developed for the seasonally hypoxic (O2 < 2 mg L−1) northern Gulf of Mexico adjacent to the Mississippi River. Annual variations in midsummer hypoxic area and ...

  11. Renal perfusion image using harmonic ultrasound with microbble contrast agent: preliminary study

    International Nuclear Information System (INIS)

    Kim, Jung Hoon; Choi, Jae Ho; Han, Dong Chul; Lee, Hi Bahl; Choi, Deuk Lin; Eun, Hyo Won; Lee, Hun Jae

    2003-01-01

    To compare, in terms of their feasibility and normal range, 99m Tc-DTPA renal perfusion imaging and renal perfusion imaging using harmonic ultrasound (US) with a microbubble contrast agent for the evaluation of renal perfusion after renal transplantation. During a six-month period, thirty patients who had received a renal transplant underwent both 99m Tc-DTPA renal perfusion imaging and renal perfusion imaging using harmonic US with a microbubble contrast agent. Sonographic renal perfusion images were obtained before and after a bolus injection of the microbubble contrast agent Levovist TM (SH U 5084; Schering AG, Berlin, Germany) every 3 seconds for 3 minutes. Sonographic renal perfusion images were converted into a renal perfusion curve by a computer program and T peak of the curve thus obtained was compared with that of the 99m Tc-DTPA curve. Average T peak of the 99m Tc-DTPA renal perfusion curve was 16.2 seconds in the normal group and 39.6 seconds in the delayed perfusion group, while average T peak of the sonographic renal perfusion curve was 23.7 seconds and 46.2 seconds, respectively. T peak of the sonographic renal perfusion curve showed a good correlation with that of the 99m Tc-DTPA curve (correlation coefficient=0.8209; p=0.0001). The cut-off value of T peak of the sonographic renal perfusion curve was 35 seconds (sensitivity=90%, specificity=95%). In patients who have received a renal transplant, the findings of renal perfusion imaging using harmonic US with a microbubble contrast agent show close correlation with those of 99m Tc-DTPA renal perfusion imaging. The optimal cut-off value of T peak of the sonographic renal perfusion curve was 35 seconds

  12. Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models.

    Science.gov (United States)

    Benito, Juliana; Ramirez, Marc S; Millward, Niki Zacharias; Velez, Juliana; Harutyunyan, Karine G; Lu, Hongbo; Shi, Yue-Xi; Matre, Polina; Jacamo, Rodrigo; Ma, Helen; Konoplev, Sergej; McQueen, Teresa; Volgin, Andrei; Protopopova, Marina; Mu, Hong; Lee, Jaehyuk; Bhattacharya, Pratip K; Marszalek, Joseph R; Davis, R Eric; Bankson, James A; Cortes, Jorge E; Hart, Charles P; Andreeff, Michael; Konopleva, Marina

    2016-04-01

    To characterize the prevalence of hypoxia in the leukemic bone marrow, its association with metabolic and transcriptional changes in the leukemic blasts and the utility of hypoxia-activated prodrug TH-302 in leukemia models. Hyperpolarized magnetic resonance spectroscopy was utilized to interrogate the pyruvate metabolism of the bone marrow in the murine acute myeloid leukemia (AML) model. Nanostring technology was used to evaluate a gene set defining a hypoxia signature in leukemic blasts and normal donors. The efficacy of the hypoxia-activated prodrug TH-302 was examined in the in vitro and in vivo leukemia models. Metabolic imaging has demonstrated increased glycolysis in the femur of leukemic mice compared with healthy control mice, suggesting metabolic reprogramming of hypoxic bone marrow niches. Primary leukemic blasts in samples from AML patients overexpressed genes defining a "hypoxia index" compared with samples from normal donors. TH-302 depleted hypoxic cells, prolonged survival of xenograft leukemia models, and reduced the leukemia stem cell pool in vivo In the aggressive FLT3/ITD MOLM-13 model, combination of TH-302 with tyrosine kinase inhibitor sorafenib had greater antileukemia effects than either drug alone. Importantly, residual leukemic bone marrow cells in a syngeneic AML model remain hypoxic after chemotherapy. In turn, administration of TH-302 following chemotherapy treatment to mice with residual disease prolonged survival, suggesting that this approach may be suitable for eliminating chemotherapy-resistant leukemia cells. These findings implicate a pathogenic role of hypoxia in leukemia maintenance and chemoresistance and demonstrate the feasibility of targeting hypoxic cells by hypoxia cytotoxins. ©2015 American Association for Cancer Research.

  13. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents

    Directory of Open Access Journals (Sweden)

    Estelrich J

    2015-03-01

    Full Text Available Joan Estelrich,1,2 María Jesús Sánchez-Martín,1 Maria Antònia Busquets1,2 1Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain; 2Institut de Nanociència I Nanotecnologia (IN2UB, Barcelona, Catalonia, SpainAbstract: Magnetic resonance imaging (MRI has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin–lattice relaxation and T2, spin–spin relaxation of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents are administered prior to the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions, providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of

  14. Shape Effects in Nanoparticle-Based Imaging Agents

    Science.gov (United States)

    Culver, Kayla Shani Brook

    At the nanoscale, material properties become highly size and shape dependent. These properties can be manipulated and exploited for a variety of biomedical applications, including sensing, drug delivery, diagnostics, and imaging. In particular, nanoparticles of different materials, sizes and shapes have been developed as high-performance contrast agents for optical, electron, and medical imaging. In this thesis, I focus on gold nanoparticles because they are widely used as contrast agents in multiple types of imaging modalities. Additionally, the surface of gold can be readily functionalized with ligands and the structure of the particles can be manipulated to modulate their performance as imaging agents. The properties of nanoparticles can generate contrast directly. For example, the light scattering properties of gold particles can be visualized in optical microscopy, the high electron density of gold produces contrast in electron microscopy, and the x-ray absorption properties of gold can be detected in medical x-ray and computed tomography imaging. Alternatively, the properties of the nanomaterial can be exploited to modulate the signal produced by other molecules that are bound to the particle surface. The light emission of molecular fluorophores can be quenched or dramatically increased by coupling to the optical field enhancements of gold nanoparticles, and the performance of gadolinium (Gd(III))-based magnetic resonance imaging (MRI) contrast agents can be increased by coupling to the rotational motion of nanoparticles. In this dissertation, I focus specifically on how the structure of star-shaped gold particles (nanostars) can be exploited as single-particle optical probes and to dramatically enhance the relaxivity of Gd(III) bound to the surface. Differential interference contrast (DIC) is a type of wide-field diffraction-limited optical microscopy that is commonly used by biologists to image cells without labels. Here, I demonstrate the DIC can be used

  15. Element-specific spectral imaging of multiple contrast agents: a phantom study

    Science.gov (United States)

    Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.

    2018-02-01

    This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.

  16. [3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart.

    Science.gov (United States)

    Matucci, R; Bennardini, F; Sciammarella, M L; Baccaro, C; Stendardi, I; Franconi, F; Giotti, A

    1987-04-01

    We compared the binding properties of [3H]-nitrendipine in heart membranes from normal guinea-pig heart and from hypoxic or hypoxic and reoxygenated heart. The [3H]-nitrendipine binds a single class of high capacity (Bmax 667.2 +/- 105.2) with high affinity (KD 0.14 +/- 0.02) binding sites. By contrast, in membranes of hypoxic and reoxygenated heart the Bmax decreases significantly while it remains unaffected during hypoxia. Xanthinoxidase activity is increased in hypoxic-reoxygenated hearts.

  17. On-bead combinatorial synthesis and imaging of chemical exchange saturation transfer magnetic resonance imaging agents to identify factors that influence water exchange.

    Science.gov (United States)

    Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika

    2011-08-24

    The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.

  18. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas; Fokong, Stanley; Brand, Christian; Andreou, Chrysafis; Krä utler, Bernhard; Rueping, Magnus; Kiessling, Fabian

    2017-01-01

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents

  19. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy.

    Science.gov (United States)

    Wei, Zheng Z; Zhu, Yan-Bing; Zhang, James Y; McCrary, Myles R; Wang, Song; Zhang, Yong-Bo; Yu, Shan-Ping; Wei, Ling

    2017-10-05

    Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: "stem cells," "hypoxic preconditioning," "ischemic preconditioning," and "cell transplantation." Original articles and critical reviews on the topics were selected. Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.

  20. Biochemical Stability Analysis of Nano Scaled Contrast Agents Used in Biomolecular Imaging Detection of Tumor Cells

    Science.gov (United States)

    Kim, Jennifer; Kyung, Richard

    Imaging contrast agents are materials used to improve the visibility of internal body structures in the imaging process. Many agents that are used for contrast enhancement are now studied empirically and computationally by researchers. Among various imaging techniques, magnetic resonance imaging (MRI) has become a major diagnostic tool in many clinical specialties due to its non-invasive characteristic and its safeness in regards to ionizing radiation exposure. Recently, researchers have prepared aqueous fullerene nanoparticles using electrochemical methods. In this paper, computational simulations of thermodynamic stabilities of nano scaled contrast agents that can be used in biomolecular imaging detection of tumor cells are presented using nanomaterials such as fluorescent functionalized fullerenes. In addition, the stability and safety of different types of contrast agents composed of metal oxide a, b, and c are tested in the imaging process. Through analysis of the computational simulations, the stabilities of the contrast agents, determined by optimized energies of the conformations, are presented. The resulting numerical data are compared. In addition, Density Functional Theory (DFT) is used in order to model the electron properties of the compound.

  1. Hypothermia for neonatal hypoxic-ischemic encephalopathy: NICHD Neonatal Research Network contribution to the field.

    Science.gov (United States)

    Shankaran, Seetha; Natarajan, Girija; Chalak, Lina; Pappas, Athina; McDonald, Scott A; Laptook, Abbot R

    2016-10-01

    In this article, we summarize the NICHD Neonatal Research Network (NRN) trial of whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy in relation to other randomized controlled trials (RCTs) of hypothermia neuroprotection. We describe the NRN secondary studies that have been published in the past 10 years evaluating clinical, genetic, biochemical, and imaging biomarkers of outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging

    International Nuclear Information System (INIS)

    Jin, Birui; Lin, Min; You, Minli; Xu, Feng; Lu, Tianjian; Zong, Yujin; Wan, Mingxi; Duan, Zhenfeng

    2015-01-01

    Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photoblinking, auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of upconversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy. (paper)

  3. microRNA regulation of the embryonic hypoxic response in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Pocock, Roger

    2015-01-01

    Layered strategies to combat hypoxia provide flexibility in dynamic oxygen environments. Here we show that multiple miRNAs are required for hypoxic survival responses during C. elegans embryogenesis. Certain miRNAs promote while others antagonize the hypoxic survival response. We found...... of the full mRNA target repertoire of these miRNAs will reveal the miRNA-regulated network of hypoxic survival mechanisms in C. elegans....

  4. Liver nodules. MR imaging using extracellular gadolinium agent

    International Nuclear Information System (INIS)

    Yoshimitsu, Kengo; Honda, Hiroshi

    2009-01-01

    Extracellular gadolinium (Gd)-containing contrast medium, including gadopentetate dimeglumine (Gd-DTPA), has been playing a main role in the diagnostic MR imaging of the liver. Its significance is two-fold: assessment of the degree of neovascularity or angiogenesis in its early dynamic phase, and that of bulk of interstitium in its equilibrium phase. With the advent of gadolinium ethoxybenzyl diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA), which can be used as a dynamic study agent by bolus injection in addition to its original use as a tissue-specific agent, some possibility has been suggested that extracellular Gd agent would be no longer available in the near future in the field of liver MR imaging. Neovascularity or arterial supply of a lesion may well be assessed by Gd-EOB-DTPA, when carefully selected pulse sequence and well designed injection protocol are used, as well as by Gd-DTPA. However, the pertinent assessment of interstitium or stroma can never be achieved by Gd-EOB-DTPA or any other contrast medium present. The interstitium of neoplasm, typically called as stromal fibrosis, is generated through the interaction between the neoplasm per se and its host, and its clinicopathological significance related to disease prognosis has well been established in some disease entities. Extracellular Gd agent is the only contrast medium that can provide information regarding the tumor stroma in a simple, easy, safe and non-invasive fashion, when properly used. This review article discusses, dynamic MR imaging features of representative liver diseases, including several recent topics. From technical point of view, 3D gradient-echo sequence with fat suppression should be used for dynamic studies along with tailored injection protocol using autoinjector and saline flush. Vascularity of hepatocellular carcinoma (HCC) can now be properly assessed by dynamic MR with approximately 90% concordance with CT during hepatic arteriography. Portal phase images can be used to

  5. Utilizing NASA Earth Observations to detect factors contributing to hypoxic events in the southern Gulf of Mexico

    Science.gov (United States)

    Chapman, R.; Johansen, A.; Mitchell, Å. R.; Caraballo Álvarez, I. O.; Taggart, M.; Smith, B.

    2015-12-01

    Monitoring and analyzing harmful algal blooms (HABs) and hypoxic events in the southern coastal areas of the Gulf of Mexico (GoM) is important for watershed management and mitigation of environmental degradation. This study uncovered trends and dynamic characteristics of chlorophyll-a (Chl) concentration, sea surface temperature (SST), colored dissolved organic matter index (CDOM), and photosynthetically available radiation (PAR); as evident in 8-day standard mapped image (SMI) products from the MODIS instrument on the Aqua platform from 2002-2015 using Clark Labs TerrSet Earth Trends Modeler (ETM). Predicted dissolved oxygen images were classified using a Multi-Layer Perceptron regression approach with in-situ data from the northern GoM. Additionally, sediment and nutrient loading values of the Grijalva-Usumacinta watershed were modeled using the ArcGIS Soil and Water Assessment Tool (SWAT). Lastly, A Turbidity Index was generated using Landsat 8 Operational Land Imager (OLI) scenes for 2014-2015. Results, tools, and products will assist local environmental and health authorities in revising water quality standards and mitigating the impacts of future HABs and hypoxic events in the region. This project uses NASA's earth observations as a viable alternative to studying a region with no in-situ data.

  6. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Murray, T.R.; Chen, L.; Marshall, B.E.; Macarak, E.J.

    1990-01-01

    The cellular events involved in generating the hypoxic pulmonary vasoconstriction response are not clearly understood, in part because of the multitude of factors that alter pulmonary vascular tone. The goal of the present studies was to determine if a cell culture preparation containing vascular smooth muscle (VSM) cells could be made to contract when exposed to a hypoxic atmosphere. Cultures containing only fetal bovine pulmonary artery VSM cells were assessed for contractile responses to hypoxic stimuli by two methods. In the first, tension forces generated by cells grown on a flexible growth surface (polymerized polydimethyl siloxane) were manifested as wrinkles and distortions of the surface under the cells. Wrinkling of the surface was noted to progressively increase with time as the culture medium bathing the cells was made hypoxic (PO2 approximately 25 mmHg). The changes were sometimes reversible upon return to normoxic conditions and appeared to be enhanced in cells already exhibiting evidence of some baseline tone. Repeated passage in culture did not diminish the hypoxic response. Evidence for contractile responses to hypoxia was also obtained from measurements of myosin light chain (MLC) phosphorylation. Conversion of MLC to the phosphorylated species is an early step in the activation of smooth muscle contraction. Lowering the PO2 in the culture medium to 59 mmHg caused a 45% increase in the proportion of MLC in the phosphorylated form as determined by two-dimensional gel electrophoresis. Similarly, cultures preincubated for 4 h with 32P and then exposed to normoxia or hypoxia for a 5-min experimental period showed more than twice as much of the label in MLCs of the hypoxic cells

  7. Paramagnetic metal complexes as potential relaxation agents for NMR imaging

    International Nuclear Information System (INIS)

    Coroiu, Ilioara; Demco, D. E.; Darabont, Al.; Bogdan, M.

    1997-01-01

    The development of nuclear magnetic resonance (NMR) imaging technique as a clinical diagnostic modality has prompted the need for a new class of pharmaceuticals. These drugs must be administered to a patient in order to enhance the image contrast between the normal and diseased tissue and/or indicate the status of organ function or blood flow. Paramagnetic compounds are presently undergoing extensive evaluation as contrast agents in magnetic resonance imaging (MRI). These agents increase contrast in MRI by differentially localizing in tissue where they increase the relaxation rates of nearby water protons. The longitudinal R 1 and transverse R 2 relaxivities were measured as a function of molar concentrations for some new paramagnetic complexes like the following: dysprosium, erbium and gadolinium citrates, gadolinium methylene diphosphonate, dysprosium and gadolinium iminodiacetate, manganese para-aminobenzoate and copper nicotinate. The available theoretical approaches for quantitative understanding are presented. (authors)

  8. Overendocytosis of gold nanoparticles increases autophagy and apoptosis in hypoxic human renal proximal tubular cells

    Directory of Open Access Journals (Sweden)

    Ding F

    2014-09-01

    Full Text Available Fengan Ding,1 Yiping Li,1 Jing Liu,1 Lei Liu,1 Wenmin Yu,1 Zhi Wang,1 Haifeng Ni,2 Bicheng Liu,2 Pingsheng Chen1,2 1School of Medicine, Southeast University, Nanjing, People’s Republic of China; 2Institute of Nephrology, The Affiliated Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China Background: Gold nanoparticles (GNPs can potentially be used in biomedical fields ranging from therapeutics to diagnostics, and their use will result in increased human exposure. Many studies have demonstrated that GNPs can be deposited in the kidneys, particularly in renal tubular epithelial cells. Chronic hypoxic is inevitable in chronic kidney diseases, and it results in renal tubular epithelial cells that are susceptible to different types of injuries. However, the understanding of the interactions between GNPs and hypoxic renal tubular epithelial cells is still rudimentary. In the present study, we characterized the cytotoxic effects of GNPs in hypoxic renal tubular epithelial cells.Results: Both 5 nm and 13 nm GNPs were synthesized and characterized using various biophysical methods, including transmission electron microscopy, dynamic light scattering, and ultraviolet–visible spectrophotometry. We detected the cytotoxicity of 5 and 13 nm GNPs (0, 1, 25, and 50 nM to human renal proximal tubular cells (HK-2 by Cell Counting Kit-8 assay and lactate dehydrogenase release assay, but we just found the toxic effect in the 5 nm GNP-treated cells at 50 nM dose under hypoxic condition. Furthermore, the transmission electron microscopy images revealed that GNPs were either localized in vesicles or free in the lysosomes in 5 nm GNPs-treated HK-2 cells, and the cellular uptake of the GNPs in the hypoxic cells was significantly higher than that in normoxic cells. In normoxic HK-2 cells, 5 nm GNPs (50 nM treatment could cause autophagy and cell survival. However, in hypoxic conditions, the GNP exposure at the same condition led to the

  9. Viscous optical clearing agent for in vivo optical imaging

    Science.gov (United States)

    Deng, Zijian; Jing, Lijia; Wu, Ning; lv, Pengyu; Jiang, Xiaoyun; Ren, Qiushi; Li, Changhui

    2014-07-01

    By allowing more photons to reach deeper tissue, the optical clearing agent (OCA) has gained increasing attention in various optical imaging modalities. However, commonly used OCAs have high fluidity, limiting their applications in in vivo studies with oblique, uneven, or moving surfaces. In this work, we reported an OCA with high viscosity. We measured the properties of this viscous OCA, and tested its successful performances in the imaging of a living animal's skin with two optical imaging modalities: photoacoustic microscopy and optical coherence tomography. Our results demonstrated that the viscous OCA has a great potential in the study of different turbid tissues using various optical imaging modalities.

  10. Quinone-fused porphyrins as contrast agents for photoacoustic imaging

    KAUST Repository

    Banala, Srinivas

    2017-06-27

    Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents with high absorption coefficients in the optical window for tissue imaging, i.e. the near infrared (NIR) range between 680 and 950 nm. We herein report the photoacoustic properties of quinone-fused porphyrins inserted with different transition metals as new highly promising candidates. These dyes exhibit intense NIR absorption, a lack of fluorescence emission, and PA sensitivity in concentrations below 3 nmol mL. In this context, the highest PA signal was obtained with a Zn(ii) inserted dye. Furthermore, this dye was stable in blood serum and free thiol solution and exhibited negligible cell toxicity. Additionally, the Zn(ii) probe could be detected with an up to 3.2 fold higher PA intensity compared to the clinically most commonly used PA agent, ICG. Thus, further exploration of the \\'quinone-fusing\\' approach to other chromophores may be an efficient way to generate highly potent PA agents that do not fluoresce and shift their absorption into the NIR range.

  11. Study of new 113mIn-BAT complexes for myocardial imaging agents

    International Nuclear Information System (INIS)

    Zhu Lin; Liu Boli; Kojima, M.

    1991-01-01

    Some new BAT derivatives are designed and synthesized in order to find some ideal myocardial imaging agents. These ligands form pentacoordinated complexes with indium cation. The structures of ligand BAT-TE and complexes In-BAT-TE and In-BAT-ETE are determined by X-ray crystallography at first. Biodistribution shows that the higher lipophilicity of complex induces apparently higher myocardial accumulation. Up to date, complex B is the best 113m In-labeled myocardial imaging agent. It is also suited to 111 In

  12. Medial Occipital Lobe Hyperperfusion Identified by Arterial Spin-Labeling: A Poor Prognostic Sign in Patients with Hypoxic-Ischemic Encephalopathy.

    Science.gov (United States)

    de Havenon, A; Sultan-Qurraie, A; Tirschwell, D; Cohen, W; Majersik, J; Andre, J B

    2015-12-01

    Hypoxic-ischemic encephalopathy carries an uncertain prognosis. We sought to retrospectively assess the prognostic value of arterial spin-labeling MR imaging in 22 adult patients diagnosed with hypoxic-ischemic encephalopathy. Quantitative CBF maps were generated from the M0 map, and arterial spin-labeling data on a per-voxel basis were regionally interrogated via visual inspection and ROI placement. Hyperperfusion was defined as regional increases in CBF of >20% (relative to global CBF) and/or >100 mL/100 g/min. Eleven of 22 patients had prominent bilateral medial occipital lobe hyperperfusion, all of whom died before hospital discharge. One patient who had nondistinct arterial spin-labeling hyperperfusion and restricted diffusion survived. Medial occipital lobe hyperperfusion is a distinctive pattern that merits prospective investigation in a cohort of patients with moderate hypoxic-ischemic encephalopathy to determine its predictive ability in patients with a higher likelihood of survival. © 2015 by American Journal of Neuroradiology.

  13. The benefits of paired-agent imaging in molecular-guided surgery: an update on methods and applications (Conference Presentation)

    Science.gov (United States)

    Tichauer, Kenneth M.

    2016-03-01

    One of the major complications with conventional imaging-agent-based molecular imaging, particularly for cancer imaging, is variability in agent delivery and nonspecific retention in biological tissue. Such factors can account to "swamp" the signal arising from specifically bound imaging agent, which is presumably indicative of the concentration of targeted biomolecule. In the 1950s, Pressman et al. proposed a method of accounting for these delivery and retention effects by normalizing targeted antibody retention to the retention of a co-administered "untargeted"/control imaging agent [1]. Our group resurrected the approach within the last 5 years, finding ways to utilize this so-called "paired-agent" imaging approach to directly quantify biomolecule concentration in tissue (in vitro, ex vivo, and in vivo) [2]. These novel paired-agent imaging approaches capable of quantifying biomolecule concentration provide enormous potential for being adapted to and optimizing molecular-guided surgery, which has a principle goal of identifying distinct biological tissues (tumor, nerves, etc…) based on their distinct molecular environment. This presentation will cover the principles and nuances of paired-agent imaging, as well as the current status of the field and future applications. [1] D. Pressman, E. D. Day, and M. Blau, "The use of paired labeling in the determination of tumor-localizing antibodies," Cancer Res, 17(9), 845-50 (1957). [2] K. M. Tichauer, Y. Wang, B. W. Pogue et al., "Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging," Phys Med Biol, 60(14), R239-69 (2015).

  14. High-Relaxivity MRI Contrast Agents: Where Coordination Chemistry Meets Medical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Eric J.; Datta, Ankona; Jocher, Christoph J.; Raymond, Kenneth N.

    2008-01-15

    The desire to improve and expand the scope of clinical magnetic resonance imaging (MRI) has prompted the search for contrast agents of higher efficiency. The development of better agents requires consideration of the fundamental coordination chemistry of the gadolinium(III) ion and the parameters that affect its efficacy as a proton relaxation agent. In optimizing each parameter, other practical issues such as solubility and in vivo toxicity must also be addressed, making the attainment of safe, high-relaxivity agents a challenging goal. Here we present recent advances in the field, with an emphasis on the hydroxypyridinone family of Gd{sup III} chelates.

  15. The lifetime of hypoxic human tumor cells

    International Nuclear Information System (INIS)

    Durand, Ralph E.; Sham, Edward

    1998-01-01

    Purpose: For hypoxic and anoxic cells in solid tumors to be a therapeutic problem, they must live long enough to be therapeutically relevant, or else be rapidly recruited into the proliferating compartment during therapy. We have, therefore, estimated lifetime and recruitment rate of hypoxic human tumor cells in multicell spheroids in vitro, or in xenografted tumors in SCID mice. Materials and Methods: Cell turnover was followed by flow cytometry techniques, using antibodies directed at incorporated halogenated pyrimidines. The disappearance of labeled cells was quantified, and verified to be cell loss rather than label dilution. Repopulation was studied in SiHa tumor xenografts during twice-daily 2.5-Gy radiation exposures. Results: The longevity of hypoxic human tumor cells in spheroids or xenografts exceeded that of rodent cell lines, and cell turnover was slower in xenografts than under static growth as spheroids. Human tumor cells remained viable in the hypoxic regions of xenografts for 4-10 days, compared to 3-5 days in spheroids, and 1-3 days for most rodent cells in spheroids. Repopulation was observed within the first few radiation treatments for the SiHa xenografts and, with accumulated doses of more than 10 Gy, virtually all recovered cells had progressed through at least one S-phase. Conclusion: Our results suggest an important difference in the ability of human vs. rodent tumor cells to withstand hypoxia, and raise questions concerning the increased longevity seen in vivo relative to the steady-state spheroid system

  16. Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents

    International Nuclear Information System (INIS)

    Yan Guoping; Liu Maili; Li Liyun

    2005-01-01

    Purpose: A series of polyaspartamide gadolinium complexes containing pyridoxamine groups were studied as the potential magnetic resonance imaging (MRI) contrast agents for liver enhancement. Methods: These polyaspartamide gadolinium complexes were prepared and evaluated by relaxivity, acute toxicity studies and magnetic resonance imaging of the liver in rats. Results: These polyaspartamide gadolinium complexes have higher relaxation effectiveness than that of the clinically used gadolinium diethylenetriaminepentaacetic acid and possess the low intravenous acute toxicities to Institute for Cancer Research (ICR) mice. Magnetic resonance imaging of the liver in rats indicated that they greatly enhance the contrast of magnetic resonance images and provide prolonged intravascular duration in the liver. Conclusion: These results indicated that the polyaspartamide gadolinium complexes containing pyridoxamine groups could be considered as the appropriate MRI contrast agents for liver enhancement

  17. SUMO Signaling by Hypoxic Inactivation of SUMO-Specific Isopeptidases

    Directory of Open Access Journals (Sweden)

    Kathrin Kunz

    2016-09-01

    Full Text Available Post-translational modification of proteins with ubiquitin-like SUMO modifiers is a tightly regulated and highly dynamic process. The SENP family of SUMO-specific isopeptidases comprises six cysteine proteases. They are instrumental in counterbalancing SUMO conjugation, but their regulation is not well understood. We demonstrate that in hypoxic cell extracts, the catalytic activity of SENP family members, in particular SENP1 and SENP3, is inhibited in a rapid and fully reversible process. Comparative mass spectrometry from normoxic and hypoxic cells defines a subset of hypoxia-induced SUMO1 targets, including SUMO ligases RanBP2 and PIAS2, glucose transporter 1, and transcriptional regulators. Among the most strongly induced targets, we identified the transcriptional co-repressor BHLHE40, which controls hypoxic gene expression programs. We provide evidence that SUMOylation of BHLHE40 is reversed by SENP1 and contributes to transcriptional repression of the metabolic master regulator gene PGC-1α. We propose a pathway that connects oxygen-controlled SENP activity to hypoxic reprogramming of metabolism.

  18. Intratumoral distribution of {sup 64}Cu-ATSM and {sup 18}F-FDG in VX2 tumor bearing rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ran Ji; Lee, Yong Jin; Lee, Won Ho; Kim, Kyeong Min; Park, Ji Ae; Lee, Kyo Chul; Chung, Wee Sup; Kang, Joo Hyun; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2012-05-15

    Imaging acquisition and analysis of hypoxic region within solid tumor is essential for understanding the microenvironment of tumor, and is also important for the establishment of proper therapeutic strategy and evaluation for radiation therapy (1-5). {sup 64}Cu-labeled diacetyl-bis (N{sub 4}-methylthiosemicarbazone) ({sup 64}Cu-ATSM) is a promising agent for imaging of hypoxic tissues and internal radiation therapy for tumor. In this study, we obtained PET/CT images of tumor using {sup 64}Cu-ATSM and {sup 18}F-FDG, and then evaluated the distribution of hypoxic region after comparing with oxygen partial pressure in VX2 tumor bearing rabbit model. MR images are also obtained for precise anatomical information

  19. The use of contrast agent for imaging biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J; Sopko, V; Jakubek, J [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ 12800 Prague 2 (Czech Republic); Weyda, F, E-mail: jiri.dammer@utef.cvut.cz [Biological center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic)

    2011-01-15

    The technique of X-ray transmission imaging has been available for over a century and is still among the fastest and easiest approaches to the studies of internal structure of biological samples. Recent advances in semiconductor technology have led to the development of new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Semiconductor pixel detectors seem to be specially promising; compared to the film technique, they provide single-quantum and real-time digital information about the objects being studied. We describe the recently developed radiographic apparatus, equipped with Medipix2 semiconductor pixel detector. The detector is used as an imager that counts individual photons of ionizing radiation, emitted by an X-ray tube (micro- or nano-focus FeinFocus). Thanks to the wide dynamic range of the Medipix2 detector and its high spatial resolution better than 1{mu}m, the setup is particularly suitable for radiographic imaging of small biological samples, including in-vivo observations with contrast agent (Optiray). Along with the description of the apparatus we provide examples of the use iodine contrast agent as a tracer in various insects as model organisms. The motivation of our work is to develop our imaging techniques as non-destructive and non-invasive. Microradiographic imaging helps detect organisms living in a not visible environment, visualize the internal biological processes and also to resolve the details of their body (morphology). Tiny live insects are an ideal object for our studies.

  20. Nerve-Highlighting Fluorescent Contrast Agents for Image-Guided Surgery

    Directory of Open Access Journals (Sweden)

    Summer L. Gibbs-Strauss

    2011-03-01

    Full Text Available Nerve damage is the major morbidity of many surgeries, resulting in chronic pain, loss of function, or both. The sparing of nerves during surgical procedures is a vexing problem because surrounding tissue often obscures them. To date, systemically administered nerve-highlighting contrast agents that can be used for nerve-sparing image-guided surgery have not been reported. In the current study, physicochemical and optical properties of 4,4‘-[(2-methoxy-1,4-phenylenedi-(1E-2,1-ethenediyl]bis-benzenamine (BMB and a newly synthesized, red-shifted derivative 4-[(1E-2-[4-[(1E-2-[4-aminophenyl]ethenyl]-3-methoxyphenyl]ethenyl]-benzonitrile (GE3082 were characterized in vitro and in vivo. Both agents crossed the blood-nerve barrier and blood-brain barrier and rendered myelinated nerves fluorescent after a single systemic injection. Although both BMB and GE3082 also exhibited significant uptake in white adipose tissue, GE3082 underwent a hypsochromic shift in adipose tissue that provided a means to eliminate the unwanted signal using hyperspectral deconvolution. Dose and kinetic studies were performed in mice to determine the optimal dose and drug-imaging interval. The results were confirmed in rat and pig, with the latter used to demonstrate, for the first time, simultaneous fluorescence imaging of blood vessels and nerves during surgery using the FLARE™ (Fluorescence-Assisted Resection and Exploration imaging system. These results lay the foundation for the development of ideal nerve-highlighting fluorophores for image-guided surgery.

  1. A scenario and forecast model for Gulf of Mexico hypoxic area and volume

    Science.gov (United States)

    Scavia, Donald; Evans, Mary Anne; Obenour, Daniel R.

    2013-01-01

    For almost three decades, the relative size of the hypoxic region on the Louisiana-Texas continental shelf has drawn scientific and policy attention. During that time, both simple and complex models have been used to explore hypoxia dynamics and to provide management guidance relating the size of the hypoxic zone to key drivers. Throughout much of that development, analyses had to accommodate an apparent change in hypoxic sensitivity to loads and often cull observations due to anomalous meteorological conditions. Here, we describe an adaptation of our earlier, simple biophysical model, calibrated to revised hypoxic area estimates and new hypoxic volume estimates through Bayesian estimation. This application eliminates the need to cull observations and provides revised hypoxic extent estimates with uncertainties, corresponding to different nutrient loading reduction scenarios. We compare guidance from this model application, suggesting an approximately 62% nutrient loading reduction is required to reduce Gulf hypoxia to the Action Plan goal of 5,000 km2, to that of previous applications. In addition, we describe for the first time, the corresponding response of hypoxic volume. We also analyze model results to test for increasing system sensitivity to hypoxia formation, but find no strong evidence of such change.

  2. Radiosensitization conferred by oxygen and hypoxic cell sensitizers on human cells cultivated in vitro

    International Nuclear Information System (INIS)

    Pettersen, E.O.

    1978-01-01

    The main purpose was to provide additional information on two questions; (1) How does the radiosensitising effect of oxygen depend on oxygen concentration and cellular age, and (2) How does the radiosensitising effect of hypoxic cell sensitisers depend on concentration of sensitiser and cellular age. The general conclusions reached were as follows. The radiosensitising effect of oxygen on NHIK 3025 cells in G1 increased with increasing dose of radiation. For cells irradiated in S oxygen acted as a dose-modifying agent. For small doses of radiation the sensitising effect of oxygen was weaker for cells irradiated in G1 than for cells irradiated in S. The capacity of NHIK 3025 cells to repair sublethal damage after irradiation under extremely hypoxic conditions was low or even lost (even though the cells were subsequently incubated under aerobic conditions). The radiosensitising effect conferred by TMPN, diamide and misonidazole on NHIK 3025 cells was higher at high doses of radiation than at small doses of radiation (except for the dose-modifying radiosensitisation of cells in S by misonidazole). This observation supports arguments for using high dose fractions in fractionated radiotherapy where such chemicals are involved. (JIW)

  3. Hypoxic fraction and binding of misonidazole in EMT6/Ed multicellular tumor spheroids

    International Nuclear Information System (INIS)

    Franko, A.J.

    1985-01-01

    Misonidazole has been shown to bind selectively to hypoxic cells in tissue culture and to cells which are presumed to be chronically hypoxic in EMT6 spheroids and tumors. Thus it has considerable potential as a marker of hypoxic cells in vivo. To further evaluate this potential EMT6/Ed spheroids were used to quantitate misonidazole binding under conditions which resulted in hypoxic fractions between 0 and 1. The patterns of binding of 14 C-labeled misonidazole determined by autoradiography were consistent with the regions of radiobiological hypoxia as predicted by oxygen diffusion theory. The overall uptake of 3 H-labeled misonidazole by spheroids correlated well with the hypoxic fraction, although binding to aerobic cells and necrotic tissue contributed appreciably to the total label in the spheroids. It is concluded that misonidazole is an excellent marker of hypoxia in EMT6/Ed spheroids at the microscopic level, and the total amount bound per spheroid provides a potentially useful measure of the hypoxic fraction

  4. Hypoxic training increases maximal oxygen consumption in Thoroughbred horses well-trained in normoxia.

    Science.gov (United States)

    Ohmura, Hajime; Mukai, Kazutaka; Takahashi, Yuji; Takahashi, Toshiyuki; Jones, James H

    2017-01-01

    Hypoxic training is effective for improving athletic performance in humans. It increases maximal oxygen consumption (V̇O 2 max) more than normoxic training in untrained horses. However, the effects of hypoxic training on well-trained horses are unclear. We measured the effects of hypoxic training on V̇O 2 max of 5 well-trained horses in which V̇O 2 max had not increased over 3 consecutive weeks of supramaximal treadmill training in normoxia which was performed twice a week. The horses trained with hypoxia (15% inspired O 2 ) twice a week. Cardiorespiratory valuables were analyzed with analysis of variance between before and after 3 weeks of hypoxic training. Mass-specific V̇O 2 max increased after 3 weeks of hypoxic training (178 ± 10 vs. 194 ± 12.3 ml O 2 (STPD)/(kg × min), Phorses, at least for the durations of time evaluated in this study. Training while breathing hypoxic gas may have the potential to enhance normoxic performance of Thoroughbred horses.

  5. Activation of radiosensitizers by hypoxic cells

    Energy Technology Data Exchange (ETDEWEB)

    Olive, P L; Durand, R E [Wisconsin Clinical Cancer Center, Madison (USA). Dept. of Human Oncology

    1978-06-01

    Hypoxic cells metabolize nitroheterocyclic compounds to produce toxic intermediates capable of affecting the survival of neighboring oxygenated cells. Mutagenesis experiments with E. coli WP-2 343 (deficient in nitro-reductase) indicated that reduction of nitroheterocyclics outside bacteria causes killing and mutations within bacteria, presumably due to the transfer of the 'active' specie(s). Using animal tissue slices to reduce nitrofurans, cultured L-929 cells incubated under aerobic conditions were far more sensitive to the toxic and DNA damaging effects of these drugs. Transfer of the active species also occurs in a tissue-like environment in multicell spheroids where the presence of a hypoxic central core served to convert the nitroheterocyclics to intermediates which also damaged the neighbouring oxygenated cells.

  6. A low protein diet increases the hypoxic tolerance in Drosophila.

    Directory of Open Access Journals (Sweden)

    Paul Vigne

    2006-12-01

    Full Text Available Dietary restriction is well known to increase the life span of a variety of organisms from yeast to mammals, but the relationships between nutrition and the hypoxic tolerance have not yet been considered. Hypoxia is a major cause of cell death in myocardial infarction and stroke. Here we forced hypoxia-related death by exposing one-day-old male Drosophila to chronic hypoxia (5% O(2 and analysed their survival. Chronic hypoxia reduced the average life span from 33.6 days to 6.3 days when flies were fed on a rich diet. A demographic analysis indicated that chronic hypoxia increased the slope of the mortality trajectory and not the short-term risk of death. Dietary restriction produced by food dilution, by yeast restriction, or by amino acid restriction partially reversed the deleterious action of hypoxia. It increased the life span of hypoxic flies up to seven days, which represented about 25% of the life time of an hypoxic fly. Maximum survival of hypoxic flies required only dietary sucrose, and it was insensitive to drugs such as rapamycin and resveratrol, which increase longevity of normoxic animals. The results thus uncover a new link between protein nutrition, nutrient signalling, and resistance to hypoxic stresses.

  7. CT and MR in non-neonatal hypoxic-ischemic encephalopathy: radiological findings with pathophysiological correlations

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Leonardo Guilhermino; Portela, Luiz Antonio Pezzi [Hospital Alemao Oswaldo Cruz and Hospital do Coracao, Diagnostic Imaging Division, Sao Paulo (Brazil); Rovira, Alex [University Hospital Vall d' Hebron, MR Unit, Department of Radiology, Barcelona (Spain); Costa Leite, Claudia da [Clinics Hospital of the University of Sao Paulo, School of Medicine, Department of Radiology, Sao Paulo (Brazil); Lucato, Leandro Tavares [Hospital Alemao Oswaldo Cruz and Hospital do Coracao, Diagnostic Imaging Division, Sao Paulo (Brazil); Clinics Hospital of the University of Sao Paulo, School of Medicine, Department of Radiology, Sao Paulo (Brazil)

    2010-11-15

    Non-neonatal hypoxic-ischemic encephalopathy is a clinical condition often related to cardiopulmonary arrest that demands critical management and treatment decisions. Management depends mainly on the degree of neurological impairment and prognostic considerations. Computed tomography (CT) is often used to exclude associated or mimicking pathology. If any, only nonspecific signs such as cerebral edema, sulci effacement, and decreased gray matter (GM)/white matter (WM) differentiation are evident. Pseudosubarachnoid hemorrhage, a GM/WM attenuation ratio <1.18, and inverted GM attenuation are associated with a poor prognosis. Magnetic resonance (MR) imaging is more sensitive than CT in assessing brain damage in hypoxic-ischemic encephalopathy. Some MR findings have similarities to those seen pathologically, based on spatial distribution and time scale, such as lesions distributed in watershed regions and selective injury to GM structures. In the acute phase, lesions are better depicted using diffusion-weighted imaging (DWI) because of the presence of cytotoxic edema, which, on T2-weighted images, only become apparent later in the early subacute phase. In the late subacute phase, postanoxic leukoencephalopathy and contrast enhancement could be observed. In the chronic phase, atrophic changes predominate over tissue signal changes. MR can be useful for estimating prognosis when other tests are inconclusive. Some findings, such as the extent of lesions on DWI and presence of a lactate peak and depleted N-acetyl aspartate peak on MR spectroscopy, seem to have prognostic value. (orig.)

  8. CT and MR in non-neonatal hypoxic-ischemic encephalopathy: radiological findings with pathophysiological correlations

    International Nuclear Information System (INIS)

    Gutierrez, Leonardo Guilhermino; Portela, Luiz Antonio Pezzi; Rovira, Alex; Costa Leite, Claudia da; Lucato, Leandro Tavares

    2010-01-01

    Non-neonatal hypoxic-ischemic encephalopathy is a clinical condition often related to cardiopulmonary arrest that demands critical management and treatment decisions. Management depends mainly on the degree of neurological impairment and prognostic considerations. Computed tomography (CT) is often used to exclude associated or mimicking pathology. If any, only nonspecific signs such as cerebral edema, sulci effacement, and decreased gray matter (GM)/white matter (WM) differentiation are evident. Pseudosubarachnoid hemorrhage, a GM/WM attenuation ratio <1.18, and inverted GM attenuation are associated with a poor prognosis. Magnetic resonance (MR) imaging is more sensitive than CT in assessing brain damage in hypoxic-ischemic encephalopathy. Some MR findings have similarities to those seen pathologically, based on spatial distribution and time scale, such as lesions distributed in watershed regions and selective injury to GM structures. In the acute phase, lesions are better depicted using diffusion-weighted imaging (DWI) because of the presence of cytotoxic edema, which, on T2-weighted images, only become apparent later in the early subacute phase. In the late subacute phase, postanoxic leukoencephalopathy and contrast enhancement could be observed. In the chronic phase, atrophic changes predominate over tissue signal changes. MR can be useful for estimating prognosis when other tests are inconclusive. Some findings, such as the extent of lesions on DWI and presence of a lactate peak and depleted N-acetyl aspartate peak on MR spectroscopy, seem to have prognostic value. (orig.)

  9. Development of a Multifaceted Ovarian Cancer Therapeutic and Imaging Agent

    National Research Council Canada - National Science Library

    Markland, Francis S

    2008-01-01

    ...%. This project outlines the development of a recombinant version of a member of a class of proteins known as disintegrins as an innovative imaging and diagnostic agent for ovarian cancer (OC). Vicrostatin (VN...

  10. Considerations on hypoxic conditions. On the past setback of classic radiation biology

    International Nuclear Information System (INIS)

    Nakatsugawa, Shigekazu; Klimova, S.V.; Tamasu, Shogo; Nakamura, Hideaki; Murayama, Chieko

    2002-01-01

    Considerations on hypoxic cancer cell environment are made on classic radiation biology concept and on a new proposal of the anti-cancer strategy. Classic radiation biology knowledge of hypoxic cancer cells has produced many of clinical trials, which, however, have failed after all. This is because the knowledge is that the cells are recognized to be in a rather static hypoxic condition. Based on authors' investigations, made is the proposal that improvement of dynamic, acute hypoxic conditions yielded via blood circulation between the heterogeneous malignant cancer cells and the dynamic homeostatic systems of normal cells including immunity is important as one of cancer therapy approaches. (N.I.)

  11. Towards a framework for agent-based image analysis of remote-sensing data.

    Science.gov (United States)

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-04-03

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects' properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).

  12. Development of novel alkylating drugs as anticancer agents.

    Science.gov (United States)

    Izbicka, Elzbieta; Tolcher, Anthony W

    2004-06-01

    Although conventional alkylating drugs have proven efficacy in the treatment of malignancies, the agents themselves are not selective. Therefore, non-specific alkylation of cellular nucleophilic targets may contribute to many of the observed toxic effects. Novel approaches to drug discovery have resulted in candidate agents that are focused on 'soft alkylation'--alkylators with greater target selectivity. This review highlights the discovery of small molecule drugs that bind to DNA with higher selectivity, act in a unique hypoxic tumor environment, or covalently bind specific protein targets overexpressed in cancer, such as topoisomerase II, glutathione transferase pi1, beta-tubulin and histone deacetylase.

  13. Preliminary clinical study of 99Tcm-HL91 imaging in bone metastasis

    International Nuclear Information System (INIS)

    Liu Baoping; Mao Ronghu; Han Xingmin

    2008-01-01

    Objective: 99 Tc m -4, 9-diaza-3, 3, 10, 10-tetramethyldodecan-2, 11-dione dioxime (HL91), a new type of hypoxic agents, accumulates in tumor hypoxic tissue specifically. The aim of this study was to evaluate the value of 99 Tc m -HL91 imaging in the diagnosis of bone metastasis. Methods: Nine- teen cases with bone metastasis (without any treatment) and 8 cases with benign lesions underwent SPECT imaging at 4 h after injection of 740 MBq of 99 Tc m -HL91 along with 99 Tc m -methylene diphosphonic acid (MDP) imaging. Regions of interest (ROIs) were drawn in tumor tissue and contralateral normal tissue respectively, and the radioactivity ratios of tumor-to-normal (T/N) were calculated. The t-test was used for data analysis with SPSS 11.0. Results: There were visible uptake of 99 Tc m -HL91 in 79 out of 85 focuses in 19 patients of bone metastasis; however, there was no obvious uptake of 99 Tc m -HL91 in 12 focuses of 8 patients of benign lesions. Significant difference existed between the T/N values of malignant (1.877 ± 0.288) and benign lesions [(0.735 ± 0.236); t=13.065, P 0.05). Conclusion: The results indicated that 99 Tc m -HL91 was useful in diagnosing the malignant and benign bone lesions. (authors)

  14. Concordance between hypoxic challenge testing and predictive equations for hypoxic flight assessment in chronic obstructive pulmonary disease patients prior to air travel

    Directory of Open Access Journals (Sweden)

    Mohie Aldeen Abd Alzaher Khalifa

    2016-10-01

    Conclusions: The present study supports on-HCT as a reliable, on-invasive and continuous methods determining the requirement for in-flight O2 are relatively constant. Predictive equations considerably overestimate the need for in-flight O2 compared to hypoxic inhalation test. Predictive equations are cheap, readily available methods of flight assessment, but this study shows poor agreement between their predictions and the measured individual hypoxic responses during HCT.

  15. Hypoxia modifies the feeding preferences of Drosophila. Consequences for diet dependent hypoxic survival

    Directory of Open Access Journals (Sweden)

    Frelin Christian

    2010-05-01

    Full Text Available Abstract Background Recent attention has been given to the relationships between diet, longevity, aging and resistance to various forms of stress. Flies do not simply ingest calories. They sense different concentrations of carbohydrate and protein macronutrients and they modify their feeding behavior in response to changes in dietary conditions. Chronic hypoxia is a major consequence of cardiovascular diseases. Dietary proteins have recently been shown to decrease the survival of chronically hypoxic Drosophila. Whether flies modify their feeding behavior in response to hypoxia is not currently known. This study uses the recently developed capillary feeding assay to analyze the feeding behavior of normoxic and chronically hypoxic Drosophila melanogaster. Results The intakes rates of sucrose and yeast by normoxic or chronically hypoxic flies (5% O2 were analyzed under self selecting and "no choice" conditions. Chronically hypoxic flies fed on pure yeast diets or mixed diets under self selection conditions stopped feeding on yeast. Flies fed on mixed diets under "no choice" conditions reduced their food intakes. Hypoxia did not modify the adaptation of flies to diluted diets or to imbalanced diets. Mortality was assessed in parallel experiments. Dietary yeast had two distinct effects on hypoxic flies (i a repellent action which eventually led to starvation and which was best observed in the absence of dietary sucrose and (ii a toxic action which led to premature death. Finally we determined that hypoxic survivals were correlated to the intakes of sucrose, which suggested that dietary yeast killed flies by reducing their intake of sucrose. The feeding preferences of adult Drosophila were insensitive to NO scavengers, NO donor molecules and inhibitors of phosphodiesterases which are active on Drosophila larvae. Conclusion Chronically hypoxic flies modify their feeding behavior. They avoid dietary yeast which appears to be toxic. Hypoxic survival is

  16. Targeting Hypoxia-Inducible Factor 1α in a New Orthotopic Model of Glioblastoma Recapitulating the Hypoxic Tumor Microenvironment.

    Science.gov (United States)

    Nigim, Fares; Cavanaugh, Jill; Patel, Anoop P; Curry, William T; Esaki, Shin-ichi; Kasper, Ekkehard M; Chi, Andrew S; Louis, David N; Martuza, Robert L; Rabkin, Samuel D; Wakimoto, Hiroaki

    2015-07-01

    Tissue hypoxia and necrosis represent pathophysiologic and histologic hallmarks of glioblastoma (GBM). Although hypoxia inducible factor 1α (HIF-1α) plays crucial roles in the malignant phenotypes of GBM, developing HIF-1α-targeted agents has been hampered by the lack of a suitable preclinical model that recapitulates the complex biology of clinical GBM. We present a new GBM model, MGG123, which was established from a recurrent human GBM. Orthotopic xenografting of stem-like MGG123 cells reproducibly generated lethal tumors that were characterized by foci of palisading necrosis, hypervascularity, and robust stem cell marker expression. Perinecrotic neoplastic cells distinctively express HIF-1α and are proliferative in both xenografts and the patient tissue. The xenografts contain scattered hypoxic foci that were consistently greater than 50 μm distant from blood vessels, indicating intratumoral heterogeneity of oxygenation. Hypoxia enhanced HIF-1α expression in cultured MGG123 cells, which was abrogated by the HIF-1α inhibitors digoxin or ouabain. In vivo, treatment of orthotopic MGG123 xenografts with digoxin decreased HIF-1α expression, vascular endothelial growth factor mRNA levels, and CD34-positive vasculature within the tumors, and extended survival of mice bearing the aggressive MGG123 GBM. This preclinical tumor model faithfully recapitulates the GBM-relevant hypoxic microenvironment and stemness and is a suitable platform for studying disease biology and developing hypoxia-targeted agents.

