WorldWideScience

Sample records for hypothalamic neuronal histamine

  1. Desipramine inhibits histamine H1 receptor-induced Ca2+ signaling in rat hypothalamic cells.

    Directory of Open Access Journals (Sweden)

    Ji-Ah Kang

    Full Text Available The hypothalamus in the brain is the main center for appetite control and integrates signals from adipose tissue and the gastrointestinal tract. Antidepressants are known to modulate the activities of hypothalamic neurons and affect food intake, but the cellular and molecular mechanisms by which antidepressants modulate hypothalamic function remain unclear. Here we have investigated how hypothalamic neurons respond to treatment with antidepressants, including desipramine and sibutramine. In primary cultured rat hypothalamic cells, desipramine markedly suppressed the elevation of intracellular Ca(2+ evoked by histamine H1 receptor activation. Desipramine also inhibited the histamine-induced Ca(2+ increase and the expression of corticotrophin-releasing hormone in hypothalamic GT1-1 cells. The effect of desipramine was not affected by pretreatment with prazosin or propranolol, excluding catecholamine reuptake activity of desipramine as an underlying mechanism. Sibutramine which is also an antidepressant but decreases food intake, had little effect on the histamine-induced Ca(2+ increase or AMP-activated protein kinase activity. Our results reveal that desipramine and sibutramine have different effects on histamine H1 receptor signaling in hypothalamic cells and suggest that distinct regulation of hypothalamic histamine signaling might underlie the differential regulation of food intake between antidepressants.

  2. Histamine Excites Rat Superior Vestibular Nuclear Neurons via Postsynaptic H1 and H2 Receptors in vitro

    Directory of Open Access Journals (Sweden)

    Qian-Xing Zhuang

    2012-09-01

    Full Text Available The superior vestibular nucleus (SVN, which holds a key position in vestibulo-ocular reflexes and nystagmus, receives direct hypothalamic histaminergic innervations. By using rat brainstem slice preparations and extracellular unitary recordings, we investigated the effect of histamine on SVN neurons and the underlying receptor mechanisms. Bath application of histamine evoked an excitatory response of the SVN neurons, which was not blocked by the low-Ca2+/high-Mg2+ medium, indicating a direct postsynaptic effect of the amine. Selective histamine H1 receptor agonist 2-pyridylethylamine and H2 receptor agonist dimaprit, rather than VUF8430, a selective H4 receptor agonist, mimicked the excitation of histamine on SVN neurons. In addition, selective H1 receptor antagonist mepyramine and H2 receptor antagonist ranitidine, but not JNJ7777120, a selective H4 receptor antagonist, partially blocked the excitatory response of SVN neurons to histamine. Moreover, mepyramine together with ranitidine nearly totally blocked the histamine-induced excitation. Immunostainings further showed that histamine H1 and H2 instead of H4 receptors existed in the SVN. These results demonstrate that histamine excites the SVN neurons via postsynaptic histamine H1 and H2 receptors, and suggest that the central histaminergic innervation from the hypothalamus may actively bias the SVN neuronal activity and subsequently modulate the SVN-mediated vestibular functions and gaze control.

  3. Dehydration-induced release of vasopressin involves activation of hypothalamic histaminergic neurons.

    Science.gov (United States)

    Kjaer, A; Knigge, U; Rouleau, A; Garbarg, M; Warberg, J

    1994-08-01

    The hypothalamic neurotransmitter histamine (HA) induces arginine vasopressin (AVP) release when administered centrally. We studied and characterized this effect of HA with respect to receptor involvement. In addition, we studied the possible role of hypothalamic histaminergic neurons in the mediation of a physiological stimulus (dehydration) for AVP secretion. Intracerebroventricular administration of HA, the H1-receptor agonists 2(3-bromophenyl)HA and 2-thiazolylethylamine, or the H2-receptor agonists amthamine or 4-methyl-HA stimulated AVP secretion. The stimulatory action of HA on AVP was inhibited by pretreatment with the H1-receptor antagonist mepyramine or the H2-receptor antagonist cimetidine. Twenty-four hours of dehydration elevated the plasma osmolality from 298 +/- 3 to 310 +/- 3 mmol/liter and increased the plasma AVP concentration 4-fold. The hypothalamic content of HA and its metabolite tele-methyl-HA was elevated in response to dehydration, indicating an increased synthesis and release of hypothalamic HA. Dehydration-induced AVP secretion was lowered when neuronal HA synthesis was inhibited by the administration of (S) alpha-fluoromethylhistidine or when the animals were pretreated with the H3-receptor agonist R(alpha)methylhistamine, which inhibits the release and synthesis of HA, the H1-receptor antagonists mepyramine and cetirizine, or the H2-receptor antagonists cimetidine and ranitidine. We conclude that HA, via activation of both H1- and H2-receptors, stimulates AVP release and that HA is a physiological regulator of AVP secretion.

  4. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine.

    Science.gov (United States)

    Vu, Michael T; Du, Guizhi; Bayliss, Douglas A; Horner, Richard L

    2015-10-07

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K(+) (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K(+) current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASK(f/f) mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30-50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30-50 Hz activity in ChAT-Cre:TASK(f/f) mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain

  5. The role of cortical and hypothalamic histamine-3 receptors in the modulation of central histamine neurotransmission : an in vivo electrophysiology and microdialysis study

    NARCIS (Netherlands)

    Flik, Gunnar; Dremencov, Eliyahu; Cremers, Thomas I. H. F.; Folgering, Joost H. A.; Westerink, Ben H. C.

    2011-01-01

    The current study aimed to investigate the effect of histamine-3 (H3) receptors, expressed in the tuberomammillary nucleus (TMN) of the hypothalamus and in the prefrontal cortex (PFC), on histamine neurotransmission in the rat brain. The firing activity of histamine neurons in the TMN was measured

  6. Tuberal hypothalamic neurons secreting the satiety molecule Nesfatin-1 are critically involved in paradoxical (REM sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Sonia Jego

    Full Text Available The recently discovered Nesfatin-1 plays a role in appetite regulation as a satiety factor through hypothalamic leptin-independent mechanisms. Nesfatin-1 is co-expressed with Melanin-Concentrating Hormone (MCH in neurons from the tuberal hypothalamic area (THA which are recruited during sleep states, especially paradoxical sleep (PS. To help decipher the contribution of this contingent of THA neurons to sleep regulatory mechanisms, we thus investigated in rats whether the co-factor Nesfatin-1 is also endowed with sleep-modulating properties. Here, we found that the disruption of the brain Nesfatin-1 signaling achieved by icv administration of Nesfatin-1 antiserum or antisense against the nucleobindin2 (NUCB2 prohormone suppressed PS with little, if any alteration of slow wave sleep (SWS. Further, the infusion of Nesfatin-1 antiserum after a selective PS deprivation, designed for elevating PS needs, severely prevented the ensuing expected PS recovery. Strengthening these pharmacological data, we finally demonstrated by using c-Fos as an index of neuronal activation that the recruitment of Nesfatin-1-immunoreactive neurons within THA is positively correlated to PS but not to SWS amounts experienced by rats prior to sacrifice. In conclusion, this work supports a functional contribution of the Nesfatin-1 signaling, operated by THA neurons, to PS regulatory mechanisms. We propose that these neurons, likely releasing MCH as a synergistic factor, constitute an appropriate lever by which the hypothalamus may integrate endogenous signals to adapt the ultradian rhythm and maintenance of PS in a manner dictated by homeostatic needs. This could be done through the inhibition of downstream targets comprised primarily of the local hypothalamic wake-active orexin- and histamine-containing neurons.

  7. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation.

    Science.gov (United States)

    Rocha, Sandra M; Saraiva, Tatiana; Cristóvão, Ana C; Ferreira, Raquel; Santos, Tiago; Esteves, Marta; Saraiva, Cláudia; Je, Goun; Cortes, Luísa; Valero, Jorge; Alves, Gilberto; Klibanov, Alexander; Kim, Yoon-Seong; Bernardino, Liliana

    2016-06-04

    Histamine is an amine widely known as a peripheral inflammatory mediator and as a neurotransmitter in the central nervous system. Recently, it has been suggested that histamine acts as an innate modulator of microglial activity. Herein, we aimed to disclose the role of histamine in microglial phagocytic activity and reactive oxygen species (ROS) production and to explore the consequences of histamine-induced neuroinflammation in dopaminergic (DA) neuronal survival. The effect of histamine on phagocytosis was assessed both in vitro by using a murine N9 microglial cell line and primary microglial cell cultures and in vivo. Cells were exposed to IgG-opsonized latex beads or phosphatidylserine (PS) liposomes to evaluate Fcγ or PS receptor-mediated microglial phagocytosis, respectively. ROS production and protein levels of NADPH oxidases and Rac1 were assessed as a measure of oxidative stress. DA neuronal survival was evaluated in vivo by counting the number of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) of mice. We found that histamine triggers microglial phagocytosis via histamine receptor 1 (H1R) activation and ROS production via H1R and H4R activation. By using apocynin, a broad NADPH oxidase (Nox) inhibitor, and Nox1 knockout mice, we found that the Nox1 signaling pathway is involved in both phagocytosis and ROS production induced by histamine in vitro. Interestingly, both apocynin and annexin V (used as inhibitor of PS-induced phagocytosis) fully abolished the DA neurotoxicity induced by the injection of histamine in the SN of adult mice in vivo. Blockade of H1R protected against histamine-induced Nox1 expression and death of DA neurons in vivo. Overall, our results highlight the relevance of histamine in the modulation of microglial activity that ultimately may interfere with neuronal survival in the context of Parkinson's disease (PD) and, eventually, other neurodegenerative diseases which are accompanied by microglia

  8. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells.

    Science.gov (United States)

    Merkle, Florian T; Maroof, Asif; Wataya, Takafumi; Sasai, Yoshiki; Studer, Lorenz; Eggan, Kevin; Schier, Alexander F

    2015-02-15

    Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a 'self-patterning' strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases. © 2015. Published by The Company of Biologists Ltd.

  9. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability.