  17. Pharmacological studies of dopamine transporter imaging agent 125/131I-β-CIT

    International Nuclear Information System (INIS)

    Ding Shiyu; Zhou Xiang; Chen Zhengping; Wu Chunying; Lin Yansong; Ji Shuren; Lu Chunxiong; Fang Ping; Tang Jun; Wang Feng

    2001-01-01

    To prepare 125/131 I-β-CIT (2β-carbomethoxy-3β-(4-iodophenyl) tropane) as an imaging agent for dopamine transporter (DAT), the labelling method from tributylstannyl precursor with peracetic acid has been reported. The radiochemical purity (RCP) of the labelled compound was over 95% determined by HPLC and TLC. The stability, partition coefficients were also determined. The pharmacological studies of the imaging agent were performed in rats, mice, rabbits and normal monkey. The ligand showed preferable uptake in brain (1.9% ID/organ in rats and 4.5% ID/organ in mice at 5 min). The ratios of striatum/cerebellum, hippocampus/cerebellum and cortex/cerebellum were 28.9, 3.97 and 4.75 at 6 h in rats, and 8.52, 2.99 and 3.06 at 6 h in mice, respectively. In monkey brain imaging the ratios of striatum/frontal cortex (ST/FC) and striatum/occipital cortex (ST/OC) were 5.14 and 5.97 at 4h, respectively. All of above showed the high affinity of the ligand to DAT. The compound was primarily metabolized in liver because the hepatic uptake was much higher than other organs (75.4% ID/organ at 18h). The half-life of blood elimination was 5 min. The dose received by mice was 2500 times as high as that received by human in the test of undue toxicity, which evaluated the safety of the agent. All the results suggest that β-CIT can be used as a potential DAT imaging agent

  18. A naturally occurring contrast agent for OCT imaging of smokers' lung

    International Nuclear Information System (INIS)

    Yang Ying; Bagnaninchi, Pierre O; Whiteman, Suzanne C; Pittius, Daniel Gey van; Haj, Alicia J El; Spiteri, Monica A; Wang, Ruikang K

    2005-01-01

    Optical coherence tomography (OCT) offers great potential for clinical applications in terms of its cost, safety and real-time imaging capability. Improvement of its resolution for revealing sub-layers or sub-cellular components within a tissue will further widen its application. In this study we report that carbon pigment, which is frequently present in the lungs of smokers, could be used as a contrast agent to improve the OCT imaging of lung tissue. Carbon produced an intense bright OCT image at a relatively deep location. The parallel histopathological section analysis confirmed the presence of carbon pigment in such tissues. The underlying mechanism of the OCT image formation has been discussed based on a model system in which carbon particles were dispersed in agar gel. Calculations and in-depth intensity profiles of OCT revealed that higher refractive index particles with a size close to or smaller than the wavelength would greatly increase backscattering and generate a sharp contrast, while a particle size several times larger than the wavelength would absorb or obstruct the light path. The naturally occurring contrast agent could provide a diagnostic biomarker of lung tissue in smokers. Furthermore, carbon under such circumstances, can be used as an effective exogenous contrast agent, with which specific components or tissues exhibiting early tumour formation can be optically labelled to delineate the location and boundary, providing potential for early cancer detection and its treatment

  19. Submicron polycaprolactone particles as a carrier for imaging contrast agent for in vitro applications.

    Science.gov (United States)

    Iqbal, Muhammad; Robin, Sophie; Humbert, Philippe; Viennet, Céline; Agusti, Geraldine; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-01

    Fluorescent materials have recently attracted considerable attention due to their unique properties and high performance as imaging agent in biomedical fields. Different imaging agents have been encapsulated in order to restrict its delivery to a specific area. In this study, a fluorescent contrast agent was encapsulated for in vitro application by polycaprolactone (PCL) polymer. The encapsulation was performed using modified double emulsion solvent evaporation technique with sonication. Fluorescent nanoparticles (20 nm) were incorporated in the inner aqueous phase of double emulsion. A number of samples were fabricated using different concentrations of fluorescent contrast agent. The contrast agent-containing submicron particle was characterized by a zetasizer for average particle size, SEM and TEM for morphology observations and fluorescence spectrophotometer for encapsulation efficiency. Moreover, contrast agent distribution in the PCL matrix was determined by confocal microscopy. The incorporation of contrast agent in different concentrations did not affect the physicochemical properties of PCL particles and the average size of encapsulated particles was found to be in the submicron range. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Activation of radiosensitizers by hypoxic cells

    International Nuclear Information System (INIS)

    Olive, P.L.; Durand, R.E.

    1978-01-01

    Hypoxic cells metabolize nitroheterocyclic compounds to produce toxic intermediates capable of affecting the survival of neighboring oxygenated cells. Mutagenesis experiments with E. coli WP-2 343 (deficient in nitro-reductase) indicated that reduction of nitroheterocyclics outside bacteria causes killing and mutations within bacteria, presumably due to the transfer of the 'active' specie(s). Using animal tissue slices to reduce nitrofurans, cultured L-929 cells incubated under aerobic conditions were far more sensitive to the toxic and DNA damaging effects of these drugs. Transfer of the active species also occurs in a tissue-like environment in multicell spheroids where the presence of a hypoxic central core served to convert the nitroheterocyclics to intermediates which also damaged the neighbouring oxygenated cells. (author)

  1. A review of 99mTc labeled myocardial imaging agents for tumor-positive imaging

    International Nuclear Information System (INIS)

    Xing Shian; Zhang Yongxue; An Rui

    2002-01-01

    The tumor-positive imaging with high sensitivity and specificity was useful in primary tumor and recurrences and metastases. The 99m Tc labeled myocardial imaging agents are easily available and stable and the radiochemical purity is high. 99m Tc is the preferred choice in routine works because its physical properties. The preparation, quality control, mechanism of accumulation and the clinical use of 99m Tc-sestamibi, 99m Tc-tetrofosmin, 99m Tc-furifosmin, and 99m Tc-N-NOET were reviewed

  2. Ultrastructural alterations in hypoxic EMT-6/RO cells treated with misonidazole

    International Nuclear Information System (INIS)

    Wilbur, D.C.; Mulcahy, R.T.

    1984-01-01

    Ultrastructural alterations in hypoxic EMT-6 tumor cells were quantitatively analyzed as a function of time in the presence and absence of 1.0mM MISO. Control and MISO-treated monolayer cultures were maintained in hypoxic chambers at 37 0 C. At intervals after initiation of hypoxia, the cells were fixed and prepared for electron microscopy. The major ultrastructural alterations observed in untreated and MISO-treated hypoxic cells included mitochondrial swelling and accumulation of cytoplasmic lipid vacuoles. Mean mitochondrial area and relative cytoplasmic area occupied by lipid vacuoles were determined morphometrically. Mitochondrial damage was also scored qualitatively based on distortions in configuration. In the absence of MISO both parameters of mitochondrial injury increased over a period of two hours, after which little further change was noted. A progressive increase in lipid vacuolization was also seen. In the presence of MISO, mitochondrial swelling and lipid vacuole formation were significantly increased. The proportion of irreversibly damaged mitochondria was markedly enhanced. MISO treatment also accelerated the expression of these changes. The accelerated expression of hypoxic-related injury in MISO treated cells suggests that cytotoxicity is related to accentuation of hypoxic injury, perhaps by inhibition of glycolysis

  3. Gd-DTPA as a paramagnetic contrast agent in MR imaging of focal liver lesions

    International Nuclear Information System (INIS)

    Hamm, B.; Roemer, T.; Wolf, K.J.; Felix, R.; Weinmann, H.J.

    1986-01-01

    Gd-DTPA enhances signal intensity in healthy liver and in intrahepatic tumors. However, after contrast agent administration, tumor enhances significantly more than liver parenchyma (2α≤ 0.05). Doubling the dose of Gd-DTPA from 0.1 to 0.2 mmol/kg of body weight increases the enhancement of intrahepatic tumors (2α≤ 0.05) and optimizes the contrast between tumor and liver in T1-weighted spin-echo sequences. However, the contrast between tumor and liver on inversion-recovery and T2-weighted images obtained before contrast agent administration is much greater than the difference on T1-weighted images obtained after contrast agent administration (2α≤ 0.05). In fast images the contrast between liver and tumor can be markedly improved by administering Gd-DTPA

  4. Hypoxic-ischemic encephalopathy in neonates and infants: an evaluation with spiral CT

    International Nuclear Information System (INIS)

    Zhu Linghua

    2006-01-01

    Objective: To evaluate spiral CT imaging in the diagnosis of hypoxic-ischemic encephalopathy (HIE) in the neonates and infants. Methods: 112 children with history of asphyxia in peri-natal period and evident clinical symptoms were evaluated with Spiral CT. CT findings were studied. Results: 46 minor cases, 57 moderate cases and 9 severe cases were found out of 112 patients. Intracranial hemorrhage was revealed in 38 cases. Mortality occurred in 1 case. Conclusion: Spiral CT is helpful for evaluating brain damage and predicting prognosis in neonates with HIE. (authors)

  5. Elemental imaging of MRI contrast agents: benchmarking of LA-ICP-MS to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, J.A.T. [University of Sheffield, Centre for Analytical Sciences, Sheffield (United Kingdom); University of Sheffield, Department of Chemical and Biological Engineering, Sheffield (United Kingdom); Cox, A.G.; McLeod, C.W. [University of Sheffield, Centre for Analytical Sciences, Sheffield (United Kingdom); Bunch, J. [University of Birmingham, School of Chemistry, Birmingham (United Kingdom); Writer, M.J.; Hart, S.L. [UCL Institute of Child Health, Wolfson Centre for Gene Therapy of Childhood Disease, London (United Kingdom); Bienemann, A.; White, E. [University of Bristol, School of Clinical Sciences, Southmead Hospital, Bristol (United Kingdom); Bell, J. [Hammersmith Hospital, Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London (United Kingdom)

    2012-06-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been used to map the spatial distribution of magnetic resonance imaging (MRI) contrast agents (Gd-based) in histological sections in order to explore synergies with in vivo MRI. Images from respective techniques are presented for two separate studies namely (1) convection enhanced delivery of a Gd nanocomplex (developmental therapeutic) into rat brain and (2) convection enhanced delivery, with co-infusion of Magnevist (commercial Gd contrast agent) and Carboplatin (chemotherapy drug), into pig brain. The LA technique was shown to be a powerful compliment to MRI not only in offering improved sensitivity, spatial resolution and signal quantitation but also in giving added value regarding the fate of administered agents (Gd and Pt agents). Furthermore simultaneous measurement of Fe enabled assignment of an anomalous contrast enhancement region in rat brain to haemorrhage at the infusion site. (orig.)

  6. Uptake of perfusion imaging agents by transplanted hearts: an experimental study in rats

    International Nuclear Information System (INIS)

    Bergsland, J.; Carr, E.A. Jr.; Carroll, M.; Feldman, M.J.; Kung, H.; Wright, J.R.

    1989-01-01

    There is a need for a reliable noninvasive marker of rejection in transplanted hearts. Endomyocardial biopsy is now the universally accepted diagnostic method of choice, but the invasiveness of the procedure and the limited size of the sample obtained makes this method far from ideal. As coronary blood flow may be expected to decrease during acute rejection, there has been interest in thallium-201 chloride (T1), a perfusion marker, as an imaging agent for diagnosing cardiac rejection. Hexakis(t-butylisonitrile)-technetium (Tc-TBI) is a representative of a new class of radiopharmaceuticals proposed as perfusion markers. We have compared the uptake of these imaging agents in a rat model of cardiac transplantation. Uptake of Tc-TBI as well as of T1 was significantly lower in rejecting than in nonrejecting hearts. This change was found in both left (LV) and right (RV) ventricles. Allografts in animals treated with cyclosporine (CyA) showed less severe rejection and higher uptakes of both imaging agents as compared to unmodified rejection. Our results suggest that perfusion imaging with these radionuclides is a potentially useful approach to the problem of detecting allograft rejection

  7. Synthesis and In Vitro and In Vivo Evaluation of a New 68Ga-Semicarbazone Complex: Potential PET Radiopharmaceutical for Tumor Imaging

    Directory of Open Access Journals (Sweden)

    N. S. Al-Hokbany

    2014-01-01

    Full Text Available In an attempt to develop new tumor imaging radiotracers with favorable biochemical properties, we have synthesized new 68Ga-2-acetylpyridine semicarbazone (68Ga-[APSC]2 as a potential positron emission tomography (PET tumor imaging agent using a straightforward and a one-step simple reaction. Radiochemical yield and purity were quantitative without HPLC purification. Biodistribution studies in nude mice model bearing human MDA-MB-231 cell line xenografts displayed significant tumor uptake of 68Ga-[APSC]2 radiotracer after 2 h postinjection (p.i.. The initial results demonstrate that 68Ga-[APSC]2 radiotracer may be useful probe for detecting and staging of hypoxic tumor using PET imaging modality.

  8. Archaeal enrichment in the hypoxic zone in the northern Gulf of Mexico.

    Science.gov (United States)

    Gillies, Lauren E; Thrash, J Cameron; deRada, Sergio; Rabalais, Nancy N; Mason, Olivia U

    2015-10-01

    Areas of low oxygen have spread exponentially over the past 40 years, and are cited as a key stressor on coastal ecosystems. The world's second largest coastal hypoxic (≤ 2 mg of O2 l(-1)) zone occurs annually in the northern Gulf of Mexico. The net effect of hypoxia is the diversion of energy flow away from higher trophic levels to microorganisms. This energy shunt is consequential to the overall productivity of hypoxic water masses and the ecosystem as a whole. In this study, water column samples were collected at 39 sites in the nGOM, 21 of which were hypoxic. Analysis of the microbial community along a hypoxic to oxic dissolved oxygen gradient revealed that the relative abundance (iTag) of Thaumarchaeota species 16S rRNA genes (> 40% of the microbial community in some hypoxic samples), the absolute abundance (quantitative polymerase chain reaction; qPCR) of Thaumarchaeota 16S rRNA genes and archaeal ammonia-monooxygenase gene copy number (qPCR) were significantly higher in hypoxic samples. Spatial interpolation of the microbial and chemical data revealed a continuous, shelfwide band of low dissolved oxygen waters that were dominated by Thaumarchaeota (and Euryarchaeota), amoA genes and high concentrations of phosphate in the nGOM, thus implicating physicochemical forcing on microbial abundance. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. An HRE-Binding Py-Im Polyamide Impairs Hypoxic Signaling in Tumors.

    Science.gov (United States)

    Szablowski, Jerzy O; Raskatov, Jevgenij A; Dervan, Peter B

    2016-04-01

    Hypoxic gene expression contributes to the pathogenesis of many diseases, including organ fibrosis, age-related macular degeneration, and cancer. Hypoxia-inducible factor-1 (HIF1), a transcription factor central to the hypoxic gene expression, mediates multiple processes including neovascularization, cancer metastasis, and cell survival. Pyrrole-imidazole polyamide 1: has been shown to inhibit HIF1-mediated gene expression in cell culture but its activity in vivo was unknown. This study reports activity of polyamide 1: in subcutaneous tumors capable of mounting a hypoxic response and showing neovascularization. We show that 1: distributes into subcutaneous tumor xenografts and normal tissues, reduces the expression of proangiogenic and prometastatic factors, inhibits the formation of new tumor blood vessels, and suppresses tumor growth. Tumors treated with 1: show no increase in HIF1α and have reduced ability to adapt to the hypoxic conditions, as evidenced by increased apoptosis in HIF1α-positive regions and the increased proximity of necrotic regions to vasculature. Overall, these results show that a molecule designed to block the transcriptional activity of HIF1 has potent antitumor activity in vivo, consistent with partial inhibition of the tumor hypoxic response. Mol Cancer Ther; 15(4); 608-17. ©2015 AACR. ©2015 American Association for Cancer Research.

  10. Enhanced induction of SCEs in hypoxic mammalian cells by ionizing radiation

    International Nuclear Information System (INIS)

    Tofilon, P.J.; Meyn, R.E.

    1985-01-01

    Ionizing radiation is, in general, a poor inducer of sister chromatoid exchanges (SCEs). However, the authors previously observed an increase in X-ray induced DNA-protein crosslinks in hypoxic cells, as compared to aerated cells, suggesting that in the absence of oxygen, X rays induce a qualitatively different DNA lesion. Therefore, they examined the effect of X-rays on SCE induction under hypoxic conditions. CHO cells were rendered hypoxic by incubation at 37 0 for 3 hr. in evacuated glass ampules and irradiated with graded doses of X-rays. After irradiation, cells were incubated in medium containing BrdUrd and the SCE assay performed. At each dose tested (0-900 rads) the number of SCEs induced by X-rays in hypoxic cells was approximately 2.5 fold the number induced in aerated cells. When a 16-hr. repair-incubation interval was allowed between irradiation and BrdUrd labeling, the number of SCEs returned to background levels. In further experiments, repair-deficient cells, incapable of completely removing crosslinks from their DNA, did not completely restore SCE levels to background within the repair period. These data provide further evidence suggesting that hypoxic cells respond differently to radiation in a qualitative sense, in addition to the well known quantitative sense

  11. Molecular Imaging Agents Specific for the Annulus Fibrosus of the Intervertebral Disk

    Directory of Open Access Journals (Sweden)

    Summer L. Gibbs-Strauss

    2010-05-01

    Full Text Available Low back pain is a prevalent medical condition that is difficult to diagnose and treat. Current imaging methods are unable to correlate pain reliably with spinal structures, and surgical removal of painful damaged or degenerating disks is technically challenging. A contrast agent specific for the intervertebral disk could assist in the detection, diagnosis, and surgical treatment of low back pain. The styryl pyridinium (FM fluorophores were characterized and structure-activity relationships between chemical structure and in vivo uptake were established. Two novel FM fluorophores with improved optical properties for imaging the intervertebral disks were synthesized and evaluated in mice, rats, and pigs. After a single systemic injection, eight of eight FM fluorophores provided high-contrast imaging of the trigeminal ganglia, whereas six of eight provided high-contrast imaging of the dorsal root ganglia. Unexpectedly, three of eight FM fluorophores provided high-contrast imaging of annulus fibrosus tissue of the intervertebral disks, confirmed histologically. We present the first known contrast agent specific for the intervertebral disks and identify the chemical structural motif that mediates uptake. FM fluorophores could be used for image-guided surgery to assist in the removal of intervertebral disk and lay the foundation for derivatives for magnetic resonance imaging and positron emission tomography.

  12. Development of (F-18)-Labeled Amyloid Imaging Agents for PET

    International Nuclear Information System (INIS)

    Mathis, C.A.

    2007-01-01

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the 'amyloid cascade hypothesis' which holds that amyloid accumulation is the primary cause of AD.

  13. Iron-EHPG as an hepatobiliary MR contrast agent: initial imaging and biodistribution studies

    International Nuclear Information System (INIS)

    Lauffer, R.B.; Greif, W.L.; Stark, D.D.; Vincent, A.C.; Saini, S.; Wedeen, V.J.; Brady, T.J.

    1988-01-01

    A paramagnetic relaxation agent targeted to functioning hepatocytes of the liver and excreted into the bile would be useful in the enhancement of normal liver and biliary anatomy in MR imaging. We sought to demonstrate the feasibility of this approach using the prototype hepatobiliary MR contrast agent, iron(III) ethylenebis-(2-hydroxyphenylglycine) (Fe(EHPG) - ). The biodistribution, relaxation enhancement, and imaging characteristics of Fe(EHPG) - were compared to those of the non-specific iron chelate iron(III) diethylenetriaminepentaacetic acid (Fe(DTPA) 2- ), which has a comparable effect on water proton relaxation times. (author)

  14. Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark.

    Science.gov (United States)

    Nilsson, Göran E; Renshaw, Gillian M C

    2004-08-01

    Especially in aquatic habitats, hypoxia can be an important evolutionary driving force resulting in both convergent and divergent physiological strategies for hypoxic survival. Examining adaptations to anoxic/hypoxic survival in hypoxia-tolerant animals may offer fresh ideas for the treatment of hypoxia-related diseases. Here, we summarise our present knowledge of two fishes that have evolved to survive hypoxia under very different circumstances. The crucian carp (Carassius carassius) is of particular interest because of its extreme anoxia tolerance. During the long North European winter, it survives for months in completely oxygen-deprived freshwater habitats. The crucian carp also tolerates a few days of anoxia at room temperature and, unlike anoxia-tolerant freshwater turtles, it is still physically active in anoxia. Moreover, the crucian carp does not appear to reduce neuronal ion permeability during anoxia and may primarily rely on more subtle neuromodulatory mechanisms for anoxic metabolic depression. The epaulette shark (Hemiscyllium ocellatum) is a tropical marine vertebrate. It lives on shallow reef platforms that repeatedly become cut off from the ocean during periods of low tides. During nocturnal low tides, the water [O(2)] can fall by 80% due to respiration of the coral and associated organisms. Since the tides become lower and lower over a period of a few days, the hypoxic exposure during subsequent low tides will become progressively longer and more severe. Thus, this shark is under a natural hypoxic preconditioning regimen. Interestingly, hypoxic preconditioning lowers its metabolic rate and its critical P(O(2)). Moreover, repeated anoxia appears to stimulate metabolic depression in an adenosine-dependent way.

  15. Magnetic susceptibility imaging with a nonionic contrast agent

    International Nuclear Information System (INIS)

    Cacheris, W.; Rocklage, S.M.; Quay, S.; Dow, W.; Love, D.; Worah, D.; Lim, K.

    1988-01-01

    The magnetic susceptibility mechanism for MR imaging contrast enhancement has the advantage of providing useful information, such as cerebral blood flow, without crossing the blood-brain barrier. In this paper the authors report the use of a highly effective, relatively nontoxic chelate as a magnetic susceptibility agent. Dy-DTPA-bis(methylamide) (Dy-DTPA-BMA) has an extremely low acute toxicity (LD-50, intravenous, mice ∼ 40 mmol/kg). Doses of 1 mmol/kg and 2 mmol/kg Dy-DTPA-BMA lowered the initial signal intensity 63% to 57%, respectively. The utility of this technique in detecting areas of reduced blood flow within the brain was demonstrated by imaging a rabbit with a cerebral perfusion deficit

  16. Hypoxic Living and Exercise Training Alter Adipose Tissue Leptin/Leptin Receptor in Rats

    Directory of Open Access Journals (Sweden)

    Yingli Lu

    2016-11-01

    Full Text Available Background: Hypobaric hypoxia results in weight loss in obese individuals, and exercise training is advocated for the treatment of obesity and its related metabolic dysfunctions. The purpose of this study was to investigate the effects of hypoxic living and exercise training on obesity and adipose tissue leptin/leptin receptor in dietary-induced obese rats. Methods: One hundred and thirty high-fat diet fed Sprague-Dawley rats were assigned into one of the following groups (n=10 each: control, sedentary hypoxic living for 1 to 4 weeks (SH1, SH2, SH3, and SH4, living and exercise training in normoxic conditions for 1 to 4 weeks (TN1, TN2, TN3, and TN4, and living and exercise training in hypoxic conditions for 1 to 4 weeks (TN1, TN2, TN3, and TN4. Epididymal adipose tissue expression levels of leptin and leptin receptor were determined. Results: Compared to hypoxic living and living and exercise training in normoxic conditions, living and exercise training in hypoxic conditions for 3-4 weeks resulted in lower Lee index (P<0.05 to P<0.01, and higher expression of leptin and leptin receptor (P<0.05 to P<0.01 in adipose tissue. Conclusion: In a rodent model of altitude training, living and exercise training in hypoxic conditions resulted in greater alterations in obesity and adipose tissue leptin/leptin receptor than hypoxic living alone and living and exercise training in normoxic conditions.

  17. Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy

    Science.gov (United States)

    Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.

    2016-03-01

    In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.

  18. Permanently Hypoxic Cell Culture Yields Rat Bone Marrow Mesenchymal Cells with Higher Therapeutic Potential in the Treatment of Chronic Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Yihua Liu

    2017-11-01

    Full Text Available Background: The mismatch between traditional in vitro cell culture conditions and targeted chronic hypoxic myocardial tissue could potentially hamper the therapeutic effects of implanted bone marrow mesenchymal stem cells (BMSCs. This study sought to address (i the extent of change to BMSC biological characteristics in different in vitro culture conditions and (ii the effectiveness of permanent hypoxic culture for cell therapy in treating chronic myocardial infarction (MI in rats. Methods: rat BMSCs were harvested and cultured in normoxic (21% O2, n=27 or hypoxic conditions (5% O2, n=27 until Passage 4 (P4. Cell growth tests, flow cytometry, and Bio-Plex assays were conducted to explore variations in the cell proliferation, phenotype, and cytokine expression, respectively. In the in vivo set-up, P3-BMSCs cultured in normoxia (n=6 or hypoxia (n=6 were intramyocardially injected into rat hearts that had previously experienced 1-month-old MI. The impact of cell therapy on cardiac segmental viability and hemodynamic performance was assessed 1 month later by 2-Deoxy-2[18F]fluoro-D-glucose (18F-FDG positron emission tomography (PET imaging and pressure-volume catheter, respectively. Additional histomorphological examinations were conducted to evaluate inflammation, fibrosis, and neovascularization. Results: Hypoxic preconditioning significantly enhanced rat BMSC clonogenic potential and proliferation without altering the multipotency. Different profiles of inflammatory, fibrotic, and angiogenic cytokine secretion were also documented, with a marked correlation observed between in vitro and in vivo proangiogenic cytokine expression and tissue neovessels. Hypoxic-preconditioned cells presented a beneficial effect on the myocardial viability of infarct segments and intrinsic contractility. Conclusion: Hypoxic-preconditioned BMSCs were able to benefit myocardial perfusion and contractility, probably by modulating the inflammation and promoting

  19. Permanently Hypoxic Cell Culture Yields Rat Bone Marrow Mesenchymal Cells with Higher Therapeutic Potential in the Treatment of Chronic Myocardial Infarction.

    Science.gov (United States)

    Liu, Yihua; Yang, Xiaoxi; Maureira, Pablo; Falanga, Aude; Marie, Vanessa; Gauchotte, Guillaume; Poussier, Sylvain; Groubatch, Frederique; Marie, Pierre-Yves; Tran, Nguyen

    2017-01-01

    The mismatch between traditional in vitro cell culture conditions and targeted chronic hypoxic myocardial tissue could potentially hamper the therapeutic effects of implanted bone marrow mesenchymal stem cells (BMSCs). This study sought to address (i) the extent of change to BMSC biological characteristics in different in vitro culture conditions and (ii) the effectiveness of permanent hypoxic culture for cell therapy in treating chronic myocardial infarction (MI) in rats. rat BMSCs were harvested and cultured in normoxic (21% O2, n=27) or hypoxic conditions (5% O2, n=27) until Passage 4 (P4). Cell growth tests, flow cytometry, and Bio-Plex assays were conducted to explore variations in the cell proliferation, phenotype, and cytokine expression, respectively. In the in vivo set-up, P3-BMSCs cultured in normoxia (n=6) or hypoxia (n=6) were intramyocardially injected into rat hearts that had previously experienced 1-month-old MI. The impact of cell therapy on cardiac segmental viability and hemodynamic performance was assessed 1 month later by 2-Deoxy-2[18F]fluoro-D-glucose (18F-FDG) positron emission tomography (PET) imaging and pressure-volume catheter, respectively. Additional histomorphological examinations were conducted to evaluate inflammation, fibrosis, and neovascularization. Hypoxic preconditioning significantly enhanced rat BMSC clonogenic potential and proliferation without altering the multipotency. Different profiles of inflammatory, fibrotic, and angiogenic cytokine secretion were also documented, with a marked correlation observed between in vitro and in vivo proangiogenic cytokine expression and tissue neovessels. Hypoxic-preconditioned cells presented a beneficial effect on the myocardial viability of infarct segments and intrinsic contractility. Hypoxic-preconditioned BMSCs were able to benefit myocardial perfusion and contractility, probably by modulating the inflammation and promoting angiogenesis. © 2017 The Author(s). Published by S. Karger AG

  20. Radiosensitization effect of CMNa on hypoxic pancreatic cancer cell in vitro

    International Nuclear Information System (INIS)

    Yin Lijie; Zhang Li; Ding Tiangui; Peng Zhaoxiang; Yu Huan; Gao Yuwei

    2006-01-01

    Objective: To investigate the effects of glycodidazolum natrium (CMNa) on pancreatic cancer cells under hypoxic condition. Methods: The human pancreatic cancer Panc-1 cells were exposed to a single fraction of high-dose γ-ray radiation either with CMNa or under hypoxic condition. The percentage of dead cells was detected with a multiwell plated reader, and fluorescence intensities of propidium iodide were measured before and after digitonin treatment. The sensitizing effect of CMNa on cell killing induced by high-dose irradiation was evaluated by time and concentration dependence. The selective radiosensitive effect of CMNa on hypoxia was evaluated by flow cytometry. Results: The death rate of pancreatic cancer Panc-1 cells paralleled with the increasing concentration of CMNa under hypoxic condition after 30 gray irradiation. The selective radiosensitive effect of CMNa on hypoxia was time-dependent. Conclusions: CMNa can enhance the radiosensitivity of pancreatic cancer Pane-1 cells under hypoxic condition with high-dose irradiation. (authors)

  1. pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent

    Science.gov (United States)

    Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C.; Yu, Jing; Vinogradov, Elena; Lenkinski, Robert E.; Sherry, A. Dean

    2015-01-01

    Purpose This study explored the feasibility of using a pH responsive paraCEST agent to image the pH gradient in kidneys of healthy mice. Methods CEST signals were acquired on an Agilent 9.4 T small animal MRI system using a steady-state gradient echo pulse sequence after a bolus injection of agent. The magnetic field inhomogeneity across each kidney was corrected using the WASSR method and pH maps were calculated by measuring the frequency of water exchange signal arising from the agent. Results Dynamic CEST studies demonstrated that the agent was readily detectable in kidneys only between 4 to 12 min post-injection. The CEST images showed a higher signal intensity in the pelvis and calyx regions and lower signal intensity in the medulla and cortex regions. The pH maps reflected tissue pH values spanning from 6.0 to 7.5 in kidneys of healthy mice. Conclusion This study demonstrated that pH maps of the kidney can be imaged in vivo by measuring the pH-dependent chemical shift of a single water exchange CEST peak without prior knowledge of the agent concentration in vivo. The results demonstrate the potential of using a simple frequency-dependent paraCEST agent for mapping tissue pH in vivo. PMID:26173637

  2. Evaluation of chirp reversal power modulation sequence for contrast agent imaging

    International Nuclear Information System (INIS)

    Novell, A; Sennoga, CA; Escoffre, JM; Chaline, J; Bouakaz, A

    2014-01-01

    Over the last decade, significant research effort has been focused on the use of chirp for contrast agent imaging because chirps are known to significantly increase imaging contrast-to-noise ratio (CNR). New imaging schemes, such as chirp reversal (CR), have been developed to improve contrast detection by increasing non-linear microbubble responses. In this study we evaluated the contrast enhancement efficiency of various chirped imaging sequences in combination with well-established imaging schemes such as power modulation (PM) and pulse inversion (PI). The imaging schemes tested were implemented on a fully programmable open scanner and evaluated by ultrasonically scanning (excitation frequency of 2.5 MHz; amplitude of 350 kPa) a tissue-mimicking flow phantom comprising a 4 mm diameter tube through which aqueous dispersions (dilution fraction of 1/2000) of the commercial ultrasound contrast agent, SonoVue ® were continuously circulated. The recovery of non-linear microbubble responses after chirp compression requires the development and the optimization of a specific filter. A compression filter was therefore designed and used to compress and extract several non-linear components from the received microbubble responses. The results showed that using chirps increased the image CNR by approximately 10 dB, as compared to conventional Gaussian apodized sine burst excitation but degraded the axial resolution by a factor of 1.4, at −3 dB. We demonstrated that the highest CNR and contrast-to-noise ratio (CTR) were achievable when CR was combined with PM as compared to other imaging schemes such as PI. (paper)

  3. The synthesis of radioiodinated carbohydrates and butyrothenones as potential imaging agents for computed tomography

    International Nuclear Information System (INIS)

    Waterhouse, R.N.

    1993-01-01

    Positron Emission tomography (PET) and Single Photon Emission Computed Tomography (SPECT) are two relatively new imaging techniques which allow for the non-invasive evaluation of biochemical processes in living subjects. Currently, SPECT is more widely accessible than PET, however, only a limited number of radiotracers have been successfully developed for imaging by SPECT. Two classes of radioiodinated compounds were developed as potential imaging agents for SPECT: (1) Radioiodinated carbohydrates for the assessment of glucose metabolism and (2) Radioiodinated butyrothienones for the evaluation of dopamine D 2 receptors in the brain. In both classes of compounds, the radioiodine was attached to an sp 2 hybridized carbon atom to provide radiotracers that were chemically and metabolically stable. Radioiodine incorporation was easily accomplished by radioiododestannylation of vinyl- and aryl-trialkylstannanes in the presence of an oxidizing agent. The incorporation of radioiodine into small molecules can have a significant effect on the biological activity of the resulting radiotracer because of the relatively large size and lipophilicity of the iodine atom. Preliminary evaluations of the effectiveness of the radioiodinated carbohydrates and butyrothienones as imaging agents are presented

  4. Magnetic nanoparticles as contrast agents for molecular imaging in medicine

    Science.gov (United States)

    O'Donnell, Matthew

    2018-05-01

    For over twenty years, superparamagnetic nanoparticles have been developed for a number of medical applications ranging from bioseparations, magnetic drug targeting, hyperthermia and imaging. Recent studies have shown that they can be functionalized for in vivo biological targeting, potentially enabling nanoagents for molecular imaging and site-localized drug delivery. Here we review several imaging technologies developed using functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as targeted molecular agents. Several imaging modalities have exploited the large induced magnetic moment of SPIONs to create local mechanical force. Magnetic force microscopy can probe nanoparticle uptake in single cells. For in vivo applications, magnetomotive modulation of primary images in ultrasound (US), photoacoustics (PA), and optical coherence tomography (OCT) can help identify very small concentrations of nanoagents while simultaneously suppressing intrinsic background signals from tissue.

  5. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents.

    Science.gov (United States)

    Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang

    2006-01-01

    Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.

  6. Metal complex-based templates and nanostructures for magnetic resonance/optical multimodal imaging agents

    NARCIS (Netherlands)

    Galindo Millan, Jealemy

    2012-01-01

    In this thesis, new approaches directed towards simple and functional imaging agents (IAs) for magnetic resonance (MR) and fluorescence multimodal imaging are proposed. In Chapter 3, hybrid silver nanostructures (hAgNSs), grown using a polyamino carboxylic acid scaffold, namely

  7. Testing of new hypoxic cell sensitizers in vivo

    International Nuclear Information System (INIS)

    Stone, H.B.; Sinesi, M.S.

    1982-01-01

    We tested five agents as potential sensitizers of hypoxic cells in vivo in mammary tumors in C3H mice in comparison with misonidazole. The LD/sub 50/2/ for desmethylmisonidazole was 2.7 mg/g body wt, compared to 1.3 for misonidazole. It was as effective in reducing the TCD 50 of MDAH-MCa-4 as were equitoxic doses of misonidazole. the LD/sub 50/2/ of SR-2508 was 3.3 mg/g and was as effective a sensitizer as misonidazole. Ro 07-0741 was more toxic, with an LD/sub 50/2/ of 0.6 mg/g, but was as effective as misonidazole at equitoxic doses. NP-1 was also more toxic than misonidazole (LA/sub 50/2/ = 04 mg/g) but was a less effective sensitizer. Rotenone, which causes sensitization by inhibiting cellular respiration, thus increasing the diffusion distance of oxygen, was extremely toxic (LD/sub 50/2/ - 0.003 mg/g), and systemic respiratory inhibition and the radioprotective effects of the dimethyl sulfoxide used to dissolve it rendered it totally ineffective as a sensitizer in vivo

  8. Early MR detection of cortical and subcortical hypoxic-ischemic encephalopathy in full-term-infants

    International Nuclear Information System (INIS)

    Christophe, C.; Clercx, A.; Blum, D.; Hasaerts, D.; Segebarth, C.; Perlmutter, N.

    1994-01-01

    Four observations illustrate the potential of MR imaging in the early depiction of multiple types of neuropathologic lesions which may coexist in the full-term newborn, upon severe hypoxic-ischemic encephalopathy (HIE). In particular, diffuse, postnatal involvement of cerebral cortex and subcortical white matter (WM) is demonstrated. Cortical hyperintensity on both proton-density- and T1-weighted images is probably related to cellular necrosis which is distributed diffusely or parasigattally. Hyperintense, frontal, subcortical WM edging on proton-density-weighted images results from the increase of water concentration, induced either by infract or by edema. Diffuse WM areas of low intensity on T1-weighted images and of high intensity on T2-weighted images are presumably related to cytotoxic and/or vasogenic edema, proportional to the underlying damaged tissues. On follow-up MR examinations, several months later, the importance of cortical atrophy and of the myelination delay appeared related to the importance of the lesions detected during the post-natal period. (orig.)

  9. Paired-agent fluorescent imaging to detect micrometastases in breast sentinel lymph node biopsy: experiment design and protocol development

    Science.gov (United States)

    Li, Chengyue; Xu, Xiaochun; Basheer, Yusairah; He, Yusheng; Sattar, Husain A.; Brankov, Jovan G.; Tichauer, Kenneth M.

    2018-02-01

    Sentinel lymph node status is a critical prognostic factor in breast cancer treatment and is essential to guide future adjuvant treatment. The estimation that 20-60% of micrometastases are missed by conventional pathology has created a demand for the development of more accurate approaches. Here, a paired-agent imaging approach is presented that employs a control imaging agent to allow rapid, quantitative mapping of microscopic populations of tumor cells in lymph nodes to guide pathology sectioning. To test the feasibility of this approach to identify micrometastases, healthy pig lymph nodes were stained with targeted and control imaging agent solution to evaluate the potential for the agents to diffuse into and out of intact nodes. Aby-029, an anti-EGFR affibody was labeled with IRDye 800CW (LICOR) as targeted agent and IRDye 700DX was hydrolyzed as a control agent. Lymph nodes were stained and rinsed by directly injecting the agents into the lymph nodes after immobilization in agarose gel. Subsequently, lymph nodes were frozen-sectioned and imaged under an 80-um resolution fluorescence imaging system (Pearl, LICOR) to confirm equivalence of spatial distribution of both agents in the entire node. The binding potentials were acquired by a pixel-by-pixel calculation and was found to be 0.02 +/- 0.06 along the lymph node in the absence of binding. The results demonstrate this approach's potential to enhance the sensitivity of lymph node pathology by detecting fewer than 1000 cell in a whole human lymph node.

  10. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience.

    Science.gov (United States)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang

    2017-01-01

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80 each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. • Automatic spectral imaging protocol selection provides appropriate scan protocols. • Abdominal CT is feasible using spectral imaging and 300 mgI/kg contrast agent. • 50-keV monochromatic images with 50 % ASIR provide optimal image quality.

  11. Changes in lactate dehydrogenase are associated with central gray matter lesions in newborns with hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Yum, Sook Kyung; Moon, Cheong-Jun; Youn, Young-Ah; Sung, In Kyung

    2017-05-01

    Biomarkers may predict neurological prognosis in infants with hypoxic-ischemic encephalopathy (HIE). We evaluated the relationship between serum lactate dehydrogenase (LDH) and brain magnetic resonance imaging (MRI), which predicts neurodevelopmental outcomes, in order to assess whether LDH levels are similarly predictive. Medical records were reviewed for infants with HIE and LDH levels were assessed on the first (LDH 1 ) and third (LDH 3 ) days following birth. Receiver operating characteristic curves were obtained in relation to central gray matter hypoxic-ischemic lesions. Of 92 patients, 52 (56.5%) had hypoxic-ischemic lesions on brain MRI, and 21 of these infants (40.4%) had central gray matter lesions. LDH 1 and LDH 3 did not differ; however, the percentage change (ΔLDH%) was significantly higher in infants with central gray matter lesions (36.9% versus 6.6%, p = 0.006). With cutoffs of 187 (IU/L, ΔLDH) and 19.4 (%, ΔLDH%), the sensitivity, specificity, positive predictive value and negative predictive value were 71.4, 69.0, 40.5 and 89.1%, respectively. The relative risk was 5.57 (p = 0.001). Changes in serum LDH may be a useful biomarker for predicting future neurodevelopmental prognosis in infants with HIE.

  12. Automated synthesis of the estrogen receptors imaging agent 18F-FES

    International Nuclear Information System (INIS)

    Guo Shen; Chen Guobao; Dai Hongfeng; Lin Meifu; Chen Wenxin

    2011-01-01

    Objective: 18 F-16α-17β-fluoroestradiol ( 18 F-FES), an estrogen receptors imaging agent, is synthesized with Tracerlab FX FN system. Methods: 18 F-FES is obtained by two steps reactions, including the nucleophilic displacement reaction of no-carrier-added 18 F-fluoride with 3-O-methoxymethyl-16, 17-O-sulfuryl-16-epiesteriol, then the intermediate is evaporated and hydrolyzed with HCI and finally gives 18 F-FES. Results: The synthesis of 18 F-FES can be completed in about 80 min.The radiochemical yield and radio-chemical purity are about 10% and 95% respectively. Conclusion: The procedure of synthesis is simple and automatical. 18 F-FES has an extremely low toxicity, which suggests that 18 F-FES may be a safe, a nd effective estrogen receptors imaging agent. (authors)

  13. A Proposed Computed Tomography Contrast Agent Using Carboxybetaine Zwitterionic Tantalum Oxide Nanoparticles: Imaging, Biological, and Physicochemical Performance.

    Science.gov (United States)

    FitzGerald, Paul F; Butts, Matthew D; Roberts, Jeannette C; Colborn, Robert E; Torres, Andrew S; Lee, Brian D; Yeh, Benjamin M; Bonitatibus, Peter J

    2016-12-01

    The aim of this study was to produce and evaluate a proposed computed tomography (CT) contrast agent based on carboxybetaine zwitterionic (CZ)-coated soluble tantalum oxide (TaO) nanoparticles (NPs). We chose tantalum to provide superior imaging performance compared with current iodine-based clinical CT contrast agents. We developed the CZ coating to provide biological and physical performance similar to that of current iodinated contrast agents. In addition, the aim of this study was to evaluate the imaging, biological, and physicochemical performance of this proposed contrast agent compared with clinically used iodinated agents. We evaluated CT imaging performance of our CZ-TaO NPs compared with that of an iodinated agent in live rats, imaged centrally located within a tissue-equivalent plastic phantom that simulated a large patient. To evaluate vascular contrast enhancement, we scanned the rats' great vessels at high temporal resolution during and after contrast agent injection. We performed several in vivo CZ-TaO NP studies in healthy rats to evaluate tolerability. These studies included injecting the agent at the anticipated clinical dose (ACD) and at 3 times and 6 times the ACD, followed by longitudinal hematology to assess impact to blood cells and organ function (from 4 hours to 1 week). Kidney histological analysis was performed 48 hours after injection at 3 times the ACD. We measured the elimination half-life of CZ-TaO NPs from blood, and we monitored acute kidney injury biomarkers with a kidney injury assay using urine collected from 4 hours to 1 week. We measured tantalum retention in individual organs and in the whole carcass 48 hours after injection at ACD. Carboxybetaine zwitterionic TaO NPs were synthesized and analyzed in detail. We used multidimensional nuclear magnetic resonance to determine surface functionality of the NPs. We measured NP size and solution properties (osmolality and viscosity) of the agent over a range of tantalum concentrations

  14. Effects of the differentiating agents sodium butyrate and N-methylformamide on the oxygen enhancement ratio of human colon tumor cells

    International Nuclear Information System (INIS)

    Hallows, K.R.; Bliven, S.F.; Leith, J.T.

    1988-01-01

    We have previously shown that chronic adaptation of human tumor cells to the differentiation-inducing agents N-methylformamide (NMF) and sodium butyrate (NAB) increases the sensitivity of oxic cells to graded single doses of X rays. These studies were carried out to define the sensitivity of hypoxic cells after adaptation. Clone A colon tumor cells were grown for three passages in medium containing 170 mM NMF or 2 mM NAB and irradiated in suspension culture, after gassing with either oxygen (60 min) or ultrapure nitrogen (90 min), and complete survival curves were generated. Using the linear-quadratic equation to describe the data, it was found that NMF and NAB produced increased X-ray killing of hypoxic cells. At the 10% level of survival, the dose-modifying factors were about 1.20 and 1.25 for NMF- and NAB-adapted hypoxic cells, respectively, as compared to hypoxic control cells. However, since both oxic and hypoxic cells exhibited increased sensitivity after NMF and NAB adaptation, there was no major change in the oxygen enhancement ratio

  15. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Joyce T. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Robinson, Joshua D. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Deng, Jie [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Rigsby, Cynthia K. [Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2016-12-15

    A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam. (orig.)

  16. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Johnson, Joyce T.; Robinson, Joshua D.; Deng, Jie; Rigsby, Cynthia K.

    2016-01-01

    A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam. (orig.)

  17. Hypoxic resistance of KRAS mutant tumor cells to 3-Bromopyruvate is counteracted by Prima-1 and reversed by N-acetylcysteine.

    Science.gov (United States)

    Orue, Andrea; Chavez, Valery; Strasberg-Rieber, Mary; Rieber, Manuel

    2016-11-18

    The metabolic inhibitor 3-bromopyruvate (3-BrPA) is a promising anti-cancer alkylating agent, shown to inhibit growth of some colorectal carcinoma with KRAS mutation. Recently, we demonstrated increased resistance to 3-BrPA in wt p53 tumor cells compared to those with p53 silencing or mutation. Since hypoxic microenvironments select for tumor cells with diminished therapeutic response, we investigated whether hypoxia unequally increases resistance to 3-BrPA in wt p53 MelJuso melanoma harbouring (Q61L)-mutant NRAS and wt BRAF, C8161 melanoma with (G12D)-mutant KRAS (G464E)-mutant BRAF, and A549 lung carcinoma with a KRAS (G12S)-mutation. Since hypoxia increases the toxicity of the p53 activator, Prima-1 against breast cancer cells irrespective of their p53 status, we also investigated whether Prima-1 reversed hypoxic resistance to 3-BrPA. In contrast to the high susceptibility of hypoxic mutant NRAS MelJuso cells to 3-BrPA or Prima-1, KRAS mutant C8161 and A549 cells revealed hypoxic resistance to 3-BrPA counteracted by Prima-1. In A549 cells, Prima-1 increased p21CDKN1mRNA, and reciprocally inhibited mRNA expression of the SLC2A1-GLUT1 glucose transporter-1 and ALDH1A1, gene linked to detoxification and stem cell properties. 3-BrPA lowered CAIX and VEGF mRNA expression. Death from joint Prima-1 and 3-BrPA treatment in KRAS mutant A549 and C8161 cells seemed mediated by potentiating oxidative stress, since it was antagonized by the anti-oxidant and glutathione precursor N-acetylcysteine. This report is the first to show that Prima-1 kills hypoxic wt p53 KRAS-mutant cells resistant to 3-BrPA, partly by decreasing GLUT-1 expression and exacerbating pro-oxidant stress.

  18. Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling

    DEFF Research Database (Denmark)

    Westberg, Johan A; Serlachius, Martina; Lankila, Petri

    2007-01-01

    BACKGROUND AND PURPOSE: Exposure of animals for a few hours to moderate hypoxia confers relative protection against subsequent ischemic brain damage. This phenomenon, known as hypoxic preconditioning, depends on new RNA and protein synthesis, but its molecular mechanisms are poorly understood...... originally reported expression of mammalian STC-1 in brain neurons and showed that STC-1 guards neurons against hypercalcemic and hypoxic damage. METHODS: We treated neural Paju cells with IL-6 and measured the induction of STC-1 mRNA. In addition, we quantified the effect of hypoxic preconditioning on Stc-1...... mRNA levels in brains of wild-type and IL-6 deficient mice. Furthermore, we monitored the Stc-1 response in brains of wild-type and transgenic mice, overexpressing IL-6 in the astroglia, before and after induced brain injury. RESULTS: Hypoxic preconditioning induced an upregulated expression of Stc...

  19. Fundamental studies of oral contrast agents for MR. Comparison of manganese agent and iron agent

    International Nuclear Information System (INIS)

    Fujita, Osamu; Hiraishi, Kumiko; Suginobu, Yoshito; Takeuchi, Masayasu; Narabayashi, Isamu

    1996-01-01

    We investigated and compared signal intensity and the effect of imaging the upper abdomen with blueberry juice (B.J.), a Mn agent utilizing the properties of paramagnetic metals, and FerriSeltz (F.S.), an iron agent. Since the relaxation effect was much stronger with B.J. than with F.S., the signal intensity required of a peroral contrast agent was able to be obtained at a much lower concentration of B.J. In imaging the upper abdomen, B.J. had a positive effect on imaging in T1-weighted images, and a negative effect in T2-weighted images. F.S. had a positive imaging effect in both, and because it showed extremely high signals in T2-weighted images, motion artifact arose. (author)

  20. Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia.

    Science.gov (United States)

    Gorgias, N; Maidatsi, P; Tsolaki, M; Alvanou, A; Kiriazis, G; Kaidoglou, K; Giala, M

    1996-04-01

    The present study investigates whether under conditions of successive hypoxic exposures pretreatment with mild (15% O(2)) or moderate (10% O(2)) hypoxia, protects hippocampal neurones against damage induced by severe (3% O(2)) hypoxia. The ultrastructural findings were also correlated with regional superoxide dismutase (SOD) activity changes. In unpretreated rats severe hypoxia induced ultrastructural changes consistent with the aspects of delayed neuronal death (DND). However, in preexposed animals hippocampal damage was attenuated in an inversely proportional way with the severity of the hypoxic pretreatment. The ultrastructural hypoxic tolerance findings were also closely related to increased regional SOD activity levels. Thus the activation of the endogenous antioxidant defense by hypoxic preconditioning, protects against hippocampal damage induced by severe hypoxia. The eventual contribution of increased endogenous adenosine and/or reduced excitotoxicity to induce hypoxic tolerance is discussed.