    Science.gov (United States)

    Fujita, Akie; Bonnavion, Patricia; Wilson, Miryam H; Mickelsen, Laura E; Bloit, Julien; de Lecea, Luis; Jackson, Alexander C

    2017-09-27

    Histaminergic (HA) neurons, found in the posterior hypothalamic tuberomammillary nucleus (TMN), extend fibers throughout the brain and exert modulatory influence over numerous physiological systems. Multiple lines of evidence suggest that the activity of HA neurons is important in the regulation of vigilance despite the lack of direct, causal evidence demonstrating its requirement for the maintenance of arousal during wakefulness. Given the strong correlation between HA neuron excitability and behavioral arousal, we investigated both the electrophysiological diversity of HA neurons in brain slices and the effect of their acute silencing in vivo in male mice. For this purpose, we first validated a transgenic mouse line expressing cre recombinase in histidine decarboxylase-expressing neurons ( Hdc -Cre) followed by a systematic census of the membrane properties of both HA and non-HA neurons in the ventral TMN (TMNv) region. Through unsupervised hierarchical cluster analysis, we found electrophysiological diversity both between TMNv HA and non-HA neurons, and among HA neurons. To directly determine the impact of acute cessation of HA neuron activity on sleep-wake states in awake and behaving mice, we examined the effects of optogenetic silencing of TMNv HA neurons in vivo We found that acute silencing of HA neurons during wakefulness promotes slow-wave sleep, but not rapid eye movement sleep, during a period of low sleep pressure. Together, these data suggest that the tonic firing of HA neurons is necessary for the maintenance of wakefulness, and their silencing not only impairs arousal but is sufficient to rapidly and selectively induce slow-wave sleep. SIGNIFICANCE STATEMENT The function of monoaminergic systems and circuits that regulate sleep and wakefulness is often disrupted as part of the pathophysiology of many neuropsychiatric disorders. One such circuit is the posterior hypothalamic histamine (HA) system, implicated in supporting wakefulness and higher brain

  10. The Itch-Producing Agents Histamine and Cowhage Activate Separate Populations of Primate Spinothalamic Tract Neurons

    Science.gov (United States)

    Davidson, Steve; Zhang, Xijing; Yoon, Chul H.; Khasabov, Sergey G.; Simone, Donald A.; Giesler, Glenn J.

    2010-01-01

    Itch is an everyday sensation, but when associated with disease or infection it can be chronic and debilitating. Several forms of itch can be blocked using antihistamines, but others cannot and these constitute an important clinical problem. Little information is available on the mechanisms underlying itch that is produced by nonhistaminergic mechanisms. We examined the responses of spinothalamic tract neurons to histaminergic and, for the first time, nonhistaminergic forms of itch stimuli. Fifty-seven primate spinothalamic tract (STT) neurons were identified using antidromic activation techniques and examined for their responses to histamine and cowhage, the nonhistaminergic itch-producing spicules covering the pod of the legume Mucuna pruriens. Each examined neuron had a receptive field on the hairy skin of the hindlimb and responded to noxious mechanical stimulation. STT neurons were tested with both pruritogens applied in a random order and we found 12 that responded to histamine and seven to cowhage. Each pruritogen-responsive STT neuron was activated by the chemical algogen capsaicin and two-thirds responded to noxious heat stimuli, demonstrating that these neurons convey chemical, thermal, and mechanical nociceptive information as well. Histamine or cowhage responsive STT neurons were found in both the marginal zone and the deep dorsal horn and were classified as high threshold and wide dynamic range. Unexpectedly, histamine and cowhage never activated the same cell. Our results demonstrate that the spinothalamic tract contains mutually exclusive populations of neurons responsive to histamine or the nonhistaminergic itch-producing agent cowhage. PMID:17855615

  11. Calyx and dimorphic neurons of mouse Scarpa's ganglion express histamine H3 receptors

    Directory of Open Access Journals (Sweden)

    Zucca Gianpiero

    2009-06-01

    Full Text Available Abstract Background Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. The site of action of these drugs however has not been elucidated yet. Recent works on amphibians showed that histamine H3 receptor antagonists, e.g. betahistine, inhibit the afferent discharge recorded from the vestibular nerve. To assess the expression of H3 histamine receptors in vestibular neurons, we performed mRNA RT-PCR and immunofluorescence experiments in mouse Scarpa's ganglia. Results RT-PCR analysis showed the presence of H3 receptor mRNA in mouse ganglia tissue. H3 protein expression was found in vestibular neurons characterized by large and roundish soma, which labeled for calretinin and calbindin. Conclusion The present results are consistent with calyx and dimorphic, but not bouton, afferent vestibular neurons expressing H3 receptors. This study provides a molecular substrate for the effects of histamine-related antivertigo drugs acting on (or binding to H3 receptors, and suggest a potential target for the treatment of vestibular disorders of peripheral origin.

  12. Calyx and dimorphic neurons of mouse Scarpa's ganglion express histamine H3 receptors.

    Science.gov (United States)

    Tritto, Simona; Botta, Laura; Zampini, Valeria; Zucca, Gianpiero; Valli, Paolo; Masetto, Sergio

    2009-06-29

    Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. The site of action of these drugs however has not been elucidated yet. Recent works on amphibians showed that histamine H3 receptor antagonists, e.g. betahistine, inhibit the afferent discharge recorded from the vestibular nerve. To assess the expression of H3 histamine receptors in vestibular neurons, we performed mRNA RT-PCR and immunofluorescence experiments in mouse Scarpa's ganglia. RT-PCR analysis showed the presence of H3 receptor mRNA in mouse ganglia tissue. H3 protein expression was found in vestibular neurons characterized by large and roundish soma, which labeled for calretinin and calbindin. The present results are consistent with calyx and dimorphic, but not bouton, afferent vestibular neurons expressing H3 receptors. This study provides a molecular substrate for the effects of histamine-related antivertigo drugs acting on (or binding to) H3 receptors, and suggest a potential target for the treatment of vestibular disorders of peripheral origin.

  13. Estrogens modulate ventrolateral ventromedial hypothalamic glucose-inhibited neurons

    Directory of Open Access Journals (Sweden)

    Ammy M. Santiago

    2016-10-01

    Full Text Available Objective: Brain regulation of glucose homeostasis is sexually dimorphic; however, the impact sex hormones have on specific neuronal populations within the ventromedial hypothalamic nucleus (VMN, a metabolically sensitive brain region, has yet to be fully characterized. Glucose-excited (GE and -inhibited (GI neurons are located throughout the VMN and may play a critical role in glucose and energy homeostasis. Within the ventrolateral portion of the VMN (VL-VMN, glucose sensing neurons and estrogen receptor (ER distributions overlap. We therefore tested the hypothesis that VL-VMN glucose sensing neurons were sexually dimorphic and regulated by 17β-estradiol (17βE. Methods: Electrophysiological recordings of VL-VMN glucose sensing neurons in brain slices isolated from age- and weight-matched female and male mice were performed in the presence and absence of 17βE. Results: We found a new class of VL-VMN GI neurons whose response to low glucose was transient despite continued exposure to low glucose. Heretofore, we refer to these newly identified VL-VMN GI neurons as ‘adapting’ or AdGI neurons. We found a sexual dimorphic response to low glucose, with male nonadapting GI neurons, but not AdGI neurons, responding more robustly to low glucose than those from females. 17βE blunted the response of both nonadapting GI and AdGI neurons to low glucose in both males and females, which was mediated by activation of estrogen receptor β and inhibition of AMP-activated kinase. In contrast, 17βE had no impact on GE or non-glucose sensing neurons in either sex. Conclusion: These data suggest sex differences and estrogenic regulation of VMN hypothalamic glucose sensing may contribute to the sexual dimorphism in glucose homeostasis. Author Video: Author Video Watch what authors say about their articles Keywords: 17β-estradiol, AMP-activated kinase, Glucose excited neurons, Glucose inhibited neurons, Ventromedial hypothalamic nucleus, Sexual dimorphism

  14. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells

    OpenAIRE

    Merkle, Florian T.; Maroof, Asif; Wataya, Takafumi; Sasai, Yoshiki; Studer, Lorenz; Eggan, Kevin; Schier, Alexander F.

    2015-01-01

    Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin...

  15. Proliferative hypothalamic neurospheres express NPY, AGRP, POMC, CART and Orexin-A and differentiate to functional neurons.

    Directory of Open Access Journals (Sweden)

    Lígia Sousa-Ferreira

    Full Text Available Some pathological conditions with feeding pattern alterations, including obesity and Huntington disease (HD are associated with hypothalamic dysfunction and neuronal cell death. Additionally, the hypothalamus is a neurogenic region with the constitutive capacity to generate new cells of neuronal lineage, in adult rodents. The aim of the present work was to evaluate the expression of feeding-related neuropeptides in hypothalamic progenitor cells and their capacity to differentiate to functional neurons which have been described to be affected by hypothalamic dysfunction. Our study shows that hypothalamic progenitor cells from rat embryos grow as floating neurospheres and express the feeding-related neuropeptides Neuropeptide Y (NPY, Agouti-related Protein (AGRP, Pro-OpioMelanocortin (POMC, Cocaine-and-Amphetamine Responsive Transcript (CART and Orexin-A/Hypocretin-1. Moreover the relative mRNA expression of NPY and POMC increases during the expansion of hypothalamic neurospheres in proliferative conditions.Mature neurons were obtained from the differentiation of hypothalamic progenitor cells including NPY, AGRP, POMC, CART and Orexin-A positive neurons. Furthermore the relative mRNA expression of NPY, CART and Orexin-A increases after the differentiation of hypothalamic neurospheres. Similarly to the adult hypothalamic neurons the neurospheres-derived neurons express the glutamate transporter EAAT3. The orexigenic and anorexigenic phenotype of these neurons was identified by functional response to ghrelin and leptin hormones, respectively. This work demonstrates the presence of appetite-related neuropeptides in hypothalamic progenitor cells and neurons obtained from the differentiation of hypothalamic neurospheres, including the neuronal phenotypes that have been described by others as being affected by hypothalamic neurodegeneration. These in vitro models can be used to study hypothalamic progenitor cells aiming a therapeutic intervention to

  16. Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss.