  1. Ultrasound contrast agent imaging: Real-time imaging of the superharmonics

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzini, D.; Viti, J. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Tortoli, P. [MSD lab, Department of Information Engineering, Univ of Florence, Via S.Marta, 3, 50139 Firenze (Italy); Verweij, M. D. [Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands); Jong, N. de; Vos, H. J., E-mail: h.vos@erasmusmc.nl [Erasmus MC, ’s-Gravendijkwal 230, Faculty Building, Ee 2302, 3015 CE Rotterdam (Netherlands); Acoustical Wavefield Imaging, ImPhys, Delft Univ Technology, van der Waalsweg 8, 2628 CH Delft (Netherlands)

    2015-10-28

    Currently, in medical ultrasound contrast agent (UCA) imaging the second harmonic scattering of the microbubbles is regularly used. This scattering is in competition with the signal that is caused by nonlinear wave propagation in tissue. It was reported that UCA imaging based on the third or higher harmonics, i.e. “superharmonic” imaging, shows better contrast. However, the superharmonic scattering has a lower signal level compared to e.g. second harmonic signals. This study investigates the contrast-to-tissue ratio (CTR) and signal to noise ratio (SNR) of superharmonic UCA scattering in a tissue/vessel mimicking phantom using a real-time clinical scanner. Numerical simulations were performed to estimate the level of harmonics generated by the microbubbles. Data were acquired with a custom built dual-frequency cardiac phased array probe. Fundamental real-time images were produced while beam formed radiofrequency (RF) data was stored for further offline processing. The phantom consisted of a cavity filled with UCA surrounded by tissue mimicking material. The acoustic pressure in the cavity of the phantom was 110 kPa (MI = 0.11) ensuring non-destructivity of UCA. After processing of the acquired data from the phantom, the UCA-filled cavity could be clearly observed in the images, while tissue signals were suppressed at or below the noise floor. The measured CTR values were 36 dB, >38 dB, and >32 dB, for the second, third, and fourth harmonic respectively, which were in agreement with those reported earlier for preliminary contrast superharmonic imaging. The single frame SNR values (in which ‘signal’ denotes the signal level from the UCA area) were 23 dB, 18 dB, and 11 dB, respectively. This indicates that noise, and not the tissue signal, is the limiting factor for the UCA detection when using the superharmonics in nondestructive mode.

  2. Semiconducting polymer dot as a highly effective contrast agent for photoacoustic imaging

    Science.gov (United States)

    Yuan, Zhen; Zhang, Jian

    2018-02-01

    In this study, we developed a novel PIID-DTBT based semiconducting polymer dots (Pdots) that have broad and strong optical absorption in the visible-light region (500 nm - 700 nm). Gold nanoparticles (GNPs) and gold nanorods (GNRs) that have been verified as an excellent photoacoustic contrast agent were compared with Pdots based on photoacoustic imaging method. Both ex vivo and in vivo experiment demonstrated Pdots have a better photoacoustic conversion efficiency at 532 nm than GNPs and similar photoacoustic performance with GNRs at 700 nm at the same mass concentration. Our work demonstrates the great potential of Pdots as a highly effective contrast agent for precise localization of lesions relative to the blood vessels based on photoacoustic tomography imaging.

  3. Prospective of 68Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation

    Science.gov (United States)

    2018-01-01

    During the last decade, the utilization of 68Ga for the development of imaging agents has increased considerably with the leading position in the oncology. The imaging of infection and inflammation is lagging despite strong unmet medical needs. This review presents the potential routes for the development of 68Ga-based agents for the imaging and quantification of infection and inflammation in various diseases and connection of the diagnosis to the treatment for the individualized patient management. PMID:29531507

  4. Diagnosis of Popliteal Venous Entrapment Syndrome by Magnetic Resonance Imaging Using Blood-Pool Contrast Agents

    International Nuclear Information System (INIS)

    Beitzke, Dietrich; Wolf, Florian; Juelg, Gregor; Lammer, Johannes; Loewe, Christian

    2011-01-01

    Popliteal vascular entrapment syndrome is caused by aberrations or hypertrophy of the gastrocnemius muscles, which compress the neurovascular structures of the popliteal fossa, leading to symptoms of vascular and degeneration as well as aneurysm formation. Imaging of popliteal vascular entrapment may be performed with ultrasound, magnetic resonance imaging (MRI), computed tomography angiography, and conventional angiography. The use of blood-pool contrast agents in MRI when popliteal vascular entrapment is suspected offers the possibility to perform vascular imaging with first-pass magnetic resonance angiographic, high-resolution, steady-state imaging and allows functional tests all within one examination with a single dose of contrast agent. We present imaging findings in a case of symptomatic popliteal vein entrapment diagnosed by the use of blood pool contrast-enhanced MRI.

  5. Physiological Responses to Two Hypoxic Conditioning Strategies in Healthy Subjects.

    Science.gov (United States)

    Chacaroun, Samarmar; Borowik, Anna; Morrison, Shawnda A; Baillieul, Sébastien; Flore, Patrice; Doutreleau, Stéphane; Verges, Samuel

    2016-01-01

    Objective: Hypoxic exposure can be used as a therapeutic tool by inducing various cardiovascular, neuromuscular, and metabolic adaptations. Hypoxic conditioning strategies have been evaluated in patients with chronic diseases using either sustained (SH) or intermittent (IH) hypoxic sessions. Whether hypoxic conditioning via SH or IH may induce different physiological responses remains to be elucidated. Methods: Fourteen healthy active subjects (7 females, age 25 ± 8 years, body mass index 21.5 ± 2.5 kg·m -2 ) performed two interventions in a single blind, randomized cross-over design, starting with either 3 x SH (48 h apart), or 3 x IH (48 h apart), separated by a 2 week washout period. SH sessions consisted of breathing a gas mixture with reduced inspiratory oxygen fraction (FiO 2 ), continuously adjusted to reach arterial oxygen saturations (SpO 2 ) of 70-80% for 1 h. IH sessions consisted of 5 min with reduced FiO 2 (SpO 2 = 70-80%), followed by 3-min normoxia, repeated seven times. During the first (S1) and third (S3) sessions of each hypoxic intervention, cardiorespiratory parameters, and muscle and pre-frontal cortex oxygenation (near infrared spectroscopy) were assessed continuously. Results : Minute ventilation increased significantly during IH sessions (+2 ± 2 L·min -1 ) while heart rate increased during both SH (+11 ± 4 bpm) and IH (+13 ± 5 bpm) sessions. Arterial blood pressure increased during all hypoxic sessions, although baseline normoxic systolic blood pressure was reduced from S1 to S3 in IH only (-8 ± 11 mmHg). Muscle oxygenation decreased significantly during S3 but not S1, for both hypoxic interventions (S3: SH -6 ± 5%, IH -3 ± 4%); pre-frontal oxygenation decreased in S1 and S3, and to a greater extent in SH vs. IH (-13 ± 3% vs. -6 ± 6%). Heart rate variability indices indicated a significantly larger increase in sympathetic activity in SH vs. IH (lower SDNN, PNN50, and RMSSD values in SH). From S1 to S3, further reduction in heart

  6. Optical Imaging of Tumor Hypoxia and Evaluation of Efficacy of a Hypoxia-Targeting Drug in Living Animals

    Directory of Open Access Journals (Sweden)

    Hiroshi Harada

    2005-07-01

    Full Text Available Solid tumors containing more hypoxic regions show a more malignant phenotype by increasing the expression of genes encoding angiogenic and metastatic factors. Hypoxia-inducible factor-1 (HIF-1 is a master transcriptional activator of such genes, and thus, imaging and targeting hypoxic tumor cells where HIF-1 is active are important in cancer therapy. In the present study, HIF-1 activity was monitored via an optical in vivo imaging system by using a luciferase reporter gene under the regulation of an artificial HIF-1-dependent promoter, 5HRE. To monitor tumor hypoxia, we isolated a stable reporter-transfectant, HeLa/5HRE-Luc, which expressed more than 100-fold luciferase in response to hypoxic stress, and observed bioluminescence from its xenografts. Immunohistochemical analysis of the xenografts with a hypoxia marker, pimonidazole, confirmed that the luciferase-expressing cells were hypoxic. Evaluation of the efficacy of a hypoxia-targeting prodrug, TOP3, using this optical imaging system revealed that hypoxic cells were significantly diminished by TOP3 treatment. Immunohistochemical analysis of the TOP3-treated xenografts confirmed that hypoxic cells underwent apoptosis and were removed after TOP3 treatment. These results demonstrate that this model system using the 5HRE-luciferase reporter construct provides qualitative information (hypoxic status of solid tumors and enables one to conveniently evaluate the efficacy of cancer therapy on hypoxia in malignant solid tumors.

  7. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhanwen; Ke Hengte; Yue Xiuli; Dai Zhifei [Nanobiotechnology Division, State Key Laboratory of Urban Water Resources and Environment, School of Sciences, Harbin Institute of Technology, Harbin 150080 (China); Wang Jinrui; Zhao Bo [Department of Ultrasonography, Peking University Third Hospital, Beijing 100083 (China); Liu Jibin, E-mail: zhifei.dai@hit.edu.cn, E-mail: ji-bin.liu@jefferson.edu [Ultrasound Research and Education Institute, Thomas Jefferson University, Philadelphia, PA 19107 (United States)

    2010-04-09

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  8. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    International Nuclear Information System (INIS)

    Xing Zhanwen; Ke Hengte; Yue Xiuli; Dai Zhifei; Wang Jinrui; Zhao Bo; Liu Jibin

    2010-01-01

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  9. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging

    Science.gov (United States)

    Xing, Zhanwen; Wang, Jinrui; Ke, Hengte; Zhao, Bo; Yue, Xiuli; Dai, Zhifei; Liu, Jibin

    2010-04-01

    Novel biocompatible nanobubbles were fabricated by ultrasonication of a mixture of Span 60 and polyoxyethylene 40 stearate (PEG40S) followed by differential centrifugation to isolate the relevant subpopulation from the parent suspensions. Particle sizing analysis and optical microscopy inspection indicated that the freshly generated micro/nanobubble suspension was polydisperse and the size distribution was bimodal with large amounts of nanobubbles. To develop a nano-sized contrast agent that is small enough to leak through tumor pores, a fractionation to extract smaller bubbles by variation in the time of centrifugation at 20g (relative centrifuge field, RCF) was suggested. The results showed that the population of nanobubbles with a precisely controlled mean diameter could be sorted from the initial polydisperse suspensions to meet the specified requirements. The isolated bubbles were stable over two weeks under the protection of perfluoropropane gas. The acoustic behavior of the nano-sized contrast agent was evaluated using power Doppler imaging in a normal rabbit model. An excellent power Doppler enhancement was found in vivo renal imaging after intravenous injection of the obtained nanobubbles. Given the broad spectrum of potential clinical applications, the nano-sized contrast agent may provide a versatile adjunct for ultrasonic imaging enhancement and/or treatment of tumors.

  10. Low-dose radiation suppresses Pokemon expression under hypoxic conditions.

    Science.gov (United States)

    Kim, Seung-Whan; Yu, Kweon; Shin, Kee-Sun; Kwon, Kisang; Hwang, Tae-Sik; Kwon, O-Yu

    2014-01-01

    Our previous data demonstrated that CoCl2-induced hypoxia controls endoplasmic reticulum (ER) stress-associated and other intracellular factors. One of them, the transcription factor Pokemon, was differentially regulated by low-dose radiation (LDR). There are limited data regarding how this transcription factor is involved in expression of the unfolded protein response (UPR) under hypoxic conditions. The purpose of this study was to obtain clues on how Pokemon is involved in the UPR. Pokemon was selected as a differentially expressed gene under hypoxic conditions; however, its regulation was clearly repressed by LDR. It was also demonstrated that both expression of ER chaperones and ER stress sensors were affected by hypoxic conditions, and the same results were obtained when cells in which Pokemon was up- or down-regulated were used. The current state of UPR and LDR research associated with the Pokemon pathway offers an important opportunity to understand the oncogenesis, senescence, and differentiation of cells, as well as to facilitate introduction of new therapeutic radiopharmaceuticals.

  11. In vivo assay of the radiation sensitivity of hypoxic tumour cells. Influence of radiation quality and hypoxic sensitization

    International Nuclear Information System (INIS)

    Porschen, W.; Bosiljanoff, P.; Gewehr, K.; Muehlensiepen, H.; Feinendegen, L.E.

    1977-01-01

    In order to measure quantitatively tumour cell kinetics in living mice, tumour bearing animals (sarcoma-180) received intravenously 5-iodo-2'-deoxyuridine (IUdR), a thymidine analogue, which was labelled with 125 I or with 131 I, both of which can be easily externally counted by their gamma emission. IUdR is stably bound to DNA, reutilization is minimal and the measured activity loss from the tumour later than 50 hours after injection signals cell loss or cell death. The effect of irradiation on euoxic and average tumour cells was studied by sequentially labelling the tumour bearing animals first with 125 IUdR and, 70 hours later, with 131 IUdR. At the time of the second injection the average tumour cell population is labelled by the first injection of 125 IUdR, and the second injection of 131 IUdR nearly exclusively tags the perivascular tumour cells; these are euoxic in contrast to the average tumour cell, a large proportion of which is hypoxic. The radiation-induced activity loss rates from the two labelled tumour cell populations indicate the sensitivities of the two populations. At dose levels that cause identical effects on euoxic cells, the ratio of radiation-induced enhancement of cell loss rates for euoxic cells to average cells was 2.6 for 60 Co gamma radiation, 1.4 for 15MeV neutron irradiation, and 1.0 for alpha irradiation (1.5.MeV). The effect of five hypoxic cell sensitizers was analysed. The sensitization was limited to hypoxic cells, and the most effective drug was Ro-07-0582, showing at the 50% level of maximum effect a dose modifying factor of 1.5. Sensitization was highest when the drug was given 15 min prior to irradiation. Hyperthermia affected nearly exclusively hypoxic cells and showed a dose modifying factor of about 2 when the tumours were heated at 42 0 C for 30 min immediately after irradiation. The resulting enhancement of effect was reduced when hyperthermia was applied prior to irradiation. (author)

  12. Carbon Nano-Allotrope/Magnetic Nanoparticle Hybrid Nanomaterials as T2 Contrast Agents for Magnetic Resonance Imaging Applications

    Directory of Open Access Journals (Sweden)

    Yunxiang Gao

    2018-02-01

    Full Text Available Magnetic resonance imaging (MRI is the most powerful tool for deep penetration and high-quality 3D imaging of tissues with anatomical details. However, the sensitivity of the MRI technique is not as good as that of the radioactive or optical imaging methods. Carbon-based nanomaterials have attracted significant attention in biomaterial research in recent decades due to their unique physical properties, versatile functionalization chemistry, as well as excellent biological compatibility. Researchers have employed various carbon nano-allotropes to develop hybrid MRI contrast agents for improved sensitivity. This review summarizes the new research progresses in carbon-based hybrid MRI contrast agents, especially those reported in the past five years. The review will only focus on T2-weighted MRI agents and will be categorized by the different carbon allotrope types and magnetic components. Considering the strong trend in recent bio-nanotechnology research towards multifunctional diagnosis and therapy, carbon-based MRI contrast agents integrated with other imaging modalities or therapeutic functions are also covered.

  13. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions.

    Science.gov (United States)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas; Simos, George

    2010-07-16

    Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1alpha subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1alpha as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC(50)=5.16microM). The mechanism of this inhibition did not involve suppression of HIF-1alpha protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC(50)=4.75microM). Exposure of Huh7 cells to 10microM kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10microM) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions

    Science.gov (United States)

    Felfoul, Ouajdi; Mohammadi, Mahmood; Taherkhani, Samira; de Lanauze, Dominic; Zhong Xu, Yong; Loghin, Dumitru; Essa, Sherief; Jancik, Sylwia; Houle, Daniel; Lafleur, Michel; Gaboury, Louis; Tabrizian, Maryam; Kaou, Neila; Atkin, Michael; Vuong, Té; Batist, Gerald; Beauchemin, Nicole; Radzioch, Danuta; Martel, Sylvain

    2016-11-01

    Oxygen-depleted hypoxic regions in the tumour are generally resistant to therapies. Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour of magnetotactic bacteria, Magnetococcus marinus strain MC-1 (ref. 4), can be used to transport drug-loaded nanoliposomes into hypoxic regions of the tumour. In their natural environment, MC-1 cells, each containing a chain of magnetic iron-oxide nanocrystals, tend to swim along local magnetic field lines and towards low oxygen concentrations based on a two-state aerotactic sensing system. We show that when MC-1 cells bearing covalently bound drug-containing nanoliposomes were injected near the tumour in severe combined immunodeficient beige mice and magnetically guided, up to 55% of MC-1 cells penetrated into hypoxic regions of HCT116 colorectal xenografts. Approximately 70 drug-loaded nanoliposomes were attached to each MC-1 cell. Our results suggest that harnessing swarms of microorganisms exhibiting magneto-aerotactic behaviour can significantly improve the therapeutic index of various nanocarriers in tumour hypoxic regions.

  15. Radiosensitization of hypoxic tumor cells by simultaneous administration of hyperthermia and nitroimidazoles

    International Nuclear Information System (INIS)

    Hofer, K.G.; Hofer, M.G.; Ieracitano, J.; McLaughlin, W.H.

    1977-01-01

    The radiation response of oxygenated and hypoxic L1210 leukemia cells subjected to in vivo treatments with hyperthermia and/or chemical radiosensitizers was evaluated with the [ 125 I]iododeoxyuridine prelabeling assay. X irradiation of L1210 cells at body temperatures of 41 0 C or higher resulted in strongly enhanced tumor cell death. The magnitude of this thermal effect increased with increasing temperatures. Hypoxic L1210 cells were particularly sensitive to heat induced enhancement of radiation damage, i.e., the sensitizing effects were more pronounced and occurred at lower temperatures. Chemical radiosensitizers (metronidazole, Ro 7-0582) selectively sensitized hypoxic L1210 populations; fully oxygenated cells were not affected. Considerable radiosensitization was achieved at nontoxic dose levels of the two sensitizers. Experiments designed to determine the degree of radiosensititization as a function of drug dose showed that Ro 7-0582 was consistently more effective than metronidazole in sensitizing hypoxic tumor populations. At the highest drug dose used (3 mg/g body wt) the DMF was 2.2 for metronidazole and 2.8 for Ro 7-0582. Combined administration of hyperthermia and Ro 7-0582 (or metronidazole) produced synergistic potentiation of radiation damage in hypoxic L1210 populations (DMF of 4.2). Under optimal conditions, hypoxic L1210 cells subjected simultaneously to both modes of radiosensitization became more radiosensitive than untreated, fully oxygenated L1210 cells. Experiments on two other tumor lines (BP-8 murine sarcoma and Ehrlich ascites cells) indicate that such synergistic radiosensitization effects are not unique to L1210 cells

  16. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis

    Directory of Open Access Journals (Sweden)

    De-An Zhao

    Full Text Available Abstract Background and objectives: Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. Methods: A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Results: Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Conclusions: Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis.

  17. Transforming a Targeted Porphyrin Theranostic Agent into a PET Imaging Probe for Cancer

    Directory of Open Access Journals (Sweden)

    Jiyun Shi, Tracy W.B. Liu, Juan Chen, David Green, David Jaffray, Brian C. Wilson, Fan Wang, Gang Zheng

    2011-01-01

    Full Text Available Porphyrin based photosensitizers are useful agents for photodynamic therapy (PDT and fluorescence imaging of cancer. Porphyrins are also excellent metal chelators forming highly stable metallo-complexes making them efficient delivery vehicles for radioisotopes. Here we investigated the possibility of incorporating 64Cu into a porphyrin-peptide-folate (PPF probe developed previously as folate receptor (FR targeted fluorescent/PDT agent, and evaluated the potential of turning the resulting 64Cu-PPF into a positron emission tomography (PET probe for cancer imaging. Noninvasive PET imaging followed by radioassay evaluated the tumor accumulation, pharmacokinetics and biodistribution of 64Cu-PPF. 64Cu-PPF uptake in FR-positive tumors was visible on small-animal PET images with high tumor-to-muscle ratio (8.88 ± 3.60 observed after 24 h. Competitive blocking studies confirmed the FR-mediated tracer uptake by the tumor. The ease of efficient 64Cu-radiolabeling of PPF while retaining its favorable biodistribution, pharmacokinetics and selective tumor uptake, provides a robust strategy to transform tumor-targeted porphyrin-based photosensitizers into PET imaging probes.

  18. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta.

    Science.gov (United States)

    Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V

    2017-09-01

    Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were

  19. Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside

    International Nuclear Information System (INIS)

    Croisille, Pierre; Revel, Didier; Saeed, Maythem

    2006-01-01

    This review paper presents, in the first part, the different classes of contrast media that are already used or are in development for cardiac magnetic resonance imaging. A classification of the different types of contrast media is proposed based on the distribution of the compounds in the body, their type of relaxivity and their potential affinity to particular molecules. In the second part, the different uses of the extracellular type of T1-enhancing contrast agent for myocardial imaging is covered from the detection of stable coronary artery disease to the detection and characterization of chronic infarction. A particular emphasis is placed on the clinical use of gadolinium-chelates, which are the universally used type of MRI contrast agent in the clinical routine. Both approaches, first-pass magnetic resonance imaging (FP-MRI) as well as delayed-enhanced magnetic resonance imaging (DE-MRI), are covered in the different situations of acute and chronic myocardial infarction. (orig.)

  20. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  1. Reduced hypoxic ventilatory response in newborn mice knocked-out for the progesterone receptor.

    Science.gov (United States)

    Potvin, Catherine; Rossignol, Orlane; Uppari, NagaPraveena; Dallongeville, Arnaud; Bairam, Aida; Joseph, Vincent

    2014-11-01

    Recent studies showed that progesterone stimulates the hypoxic ventilatory response and may reduce apnoea frequency in newborn rats, but so far we still do not know by what mechanisms and whether endogenous progesterone might contribute to respiratory control in neonates. We therefore determined the role of the nuclear progesterone receptor (PR; member of the steroid receptor superfamily) by using wild-type (WT) and PR knock-out (PRKO) mice at postnatal days (P) 1, 4 and 10. We measured the hypoxic ventilatory response (14 and 12% O2, 20 min each) and apnoea frequency in both male and female mice by using whole-body plethysmography. In response to hypoxia, WT male mice had a marked hypoxic ventilatory response at P1 and P10, but not at P4. At P1 and P10, PRKO male mice had a lower hypoxic ventilatory response than WT males. Wild-type female mice had a marked hypoxic ventilatory response at P10, but not at P1 and P4. At P1 and P10, PRKO female mice had a lower hypoxic ventilatory response than WT females. In basal conditions, apnoea frequency was similar in WT and PRKO mice at P1, P4 and P10. During hypoxia, apnoea frequency was higher in WT male mice compared with PRKO male mice and WT female mice at P1. We conclude that PR is a key contributor to the hypoxic ventilatory response in newborn mice, but PR deletion does not increase the frequency of apnoea during normoxia or hypoxia. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  2. In vitro effects of piracetam on the radiosensitivity of hypoxic cells (adaptation of MTT assay to hypoxic conditions); Effets in vitro du piracetam sur la radiosensibilite des cellules hypoxiques (adapatation du test au MTT aux conditions d`hypoxie)

    Energy Technology Data Exchange (ETDEWEB)

    Gheuens, E.E.O.; Bruijn, E.A. de; Van der Heyden, S.; Van Oosterom, A.T. [Universitaire Instelling Antwerpen, Antwerp (Belgium); Lagarde, P. [Universitaire Instelling Antwerpen, Antwerp (Belgium)]|[Institut Bergonie, 33 - Bordeaux (France); Pooter, C.M.J. de [Universitaire Instelling Antwerpen, Antwerp (Belgium)]|[Hopital de Middelheim, Anvers (Belgium); Chomy, F. [Institut Bergonie, 33 - Bordeaux (France)

    1995-12-31

    This paper describes the adaptation of the MTT assay to hypoxic conditions in order to test the in vitro effect of piracetam on hypoxic cells and particularly on the radiosensitivity of hypoxic cells since this drug has shown clinical effect on acute and chronic hypoxia. The V79 cell line was selected by reference to preliminary hypoxic experiments using clonogenic assay and euoxic experiments using clonogenic and MTT assays. Cell growth and survival in our hypoxic conditions were assessed using MTT assay with an enclosure and special 48-well plates both made of glass. Growth curves on glass plates after 1-hour exposure to nitrogen versus air were comparable, so there is no bias effect due to gas composition. Survival curves using MTT versus reference clonogenic assay were comparable after radiation exposure in eu- and hypoxic conditions, and confirm the validity of our original technique for creating hypoxia. The Oxygen Enhancement Ratio was of about 3 for 1-hour hypoxic exposure. Piracetam gave no cytotoxic effect up to 10 mM of piracetam. Growth curves after continuous drug exposure and 1-hour euoxic versus hypoxic exposure gave no cytotoxic effect up to 10 mM of piracetam. Survival curves after continuous drug exposure to 10 mM of piracetam gave no significant effect on the radiosensitivity of hypoxic V79 cells using MTT or clonogenic assay. (author). 32 refs., 6 figs.

  3. Differential patterns of injury to the proximal tubule of renal cortical slices following in vitro exposure to mercuric chloride, potassium dichromate, or hypoxic conditions.

    Science.gov (United States)

    Ruegg, C E; Gandolfi, A J; Nagle, R B; Brendel, K

    1987-09-15

    The innate susceptibility of renal cell types to these agents was investigated using precision-cut rabbit renal cortical slices made perpendicular to the cortical-papillary axis. Slices were incubated in DME/F12 medium containing 10 microM, 100 microM, or 1 mM concentrations of either metal for 12 hr or in Krebs-Hepes buffer gassed with nitrogen (100%) for 0.75 to 5 hr of hypoxic exposure. To simulate postischemic reperfusion, some slices were transferred to vessels gassed with oxygen after an initial hypoxic period. Mercuric chloride (100 microM) exposure resulted in damage to the straight regions of proximal tubules by 12 hr leaving convoluted regions unaffected. Hypoxia (2.25 hr) and potassium dichromate (100 microM for 12 hr) both caused injury to the convoluted proximal tubules without affecting straight proximal tubular regions. Mercury concentrations of 10 microM and 1 mM had no effect or injured all cell types within the slice, respectively. Similar results were observed for hypoxic periods less than 1.5 hr or greater than 3 hr of exposure. Potassium dichromate had no measurable affect at 10 microM, but at 1 mM focal lesions were observed after 4 hr of exposure, and by 12 hr all cell types within the slice were affected. Intracellular potassium content normalized to DNA correlated well, but always preceded the pathological lesions observed. These results demonstrate that injury to specific regions of the proximal tubule by these agents relates to an innate susceptibility of the intoxicated cell type independent of physiologic feedback or blood delivery patterns proposed as mechanisms of selective injury from in vivo studies.

  4. Cellular image segmentation using n-agent cooperative game theory

    Science.gov (United States)

    Dimock, Ian B.; Wan, Justin W. L.

    2016-03-01

    Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.

  5. High-field, high-resolution, susceptibility-weighted magnetic resonance imaging: improved image quality by addition of contrast agent and higher field strength in patients with brain tumors

    International Nuclear Information System (INIS)

    Pinker, K.; Noebauer-Huhmann, I.M.; Szomolanyi, P.; Weber, M.; Grabner, G.; Trattnig, S.; Stavrou, I.; Knosp, E.; Hoeftberger, R.; Stadlbauer, A.

    2008-01-01

    To demonstrate intratumoral susceptibility effects in malignant brain tumors and to assess visualization of susceptibility effects before and after administration of the paramagnetic contrast agent MultiHance (gadobenate dimeglumine; Bracco Imaging), an agent known to have high relaxivity, with respect to susceptibility effects, image quality, and reduction of scan time. Included in the study were 19 patients with malignant brain tumors who underwent high-resolution, susceptibility-weighted (SW) MR imaging at 3 T before and after administration of contrast agent. In all patients, Multihance was administered intravenously as a bolus (0.1 mmol/kg body weight). MR images were individually evaluated by two radiologists with previous experience in the evaluation of pre- and postcontrast 3-T SW MR images with respect to susceptibility effects, image quality, and reduction of scan time. In the 19 patients 21 tumors were diagnosed, of which 18 demonstrated intralesional susceptibility effects both in pre- and postcontrast SW images, and 19 demonstrated contrast enhancement in both SW images and T1-weighted spin-echo MR images. Conspicuity of susceptibility effects and image quality were improved in postcontrast images compared with precontrast images and the scan time was also reduced due to decreased TE values from 9 min (precontrast) to 7 min (postcontrast). The intravenous administration of MultiHance, an agent with high relaxivity, allowed a reduction of scan time from 9 min to 7 min while preserving excellent susceptibility effects and image quality in SW images obtained at 3 T. Contrast enhancement and intralesional susceptibility effects can be assessed in one sequence. (orig.)

  6. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis.

    Science.gov (United States)

    Nanduri, Jayasri; Makarenko, Vladislav; Reddy, Vaddi Damodara; Yuan, Guoxiang; Pawar, Anita; Wang, Ning; Khan, Shakil A; Zhang, Xin; Kinsman, Brian; Peng, Ying-Jie; Kumar, Ganesh K; Fox, Aaron P; Godley, Lucy A; Semenza, Gregg L; Prabhakar, Nanduri R

    2012-02-14

    Recurrent apnea with intermittent hypoxia is a major clinical problem in preterm infants. Recent studies, although limited, showed that adults who were born preterm exhibit increased incidence of sleep-disordered breathing and hypertension, suggesting that apnea of prematurity predisposes to autonomic dysfunction in adulthood. Here, we demonstrate that adult rats that were exposed to intermittent hypoxia as neonates exhibit exaggerated responses to hypoxia by the carotid body and adrenal chromaffin cells, which regulate cardio-respiratory function, resulting in irregular breathing with apneas and hypertension. The enhanced hypoxic sensitivity was associated with elevated oxidative stress, decreased expression of genes encoding antioxidant enzymes, and increased expression of pro-oxidant enzymes. Decreased expression of the Sod2 gene, which encodes the antioxidant enzyme superoxide dismutase 2, was associated with DNA hypermethylation of a single CpG dinucleotide close to the transcription start site. Treating neonatal rats with decitabine, an inhibitor of DNA methylation, during intermittent hypoxia exposure prevented oxidative stress, enhanced hypoxic sensitivity, and autonomic dysfunction. These findings implicate a hitherto uncharacterized role for DNA methylation in mediating neonatal programming of hypoxic sensitivity and the ensuing autonomic dysfunction in adulthood.

  7. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging.

    Science.gov (United States)

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-04-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Gold namoprtices enhance anti-tumor effect of radiotherapy to hypoxic tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sun; Lee, Eun Jung; Kim, Jae Won; Keum, Ki Chang; Koom, Woong Sub [Dept. of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chung, Ui Seok; Koh, Won Gun [Dept. of Chemical and Biomolecular Engineering, Yonsei University, Seoul (Korea, Republic of)

    2016-09-15

    Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors.

  9. Gold namoprtices enhance anti-tumor effect of radiotherapy to hypoxic tumor

    International Nuclear Information System (INIS)

    Kim, Mi Sun; Lee, Eun Jung; Kim, Jae Won; Keum, Ki Chang; Koom, Woong Sub; Chung, Ui Seok; Koh, Won Gun

    2016-01-01

    Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors

  10. Reconstitution activity of hypoxic cultured human cord blood CD34-positive cells in NOG mice

    International Nuclear Information System (INIS)

    Shima, Haruko; Takubo, Keiyo; Iwasaki, Hiroko; Yoshihara, Hiroki; Gomei, Yumiko; Hosokawa, Kentaro; Arai, Fumio; Takahashi, Takao; Suda, Toshio

    2009-01-01

    Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2Rγ null (NOG) mice. Hypoxic culture (1% O 2 ) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34 + CD38 - cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.

  11. Experimental study of 99Tcm-tri-peptide as a novel tumor imaging agent

    International Nuclear Information System (INIS)

    Xie Wenhui; Cai Xiaojia; Liu Ciyi; Zeng Jun; Zhang Lihua; Lei Bei; Huang Gang

    2011-01-01

    Objective: To evaluate 99 Tc m -Arg-Glu-Ser ( 99 Tc m -RES) as a potential tumor imaging agent. Methods: RES was synthesized using solid phase peptide synthesis. The optimal labeling conditions of RES were determined under different reagents and reacting temperatures using SnC1 2 as reducing agent.The biodistribution of 99 Tc m -RES was studied in nude mice bearing human lung cancer A549. Results: The radiochemical purity of 99 Tc m -RES was up to 85% and the radiochemical purity was 75% ever after 6 h at room temperature. The tumor uptake of 99 Tc m -RES was obvious and the radioactivity ratios of tumor/blood, tumor/heart, tumor/liver, tumor/lung, tumor/spleen and tumor/muscle were 5.31, 1.88, 1.57, 3.58, 4.16 and 5.92, respectively at 6 h after 99 Tc m -RES injection. Gamma camera imaging showed that tumor uptake of 99 Tc m -RES was negative in rabbits with inflammatory mass but positive in those bearing tumor. The radioactivity ratio of tumor/inflammation was 3.12 at 6 h after injection. Conclusion: 99 Tc m -RES might possibly become a potential tumor imaging agent. (authors)

  12. Apoptosis, energy metabolism, and fraction of radiobiologically hypoxic cells: a study of human melanoma multicellular spheroids.

    Science.gov (United States)

    Rofstad, E K; Eide, K; Skøyum, R; Hystad, M E; Lyng, H

    1996-09-01

    The magnitude of the fraction of radiobiologically hypoxic cells in tumours is generally believed to reflect the efficiency of the vascular network. Theoretical studies have suggested that the hypoxic fraction might also be influenced by biological properties of the tumour cells. Quantitative experimental results of cell energy metabolism, hypoxia- induced apoptosis, and radiobiological hypoxia are reported here. Human melanoma multicellular spheroids (BEX-c and WIX-c) were used as tumour models to avoid confounding effects of the vascular network. Radiobiological studies showed that the fractions of hypoxic cells in 1000-microM spheroids were 32 +/- 12% (BEX-c) and 2.5 +/- 1.1% (WIX-c). The spheroid hypoxic volume fractions (28 +/- 6% (BEX-c) and 1.4 +/- 7% (WIX-c)), calculated from the rate of oxygen consumption per cell, the cell packing density, and the thickness of the viable rim, were similar to the fractions of radiobiologically hypoxic cells. Large differences between tumours in fraction of hypoxic cells are therefore not necessarily a result of differences in the efficiency of the vascular network. Studies of monolayer cell cultures, performed to identify the biological properties of the BEX-c and WIX-c cells leading to this large difference in fraction of hypoxic cells, gave the following results: (1) WIX-c showed lower cell surviving fractions after exposure to hypoxia than BEX-c, (2) WIX-c showed higher glucose uptake and lactate release rates than BEX-c both under aerobic and hypoxic conditions, and (3) hypoxia induced apoptosis in WIX-c but not in BEX-c. These observations suggested that the difference between BEX-c and WIX-c spheroids in fraction of hypoxic cells resulted partly from differences in cell energy metabolism and partly from a difference in capacity to retain viability under hypoxic stress. The induction of apoptosis by hypoxia was identified as a phenomenon which has an important influence on the magnitude of the fraction of

  13. Hypoxia-activated prodrug TH-302 decreased survival rate of canine lymphoma cells under hypoxic condition.

    Science.gov (United States)

    Yamazaki, Hiroki; Lai, Yu-Chang; Tateno, Morihiro; Setoguchi, Asuka; Goto-Koshino, Yuko; Endo, Yasuyuki; Nakaichi, Munekazu; Tsujimoto, Hajime; Miura, Naoki

    2017-01-01

    We tested the hypotheses that hypoxic stimulation enhances growth potentials of canine lymphoma cells by activating hypoxia-inducible factor 1α (HIF-1α), and that the hypoxia-activated prodrug (TH-302) inhibits growth potentials in the cells. We investigated how hypoxic culture affects the growth rate, chemoresistance, and invasiveness of canine lymphoma cells and doxorubicin (DOX)-resistant lymphoma cells, and influences of TH-302 on survival rate of the cells under hypoxic conditions. Our results demonstrated that hypoxic culture upregulated the expression of HIF-1α and its target genes, including ATP-binding cassette transporter B1 (ABCB1), ATP-binding cassette transporter G2 (ABCG2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and survivin, and enhanced the growth rate, DOX resistance, and invasiveness of the cells. Additionally, TH-302 decreased the survival rate of the cells under hypoxic condition. Our studies suggest that hypoxic stimulation may advance the tumorigenicity of canine lymphoma cells, favoring malignant transformation. Therefore, the data presented may contribute to the development of TH-302-based hypoxia-targeting therapies for canine lymphoma.

  14. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang [The First Affiliated Hospital of Zhengzhou University, Department of Radiology, Zhengzhou, Henan Province (China)

    2017-01-15

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80) each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. (orig.)

  15. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience

    International Nuclear Information System (INIS)

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang

    2017-01-01

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80) each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. (orig.)

  16. The hTERT promoter enhances the antitumor activity of an oncolytic adenovirus under a hypoxic microenvironment.

    Directory of Open Access Journals (Sweden)

    Yuuri Hashimoto

    Full Text Available Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin, in which the human telomerase reverse transcriptase (hTERT promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5. In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen or a hypoxic (1% oxygen condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1α and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells.

  17. Development of I-123 labeled angiostatin as a novel cancer imaging agent

    International Nuclear Information System (INIS)

    Lee, Kyung Han; Lee, Sang Yoon; Choe, Yearn Seong; Paik, Jin Young; Kim, Sun A; Han, Yu Mi; Kim, Byung Tae

    2000-01-01

    Since angiostatin is a promising anticancer agent that target tumor endothelial cells, it may have advantages over many current tumor imaging agents by overcoming problems such as poor delivery or multi-drug resistance. We therefore synthesized radiolabeled agniostatin and tested it in vivo. 123 -angiostatin was synthesized using the Bolton Hunter method. 123 I labeled plasminogen lysin-binding-site (LBS) was also synthesized. Blood clearance of he radiotracer was measured in SD rats, while tissue distribution was assessed in ICR mice at 1,4, and 18 hr. Pinhole scintigraphy was performed in SD rats and in nude mice bearing RR 1022 tumors at various time points. Radiochemical yield of 123 I-angiostatin approximated 20%. In vivo distribution demonstrated stability of the label for at least 20 hr. 123 I-angiostatin was cleared from the circulation in a biexponential manner with rapid early clearance followed by a slower rate of elimination Tissue distribution in mice showed the highest uptake in the kidneys which was the major route of excretion. This was followed by the lung, liver, and myocardium whose uptake of 1.5∼2% ID/gm at 1 hrs gradually decreased over time (all p 123 I-angiostatin and 123 I-LBS images in SD rates showed a similar distribution. Blood pool activity gradually cleared while tumor uptake increased over time, resulting in a high tumor to non tumor ratio at 20 hr. 123 I-angiostatin has promising potential as a new tumor imaging agent. Further study is warranted to assess its mechanism of uptake and precise role in cancer imaging

  18. Comparison of the oncogenic potential of several chemotherapeutic agents

    International Nuclear Information System (INIS)

    Miller, R.C.; Hall, E.J.; Osmak, R.S.

    1981-01-01

    Several chemotherapeutic drugs that have been routinely used in cancer treatment were tested for their carcinogenic potential. Two antitumor antibiotics (adriamycin and vincristine), an alkalating agent (melphalan), 5-azacytidine and the bifunctional agent cis-platinum that mimics alkylating agents and/or binds Oxygen-6 or Nitrogen-7 atoms of quanine were tested. Cell killing and cancer induction was assessed using in vitro transformation system. C3H/10T 1/2 cells, while normally exhibiting contact inhibition, can undergo transformation from normal contact inhibited cells to tumorgenic cells when exposed to chemical carcinogens. These cells have been used in the past by this laboratory to study oncogenic transformation of cells exposed to ionizing radiation and electron affinic compounds that sensitize hypoxic cells to x-rays. The endpoints of cell killing and oncogenic transformation presented here give an estimate of the carcinogenic potential of these agents

  19. [Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis].

    Science.gov (United States)

    Zhao, De-An; Bi, Ling-Yun; Huang, Qian; Zhang, Fang-Min; Han, Zi-Ming

    Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  20. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis.

    Science.gov (United States)

    Zhao, De-An; Bi, Ling-Yun; Huang, Qian; Zhang, Fang-Min; Han, Zi-Ming

    Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Effects of Hypoxic Training versus Normoxic Training on Exercise Performance in Competitive Swimmers

    Directory of Open Access Journals (Sweden)

    Hun-Young Park, Kiwon Lim

    2017-12-01

    Full Text Available In swimming competition, optimal swimming performance is characterized by a variety of interchangeable components, such as aerobic exercise capacity, anaerobic power and muscular function. Various hypoxic training methods would potentiate greater performance improvements compared to similar training at sea-level. Therefore, this study aimed to evaluate the effects of six-weeks of hypoxic training on exercise performance in moderately trained competitive swimmers. Twenty swimmers were equally divided into a normoxic training group (n = 10 for residing and training at sea-level (PIO2 = 149.7 mmHg, and a hypoxic training group (n = 10 for residing at sea-level but training at 526 mmHg hypobaric hypoxic condition (PIO2 = 100.6 mmHg. Aerobic exercise capacity, anaerobic power, muscular function, hormonal response and 50 and 400 m swimming performance were measured before and after training, which was composed of warm-up, continuous training, interval training, elastic resistance training, and cool-down. The training frequency was 120 min, 3 days per week for 6 weeks. Muscular function and hormonal response parameters showed significant interaction effects (all p 0.288 in muscular strength and endurance, growth hormone; GH, insulin like growth factor-1; IGF-1, and vascular endothelial growth factor; VEGF. The other variables demonstrated no significant interaction effects. However, a hypoxic training group also showed significantly increased maximal oxygen consumption; VO2max (p = 0.001, peak anaerobic power (p = 0.001, and swimming performances for 50 m (p = 0.000 and 400 m (p = 0.000. These results indicated that the hypoxic training method proposed in our study is effective for improvement of muscular strength and endurance in moderately trained competitive swimmers compared to control group. However, our hypoxic training method resulted in unclear changes in aerobic exercise capacity (VO2max, anaerobic power, and swimming performance of 50 m and

  2. Nicotinic α4β2 receptor imaging agents

    International Nuclear Information System (INIS)

    Pichika, Rama; Easwaramoorthy, Balasubramaniam; Collins, Daphne; Christian, Bradley T.; Shi, Bingzhi; Narayanan, Tanjore K.; Potkin, Steven G.; Mukherjee, Jogeshwar

    2006-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using 3 H-cytisine exhibited a K i =0.50 nM for the α4β2 sites. The radiosynthesis of 2- 18 F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ( 18 F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/μmol. In vitro autoradiography in rat brain slices indicated selective binding of 18 F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with α4β2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for 18 F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 μM nicotine in these brain regions. Positron emission tomography imaging study of 18 F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of 18 F-nifene indicates promise as a PET imaging agent and thus needs further evaluation

  3. Intermittent hypoxic episodes in preterm infants: do they matter?

    Science.gov (United States)

    Martin, Richard J; Wang, Katherine; Köroğlu, Ozge; Di Fiore, Juliann; Kc, Prabha

    2011-01-01

    Intermittent hypoxic episodes are typically a consequence of immature respiratory control and remain a troublesome challenge for the neonatologist. Furthermore, their frequency and magnitude are underestimated by clinically employed pulse oximeter settings. In extremely low birth weight infants the incidence of intermittent hypoxia progressively increases over the first 4 weeks of postnatal life, with a subsequent plateau followed by a slow decline beginning at weeks 6-8. Such episodic hypoxia/reoxygenation has the potential to sustain a proinflammatory cascade with resultant multisystem morbidity. This morbidity includes retinopathy of prematurity and impaired growth, as well as possible longer-term cardiorespiratory instability and poor neurodevelopmental outcome. Therapeutic approaches for intermittent hypoxic episodes comprise determination of optimal baseline saturation and careful titration of supplemental inspired oxygen, as well as xanthine therapy to prevent apnea of prematurity. In conclusion, characterization of the pathophysiologic basis for such intermittent hypoxic episodes and their consequences during early life is necessary to provide an evidence-based approach to their management. Copyright © 2011 S. Karger AG, Basel.

  4. Anti-hypoxic activity of the ethanol extract from Portulaca oleracea in mice.

    Science.gov (United States)

    Chen, Cheng-Jie; Wang, Wan-Yin; Wang, Xiao-Li; Dong, Li-Wei; Yue, Yi-Tian; Xin, Hai-Liang; Ling, Chang-Quan; Li, Min

    2009-07-15

    To investigate the effects of the ethanol extract from Portulaca oleracea (EEPO) on hypoxia models mice and to find the possible mechanism of its anti-hypoxic actions so as to elucidate the anti-hypoxia activity and provide scientific basis for the clinical use of Portulaca oleracea. EEPO was evaluated on anti-hypoxic activity in several hypoxia mice models, including closed normobaric hypoxia and sodium nitrite or potassium cyanide toxicosis. To verify the possible mechanism(s), we detected the activities of pyruvate kinase (PK), phosphofructokinase (PFK), lactate dehydrogenase (LDH) and the level of adenosine triphosphate (ATP) in mice cortices. Given orally, the EEPO at doses of 100, 200, 400 mg/kg could dose-dependently enhance the survival time of mice in both of the normobaric and chemical hypoxia models. The activity of the glycolysis enzymes and the level of ATP were higher than those of the control. In the pentobarbital sodium-induced sleeping time test and the open-field test, EEPO neither significantly enhanced the pentobarbital sodium-induced sleeping time nor impaired the motor performance, indicating that the observed anti-hypoxic activity was unlikely due to sedation or motor abnormality. These results demonstrated that the EEPO possessed notable anti-hypoxic activity, which might be related to promoting the activity of the key enzymes in glycolysis and improving the level of ATP in hypoxic mice.

  5. Developmental hyperoxia alters CNS mechanisms underlying hypoxic ventilatory depression in neonatal rats.

    Science.gov (United States)

    Hill, Corey B; Grandgeorge, Samuel H; Bavis, Ryan W

    2013-12-01

    Newborn mammals exhibit a biphasic hypoxic ventilatory response (HVR), but the relative contributions of carotid body-initiated CNS mechanisms versus central hypoxia on ventilatory depression during the late phase of the HVR are not well understood. Neonatal rats (P4-5 or P13-15) were treated with a nonselective P2 purinergic receptor antagonist (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, or PPADS; 125mgkg(-1), i.p.) to pharmacologically denervate the peripheral chemoreceptors. At P4-5, rats reared in normoxia showed a progressive decline in ventilation during a 10-min exposure to 12% O2 (21-28% decrease from baseline). No hypoxic ventilatory depression was observed in the older group of neonatal rats (i.e., P13-15), suggesting that the contribution of central hypoxia to hypoxic ventilatory depression diminishes with age. In contrast, rats reared in moderate hyperoxia (60% O2) from birth exhibited no hypoxic ventilatory depression at either age studied. Systemic PPADS had no effect on the ventilatory response to 7% CO2, suggesting that the drug did not cross the blood-brain barrier. These findings indicate that (1) CNS hypoxia depresses ventilation in young, neonatal rats independent of carotid body activation and (2) hyperoxia alters the development of CNS pathways that modulate the late phase of the hypoxic ventilatory response. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Development of more efficacious Tc-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceutical mixtures

    International Nuclear Information System (INIS)

    Heineman, W.R.

    1992-01-01

    The long-range objective of this research program is the development of more efficacious technetium-99m radiopharmaceuticals for use as imaging agents in diagnostic nuclear medicine. We seek to isolate and develop distinct site imaging agents, each of which has properties optimized to provide diagnostic information concerning a given pathological condition. The specific objectives during the period (9/1/89 to 8/31/92) include: (1) Development of strategies for improving yields of specific Tc-diphosphonate complexes with optimum imaging properties; (2) Development of electrodes for rapid in situ electrochemical generation of skeletal imaging agents; (3) Development of electrochemical sensors for T c and Re imaging agents; (4) Characterization of stable T c - and Re-diphosphonate complexes obtainable in high yield by structural studies with techniques such as NMR, EXAFS, and Raman spectroscopy; (5) Development of improved separation techniques for the characterization of diphosphonate skeletal imaging agents; (6) Evaluation of the effect of the biological milieu on T c -diphosphonate complexes; and (7) Electrochemical studies of technetium and rhenium complexes synthesized by Professor Deutsch's research group for heart and brain imaging

  7. Detection of hypoxic fractions in murine tumors by comet assay: Comparison with other techniques

    International Nuclear Information System (INIS)

    Hu, Q.; Kavanagh, M.C.; Newcombe, D.