    Directory of Open Access Journals (Sweden)

    Ronald McGregor

    Full Text Available The loss of specific neuronal phenotypes, as determined by immunohistochemistry, has become a powerful tool for identifying the nature and cause of neurological diseases. Here we show that the number of neurons identified and quantified using this method misses a substantial percentage of extant neurons in a phenotype specific manner. In mice, 24% more hypocretin/orexin (Hcrt neurons are seen in the night compared to the day, and an additional 17% are seen after inhibiting microtubule polymerization with colchicine. We see no such difference between the number of MCH (melanin concentrating hormone neurons in dark, light or colchicine conditions, despite MCH and Hcrt both being hypothalamic peptide transmitters. Although the size of Hcrt neurons did not differ between light and dark, the size of MCH neurons was increased by 15% in the light phase. The number of neurons containing histidine decarboxylase (HDC, the histamine synthesizing enzyme, was 34% greater in the dark than in the light, but, like Hcrt, cell size did not differ. We did not find a significant difference in the number or the size of neurons expressing choline acetyltransferase (ChAT, the acetylcholine synthesizing enzyme, in the horizontal diagonal band (HBD during the dark and light conditions. As expected, colchicine treatment did not increase the number of these neurons. Understanding the function and dynamics of transmitter production within "non-visible" phenotypically defined cells has fundamental implications for our understanding of brain plasticity.

  17. Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss.

    Science.gov (United States)

    McGregor, Ronald; Shan, Ling; Wu, Ming-Fung; Siegel, Jerome M

    2017-01-01

    The loss of specific neuronal phenotypes, as determined by immunohistochemistry, has become a powerful tool for identifying the nature and cause of neurological diseases. Here we show that the number of neurons identified and quantified using this method misses a substantial percentage of extant neurons in a phenotype specific manner. In mice, 24% more hypocretin/orexin (Hcrt) neurons are seen in the night compared to the day, and an additional 17% are seen after inhibiting microtubule polymerization with colchicine. We see no such difference between the number of MCH (melanin concentrating hormone) neurons in dark, light or colchicine conditions, despite MCH and Hcrt both being hypothalamic peptide transmitters. Although the size of Hcrt neurons did not differ between light and dark, the size of MCH neurons was increased by 15% in the light phase. The number of neurons containing histidine decarboxylase (HDC), the histamine synthesizing enzyme, was 34% greater in the dark than in the light, but, like Hcrt, cell size did not differ. We did not find a significant difference in the number or the size of neurons expressing choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, in the horizontal diagonal band (HBD) during the dark and light conditions. As expected, colchicine treatment did not increase the number of these neurons. Understanding the function and dynamics of transmitter production within "non-visible" phenotypically defined cells has fundamental implications for our understanding of brain plasticity.

  18. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons.

    Science.gov (United States)

    Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V

    2010-03-24

    The preoptic area/anterior hypothalamus, a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase and was not dependent on synaptic activity. Furthermore, a population of non-GABAergic neurons was depolarized, and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca(2+) release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked, indicating that it represents a postsynaptic effect. Single-cell reverse transcription-PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons, while H1 receptors were expressed in non-GABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long-lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype-specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons that express H1 and H3 receptor subtypes, respectively.

  19. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Vidarsdottir, S.; Graaf, C. de; Stafleu, A.; Osch, M.J.P. van; Viergever, M.A.; Pijl, H.; Grond, J. van der

    2007-01-01

    We previously showed that hypothalamic neuronal activity, as measured by the blood oxygen level-dependent (BOLD) functional MRI signal, declines in response to oral glucose intake. To further explore the mechanism driving changes in hypothalamic neuronal activity in response to an oral glucose load,

  20. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Vidarsdottir, S.; Graaf, de C.; Stafleu, A.; Osch, M.J.P.; Viergever, M.A.; Pijl, H.; Grond, van der J.

    2007-01-01

    Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. Am J Physiol Endocrinol Metab 293: E754-E758, 2007. First published June 12, 2007; doi:10.1152/ajpendo.00231.2007. - We previously showed that hypothalamic neuronal activity, as measured by the blood

  1. Differential sensitivity to nicotine among hypothalamic magnocellular neurons

    DEFF Research Database (Denmark)

    Mikkelsen, J D; Jacobsen, Julie; Kiss, Adrian Emil

    2012-01-01

    The magnocellular neurons in the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON) either contain vasopressin or oxytocin. Even though both hormones are released after systemic administration of nicotine, the mechanism through which the two populations of neurons are activated...... is not known. This study was carried out in the rat to investigate the effect of increasing doses of nicotine on subsets of magnocellular neurons containing either oxytocin or vasopressin....

  2. Rapid sensing of l-leucine by human and murine hypothalamic neurons: Neurochemical and mechanistic insights.

    Science.gov (United States)

    Heeley, Nicholas; Kirwan, Peter; Darwish, Tamana; Arnaud, Marion; Evans, Mark L; Merkle, Florian T; Reimann, Frank; Gribble, Fiona M; Blouet, Clemence

    2018-04-01

    Dietary proteins are sensed by hypothalamic neurons and strongly influence multiple aspects of metabolic health, including appetite, weight gain, and adiposity. However, little is known about the mechanisms by which hypothalamic neural circuits controlling behavior and metabolism sense protein availability. The aim of this study is to characterize how neurons from the mediobasal hypothalamus respond to a signal of protein availability: the amino acid l-leucine. We used primary cultures of post-weaning murine mediobasal hypothalamic neurons, hypothalamic neurons derived from human induced pluripotent stem cells, and calcium imaging to characterize rapid neuronal responses to physiological changes in extracellular l-Leucine concentration. A neurochemically diverse subset of both mouse and human hypothalamic neurons responded rapidly to l-leucine. Consistent with l-leucine's anorexigenic role, we found that 25% of mouse MBH POMC neurons were activated by l-leucine. 10% of MBH NPY neurons were inhibited by l-leucine, and leucine rapidly reduced AGRP secretion, providing a mechanism for the rapid leucine-induced inhibition of foraging behavior in rodents. Surprisingly, none of the candidate mechanisms previously implicated in hypothalamic leucine sensing (K ATP channels, mTORC1 signaling, amino-acid decarboxylation) were involved in the acute activity changes produced by l-leucine. Instead, our data indicate that leucine-induced neuronal activation involves a plasma membrane Ca 2+ channel, whereas leucine-induced neuronal inhibition is mediated by inhibition of a store-operated Ca 2+ current. A subset of neurons in the mediobasal hypothalamus rapidly respond to physiological changes in extracellular leucine concentration. Leucine can produce both increases and decreases in neuronal Ca 2+ concentrations in a neurochemically-diverse group of neurons, including some POMC and NPY/AGRP neurons. Our data reveal that leucine can signal through novel mechanisms to rapidly

  3. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2017-04-01

    Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested ( n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function. NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not

  4. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    Science.gov (United States)

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P fatty acid (100, 250, or 500 microM for neurons, whereas they did in control muscle and endothelial cell lines. Despite the lack of evidence of inflammatory signaling, saturated fatty acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.

  5. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance

    OpenAIRE

    Kaushik, Susmita; Rodriguez-Navarro, Jose Antonio; Arias, Esperanza; Kiffin, Roberta; Sahu, Srabani; Schwartz, Gary J.; Cuervo, Ana Maria; Singh, Rajat

    2011-01-01

    Macroautophagy is a lysosomal degradative pathway that maintains cellular homeostasis by turning over cellular components. Here, we demonstrate a role for autophagy in hypothalamic agouti-related peptide (AgRP) neurons in the regulation of food intake and energy balance. We show that starvation-induced hypothalamic autophagy mobilizes neuron-intrinsic lipids to generate endogenous free fatty acids, which in turn regulate AgRP levels. The functional consequences of inhibiting autophagy are the...

  6. On histamine and appetites

    Directory of Open Access Journals (Sweden)

    Fernando eTorrealba

    2012-07-01

    Full Text Available Brain histamine may influence a variety of different behavioral and physiological functions, but its responsibility in waking up has casted a long shadow on other important functions of this neurotransmitter. Here we review evidence indicating a central role of brain histamine in motivation, emphasizing its differential involvement in the appetitive and consummatory phases of motivated behaviors. We discuss the inputs that control the histaminergic neurons of the tuberomamillary nucleus of the hypothalamus, which determine the distinct role of these neurons in appetitive behavior, sleep/wake cycles and in food anticipatory activity. We review evidence supporting a dysfunction of histamine neurons and its cortical input in certain forms of decreased motivation (apathy. We finally discuss the relationship between the histamine system and drug addiction as a dysfunction of motivation.

  7. The mast cell stabilizer sodium cromoglycate reduces histamine release and status epilepticus-induced neuronal damage in the rat hippocampus.

    Science.gov (United States)

    Valle-Dorado, María Guadalupe; Santana-Gómez, César Emmanuel; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2015-05-01

    Experiments were designed to evaluate changes in the histamine release, mast cell number and neuronal damage in hippocampus induced by status epilepticus. We also evaluated if sodium cromoglycate, a stabilizer of mast cells with a possible stabilizing effect on the membrane of neurons, was able to prevent the release of histamine, γ-aminobutyric acid (GABA) and glutamate during the status epilepticus. During microdialysis experiments, rats were treated with saline (SS-SE) or sodium cromoglycate (CG-SE) and 30 min later received the administration of pilocarpine to induce status epilepticus. Twenty-four hours after the status epilepticus, the brains were used to determine the neuronal damage and the number of mast cells in hippocampus. During the status epilepticus, SS-SE group showed an enhanced release of histamine (138.5%, p = 0.005), GABA (331 ± 91%, p ≤ 0.001) and glutamate (467%, p ≤ 0.001), even after diazepam administration. One day after the status epilepticus, SS-SE group demonstrated increased number of mast cells in Stratum pyramidale of CA1 (88%, p status epilepticus (p = 0.048), absence of wet-dog shakes, reduced histamine (but not GABA and glutamate) release, lower number of mast cells (p = 0.008) and reduced neuronal damage in hippocampus. Our data revealed that histamine, possibly from mast cells, is released in hippocampus during the status epilepticus. This effect may be involved in the subsequent neuronal damage and is diminished with sodium cromoglycate pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Hypothalamic glucose-sensing: role of Glia-to-neuron signaling.