    1995-01-01

    The alkaline comet assay was used to detect the hypoxic fractions of murine tumors. A total of four tumor types were tested using needle aspiration biopsies taken immediately after a radiation dose of 15 Gy. Initial studies confirmed that the normalized tail moment, a parameter reflecting single-strand DNA breaks induced by the radiation, was linearly related to radiation dose. Further, it was shown that for a mixed population (1:1) of cells irradiated under air-breathing or hypoxic conditions, the histogram of normal tail moment values obtained from analyzing 400 cells in the population had a double peak which, when fitted with two Gaussian distributions, gave a good estimate of the proportion of the two subpopulations. For the four tumor types, the means of the calculated hypoxic fractions from four or five individual tumors were 0.15 ± 0.04 for B16F1, 0.08 ± 0.04 for KHT-LP1, 0.17 ± 0.04 for RIF-1 and 0.04 ± 0.01 for SCCVII. Analysis of variance showed that the hypoxic fraction in KHT-LP1 tumors is significantly lower than those of the other three tumors (P = 0.026) but that there is no significant difference in hypoxic fraction between B16F1, RIF-1 and SCCVII tumors (P = 0.574). Results from multiple samples taken from each of five RIF-1 tumors showed that the intertumor heterogeneity of hypoxic fractions was greater than that within the same tumor. The mean hypoxic fraction obtained using the comet assay for the four tumor types was compared with the hypoxic fraction determined by the clonogenic assay, or median pO 2 values, or [ 3 H]misonidazole binding in the same tumor types. The values of hypoxic fraction obtained with the comet assay were two to four times lower than those measured by the paired survival method. Preliminary results obtained with a dose of 5 Gy were consistent with those obtained using 15 Gy. These results suggest the further development of the comet assay for clinical studies. 21 refs., 7 figs., 5 tabs

  8. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents

    Science.gov (United States)

    Higgins, Laura M.; Zevon, Margot; Ganapathy, Vidya; Sheng, Yang; Tan, Mei Chee; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-01-01

    Abstract. Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4:Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic. PMID:26603495

  9. Acute Liver Impairment in a Young, Healthy Athlete: Hypoxic Hepatitis and Rhabdomyolysis following Heat Stroke

    Directory of Open Access Journals (Sweden)

    Neville Azzopardi

    2012-08-01

    Full Text Available Any process that substantially diminishes arterial blood flow or arterial oxygen content to the liver can result in hypoxic (ischaemic hepatitis. 90% of hypoxic hepatitis occurs in unstable patients in intensive care units with haemodynamic failure secondary to heart failure, respiratory failure and toxic shock. The rate of in-hospital mortality in hypoxic hepatitis is very high with studies recording mortalities of 61.5%. It tends to be very uncommon in healthy, young patients with no underlying medical problems. We report here the case of a young healthy athlete who developed heat stroke associated with rhabdomyolysis and hypoxic hepatitis while he was running the final stages of a marathon. The patient required intensive care admission and inotropic support for a few hours after he was admitted with heat stroke. He underwent a rapid recovery after he was resuscitated with fluids. N-acetyl cysteine was also given during the acute stage of the hepatitis. This case highlights an uncommon case of hypoxic hepatitis in a young, healthy patient secondary to hypotension and heat stroke. Inotropic support might have precipitated the hypoxic hepatitis in this young patient.

  10. RNA aptamer probes as optical imaging agents for the detection of amyloid plaques.

    Directory of Open Access Journals (Sweden)

    Christian T Farrar

    Full Text Available Optical imaging using multiphoton microscopy and whole body near infrared imaging has become a routine part of biomedical research. However, optical imaging methods rely on the availability of either small molecule reporters or genetically encoded fluorescent proteins, which are challenging and time consuming to develop. While directly labeled antibodies can also be used as imaging agents, antibodies are species specific, can typically not be tagged with multiple fluorescent reporters without interfering with target binding, and are bioactive, almost always eliciting a biological response and thereby influencing the process that is being studied. We examined the possibility of developing highly specific and sensitive optical imaging agents using aptamer technology. We developed a fluorescently tagged anti-Aβ RNA aptamer, β55, which binds amyloid plaques in both ex vivo human Alzheimer's disease brain tissue and in vivo APP/PS1 transgenic mice. Diffuse β55 positive halos, attributed to oligomeric Aβ, were observed surrounding the methoxy-XO4 positive plaque cores. Dot blots of synthetic Aβ aggregates provide further evidence that β55 binds both fibrillar and non-fibrillar Aβ. The high binding affinity, the ease of probe development, and the ability to incorporate multiple and multimodal imaging reporters suggest that RNA aptamers may have complementary and perhaps advantageous properties compared to conventional optical imaging probes and reporters.

  11. WE-H-207A-06: Hypoxia Quantification in Static PET Images: The Signal in the Noise

    International Nuclear Information System (INIS)

    Keller, H; Yeung, I; Milosevic, M; Jaffray, D; Kueng, R; Shek, T; Driscoll, B

    2016-01-01

    Purpose: Quantification of hypoxia from PET images is of considerable clinical interest. In the absence of dynamic PET imaging the hypoxic fraction (HF) of a tumor has to be estimated from voxel values of activity concentration of a radioactive hypoxia tracer. This work is part of an effort to standardize quantification of tumor hypoxic fraction from PET images. Methods: A simple hypoxia imaging model in the tumor was developed. The distribution of the tracer activity was described as the sum of two different probability distributions, one for the normoxic (and necrotic), the other for the hypoxic voxels. The widths of the distributions arise due to variability of the transport, tumor tissue inhomogeneity, tracer binding kinetics, and due to PET image noise. Quantification of HF was performed for various levels of variability using two different methodologies: a) classification thresholds between normoxic and hypoxic voxels based on a non-hypoxic surrogate (muscle), and b) estimation of the (posterior) probability distributions based on maximizing likelihood optimization that does not require a surrogate. Data from the hypoxia imaging model and from 27 cervical cancer patients enrolled in a FAZA PET study were analyzed. Results: In the model, where the true value of HF is known, thresholds usually underestimate the value for large variability. For the patients, a significant uncertainty of the HF values (an average intra-patient range of 17%) was caused by spatial non-uniformity of image noise which is a hallmark of all PET images. Maximum likelihood estimation (MLE) is able to directly optimize for the weights of both distributions, however, may suffer from poor optimization convergence. For some patients, MLE-based HF values showed significant differences to threshold-based HF-values. Conclusion: HF-values depend critically on the magnitude of the different sources of tracer uptake variability. A measure of confidence should also be reported.

  12. WE-H-207A-06: Hypoxia Quantification in Static PET Images: The Signal in the Noise

    Energy Technology Data Exchange (ETDEWEB)

    Keller, H; Yeung, I; Milosevic, M; Jaffray, D [University of Toronto, Toronto (Canada); Princess Margaret Cancer Centre, Toronto (Canada); Kueng, R [Princess Margaret Cancer Centre, Toronto (Canada); Inselspital Bern, Bern, Switzerland. (Switzerland); Shek, T; Driscoll, B [Princess Margaret Cancer Centre, Toronto (Canada)

    2016-06-15

    Purpose: Quantification of hypoxia from PET images is of considerable clinical interest. In the absence of dynamic PET imaging the hypoxic fraction (HF) of a tumor has to be estimated from voxel values of activity concentration of a radioactive hypoxia tracer. This work is part of an effort to standardize quantification of tumor hypoxic fraction from PET images. Methods: A simple hypoxia imaging model in the tumor was developed. The distribution of the tracer activity was described as the sum of two different probability distributions, one for the normoxic (and necrotic), the other for the hypoxic voxels. The widths of the distributions arise due to variability of the transport, tumor tissue inhomogeneity, tracer binding kinetics, and due to PET image noise. Quantification of HF was performed for various levels of variability using two different methodologies: a) classification thresholds between normoxic and hypoxic voxels based on a non-hypoxic surrogate (muscle), and b) estimation of the (posterior) probability distributions based on maximizing likelihood optimization that does not require a surrogate. Data from the hypoxia imaging model and from 27 cervical cancer patients enrolled in a FAZA PET study were analyzed. Results: In the model, where the true value of HF is known, thresholds usually underestimate the value for large variability. For the patients, a significant uncertainty of the HF values (an average intra-patient range of 17%) was caused by spatial non-uniformity of image noise which is a hallmark of all PET images. Maximum likelihood estimation (MLE) is able to directly optimize for the weights of both distributions, however, may suffer from poor optimization convergence. For some patients, MLE-based HF values showed significant differences to threshold-based HF-values. Conclusion: HF-values depend critically on the magnitude of the different sources of tracer uptake variability. A measure of confidence should also be reported.

  13. Transcriptome analysis of severe hypoxic stress during development in zebrafish

    Directory of Open Access Journals (Sweden)

    I.G. Woods

    2015-12-01

    Full Text Available Hypoxia causes critical cellular injury both in early human development and in adulthood, leading to cerebral palsy, stroke, and myocardial infarction. Interestingly, a remarkable phenomenon known as hypoxic preconditioning arises when a brief hypoxia exposure protects target organs against subsequent, severe hypoxia. Although hypoxic preconditioning has been demonstrated in several model organisms and tissues including the heart and brain, its molecular mechanisms remain poorly understood. Accordingly, we used embryonic and larval zebrafish to develop a novel vertebrate model for hypoxic preconditioning, and used this model to identify conserved hypoxia-regulated transcripts for further functional study as published in Manchenkov et al. (2015 in G3: Genes|Genomes|Genetics. In this Brief article, we provide extensive annotation for the most strongly hypoxia-regulated genes in zebrafish, including their human orthologs, and describe in detail the methods used to identify, filter, and annotate hypoxia-regulated transcripts for downstream functional and bioinformatic assays using the source data provided in Gene Expression Omnibus Accession GSE68473.

  14. Superfractionation as a potential hypoxic cell radiosensitizer: prediction of an optimum dose per fraction

    International Nuclear Information System (INIS)

    Dasu, Alexandru; Denekamp, Juliana

    1999-01-01

    Purpose: A dose 'window of opportunity' has been identified in an earlier modeling study if the inducible repair variant of the LQ model is adopted instead of the pure LQ model, and if all survival curve parameters are equally modified by the presence or absence of oxygen. In this paper we have extended the calculations to consider survival curve parameters from 15 sets of data obtained for cells tested at low doses using clonogenic assays. Methods and Materials: A simple computer model has been used to simulate the response of each cell line to various doses per fraction in multifraction schedules, with oxic and hypoxic cells receiving the same fractional dose. We have then used pairs of simulated survival curves to estimate the effective hypoxic protection (OER') as a function of the dose per fraction. Results: The resistance of hypoxic cells is reduced by using smaller doses per fraction than 2 Gy in all these fractionated clinical simulations, whether using a simple LQ model, or the more complex LQ/IR model. If there is no inducible repair, the optimum dose is infinitely low. If there is inducible repair, there is an optimum dose per fraction at which hypoxic protection is minimized. This is usually around 0.5 Gy. It depends on the dose needed to induce repair being higher in hypoxia than in oxygen. The OER' may even go below unity, i.e. hypoxic cells may be more sensitive than oxic cells. Conclusions: If oxic and hypoxic cells are repeatedly exposed to doses of the same magnitude, as occurs in clinical radiotherapy, the observed hypoxic protection varies with the fractional dose. The OER' is predicted to diminish at lower doses in all cell lines. The loss of hypoxic resistance with superfractionation is predicted to be proportional to the capacity of the cells to induce repair, i.e. their intrinsic radioresistance at a dose of 2 Gy

  15. Development of a PET Prostate-Specific Membrane Antigen Imaging Agent: Preclinical Translation for Future Clinical Application

    Science.gov (United States)

    2017-10-01

    are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by...phase 0) application to the FDA by the end of the funding period. The small molecule imaging agents under study home to prostate specific membrane...funding period. The small molecule imaging agents under study home to prostate specific membrane antigen (PSMA) that is prevalent on a majority of

  16. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain.

    Directory of Open Access Journals (Sweden)

    Yiyu Deng

    Full Text Available Hypoxic exposure in the perinatal period causes periventricular white matter damage (PWMD, a condition associated with myelination abnormalities. Under hypoxic conditions, glial cells were activated and released a large number of inflammatory mediators in the PWM in neonatal brain, which may result in oligodendrocyte (OL loss and axonal injury. This study aims to determine if astrocytes are activated and generate proinflammatory cytokines that may be coupled with the oligodendroglial loss and hypomyelination observed in hypoxic PWMD. Twenty-four 1-day-old Wistar rats were exposed to hypoxia for 2 h. The rats were then allowed to recover under normoxic conditions for 7 or 28 days before being killed. Another group of 24 rats kept outside the chamber was used as age-matched controls. Upregulated expression of TNF-α and IL-1β was observed in astrocytes in the PWM of P7 hypoxic rats by double immunofluorescence, western blotting and real time RT-PCR. This was linked to apoptosis and enhanced expression of TNF-R1 and IL-1R1 in APC(+ OLs. PLP expression was decreased significantly in the PWM of P28d hypoxic rats. The proportion of myelinated axons was markedly reduced by electron microscopy (EM and the average g-ratios were higher in P28d hypoxic rats. Upregulated expression of TNF-α and IL-1β in primary cultured astrocytes as well as their corresponding receptors in primary culture APC(+ oligodendrocytes were detected under hypoxic conditions. Our results suggest that following a hypoxic insult, astrocytes in the PWM of neonatal rats produce inflammatory cytokines such as TNF-α and IL-1β, which induce apoptosis of OLs via their corresponding receptors associated with them. This results in hypomyelination in the PWM of hypoxic rats.

  17. More than meets the eye: infant presenting with hypoxic ischaemic encephalopathy.

    Science.gov (United States)

    Sen, Kuntal; Agarwal, Rajkumar

    2018-04-05

    We report a newborn infant who presented with poor Apgar scores and umbilical artery acidosis leading to the diagnosis of hypoxic ischaemic encephalopathy. During the course of the infant's hospitalisation, subsequent workup revealed an underlying genetic cause that masqueraded as hypoxic ischaemic encephalopathy. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Optical-based molecular imaging: contrast agents and potential medical applications

    International Nuclear Information System (INIS)

    Bremer, Christoph; Ntziachristos, Vasilis; Weissleder, Ralph

    2003-01-01

    Laser- and sensitive charge-coupled device technology together with advanced mathematical modelling of photon propagation in tissue has prompted the development of novel optical imaging technologies. Fast surface-weighted imaging modalities, such as fluorescence reflectance imaging (FRI) and 3D quantitative fluorescence-mediated tomography have now become available [1, 2]. These technical advances are paralleled by a rapid development of a whole range of new optical contrasting strategies, which are designed to generate molecular contrast within a living organism. The combination of both, technical advances of light detection and the refinement of optical contrast media, finally yields a new spectrum of tools for in vivo molecular diagnostics. Whereas the technical aspects of optical imaging are covered in more detail in a previous review article in ''European Radiology'' [3], this article focuses on new developments in optical contrasting strategies and design of optical contrast agents for in vivo diagnostics. (orig.)

  19. Hypoxic cytotoxicity of chlorpromazine and the modification of radiation response in E. coli B/r

    International Nuclear Information System (INIS)

    Shenoy, M.A.; Singh, B.B.

    1978-01-01

    Chlorpromazine (0.1 mM) was cytotoxic to E. coli B/r cells under hypoxic but not euoxic conditions. Under nitrogen bubbling, there was no further enhancement in cellular lethality beyond 45 min contact time. The presence of the free drug seemed necessary for the cytocidal action to be demonstrated. Hypoxic cytotoxicity increased steadily with temperature between 30 and 37 0 C. Treatment of cells with N-ethyl maleimide (0.5 mM) completely abolished the subsequent hypoxic cytotoxicity of chlorpromazine (0.1 mM). Hypoxic gamma irradiation of cells pretreated for 45 min with chlorpromazine under nitrogen bubbling gave a DMF for survival of almost twice that produced by oxygen. Irradiation under aerobic conditions of cells subjected to the same pretreatment produced only the normal oxygen effect. The results indicate that the differential cytotoxicity of chlorpromazine is due to its effect on the changes induced in the membrane-associated biochemical state of the cells under euoxic and hypoxic conditions. (U.K.)

  20. Exploratory Use of Decision Tree Analysis in Classification of Outcome in Hypoxic-Ischemic Brain Injury.

    Science.gov (United States)

    Phan, Thanh G; Chen, Jian; Singhal, Shaloo; Ma, Henry; Clissold, Benjamin B; Ly, John; Beare, Richard

    2018-01-01

    Prognostication following hypoxic ischemic encephalopathy (brain injury) is important for clinical management. The aim of this exploratory study is to use a decision tree model to find clinical and MRI associates of severe disability and death in this condition. We evaluate clinical model and then the added value of MRI data. The inclusion criteria were as follows: age ≥17 years, cardio-respiratory arrest, and coma on admission (2003-2011). Decision tree analysis was used to find clinical [Glasgow Coma Score (GCS), features about cardiac arrest, therapeutic hypothermia, age, and sex] and MRI (infarct volume) associates of severe disability and death. We used the area under the ROC (auROC) to determine accuracy of model. There were 41 (63.7% males) patients having MRI imaging with the average age 51.5 ± 18.9 years old. The decision trees showed that infarct volume and age were important factors for discrimination between mild to moderate disability and severe disability and death at day 0 and day 2. The auROC for this model was 0.94 (95% CI 0.82-1.00). At day 7, GCS value was the only predictor; the auROC was 0.96 (95% CI 0.86-1.00). Our findings provide proof of concept for further exploration of the role of MR imaging and decision tree analysis in the early prognostication of hypoxic ischemic brain injury.

  1. [Hypoxia and memory. Specific features of nootropic agents effects and their use].

    Science.gov (United States)

    Voronina, T A

    2000-01-01

    Hypoxia and hypoxic adaptation are powerful factors of controlling memory and behavior processes. Acute hypoxia exerts a differential impact on different deficits of mnestic and cognitive functions. Instrumental reflexes of active and passive avoidance, negative learning, behavior with a change in the stereotype of learning are more greatly damaged. Memory with spatial and visual differentiation and their rearrangement change to a lesser extent and conditional reflexes are not deranged. In this contract, altitude hypoxic adaptation enhances information fixation and increases the degree and duration of retention of temporary relations. Nootropic agents with an antihypoxic action exert a marked effect on hypoxia-induced cognitive and memory disorders and the magnitude of this effect depends on the ration of proper nootropic to antihypoxic components in the spectrum of the drugs' pharmacological activity. The agents that combine a prevailing antiamnestic effect and a marked and moderate antihypoxic action (mexidole, nooglutil, pyracetam, beglymin, etc.) are most effective in eliminating different hypoxia-induced cognitive and memory disorders, nootropic drugs that have a pronounced antiamnestic activity (centrophenoxine, etc.) and no antihypoxic component also restore the main types of mnestic disorders after hypoxia, but to a lesser extent.

  2. Novel Cs-Based Upconversion Nanoparticles as Dual-Modal CT and UCL Imaging Agents for Chemo-Photothermal Synergistic Therapy.

    Science.gov (United States)

    Liu, Yuxin; Li, Luoyuan; Guo, Quanwei; Wang, Lu; Liu, Dongdong; Wei, Ziwei; Zhou, Jing

    2016-01-01

    Lanthanide-based contrast agents have attracted increasing attention for their unique properties and potential applications in cancer theranostics. To date, many of these agents have been studied extensively in cells and small animal models. However, performance of these theranostic nanoparticles requires further improvement. In this study, a novel CsLu2F7:Yb,Er,Tm-based visual therapeutic platform was developed for imaging-guided synergistic cancer therapy. Due to the presence of the heavy alkali metal Cesium (Cs) in host lattice, the nanoplatform can provide a higher resolution X-ray CT imaging than many other reported lanthanide-based CT contrast agents. Furthermore, by using the targeted RGD motif, chemotherapy drug alpha-tocopheryl succinate (α-TOS), and photothermal coupling agent ICG, this nanoplatform simultaneously provides multifunctional imaging and targeted synergistic therapy. To demonstrate the theranostic performance of this novel nanoplatform in vivo, visual diagnosis in the small animal model was realized by UCL/CT imaging which was further integrated with targeted chemo-photothermal synergistic therapy. These results provided evidence for the successful construction of a novel lanthanide-based nanoplatform coupled with multimodal imaging diagnosis and potential application in synergistic cancer theranostics.

  3. Synthesis Of Gd-dtpa-folat For Magnetic Resonance Imaging Contrast Agent And Characterization By Using 153gd-dtpa-folate Radioactive

    OpenAIRE

    G., Adang H; S., Yono; Maskur

    2012-01-01

    Contrast agent was used to clarify the image of the organ that is difficult to distinguish by MRI (Magnetic Resonance Imaging) techniques, particularly in soft tissues of the central nervous system, liver, digestive system, lymphatic system, breast, cardiovascular and pulmonary systems. One of the commonly used contrast agents in hospitals is Gadolinium-DieThylenetriamine Pentaacetic Acid (Gd-DTPA). Gd-DTPA is non specific contrast agent, therefore it has led to develop a contrast agent that ...

  4. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis

    Science.gov (United States)

    Pamenter, Matthew E.; Powell, Frank L.

    2016-01-01

    Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. PMID:27347896

  5. Oral gadopentetate dimeglumine administration as a negative gastrointestinal contrast agent to improve image quality of MR cholangiopancreatography

    International Nuclear Information System (INIS)

    Chen Yi; Xu Yikai; Zhao Yuhui; Wang Guisheng

    2008-01-01

    Objective: To choose optimal concentration and volume of Gd-DTPA solution as a oral gastrointestinal negative contrast agent for MRCP. To evaluate the role of Gd-DTPA solution in improving image quality of MRCP. Methods: In vitro experiment: Gd-DTPA solution was made with different concentrations. T 1 WI, T 2 WI, two-dimensional single slice fast spin echo sequence and three-dimensional half-fourier acquisition single-shot fast spin echo sequence were performed to measure the signal intensity of these contrast agents respectively, so Gd-DTPA solution with the optimal concentration can be decided as oral negative gastrointestinal contrast agent on MRCP. Clinical study: The Gd-DTPA solution with optimal concentration and volume was regarded as an oral negative gastrointestinal contrast agent of MRCP. Twenty- four' patients were performed with MRCP before and after (5-10 minutes and 10-15 minutes) administration of oral negative gastrointestinal contrast agent and image quality was analyzed. Statistical analysis was performed using analysis of variance with SPSS 10.0. Results: When the concentration of Gd-DTPA solution was ≤0.01 mol/L, the contrast agent was hyperintense on T 1 WI. On T 2 WI, when the concentration was ≥0.015 mol/L, it was as hypointense as basic ground; On 2D FSE MRCP images, controls were hyperintense and the contrast agent with concentration ranging from 0.0025 mol/L to 0.03 mol/L was hypointense. On 3D HEAST MRCP image, controls were hyperintense and when the concentration of Gd-DTPA was ≥0.01 mol, the contrast agent was hypointense. The Gd-DTPA solution with the concentration of 0.01 mol/L and the volume of 100 ml was chosen as MRCP oral negative gastrointestinal contrast agent. On MRCP images after oral administration of the contrast agent, in 10-15 minutes, the average grade scores within 24 patients of the intrahepatic bile duct, the common hepatic bile duct, the gall bladder, the common bile duct and pancreatic duct (the average grade

  6. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy

    International Nuclear Information System (INIS)

    Daldrup-Link, Heike E.; Rudelius, Martina; Piontek, Guido; Schlegel, Juergen; Metz, Stephan; Settles, Marcus; Rummeny, Ernst J.; Pichler, Bernd; Heinzmann, Ulrich; Oostendorp, Robert A.J.

    2004-01-01

    The purpose of this study was to assess the feasibility of use of gadophrin-2 to trace intravenously injected human hematopoietic cells in athymic mice, employing magnetic resonance (MR) imaging, optical imaging (OI), and fluorescence microscopy. Mononuclear peripheral blood cells from GCSF-primed patients were labeled with gadophrin-2 (Schering AG, Berlin, Germany), a paramagnetic and fluorescent metalloporphyrin, using established transfection techniques with cationic liposomes. The labeled cells were evaluated in vitro with electron microscopy and inductively coupled plasma atomic emission spectrometry. Then, 1 x 10 6 -3 x 10 8 labeled cells were injected into 14 nude Balb/c mice and the in vivo cell distribution was evaluated with MR imaging and OI before and 4, 24, and 48 h after intravenous injection (p.i.). Five additional mice served as controls: three mice were untreated controls and two mice were investigated after injection of unlabeled cells. The contrast agent effect was determined quantitatively for MR imaging by calculating signal-to-noise-ratio (SNR) data. After completion of in vivo imaging studies, fluorescence microscopy of excised organs was performed. Intracellular cytoplasmatic uptake of gadophrin-2 was confirmed by electron microscopy. Spectrometry determined an uptake of 31.56 nmol Gd per 10 6 cells. After intravenous injection, the distribution of gadophrin-2 labeled cells in nude mice could be visualized by MR, OI, and fluorescence microscopy. At 4 h p.i., the transplanted cells mainly distributed to lung, liver, and spleen, and 24 h p.i. they also distributed to the bone marrow. Fluorescence microscopy confirmed the distribution of gadophrin-2 labeled cells to these target organs. Gadophrin-2 is suited as a bifunctional contrast agent for MR imaging, OI, and fluorescence microscopy and may be used to combine the advantages of each individual imaging modality for in vivo tracking of intravenously injected hematopoietic cells. (orig.)

  7. Fabrication and imaging study of ultrasound/fluorescence bi-modal contrast agent based on polymeric microbubbles

    International Nuclear Information System (INIS)

    Xing Zhanwen; Ke Hengte; Wang Jinrui; Zhao Bo; Qu Enze; Yue Xiuli; Dai Zhifei

    2013-01-01

    Objective: To fabricate an ultrasound/fluorescence bi-modal contrast agent by encapsulating fluorescent quantum dots into polymeric ultrasound contrast agent microbubbles. Methods: Polylactic acid (PLA, 500 mg), (1R)-(+)-camphor (50 mg) and CdSe/ZnS quantum dots (0.5 ml, 2.3 μmol/L)were dissolved or dispersed in dichloromethane (10 ml) to form in an organic phase. Ammonium carbonate solution and poly (vinyl alcohol) solution were employed as the internal and external water phase, respectively. The fluorescent microbubbles were generated using double emulsion solvent evaporation and lyophilization methods. The morphology and illumination were characterized by scanning electron microscopy (SEM) and fluorescence spectrophotometry. Synchronized contrast-enhanced ultrasound and fluorescence imaging was acquired by injecting fluorescent microbubbles into the silicone tube coupled to a self-made ultrasound/fluorescence imaging device. Ultrasound/fluorescence bi-modal in vivo imaging was acquired on the kidney of New Zealand rabbits and suckling mice. Results: The fluorescent microbubbles were hollow spheres with an averaged diameter of (1.62 ± 1.47) μm. More than 99% of these microbubbles were less than 8 μm in diameter, which met the size criteria for ultrasound contrast agents. The fluorescence emission peak of the microbubbles appeared at 632 nm, indicating that good luminescence properties of quantum dots were maintained. In vitro ultrasound/fluorescence imaging showed no echoic signal when the silicone tube was filled with saline, but there was a strong echo when filled with fluorescent microbubbles. The liquid column with fluorescent microbubbles emitted red luminescence under ultraviolet irradiation. The kidney of the rabbit was remarkably enhanced after the administration of fluorescent microbubbles. Bright fluorescence could be observed at the injection site of the suckling mice via subcutaneous injection. Conclusions: A bi-modal but single contrast agent

  8. Improved identification of cranial nerves using paired-agent imaging: topical staining protocol optimization through experimentation and simulation

    Science.gov (United States)

    Torres, Veronica C.; Wilson, Todd; Staneviciute, Austeja; Byrne, Richard W.; Tichauer, Kenneth M.

    2018-03-01

    Skull base tumors are particularly difficult to visualize and access for surgeons because of the crowded environment and close proximity of vital structures, such as cranial nerves. As a result, accidental nerve damage is a significant concern and the likelihood of tumor recurrence is increased because of more conservative resections that attempt to avoid injuring these structures. In this study, a paired-agent imaging method with direct administration of fluorophores is applied to enhance cranial nerve identification. Here, a control imaging agent (ICG) accounts for non-specific uptake of the nerve-targeting agent (Oxazine 4), and ratiometric data analysis is employed to approximate binding potential (BP, a surrogate of targeted biomolecule concentration). For clinical relevance, animal experiments and simulations were conducted to identify parameters for an optimized stain and rinse protocol using the developed paired-agent method. Numerical methods were used to model the diffusive and kinetic behavior of the imaging agents in tissue, and simulation results revealed that there are various combinations of stain time and rinse number that provide improved contrast of cranial nerves, as suggested by optimal measures of BP and contrast-to-noise ratio.

  9. Physiologic basis for intermittent hypoxic episodes in preterm infants.

    Science.gov (United States)

    Martin, R J; Di Fiore, J M; Macfarlane, P M; Wilson, C G

    2012-01-01

    Intermittent hypoxic episodes are typically a consequence of immature respiratory control and remain a troublesome challenge for the neonatologist. Furthermore, their frequency and magnitude are commonly underestimated by clinically employed pulse oximeter settings. In extremely low birth weight infants the incidence of intermittent hypoxia [IH] progressively increases over the first 4 weeks of postnatal life, with a subsequent plateau followed by a slow decline beginning at weeks six to eight. Over this period of unstable respiratory control, increased oxygen-sensitive peripheral chemoreceptor activity has been associated with a higher incidence of apnea of prematurity. In contrast, infants with bronchopulmonary dysplasia [chronic neonatal lung disease] exhibit decreased peripheral chemosensitivity, although the effect on respiratory stability in this population is unclear. Such episodic hypoxia/reoxygenation in early life has the potential to sustain a proinflammatory cascade with resultant multisystem, including respiratory, morbidity. Therapeutic approaches for intermittent hypoxic episodes comprise careful titration of baseline or supplemental inspired oxygen as well as xanthine therapy to prevent apnea of prematurity. Characterization of the pathophysiologic basis for such intermittent hypoxic episodes and their consequences during early life is necessary to provide an evidence-based approach to their management.

  10. CHANGES IN THE GLUTATHIONE SYSTEM IN P19 EMBRYONAL CARCINOMA CELLS UNDER HYPOXIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    D. S. Orlov

    2015-01-01

    Full Text Available Introduction. According to modern perceptions, tumor growth, along with oxidative stress formation, is accompanied by hypoxia. Nowadays studying the regulation of cellular molecular system functioning by conformational changes in proteins appears to be a topical issue. Research goal was to evaluate the state of the glutathione system and the level of protein glutathionylation in P19 embryonal carcinoma (EC cells under hypoxic conditions.Material and methods. P19 EC cells (mouse embryonal carcinoma cultured under normoxic and hypox-ic conditions served the research material.The concentration of total, oxidized, reduced and protein-bound glutathione, the reduced to oxidized thiol ratio as well as glutathione peroxidase and glutathione reductase activity were determined by spectropho-tometry.Results. Glutathione imbalance was accompanied by a decrease in P19 EC cell redox status under hypox-ic conditions against the backdrop of a rise in protein-bound glutathione.Conclusions. As a result of the conducted study oxidative stress formation was identified when modeling hypoxia in P19 embryonal carcinoma cells. The rise in the concentration of protein-bound glutathione may indicate the role of protein glutathionylation in regulation of P19 cell metabolism and functions un-der hypoxia. 

  11. Quantifying metabolic heterogeneity in head and neck tumors in real time: 2-DG uptake is highest in hypoxic tumor regions.

    Directory of Open Access Journals (Sweden)

    Erica C Nakajima

    Full Text Available Intratumoral metabolic heterogeneity may increase the likelihood of treatment failure due to the presence of a subset of resistant tumor cells. Using a head and neck squamous cell carcinoma (HNSCC xenograft model and a real-time fluorescence imaging approach, we tested the hypothesis that tumors are metabolically heterogeneous, and that tumor hypoxia alters patterns of glucose uptake within the tumor.Cal33 cells were grown as xenograft tumors (n = 16 in nude mice after identification of this cell line's metabolic response to hypoxia. Tumor uptake of fluorescent markers identifying hypoxia, glucose import, or vascularity was imaged simultaneously using fluorescent molecular tomography. The variability of intratumoral 2-deoxyglucose (IR800-2-DG concentration was used to assess tumor metabolic heterogeneity, which was further investigated using immunohistochemistry for expression of key metabolic enzymes. HNSCC tumors in patients were assessed for intratumoral variability of (18F-fluorodeoxyglucose ((18F-FDG uptake in clinical PET scans.IR800-2-DG uptake in hypoxic regions of Cal33 tumors was 2.04 times higher compared to the whole tumor (p = 0.0001. IR800-2-DG uptake in tumors containing hypoxic regions was more heterogeneous as compared to tumors lacking a hypoxic signal. Immunohistochemistry staining for HIF-1α, carbonic anhydrase 9, and ATP synthase subunit 5β confirmed xenograft metabolic heterogeneity. We detected heterogeneous (18F-FDG uptake within patient HNSCC tumors, and the degree of heterogeneity varied amongst tumors.Hypoxia is associated with increased intratumoral metabolic heterogeneity. (18F-FDG PET scans may be used to stratify patients according to the metabolic heterogeneity within their tumors, which could be an indicator of prognosis.

  12. Antibiofouling polymer coated gold nanoparticles as a dual modal contrast agent for X-ray and photoacoustic imaging

    International Nuclear Information System (INIS)

    Guojia Huang; Yi Yuan; Xing Da

    2011-01-01

    X-ray is one of the most useful diagnostic tools in hospitals in terms of frequency of use and cost, while photoacoustic (PA) imaging is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. In this study, for the first time, we used gold nanoparticles (GNPs) as a dual modal contrast agent for X-ray and PA imaging. Soft gelatin phantoms with embedded tumor simulators of GNPs in various concentrations are clearly shown in both X-ray and PA imaging. With GNPs as a dual modal contrast agent, X-ray can fast detect the position of tumor and provide morphological information, whereas PA imaging has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.

  13. 99mTc-Alafosfalin: an antibiotic peptide infection imaging agent

    International Nuclear Information System (INIS)

    Tsopelas, C.; Penglis, S.; Ruszkiewicz, A.; Bartholomeusz, F.D.L.

    2003-01-01

    The radiolabeled antibiotic peptide 99m Tc-alafosfalin was assessed as an infection imaging agent in a rat model by comparison with 99m Tc-DTPA and 99m Tc-leukocytes. 99m Tc-alafosfalin was prepared via an instant cold kit and 99m Tc-leukocytes were prepared using 99m Tc-stannous fluoride colloid in an ex vivo labeling procedure of whole blood. In separate experiments, the three radiotracers were administered to rats infected with staphylococcus aureus. Quantitative biodistribution studies were performed as well as scintigraphic images and histopathology. 99m Tc-alafosfalin is a stable product, obtained in high radiochemical purity (>95%). This agent was mainly renally excreted, with low liver, spleen and bone uptake, and resulted in a mean ratio of infected/non-infected thighs of 4.3/1.0 at 4 hr post radiotracer injection. 99m Tc-DTPA gave a corresponding ratio of 1.9/1.0 and 99m Tc-leukocytes gave 20.0/1.0 at the same time point. An in vitro assay found the level of 99m Tc-alafosfalin binding to staphylococcus aureas higher than 99m Tc-DTPA (10% versus 1% respectively). 99m Tc-alafosfalin accumulates at sites of infection in a rat model better than the perfusion molecule 99m Tc-DTPA, yet less than 99m Tc-leukocytes. The distribution characteristics of this 99m Tc-antibiotic peptide would be an advantage in imaging abdominal and soft tissue infection

  14. Near infrared spectral polarization imaging of prostate cancer tissues using Cybesin: a receptor-targeted contrast agent

    Science.gov (United States)

    Pu, Yang; Wang, W. B.; Tang, G. C.; Liang, Kexian; Achilefu, S.; Alfano, R. R.

    2013-03-01

    Cybesin, a smart contrast agent to target cancer cells, was investigated using a near infrared (NIR) spectral polarization imaging technique for prostate cancer detection. The approach relies on applying a contrast agent that can target cancer cells. Cybesin, as a small ICG-derivative dye-peptide, emit fluorescence between 750 nm and 900 nm, which is in the "tissue optical window". Cybesin was reported targeting the over-expressed bombesin receptors in cancer cells in animal model and the human prostate cancers over-expressing bombesin receptors. The NIR spectral polarization imaging study reported here demonstrated that Cybesin can be used as a smart optical biomarker and as a prostate cancer receptor targeted contrast agent.

  15. Inhibition of Hypoxia Inducible Factor Alpha and Astrocyte-Elevated Gene-1 Mediates Cryptotanshinone Exerted Antitumor Activity in Hypoxic PC-3 Cells

    Directory of Open Access Journals (Sweden)

    Hyo-Jeong Lee

    2012-01-01

    Full Text Available Although cryptotanshinone (CT was known to exert antitumor activity in several cancers, its molecular mechanism under hypoxia still remains unclear. Here, the roles of AEG-1 and HIF-1α in CT-induced antitumor activity were investigated in hypoxic PC-3 cells. CT exerted cytotoxicity against prostate cancer cells and suppressed HIF-1α accumulation and AEG-1 expression in hypoxic PC-3 cells. Also, AEG-1 was overexpressed in prostate cancer cells. Interestingly, HIF-1α siRNA transfection enhanced the cleavages of caspase-9,3, and PAPR and decreased expression of Bcl-2 and AEG1 induced by CT in hypoxic PC-3 cells. Of note, DMOG enhanced the stability of AEG-1 and HIF-1α during hypoxia. Additionally, CT significantly reduced cellular level of VEGF in PC-3 cells and disturbed tube formation of HUVECs. Consistently, ChIP assay revealed that CT inhibited the binding of HIF-1α to VEGF promoter. Furthermore, CT at 10 mg/kg suppressed the growth of PC-3 cells in BALB/c athymic nude mice by 46.4% compared to untreated control. Consistently, immunohistochemistry revealed decreased expression of Ki-67, CD34, VEGF, carbonic anhydrase IX, and AEG-1 indices in CT-treated group compared to untreated control. Overall, our findings suggest that CT exerts antitumor activity via inhibition of HIF-1α, AEG1, and VEGF as a potent chemotherapeutic agent.

  16. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging.

    Directory of Open Access Journals (Sweden)

    Astrid Velroyen

    Full Text Available The investigation of dedicated contrast agents for x-ray dark-field imaging, which exploits small-angle scattering at microstructures for contrast generation, is of strong interest in analogy to the common clinical use of high-atomic number contrast media in conventional attenuation-based imaging, since dark-field imaging has proven to provide complementary information. Therefore, agents consisting of gas bubbles, as used in ultrasound imaging for example, are of particular interest. In this work, we investigate an experimental contrast agent based on microbubbles consisting of a polyvinyl-alcohol shell with an iron oxide coating, which was originally developed for multimodal imaging and drug delivery. Its performance as a possible contrast medium for small-animal angiography was examined using a mouse carcass to realistically consider attenuating and scattering background signal. Subtraction images of dark field, phase contrast and attenuation were acquired for a concentration series of 100%, 10% and 1.3% to mimic different stages of dilution in the contrast agent in the blood vessel system. The images were compared to the gold-standard iodine-based contrast agent Solutrast, showing a good contrast improvement by microbubbles in dark-field imaging. This study proves the feasibility of microbubble-based dark-field contrast-enhancement in presence of scattering and attenuating mouse body structures like bone and fur. Therefore, it suggests a strong potential of the use of polymer-based microbubbles for small-animal dark-field angiography.

  17. Chloroquine inhibits autophagy and deteriorates the mitochondrial dysfunction and apoptosis in hypoxic rat neurons.

    Science.gov (United States)

    Li, Peng; Hao, Lei; Guo, Yan-Yan; Yang, Guang-Lu; Mei, Hua; Li, Xiao-Hua; Zhai, Qiong-Xiang

    2018-06-01

    Mitochondrial dysfunction (MD) and apoptosis in the neurons are associated with neonatal hypoxic-ischemic (HI) encephalopathy (HIE). The present study was to explore the influence of autophagy on the induction of MD and apoptosis in the neurons in a neonatal HIE rats and in hypoxia-treated neurons in vitro. Ten-day-old HI rat pups were sacrificed for brain pathological examination and immunohistochemical analysis. The induction of autophagy, apoptosis and MD were also determined in the neurons under hypoxia, with or without autophagy inhibitor, chloroquine (CQ) treatment. HI treatment caused atrophy and apoptosis of neurons, with a significantly increased levels of apoptosis- and autophagy-associated proteins, such as cleaved caspase 3 and the B subunit of autophagy-related microtubule-associated protein 1 light chain 3 (LC3-B). in vitro experiments demonstrated that the hypoxia induced autophagy in neurons, as was inhibited by CQ. The hypoxia-induced cytochrome c release, cleaved caspase 3 and cleaved caspase 9 were aggravated by CQ. Moreover, there were higher levels of reactive oxygen species, more mitochondrial superoxide and less mitochondrial membrane potential in the CQ-treated neurons under hypoxia than in the neurons singularly under hypoxia. Apoptosis and autophagy were induced in HI neonatal rat neurons, autophagy inhibition deteriorates the hypoxia-induced neuron MD and apoptosis. It implies a neuroprotection of autophagy in the hypoxic-ischemic encephalopathy. Administration of autophagy inducer agents might be promising in HIE treatment. Copyright © 2018. Published by Elsevier Inc.

  18. Quantifying Physiological, Behavioral and Ecological Consequences of Hypoxic Events in Kelp Forest

    Science.gov (United States)

    Litvin, S. Y.; Beers, J. M.; Woodson, C. B.; Leary, P.; Fringer, O. B.; Goldbogen, J. A.; Micheli, F.; Monismith, S. G.; Somero, G. N.

    2016-02-01

    Rocky reef kelp forests that extend along the coast of central California, like many habitats in upwelling systems, often experience inundations of low dissolved oxygen (DO) or hypoxic waters. These events have the potential to influence the structure and function of coastal ecosystems. The ecological consequences of hypoxia for these systems will be mediated by physiological thresholds and behavioral responses of resident organisms in the context of the spatial and temporal variability of DO, and other potential stressors. Our research focuses on Sebastes (i.e. rockfish) because of their commercial, recreational and ecological importance, high abundance across near shore habitats and the potentially severe impacts of physiological stress due to hypoxia. In the lab, to investigate how hypoxic events physiologically effect rockfish, we exposed young of the year (YOY) of 5 species and two life stages of blue rockfish, S. mystinus (YOY and 1+), to DO concentrations representative of upwelling conditions and measured a suite of whole organisms and tissue level responses including metabolic rate, ventilation, tissue-level metabolism, and blood biochemistry. Results demonstrate species and life stage specific differences in physiological stress under upwelling driven hypoxic conditions and suggest YOY rockfishes may currently be living near their physiological limits. In the laboratory we further explored if physiological impacts result in behavioral consequences by examining the startle response of YOY rockfish, a relative measure of predator avoidance ability, under a range of DO concentrations and exposure durations. To further explore behavioral responses of rockfish to low in DO within the kelp forest we are using two approaches, monitoring the vertical distribution of fish communities across the water column using an acoustic imaging camera (ARIS 3000, Soundmetrics Inc.) and acoustic tagging, with 3-D positioning ability (VPS, VEMCO Inc.), of larger blue rockfish

  19. Stable agents for imaging investigations

    International Nuclear Information System (INIS)

    Tofe, A.J.

    1976-01-01

    This invention concerns highly stable compounds useful in preparing technetium 99m based scintiscanning exploration agents. The compounds of this invention include a pertechnetate reducing agent or a solution of oxidized pertechnetate and an efficient proportion, sufficient to stabilize the compounds in the presence of oxygen and of radiolysis products, of ascorbic acid or a pharmaceutically acceptable salt or ester of this acid. The invention also concerns a perfected process for preparing a technetium based exploration agent, consisting in codissolving the ascorbic acid or a pharmaceutically acceptable salt or ester of such an acid and a pertechnetate reducing agent in a solution of oxidized pertechnetate [fr

  20. Development of 99mTc agents for imaging central neural system receptors

    International Nuclear Information System (INIS)

    2004-01-01

    Radiopharmaceuticals that bind to central neural system (CNS) receptors in vivo are potentially useful for understanding the pathophysiology of anumber of neurological and psychiatric disorders, their diagnosis and treatment. Carbon-11 labelled compounds and positron emission tomography(PET) imaging have played a vital role in establishing the usefulness of imaging the dopaminergic, cholinergic, serotonergic and benzodiazapine receptors, and relating the receptor density to disease status. Since the use of 11C agents is constrained due to their 20 min half-life, various radiohalogenated analogues based on the structure of 11C compounds have been successfully developed, providing comparable information. Iodine- 123 is the most widely employed of these radioisotopes; it has a longer, 13 h, half-life. Through the use of 123I, there has been a steady growth in CNS receptor imaging studies employing single photon emission computerized tomography (SPECT). SPECT, as compared with PET, has slightly inferior image resolution but has the advantage of being readily available worldwide. However, the 123I radiopharmaceutical is expensive and the distribution system outside of the major markets is not well developed for its supply on a routine basis. The ideal radioisotope for SPECT imaging is 99mTc, due to its low cost per dose, availability through commercially available generator systems and physical decay characteristics. Over 80% of all diagnostic nuclear medicine imaging studies worldwide are conducted using this radioisotope. Development of 99mTc radiopharmaceuticals for imaging CNS receptors is therefore of considerable importance. On the basis of the recommendations of a consultants meeting, the International Atomic Energy Agency (IAEA) initiated in 1996 a Co-ordinated Research Project (CRP) on Development of Agents for Imaging CNS Receptors based on 99mTc. At that time there were no 99mTc CNS receptor imaging radiopharmaceuticals available even though work on

  1. Interstitial administration of perfluorochemical emulsions for reoxygenation of hypoxic tumor cells

    International Nuclear Information System (INIS)

    Woo, D.V.; Seegenschmiedt, H.; Schweighardt, F.K.; Emrich, J.; McGarvey, K.; Caridi, M.; Brady, L.W.

    1987-01-01

    Microparticulate perfluorochemical (PFC) emulsions have the capacity to solubilize significant quantities of oxygen compared to water. Although systemic administration of such emulsions may enhance oxygen delivery to some tissues, hypoxic tumor cells have marginal vascular supplies. The authors report studies which directly attempt to oxygenate hypoxic tumor cells by interstitial administration of oxygenated PFC emulsions followed by radiation therapy. Fortner MMI malignant melanomas (21 day old) grown in Syrian Golden hamsters were injected directly with either oxygenated PFC emulsions or Ringers solution. The volume of test substance administered was equal to 50% of the tumor volume. The tumors were immediately irradiated with 25 Gy of 10 MeV photons (Clinac 18). The tumor dimensions were measured daily post irradiation and the tumor doubling time determined. The results suggest that interstitial administration of oxygenated PFC emulsions directly into tumors followed by radiation therapy may increase the likelihood of killing hypoxic tumor cells

  2. Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor

    Energy Technology Data Exchange (ETDEWEB)

    Toyonaga, Takuya; Hirata, Kenji; Kobayashi, Kentaro; Manabe, Osamu; Watanabe, Shiro; Hattori, Naoya; Shiga, Tohru; Tamaki, Nagara [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Sapporo, Hokkaido (Japan); Yamaguchi, Shigeru [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Sapporo, Hokkaido (Japan); Hokkaido University Graduate School of Medicine, Department of Neurosurgery, Sapporo (Japan); Terasaka, Shunsuke; Kobayashi, Hiroyuki [Hokkaido University Graduate School of Medicine, Department of Neurosurgery, Sapporo (Japan); Kuge, Yuji [Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan); Tanaka, Shinya [Hokkaido University Graduate School of Medicine, Department of Cancer Pathology, Sapporo (Japan); Ito, Yoichi M. [Hokkaido University Graduate School of Medicine, Department of Biostatistics, Sapporo (Japan)

    2017-04-15

    Metabolic activity and hypoxia are both important factors characterizing tumor aggressiveness. Here, we used F-18 fluoromisonidazole (FMISO) and F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) to define metabolically active hypoxic volume, and investigate its clinical significance in relation to progression free survival (PFS) and overall survival (OS) in glioblastoma patients. Glioblastoma patients (n = 32) underwent FMISO PET, FDG PET, and magnetic resonance imaging (MRI) before surgical intervention. FDG and FMISO PET images were coregistered with gadolinium-enhanced T1-weighted MR images. Volume of interest (VOI) of gross tumor volume (GTV) was manually created to enclose the entire gadolinium-positive areas. The FMISO tumor-to-normal region ratio (TNR) and FDG TNR were calculated in a voxel-by-voxel manner. For calculating TNR, standardized uptake value (SUV) was divided by averaged SUV of normal references. Contralateral frontal and parietal cortices were used as the reference region for FDG, whereas the cerebellar cortex was used as the reference region for FMISO. FDG-positive was defined as the FDG TNR ≥1.0, and FMISO-positive was defined as FMISO TNR ≥1.3. Hypoxia volume (HV) was defined as the volume of FMISO-positive and metabolic tumor volume in hypoxia (hMTV) was the volume of FMISO/FDG double-positive. The total lesion glycolysis in hypoxia (hTLG) was hMTV x FDG SUVmean. The extent of resection (EOR) involving cytoreduction surgery was volumetric change based on planimetry methods using MRI. These factors were tested for correlation with patient prognosis. All tumor lesions were FMISO-positive and FDG-positive. Univariate analysis indicated that hMTV, hTLG, and EOR were significantly correlated with PFS (p = 0.007, p = 0.04, and p = 0.01, respectively) and that hMTV, hTLG, and EOR were also significantly correlated with OS (p = 0.0028, p = 0.037, and p = 0.014, respectively). In contrast, none of FDG TNR, FMISO TNR, GTV, HV

  3. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as noninvasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate.

    Science.gov (United States)

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H Douglas; Munasinghe, Jeeva P; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P; Mitchell, James B; Krishna, Murali C

    2013-05-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate blocks glycolysis pathway by inhibiting hypoxia inducible enzymes and enhanced cytotoxicity of 3-bromopyruvate under hypoxic conditions has been reported in vitro. However, the efficacy of 3-bromopyruvate was substantially attenuated in hypoxic tumor regions (pO23-bromopyruvate in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of monocarboxylate transporter-1 in vivo. Expression of monocarboxylate transporter-1 was enhanced in moderately hypoxic (8-15 mmHg) tumor regions but down regulated in severely hypoxic (<5 mmHg) tumor regions. These results emphasize the importance of noninvasive imaging biomarkers to confirm the action of hypoxia-activated drugs. Copyright © 2012 Wiley Periodicals, Inc.

  4. Nicotinic {alpha}4{beta}2 receptor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Pichika, Rama [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Easwaramoorthy, Balasubramaniam [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Collins, Daphne [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Christian, Bradley T. [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Shi, Bingzhi [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Narayanan, Tanjore K. [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Potkin, Steven G. [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Mukherjee, Jogeshwar [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States)]. E-mail: j.mukherjee@uci.edu

    2006-04-15

    The {alpha}4{beta}2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using {sup 3}H-cytisine exhibited a K {sub i}=0.50 nM for the {alpha}4{beta}2 sites. The radiosynthesis of 2-{sup 18}F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ({sup 18}F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/{mu}mol. In vitro autoradiography in rat brain slices indicated selective binding of {sup 18}F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with {alpha}4{beta}2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for {sup 18}F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 {mu}M nicotine in these brain regions. Positron emission tomography imaging study of {sup 18}F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of {sup 18}F-nifene indicates promise as a PET imaging agent and thus needs further evaluation.