    Science.gov (United States)

    Tonon, M C; Lanfray, D; Castel, H; Vaudry, H; Morin, F

    2013-12-01

    The hypothalamus senses hormones and nutrients in order to regulate energy balance. In particular, detection of hypothalamic glucose levels has been shown to regulate both feeding behavior and peripheral glucose homeostasis, and impairment of this regulatory system is believed to be involved in the development of obesity and diabetes. Several data clearly demonstrate that glial cells are key elements in the perception of glucose, constituting with neurons a "glucose-sensing unit". Characterization of this interplay between glia and neurons represents an exciting challenge, and will undoubtedly contribute to identify new candidates for therapeutic intervention. The purpose of this review is to summarize the current data that stress the importance of glia in central glucose-sensing. The nature of the glia-to-neuron signaling is discussed, with a special focus on the endozepine ODN, a potent anorexigenic peptide that is highly expressed in hypothalamic glia. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Brain innate immunity regulates hypothalamic arcuate neuronal activity and feeding behavior.

    Science.gov (United States)

    Reis, Wagner L; Yi, Chun-Xia; Gao, Yuanqing; Tschöp, Mathias H; Stern, Javier E

    2015-04-01

    Hypothalamic inflammation, involving microglia activation in the arcuate nucleus (ARC), is proposed as a novel underlying mechanism in obesity, insulin and leptin resistance. However, whether activated microglia affects ARC neuronal activity, and consequently basal and hormonal-induced food intake, is unknown. We show that lipopolysaccharide, an agonist of the toll-like receptor-4 (TLR4), which we found to be expressed in ARC microglia, inhibited the firing activity of the majority of orexigenic agouti gene-related protein/neuropeptide Y neurons, whereas it increased the activity of the majority of anorexigenic proopiomelanocortin neurons. Lipopolysaccharide effects in agouti gene-related protein/neuropeptide Y (but not in proopiomelanocortin) neurons were occluded by inhibiting microglia function or by blocking TLR4 receptors. Finally, we report that inhibition of hypothalamic microglia altered basal food intake, also preventing central orexigenic responses to ghrelin. Our studies support a major role for a TLR4-mediated microglia signaling pathway in the control of ARC neuronal activity and feeding behavior.

  10. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states

    Directory of Open Access Journals (Sweden)

    Allison eGraebner

    2015-08-01

    Full Text Available A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools have greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.

  11. Brain pericyte-derived soluble factors enhance insulin sensitivity in GT1-7 hypothalamic neurons.

    Science.gov (United States)

    Takahashi, Hiroyuki; Takata, Fuyuko; Matsumoto, Junichi; Machida, Takashi; Yamauchi, Atsushi; Dohgu, Shinya; Kataoka, Yasufumi

    2015-02-20

    Insulin signaling in the hypothalamus plays an important role in food intake and glucose homeostasis. Hypothalamic neuronal functions are modulated by glial cells; these form an extensive network connecting the neurons and cerebral vasculature, known as the neurovascular unit (NVU). Brain pericytes are periendothelial accessory structures of the blood-brain barrier and integral members of the NVU. However, the interaction between pericytes and neurons is largely unexplored. Here, we investigate whether brain pericytes could affect hypothalamic neuronal insulin signaling. Our immunohistochemical observations demonstrated the existence of pericytes in the mouse hypothalamus, exhibiting immunoreactivity of platelet-derived growth factor receptor β (a pericyte marker), and laminin, a basal lamina marker. We then exposed a murine hypothalamic neuronal cell line, GT1-7, to conditioned medium obtained from primary cultures of rat brain pericytes. Pericyte-conditioned medium (PCM), but not astrocyte- or aortic smooth muscle cell-conditioned medium, increased the insulin-stimulated phosphorylation of Akt in GT1-7 cells in a concentration-dependent manner. PCM also enhanced insulin-stimulated tyrosine phosphorylation of insulin receptor β without changing its expression or localization in cytosolic or plasma membrane fractions. These results suggest that pericytes, rather than astrocytes, increase insulin sensitivity in hypothalamic neurons by releasing soluble factors under physiological conditions in the NVU. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. ERK1/2 mediates glucose-regulated POMC gene expression in hypothalamic neurons.

    Science.gov (United States)

    Zhang, Juan; Zhou, Yunting; Chen, Cheng; Yu, Feiyuan; Wang, Yun; Gu, Jiang; Ma, Lian; Ho, Guyu