  5. Quantification of structural changes in the corpus callosumin children with profound hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Stivaros, Stavros M. [Manchester Academic Health Science Centre, Academic Unit of Paediatric Radiology, Royal Manchester Children' s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester (United Kingdom); University of Manchester, Centre for Imaging Sciences, Institute of Population Health, Manchester (United Kingdom); Radon, Mark R. [The Walton Centre NHS Foundation Trust, Department of Neuroradiology, Liverpool (United Kingdom); Mileva, Reneta; Gledson, Ann; Keane, John A. [University of Manchester, School of Computer Science, Manchester (United Kingdom); Connolly, Daniel J.A.; Batty, Ruth [Sheffield Children' s Hospital NHS Foundation Trust, Department of Neuroradiology, Sheffield (United Kingdom); Cowell, Patricia E. [University of Sheffield, Department of Human Communication Sciences, Sheffield (United Kingdom); Hoggard, Nigel; Griffiths, Paul D. [University of Sheffield, Academic Unit of Radiology, Sheffield (United Kingdom); Wright, Neville B.; Tang, Vivian [Manchester Academic Health Science Centre, Academic Unit of Paediatric Radiology, Royal Manchester Children' s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester (United Kingdom)

    2016-01-15

    Birth-related acute profound hypoxic-ischaemic brain injury has specific patterns of damage including the paracentral lobules. To test the hypothesis that there is anatomically coherent regional volume loss of the corpus callosum as a result of this hemispheric abnormality. Study subjects included 13 children with proven acute profound hypoxic-ischaemic brain injury and 13 children with developmental delay but no brain abnormalities. A computerised system divided the corpus callosum into 100 segments, measuring each width. Principal component analysis grouped the widths into contiguous anatomical regions. We conducted analysis of variance of corpus callosum widths as well as support vector machine stratification into patient groups. There was statistically significant narrowing of the mid-posterior body and genu of the corpus callosum in children with hypoxic-ischaemic brain injury. Support vector machine analysis yielded over 95% accuracy in patient group stratification using the corpus callosum centile widths. Focal volume loss is seen in the corpus callosum of children with hypoxic-ischaemic brain injury secondary to loss of commissural fibres arising in the paracentral lobules. Support vector machine stratification into the hypoxic-ischaemic brain injury group or the control group on the basis of corpus callosum width is highly accurate and points towards rapid clinical translation of this technique as a potential biomarker of hypoxic-ischaemic brain injury. (orig.)

  6. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods.

    Science.gov (United States)

    Kast, Brigitte; Schori, Christian; Grimm, Christian

    2016-05-01

    Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Quantification of structural changes in the corpus callosumin children with profound hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Stivaros, Stavros M.; Radon, Mark R.; Mileva, Reneta; Gledson, Ann; Keane, John A.; Connolly, Daniel J.A.; Batty, Ruth; Cowell, Patricia E.; Hoggard, Nigel; Griffiths, Paul D.; Wright, Neville B.; Tang, Vivian

    2016-01-01

    Birth-related acute profound hypoxic-ischaemic brain injury has specific patterns of damage including the paracentral lobules. To test the hypothesis that there is anatomically coherent regional volume loss of the corpus callosum as a result of this hemispheric abnormality. Study subjects included 13 children with proven acute profound hypoxic-ischaemic brain injury and 13 children with developmental delay but no brain abnormalities. A computerised system divided the corpus callosum into 100 segments, measuring each width. Principal component analysis grouped the widths into contiguous anatomical regions. We conducted analysis of variance of corpus callosum widths as well as support vector machine stratification into patient groups. There was statistically significant narrowing of the mid-posterior body and genu of the corpus callosum in children with hypoxic-ischaemic brain injury. Support vector machine analysis yielded over 95% accuracy in patient group stratification using the corpus callosum centile widths. Focal volume loss is seen in the corpus callosum of children with hypoxic-ischaemic brain injury secondary to loss of commissural fibres arising in the paracentral lobules. Support vector machine stratification into the hypoxic-ischaemic brain injury group or the control group on the basis of corpus callosum width is highly accurate and points towards rapid clinical translation of this technique as a potential biomarker of hypoxic-ischaemic brain injury. (orig.)

  8. Transient hypoxic respiratory failure in a patient with severe hypophosphatemia.

    Science.gov (United States)

    Oud, Lavi

    2009-03-01

    Respiratory failure in severely hypophosphatemic patients has been attributed to respiratory muscle weakness, leading to ventilatory failure. While frequently documenting hypercarbic respiratory failure, previous reports of hypophosphatemia-related respiratory failure in patients otherwise free of pulmonary or airway disease often did not provide sufficient information on gas exchange and pulmonary function, precluding inference on alternative or additional sources of respiratory dysfunction in this population. We report a case of acute hypoxic respiratory failure in a 26 year-old bulimic woman with severe hypophosphatemia. The patient presented with acute onset of dyspnea, paresthesias, limb shaking, and severe hyperventilation. SpO2 was 74%, requiring administration of 100% O2, with normal chest radiograph. Serum phosphate was <0.3 mmol/liter (1.0 mg/dL). Further evaluation did not support pulmonary, vascular, neurogenic or external exposure-related causes of hypoxic respiratory failure, which rapidly resolved with parenteral correction of hypophosphatemia. To date, hypoxic respiratory failure has not been reported in association with hypophosphatemia. Increased awareness and further investigations can help elucidate the mechanisms of hypophosphatemia-associated hypoxemia.

  9. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    International Nuclear Information System (INIS)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas; Simos, George

    2010-01-01

    Research highlights: → Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; → Kaempferol causes cytoplasmic mislocalization of HIF-1α by impairing the MAPK pathway. → Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1α subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1α as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC 50 = 5.16 μM). The mechanism of this inhibition did not involve suppression of HIF-1α protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC 50 = 4.75 μM). Exposure of Huh7 cells to 10 μΜ kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 μM) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  10. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas [Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa (Greece); Institute of Biomedical Research and Technology (BIOMED), 51 Papanastasiou str., 41222 Larissa (Greece); Simos, George, E-mail: simos@med.uth.gr [Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa (Greece); Institute of Biomedical Research and Technology (BIOMED), 51 Papanastasiou str., 41222 Larissa (Greece)

    2010-07-16

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  11. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages.

    Directory of Open Access Journals (Sweden)

    Fattah Sotoodehnejadnematalahi

    Full Text Available Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM, and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold by long term hypoxia (5 days than by 1 day of hypoxia (48 fold. We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K, LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression.

  12. Current Theory on the Cerebral Mechanisms of Hypoxic PRE- and Postconditioning.

    Science.gov (United States)

    Rybnikova, E A; Samoilov, M O

    2016-01-01

    An exposure of the organism to several episodes of mild hypoxia results in the development of brain hypoxic/ischemic tolerance, as well as cross-tolerance to the stressful factors of psychoemotional nature. Such kind of preconditioning by mild hypoxia functions as “alarm signalization” by I.P. Pavlov, preparing the organism and, in particularly, brain to the forthcoming harmful event. Dose-dependent action of hypoxia on the brain can be considered as one particular case of the general phenomenon termed hormesis, or neurohormesis. Endogenous defense processes launched by the hypoxic preconditioning and leading to the development of cerebral tolerance are associated with activation of intracellular signal cascades, transcriptional factors, regulatory proteins and expression of pro-adaptive genes and their products in the susceptible brain regions. Important mechanism of systemic adaptation induced by hypoxic preconditioning includes modifications of pituitary-adrenal axis aimed at enhancement of its adaptive resources. All these components are involved in the neuroprotective processes in three sequential phases - initiation, induction, and expression. Important role belongs also to epigenetic mechanisms controlling the activity of pro-adaptive genes. In contrast to the preconditioning, hypoxic postconditioning is comparatively novel phenomenon and therefore its mechanisms are less studied. The involvement of hypoxia-inducible factor HIF-1, and non-specific protective processes as up-regulation of anti-apoptotic factors and neurotrophines.

  13. Hypoxic challenge test applied to healthy children

    DEFF Research Database (Denmark)

    Kobbernagel, Helene Elgaard; Nielsen, Kim Gjerum; Hanel, Birgitte

    2013-01-01

    BACKGROUND: Commercial aircraft are pressurised to ~2438 m (8000 ft) above sea level that equates breathing 15% oxygen at sea level. A preflight hypoxic challenge test (HCT) is therefore recommended for children with cystic fibrosis or other chronic lung diseases and inflight oxygen is advised if...

  14. AAZTA: an ideal chelating agent for the development of {sup 44}Sc PET imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Gabor; Szikra, Dezso; Trencsenyi, Gyoergy [Scanomed Ltd., Debrecen (Hungary); University of Debrecen, Medical Imaging Clinic (Hungary); Fekete, Aniko [University of Debrecen, Medical Imaging Clinic (Hungary); Garai, Ildiko [Scanomed Ltd., Debrecen (Hungary); Giani, Arianna M.; Negri, Roberto [Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Novara (Italy); Masciocchi, Norberto [Dipartimento di Scienza e Alta Tecnologia e To.Sca.Lab, Universita degli Studi dell' Insubria, Como (Italy); Maiocchi, Alessandro; Uggeri, Fulvio [Bracco Imaging spa, Bracco Research Centre, Colleretto Giacosa (Italy); Toth, Imre [Department of Inorganic and Analytical Chemistry, University of Debrecen (Hungary); Aime, Silvio [Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Centro di Imaging Molecolare e Preclinico, Universita degli Studi di Torino (Italy); Giovenzana, Giovanni B. [Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Novara (Italy); CAGE Chemicals srl, Novara (Italy); Baranyai, Zsolt [Bracco Imaging spa, Bracco Research Centre, Colleretto Giacosa (Italy); Department of Inorganic and Analytical Chemistry, University of Debrecen (Hungary)

    2017-02-13

    Unprecedented fast and efficient complexation of Sc{sup III} was demonstrated with the chelating agent AAZTA (AAZTA=1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)] amino-6-methylperhydro-1,4-d iazepine) under mild experimental conditions. The robustness of the {sup 44}Sc(AAZTA){sup -} chelate and conjugated biomolecules thereof is further shown by in vivo PET imaging in healthy and tumor mice models. The new results pave the way towards development of efficient Sc-based radiopharmaceuticals using the AAZTA chelator. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Lohse, Ines; Rasowski, Joanna; Cao, Pinjiang; Pintilie, Melania; Do, Trevor; Tsao, Ming-Sound; Hill, Richard P; Hedley, David W

    2016-06-07

    Previous reports have suggested that the hypoxic microenvironment provides a niche that supports tumor stem cells, and that this might explain clinical observations linking hypoxia to metastasis. To test this, we examined the effects of a hypoxia-activated prodrug, TH-302, on the tumor-initiating cell (TIC) frequency of patient-derived pancreatic xenografts (PDX).The frequencies of TIC, measured by limiting dilution assay, varied widely in 11 PDX models, and were correlated with rapid growth but not with the levels of hypoxia. Treatment with either TH-302 or ionizing radiation (IR), to target hypoxic and well-oxygenated regions, respectively, reduced TIC frequency, and the combination of TH-302 and IR was much more effective in all models tested. The combination was also more effective than TH-302 or IR alone controlling tumor growth, particularly treating the more rapidly-growing/hypoxic models. These findings support the clinical utility of hypoxia targeting in combination with radiotherapy to treat pancreatic cancers, but do not provide strong evidence for a hypoxic stem cell niche.

  16. Thermal dependence of ultrasound contrast agents scattering efficiency for echographic imaging techniques

    Science.gov (United States)

    Biagioni, Angelo; Bettucci, Andrea; Passeri, Daniele; Alippi, Adriano

    2015-06-01

    Ultrasound contrast agents are used in echographic imaging techniques to enhance image contrast. In addition, they may represent an interesting solution to the problem of non-invasive temperature monitoring inside the human body, based on some thermal variations of their physical properties. Contrast agents, indeed, are inserted into blood circulation and they reach the most important organs inside the human body; consequently, any thermometric property that they may possess, could be exploited for realizing a non-invasive thermometer. They essentially are a suspension of microbubbles containing a gas enclosed in a phospholipid membrane; temperature variations induce structural modifications of the microbubble phospholipid shell, thus causing thermal dependence of contrast agent's elastic characteristics. In this paper, the acoustic scattering efficiency of a bulk suspension of of SonoVue® (Bracco SpA Milan, Italy) has been studied using a pulse-echo technique in the frequency range 1-17 MHz, as it depends upon temperatures between 25 and 65°C. Experimental data confirm that the ultrasonic attenuation coefficient of SonoVue® depends on temperature between 25 and 60°C. Chemical composition of the bubble shell seem to support the hypothesis that a phase transition in the microstructure of lipid-coated microbubbles could play a key role in explaining such effect.

  17. On the use of mobile inflatable hypoxic marquees for sport-specific altitude training in team sports.

    Science.gov (United States)

    Girard, Olivier; Brocherie, Franck; Millet, Grégoire P

    2013-12-01

    With the evolving boundaries of sports science and greater understanding of the driving factors in the human performance physiology, one of the limiting factors has now become the technology. The growing scientific interest on the practical application of hypoxic training for intermittent activities such as team and racket sports legitimises the development of innovative technologies serving athletes in a sport-specific setting. Description of a new mobile inflatable simulated hypoxic equipment. The system comprises two inflatable units-that is, a tunnel and a rectangular design, each with a 215 m(3) volume and a hypoxic trailer generating over 3000 Lpm of hypoxic air with FiO₂ between 0.21 and 0.10 (a simulated altitude up to 5100 m). The inflatable units offer a 45 m running lane (width=1.8 m and height=2.5 m) as well as a 8 m × 10 m dome tent. FiO₂ is stable within a range of 0.1% in normal conditions inside the tunnel. The air supplied is very dry-typically 10-15% relative humidity. This mobile inflatable simulated hypoxic equipment is a promising technological advance within sport sciences. It offers an opportunity for team-sport players to train under hypoxic conditions, both for repeating sprints (tunnel configuration) or small-side games (rectangular configuration).

  18. Melatonin in the management of perinatal hypoxic-ischemic encephalopathy: light at the end of the tunnel?

    Directory of Open Access Journals (Sweden)

    Hendaus MA

    2016-09-01

    Full Text Available Mohamed A Hendaus,1,2 Fatima A Jomha,3 Ahmed H Alhammadi1,2 1Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation, 2Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar; 3School of Pharmacy, Lebanese International University, Khiara, Lebanon Abstract: Perinatal hypoxic-ischemic encephalopathy (HIE affects one to three per 1,000 live full-term births and can lead to severe and permanent neuropsychological sequelae, such as cerebral palsy, epilepsy, mental retardation, and visual motor or visual perceptive dysfunction. Melatonin has begun to be contemplated as a good choice in order to diminish the neurological sequelae from hypoxic-ischemic brain injury. Melatonin emerges as a very interesting medication, because of its capacity to cross all physiological barriers extending to subcellular compartments and its safety and effectiveness. The purpose of this commentary is to detail the evidence on the use of melatonin as a neuroprotection agent. The pharmacologic aspects of the drug as well as its potential neuroprotective characteristics in human and animal studies are described in this study. Melatonin seems to be safe and beneficial in protecting neonatal brains from perinatal HIE. Larger randomized controlled trials in humans are required, to implement a long-awaited feasible treatment in order to avoid the dreaded sequelae of HIE. Keywords: melatonin, hypoxia, use, encephalopathy

  19. Anti hypoxic and antioxidant activity of Hibiscus esculentus seeds

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimzadeh, M. A.; Nabavi, S. F.; Nabavi, S. M.; Eslami, B.

    2010-07-01

    The anti hypoxic and antioxidant activities of Hibiscus esculentus seeds were investigated employing eight in vitro assay systems. Anti hypoxic activity was investigated in two models, haemic and circulatory. The effects were pronounced in both models of hypoxia. The anti hypoxic effects were dose-dependent. The results indicated that the extracts have a protective effect against hypoxia induced lethality in mice. The extracts showed antioxidant activity in some models. IC{sub 5}0 for DPPH radical-scavenging activity was 234 {+-} 8.9 {mu}g ml{sup 1}. The extracts showed weak nitric oxide-scavenging activity between 0.1 and 1.6 mg ml{sup -}1. The extracts showed weak Fe{sup 2}+ chelating ability. IC{sub 5}0 were 150 {+-} 13 {mu}g ml{sup -}1. The extracts also exhibited low antioxidant activity in the linoleic acid model but were capable of scavenging hydrogen peroxide in a concentration dependent manner. The total amount of phenolic compounds in each extract was determined as gallic acid equivalents and total flavonoid contents were calculated as quercetin equivalents from a calibration curve. Pharmacological effects may be attributed, at least in part, to the presence of phenols and flavonoids in the extracts. (Author) 40 refs.

  20. Hypoxic Response of Tumor Tissues in a Microfluidic Environment

    Science.gov (United States)

    Morshed, Adnan; Dutta, Prashanta

    2017-11-01

    Inside a tumor tissue, cells growing further away from the blood vessel often suffer from low oxygen levels known as hypoxia. Cancer cells have shown prolonged survival in hostile hypoxic conditions by sharply changing the cellular metabolism. In this work, different stages of growth of the tumor tissue and the oxygen transport across the tissue are investigated. The tissue was modeled as a contiguous block of cells inside a microfluidic environment with nutrient transport through advection and diffusion. While oxygen uptake inside the tissue is through diffusion, ascorbate transport from the extracellular medium is addressed by a concentration dependent uptake model. By varying the experimentally observed oxygen consumption rate, different types of cancer cells and their normoxic and hypoxic stages were studied. Even when the oxygen supply in the channel is maintained at normoxic levels, our results show the onset of hypoxia within minutes inside the cellblock. Interestingly, modeled cell blocks with and without a structured basal layer showed less than 5% variation in hypoxic response in chronic hypoxia. Results also indicate that the balance of cell survival and growth are affected by the flow rate of nutrients and the oxygen consumption rate. This work was supported in part by the National Science Foundation under Grant No. DMS 1317671.

  1. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  2. Study on folate receptor PET imaging agent 18F-flurophenethyl folate

    International Nuclear Information System (INIS)

    Guo Congying; Zhu Jianhua; Qian Jun; Yang Yang; Shen Haixing; Zhang Zhengwei

    2009-01-01

    This work is aimed at synthesizing an 18 F-labelled folate derivative that can be used as folate-receptor induced tumor PET imaging agent. Under the optimal reaction and testing specification formulated during the cold-labeling experiments, 18 F labeling of folic acid was achieved in three steps of 18 F pre-labeling,bromination and esterification. The receptor binding property of the newly-synthesized folate radio-derivative was studied through β-lactoglobulin binding test. Tumor-bearing nude mice injected with the new compound were used to study whether the derivative can accumulate within tumor issue. Preliminary studies in vitro and in vivo showed that this new PET agent still possessed receptor binding qualities of folic acid. 18 F-flurophenethyl folate remained good affinity and specificity with β-lactoglobulin. Accumulation of activities in tumor tissues was found in tumor-bearing nude mice. A new folate receptor ligand: 18 F-flurophenethyl folate was synthesized,with high yield and good stability. Since the pre-labeling method was used, the fluorine labeling was not directly imposed upon folic acid.In this way, the structure destruction, which happens in high temperature reaction of folic acid, can be avoided. The synthesized folate derivative remained the binding structural quality of folic acid and could bind with the folate-binding protein: β-lactoglobulin. Through the folate receptors located on tumor tissues, 18 F-flurophenethyl folate accumulated in the tumor tissue, exhibiting its potential as a tumor PET imaging agent. (authors)

  3. Barium sulfate suspension as a negative oral contrast agent for MR imaging

    International Nuclear Information System (INIS)

    Li, K.C.P.; Tart, R.P.; Fitzsimmons, J.R.; Storm, B.; Mao, J.

    1989-01-01

    Proton spectroscopy with linewidth measurements and MR imaging were performed on various commercially available barium sulfate suspensions as well as inorganic sulfates and barium salts. Approximately 500 mL of 20%, 40%, 60%, and 70% wt/wt single-contrast oral barium sulfate suspensions were administered to four normal volunteers, and MR imaging was performed with both a 1.5-T and a 0.15-T MR imager. As much as 80% of the small bowel and the entire colon were well visualized with the 60% or 70% wt/wt single-contrast barium sulfate suspensions. The authors conclude that barium sulfate suspensions are useful as oral MR contrast agents

  4. Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit

    Science.gov (United States)

    Cukrov, Dubravka; Zermiani, Monica; Brizzolara, Stefano; Cestaro, Alessandro; Licausi, Francesco; Luchinat, Claudio; Santucci, Claudio; Tenori, Leonardo; Van Veen, Hans; Zuccolo, Andrea; Ruperti, Benedetto; Tonutti, Pietro

    2016-01-01

    The ripening physiology of detached fruit is altered by low oxygen conditions with profound effects on quality parameters. To study hypoxia-related processes and regulatory mechanisms, apple (Malus domestica, cv Granny Smith) fruit, harvested at commercial ripening, were kept at 1°C under normoxic (control) and hypoxic (0.4 and 0.8 kPa oxygen) conditions for up to 60 days. NMR analyses of cortex tissue identified eight metabolites showing significantly different accumulations between samples, with ethanol and alanine displaying the most pronounced difference between hypoxic and normoxic treatments. A rapid up-regulation of alcohol dehydrogenase and pyruvate-related metabolism (lactate dehydrogenase, pyruvate decarboxylase, alanine aminotransferase) gene expression was detected under both hypoxic conditions with a more pronounced effect induced by the lowest (0.4 kPa) oxygen concentration. Both hypoxic conditions negatively affected ACC synthase and ACC oxidase transcript accumulation. Analysis of RNA-seq data of samples collected after 24 days of hypoxic treatment identified more than 1000 genes differentially expressed when comparing 0.4 vs. 0.8 kPa oxygen concentration samples. Genes involved in cell-wall, minor and major CHO, amino acid and secondary metabolisms, fermentation and glycolysis as well as genes involved in transport, defense responses, and oxidation-reduction appeared to be selectively affected by treatments. The lowest oxygen concentration induced a higher expression of transcription factors belonging to AUX/IAA, WRKY, HB, Zinc-finger families, while MADS box family genes were more expressed when apples were kept under 0.8 kPa oxygen. Out of the eight group VII ERF members present in apple genome, two genes showed a rapid up-regulation under hypoxia, and western blot analysis showed that apple MdRAP2.12 proteins were differentially accumulated in normoxic and hypoxic samples, with the highest level reached under 0.4 kPa oxygen. These data suggest

  5. Extracellular nucleotide derivatives protect cardiomyctes against hypoxic stress

    DEFF Research Database (Denmark)

    Golan, O; Issan, Y; Isak, A

    2011-01-01

    assures cardioprotection. Treatment with extracellular nucleotides, or with tri/di-phosphate, administered under normoxic conditions or during hypoxic conditions, led to a decrease in reactive oxygen species production. CONCLUSIONS: Extracellular tri/di-phosphates are apparently the molecule responsible...

  6. Development of Gd(III) porphyrin-conjugated chitosan nanoparticles as contrast agents for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jahanbin, Tania [Université Paul Sabatier, Toulouse III, INSERM U825, CHU Purpan, 31059 Toulouse Cedex 9 (France); Sauriat-Dorizon, Hélène [Institut de Chimie Moléculaire et des Matériaux d' Orsay, UMR CNRS 8182, ECBB, Université Paris-Sud, 91405 Orsay (France); Spearman, Peter [Faculty of Science, Engineering and Computing, University of Kingston, Penrhyn Road Kingston upon Thames Surrey KT1 2EE, London (United Kingdom); Benderbous, Soraya, E-mail: soraya.benderbous@univ-tlse3.fr [Université Paul Sabatier, Toulouse III, INSERM U825, CHU Purpan, 31059 Toulouse Cedex 9 (France); Korri-Youssoufi, Hafsa, E-mail: hafsa.korri-youssoufi@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d' Orsay, UMR CNRS 8182, ECBB, Université Paris-Sud, 91405 Orsay (France)

    2015-07-01

    A novel magnetic resonance imaging (MRI) contrast agent based on gadolinium meso-tetrakis(4-pyridyl)porphyrin [Gd(TPyP)] conjugated with chitosan nanoparticles has been developed. The chitosan nanoparticles were synthesized following an ionic gelation method and the conditions optimized to generate small nanoparticles (CNs) with a narrow size distribution of 35–65 nm. The gadolinium meso-tetrakis(4-pyridyl)porphyrin [Gd(TPyP)] was loaded into chitosan nanoparticles by passive adsorption. The interaction of chitosan with Gd(TPyP) has been examined by UV–visible, Fourier transform infrared spectroscopies (FT-IR) and inductively coupled plasma mass spectrometry (ICP-MS), which indicate the successful association of Gd(TPyP) without any structural distortion throughout the chitosan nanoparticles. The potential of Gd(TPyP)-CNs as MRI contrast agent has been investigated by magnetic resonance imaging (MRI) in-vitro. Relaxivities of Gd(TPyP)-CNs obtained from T{sub 1}-weighted images, increased with Gd concentration and attained an optimum r{sub 1} of 38.35 mM{sup −1} s{sup −1}, which is 12-fold higher compared to commercial Gd-DOTA (~ 4 mM{sup −1} s{sup −1} at 3T). The combination of such strong MRI contrast with the known properties of porphyrins in photodynamic therapy and biocompatibility of chitosan, presents a new perspective in using these compounds in cancer theranostics. - Highlights: • Synthesis of chitosan nanoparticles with small size • Study of loading properties with gadolinium porphyrins • In vitro properties of the conjugated complex as contrast agent for MRI imaging • Comparison of MRI properties with commercial contrast agent Gd-DOTA.

  7. Application of I-123 HIPDM as a lung imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Shih, W J; Coupal, J J; Dillon, M L; Kung, H F

    1988-04-01

    N,N,N'-Trimethyl-N'-(2-Hydroxyl-3-Methyl-5-/sup 123/I Iodobenzyl)-1,3-Propanediamine.Hcl (/sup 123/I-HIPDM) has been used for diagnosis of patients with strokes and demantias. Since this radiopharmaceutical is also accumulated in the lung, we routinely performed a lung image or images immediately prior to cerebral planar and SPECT images after a 3-5 mCi /sup 123/I-HIPDM injection. During the past 14 months, we obtained 78 (age from 41 to 92 years, average 66.7+-8.9 years; 64 males, 14 females) suspected stroke or dementia patients' lung images. All lung images were correlated to chest X-ray (CXR) or CT and other clinical data. Sixty five of 78 patients had normal lungs showing homogeneous distribution of activity throughout the lungs which correlated well to normal CXR and/or CT studies. Abnormal scintigraphic patterns of the 13 patients included lung defect (5 bronchogenic carcinoma with or without atelectasis) and decreased uptake in apices (8 chronic obstructive pulmonary disease). The findings of pulmonary intrathoracic pathologies on lung images with /sup 123/I-HIPDM suggests further evaluation of the agent for detection of localized pulmonary diseases and pulmonary physiological studies relating to amine metabolism.

  8. 19F labelled dextrans and antibodies as NMR imaging and spectroscopy agents

    International Nuclear Information System (INIS)

    Antich, P.P.; Kulkarni, P.V.

    1993-01-01

    A method is described of NMR imaging or spectroscopy, comprising the steps of administering to a living subject a 19 F labelled NMR agent, the NMR agent comprising (a) a transport polymer selected from the group consisting of dextran polymers and amino dextrans, having a molecular weight between approximately 100 d and 500 kd, and antibodies and fragments thereof, and (b) a 19F-containing sensor moiety selected from the group consisting of fluorinated alkyls, fluorinated acetates, fluoroaniline, and fluoroalkyl phosphonates, in an amount effective to provide a detectable NMR signal; and then detecting the 19 F NMR signal produced

  9. Contrast agents for tumor diagnosis in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Rensuke; Doi, Hisayoshi; Okada, Shoji [University of Shizuoka (Japan). School of Pharmaceutical Science; Yano, Masayuki; Katano, Susumu; Nakajima, Nobuaki

    1992-01-01

    In order to develop contrast agents for tumor diagnosis in magnetic resonance imaging (MRI), we investigated the effects of several gadolinium complexes on T{sub 1} relaxation time of proton in some tissues of Ehrlich solid tumor-bearing mice. L-Aspartic acid, L-glutamic acid, DL-homocysteine, L-glutamyl-glutamic acid, glutathione, sperimidine and ethylenediaminetetrakis (methylenephosphate) (EDTMP) were used as ligands for Gd{sup 3+}. Since each Gd-complex could not be purified except Gd-EDTMP, the mixture of GdCl{sub 3} and a ligand was administered intravenously. Among the compounds tested, the mixture of aspartic acid, glutathione or spermidine with GdCl{sub 3} showed almost the same or above reduction of T{sub 1} relaxation times in the tumor tissue compared with Gd-diethylenetriamine pentaacetic acid (Gd-DTPA) which is used clinically. Furthermore, the contrast-enhancing effect of the three mixtures in the tumor was observed by in vivo T{sub 1}-weighted magnetic resonance imaging. The in vivo tissue distribution using radioactive {sup 153}Gd{sup 3+} showed that these mixtures mentioned above were also taken up more highly in the tumor than {sup 153}GdCl{sub 3} itself and {sup 153}Gd-DTPA, suggesting the formation of Gd-complexes. However, the overall tissue distribution of the mixtures was similar to that of {sup 153}GdCl{sub 3} because the Gd-complexes were not purified. Gd-EDTMP exhibited the almost same effects with Gd-DTPA as a contrast agent. (author).

  10. Cell-cycle distributions and radiation responses of Chinese hamster cells cultured continuously under hypoxic conditions

    International Nuclear Information System (INIS)

    Tokita, N.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Cell-cycle distributions were measured by flow cytometry for Chinese hamster (CHO) cells cultured continuously under hypoxic conditions. DNA histograms showed an accumulation of cells in the early S phase followed by a traverse delay through the S phase, and a G 2 block. During hypoxic culturing, cell viability decreased rapidly to less than 0.1% at 120 h. Radiation responses for cells cultured under these conditions showed an extreme radioresistance at 72 h. Results suggest that hypoxia induces a condition similar to cell synchrony which itself changes the radioresistance of hypoxic cells. (author)

  11. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1.

    Science.gov (United States)

    Xue, Mei; Chen, Wei; Xiang, An; Wang, Ruiqi; Chen, He; Pan, Jingjing; Pang, Huan; An, Hongli; Wang, Xiang; Hou, Huilian; Li, Xu

    2017-08-25

    To overcome the hostile hypoxic microenvironment of solid tumors, tumor cells secrete a large number of non-coding RNA-containing exosomes that facilitate tumor development and metastasis. However, the precise mechanisms of tumor cell-derived exosomes during hypoxia are unknown. Here, we aim to clarify whether hypoxia affects tumor growth and progression by transferring long non-coding RNA-urothelial cancer-associated 1 (lncRNA-UCA1) enriched exosomes secreted from bladder cancer cells. We used bladder cancer 5637 cells with high expression of lncRNA-UCA1 as exosome-generating cells and bladder cancer UMUC2 cells with low expression of lncRNA-UCA1 as recipient cells. Exosomes derived from 5637 cells cultured under normoxic or hypoxic conditions were isolated and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting analysis. These exosomes were co-cultured with UMUC2 cells to evaluate cell proliferation, migration and invasion. We further investigated the roles of exosomal lncRNA-UCA1 derived from hypoxic 5637 cells by xenograft models. The availability of lncRNA-UCA1 in serum-derived exosomes as a biomarker for bladder cancer was also assessed. We found that hypoxic exosomes derived from 5637 cells promoted cell proliferation, migration and invasion, and hypoxic exosomal RNAs could be internalized by three bladder cancer cell lines. Importantly, lncRNA-UCA1 was secreted in hypoxic 5637 cell-derived exosomes. Compared with normoxic exosomes, hypoxic exosomes derived from 5637 cells showed the higher expression levels of lncRNA-UCA1. Moreover, Hypoxic exosomal lncRNA-UCA1 could promote tumor growth and progression though epithelial-mesenchymal transition, in vitro and in vivo. In addition, the expression levels of lncRNA-UCA1 in the human serum-derived exosomes of bladder cancer patients were higher than that in the healthy controls. Together, our results demonstrate that hypoxic bladder cancer cells remodel tumor

  12. Biological evaluation of 99mTC cis-Pt iminoacetic acid complexes as tumour imaging agents

    International Nuclear Information System (INIS)

    Awaluddin, A.; Jacobs, J.J.; Bourne, D.W.; Maddalena, D.J.; Wilson, J.G.; Boyd, D.W.

    1987-01-01

    The biodistributions of three new 99m Tc labelled cis-platinum bifunctional tumour imaging agents were examined in mice bearing a certain type of sarcoma between 15 minutes and 24 hours post injection. The three complexes were excreted primarily via the renal pathway into the urine but at quite different rates. All complexes had some affinity for the tumour, but complexes III had the greatest, with tumour to blood and tumour to muscle rates at 24 hours in excess of 10:1 and 18:1. Biodistribution results were calculated using Tiscon Program. Suggesting that the three complexes may be useful as tumour imaging agents. (M.E.L.) [es

  13. Synthesis, biological evaluation, and baboon PET imaging of the potential adrenal imaging agent cholesteryl-p-[18f]fluorobenzoate

    International Nuclear Information System (INIS)

    Jonson, Stephanie D.; Welch, Michael J.

    1999-01-01

    Cholesteryl-p-[ 18 F]fluorobenzoate ([ 18 F]CFB) was investigated as a potential adrenal positron emission tomography (PET) imaging agent for the diagnostic imaging of adrenal disorders. We describe the synthesis, biodistribution, adrenal autoradiography, and baboon PET imaging of [ 18 F]CFB. The synthesis of [ 18 F]CFB was facilitated by the use of a specially designed microwave cavity that was instrumental in effecting 70-83% incorporation of fluorine-18 in 60 s via [ 18 F]fluoro-for-nitro exchange. Tissue distribution studies in mature female Sprague-Dawley rats showed good accumulation of [ 18 F]CFB in the steroid-secreting tissues, adrenals and ovaries, at 1 h postinjection. The effectiveness of [ 18 F]CFB to accumulate in diseased adrenals was shown through biodistribution studies in hypolipidemic rats, which showed a greater than threefold increase in adrenal uptake at 1 h and increased adrenal/liver and adrenal/kidney ratios. Analysis of the metabolites at 1 h in the blood, adrenals, spleen, and ovaries of hypolipidemic and control rats showed the intact tracer representing greater than 86%, 93%, 92%, and 82% of the accumulated activity, respectively. [ 18 F]CFB was confirmed to selectively accumulate in the adrenal cortex versus the adrenal medulla by autoradiography. Normal baboon PET imaging with [ 18 F]CFB effectively showed adrenal localization as early as 15 min after injection of the tracer, with enhanced adrenal contrast seen at 60-70 min. These results suggest that [ 18 F]CFB may be useful as an adrenal PET imaging agent for assessing adrenal disorders

  14. Correlation of biological aggressiveness assessed by 11C-methionine PET and hypoxic burden assessed by 18F-fluoromisonidazole PET in newly diagnosed glioblastoma

    International Nuclear Information System (INIS)

    Kawai, Nobuyuki; Miyake, Keisuke; Okada, Masaki; Tamiya, Takashi; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro; Kudomi, Nobuyuki

    2011-01-01

    Glioblastoma multiforme (GBM) is characterized by tissue hypoxia associated with resistance to radiotherapy and chemotherapy. To clarify the biological link between hypoxia and tumour-induced neovascularization and tumour aggressiveness, we analysed detailed volumetric and spatial information of viable hypoxic tissue assessed by 18 F-fluoromisonidazole (FMISO) PET relative to neovascularization in Gd-enhanced MRI and tumour aggressiveness by L-methyl- 11 C-methionine (MET) PET in newly diagnosed GBMs. Ten patients with newly diagnosed GBMs were investigated with FMISO PET, MET PET and Gd-enhanced MRI before surgery. Tumour volumes were calculated by performing a three-dimensional threshold-based volume of interest (VOI) analysis for metabolically active volume on MET PET (MET uptake indices of ≥1.3 and ≥1.5) and Gd-enhanced volume on MRI. FMISO PET was scaled to the blood FMISO activity to create tumour to blood (T/B) images. The hypoxic volume (HV) was defined as the region with T/B greater than 1.2. PET and MR images of each patient were coregistered to analyse the spatial location of viable hypoxic tissue relative to neovascularization and active tumour extension. Metabolically active tumour volumes defined using MET uptake indices of ≥1.3 and ≥1.5 and the volumes of Gd enhancement showed a strong correlation (r = 0.86, p < 0.01 for an index of ≥1.3 and r = 0.77, p < 0.05 for an index of ≥1.5). The HVs were also excellently correlated with the volumes of Gd enhancement (r = 0.94, p < 0.01). The metabolically active tumour volumes as defined by a MET uptake index of ≥1.3 and the HVs exhibited a strong correlation (r = 0.87, p < 0.01). On superimposed images, the metabolically active area on MET PET defined by a MET uptake index of ≥1.3 was usually larger than the area of the Gd enhancement and about 20-30% of the MET area extended outside the area of the enhancement. On the other hand, the surface area of viable hypoxic tissue with a T/B cutoff of

  15. An experimental study of 99Tcm-PnAO-nitroimidazole and 99Tcm-HL91 in detection of myocardial hypoxia

    International Nuclear Information System (INIS)

    Yao Zhiming; Liu Xiujie; Shi Rongfang; Guo Feng; Liu Yunzhong; Wang Qi; Wei Hongxing; Zhu Lin

    1999-01-01

    Objective: To investigate the biological characteristics of two hypoxic-avid imaging agents, 99 Tc m -PnAO-nitroimidazole and 99 Tc m -HL91, and the experimental myocardial hypoxia, low perfusion and ischemic reperfusion were performed. Methods: Isolated rat hearts were retrograde perfused with Kerbs-Henscleit buffer (KH) in four phantoms: control, low perfusion, ischemic reperfusion and hypoxia. Control hearts were perfused with 95% O 2 and 5% CO 2 balanced KH at 9∼10 mL/min rate. Low perfusion hearts were perfused with the same KH at 1 mL/min rate, and ischemic reperfusion rat hearts were discontinued perfusion for 20 min then reperfused with the same KH. Hypoxic hearts were perfused with 100% N 2 balanced KH. Results: 1) At 30 and 60 min, the radioactivity ratio of liver to heart (L/H) was 11.6 and 6.9 ( 99 Tc m -PnAO-nitroimidazole), and 5.7 and 6.2 ( 99 Tc m -HL91), respectively. The lung to heart ratios at 60 min of 99 Tc m -PnAO-nitroimidazole and 99 Tc m -HL91 were 1.8 and 2.1, respectively 2) The accumulation of 99 Tc m -PnAo-nitroimidazole in the hypoxic, low perfusion and ischemic hearts was 4.8, 3.7 and 2.8 times that in the control hearts. At 60 min after starting washout, the retentions of 99 Tc m -PnAO-nitroimidazole in hypoxic, low flow and ischemic reperfusion myocardium were much higher than that of control hearts [(23.7 +- 9.1)%]. The accumulation of 99 Tc m -HL91 in the hypoxic and low perfusion hearts was also significantly higher than that in the control and ischemic reperfusion hearts, P 99 Tc m -HL91 in the low perfusion heart was 5.34, 3.43 and 1.23 times those of control, ischemic reperfusion and hypoxic hearts, respectively. Conclusions: 99 Tc m -PnAO-nitroimidazole can be accumulated in low perfusion, ischemic reperfusion and hypoxic hearts, while 99 Tc m -HL91 is mainly accumulated in hypoxic, specially low perfusion hearts. Since there is a high L/H in perfusions with either agent, the detecting of inferoposterior wall may be

  16. Development of a novel fluorescent imaging probe for tumor hypoxia by use of a fusion protein with oxygen-dependent degradation domain of HIF-1α

    Science.gov (United States)

    Tanaka, Shotaro; Kizaka-Kondoh, Shinae; Harada, Hiroshi; Hiraoka, Masahiro

    2007-02-01

    More malignant tumors contain more hypoxic regions. In hypoxic tumor cells, expression of a series of hypoxiaresponsive genes related to malignant phenotype such as angiogenesis and metastasis are induced. Hypoxia-inducible factor-1 (HIF-1) is a master transcriptional activator of such genes, and thus imaging of hypoxic tumor cells where HIF-1 is active, is important in cancer therapy. We have been developing PTD-ODD fusion proteins, which contain protein transduction domain (PTD) and the VHL-mediated protein destruction motif in oxygen-dependent degradation (ODD) domain of HIF-1 alpha subunit (HIF-1α). Thus PTD-ODD fusion proteins can be delivered to any tissue in vivo through PTD function and specifically stabilized in hypoxic cells through ODD function. To investigate if PTD-ODD fusion protein can be applied to construct hypoxia-specific imaging probes, we first constructed a fluorescent probe because optical imaging enable us to evaluate a probe easily, quickly and economically in a small animal. We first construct a model fusion porein PTD-ODD-EGFP-Cy5.5 named POEC, which is PTD-ODD protein fused with EGFP for in vitro imaging and stabilization of fusion protein, and conjugated with a near-infrared dye Cy5.5. This probe is designed to be degraded in normoxic cells through the function of ODD domain and followed by quick clearance of free fluorescent dye. On the other hand, this prove is stabilized in hypoxic tumor cells and thus the dye is stayed in the cells. Between normoxic and hypoxic conditions, the difference in the clearance rate of the dye will reveals suited contrast for tumor-hypoxia imaging. The optical imaging probe has not been optimized yet but the results presented here exhibit a potential of PTD-ODD fusion protein as a hypoxia-specific imaging probe.

  17. Keynote address: cellular reduction of nitroimidazole drugs: potential for selective chemotherapy and diagnosis of hypoxic cells

    International Nuclear Information System (INIS)

    Chapman, J.D.; Lee, J.; Meeker, B.E.

    1989-01-01

    Nitroimidazole drugs were initially developed as selective radiosensitizers of hypoxic cells and, consequently, as adjuvants to improve the local control probabilities of current radiotherapies. Misonidazole (MISO), the prototype radiosensitizing drug, was found in Phase I clinical studies to cause dose-limiting neurotoxicities (mainly peripheral neuropathies). MISO was also found to be cytotoxic in the absence of radiation and to covalently bind to cellular molecules, both processes demonstrating rates much higher in hypoxic compared with oxygenated cells. It is likely that neurotoxicity, cellular cytotoxicity and adduct formation results from reactions between reduction intermediates of MISO and cellular target molecules. Spin-offs from radiosensitizer research include the synthesis and characterization of more potent hypoxic cytotoxins and the exploitation of sensitizer-adducts as probes for measuring cellular and tissue oxygen levels. Current developments in hypoxic cell cytotoxin and hypoxic cell marker research are reviewed with specific examples from studies which characterize the cellular reduction of TF-MISO, (1-(2-nitro-1-imidazolyl)-3[2,2,2-trifluoroethoxy]-2-propanol). 45 references

  18. Radioprotection of normal tissues of the mouse by hypoxic breathing

    International Nuclear Information System (INIS)

    Stevens, G.N.; Joiner, B.; Denekamp, J.

    1989-01-01

    Hypoxic breathing during irradiation has been advocated as a therapeutic modality, to increase the efficacy of radiotherapy. In this form of treatment, the total and daily X-ray dose is increased by a factor of 1.25, on the assumption that all normal tissues in the beam will be protected to a similar extent by breathing gas containing a reduced oxygen concentration (usually 10%). To test this concept, we have determined the effect of varying the inspired oxygen tension on the radiosensitivity of 3 normal tissues in the mouse (kidney, jejunum and skin), and have compared these results with data from the literature for mouse lung. Reduction of the inspired oxygen tension from 21% (air) to 7-8% led to much greater radioprotection of skin (protection factor 1.37) than of lung (1.09). Protection factors for jejunum and kidney were 1.16 and 1.36 respectively. The results show that the extent of radioprotection afforded by hypoxic breathing is tissue dependent, and that great care must be taken clinically in choosing the increased radiation dose to be used in conjunction with hypoxic breathing

  19. Preferential cephalic redistribution of left ventricular cardiac output during therapeutic hypothermia for perinatal hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Hochwald, Ori; Jabr, Mohammad; Osiovich, Horacio; Miller, Steven P; McNamara, Patrick J; Lavoie, Pascal M

    2014-05-01

    To determine the relationship between left ventricular cardiac output (LVCO), superior vena cava (SVC) flow, and brain injury during whole-body therapeutic hypothermia. Sixteen newborns with moderate or severe hypoxic-ischemic encephalopathy were studied using echocardiography during and immediately after therapeutic hypothermia. Measures were also compared with 12 healthy newborns of similar postnatal age. Newborns undergoing therapeutic hypothermia also had cerebral magnetic resonance imaging as part of routine clinical care on postnatal day 3-4. LVCO was markedly reduced (mean ± SD 126 ± 38 mL/kg/min) during therapeutic hypothermia, whereas SVC flow was maintained within expected normal values (88 ± 27 mL/kg/min) such that SVC flow represented 70% of the LVCO. The reduction in LVCO during therapeutic hypothermia was mainly accounted by a reduction in heart rate (99 ± 13 vs 123 ± 17 beats/min; P newborns without brain injury (P = .013). Newborns with perinatal hypoxic-ischemic encephalopathy showed a preferential systemic-to-cerebral redistribution of cardiac blood flow during whole-body therapeutic hypothermia, which may reflect a lack of cerebral vascular adaptation in newborns with more severe brain injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Positrons as imaging agents and probes in nanotechnology

    International Nuclear Information System (INIS)

    Smith, Suzanne V

    2009-01-01

    Positron emission tomography (PET) tracks a positron emitting radiopharmaceutical injected into the body and generates a 3-dimensional image of its location. Introduced in the early 70s, it has now developed into a powerful medical diagnostic tool for routine clinical use as well as in drug development. Unrivalled as a highly sensitive, specific and non-invasive imaging tool, PET unfortunately lacks the resolution of Computer Tomography (CT) and Magnetic Resonance Imaging (MRI). As the resolution of PET depends significantly on the energy of the positron incorporated in the radiopharmaceutical and its interaction with its surrounding tissue, there is growing interest in expanding our understanding of how positrons interact at the atomic and molecular level. A better understanding of these interactions will contribute to improving the resolution of PET and assist in the design of better imaging agents. Positrons are also used in Positron Annihilation Lifetime Spectroscopy (PALS) to determine electron density and or presence and incidence of micro- and mesopores (0.1 to 10 nm) in materials. The control of porosity in engineered materials is crucial for applications such as controlled release or air and water resistant films. Equally important to the design of nano and microtechnologies, is our understanding of the microenvironments within these pores and on surfaces. Hence as radiopharmaceuticals are designed to track disease, nuclear probes (radioactive molecules) are synthesized to investigate the chemical properties within these pores. This article will give a brief overview of the present role of positrons in imaging as well as explore its potential to contribute in the engineering of new materials to the marketplace.

  1. Evaluation of potential practical oral contrast agents for pediatric magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bisset, G.S. III; Cincinnati Univ., OH; Children's Hospital Medical Center, Cincinnati, OH

    1989-01-01

    Development of a practical oral contrast agent for magnetic resonance imaging is necessary to improve differentiation of bowel from adjacent structures. In order to find a readily available, inexpensive, non-toxic, palatable solution for use in the pediatric population, several formulas, milk products and a common oral sedative were evaluated in vitro. T1, T2 and signal intensity measurements were performed on a 1.5 T system. Similac with standard iron proved to be a useful high signal intensity agent on multiple pulse sequences. Early in vivo experience in four normal volunteers indicates that this agent provides excellent delineation of the stomach and duodenum from contiguous viscera. Distal small bowel visualization is less predictabel. Further clinical trials should confirm the utility of this solution, which contains a combination of iron salts and paramagnetic metallic ions. (orig.)

  2. Retinal neuroprotection by hypoxic preconditioning is independent of hypoxia-inducible factor-1 alpha expression in photoreceptors.

    Science.gov (United States)

    Thiersch, Markus; Lange, Christina; Joly, Sandrine; Heynen, Severin; Le, Yun Zheng; Samardzija, Marijana; Grimm, Christian

    2009-06-01

    Hypoxic preconditioning stabilizes hypoxia-inducible factor (HIF) 1 alpha in the retina and protects photoreceptors against light-induced cell death. HIF-1 alpha is one of the major transcription factors responding to low oxygen tension and can differentially regulate a large number of target genes. To analyse whether photoreceptor-specific expression of HIF-1 alpha is essential to protect photoreceptors by hypoxic preconditioning, we knocked down expression of HIF-1 alpha specifically in photoreceptor cells, using the cyclization recombinase (Cre)-lox system. The Cre-mediated knockdown caused a 20-fold reduced expression of Hif-1 alpha in the photoreceptor cell layer. In the total retina, RNA expression was reduced by 65%, and hypoxic preconditioning led to only a small increase in HIF-1 alpha protein levels. Accordingly, HIF-1 target gene expression after hypoxia was significantly diminished. Retinas of Hif-1 alpha knockdown animals did not show any pathological alterations, and tolerated hypoxic exposure in a comparable way to wild-type retinas. Importantly, the strong neuroprotective effect of hypoxic preconditioning against light-induced photoreceptor degeneration persisted in knockdown mice, suggesting that hypoxia-mediated survival of light exposure does not depend on an autocrine action of HIF-1 alpha in photoreceptor cells. Hypoxia-mediated stabilization of HIF-2 alpha and phosphorylation of signal transducer and activator of transcription 3 (STAT 3) were not affected in the retinas of Hif-1 alpha knockdown mice. Thus, these factors are candidates for regulating the resistance of photoreceptors to light damage after hypoxic preconditioning, along with several potentially neuroprotective genes that were similarly induced in hypoxic knockdown and control mice.

  3. Radiopharmaceutical agents for skeletal scanning

    International Nuclear Information System (INIS)

    Jansen, S.E.; Van Aswegen, A.; Loetter, M.G.; Minnaar, P.C.; Otto, A.C.; Goedhals, L.; Dedekind, P.S.

    1987-01-01

    The quality of bone scan images obtained with a locally produced and with an imported radiopharmaceutical bone agent, methylene diphosphonate (MDP), was compared visually. Standard skeletal imaging was carried out on 10 patients using both agents, with a period of 2 to 7 days between studies with alternate agents. Equal amounts of activity were administered for both agents. All images were acquired on Polaroid film for subsequent evaluation. The acquisition time for standard amount of counts per study was recorded. Three physicians with applicable experience evaluated image quality (on a 4 point scale) and detectability of metastasis (on a 3 point scale). There was no statistically significant difference (p 0,05) between the two agents by paired t-test of Hotelling's T 2 analysis. It is concluded that the imaging properties of the locally produced and the imported MDP are similar

  4. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: Effective theranostic tools for imaging and therapy of prostate cancer

    International Nuclear Information System (INIS)

    Pillai, Maroor Raghavan Ambikalmajan; Nanabala, Raviteja; Joy, Ajith; Sasikumar, Arun; Knapp, Furn F.

    2016-01-01

    Because of the broad incidence, morbidity and mortality associated with prostate-derived cancer, the development of more effective new technologies continues to be an important goal for the accurate detection and treatment of localized prostate cancer, lymphatic involvement and metastases. Prostate-specific membrane antigen (PSMA; Glycoprotein II) is expressed in high levels on prostate-derived cells and is an important target for visualization and treatment of prostate cancer. Radiolabeled peptide targeting technologies have rapidly evolved over the last decade and have focused on the successful development of radiolabeled small molecules that act as inhibitors to the binding of the N-acetyl-L-aspartyl-L-glutamate (NAAG) substrate to the PSMA molecule. A number of radiolabeled PSMA inhibitors have been described in the literature and labeled with SPECT, PET and therapeutic radionuclides. Clinical studies with these agents have demonstrated the improved potential of PSMA-targeted PET imaging agents to detect metastatic prostate cancer in comparison with conventional imaging technologies. Although many of these agents have been evaluated in humans, by far the most extensive clinical literature has described use of the 68 Ga and 177 Lu agents. This review describes the design and development of these agents, with a focus on the broad clinical introduction of PSMA targeting motifs labeled with 68 Ga for PET-CT imaging and 177 Lu for therapy. In particular, because of availability from the long-lived 68 Ge (T 1/2 = 270 days)/ 68 Ga (T 1/2 = 68 min) generator system and increasing availability of PET-CT, the 68 Ga-labeled PSMA targeted agent is receiving widespread interest and is one of the fastest growing radiopharmaceuticals for PET-CT imaging.

  5. Reoxygenation of hypoxic cells by tumor shrinkage during irradiation. A computer simulation

    International Nuclear Information System (INIS)

    Kocher, M.; Treuer, H.

    1995-01-01

    A 3-dimensional computer simulation was developed in order to estimate the impact of tumor shrinkage on reoxygenation of chronic hypoxic tumor cells during a full course of fractionated irradiation. The growth of a small tumor situated in a vascularized stroma with 350 capillary cross-sections/mm 3 which were displaced by the growing tumor was simulated. Tumors contained 10 4 cells when irradiation started, intrinsic radiosensitivity was set to either low (α=0.3 Gy -1 , β=0.03 Gy -2 ) or high (α=0.4 Gy -1 , β=0.04 Gy -2 ) values. Oxygen enhancement ratio was 3.0, potential tumor doubling time T pot =1, 2 or 5 days. A simulated fractionated radiotherapy was carried out with daily fractions of 2.0 Gy, total dose 50 to 70 Gy. The presence or absence of factors preventing tumor cord shrinkage was also included. During the growth phase, all tumors developed a necrotic core with a hypoxic cell fraction of 25% under these conditions. During irradiation, the slower growing tumors (T pot =2 to 5 days) showed complete reoxygenation of the hypoxic cells after 30 to 40 Gy independent from radiosensitivity, undisturbed tumor shrinkage provided. If shrinkage was prevented, the hypoxic fraction rose to 100% after 30 to 50 Gy. Local tumor control, defined as the destruction of all clonogenic and hypoxic tumor cells increased by 20 to 100% due to reoxygenation and 50 Gy were enough in order to sterilize the tumors in these cases. In the fast growing tumors (T pot =1 day), reoxygenation was only observed in the case of high radiosensitivity and undisturbed tumor shrinkage. In these tumors reoxygenation increased the control rates by up to 60%. (orig./MG) [de

  6. [Hypoxic brain injuries notified to the Danish Patient Insurance Association during 1992-2004. Secondary publication

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.

    2008-01-01

    We investigated the files of the Danish Patient Insurance Association for newborns suffering from hypoxic brain injuries. From 1992 to 2004, a total of 127 approved claims concerning peripartum hypoxic injury were registered. Thirty-eight newborns died and the majority of the 89 surviving children...

  7. Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent.

    Science.gov (United States)

    Makowski, Marcus R; Preissel, Anne; von Bary, Christian; Warley, Alice; Schachoff, Sylvia; Keithan, Alexandra; Cesati, Richard R; Onthank, David C; Schwaiger, Markus; Robinson, Simon P; Botnar, René M

    2012-07-01

    The aim of this study was to demonstrate the feasibility of high-resolution 3-dimensional aortic vessel wall imaging using a novel elastin-specific magnetic resonance contrast agent (ESMA) in a large animal model. The thoracic aortic vessel wall of 6 Landrace pigs was imaged using a novel ESMA and a nonspecific control agent. On day 1, imaging was performed before and after the administration of a nonspecific control agent, gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA; Bayer Schering AG, Berlin, Germany). On day 3, identical scans were repeated before and after the administration of a novel ESMA (Lantheus Medical Imaging, North Billerica, Massachusetts). Three-dimensional inversion recovery gradient echo delayed-enhancement imaging and magnetic resonance (MR) angiography of the thoracic aortic vessel wall were performed on a 1.5-T MR scanner (Achieva; Philips Medical Systems, the Netherlands). The signal-to-noise ratio and the contrast-to-noise ratio of arterial wall enhancement, including the time course of enhancement, were assessed for ESMA and Gd-DTPA. After the completion of imaging sessions, histology, electron microscopy, and inductively coupled plasma mass spectroscopy were performed to localize and quantify the gadolinium bound to the arterial vessel wall. Administration of ESMA resulted in a strong enhancement of the aortic vessel wall on delayed-enhancement imaging, whereas no significant enhancement could be measured with Gd-DTPA. Ninety to 100 minutes after the administration of ESMA, significantly higher signal-to-noise ratio and contrast-to-noise ratio could be measured compared with the administration of Gd-DTPA (45.7 ± 9.6 vs 13.2 ± 3.5, P wall imaging using a novel ESMA in a large animal model under conditions resembling a clinical setting. Such an approach could be useful for the fast 3-dimensional assessment of the arterial vessel wall in the context of atherosclerosis, aortic aneurysms, and hypertension.

  8. Interleukin-17 limits hypoxia-inducible factor 1α and development of hypoxic granulomas during tuberculosis.

    Science.gov (United States)

    Domingo-Gonzalez, Racquel; Das, Shibali; Griffiths, Kristin L; Ahmed, Mushtaq; Bambouskova, Monika; Gopal, Radha; Gondi, Suhas; Muñoz-Torrico, Marcela; Salazar-Lezama, Miguel A; Cruz-Lagunas, Alfredo; Jiménez-Álvarez, Luis; Ramirez-Martinez, Gustavo; Espinosa-Soto, Ramón; Sultana, Tamanna; Lyons-Weiler, James; Reinhart, Todd A; Arcos, Jesus; de la Luz Garcia-Hernandez, Maria; Mastrangelo, Michael A; Al-Hammadi, Noor; Townsend, Reid; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B; Kaplan, Gilla; Horne, William; Kolls, Jay K; Artyomov, Maxim N; Rangel-Moreno, Javier; Zúñiga, Joaquín; Khader, Shabaana A

    2017-10-05

    Mycobacterium tuberculosis (Mtb) is a global health threat, compounded by the emergence of drug-resistant strains. A hallmark of pulmonary tuberculosis (TB) is the formation of hypoxic necrotic granulomas, which upon disintegration, release infectious Mtb. Furthermore, hypoxic necrotic granulomas are associated with increased disease severity and provide a niche for drug-resistant Mtb. However, the host immune responses that promote the development of hypoxic TB granulomas are not well described. Using a necrotic Mtb mouse model, we show that loss of Mtb virulence factors, such as phenolic glycolipids, decreases the production of the proinflammatory cytokine IL-17 (also referred to as IL-17A). IL-17 production negatively regulates the development of hypoxic TB granulomas by limiting the expression of the transcription factor hypoxia-inducible factor 1α (HIF1α). In human TB patients, HIF1α mRNA expression is increased. Through genotyping and association analyses in human samples, we identified a link between the single nucleotide polymorphism rs2275913 in the IL-17 promoter (-197G/G), which is associated with decreased IL-17 production upon stimulation with Mtb cell wall. Together, our data highlight a potentially novel role for IL-17 in limiting the development of hypoxic necrotic granulomas and reducing disease severity in TB.

  9. X-ray Scatter Imaging of Hepatocellular Carcinoma in a Mouse Model Using Nanoparticle Contrast Agents

    Science.gov (United States)

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph

    2015-10-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.

  10. Hypoxia imaging with [F-18] FMISO-PET in head and neck cancer: Potential for guiding intensity modulated radiation therapy in overcoming hypoxia-induced treatment resistance

    International Nuclear Information System (INIS)

    Hendrickson, Kristi; Phillips, Mark; Smith, Wade; Peterson, Lanell; Krohn, Kenneth; Rajendran, Joseph

    2011-01-01

    Background and purpose: Positron emission tomography (PET) imaging with [F-18] fluoromisonidazole (FMISO) has been validated as a hypoxic tracer . Head and neck cancer exhibits hypoxia, inducing aggressive biologic traits that impart resistance to treatment. Delivery of modestly higher radiation doses to tumors with stable areas of chronic hypoxia can improve tumor control . Advanced radiation treatment planning (RTP) and delivery techniques such as intensity modulated radiation therapy (IMRT) can deliver higher doses to a small volume without increasing morbidity. We investigated the utility of co-registered FMISO-PET and CT images to develop clinically feasible RTPs with higher tumor control probabilities (TCP). Materials and methods: FMISO-PET images were used to determine hypoxic sub-volumes for boost planning. Example plans were generated for 10 of the patients in the study who exhibited significant hypoxia. We created an IMRT plan for each patient with a simultaneous integrated boost (SIB) to the hypoxic sub-volumes. We also varied the boost for two patients. Result: A significant (mean 17%, median 15%) improvement in TCP is predicted when the modest additional boost dose to the hypoxic sub-volume is included. Conclusion: Combined FMISO-PET imaging and IMRT planning permit delivery of higher doses to hypoxic regions, increasing the predicted TCP (mean 17%) without increasing expected complications.

  11. Glucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE

    Directory of Open Access Journals (Sweden)

    Benjamin Harding

    2016-12-01

    Full Text Available Hypoxic-ischemic encephalopathy (HIE resulting from asphyxia in the peripartum period is the most common cause of neonatal brain damage and can result in significant neurologic sequelae, including cerebral palsy. Currently therapeutic hypothermia is the only accepted treatment in addition to supportive care for infants with HIE, however, many additional neuroprotective therapies have been investigated. Of these, glucocorticoids have previously been shown to have neuroprotective effects. HIE is also frequently compounded by infectious inflammatory processes (sepsis and as such, the infants may be more amenable to treatment with an anti-inflammatory agent. Thus, the present study investigated dexamethasone and hydrocortisone treatment given after hypoxic-ischemic (HI insult in neonatal rats via intracerebroventricular (ICV injection and intranasal administration. In addition, we examined the effects of hydrocortisone treatment in HIE after lipopolysaccharide (LPS sensitization in a model of HIE and sepsis. We found that dexamethasone significantly reduced rat brain infarction size when given after HI treatment via ICV injection; however it did not demonstrate any neuroprotective effects when given intranasally. Hydrocortisone after HI insult also significantly reduced brain infarction size when given via ICV injection; and the intranasal administration showed to be protective of brain injury in male rats at a dose of 300 µg. LPS sensitization did significantly increase the brain infarction size compared to controls, and hydrocortisone treatment after LPS sensitization showed a significant decrease in brain infarction size when given via ICV injection, as well as intranasal administration in both genders at a dose of 300 µg. To conclude, these results show that glucocorticoids have significant neuroprotective effects when given after HI injury and that these effects may be even more pronounced when given in circumstances of additional

  12. Vasotrophic Regulation of Age-Dependent Hypoxic Cerebrovascular Remodeling

    Science.gov (United States)

    Silpanisong, Jinjutha; Pearce, William J.

    2015-01-01

    Hypoxia can induce functional and structural vascular remodeling by changing the expression of trophic factors to promote homeostasis. While most experimental approaches have been focused on functional remodeling, structural remodeling can reflect changes in the abundance and organization of vascular proteins that determine functional remodeling. Better understanding of age-dependent hypoxic macrovascular remodeling processes of the cerebral vasculature and its clinical implications require knowledge of the vasotrophic factors that influence arterial structure and function. Hypoxia can affect the expression of transcription factors, classical receptor tyrosine kinase factors, non-classical G-protein coupled factors, catecholamines, and purines. Hypoxia’s remodeling effects can be mediated by Hypoxia Inducible Factor (HIF) upregulation in most vascular beds, but alterations in the expression of growth factors can also be independent of HIF. PPARγ is another transcription factor involved in hypoxic remodeling. Expression of classical receptor tyrosine kinase ligands, including vascular endothelial growth factor, platelet derived growth factor, fibroblast growth factor and angiopoietins, can be altered by hypoxia which can act simultaneously to affect remodeling. Tyrosine kinase-independent factors, such as transforming growth factor, nitric oxide, endothelin, angiotensin II, catecholamines, and purines also participate in the remodeling process. This adaptation to hypoxic stress can fundamentally change with age, resulting in different responses between fetuses and adults. Overall, these mechanisms integrate to assure that blood flow and metabolic demand are closely matched in all vascular beds and emphasize the view that the vascular wall is a highly dynamic and heterogeneous tissue with multiple cell types undergoing regular phenotypic transformation. PMID:24063376

  13. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

    International Nuclear Information System (INIS)

    Perez-Mayoral, Elena; Negri, Viviana; Soler-Padros, Jordi; Cerdan, Sebastian; Ballesteros, Paloma

    2008-01-01

    We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T 1 and T 2 of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH e ) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH e , independent of water relaxivity, diffusion or exchange

  14. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Mayoral, Elena [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Departamento de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Negri, Viviana; Soler-Padros, Jordi [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Cerdan, Sebastian [Laboratorio de Imagen Espectroscopica por Resonancia Magnetica (LIERM), Instituto de Investigaciones Biomedicas ' Alberto Sols' , CSIC/UAM, c/Arturo Duperier 4, E-28029 Madrid (Spain); Ballesteros, Paloma [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain)], E-mail: pballesteros@ccia.uned.es

    2008-09-15

    We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T{sub 1} and T{sub 2} of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH{sub e}) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH{sub e}, independent of water relaxivity, diffusion or exchange.

  15. Toward hypoxia-selective DNA-alkylating agents built by grafting nitrogen mustards onto the bioreductively activated, hypoxia-selective DNA-oxidizing agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).

    Science.gov (United States)

    Johnson, Kevin M; Parsons, Zachary D; Barnes, Charles L; Gates, Kent S

    2014-08-15

    Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is a heterocyclic di-N-oxide that undergoes enzymatic deoxygenation selectively in the oxygen-poor (hypoxic) cells found in solid tumors to generate a mono-N-oxide metabolite. This work explored the idea that the electronic changes resulting from the metabolic deoxygenation of tirapazamine analogues might be exploited to activate a DNA-alkylating species selectively in hypoxic tissue. Toward this end, tirapazamine analogues bearing nitrogen mustard units were prepared. In the case of the tirapazamine analogue 18a bearing a nitrogen mustard unit at the 6-position, it was found that removal of the 4-oxide from the parent di-N-oxide to generate the mono-N-oxide analogue 17a did indeed cause a substantial increase in reactivity of the mustard unit, as measured by hydrolysis rates and DNA-alkylation yields. Hammett sigma values were measured to quantitatively assess the magnitude of the electronic changes induced by metabolic deoxygenation of the 3-amino-1,2,4-benzotriazine 1,4-dioxide heterocycle. The results provide evidence that the 1,2,4-benzotiazine 1,4-dioxide unit can serve as an oxygen-sensing prodrug platform for the selective unmasking of bioactive agents in hypoxic cells.

  16. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo.

    Science.gov (United States)

    Itani, Nozomi; Skeffington, Katie L; Beck, Christian; Niu, Youguo; Giussani, Dino A

    2016-01-01

    There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy. © 2015 The Authors. Journal of Pineal Research. Published by John Wiley & Sons Ltd.

  17. INTERMITTENT HYPOBARIC HYPOXIC STIMULATION IN TREATMENT OF CHILDREN WITH BRONCHIAL ASTHMA AT THE PERIOD OF REHABILITATION

    Directory of Open Access Journals (Sweden)

    G.D. Alemanova

    2009-01-01

    Full Text Available Bronchial asthma is one of the widespread chronic diseases of lungs. Immune mechanisms of disorder are one of the causes which lead to pathologic changes in lungs. The aim: to determine the clinical and immunologic effectiveness of pressure adaptation to the periodical hypobaric hypoxic stimulation of treatment of children with bronchial asthma of prepubertal and pubertal periods. In the present work there were observed the clinical and immunologic parameters of 129 children with the verified atopic bronchial asthma of different degree at the remission period before and after the course of pressure adaptation to the periodical hypobaric hypoxic stimulation in conditions of the medical hypobaric pressure chamber with many seats «Ural'1». Clinic effectiveness of hypobaric hypoxic stimulation revealed in continuation of remissions and diminishing of total numerical score of asthma degree. The positive dynamic indexes of cytokine profile was observed. It revealed in reduction of IL 1_, IL 4, IL 5, IL 18 levels and stimulated production of IFN - in blood serum. The course of hypobaric hypoxic stimulation has the positive impact on the named indexes of the patients with bronchial asthma and its intensity depends on the degree of disease and of the age of the child' patient. Thus the use of pressure adaptation to the periodical hypobaric hypoxic stimulation in treatment of children's with bronchial asthma led to the immunologic positive dynamics, especially of the children of prepubertal period. Determination of the immunologic indexes and the level of the cytokines can be used as the additional tests for the evaluation of the effectiveness of pressure adaptation to the periodical hypobaric hypoxic stimulation of children.Key words: bronchial asthma, periodical hypobaric hypoxic stimulation, cytokines, children.

  18. Formulation of MIBI Kit as a heart imaging agent

    International Nuclear Information System (INIS)

    Widyastuti; A, Hanafiah; Yunilda; A, Laksmi; Setyowati, Sri; Y Veronika

    1999-01-01

    9 9 m Tc labelled 2-methoxy-isobutyl-isonitrile(MIBI) has been known as an imaging agent for myocardial perfusion. This radiopharmaceutical preparation gives the same satisfactory result as Thallium- 2 10TI, and presumably could replace 2 01TI because of same advantages. MIBI kit was formulated from MIBI ligand produced by RPC-BATAN which has been characterized and tested for quality. The formula used in this research referred to the formula of imported product(Cardiolite, MIBI kit produced by Dupont), and the quality control testing was performed by comparing some parameters to the imported product. The parameters used for QC testing were radiochemical purity, biodistribution in nice and heart imaging in human volunteer using gamma camera. The result of the experiment showed that the radiochemical purity was 95 % in average, biodistribution in heart to liver gave the ratio of 0.67, 1.5, and 2.53 respectively at 10, 30 and 60 minutes after injection. The result of clinical testing in some volunteers gave contrast images as good as given by Cardiolite. The optimum condition of freeze drying has been found, and the kit can be used for more than 6 months

  19. Microscopic validation of whole mouse micro-metastatic tumor imaging agents using cryo-imaging and sliding organ image registration

    Science.gov (United States)

    Liu, Yiqiao; Zhou, Bo; Qutaish, Mohammed; Wilson, David L.

    2016-03-01

    We created a metastasis imaging, analysis platform consisting of software and multi-spectral cryo-imaging system suitable for evaluating emerging imaging agents targeting micro-metastatic tumor. We analyzed CREKA-Gd in MRI, followed by cryo-imaging which repeatedly sectioned and tiled microscope images of the tissue block face, providing anatomical bright field and molecular fluorescence, enabling 3D microscopic imaging of the entire mouse with single metastatic cell sensitivity. To register MRI volumes to the cryo bright field reference, we used our standard mutual information, non-rigid registration which proceeded: preprocess --> affine --> B-spline non-rigid 3D registration. In this report, we created two modified approaches: mask where we registered locally over a smaller rectangular solid, and sliding organ. Briefly, in sliding organ, we segmented the organ, registered the organ and body volumes separately and combined results. Though sliding organ required manual annotation, it provided the best result as a standard to measure other registration methods. Regularization parameters for standard and mask methods were optimized in a grid search. Evaluations consisted of DICE, and visual scoring of a checkerboard display. Standard had accuracy of 2 voxels in all regions except near the kidney, where there were 5 voxels sliding. After mask and sliding organ correction, kidneys sliding were within 2 voxels, and Dice overlap increased 4%-10% in mask compared to standard. Mask generated comparable results with sliding organ and allowed a semi-automatic process.

  20. Analysis of PET hypoxia imaging in the quantitative imaging for personalized cancer medicine program

    International Nuclear Information System (INIS)

    Yeung, Ivan; Driscoll, Brandon; Keller, Harald; Shek, Tina; Jaffray, David; Hedley, David

    2014-01-01

    Quantitative imaging is an important tool in clinical trials of testing novel agents and strategies for cancer treatment. The Quantitative Imaging Personalized Cancer Medicine Program (QIPCM) provides clinicians and researchers participating in multi-center clinical trials with a central repository for their imaging data. In addition, a set of tools provide standards of practice (SOP) in end-to-end quality assurance of scanners and image analysis. The four components for data archiving and analysis are the Clinical Trials Patient Database, the Clinical Trials PACS, the data analysis engine(s) and the high-speed networks that connect them. The program provides a suite of software which is able to perform RECIST, dynamic MRI, CT and PET analysis. The imaging data can be assessed securely from remote and analyzed by researchers with these software tools, or with tools provided by the users and installed at the server. Alternatively, QIPCM provides a service for data analysis on the imaging data according developed SOP. An example of a clinical study in which patients with unresectable pancreatic adenocarcinoma were studied with dynamic PET-FAZA for hypoxia measurement will be discussed. We successfully quantified the degree of hypoxia as well as tumor perfusion in a group of 20 patients in terms of SUV and hypoxic fraction. It was found that there is no correlation between bulk tumor perfusion and hypoxia status in this cohort. QIPCM also provides end-to-end QA testing of scanners used in multi-center clinical trials. Based on quality assurance data from multiple CT-PET scanners, we concluded that quality control of imaging was vital in the success in multi-center trials as different imaging and reconstruction parameters in PET imaging could lead to very different results in hypoxia imaging. (author)

  1. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery

    Directory of Open Access Journals (Sweden)

    Vera ePaefgen

    2015-09-01

    Full Text Available Ultrasound is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents. There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular contrast agents enable functional analyses, e.g. to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles’ shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by ultrasound pulses to locally release the entrapped agent. Recent studies show that ultrasound contrast agents are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of ultrasound contrast agents and introduces the current clinical applications of contrast-enhanced ultrasound. Additionally, an overview of the recent developments in ultrasound probe design for functional and molecular diagnosis as well as for drug delivery is given.

  2. Hypoxic Vasospasm Mediated by cIMP: When Soluble Guanylyl Cyclase Turns Bad.

    Science.gov (United States)

    Gao, Yuansheng; Chen, Zhengju; Leung, Susan W S; Vanhoutte, Paul M

    2015-06-01

    In a number of isolated blood vessel types, hypoxia causes an acute contraction that is dependent on the presence of nitric oxide and activation of soluble guanylyl cyclase. It is more pronounced when the preparations are constricted and is therefore termed hypoxic augmentation of vasoconstriction. This hypoxic response is accompanied by increases in the intracellular level of inosine 5'-triphosphate and in the synthesis of inosine 3',5'-cyclic monophosphate (cIMP) by soluble guanylyl cyclase. The administration of exogenous cIMP or inosine 5'-triphosphate causes augmented vasoconstriction to hypoxia. Furthermore, the vasoconstriction evoked by hypoxia and cIMP is associated with increased activity of Rho kinase (ROCK), indicating that cIMP may mediate the hypoxic effect by sensitizing the myofilaments to Ca through ROCK. Hypoxia is implicated in exaggerated vasoconstriction in the pathogenesis of coronary artery disease, myocardial infarction, hypertension, and stroke. The newly found role of cIMP may help to identify unique therapeutic targets for certain cardiovascular disorders.

  3. Magnetic resonance imaging of osteosarcoma using a bis(alendronate)-based bone-targeted contrast agent.

    Science.gov (United States)

    Ge, Pingju; Sheng, Fugeng; Jin, Yiguang; Tong, Li; Du, Lina; Zhang, Lei; Tian, Ning; Li, Gongjie

    2016-12-01

    Magnetic resonance (MR) is currently used for diagnosis of osteosarcoma but not well even though contrast agents are administered. Here, we report a novel bone-targeted MR imaging contrast agent, Gd 2 -diethylenetriaminepentaacetate-bis(alendronate) (Gd 2 -DTPA-BA) for the diagnosis of osteosarcoma. It is the conjugate of a bone cell-seeking molecule (i.e., alendronate) and an MR imaging contrast agent (i.e., Gd-DTPA). Its physicochemical parameters were measured, including pK a , complex constant, and T 1 relaxivity. Its bone cell-seeking ability was evaluated by measuring its adsorption on hydroxyapatite. Hemolysis was investigated. MR imaging and biodistribution of Gd 2 -DTPA-BA and Gd-DTPA were studied on healthy and osteosarcoma-bearing nude mice. Gd 2 -DTPA-BA showed high adsorption on hydroxyapatite, the high MR relaxivity (r 1 ) of 7.613mM -1 s -1 (2.6 folds of Gd-DTPA), and no hemolysis. The MR contrast effect of Gd 2 -DTPA-BA was much higher than that of Gd-DTPA after intravenous injection to the mice. More importantly, the MR imaging of osteosarcoma was significantly improved by Gd 2 -DTPA-BA. The signal intensity of Gd 2 -DTPA-BA reached 120.3% at 50min, equal to three folds of Gd-DTPA. The bone targeting index (bone/blood) of Gd 2 -DTPA-BA in the osteosarcoma-bearing mice was very high to 130 at 180min. Furthermore, the contrast enhancement could also be found in the lung due to metastasis of osteosarcoma. Gd 2 -DTPA-BA plays a promising role in the diagnoses of osteosacomas, including the primary bone tumors and metastases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Scott B Raymond

    Full Text Available Alzheimer's disease is a neurodegenerative disorder typified by the accumulation of a small protein, beta-amyloid, which aggregates and is the primary component of amyloid plaques. Many new therapeutic and diagnostic agents for reducing amyloid plaques have limited efficacy in vivo because of poor transport across the blood-brain barrier. Here we demonstrate that low-intensity focused ultrasound with a microbubble contrast agent may be used to transiently disrupt the blood-brain barrier, allowing non-invasive, localized delivery of imaging fluorophores and immunotherapeutics directly to amyloid plaques. We administered intravenous Trypan blue, an amyloid staining red fluorophore, and anti-amyloid antibodies, concurrently with focused ultrasound therapy in plaque-bearing, transgenic mouse models of Alzheimer's disease with amyloid pathology. MRI guidance permitted selective treatment and monitoring of plaque-heavy anatomical regions, such as the hippocampus. Treated brain regions exhibited 16.5+/-5.4-fold increase in Trypan blue fluorescence and 2.7+/-1.2-fold increase in anti-amyloid antibodies that localized to amyloid plaques. Ultrasound-enhanced delivery was consistently reproduced in two different transgenic strains (APPswe:PSEN1dE9, PDAPP, across a large age range (9-26 months, with and without MR guidance, and with little or no tissue damage. Ultrasound-mediated, transient blood-brain barrier disruption allows the delivery of both therapeutic and molecular imaging agents in Alzheimer's mouse models, which should aid pre-clinical drug screening and imaging probe development. Furthermore, this technique may be used to deliver a wide variety of small and large molecules to the brain for imaging and therapy in other neurodegenerative diseases.

  5. Experimental design and instability analysis of coaxial electrospray process for microencapsulation of drugs and imaging agents.

    Science.gov (United States)

    Si, Ting; Zhang, Leilei; Li, Guangbin; Roberts, Cynthia J; Yin, Xiezhen; Xu, Ronald

    2013-07-01

    Recent developments in multimodal imaging and image-guided therapy requires multilayered microparticles that encapsulate several imaging and therapeutic agents in the same carrier. However, commonly used microencapsulation processes have multiple limitations such as low encapsulation efficiency and loss of bioactivity for the encapsulated biological cargos. To overcome these limitations, we have carried out both experimental and theoretical studies on coaxial electrospray of multilayered microparticles. On the experimental side, an improved coaxial electrospray setup has been developed. A customized coaxial needle assembly combined with two ring electrodes has been used to enhance the stability of the cone and widen the process parameter range of the stable cone-jet mode. With this assembly, we have obtained poly(lactide-co-glycolide) microparticles with fine morphology and uniform size distribution. On the theoretical side, an instability analysis of the coaxial electrified jet has been performed based on the experimental parameters. The effects of process parameters on the formation of different unstable modes have been studied. The reported experimental and theoretical research represents a significant step toward quantitative control and optimization of the coaxial electrospray process for microencapsulation of multiple drugs and imaging agents in multimodal imaging and image-guided therapy.

  6. Impact of perinatal systemic hypoxic-ischemic injury on the brain of male offspring rats: an improved model of neonatal hypoxic-ischemic encephalopathy in early preterm newborns.

    Directory of Open Access Journals (Sweden)

    Yuejun Huang

    Full Text Available In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.

  7. Characterization of image heterogeneity using 2D Minkowski functionals increases the sensitivity of detection of a targeted MRI contrast agent.

    Science.gov (United States)

    Canuto, Holly C; McLachlan, Charles; Kettunen, Mikko I; Velic, Marko; Krishnan, Anant S; Neves, Andre' A; de Backer, Maaike; Hu, D-E; Hobson, Michael P; Brindle, Kevin M

    2009-05-01

    A targeted Gd(3+)-based contrast agent has been developed that detects tumor cell death by binding to the phosphatidylserine (PS) exposed on the plasma membrane of dying cells. Although this agent has been used to detect tumor cell death in vivo, the differences in signal intensity between treated and untreated tumors was relatively small. As cell death is often spatially heterogeneous within tumors, we investigated whether an image analysis technique that parameterizes heterogeneity could be used to increase the sensitivity of detection of this targeted contrast agent. Two-dimensional (2D) Minkowski functionals (MFs) provided an automated and reliable method for parameterization of image heterogeneity, which does not require prior assumptions about the number of regions or features in the image, and were shown to increase the sensitivity of detection of the contrast agent as compared to simple signal intensity analysis. (c) 2009 Wiley-Liss, Inc.

  8. Assessment of myocardial infarction by magnetic resonance imaging with the aid of contrast agents

    International Nuclear Information System (INIS)

    Roos, A. de; Doornbos, J.

    1991-01-01

    The potential of MR imaging in myocardial ischemia with low-temporal-resolution spin-echo techniques both with and without MR contrast agents has been explored. There are indications that early MR imaging after administration of Gd-DTPA is capable to differentiate reperfused from non-reperfused infarcts. Furthermore, MR infarct sizing using Gd-DTPA is feasible to demonstrate infarct size reduction in patients with successful reperfusion. (H.W.). 50 refs.; 9 figs

  9. Synthesis, biological evaluation, and baboon PET imaging of the potential adrenal imaging agent cholesteryl-p-[{sup 18}f]fluorobenzoate

    Energy Technology Data Exchange (ETDEWEB)

    Jonson, Stephanie D.; Welch, Michael J. E-mail: welch@mirlink.wustl.edu

    1999-01-01

    Cholesteryl-p-[{sup 18}F]fluorobenzoate ([{sup 18}F]CFB) was investigated as a potential adrenal positron emission tomography (PET) imaging agent for the diagnostic imaging of adrenal disorders. We describe the synthesis, biodistribution, adrenal autoradiography, and baboon PET imaging of [{sup 18}F]CFB. The synthesis of [{sup 18}F]CFB was facilitated by the use of a specially designed microwave cavity that was instrumental in effecting 70-83% incorporation of fluorine-18 in 60 s via [{sup 18}F]fluoro-for-nitro exchange. Tissue distribution studies in mature female Sprague-Dawley rats showed good accumulation of [{sup 18}F]CFB in the steroid-secreting tissues, adrenals and ovaries, at 1 h postinjection. The effectiveness of [{sup 18}F]CFB to accumulate in diseased adrenals was shown through biodistribution studies in hypolipidemic rats, which showed a greater than threefold increase in adrenal uptake at 1 h and increased adrenal/liver and adrenal/kidney ratios. Analysis of the metabolites at 1 h in the blood, adrenals, spleen, and ovaries of hypolipidemic and control rats showed the intact tracer representing greater than 86%, 93%, 92%, and 82% of the accumulated activity, respectively. [{sup 18}F]CFB was confirmed to selectively accumulate in the adrenal cortex versus the adrenal medulla by autoradiography. Normal baboon PET imaging with [{sup 18}F]CFB effectively showed adrenal localization as early as 15 min after injection of the tracer, with enhanced adrenal contrast seen at 60-70 min. These results suggest that [{sup 18}F]CFB may be useful as an adrenal PET imaging agent for assessing adrenal disorders.

  10. Radiolabeled adrenergic neuron-blocking agents: Adrenomedullary imaging with [131I]iodobenzylguanidine

    International Nuclear Information System (INIS)

    Wieland, D.M.; Wu, J.; Brown, L.E.; Mangner, T.J.; Swanson, D.P.; Beierwaltes, W.H.

    1980-01-01

    The tissue distributions of three radioiodinated neuron-blocking agents have been determined in dogs. Iodine-125-labeled meta- and para-iodobenzylguanidines show a striking affinity for, and retention in, the adrenal medulla. Peak concentrations of the two isomers exceed those of previously reported adrenophilic compounds. High myocardial concentrations were also observed at early time intervals. Images of the dog's adrenal medullae have been obtained with para[ 131 I]-iodobenzylguanidine

  11. Short-lived cyclotron produced radionuclides evaluation on the myocardial imaging agents

    International Nuclear Information System (INIS)

    Rikitake, Tomoyuki; Tateno, Yukio; Yamane, Akiko; Matsumoto, Touru; Umegaki, Youichiro

    1978-01-01

    Organ uptake after venous administration of 13 N-ammonia, 43 K, 86 Rb, 201 Tl and after rectal administration of 13 N-ammonia was studied. Each nuclides highly accumulated in myocardium after intravenous injection, but rectal administrated 13 N-ammonia did not show this tendency. Intravenously injected 13 N-ammonia showed very early myocardial uptake and early secretion from kidney. Rectal administrated 13 N-ammonia was less accumulated in myocardium. 43 KCl and 13 NH 4 Cl were injected intravenously and administrated from the rectum to the rabbits under imaging scintilator system. Whole-body scintiscanner with display-processing unit was used for a 43 KCl injected rabbit. A positroncamera with computer system (TOSBAC 3400 on line system) was used for 13 NH 4 Cl (i.v. and rectal ad.) rabbits. The dynamic studies of 43 KCl, 13 NH 4 Cl were made from these imaging data. The countratio of heart to the liver after 43 K injection was nearly equal or less than the liver. The peakcount was at 15 min after 13 NH 4 Cl intravenous injection. 13 N accumulated promptly at upper mediastinal part and kidney, and soon disappeared from these part. Uptake of the heat was high and that of the liver was low. When 13 NH 4 Cl was administrated from the rectum, 13 N trapped at the liver, and uptake of the heart was very low level. Scintiscanning after 13 KCl intravenously injected, did not show the high resolution. Rabbit heart was distinguishable from the liver, but there are no visibility of the detail. Seeing positronscintigram after 13 NH 4 Cl administration both from intravenously and from rectum, the detail was well visible. We concluded the positron scintigram after 13 NH 4 Cl injection should be a good myocardial imaging agent. Furthermore, 13 Nh 4 Cl has two eminent characters as a myocardial imaging agent comparing 201 TlCl. One is prompt making of image, the others is the very low radiation dose. (auth.)

  12. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging.

    Science.gov (United States)

    Wang, Yi-Xiang J

    2015-12-21

    Five types of superparamagnetic iron oxide (SPIO), i.e. Ferumoxides (Feridex(®) IV, Berlex Laboratories), Ferucarbotran (Resovist(®), Bayer Healthcare), Ferumoxtran-10 (AMI-227 or Code-7227, Combidex(®), AMAG Pharma; Sinerem(®), Guerbet), NC100150 (Clariscan(®), Nycomed,) and (VSOP C184, Ferropharm) have been designed and clinically tested as magnetic resonance contrast agents. However, until now Resovist(®) is current available in only a few countries. The other four agents have been stopped for further development or withdrawn from the market. Another SPIO agent Ferumoxytol (Feraheme(®)) is approved for the treatment of iron deficiency in adult chronic kidney disease patients. Ferumoxytol is comprised of iron oxide particles surrounded by a carbohydrate coat, and it is being explored as a potential imaging approach for evaluating lymph nodes and certain liver tumors.

  13. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    Energy Technology Data Exchange (ETDEWEB)

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J. (CSIRO/MHT); (CSIRO/MSE)

    2010-08-23

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  14. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    International Nuclear Information System (INIS)

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J.

    2010-01-01

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  15. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ahmad, Tanveer; Bae, Hongsub; Iqbal, Yousaf; Rhee, Ilsu; Hong, Sungwook; Chang, Yongmin; Lee, Jaejun; Sohn, Derac

    2015-01-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe 2 O 4 ) nanoparticles as both T 1 and T 2 contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T 1 and T 2 relaxivities were 0.858±0.04 and 1.71±0.03 mM −1 s −1 , respectively. In animal experimentation, both a 25% signal enhancement in the T 1 -weighted mage and a 71% signal loss in the T 2 -weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T 1 and T 2 contrast agents in MRI. We note that the applicability of our nanoparticles as both T 1 and T 2 contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles. - Highlights: • Chitosan-coated nickel-ferrite (Ni-Fe 2 O 4 ) nanoparticles were synthesized in an aqueous system by chemical co-precipitation. • The characterization of bare and chitosan-coated nanoparticles were performed using various analytical tools, such as TEM, FTIR, XRD, and VMS. • We evaluated the coated particles as potential T 1 and T 2 contrast agents for MRI by measuring T 1 and T 2 relaxation times as a function of iron concentration. • Both T 1 and T 2 effects were also observed in animal experimentation

  16. CD44 Interacts with HIF-2α to Modulate the Hypoxic Phenotype of Perinecrotic and Perivascular Glioma Cells

    DEFF Research Database (Denmark)

    Johansson, Elinn; Grassi, Elisa S.; Pantazopoulou, Vasiliki

    2017-01-01

    Hypoxia-inducible factors enhance glioma stemness, and glioma stem cells have an amplified hypoxic response despite residing within a perivascular niche. Still, little is known about differential HIF regulation in stem versus bulk glioma cells. We show that the intracellular domain of stem cell...... marker CD44 (CD44ICD) is released at hypoxia, binds HIF-2α (but not HIF-1α), enhances HIF target gene activation, and is required for hypoxia-induced stemness in glioma. In a glioma mouse model, CD44 was restricted to hypoxic and perivascular tumor regions, and in human glioma, a hypoxia signature...... correlated with CD44. The CD44ICD was sufficient to induce hypoxic signaling at perivascular oxygen tensions, and blocking CD44 cleavage decreased HIF-2α stabilization in CD44-expressing cells. Our data indicate that the stem cell marker CD44 modulates the hypoxic response of glioma cells and that the pseudo-hypoxic...

  17. Assessment of Hypoxia in Human Cervical Carcinoma Xenografts by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Ellingsen, Christine; Egeland, Tormod A.M.; Gulliksrud, Kristine M.Sc.; Gaustad, Jon-Vidar; Mathiesen, Berit; Rofstad, Einar K.

    2009-01-01

    Purpose: Patients with advanced cervical cancer and highly hypoxic primary tumors show increased frequency of locoregional treatment failure and poor disease-free and overall survival rates. The potential usefulness of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing tumor hypoxia noninvasively was investigated in the present preclinical study. Methods and Materials: CK-160 and TS-415 human cervical carcinoma xenografts transplanted intramuscularly (i.m.) or subcutaneously (s.c.) in BALB/c nu/nu mice were subjected to DCE-MRI and measurement of fraction of radiobiologically hypoxic cells. Tumor images of K trans (the volume transfer constant of Gd-DTPA) and v e (the extracellular volume fraction of the imaged tissue) were produced by pharmacokinetic analysis of the DCE-MRI data. Fraction of radiobiologically hypoxic cells was measured by using the paired survival curve method. Results: Fraction of radiobiologically hypoxic cells differed significantly among the four tumor groups. The mean values ± SE were determined to be 44% ± 7% (i.m. CK-160), 77% ± 10% (s.c. CK-160), 23% ± 5% (i.m. TS-415), and 52% ± 6% (s.c. TS-415). The four tumor groups differed significantly also in K trans , and there was an unambiguous inverse relationship between K trans and fraction of radiobiologically hypoxic cells. On the other hand, significant differences among the groups in v e could not be detected. Conclusions: The study supports the clinical development of DCE-MRI as a method for assessing the extent of hypoxia in carcinoma of the cervix

  18. EPR and DNP Properties of Certain Novel Single Electron Contrast Agents Intended for Oximetric Imaging

    DEFF Research Database (Denmark)

    Ardenkjær-Larsen, J. H.; Laursen, I; Leunbach, I.

    1998-01-01

    Parameters of relevance to oximetry with Overhauser magnetic resonance imaging (OMRI) have been measured for three single electron contrast agents of the triphenylmethyl type. The single electron contrast agents are stable and water soluble. Magnetic resonance properties of the agents have been...... examined with electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and dynamic nuclear polarization (DNP) at 9.5 mT in water, isotonic saline, plasma, and blood at 23 and 37°C. The relaxivities of the agents are about 0.2–0.4 mM−1s−1and the DNP enhancements extrapolate close...... to the dipolar limit. The agents have a single, narrow EPR line, which is analyzed as a Voigt function. The linewidth is measured as a function of the agent concentration and the oxygen concentration. The concentration broadenings are about 1–3 μT/mM and the Lorentzian linewidths at infinite dilution are less...

  19. sup(99m)Tc-labeled monofluorophosphate as a skeletal imaging agent

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneji; Ito, Yasuhiko; Muranaka, Akira; Yokobayashi, Tsuneo; Uchida, Masahiro

    1976-01-01

    The performance of sup(99m)Tc-monofluorophosphate was compared with those of sup(99m)Tc-pyrophosphate and sup(99m)Tc-diphosphonate in rabbits. Studies included chromatographic quality control, measurements of blood clearance, tissue distribution, urinary excretion, skeletal imaging, and measurements of the serum calcium. The labeling for sup(99m)Tc-monofluorophosphate was 98% on paper chromatography and 85% on thin layer chromatography. A large fraction of the activity of the three labeled agents was cleared very rapidly from the bloodstream: however, slow components of the curves were the highest for sup(99m)Tc-monofluorophosphate and lowest for sup(99m)Tc-diphosphonate. Three hours after injection 20% of the dose of sup(99m)Tc-monofluorophosphate was taken up by bone. The corresponding values of sup(99m)Tc-pyrophosphate and sup(99m)Tc-diphosphonate were 29.1% and 40.0% respectively. Ratio of concentration in bone to that in other major organs was highest with sup(99m)Tc-diphosphonate. Ratios were similar for both sup(99m)Tc-monofluorophosphate and sup(99m)Tc-pyrophosphate and much lower than those of sup(99m)Tc-diphosphonate. No significant differences were demonstrated in urinary excretion of the three labeled agents. Visual comparison of the scans obtained with three compounds confirmed the results of radioassay. All were excellent skeletal imaging agents, although sup(99m)Tc-diphosphonate appeared to be superior to the other two mainly because of a higher target to non-target ratio. With 50 mg of monofluorophosphate and 1 mg of stannous fluoride, no hypocalcemia was observed. (J.P.N.)

  20. Detailed assessment of gene activation levels by multiple hypoxia-responsive elements under various hypoxic conditions.

    Science.gov (United States)

    Takeuchi, Yasuto; Inubushi, Masayuki; Jin, Yong-Nan; Murai, Chika; Tsuji, Atsushi B; Hata, Hironobu; Kitagawa, Yoshimasa; Saga, Tsuneo

    2014-12-01

    HIF-1/HRE pathway is a promising target for the imaging and the treatment of intractable malignancy (HIF-1; hypoxia-inducible factor 1, HRE; hypoxia-responsive element). The purposes of our study are: (1) to assess the gene activation levels resulting from various numbers of HREs under various hypoxic conditions, (2) to evaluate the bidirectional activity of multiple HREs, and (3) to confirm whether multiple HREs can induce gene expression in vivo. Human colon carcinoma HCT116 cells were transiently transfected by the constructs containing a firefly luciferase reporter gene and various numbers (2, 4, 6, 8, 10, and 12) of HREs (nHRE+, nHRE-). The relative luciferase activities were measured under various durations of hypoxia (6, 12, 18, and 24 h), O2 concentrations (1, 2, 4, 8, and 16 %), and various concentrations of deferoxamine mesylate (20, 40, 80, 160, and 320 µg/mL growth medium). The bidirectional gene activation levels by HREs were examined in the constructs (dual-luc-nHREs) containing firefly and Renilla luciferase reporter genes at each side of nHREs. Finally, to test whether the construct containing 12HRE and the NIS reporter gene (12HRE-NIS) can induce gene expression in vivo, SPECT imaging was performed in a mouse xenograft model. (1) gene activation levels by HREs tended to increase with increasing HRE copy number, but a saturation effect was observed in constructs with more than 6 or 8 copies of an HRE, (2) gene activation levels by HREs increased remarkably during 6-12 h of hypoxia, but not beyond 12 h, (3) gene activation levels by HREs decreased with increasing O2 concentrations, but could be detected even under mild hypoxia at 16 % O2, (4) the bidirectionally proportional activity of the HRE was confirmed regardless of the hypoxic severity, and (5) NIS expression driven by 12 tandem copies of an HRE in response to hypoxia could be visualized on in vivo SPECT imaging. The results of this study will help in the understanding and assessment of

  1. Multiparametric imaging of patient and tumour heterogeneity in non-small-cell lung cancer: quantification of tumour hypoxia, metabolism and perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Elmpt, Wouter van; Zegers, Catharina M.L.; Reymen, Bart; Even, Aniek J.G.; Oellers, Michel; Troost, Esther G.C.; Lambin, Philippe [Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht (Netherlands); Dingemans, Anne-Marie C. [Maastricht University Medical Centre, Department of Pulmonology, GROW - School for Oncology and Developmental Biology, Maastricht (Netherlands); Wildberger, Joachim E.; Das, Marco [Maastricht University Medical Centre, Department of Radiology, GROW - School for Oncology and Developmental Biology, Maastricht (Netherlands); Mottaghy, Felix M. [Maastricht University Medical Centre, Department of Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht (Netherlands); University Hospital RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany)

    2016-02-15

    Multiple imaging techniques are nowadays available for clinical in-vivo visualization of tumour biology. FDG PET/CT identifies increased tumour metabolism, hypoxia PET visualizes tumour oxygenation and dynamic contrast-enhanced (DCE) CT characterizes vasculature and morphology. We explored the relationships among these biological features in patients with non-small-cell lung cancer (NSCLC) at both the patient level and the tumour subvolume level. A group of 14 NSCLC patients from two ongoing clinical trials (NCT01024829 and NCT01210378) were scanned using FDG PET/CT, HX4 PET/CT and DCE CT prior to chemoradiotherapy. Standardized uptake values (SUV) in the primary tumour were calculated for the FDG and hypoxia HX4 PET/CT scans. For hypoxia imaging, the hypoxic volume, fraction and tumour-to-blood ratio (TBR) were also defined. Blood flow and blood volume were obtained from DCE CT imaging. A tumour subvolume analysis was used to quantify the spatial overlap between subvolumes. At the patient level, negative correlations were observed between blood flow and the hypoxia parameters (TBR >1.2): hypoxic volume (-0.65, p = 0.014), hypoxic fraction (-0.60, p = 0.025) and TBR (-0.56, p = 0.042). At the tumour subvolume level, hypoxic and metabolically active subvolumes showed an overlap of 53 ± 36 %. Overlap between hypoxic sub-volumes and those with high blood flow and blood volume was smaller: 15 ± 17 % and 28 ± 28 %, respectively. Half of the patients showed a spatial mismatch (overlap <5 %) between increased blood flow and hypoxia. The biological imaging features defined in NSCLC tumours showed large interpatient and intratumour variability. There was overlap between hypoxic and metabolically active subvolumes in the majority of tumours, there was spatial mismatch between regions with high blood flow and those with increased hypoxia. (orig.)

  2. New 68Ga-PhenA bisphosphonates as potential bone imaging agents

    International Nuclear Information System (INIS)

    Wu, Zehui; Zha, Zhihao; Choi, Seok Rye; Plössl, Karl; Zhu, Lin; Kung, Hank F.

    2016-01-01

    Introduction: In vivo positron emission tomography (PET) imaging of the bone using [ 68 Ga]bisphosphonates may be a valuable tool for cancer diagnosis and monitoring therapeutic treatment. We have developed new [ 68 Ga]bisphosphonates based on the chelating group, AAZTA (6-[bis(hydroxycarbonyl-methyl)amino]-1,4-bis(hydroxycarbonyl methyl)-6-methylperhydro-1,4-diazepine). Method: Phenoxy derivative of AAZTA (2,2′-(6-(bis(carboxymethyl)amino)-6-((4-(2-carboxyethyl)phenoxy) methyl)-1,4-diazepane-1,4-diyl)diacetic acid), PhenA, 2, containing a bisphosphonate group (PhenA-BPAMD, 3, and PhenA-HBP, 4) was prepared. Labeling of these chelating agents with 68 Ga was evaluated. Results: The ligands reacted rapidly in a sodium acetate buffer with [ 68 Ga]GaCl 3 eluted from a commercially available 68 Ge/ 68 Ga generator (pH 4, > 95% labeling at room temperature in 5 min) to form [ 68 Ga]PhenA-BPAMD, 3, and [ 68 Ga]PhenA-HBP, 4. The improved labeling condition negates the need for further purification. The 68 Ga bisphosphonate biodistribution and autoradiography of bone sections in normal mice after an iv injection showed excellent bone uptake. Conclusion: New 68 Ga labeled bisphosphonates may be useful as in vivo bone imaging agents in conjunction with positron emission tomography (PET).

  3. Risk factor for hypoxic ischemic encephalopathy in children

    International Nuclear Information System (INIS)

    Butt, T.K.; Farooqui, R.; Khan, U.; Farooqui, R.

    2008-01-01

    To determine underlying risk factors in neonates with hypoxic ischemic encephalopathy. All neonates (153) with the diagnosis of Hypoxic Ischemic Encephalopathy (HIE) were included in the study. Controls (187) were selected from admissions on the same day. Possible risk factors such as maternal age, parity, antenatal monitoring, place of delivery, prolonged second stage of labour, type of delivery, type of attendant at delivery and the gestational age were noted and compared. Sixty one (39.9%) mothers of asphyxiated babies reported no antenatal visits compared to 24.1% in the control group (OR 2.1, 95% CI 1.3-3.2; p=0.002). Only 6.5% of cases were born in government hospitals (teaching and district) in comparison to 20.9% of controls (OR 3.8, 95% CI 1.9-7.6; p=0.001). In 28.1% of cases, mothers had history of prolonged 2nd stage of labour in comparison to 5.9% of controls (OR 6.3, 95% CI 3.3-11.9; p<0.001). Fifty five cases (35.9%) were delivered by unskilled birth attendants compared to 28 (14.9%) controls (OR 3.2, 95% CI 1.9-5.3; p<0.001). No significant difference was found in maternal age, maternal parity, gestational age and the mode of delivery between the two groups. Delivery by unskilled birth attendant, prolonged second stage of labour, birth in a non-government hospital setup and absence of antenatal care were significant risk factors for hypoxic ischemic encephalopathy in neonates. Improvement in antenatal and intrapartum care may be helpful in decreasing the frequency of this problem. (author)

  4. Sirtuin 6 protects the heart from hypoxic damage

    International Nuclear Information System (INIS)

    Maksin-Matveev, Anna; Kanfi, Yariv; Hochhauser, Edith; Isak, Ahuva; Cohen, Haim Y.; Shainberg, Asher

    2015-01-01

    Sirtuin 6 (SIRT6) is a protein associated with prolonged life expectancy. We investigated whether life extension is associated with cardioprotection against hypoxia. The proposed study is to develop approaches to reduce hypoxic damage through the use of the sirtuin pathway and to elucidate the mechanism involved. For that purpose we subjected cardiomyocytes from transgenic mice (TG) with over-expression of SIRT6, to hypoxic stress in cell cultures. We hypothesized that cardiomyocytes from transgenic mice subjected to prolonged hypoxia may release survival factors or fewer damage markers to protect them from hypoxic stress compared with wild type (WT) mice. Lactate dehydrogenase (LDH) and creatine kinase (CK) released to the medium and propidium iodide (PI) binding, were markedly decreased following hypoxia in TG cardiomyocytes. The protective mechanism of SIRT6 over-expression includes the activation of pAMPKα pathway, the increased protein level of B-cell lymphoma 2 (Bcl2), the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), the decrease of reactive oxygen species (ROS) and the reduction in the protein level of phospho-protein kinase B (pAkt) during hypoxia. Together, all these processes impede the necrosis/apoptosis pathways leading to the improved survival of cardiomyocytes following hypoxia, which might explain life extension. - Highlights: • Sirtuin 6 is a protein associated with prolonged life expectancy. • Over-expression of sirtuin 6 protects cardiocytes from hypoxia and oxidative stress. • Over-expression of sirtuin 6 activates the pAMPKα pathway and the Bcl2 expression. • Over-expression of sirtuin 6 decreases ROS formation and pAkt level during hypoxia. • These pathways protect cardiocytes from hypoxia and might explain lifespan extension

  5. Sirtuin 6 protects the heart from hypoxic damage

    Energy Technology Data Exchange (ETDEWEB)

    Maksin-Matveev, Anna; Kanfi, Yariv [The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900 (Israel); Hochhauser, Edith [The Laboratory of the Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva (Israel); Isak, Ahuva; Cohen, Haim Y. [The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900 (Israel); Shainberg, Asher, E-mail: asher.shainberg@gmail.com [The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900 (Israel)

    2015-01-01

    Sirtuin 6 (SIRT6) is a protein associated with prolonged life expectancy. We investigated whether life extension is associated with cardioprotection against hypoxia. The proposed study is to develop approaches to reduce hypoxic damage through the use of the sirtuin pathway and to elucidate the mechanism involved. For that purpose we subjected cardiomyocytes from transgenic mice (TG) with over-expression of SIRT6, to hypoxic stress in cell cultures. We hypothesized that cardiomyocytes from transgenic mice subjected to prolonged hypoxia may release survival factors or fewer damage markers to protect them from hypoxic stress compared with wild type (WT) mice. Lactate dehydrogenase (LDH) and creatine kinase (CK) released to the medium and propidium iodide (PI) binding, were markedly decreased following hypoxia in TG cardiomyocytes. The protective mechanism of SIRT6 over-expression includes the activation of pAMPKα pathway, the increased protein level of B-cell lymphoma 2 (Bcl2), the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), the decrease of reactive oxygen species (ROS) and the reduction in the protein level of phospho-protein kinase B (pAkt) during hypoxia. Together, all these processes impede the necrosis/apoptosis pathways leading to the improved survival of cardiomyocytes following hypoxia, which might explain life extension. - Highlights: • Sirtuin 6 is a protein associated with prolonged life expectancy. • Over-expression of sirtuin 6 protects cardiocytes from hypoxia and oxidative stress. • Over-expression of sirtuin 6 activates the pAMPKα pathway and the Bcl2 expression. • Over-expression of sirtuin 6 decreases ROS formation and pAkt level during hypoxia. • These pathways protect cardiocytes from hypoxia and might explain lifespan extension.

  6. The preparation and identification of peptide imaging agent of lung cancer

    International Nuclear Information System (INIS)

    Chu Liping; Wang Yan; Wang Yueying; Liu Jinjian; Wu Hongying; Liu Jianfeng

    2010-01-01

    Objective: To screen in vivo lung cancer specific binding 7-peptide from T7 phage display random peptide library and prepare peptide imaging agent in early in early diagnosis of lung cancer. Methods: Used phage display in vivo technology to get the 7-peptide phage that can bind the lung cancer specifically, then sequenced and synthesized 7-peptide. After being labeled by 125 I, this 7-peptide was injected into mice via vein and the distribution in the mice tumor mold was observed. Results: One 7-peptide was obtained after four rounds of screening, and the peptide could bind lung cancer tissue specifically. Metabolism of this peptide in mice was fast and imaging of lung cancer was best two hours later after injection. The distribution in vivo decreased and almost disappeared after six hours. Conclusion: This 7-peptide could be used to image and diagnose of lung cancer effectively. (authors)

  7. Biocompatible KMnF3 nanoparticular contrast agent with proper plasma retention time for in vivo magnetic resonance imaging.

    Science.gov (United States)

    Liu, Zhi-jun; Song, Xiao-xia; Xu, Xian-zhu; Tang, Qun

    2014-04-18

    Nanoparticular MRI contrast agents are rapidly becoming suitable for use in clinical diagnosis. An ideal nanoparticular contrast agent should be endowed with high relaxivity, biocompatibility, proper plasma retention time, and tissue-specific or tumor-targeting imaging. Herein we introduce PEGylated KMnF3 nanoparticles as a new type of T1 contrast agent. Studies showed that the nanoparticular contrast agent revealed high bio-stability with bovine serum albumin in PBS buffer solution, and presented excellent biocompatibility (low cytotoxicity, undetectable hemolysis and hemagglutination). Meanwhile the new contrast agent possessed proper plasma retention time (circulation half-life t1/2 is approximately 2 h) in the body of the administrated mice. It can be delivered into brain vessels and maintained there for hours, and is mostly cleared from the body within 48 h, as demonstrated by time-resolved MRI and Mn-biodistribution analysis. Those distinguishing features make it suitable to obtain contrast-enhanced brain magnetic resonance angiography. Moreover, through the process of passive targeting delivery, the T1 contrast agent clearly illuminates a brain tumor (glioma) with high contrast image and defined shape. This study demonstrates that PEGylated KMnF3 nanoparticles represent a promising biocompatible vascular contrast agent for magnetic resonance angiography and can potentially be further developed into an active targeted tumor MRI contrast agent.

  8. Genetic control of yeast cell radiosensitivity modification by oxygen and hypoxic sensitizers

    International Nuclear Information System (INIS)

    Zhuranovskaya, G.P.; Petin, V.G.

    1984-01-01

    Diploid yeast cells Saccharomyces cerevisiae ''of the wild type'', individual mutants, homozygous in rad 2 and rad 54 and double mutants, containing both these loci in homozygous state are considered to prove genetic determination of radiosensitivity modification of hypoxic cells by oxygen and electron acceptor compounds previously demonstrated on yeast cells of other genotypes. It is shown that both ''oxygen effect'' and the effect of hypoxic sensitizers depend on the activity of repair systems. The possible mechanism of participation of post-radiation restoration processes in the modification of cell radiosensitivity, is discussed

  9. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes.

    Science.gov (United States)

    Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S

    2011-07-01

    Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  10. Kit for preparing a technetium-99m myocardial imaging agent

    International Nuclear Information System (INIS)

    Woulfe, S.R.; Deutsch, E.A.; Dyszlewski, M.; Neumann, W.L.

    1992-01-01

    This patent describes a kit for preparing a technetium 99m myocardial imaging agent. It comprises a first vial containing a lyophilized pyrogen free, sterile mixture of an effective reducing agent and a first ligand having the following general formula: wherein the R 1 groups may be the same or different and are selected from the group consisting of hydrogen, hydroxy, C 1 - C 5 alkyl, C 1 - C 5 alkyl substituted by hydroxyl, ether, ester, amide, ketone, aldehyde and nitrile; the R 2 groups may be the same or different and are selected from the group consisting of hydrogen, hydroxy, C 1 - C 5 alkyl, C 1 - C 5 alkyl substituted by hydroxyl, ether, ester, amide, ketone, aldehyde, and nitrile; the X and Y groups may be the same or different and are selected from the group consisting of oxygen and sulfur; and n is equal to 1 or 2; and a second vial containing a lyophilized pyrogen free, sterile protected salt of a phosphine ligand

  11. Magnetosomes used as biogenic MRI contrast agent for molecular imaging of glioblastoma model

    International Nuclear Information System (INIS)

    Boucher, Marianne

    2016-01-01

    This work takes place in the context of molecular imaging, which aims at tailoring medical treatments and therapies to the individual context by revealing molecular or cellular phenomenon of medical interest in the less invasive manner. In particular, it can be achieved with MRI molecular imaging using engineered iron-oxide contrast agent.This PhD thesis focuses on the study of a new class of iron-oxide contrast agent for high field MRI. Indeed, magnetosomes are natural iron-oxide vesicles produced by magneto-tactic bacteria. These bacteria synthesized such magnetic vesicles and ordered them like a nano-compass in order to facilitate their navigation in sediments. This explains why magnetosomes are awarded with tremendous magnetic properties: around 50 nm, mono-crystalline, single magnetic domain and high saturation magnetization. Furthermore, a wide variety of bacterial strains exist in nature and size and shape of magnetosomes are highly stable within strain and can be very different between strains. Finally, magnetosomes are naturally coated with a bi-lipidic membrane whose content is genetically determined. Lately, researchers have unravelled magnetosomes membrane protein contents, opening the way to create functionalized magnetosomes thanks to fusion of the gene coding for a protein of interest with the gene coding for an abundant protein at magnetosomes membrane.A new alternative path using living organisms to tackle the production of engineered high efficiency molecular imaging probes have been investigated with magneto-tactic bacteria in this PhD. The production and engineering of magnetosomes have been carried out by our partner, the Laboratoire de Bio-energetique Cellulaire (LBC, CEA Cadarache), and will be presented and discussed. We then characterized magnetosomes as contrast agent for high field MRI. We showed they present very promising contrasting properties in vitro, and assessed this observation in vivo by establishing they can be used as efficient

  12. Effects of bleomycin and irradiation on euoxic and hypoxic cells

    International Nuclear Information System (INIS)

    Shrieve, D.C.; Harris, J.W.

    1979-01-01

    EMT6 cells in vitro were exposed to bleomycin (BLM), either alone (under euoxic or hypoxic conditions) or in conjunction with x-radiation. Hypoxic and euoxic cells were equally sensitive to the drug in both of the systems used to induce hypoxia (ampules or chambers). Exposure to BLM immediately before x-irradiation altered the shape of the radiation survival curve decreasing the D 0 by a factor of 1.3. Simultaneous exposure to x-ray and BLM resulted in lower survivals than when radiation was given either before or after drug treatment. Cells recovered quickly from BLM damage if trypsinization was delayed. The results indicate that BLM and x-rays interact to lower cell survival but that cells recover from this effect if trypsinization is delayed

  13. Quantitative Molecular Imaging with a Single Gd-Based Contrast Agent Reveals Specific Tumor Binding and Retention in Vivo.

    Science.gov (United States)

    Johansen, Mette L; Gao, Ying; Hutnick, Melanie A; Craig, Sonya E L; Pokorski, Jonathan K; Flask, Chris A; Brady-Kalnay, Susann M

    2017-06-06

    Magnetic resonance imaging (MRI) has become an indispensable tool in the diagnosis and treatment of many diseases, especially cancer. However, the poor sensitivity of MRI relative to other imaging modalities, such as PET, has hindered the development and clinical use of molecular MRI contrast agents that could provide vital diagnostic information by specifically locating a molecular target altered in the disease process. This work describes the specific and sustained in vivo binding and retention of a protein tyrosine phosphatase mu (PTPμ)-targeted, molecular magnetic resonance (MR) contrast agent with a single gadolinium (Gd) chelate using a quantitative MRI T 1 mapping technique in glioma xenografts. Quantitative T 1 mapping is an imaging method used to measure the longitudinal relaxation time, the T 1 relaxation time, of protons in a magnetic field after excitation by a radiofrequency pulse. T 1 relaxation times can in turn be used to calculate the concentration of a gadolinium-containing contrast agent in a region of interest, thereby allowing the retention or clearance of an agent to be quantified. In this context, retention is a measure of molecular contrast agent binding. Using conventional peptide chemistry, a PTPμ-targeted peptide was linked to a chelator that had been conjugated to a lysine residue. Following complexation with Gd, this PTPμ-targeted molecular contrast agent containing a single Gd ion showed significant tumor enhancement and a sustained increase in Gd concentration in both heterotopic and orthotopic tumors using dynamic quantitative MRI. This single Gd-containing PTPμ agent was more effective than our previous version with three Gd ions. Differences between nonspecific and specific agents, due to specific tumor binding, can be determined within the first 30 min after agent administration by examining clearance rates. This more facile chemistry, when combined with quantitative MR techniques, allows for widespread adoption by academic

  14. Reporting of quantitative oxygen mapping in EPR imaging

    Science.gov (United States)

    Subramanian, Sankaran; Devasahayam, Nallathamby; McMillan, Alan; Matsumoto, Shingo; Munasinghe, Jeeva P.; Saito, Keita; Mitchell, James B.; Chandramouli, Gadisetti V. R.; Krishna, Murali C.

    2012-01-01

    Oxygen maps derived from electron paramagnetic resonance spectral-spatial imaging (EPRI) are based upon the relaxivity of molecular oxygen with paramagnetic spin probes. This technique can be combined with MRI to facilitate mapping of pO 2 values in specific anatomic locations with high precision. The co-registration procedure, which matches the physical and digital dimensions of EPR and MR images, may present the pO 2 map at the higher MRI resolution, exaggerating the spatial resolution of oxygen, making it difficult to precisely distinguish hypoxic regions from normoxic regions. The latter distinction is critical in monitoring the treatment of cancer by radiation and chemotherapy, since it is well-established that hypoxic regions are three or four times more resistant to treatment compared to normoxic regions. The aim of this article is to describe pO 2 maps based on the intrinsic resolution of EPRI. A spectral parameter that affects the intrinsic spatial resolution of EPRI is the full width at half maximum (FWHM) height of the gradient-free EPR absorption line in frequency-encoded imaging. In single point imaging too, the transverse relaxation times (T2∗) limit the resolution since the signal decays by exp(-tp/T2∗) where the delay time after excitation pulse, t p, is related to the resolution. Although the spin densities of two point objects may be resolved at this separation, it is inadequate to evaluate quantitative changes of pO 2 levels since the linewidths are proportionately affected by pO 2. A spatial separation of at least twice this resolution is necessary to correctly identify a change in pO 2 level. In addition, the pO 2 values are blurred by uncertainties arising from spectral dimensions. Blurring due to noise and low resolution modulates the pO 2 levels at the boundaries of hypoxic and normoxic regions resulting in higher apparent pO 2 levels in hypoxic regions. Therefore, specification of intrinsic resolution and pO 2 uncertainties are

  15. Biomarkers of Hypoxic Ischemic Encephalopathy in Newborns

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2012-11-01

    Full Text Available As neonatal intensive care has evolved, the focus has shifted from improving mortality alone to an effort to improve both mortality and morbidity. The most frequent source of neonatal brain injury occurs as a result of hypoxic-ischemic injury. Hypoxic-ischemic injury occurs in about 2 of 1,000 full-term infants and severe injured infants will have lifetime disabilities and neurodevelopmental delays. Most recently, remarkable efforts toward neuroprotection have been started with the advent of therapeutic hypothermia and a key step in the evolution of neonatal neuroprotection is the discovery of biomarkers that enable the clinician-scientist to screen infants for brain injury, monitor progression of disease, identify injured brain regions, and assess efficacy of neuroprotective clinical trials. Lastly, biomarkers offer great hope identifying when an injury occurred shedding light on the potential pathophysiology and the most effective therapy. In this article, we will review biomarkers of HIE including S100b, neuron specific enolase, umbilical cord IL-6, CK-BB, GFAP, myelin basic protein, UCHL-1, and pNF-H. We hope to contribute to the awareness, validation and clinical use of established as well as novel neonatal brain injury biomarkers.

  16. The preparation and characterization of peptide's lung cancer imaging agent

    International Nuclear Information System (INIS)

    Liu Jianfeng; Chu Liping; Wang Yan; Wang Yueying; Liu Jinjian; Wu Hongying

    2010-01-01

    Objective: To screen in vivo lung cancer specific binding seven peptides by T7 phage display peptide library, so as to prepare peptide's lung cancer early diagnostic agent. Methods: Use phage display in vivo technology, the 7-peptide phage that binding the lung cancer specifically was obtained, then the DNA sequence was measured and the seven peptide was synthesized. After labeled by 125 I, the seven peptide was injected into mice via vein and the distribution was observed. Results: One peptide was obtained by four rounds screening, and the peptide can bind lung cancer tissue specifically. Two hours after injection get the best imaging of lung cancer, metabolism of peptide in mice is fast, the distribution in vivo is decrease six hours and almost disappear 20 hours after injection. Conclusion: The peptide can image and diagnose lung cancer better. (authors)

  17. Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers

    International Nuclear Information System (INIS)

    Bussink, Johan; Kaanders, Johannes H.A.M.; Kogel, Albert J. van der

    2003-01-01

    Background and purpose: Tumor oxygenation is recognized as an important determinant of the outcome of radiotherapy and possibly also of other treatment modalities in a number of tumor types and in particular in squamous cell carcinomas. The hypoxic status of various solid tumors has been related to a poor prognosis due to tumor progression towards a more malignant phenotype, with increased metastatic potential, and an increased resistance to treatment. It has been demonstrated in head and neck cancer that hypoxic radioresistance can be successfully counteracted by hypoxia modifying approaches. The microregional distribution and the level of tumor hypoxia depend on oxygen consumption and temporal and spatial variations in blood supply. It is unclear if severely hypoxic cells can resume clonogenicity when O 2 and nutrients become available again as a result of (treatment related) changes in the tumor microenvironment. Non-terminally differentiated hypoxic cells that are capable of proliferation are important for outcome because of their resistance to radiotherapy and possibly other cytotoxic treatments. Various exogenous and endogenous markers for hypoxia are currently available and can be studied in relation to each other, the tumor architecture and the tumor microenvironment. Use of nitroimidazole markers with immunohistochemical detection allows studying tumor cell hypoxia at the microscopic level. Co-registration with other microenvironmental parameters, such as vascular architecture (vascular density), blood perfusion, tumor cell proliferation and apoptosis, offers the possibility to obtain a comprehensive functional image of tumor patho-physiology and to study the effects of different modalities of cancer treatment. Conclusion: A number of functional microregional parameters have emerged that are good candidates for future use as indicators of tumor aggressiveness and treatment response. The key question is whether these parameters can be used as tools for

  18. Highly stabilized gadolinium chelates functionalized on metal nanoparticles as magnetic resonance imaging contrast agent

    Science.gov (United States)

    Siddiqui, Talha S.

    Magnetic resonance imaging (MRI) is a non-invasive method for imaging and diagnosing tissue damage, organ function and the vascular system. Magnevist(TM) a complex of diethylenetriaminepentaacetic acid (DTPA) and Gd3+ is a clinically approved contrast agent for MRI. A derivative of DTPA was formed by the addition of two cysteine groups (DTPA-L-Cys) through amide linkage. The Gd complex of this ligand bonds with the silver surfaces through the cysteine thiols. GdDTPA-L-Cys was bound to ˜10nm diameter Ag nanoparticles for use as a multifunctional MRI contrast agent. The ligand and complex were characterized by 1H and 13C NMR, ESI-MS and IR spectroscopy. The silver construct was characterized by TEM, TGA and UV-Vis absorption spectra. The per metal complex r1 relaxivity of GdDTPA-L-Cys{Ag} greater than that of Magnavist(TM) with the same molarity for both compounds. The synthesis of a DTPA derivative is described that allows it to bind to silver or gold nanoparticles through a single thiol linkage (DTPASH). The resulting Gd complex, GdDTPASH, was bound to Ag nanoparticles to create a single monolayer on the surface. The construct was further stabilized in buffered solution with the addition of a thiolated PEG chain. The highly stabilized nanoparticle construct delivers a high payload of Gd compelex and is an effective T1 brightening agent. The production of this type of construct opens the way for engineered multimodal MRI contrast agents.

  19. Labelling and biodistribution of /sup 99m/Tc-ceftriaxone: a new imaging agent

    International Nuclear Information System (INIS)

    Khurshid, Z.; Roohi, S.; Zahoor, R.; Tariq, S.

    2012-01-01

    Most commonly used infection imaging agents are specific for inflammation. Some newer agents like labeled antimicrobials and peptides have shown infection seeking properties. Research is underway for synthesis of newer imaging agents specific for infections. In this quest we have labeled and bio evaluated /sup 99m/Tc-ceftriaxone. Ceftriaxone is a commonly used third generation cephalosporin antibiotic having a broad anti-bacterial spectrum but has more specificity for gram-negative bacteria. /sup 99m/Tc-ceftriaxone was prepared at ph 7 by adding 30 mg of ligand to /sup 99m/Tc in the presence of 50 mu g of SnCl/sub 2/./sup 2/H/sub 2/O. Boiling for ten minutes gave maximum labeling yield (96+1.76%). The stability at room temperature both with and without human serum was more than 90% till 24 hours. In-vitro binding revealed maximum binding of 68% and 47% with E.coli and S.aureus respectively after 4 hours incubation. Biodistribution studies in normal rats showed maximum uptake in hepatobiliary system followed by kidney. In infection and inflammation models the maximum target to non- target ratios of 12.66 +- 2.59, 2.36 +- 0.30 and 1.44 +- 0.53 were achieved with E. coli, S. aureus and oil inflammation respectively 4 hours post injection. Scintigraphic findings also correlated with biodistribution results. (Orig./A.B.)

  20. Ultrashort Echo Time Magnetic Resonance Imaging of the Lung Using a High-Relaxivity T1 Blood-Pool Contrast Agent

    Directory of Open Access Journals (Sweden)

    Joris Tchouala Nofiele

    2014-10-01

    Full Text Available The lung remains one of the most challenging organs to image using magnetic resonance imaging (MRI due to intrinsic rapid signal decay. However, unlike conventional modalities such as computed tomography, MRI does not involve radiation and can provide functional and morphologic information on a regional basis. Here we demonstrate proof of concept for a new MRI approach to achieve substantial gains in a signal to noise ratio (SNR in the lung parenchyma: contrast-enhanced ultrashort echo time (UTE imaging following intravenous injection of a high-relaxivity blood-pool manganese porphyrin T1 contrast agent. The new contrast agent increased relative enhancement of the lung parenchyma by over 10-fold compared to gadolinium diethylene triamine pentaacetic acid (Gd-DTPA, and the use of UTE boosted the SNR by a factor of 4 over conventional T1-weighted gradient echo acquisitions. The new agent also maintains steady enhancement over at least 60 minutes, thus providing a long time window for obtaining high-resolution, high-quality images and the ability to measure a number of physiologic parameters.

  1. Evaluation of /sup 201/TlCl and delayed scan for thyroid imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Tatsuyoshi; Harada, Taneichi; Takahashi, Tatsuo; Senoo, Tsuneaki; Ohtsuka, Nobuaki; Ito, Yasuhiko [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    1982-11-01

    The results of 189 patients with nodular goiter by imaging with /sup 201/TlCl following with sup(99m)TcO/sub 4//sup -/ was presented. Accumulation of /sup 201/TlCl to the corresponding area was observed in 85.5% of cancer, 62.2% of adenoma, 42.5% of adenomatous goiter, and the usefulness of /sup 201/TlCl (early scan) for thyroid imaging agent was recognized. On the other hand, delayed scan for purpose of differentiation from benign to malignant was also performed. However, no significant differences were obtained.

  2. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.

    Science.gov (United States)

    Cleary, Ryan T; Sun, Hongyu; Huynh, Thanhthao; Manning, Simon M; Li, Yijun; Rotenberg, Alexander; Talos, Delia M; Kahle, Kristopher T; Jackson, Michele; Rakhade, Sanjay N; Berry, Gerard T; Berry, Gerard; Jensen, Frances E

    2013-01-01

    Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+)-K(+)-2 Cl(-) cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.

  3. Oral Administration and Detection of a Near-Infrared Molecular Imaging Agent in an Orthotopic Mouse Model for Breast Cancer Screening.

    Science.gov (United States)

    Bhatnagar, Sumit; Verma, Kirti Dhingra; Hu, Yongjun; Khera, Eshita; Priluck, Aaron; Smith, David E; Thurber, Greg M

    2018-05-07

    Molecular imaging is advantageous for screening diseases such as breast cancer by providing precise spatial information on disease-associated biomarkers, something neither blood tests nor anatomical imaging can achieve. However, the high cost and risks of ionizing radiation for several molecular imaging modalities have prevented a feasible and scalable approach for screening. Clinical studies have demonstrated the ability to detect breast tumors using nonspecific probes such as indocyanine green, but the lack of molecular information and required intravenous contrast agent does not provide a significant benefit over current noninvasive imaging techniques. Here we demonstrate that negatively charged sulfate groups, commonly used to improve solubility of near-infrared fluorophores, enable sufficient oral absorption and targeting of fluorescent molecular imaging agents for completely noninvasive detection of diseased tissue such as breast cancer. These functional groups improve the pharmacokinetic properties of affinity ligands to achieve targeting efficiencies compatible with clinical imaging devices using safe, nonionizing radiation (near-infrared light). Together, this enables development of a "disease screening pill" capable of oral absorption and systemic availability, target binding, background clearance, and imaging at clinically relevant depths for breast cancer screening. This approach should be adaptable to other molecular targets and diseases for use as a new class of screening agents.

  4. Amplitude-integrated Electroencephalography in Full-term Newborns without Severe Hypoxic-ischemic Encephalopathy: Case Series

    OpenAIRE

    Osredkar, Damjan; Derganc, Metka; Paro-Panjan, Darja; Neubauer, David

    2006-01-01

    Aim: To assess the diagnostic value of amplitude-integrated electroencephalography (EEG) in comparison to standard EEG in newborns without severe hypoxic-ischemic encephalopathy who were at risk for seizures. Methods: The study included a consecutive series of 18 term newborns without severe hypoxic-ischemic encephalopathy, but with clinical signs suspicious of epileptic seizures, history of loss of social contact, disturbance of muscle tone, hyperirritability, and/or jitteriness. Amplitud...

  5. Reaction between nitracrine and glutathione: implications for hypoxic cell radiosensitization and cytotoxicity

    International Nuclear Information System (INIS)

    Wilson, W.R.; Anderson, R.F.

    1989-01-01

    Nitracrine (NC) is an electron affinic DNA intercalating agent and a potent hypoxia-selective cytotoxin and radiosensitizer in cell culture. Although NC is too cytotoxic and too rapidly metabolized to provide hypoxic cell radiosensitization in tumors, it is of mechanistic interest as an example of a DNA affinic radiosensitizer. We have observed a rapid chemical reaction between NC and reduced glutathione (GSH), which suggests that the observed potent in vitro cytotoxicity and radiosensitization might be dependent on thiol depletion by the large extracellular reservoir of drug. However, no GSH depletion was observed under conditions providing radiosensitization or rapid cell killing, and prior depletion of GSH by buthionine sulphoximine had no effect on cytotoxicity or formation of macromolecular adducts. Further, the intracellular reaction of NC with GSH is slower than predicted on the basis of the measured second order rate constant and the total intracellular concentrations of both species. The results are consistent with a role for DNA binding in protecting NC from reaction with GSH, and in improving the efficiency with which reduced electrophilic metabolites react with DNA in preference to GSH

  6. Synthesis of opioid receptor imaging agent 7α-o-IA-DPN

    International Nuclear Information System (INIS)

    Wang Rongfu

    1997-01-01

    A new opioid receptor imaging agent is designed and synthesized. 7α-o-iodoallyl diprenorphine (7α-o-IA-DPN) was obtained in one step by radioiododestannylation, which involved in the selection of DPN as an opioid antagonist, the regioselective protection of the DPN phenol tertiary-OH using acetylation and the introduction of vinylstannane as prosthetic group into the tertiary alcohol group position in the 7α-side chain. The iodinated DPN derivation was possessed of high radiolabeled yield (>90%) with 80 TBq/mmol specific radioactivity and more than 95% radiochemical purity. In vitro opioid receptor binding analysis showed very high affinity (Ki = 0.4 nmol/L). This new radioiodinated opioid ligand is suitable for SPECT study of opioid receptor imaging

  7. Lethal Effect of Thermal Neutrons on Hypoxic Elirlich Ascites Tumour Cells in vitro

    OpenAIRE

    MITSUHIKO, AKABOSHI; KENICHI, KAWAI; HIROTOSHI, MAKI; Research Reactor Institute, Kyoto University; Research Reactor Institute, Kyoto University; Research Reactor Institute, Kyoto University

    1985-01-01

    Ehrlich ascites tumour cells were irradiated in vitro with thermal neutrons under aerobic and hypoxic conditions, and the survival of their reproductive capacity was assayed in vivo. Only a slight hypoxic protection was observed for thermal neutron irradiation with an oxygen enhancement ratio (OER) of 1.2, as compared with OER of 3.3 for ^Co-γ-rays. Absorbed dose of thermal neutrons was calculated by assuming that the energies of recoiled nuclei were completely absorbed within a cell nucleus....

  8. Intramucosal–arterial PCO 2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia

    OpenAIRE

    Dubin, Arnaldo; Murias, Gastón; Estenssoro, Elisa; Canales, Héctor; Badie, Julio; Pozo, Mario; Sottile, Juan P; Barán, Marcelo; Pálizas, Fernando; Laporte, Mercedes

    2002-01-01

    Introduction An elevation in intramucosal–arterial PCO 2 gradient (ΔPCO 2) could be determined either by tissue hypoxia or by reduced blood flow. Our hypothesis was that in hypoxic hypoxia with preserved blood flow, ΔPCO 2 should not be altered. Methods In 17 anesthetized and mechanically ventilated sheep, oxygen delivery was reduced by decreasing flow (ischemic hypoxia, IH) or arterial oxygen saturation (hypoxic hypoxia, HH), or no intervention was made (sham). In the IH group (n = 6), blood...

  9. Cerebral blood flow autoregulation during intracranial hypertension in hypoxic lambs

    International Nuclear Information System (INIS)

    Borel, C.O.; Backofen, J.E.; Koehler, R.C.; Jones, M.D. Jr.; Traystman, R.J.

    1987-01-01

    The authors tested the hypothesis that hypoxic hypoxia interferes with cerebral blood flow (CBF) autoregulation when intracranial pressure (ICP) is elevated in pentobarbital-anesthetized lambs (3 to 9 days old). Cerebral perfusion pressure (CPP) was lowered stepwise from 73 to 23 mmHg in eight normoxic lambs and from 65 to 31 mmHg in eight other hypoxic lambs by ventricular infusion of artificial cerebrospinal fluid. In normoxic lambs, CBF measured by microspheres labeled with six different radioisotopes was not significantly changed over this range of CPP. In animals made hypoxic, base-line CBF was twice that of normoxic lambs. CBF was unchanged as CPP was reduced to 31 mmHg. Lower levels of CPP were not attained because a pressor response occurred with further elevations of ICP. No regional decrements in blood flow to cortical arterial watershed areas or to more caudal regions, such as cerebellum, brain stem, or thalamus, were detected with elevated ICP. Cerebral O 2 uptake was similar in both groups and did not decrease when CPP was reduced. These results demonstrate that normoxic lambs have a considerable capacity for effective autoregulation of CBF when ICP is elevated. Moreover, cerebral vasodilation in response to a level of hypoxia approximating that normally seen prenatally does not abolish CBF autoregulation when ICP is elevated during the first postnatal week

  10. Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α.

    Science.gov (United States)

    Miao, Zhi-Feng; Wang, Zhen-Ning; Zhao, Ting-Ting; Xu, Ying-Ying; Gao, Jian; Miao, Feng; Xu, Hui-Mian

    2014-12-01

    Peritoneal dissemination is the most common cause of death in gastric cancer patients. The hypoxic microenvironment plays a major role in controlling the tumor stem cell phenotype and is associated with patients' prognosis through hypoxia-inducible factor-1α (HIF-1α), a key transcriptional factor that responds to hypoxic stimuli. During the peritoneal dissemination process, gastric cancer stem/progenitor cells (GCSPCs) are thought to enter into and maintained in peritoneal milky spots (PMSs), which have hypoxic microenvironments. However, the mechanism through which the hypoxic environment of PMSs regulated GCSPC maintenance is still poorly understood. Here, we investigated whether hypoxic PMSs were an ideal cancer stem cell niche suitable for GCSPC engraftment. We also evaluated the mechanisms through which the HIF-1α-mediated hypoxic microenvironment regulated GCSPC fate. We observed a positive correlation between HIF-1α expression and gastric cancer peritoneal dissemination (GCPD) in gastric cancer patients. Furthermore, the GCSPC population expanded in primary gastric cancer cells under hypoxic condition in vitro, and hypoxic GCSPCs showed enhanced self-renewal ability, but reduced differentiation capacity, mediated by HIF-1α. In an animal model, GCSPCs preferentially resided in the hypoxic zone of PMSs; moreover, when the hypoxic microenvironment in PMSs was destroyed, GCPD was significantly alleviated. In conclusion, our results demonstrated that PMSs served as a hypoxic niche and favored GCSPCs peritoneal dissemination through HIF-1α both in vitro and in vivo. These results provided new insights into the GCPD process and may lead to advancements in the clinical treatment of gastric cancer. © 2014 The Authors. STEM CELLS Published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  11. Preparation, purification and primary bioevaluation of radioiodinated ofloxacin. An imaging agent

    International Nuclear Information System (INIS)

    Kandil, Shaban; Seddik, Usama; Hussien, Hiba; Shaltot, Mohamed; El-Tabl, Abdou

    2015-01-01

    The broad-spectrum antibiotic agents have been demonstrated as promising diagnostic tools for early detection of infectious lesions. We set out ofloxacin (Oflo), a second-generation fluoroquinolone, for the radioiodination process. In particular, this was carried out with 125 I via an electrophilic substitution reaction. The radiochemical yield was influenced by different factors; drug concentration, different oxidizing agents, e.g. chloramine-T, iodogen and n-bromosuccinimide, pH of medium, reaction time, temperature and different organic media. These parameters were studied to optimize the best conditions for labeling with ofloxacin. We found that radiolabeling in ethanol medium showed a 70% radiochemical yield of 125 I-ofloxacin. The radioiodination was determined by means of TLC and HPLC. The cold labeled Oflo ( 127 I-Oflo) was prepared and controlled by HPLC. The cold labeled Oflo was also confirmed by NMR and MS techniques. Furthermore, biodistribution studies for labeled 125 I-Oflo were examined in two independent groups (3 mice in each one); control and E. Coli-injected (inflamed). The radiotracer showed a good localization in muscle of thigh for inflamed group as compared to control. In conclusion, ofloxacine might be a promising target as an anti-inflammatory imaging agent.

  12. Analysis of 127 peripartum hypoxic brain injuries from closed claims registered by the Danish Patient Insurance Association

    DEFF Research Database (Denmark)

    Bock, J.; Christoffersen, J.K.; Hedegaard, M.

    2008-01-01

    : The authors retrospectively investigated peripartum hypoxic brain injuries registered by the Danish Patient Insurance Association. RESULTS: From 1992 to 2004, 127 approved claims concerning peripartum hypoxic brain injuries were registered and subsequently analysed. Thirty-eight newborns died, and a majority...

  13. Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3

    International Nuclear Information System (INIS)

    Mujcic, Hilda; Rzymski, Tomasz; Rouschop, Kasper M.A.; Koritzinsky, Marianne; Milani, Manuela; Harris, Adrian L.; Wouters, Bradly G.

    2009-01-01

    Background and purpose: Tumour hypoxia contributes to failure of cancer treatment through its ability to protect against therapy and adversely influence tumour biology. In particular, several studies suggest that hypoxia promotes metastasis. Hypoxia-induced cellular changes are mediated by oxygen-sensitive signaling pathways that activate downstream transcription factors. We have investigated the induction and transcriptional regulation of a novel metastasis-associated gene, LAMP3 during hypoxia. Materials and methods: Microarray, quantitative PCR, Western blot analysis and immunohistochemistry were used to investigate hypoxic regulation of LAMP3. The mechanism for LAMP3 induction was investigated using transient RNAi and stable shRNA targeting components of the hypoxic response. Endoplasmic reticulum stress inducing agents, including proteasome inhibitors were assessed for their ability to regulate LAMP3. Results: LAMP3 is strongly induced by hypoxia at both the mRNA and protein levels in a large panel of human tumour cell lines. Induction of LAMP3 occurs as a consequence of the activation of the PERK/eIF2α/ATF4 arm of the unfolded protein response (UPR) and is independent of HIF-1α. LAMP3 is expressed heterogeneously within the microenvironment of tumours, overexpressed in breast cancer, and increases in tumours treated with avastin. Conclusions: These data identify LAMP3 as a novel hypoxia-inducible gene regulated by the UPR. LAMP3 is a new candidate biomarker of UPR activation by hypoxia in tumours and is a potential mediator of hypoxia-induced metastasis.

  14. 99mTc-HL91 SPECT detects the relation between hypoxic changes and radiotherapy response of lung cancer

    International Nuclear Information System (INIS)

    Li Ling; Yu Jinming; Xing Ligang; Zhu Hui; Li Guoliang; Fang Yongcun

    2006-01-01

    Objective: To evaluate relation between hypoxia, hypoxic changes detected by 99m Tc-HL91 SPECT and the response to radiotherapy. Methods: Thirty-five patients with pathologically proven non-small cell lung cancer (NSCLC) treated by three-dimensional conformal radiotherapy were entered into the study. All patients were examined by examined by 99m Tc-HL9l SPECT imaging one or two days before radiotherapy. Twenty patients were monitored during radiotherapy(30-40 Gy) and one or two days after radiotherapy. Anterior', posterior and lateral planar images were collected 2 hours, 4 hours and 6 hours after intravenous injection approximately 740 MBq 99m Tc-HL91. Regions of interest(ROIs) were ch awn in the tumor and contralateral position and the radioactivity ratios of tumor to normal(T/N) were calculated. The response to radiotherapy was evaluated by solid tumor' s effect evaluation criterion (WHO) 3-6 months after radiotherapy. The correlations between T/N before radiotherapy, the T/N changes during radiotherapy and the response to radiotherapy were analyzed. Results: The T/N value gradually decreased before, during and after radiotherapy. The average T/N value before, during and after radiotherapy was 1.56±0.19, 1.40±0.12 and 1.29±0.13, respectively (F=10.13, P=0.010). The lower T/N ratio be- fore radiotherapy, the higher the response rate of radiotherapy (P=0.040). The larger change of T/N ratio before and after radiotherapy resulted in higher radiotherapy response, but with no statistical significance (P>0.05). Conclusions: The hypoxia status and hypoxic changes can be observed by HL91 SPECT imaging during radiotherapy which can predict the response to radiotherapy. (authors)

  15. NaGdF4:Nd3+/Yb3+ Nanoparticles as Multimodal Imaging Agents

    Science.gov (United States)

    Pedraza, Francisco; Rightsell, Chris; Kumar, Ga; Giuliani, Jason; Monton, Car; Sardar, Dhiraj

    Medical imaging is a fundamental tool used for the diagnosis of numerous ailments. Each imaging modality has unique advantages; however, they possess intrinsic limitations. Some of which include low spatial resolution, sensitivity, penetration depth, and radiation damage. To circumvent this problem, the combination of imaging modalities, or multimodal imaging, has been proposed, such as Near Infrared Fluorescence imaging (NIRF) and Magnetic Resonance Imaging (MRI). Combining individual advantages, specificity and selectivity of NIRF with the deep penetration and high spatial resolution of MRI, it is possible to circumvent their shortcomings for a more robust imaging technique. In addition, both imaging modalities are very safe and minimally invasive. Fluorescent nanoparticles, such as NaGdF4:Nd3 +/Yb3 +, are excellent candidates for NIRF/MRI multimodal imaging. The dopants, Nd and Yb, absorb and emit within the biological window; where near infrared light is less attenuated by soft tissue. This results in less tissue damage and deeper tissue penetration making it a viable candidate in biological imaging. In addition, the inclusion of Gd results in paramagnetic properties, allowing their use as contrast agents in multimodal imaging. The work presented will include crystallographic results, as well as full optical and magnetic characterization to determine the nanoparticle's viability in multimodal imaging.

  16. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia.

    Science.gov (United States)

    Faiss, Raphaël; Girard, Olivier; Millet, Grégoire P

    2013-12-01

    Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during 'aerobic' or 'anaerobic' interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) 'all-out' sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.

  17. Amphetamines and pH-shift agents for brain imaging: Basic research and clinical results

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H.J.; Winkler, C.

    1986-01-01

    This book contains 18 selections. Some of the titles are: Labelling of amphetamines with /sup 123/I: Receptors for amphetamines; New amphetamine derivatives; Potential new approaches for the development of brain imaging agents for single-photon applications; and IM SPECT with the pinhole collimator.

  18. Metabolism and pharmacokinetics of the hypoxic cell radiosensitizer and cytotoxic agent, misonidazole, in C3H mice

    International Nuclear Information System (INIS)

    Chin, J.B.; Rauth, A.M.

    1981-01-01

    Misonidazole, a 2-nitroimidazole, is presently of interest because of its radiosensitizing and toxic effects toward hypoxic tumor cells. The plasma and tissue distribution of misonidazole and various products was studied as a function of time and mode of administration in male C3H mice with KHT tumors. Polarographic measurements of nitro-group species in plasma after intravenous or intraperitoneal misonidazole administration indicated apparent half-lives of 1.0 to 1.5 hr. With an oral dose, a multicomponent curve was obtained. [ 14 C]misonidazole, labeled in the 2-position of the imidazole ring, was widely distributed to all tissues tested after intraperitioneal or oral administration. Paper chromatography of plasma and the water-soluble fraction of spleen, liver, kidney, brain, and KHT tumor tissue showed variations in the proportions of misonidazole, its 0-dimethylation product, the aminoimidazole, and low-R/sub F/ products (including glucuronides). There was radioactivity in the gastrointestinal lumen 1 hr after intravenous injection. These studies indicate that differences exist in total drug levels as well as in the proportions of metabolites present in various tissue types. Thus the radiosensitization and toxicity of misonidazole may depend on the particular tissue or tumor under study

  19. Hypoxia-inducible factor-dependent production of profibrotic mediators by hypoxic hepatocytes.

    Science.gov (United States)

    Copple, Bryan L; Bustamante, Juan J; Welch, Timothy P; Kim, Nam Deuk; Moon, Jeon-Ok

    2009-08-01

    During the development of liver fibrosis, mediators are produced that stimulate cells in the liver to differentiate into myofibroblasts and to produce collagen. Recent studies demonstrated that the transcription factor, hypoxia-inducible factor-1alpha (HIF-1alpha), is critical for upregulation of profibrotic mediators, such as platelet-derived growth factor-A (PDGF-A), PDGF-B and plasminogen activator inhibitor-1 (PAI-1) in the liver, during the development of fibrosis. What remains unknown is the cell type-specific regulation of these genes by HIF-1alpha in liver cell types. Accordingly, the hypothesis was tested that HIF-1alpha is activated in hypoxic hepatocytes and regulates the production of profibrotic mediators by these cells. In this study, hepatocytes were isolated from the livers of control and HIF-1alpha- or HIF-1beta-deficient mice and exposed to hypoxia. Exposure of primary mouse hepatocytes to 1% oxygen stimulated nuclear accumulation of HIF-1alpha and upregulated PAI-1, vascular endothelial cell growth factor and the vasoactive peptides adrenomedullin-1 (ADM-1) and ADM-2. In contrast, the levels of PDGF-A and PDGF-B mRNAs were unaffected in these cells by hypoxia. Exposure of HIF-1alpha-deficient hepatocytes to 1% oxygen only partially prevented upregulation of these genes, suggesting that other hypoxia-regulated transcription factors, such as HIF-2alpha, may also regulate these genes. In support of this, HIF-2alpha was activated in hypoxic hepatocytes, and exposure of HIF-1beta-deficient hepatocytes to 1% oxygen completely prevented upregulation of PAI-1, vascular endothelial cell growth factor and ADM-1, suggesting that HIF-2alpha may also contribute to upregulation of these genes in hypoxic hepatocytes. Collectively, our results suggest that HIFs may be important regulators of profibrotic and vasoactive mediators by hypoxic hepatocytes.

  20. Zirconia-doped nanoparticles: organic coating, polymeric entrapment and application as dual-imaging agents

    OpenAIRE

    Rebuttini, Valentina; Pucci, Andrea; Arosio, Paolo; Bai, Xue; Locatelli, Erica; Pinna, Nicola; Lascialfari, Alessandro; Franchini, Mauro Comes

    2013-01-01

    Zirconia nanoparticles doped with Eu3+, Tb3+ and Gd3+ ions have been synthesized following the benzyl alcohol route. The nanoparticles were coated with N-hydroxydodecanamide and encapsulated in PLGA-b-PEG-COOH nanomicelles. The magnetic and fluorescent properties of these hybrid nanocarriers were investigated, proving them to be potential dual-imaging contrast agents.

  1. Therapeutic hypothermia for neonates with hypoxic ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Ming-Chou Chiang

    2017-12-01

    Full Text Available Therapeutic hypothermia (TH is a recommended regimen for newborn infants who are at or near term with evolving moderate-to-severe hypoxic ischemic encephalopathy (HIE. The Task Force of the Taiwan Child Neurology Society and the Taiwan Society of Neonatology held a joint meeting in 2015 to establish recommendations for using TH on newborn patients with HIE. Based on current evidence and experts' experiences, this review article summarizes the key points and recommendations regarding TH for newborns with HIE, including: (1 selection criteria for TH; (2 choices of method and equipment for TH; (3 TH prior to and during transport; (4 methods for temperature maintenance, monitoring, and rewarming; (5 systemic care of patients during TH, including the care of respiratory and cardiovascular systems, management of fluids, electrolytes, and nutrition, as well as sedation and drug metabolism; (6 monitoring and management of seizures; (7 neuroimaging, prognostic factors, and outcomes; and (8 adjuvant therapy for TH. Key Words: hypoxic ischemic encephalopathy, neonate, patient care, perinatal asphyxia, therapeutic hypothermia

  2. Clinical significance of changes of serum NSE, TNF-α and IL-6 levels in patients with hypoxic ischemic encephalopathy

    International Nuclear Information System (INIS)

    Zhang Yuhong; Zhang Yujuan; Zhou Xiujuan; Shan Huali

    2010-01-01

    Objective: To study the clinical significance of changes of serum NSE, TNF-α and IL-6 levels in neonates with hypoxic ischemic encephalopathy. Methods: Serum NSE (with ELISA) and TNF-α, IL-6 (with RIA) levels were measured in 30 neonates with hypoxic ischemic encephalopathy and 30 controls. Results: Serum NSE, TNF-α and IL-6 levels were significantly higher in neonates with hypoxic-ischemic encephalopathy than those in controls (P<0.01). Serum NSE levels were positively correlated with those of TNF-α, IL-6 (r=0.5812, 0.6014, P<0.01). Conclusion: Serum NSE, TNF-α and IL-6 levels were closely related to the diseases process of hypoxic-ischemic encephalopathy. (authors)

  3. Development of 68Ga-labeled mannosylated human serum albumin (MSA) as a lymph node imaging agent for positron emission tomography

    International Nuclear Information System (INIS)

    Choi, Jae Yeon; Jeong, Jae Min; Yoo, Byong Chul; Kim, Kyunggon; Kim, Youngsoo; Yang, Bo Yeun; Lee, Yun-Sang; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2011-01-01

    Introduction: Although many sentinel lymph node (SLN) imaging agents labeled with 99m Tc have been developed, no positron-emitting agent has been specifically designed for SLN imaging. Furthermore, the development of the beta probe and the requirement for better image resolution have increased the need for a positron-emitting SLN imaging agent. Here, we describe the development of a novel positron-emitting SLN imaging agent labeled with 68 Ga. Methods: A mannosylated human serum albumin (MSA) was synthesized by conjugating α-D-mannopyranosylphenyl isothiocyanate to human serum albumin in sodium carbonate buffer (pH 9.5), and then 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid was conjugated to synthesize NOTA-MSA. Numbers of mannose and NOTA units conjugated in NOTA-MSA were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. NOTA-MSA was labeled with 68 Ga at room temperature. The stability of 68 Ga-NOTA-MSA was checked in labeling medium at room temperature and in human serum at 37 o C. Biodistribution in normal ICR mice was investigated after tail vein injection, and micro-positron emission tomography (PET) images were obtained after injecting 68 Ga-NOTA-MSA into a tail vein or a footpad. Results: The numbers of conjugated α-D-mannopyranosylphenyl isothiocyanate and 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid units in NOTA-MSA were 10.6 and 6.6, respectively. The labeling efficiency of 68 Ga-NOTA-MSA was greater than 99% at room temperature, and its stability was greater than 99% at 4 h. Biodistribution and micro-PET studies of 68 Ga-NOTA-MSA showed high liver and spleen uptakes after intravenous injection. 68 Ga-NOTA-MSA injected into a footpad rapidly migrated to the lymph node. Conclusions: 68 Ga-NOTA-MSA was successfully developed as a novel SLN imaging agent for PET. NOTA-MSA is easily labeled at high efficiency, and subcutaneously administered 68 Ga-NOTA-MSA was

  4. Thallium-201: quantitation of right ventricular hypertrophy in chronically hypoxic rats

    International Nuclear Information System (INIS)

    Rabinovitch, M.; Fisher, K.; Gamble, W.; Reid, L.; Treves, S.

    1979-01-01

    Sprague Dawley rats were divided into two groups. Ten were kept in room air and 10 in hypobaric hypoxia (air at 380 m Hg). After two weeks all were injected intravenously with 50 μCi of 201 Tl and sacrificed. The right and left ventricles were separated, weighed, and measured for radioactivity in a gamma well counter. Left and right ventricular mass ratios (MR) correlated with 201 Tl radioactivity ratios (TAR) in both control and hypoxic rats: r = 0.962 where MR = 0.863 TAR + 0.27. Myocardial 201 Tl uptake reflects and quantitates normal and abnormal ventricular mass, the abnormal mass in this model consisting of right ventricular hypertrophy associated with hypoxic pulmonary hypertension

  5. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells.

    Science.gov (United States)

    Tsuzuki, Tomoko; Okada, Hidetaka; Cho, Hisayuu; Tsuji, Shoko; Nishigaki, Akemi; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2012-02-01

    Hypoxia of the human endometrium is a physiologic event occurring during the perimenstrual period and the local stimulus for angiogenesis. The aim of this study was to investigate the effects of hypoxic stress on the regulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1/CXCL12), and the potential role of hypoxia-inducible factor-1α (HIF-1α) in the endometrium. Human endometrial stromal cells (ESCs, n= 22 samples) were studied in vitro. ESCs were cultured under hypoxic and normoxic conditions and treated with cobalt chloride (CoCl₂; a hypoxia-mimicking agent) and/or echinomycin, a small-molecule inhibitor of HIF-1α activity. The mRNA levels and production of VEGF and SDF-1 were assessed by real-time PCR and ELISA, respectively. The HIF-1α protein levels were measured using western blot analysis. Hypoxia simultaneously induced the expression of mRNA and production of VEGF and attenuated the expression and production of SDF-1 from ESCs in a time-dependent manner. Similar changes were observed in the ESCs after stimulation with CoCl₂ in a dose-dependent manner. CoCl₂ significantly induced the expression of HIF-1α protein, and its highest expression was observed at 6 h. Echinomycin inhibited hypoxia-induced VEGF production without affecting the HIF-1α protein level and cell toxicity and had no effect on SDF-1 secretion (P hypoxic conditions that could influence angiogenesis in the human endometrium.

  6. 99m Tc-tazobactam, a novel infection imaging agent: Radiosynthesis, quality control, biodistribution, and infection imaging studies.

    Science.gov (United States)

    Rasheed, Rashid; Naqvi, Syed Ali Raza; Gillani, Syed Jawad Hussain; Zahoor, Ameer Fawad; Jielani, Asif; Saeed, Nidda

    2017-05-15

    The radiolabeled drug 99m Tc-tazobactam ( 99m Tc-TZB) was developed and assessed as an infection imaging agent in Pseudomonas aeruginosa and Salmonella enterica infection-induced animal models by comparing with inflammation induced animal models. Radiosynthesis of 99m Tc-TZB was assessed while changing ligand concentration, reducing agent concentration, pH, and reaction time while keeping radioactivity constant (~370 MBq). Percent labeling of the resulting complex was measured using paper chromatography and instant thin layer chromatography. The analysis of the 99m Tc-TZB complex indicated >95% labeling yield and electrophoresis revealed complex is neutral in nature. The biodistribution study also showed predominantly renal excretion; however liver, stomach, and intestine also showed slight tracer agent uptake. The agent significantly accumulated in Pseudomonas aeruginosa and Salmonella enterica infection induced tissues 3.58 ± 0.26% and 2.43 ± 0.42% respectively at 1 hour postinjection. The inflamed tissue failed to uptake noticeable activity at 1 hour time point. The scintigraphic study results were found in accordance with biodistribution pattern. On the basis of our preliminary results, the newly developed 99m Tc-TZB can be used to diagnose bacterial infection and to discriminate between infected and inflamed tissues. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Acute kidney injury with hypoxic respiratory failure

    OpenAIRE

    Neubert, Zachary; Hoffmann, Paul; Owshalimpur, David

    2014-01-01

    A 27-year-old Caucasian man was transferred from a remote clinic with acute kidney injury for the prior 7–10 days preceded by gastroenteritis. His kidney biopsy showed non-specific mesangiopathic glomerular changes, minimal tubulointerstitial disease without sclerosis, crescents, nor evidence of vasculitis. On his third hospital day, he developed acute hypoxic respiratory failure requiring intubation and mechanical ventilation. Pulmonary renal syndromes ranked highest on his differential diag...

  8. Process for preparation of MR contrast agents

    DEFF Research Database (Denmark)

    2002-01-01

    The present invention provides a process for the preparation of an MR contrast agent, said process comprising: i) obtaining a solution in a solvent of a hydrogenatable, unsaturated substrate compound and a catalyst for the hydrogenation of said substrate compound; ii) introducing said solution...... in droplet form into a chamber containing hydrogen gas (H2) enriched in para-hydrogen (p-1H2) and/or ortho-deuterium (o-2H2) whereby to hydrogenate said substrate to form a hydrogenated imaging agent; iii) optionally subjecting said hydrogenated imaging agent to a magnetic field having a field strength below...... earth's ambient field strength; iv) optionally dissolving said imaging agent in an aqueous medium; v) optionally separating said catalyst from the solution of said imaging agent in said aqueous medium; vi) optionally separating said solvent from the solution of said imaging agent in said aqueous medium...

  9. Searching for an alternative oral contrast agent for GI tract MR imaging; in vitro phase, initial report

    International Nuclear Information System (INIS)

    Okla, W.; Szeszkowski, W.; Cieszanowski, A.; Golebiowski, M.

    2002-01-01

    MR has been recently considered to be suitable method for detection GI tract pathologies. A few substances (some of a natural origin) seem to act as an efficient oral MR contrast agents. The aim of this study is to find an alternative substance, which can be administrated orally to patients in order to enhance signal intensity (SI). The ideal agent should have a biphase pattern (high SI in T1 and low in T2), and should be nontoxic and cost effective. Phantom experiments were conducted with 1.5 T MR scanner. T1W and T2W sequences were used for initial estimation. Number of different agents such as: water, Gd-DTPA, barium sulfate, green tea, blueberry juice, cranberry juice, blackcurrant juice, and some more were evaluated. Signal intensity was measured by using elliptical region of interest (ROI). MR imaging in one patient with stomach cancer was also performed. In T1W-FFE sequence cranberry juice reached satisfactorily high signal (SI=1760.14). In T2W-TSE sequence this substance reduced signal intensity (SI=23.10) almost to background level. Blueberry juice appear to be the next substance capable to generate high signal (SI=1558.31) in T1W sequence (T1-TSE). MR examination of a patient with stomach adenocarcinoma (using blueberry juice as an oral contrast agent) satisfactorily depicted and delineated tumor mass on both: T1W and T2W images. Cranberry juice and blueberry juice seemed to act effectively as oral contrast agents for gastrointestinal MR imaging. Thus they need further exploration and trials. (author)

  10. Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging

    International Nuclear Information System (INIS)

    Ray, Aniruddha; Mukundan, Ananya; Karamchand, Leshern; Kopelman, Raoul; Xie, Zhixing; Wang, Xueding

    2014-01-01

    Here, we present a new optical contrast agent based on silver nanoplate clusters embedded inside of a polymer nano matrix. Unlike nanosphere clusters, which have been well studied, nanoplate clusters have unique properties due to the different possible orientations of interaction between the individual plates, resulting in a significant broadening of the absorption spectra. These nanoclusters were immobilized inside of a polymer cladding so as to maintain their stability and optical properties under in vivo conditions. The polymer-coated silver nanoplate clusters show a lower toxicity compared to the uncoated nanoparticles. At high nanoparticle concentrations, cell death occurs mostly due to apoptosis. These nanoparticles were used for targeted fluorescence imaging in a rat glioma cell line by incorporating a fluorescent dye into the matrix, followed by conjugation of a tumor targeting an F3 peptide. We further used these nanoparticles as photoacoustic contrast agents in vivo to enhance the contrast of the vasculature structures in a rat ear model. We observed a contrast enhancement of over 90% following the nanoparticle injection. It is also shown that these NPs can serve as efficient contrast agents, with specific targeting abilities for broadband multimodal imaging that are usable for diagnostic applications and that extend into use as therapeutic agents as well. (paper)

  11. MicroRNA-195 induced apoptosis in hypoxic chondrocytes by targeting hypoxia-inducible factor 1 alpha.

    Science.gov (United States)

    Bai, R; Zhao, A-Q; Zhao, Z-Q; Liu, W-L; Jian, D-M

    2015-02-01

    The chondrocytes, the resident cells of cartilage, are maintained and take effects in the whole life upon chronic hypoxic exposure, which hypoxia-inducible factor 1 alpha (HIF-1α) play pivotal roles in response to. Dysregulation of some microRNA (miRNAs) have also been identified to be involved in hypoxia-related physiologic and pathophysiologic responses in some tissues or cell lines. However, the mechanism of miRNAs reponse to hypoxia remain largely unknown in chondrocytes, including the microRNA-195 (miR-195). AIM To investigate the effects of microRNAs (miRNAs) and hypoxia-inducible factor 1 alpha (HIF-1α) on chondrocytes in physiologic environment. We compared the expression of miR-195 and HIF-1α mRNA on hypoxia with that on normoxia in ATDC 5 cells by qRT-PCR. Further experiments was performed to confirmed the relationships of miR-195 and HIF-1α by bioinformatics analysis and dual reporter gene assay. we also assessed the effect of miR-195 on apoptosis in hypoxic ATDC 5 cells by transfect with miR-195 mimics. It was found the downregulated miR-195 and upregulated HIF-1α were present in hypoxic ATDC 5 cells. miR-195 negatively regulated HIF-1α by targeting its 3'-untranslated region. Moreover, the founding indicated miR-195 greatly increased apoptosis and downregulated HIF-1α mRNA occurred simultaneously in hypoxic chondrocytes. We concluded that miR-195 induced apoptosis in hypoxic chondrocytes by directly targeting HIF-1α.

  12. [Effects of intermittent hypoxic exposure on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha and erythropoietin levels].

    Science.gov (United States)

    Zhang, Cheng-yan; Zhang, Ji-xin; Lü, Xiao-tao; Li, Bao-yu

    2009-10-01

    To investigate the effects of intermittent hypoxic exposure and normoxic convalescence on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha (HIF-1alpha) and erythropoietin (EPO) levels. Rat models of intermittent hypoxic exposure were established, combined with the clinical research on volunteers experiencing the intermittent plateau work. Blood samples for red blood cell (RBC) counts, hemoglobin (Hb) and hematocrit (HCT) were collected, serum HIF-1alpha and EPO levels were measured using enzyme linked immunosorbent assay. RBC counts, Hb concentration and HCT were significantly higher than the normoxic group (P hypoxic exposure can enhance serum hypoxia inducible factor-1 alpha and erythropointin levels and the generation of red blood cells, which leads to an increase in hemoglobin concentration and hematocrit. The results have changed with the hypoxic exposure period prolonged. Normoxic convalescence after intermittent hypoxic exposure can make the related indexes reduced, and contribute to the organism recovery.

  13. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as non-invasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate

    Science.gov (United States)

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H. Douglas; Munasinghe, Jeeva P.; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P.; Mitchell, James B.; Krishna, Murali C.

    2012-01-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation, and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate (3-BP) blocks glycolysis pathway by inhibiting hypoxia inducible enzymes, and enhanced cytotoxicity of 3-BP under hypoxic conditions has been reported in vitro. However, the efficacy of 3-BP was substantially attenuated in hypoxic tumor regions (pO2 < 10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 (MCT1) is the major transporter for pyruvate and the analog 3-BP in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of MCT1 in vivo. Expression of MCT1 was enhanced in moderately hypoxic (8–15 mmHg) tumor regions, but down regulated in severely hypoxic (< 5 mmHg) tumor regions. These results emphasize the importance of non-invasive imaging biomarkers to confirm the action of hypoxia-activated drugs. PMID:22692861

  14. Comparison of several potential myocardial imaging agents

    International Nuclear Information System (INIS)

    Watson, E.E.; Stabin, M.G.; Goodman, M.M.; Knapp, F.F. Jr.; Srivastava, P.C.

    1985-01-01

    Although myocardial imaging is currently dominated by Tl-201, several alternative agents with improved physiologic or radionuclidic properties have been proposed. Based on human and animal studies in the literature, the metabolism of several of these compounds was studied for the purpose of generating radiation dose estimates. Dose estimates are listed for several I-123 labeled free fatty acids, an I-123 labeled phosphonium compound, Rb-82, Cu-64, F-18 FDG (all compounds which are taken up by the normal myocardium), and for Tc-99m pyrophosphate (PYP) (which localizes in myocardial infarcts). Dose estimates could not be generated for C-11 palmitate, but this compound was included in a comparison of myocardial retention times. For the I-123 labeled compounds, I-124 was included as a contaminant in generating the dose estimates. Radiation doses were lowest for Rb-82 (gonads 0.3 to 0.5 μGy/MBq, heart wall 15 μGy/MBq). Doses for the I-123 labeled fatty acids were similar to one another, with IPPA being the lowest (gonads 20 μGy/MBq, heart wall 15 μGy/MBq). Doses for Tc-99m PYP were also low (gonads 4 to 7 μGy/MBq, heart wall 4 μGy/MBq, skeleton 15 μGy/MBq). The desirability of these compounds is discussed briefly, considering half life, imaging mode and energy, and dosimetry, including a comparison of the effective whole body dose equivalents. 34 refs., 11 tabs

  15. Recent development of fluorescent imaging for specific detection of tumors

    International Nuclear Information System (INIS)

    Nakata, Eiji; Morii, Takashi; Uto, Yoshihiro; Hori, Hitoshi

    2011-01-01

    Increasing recent studies on fluorescent imaging for specific detection of tumors are described here on strategies of molecular targeting, metabolic specificity and hypoxic circumstance. There is described an instance of a conjugate of antibody and pH-activable fluorescent ligand, which specifically binds to the tumor cells, is internalized in the cellular lysozomes where their pH is low, and then is activated to become fluorescent only in viable tumor cells. For the case of metabolic specificity, excessive loading of the precursor (5-aminolevulinic acid) of protoporphyrin IX (ppIX), due to their low activity to convert ppIX to heme B, results in making tumors observable in red as ppIX emits fluorescence (red, 585 nm) when excited by blue ray of 410 nm. Similarly, imaging with indocyanine green which is accumulated in hepatoma cells is reported in success in detection of small lesion and metastasis when the dye is administered during operation. Reductive reactions exceed in tumor hypoxic conditions, of which feature is usable for imaging. Conjugates of nitroimidazole and fluorescent dye are reported to successfully image tumors by nitro reduction. Authors' UTX-12 is a non-fluorescent nitroaromatic derivative of pH-sensitive fluorescent dye seminaphtharhodafluor (SNARF), and is designed for the nitro group, the hypoxia-responding sensor, to be reduced in tumor hypoxic conditions and then for the aromatic moiety to be cleaved to release free SNARF. Use of hypoxia-inducible factor-1 (HIF-1) for imaging has been also reported in many. As above, studies on fluorescent imaging for specific detection of tumors are mostly at fundamental step but its future is conceivably promising along with advances in other technology like fluorescent endoscopy and multimodal imaging. (author)

  16. Contrast agent based on nano-emulsion for targeted biomedical imaging

    International Nuclear Information System (INIS)

    Attia, Mohamed

    2016-01-01

    X-ray imaging agents are essential in combination with X-ray computed tomography to improve contrast enhancement aiming at providing complete visualization of blood vessels and giving structural and functional information on lesions allowing the detection of a tumor. As well as it is fundamental tool to discriminate between healthy cells and pathogens. We successfully limit the problems presented in commercial X-ray contrast agents like poor contrasting in Fenestra VC associated with short blood circulation time and to avoid rapid renal elimination from the body as found in Xenetix (Iobitriol). We developed nontoxic and blood pool iodine-containing nano-emulsion contrast agents serving in preclinical X-ray μ-CT imaging such as, a- Tocopherol (vitamin E), Cholecalciferol (vitamin D3), Castor oil, Capmul MCMC8 oil and oleic acid. Those formulated nano emulsions were prepared by low energy spontaneous emulsification technic with slight modification for each platform. They showed new specific features rendering them promising agents in in vivo experiments as improving the balance between the efficacy and the toxicity of targeted therapeutic interventions. We investigate the effect of size and the chemical composition of the nanoparticles on their biodistribution, pharmacokinetics and toxicity. They demonstrated that the chemical structures of the droplet's cores have significant role in targeting for example vitamin E was mainly accumulated in liver and castor oil formulation was passively accumulated in spleen explaining the proof-of-concept of EPR effect. On the other hand, two different platform sizes of Cholecalciferol molecule revealing that no real impact on the pharmacokinetics and biodistribution but presented remarkable effect on the toxicity. Of particular interest is studying the effect of the surface charge of nanoparticles on their biodistribution, this is why oleic acid nano-emulsion was selected to proceed this study by presence of amphiphilic polymer

  17. Comparison of the incidence of oncogenic transformation produced by x-rays, misonidazole, and chemotherapy agents

    International Nuclear Information System (INIS)

    Hall, E.J.; Miller, R.C.; Osmak, R.; Zimmerman, M.

    1982-01-01

    An established line of mouse fibroblasts (10T1/2 cells) cultured in vitro was used to compare the incidence of oncogenic transformation produced by x rays, the hypoxic cell radiosensitizer misonidazole, and a range of commonly used chemotherapy agents. A 3-day exposure to misonidazole at a concentration obtainable during treatment produced an incidence of transformation similar to that of about 50 rad. When chemotherapy agents were tested at concentrations comparable to those used clinically and matched to produce similar cell killing, the incidence of transformation varied widely: some agents, such as vincristine, did not produce transformation at a level detectable above background, while others, such as cis-plantinum, appear to be potent carcinogens and produce transformation at a rate orders of magnitude higher than that achieved with x rays

  18. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tanveer [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, Abdul Wali Khan University, Mardan (Pakistan); Bae, Hongsub; Iqbal, Yousaf [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Rhee, Ilsu, E-mail: ilrhee@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hong, Sungwook [Division of Science Education, Daegu University, Gyeongsan 712-714 (Korea, Republic of); Chang, Yongmin; Lee, Jaejun [Department of Diagnostic Radiology, College of Medicine, Kyungpook National University and Hospital, Daegu 700-721 (Korea, Republic of); Sohn, Derac [Department of Physics, Hannam University, Daejon (Korea, Republic of)

    2015-05-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe{sub 2}O{sub 4}) nanoparticles as both T{sub 1} and T{sub 2} contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T{sub 1} and T{sub 2} relaxivities were 0.858±0.04 and 1.71±0.03 mM{sup −1} s{sup −1}, respectively. In animal experimentation, both a 25% signal enhancement in the T{sub 1}-weighted mage and a 71% signal loss in the T{sub 2}-weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T{sub 1} and T{sub 2} contrast agents in MRI. We note that the applicability of our nanoparticles as both T{sub 1} and T{sub 2} contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles. - Highlights: • Chitosan-coated nickel-ferrite (Ni-Fe{sub 2}O{sub 4}) nanoparticles were synthesized in an aqueous system by chemical co-precipitation. • The characterization of bare and chitosan-coated nanoparticles were performed using various analytical tools, such as TEM, FTIR, XRD, and VMS. • We evaluated the coated particles as potential T{sub 1} and T{sub 2} contrast agents for MRI by measuring T{sub 1} and T{sub 2} relaxation times as a function of iron concentration. • Both T{sub 1} and T{sub 2} effects were also observed in animal experimentation.

  19. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    International Nuclear Information System (INIS)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung; Lee, Joo Young

    2012-01-01

    Highlights: ► Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. ► PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. ► p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. ► Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl 2 . Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1α. A PI3K inhibitor (LY294002) attenuated CoCl 2 -induced nuclear accumulation and transcriptional activation of HIF-1α. In addition, HIF-1α-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl 2 -induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1α. However, p38 was not involved in HIF-1α activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt contributes to hypoxic stress-induced TLR4 expression at least partly through the regulation of HIF-1 activation. These reveal a novel

  20. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Joo Young, E-mail: joolee@catholic.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); College of Pharmacy, The Catholic University of Korea, Bucheon 420-743 (Korea, Republic of)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K

  1. Induction of cancer cell death by proton beam in tumor hypoxic region

    International Nuclear Information System (INIS)

    Hur, T. R.; Lee, Y. M.; Park, J. W.; Sohn, E. J.

    2006-05-01

    The physical properties of charged particles such as protons are uniquely suited to target the radiation dose precisely in the tumor. In proton therapy, the Bragg peak is spread out by modulating or degrading the energy of the particles to cover a well defined target volume at a given depth. Due to heterogeneity in the various tumors and end-points as well as in the physical properties of the beams considered, it is difficult to fit the various results into a clear general description of the biological effect of proton in tumor therapy. Tumor hypoxia is a main obstacle to radiotherapy, including gamma-ray. Survived tumor cells under hypoxic region are resistant to radiation and more aggressive to be metastasized. To investigate the dose of proton beam to induce cell death of various tumor cells and hypoxic tumor cells at the Bragg peak in vitro, we used 3 kinds of tumor cells, lung cancer, leukemia and hepatoma cells. Proton beam induces apoptosis in Lewis lung carcinoma cells dose dependently and, slightly in leukemia but not in hepatoma cells at all. Above 1000 gray of proton beam, 60% of cells died even the hypoxic cells in Lewis lung carcinoma cells. But the Molt-4 leukemia cells showed milder effect, 20% cell death by the above 1000 Gray of proton beam and typical resistant pattern (5-10%) of hypoxia in desferrioxamine treated cells. Hepatoma cells (HepG2) were not responsive to proton beam even in rather higher dose (4000G). However, by the gamma-irradiation, Molt-4 was more sensitive than hepatoma or lung cancer cells, but still showed hypoxic resistance. The cell death by proton beam in Lewis lung carcinoma cells was confirmed by PARP cleavage and may be mediated by increased p53. Pro-caspases were also activated and cleaved by the proton beam irradiations for lung cancer cell death. In conclusion, high dose of proton beam (above 1000 gray) may be a good therapeutic radiation even in hypoxic region at the Bragg peak, but further investigations about the

  2. Evaluation of 18F-labeled icotinib derivatives as potential PET agents for tumor imaging

    International Nuclear Information System (INIS)

    Hongyu Ren; Hongyu Ning; Jin Chang; Mingxia Zhao; Yong He; Yan Chong; Chuanmin Qi

    2016-01-01

    In this study, three 18 F-labeled crown ether fused anilinoquinazoline derivatives ([ 18 F]11a-c) were synthesized and evaluated as potential tumor imaging probes. The biodistribution results of [ 18 F]11b were good. Compared with [ 18 F]-fludeoxyglucose and l-[ 18 F]-fluoroethyltyrosine in the same animal model, [ 18 F]11b had better tumor/brain, tumor/muscle, and tumor/blood uptake ratios. Overall, these results suggest that [ 18 F]11b is promising as a tumor imaging agent for positron emission tomography. (author)

  3. Hypoxic Episodes in Bronchopulmonary Dysplasia.

    Science.gov (United States)

    Martin, Richard J; Di Fiore, Juliann M; Walsh, Michele C

    2015-12-01

    Hypoxic episodes are troublesome components of bronchopulmonary dysplasia (BPD) in preterm infants. Immature respiratory control seems to be the major contributor, superimposed on abnormal respiratory function. Relatively short respiratory pauses may precipitate desaturation and bradycardia. This population is predisposed to pulmonary hypertension; it is likely that pulmonary vasoconstriction also plays a role. The natural history has been well-characterized in the preterm population at risk for BPD; however, the consequences are less clear. Proposed associations of intermittent hypoxia include retinopathy of prematurity, sleep disordered breathing, and neurodevelopmental delay. Future study should address whether these associations are causal relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues

    Directory of Open Access Journals (Sweden)

    Emara Marwan

    2010-09-01

    Full Text Available Abstract Background Cytoglobin (Cygb and neuroglobin (Ngb are recently identified globin molecules that are expressed in vertebrate tissues. Upregulation of Cygb and Ngb under hypoxic and/or ischemic conditions in vitro and in vivo increases cell survival, suggesting possible protective roles through prevention of oxidative damage. We have previously shown that Ngb is expressed in human glioblastoma multiforme (GBM cell lines, and that expression of its transcript and protein can be significantly increased after exposure to physiologically relevant levels of hypoxia. In this study, we extended this work to determine whether Cygb is also expressed in GBM cells, and whether its expression is enhanced under hypoxic conditions. We also compared Cygb and Ngb expression in human primary tumor specimens, including brain tumors, as well as in human normal tissues. Immunoreactivity of carbonic anhydrase IX (CA IX, a hypoxia-inducible metalloenzyme that catalyzes the hydration of CO2 to bicarbonate, was used as an endogenous marker of hypoxia. Results Cygb transcript and protein were expressed in human GBM cells, and this expression was significantly increased in most cells following 48 h incubation under hypoxia. We also showed that Cygb and Ngb are expressed in both normal tissues and human primary cancers, including GBM. Among normal tissues, Cygb and Ngb expression was restricted to distinct cell types and was especially prominent in ductal cells. Additionally, certain normal organs (e.g. stomach fundus, small bowel showed distinct regional co-localization of Ngb, Cygb and CA IX. In most tumors, Ngb immunoreactivity was significantly greater than that of Cygb. In keeping with previous in vitro results, tumor regions that were positively stained for CA IX were also positive for Ngb and Cygb, suggesting that hypoxic upregulation of Ngb and Cygb also occurs in vivo. Conclusions Our finding of hypoxic up-regulation of Cygb/Ngb in GBM cell lines and human

  5. Neuro-overprotection? A functional evaluation of clomethiazole-induced neuroprotection following hypoxic-ischemic injury.

    Science.gov (United States)

    Gilby, K L; Kelly, M E; McIntyre, D C; Robertson, H A

    2005-01-01

    Hypoxic-ischemic (H-I) injury produces extensive damage to the hippocampus of young rats. We have recently shown that administration of 125 mg kg-1 clomethiazole (CMZ), a GABA(A)-agonist, provides complete histological protection against H-I injury if administered 3 h post-H-I (Brain Res 1035 (2005) 194). However, whether that histological protection translates into lasting functional preservation is unclear. To determine whether hippocampal-based circuits remain functionally intact in CMZ-protected H-I rats, we administered 125 mg kg-1 (high dose [CMZ-HD]) or 65 mg kg-1 (low dose [CMZ-LD]) CMZ, 3 h post-H-I, and examined numerous kindling parameters in the dorsal hippocampus 60 days following H-I. Kindling parameters included afterdischarge (AD) thresholds (ADTs), AD durations and kindling rates. Additional groups assessed included vehicle-injected H-I (VIH), hypoxic, ligated and naive rats. VIH, CMZ-HD, CMZ-LD and hypoxic rats all exhibited significantly faster kindling rates than naive rats. Thus, a previous traumatic event, even hypoxia alone, facilitated subsequent seizure propagation. Still, a significantly slower kindling rate was evident in CMZ-HD rats than in hypoxic, VIH or CMZ-LD rats. Moreover, while longer pre-kindling AD durations were observed in the damaged hippocampus of VIH compared with naive rats, this was not true for either CMZ-treated groups, hypoxic or ligated rats. Collectively, these findings suggest CMZ can suppress the epileptogenic effects of H-I. Surprisingly, however, both groups of CMZ-treated rats exhibited a four to nine times greater ADT than any other group and this effect was most profound in the CMZ-protected hippocampus. Thus, CMZ administration protected local neurons against terminal insult and left network excitability relatively normal with respect to seizure offset mechanisms but also caused profound elevation of local ADTs, which suggests a local hypoexcitability/increased inhibition. Finally, this study demonstrates

  6. Developmental Expression and Hypoxic Induction of Hypoxia Inducible Transcription Factors in the Zebrafish.

    Science.gov (United States)

    Köblitz, Louise; Fiechtner, Birgit; Baus, Katharina; Lussnig, Rebecca; Pelster, Bernd

    2015-01-01

    The hypoxia inducible transcription factor (HIF) has been shown to coordinate the hypoxic response of vertebrates and is expressed in three different isoforms, HIF-1α, HIF-2α and HIF-3α. Knock down of either Hif-1α or Hif-2α in mice results in lethality in embryonic or perinatal stages, suggesting that this transcription factor is not only controlling the hypoxic response, but is also involved in developmental phenomena. In the translucent zebrafish embryo the performance of the cardiovascular system is not essential for early development, therefore this study was designed to analyze the expression of the three Hif-isoforms during zebrafish development and to test the hypoxic inducibility of these transcription factors. To complement the existing zfHif-1α antibody we expressed the whole zfHif-2α protein and used it for immunization and antibody generation. Similarly, fragments of the zfHif-3α protein were used for immunization and generation of a zfHif-3α specific antibody. To demonstrate presence of the Hif-isoforms during development [between 1 day post fertilization (1 dpf) and 9 dpf] affinity-purified antibodies were used. Hif-1α protein was present under normoxic conditions in all developmental stages, but no significant differences between the different developmental stages could be detected. Hif-2α was also present from 1 dpf onwards, but in post hatching stages (between 5 and 9 dpf) the expression level was significantly higher than prior to hatching. Similarly, Hif-3α was expressed from 1 dpf onwards, and the expression level significantly increased until 5 dpf, suggesting that Hif-2α and Hif-3α play a particular role in early development. Hypoxic exposure (oxygen partial pressure = 5 kPa) in turn caused a significant increase in the level of Hif-1α protein even at 1 dpf and in later stages, while neither Hif-2α nor Hif-3α protein level were affected. In these early developmental stages Hif-1α therefore appears to be more important for

  7. Hypoxic ischemic encephalopathy in children : CT findings related to prognosis

    International Nuclear Information System (INIS)

    Cho, Jae Min; Il, Yim Byung; Kim, Ok Hwa; Kang, Doo Kyoung; Suh, Jung Ho

    1997-01-01

    To evaluate prognosis-related CT findings in hypoxic ischemic encephalopathy. For the purpose of prognosis, 28 children with a clinical history and CT findings suggestive of hypoxic ischemic encephalopathy (HIE) were restrospectively reviewed. The diagnostic criteria for HIE, as seen on CT scanning, were as follows : 1, ventricular collapse;2, effacement of cortical sulci;3, prominent enhancement of cortical vessels;4, poor differentiation of gray and white matter;5, reversal sign;6, obliteration of perimesencephalic cistern;7, high density on tentorial edge, as seen on precontrast scans;and 8, low density in thalamus, brain stem and basal ganglia. On the basis of clinical outcome, we divided the patients into three groups, as follows:group I(good prognosis);group II(neurologic sequelae), and group III(vegetative state or expire), and among these, compared CT findings. There were thirteen patients in group I, six in group II, and nine in group III. Ventricular collapse, effacement of cortical sulci, and prominent enhancement of cortical vessels were noted in all groups, whereas poor differentiation of gray and white matter, reversal sign, obliteration of perimesencephalic cistern, high density on tentorial edge, on precontrast scan, and low density in brain stem and basal ganglia were observed only in groups II and III. CT findings showed distinct differences between groups in whom prognosis was good, and in whom it was poor. An awareness of poor prognostic CT findings may be clinically helpful in the evaluation of patients with hypoxic ischemic encephalopathy

  8. Post-hypoxic recovery of respiratory rhythm generation is gender dependent.

    Directory of Open Access Journals (Sweden)

    Alfredo J Garcia

    Full Text Available The preBötzinger complex (preBötC is a critical neuronal network for the generation of breathing. Lesioning the preBötC abolishes respiration, while when isolated in vitro, the preBötC continues to generate respiratory rhythmic activity. Although several factors influence rhythmogenesis from this network, little is known about how gender may affect preBötC function. This study examines the influence of gender on respiratory activity and in vitro rhythmogenesis from the preBötC. Recordings of respiratory activity from neonatal mice (P10-13 show that sustained post-hypoxic depression occurs with greater frequency in males compared to females. Moreover, extracellular population recordings from the preBötC in neonatal brainstem slices (P10-13 reveal that the time to the first inspiratory burst following reoxygenation (TTFB is significantly delayed in male rhythmogenesis when compared to the female rhythms. Altering activity of ATP sensitive potassium channels (KATP with either the agonist, diazoxide, or the antagonist, tolbutamide, eliminates differences in TTFB. By contrast, glucose supplementation improves post-hypoxic recovery of female but not male rhythmogenesis. We conclude that post-hypoxic recovery of respiration is gender dependent, which is, in part, centrally manifested at the level of the preBötC. Moreover, these findings provide potential insight into the basis of increased male vulnerability in a variety of conditions such as Sudden Infant Death Syndrome (SIDS.

  9. A theranostic agent to enhance osteogenic and magnetic resonance imaging properties of calcium phosphate cements

    NARCIS (Netherlands)

    Ventura, M.; Sun, Y.; Cremers, S.; Borm, P.; Tahmasebi Birgani, Zeinab; Habibovic, Pamela; Heerschap, A.; van der Kraan, P.M.; Jansen, J.A.; Walboomers, X.F.

    2014-01-01

    With biomimetic biomaterials, like calcium phosphate cements (CPCs), non-invasive assessment of tissue regeneration is challenging. This study describes a theranostic agent (TA) to simultaneously enhance both imaging and osteogenic properties of such a bone substitute material. For this purpose,

  10. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.

    Directory of Open Access Journals (Sweden)

    Ryan T Cleary

    Full Text Available Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+-K(+-2 Cl(- cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.

  11. Colorectal liver metastases: contrast agent diffusion coefficient for quantification of contrast enhancement heterogeneity at MR imaging.

    Science.gov (United States)

    Jia, Guang; O'Dell, Craig; Heverhagen, Johannes T; Yang, Xiangyu; Liang, Jiachao; Jacko, Richard V; Sammet, Steffen; Pellas, Theodore; Cole, Patricia; Knopp, Michael V

    2008-09-01

    To describe and determine the reproducibility of a simplified model to quantitatively measure heterogeneous intralesion contrast agent diffusion in colorectal liver metastases. This HIPAA-compliant retrospective study received institutional review board approval, and written informed consent was obtained from 14 patients (mean age, 61 years +/- 9 [standard deviation]; range, 41-78 years), including 10 men (mean age, 65 years +/- 8; range, 47-78 years) and four women (mean age, 54 years +/- 9; range, 41-59 years), with colorectal liver metastases. Magnetic resonance (MR) imaging was performed twice (first baseline MR image [B(1)] and second baseline MR image [B(2)]) in a single target lesion prior to therapy. Dynamic contrast material-enhanced MR imaging was performed by using a saturation-recovery fast gradient-echo sequence. A simplified contrast agent diffusion model was proposed, and a contrast agent diffusion coefficient (CDC) was calculated. The reproducibility of the CDC measurement was evaluated by using the Bland-Altman plot and a linear regression model. The mean CDC was 0.22 mm(2)/sec (range, 0.01-0.73 mm(2)/sec) on B(1) and 0.24 mm(2)/sec (range, 0.01-0.71 mm(2)/sec) on B(2), with an intraclass correlation coefficient of 0.91 (P < .0001). Bland-Altman plot showed good agreement, with a mean difference in measurement pairs of 0.017 mm(2)/sec +/- 0.096. The slope from the linear regression model was 0.89 (95% confidence interval: 0.63, 1.15) and the intercept was 0.01 (95% confidence interval: -0.08, 0.09). The CDC enables a quantitative description of contrast enhancement heterogeneity in lesions. Given the high reproducibility of the CDC metric, CDC appears promising for further qualification as an imaging biomarker of change measurement in response assessment. http://radiology.rsnajnls.org/cgi/content/full/248/3/901/DC1. RSNA, 2008

  12. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    Science.gov (United States)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  13. High spatial resolution and high contrast visualization of brain arteries and veins. Impact of blood pool contrast agent and water-selective excitation imaging at 3T

    International Nuclear Information System (INIS)

    Spuentrup, E.; Jacobs, J.E.; Kleimann, J.F.

    2010-01-01

    Purpose: To investigate a blood pool contrast agent and water-selective excitation imaging at 3 T for high spatial and high contrast imaging of brain vessels including the veins. Methods and Results: 48 clinical patients (47 ± 18 years old) were included. Based on clinical findings, twenty-four patients received a single dose of standard extracellular Gadoterate-meglumine (Dotarem registered ) and 24 received the blood pool contrast agent Gadofosveset (Vasovist registered ). After finishing routine MR protocols, all patients were investigated with two high spatial resolution (0.15 mm 3 voxel size) gradient echo sequences in random order in the equilibrium phase (steady-state) as approved by the review board: A standard RF-spoiled gradient-echo sequence (HR-SS, TR/TE 5.1 / 2.3 msec, FA 30 ) and a fat-suppressed gradient-echo sequence with water-selective excitation (HR-FS, 1331 binominal-pulse, TR/TE 8.8 / 3.8 msec, FA 30 ). The images were subjectively assessed (image quality with vessel contrast, artifacts, depiction of lesions) by two investigators and contrast-to-noise ratios (CNR) were compared using the Student's t-test. The image quality and CNR in the HR-FS were significantly superior compared to the HR-SS for both contrast agents (p < 0.05). The CNR was also improved when using the blood pool agent but only to a minor extent while the subjective image quality was similar for both contrast agents. Conclusion: The utilized sequence with water-selective excitation improved image quality and CNR properties in high spatial resolution imaging of brain arteries and veins. The used blood pool contrast agent improved the CNR only to a minor extent over the extracellular contrast agent. (orig.)

  14. The fate of hypoxic (pimonidazole-labelled) cells in human cervix tumours undergoing chemo-radiotherapy

    International Nuclear Information System (INIS)

    Durand, Ralph E.; Aquino-Parsons, Christina

    2006-01-01

    Background and purpose: A subset of patients in a clinical study where sequential biopsies were to be obtained during multifraction radiotherapy received pimonidazole prior to initiating treatment, allowing a unique opportunity of following hypoxic cells in situ during therapy. Material and methods: After institutional ethics review and with informed consent, women expecting to undergo radical treatment for cancer of the cervix received pimonidazole hydrochloride, with a biopsy approximately 24 h later. Therapy was then started, and weekly biopsies were obtained. In the laboratory, the biopsies were reduced to single cell suspensions for flow cytometry analysis of DNA content, pimonidazole, and proliferation markers. Results: Pre-treatment pimonidazole-positive cells were largely in G /G 1 . Pimonidazole-labelled cells, though expected to be radioresistant, were markedly decreased even early into treatment, and continued to disappear with a half-time of about 3 days. Concurrently, the cell cycle distribution of the previously hypoxic cells changed from predominantly quiescent to mostly proliferating. Conclusions: While a part of the rapid apparent loss of hypoxic cells was certainly due to loss of pimonidazole adducts through repair and dilution by cell division, the speed with which this occurred suggests that many labelled cells could rapidly re-enter the proliferative pool, a result consistent with many of those pimonidazole-labelled human cervix tumour cells being cyclically, rather than continuously, hypoxic

  15. Preparation, purification and primary bioevaluation of radioiodinated ofloxacin. An imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Kandil, Shaban; Seddik, Usama; Hussien, Hiba; Shaltot, Mohamed [Atomic Energy Authority, Cairo (Egypt). Cyclotron Project; El-Tabl, Abdou [Monofia Univ. (Egypt). Faculty of Science

    2015-07-01

    The broad-spectrum antibiotic agents have been demonstrated as promising diagnostic tools for early detection of infectious lesions. We set out ofloxacin (Oflo), a second-generation fluoroquinolone, for the radioiodination process. In particular, this was carried out with {sup 125}I via an electrophilic substitution reaction. The radiochemical yield was influenced by different factors; drug concentration, different oxidizing agents, e.g. chloramine-T, iodogen and n-bromosuccinimide, pH of medium, reaction time, temperature and different organic media. These parameters were studied to optimize the best conditions for labeling with ofloxacin. We found that radiolabeling in ethanol medium showed a 70% radiochemical yield of {sup 125}I-ofloxacin. The radioiodination was determined by means of TLC and HPLC. The cold labeled Oflo ({sup 127}I-Oflo) was prepared and controlled by HPLC. The cold labeled Oflo was also confirmed by NMR and MS techniques. Furthermore, biodistribution studies for labeled {sup 125}I-Oflo were examined in two independent groups (3 mice in each one); control and E. Coli-injected (inflamed). The radiotracer showed a good localization in muscle of thigh for inflamed group as compared to control. In conclusion, ofloxacine might be a promising target as an anti-inflammatory imaging agent.

  16. Correlation of hypoxic cell fraction with glucose metabolic rate in gliomas with 18F-Fluoromisonidazole (FMISO) and 18F- Fluorodeoxyglucose (FDG) positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Tauro, A.J.; Scott, A.M.; Hannah, A.; Pathmaraj, K.; Tochon-Danguy, H.; Sachinidis, J.I.; Chan, J.D.; Berlangieri, S.U.; Egan, G.F.; Fabinyi, G.; McKay, W.J.; Cher, L.M.; Austin and Repatriation Medical Centre, Heidelberg, VIC

    1998-01-01

    Full text: FDG-PET studies of brain tumours to measure tumour activity are well established, with regions of higher grade tumour utilising more glucose compared to lower grade tumour tissue and normal tissue. FDG uptake in tumour cells may reflect anaerobic glycolysis, but this has not been proven in- vivo. FMISO is a novel positron-emitting compound that has been shown to selectively identify hypoxic but viable tissue, which may contribute to chemoradiotherapy resistance in tumour cells. Studies correlating measurements of regional hypoxia and glucose activity within brain tumours prior to therapy may help gain further insight into the relationship between hypoxic tumour tissue and resistance to chemoradiotherapy. Three patients with newly diagnosed primary brain tumours have been prospectively studied with FMISO-PET, FDG-PET and MRI, prior to surgery. Each patient presented with a suspected primary brain glioma on MRI, which were all confirmed to be high grade glioma on subsequent histology at surgery FMISO-PET, FDG-PET and MRI images of all patients were co-registered to precisely identify the areas of metabolic activity within tumour and surrounding cortical tissue. All gliomas demonstrated areas of FMISO uptake, which corresponded to areas of maximal FDG uptake, indicating a correlation between hypoxic areas within tumour with areas of increased glucose metabolic activity. This supports the hypothesis that hypoxic areas within tumour tissue may be associated with increased FDG uptake, although whether hypoxia itself increases FDG uptake remains controversial. These correlative studies characterising areas of hypoxia and glucose activity should hopefully assist in future therapeutic manipulations to improve the outcome from treatment of primary brain tumours

  17. Synthesis and biological evaluation of [18F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter

    International Nuclear Information System (INIS)

    Jauregui-Osoro, Maite; Sunassee, Kavitha; Weeks, Amanda J.; Berry, David J.; Paul, Rowena L.; Cleij, Marcel; O'Doherty, Michael J.; Marsden, Paul K.; Szanda, Istvan; Blower, Philip J.; Banga, Jasvinder Paul; Clarke, Susan E.M.; Ballinger, James R.; Cheng, Sheue-Yann

    2010-01-01

    The human sodium/iodide symporter (hNIS) is a well-established target in thyroid disease and reporter gene imaging using gamma emitters 123 I-iodide, 131 I-iodide and 99m Tc-pertechnetate. However, no PET imaging agent is routinely available. The aim of this study was to prepare and evaluate 18 F-labelled tetrafluoroborate ([ 18 F]TFB) for PET imaging of hNIS. [ 18 F]TFB was prepared by isotopic exchange of BF 4 - with [ 18 F]fluoride in hot hydrochloric acid and purified using an alumina column. Its identity, purity and stability in serum were determined by HPLC, thin-layer chromatography (TLC) and mass spectrometry. Its interaction with NIS was assessed in vitro using FRTL-5 rat thyroid cells, with and without stimulation by thyroid-stimulating hormone (TSH), in the presence and absence of perchlorate. Biodistribution and PET imaging studies were performed using BALB/c mice, with and without perchlorate inhibition. [ 18 F]TFB was readily prepared with specific activity of 10 GBq/mg. It showed rapid accumulation in FRTL-5 cells that was stimulated by TSH and inhibited by perchlorate, and rapid specific accumulation in vivo in thyroid (SUV = 72 after 1 h) and stomach that was inhibited 95% by perchlorate. [ 18 F]TFB is an easily prepared PET imaging agent for rodent NIS and should be evaluated for hNIS PET imaging in humans. (orig.)

  18. EEG source localization in full-term newborns with hypoxic-ischemia

    NARCIS (Netherlands)

    Jennekens, W.; Dankers, F.; Blijham, P.; Cluitmans, P.; van Pul, C.; Andriessen, P.

    2013-01-01

    The aim of this study was to evaluate EEG source localization by standardized weighted low-resolution brain electromagnetic tomography (swLORETA) for monitoring of fullterm newborns with hypoxic-ischemic encephalopathy, using a standard anatomic head model. Three representative examples of neonatal

  19. Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System.

    Science.gov (United States)

    Lochhead, Jeffrey J; Ronaldson, Patrick T; Davis, Thomas P

    2017-07-01

    A functional blood-brain barrier (BBB) is necessary to maintain central nervous system (CNS) homeostasis. Many diseases affecting the CNS, however, alter the functional integrity of the BBB. It has been shown that various diseases and physiological stressors can impact the BBB's ability to selectively restrict passage of substances from the blood to the brain. Modifications of the BBB's permeability properties can potentially contribute to the pathophysiology of CNS diseases and result in altered brain delivery of therapeutic agents. Hypoxia and/or inflammation are central components of a number of diseases affecting the CNS. A number of studies indicate hypoxia or inflammatory pain increase BBB paracellular permeability, induce changes in the expression and/or localization of tight junction proteins, and affect CNS drug uptake. In this review, we look at what is currently known with regard to BBB disruption following a hypoxic or inflammatory insult in vivo. Potential mechanisms involved in altering tight junction components at the BBB are also discussed. A more detailed understanding of the mediators involved in changing BBB functional integrity in response to hypoxia or inflammatory pain could potentially lead to new treatments for CNS diseases with hypoxic or inflammatory components. Additionally, greater insight into the mechanisms involved in TJ rearrangement at the BBB may lead to novel strategies to pharmacologically increase delivery of drugs to the CNS.

  20. Prognostic value of diffusion-weighted imaging summation scores or apparent diffusion coefficient maps in newborns with hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Cavalleri, Francesca; Todeschini, Alessandra; Lugli, Licia; Pugliese, Marisa; Della Casa, Elisa; Gallo, Claudio; Frassoldati, Rossella; Ferrari, Fabrizio; D'Amico, Roberto

    2014-01-01

    The diagnostic and prognostic assessment of newborn infants with hypoxic-ischemic encephalopathy (HIE) comprises, among other tools, diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps. To compare the ability of DWI and ADC maps in newborns with HIE to predict the neurodevelopmental outcome at 2 years of age. Thirty-four term newborns with HIE admitted to the Neonatal Intensive Care Unit of Modena University Hospital from 2004 to 2008 were consecutively enrolled in the study. All newborns received EEG, conventional MRI and DWI within the first week of life. DWI was analyzed by means of summation (S) score and regional ADC measurements. Neurodevelopmental outcome was assessed with a standard 1-4 scale and the Griffiths Mental Developmental Scales - Revised (GMDS-R). When the outcome was evaluated with a standard 1-4 scale, the DWI S scores showed very high area under the curve (AUC) (0.89) whereas regional ADC measurements in specific subregions had relatively modest predictive value. The lentiform nucleus was the region with the highest AUC (0.78). When GMDS-R were considered, DWI S scores were good to excellent predictors for some GMDS-R subscales. The predictive value of ADC measurements was both region- and subscale-specific. In particular, ADC measurements in some regions (basal ganglia, white matter or rolandic cortex) were excellent predictors for specific GMDS-R with AUCs up to 0.93. DWI S scores showed the highest prognostic value for the neurological outcome at 2 years of age. Regional ADC measurements in specific subregions proved to be highly prognostic for specific neurodevelopmental outcomes. (orig.)