    2015-04-01

    Hypothalamic glucose-sensing neurons regulate the expression of genes encoding feeding-related neuropetides POMC, AgRP, and NPY - the key components governing metabolic homeostasis. AMP-activated protein kinase (AMPK) is postulated to be the molecular mediator relaying glucose signals to regulate the expression of these neuropeptides. Whether other signaling mediator(s) plays a role is not clear. In this study, we investigated the role of ERK1/2 using primary hypothalamic neurons as the model system. The primary neurons were differentiated from hypothalamic progenitor cells. The differentiated neurons possessed the characteristic neuronal cell morphology and expressed neuronal post-mitotic markers as well as leptin-regulated orexigenic POMC and anorexigenic AgRP/NPY genes. Treatment of cells with glucose dose-dependently increased POMC and decreased AgRP/NPY expression with a concurrent suppression of AMPK phosphorylation. In addition, glucose treatment dose-dependently increased the ERK1/2 phosphorylation. Blockade of ERK1/2 activity with its specific inhibitor PD98059 partially (approximately 50%) abolished glucose-induced POMC expression, but had little effect on AgRP/NPY expression. Conversely, blockade of AMPK activity with its specific inhibitor produced a partial (approximately 50%) reversion of low-glucose-suppressed POMC expression, but almost completely blunted the low-glucose-induced AgRP/NPY expression. The results indicate that ERK1/2 mediated POMC but not AgRP/NPY expression. Confirming the in vitro findings, i.c.v. administration of PD98059 in rats similarly attenuated glucose-induced POMC expression in the hypothalamus, but again had little effect on AgRP/NPY expression. The results are indicative of a novel role of ERK1/2 in glucose-regulated POMC expression and offer new mechanistic insights into hypothalamic glucose sensing. © 2015 Society for Endocrinology.

  13. Glutamate and GABA as rapid effectors of hypothalamic peptidergic neurons

    Directory of Open Access Journals (Sweden)

    Cornelia eSchöne

    2012-11-01

    Full Text Available Vital hypothalamic neurons regulating hunger, wakefulness, reward-seeking, and body weight are often defined by unique expression of hypothalamus-specific neuropeptides. Gene-ablation studies show that some of these peptides, notably orexin/hypocretin (hcrt/orx, are themselves critical for stable states of consciousness and metabolic health. However, neuron-ablation studies often reveal more severe phenotypes, suggesting key roles for co-expressed transmitters. Indeed, most hypothalamic neurons, including hcrt/orx cells, contain fast transmitters glutamate and GABA, as well as several neuropeptides. What are the roles and relations between different transmitters expressed by the same neuron? Here, we consider signaling codes for releasing different transmitters in relation to transmitter and receptor diversity in behaviorally-defined, widely-projecting peptidergic neurons, such as hcrt/orx cells. We then discuss latest optogenetic studies of endogenous transmitter release from defined sets of axons in situ, which suggest that recently-characterized vital peptidergic neurons (e.g. hcrt/orx, proopiomelanocortin , and agouti-related peptide cells, as well as classical modulatory neurons (e.g. dopamine and acetylcholine cells, all use fast transmitters to control their postsynaptic targets. These optogenetic insights are complemented by recent observations of behavioral deficiencies caused by genetic ablation of fast transmission from specific neuropeptidergic and aminergic neurons. Powerful and fast (millisecond-scale GABAergic and glutamatergic signaling from neurons previously considered to be primarily modulatory raises new questions about the roles of slower co-transmitters they co-express.

  14. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control

    Directory of Open Access Journals (Sweden)

    Soledad Pitra

    2016-10-01

    Conclusions: We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension.

  15. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit.

    Science.gov (United States)

    Larsen, P J; Seier, V; Fink-Jensen, A; Holst, J J; Warberg, J; Vrang, N

    2003-03-01

    Cocaine- and amphetamine-regulated transcript (CART) is present in a number of hypothalamic nuclei. Besides actions in circuits regulating feeding behaviour and stress responses, the hypothalamic functions of CART are largely unknown. We report that CART immunoreactivity is present in hypothalamic neuroendocrine neurones. Adult male rats received a systemic injection of the neuronal tracer Fluorogold (FG) 2 days before fixation, and subsequent double- and triple-labelling immunoflourescence analysis demonstrated that neuroendocrine CART-containing neurones were present in the anteroventral periventricular, supraoptic, paraventricular (PVN) and periventricular nuclei of the hypothalamus. In the PVN, CART-positive neuroendocrine neurones were found in all of cytoarchitectonically identified nuclei. In the periventricular nucleus, approximately one-third of somatostatin cells were also CART-immunoreactive. In the medial parvicellular subnucleus of the PVN, CART and FG coexisted with thyrotrophin-releasing hormone, whereas very few of the corticotrophin-releasing hormone containing cells were CART-immunoreactive. In the arcuate nucleus, CART was extensively colocalized with pro-opiomelanocortin in the ventrolateral part, but completely absent from neuroendocrine neurones of the dorsomedial part. To assess the possible role of CART as a hypothalamic-releasing factor, immunoreactive CART was measured in blood samples from the long portal vessels connecting the median eminence with the anterior pituitary gland. Adult male rats were anaesthetized and the infundibular stalk exposed via a transpharyngeal approach. The long portal vessels were transected and blood collected in 30-min periods (one prestimulatory and three poststimulatory periods). Compared to systemic venous plasma samples, baseline concentrations of immunoreactive CART were elevated in portal plasma. Exposure to sodium nitroprusside hypotension triggered a two-fold elevation of portal CART42

  16. Autonomous control of phosphatidylinositol turnover by histamine and acetylcholine receptors in the NIE-115 neuron-like cell line

    International Nuclear Information System (INIS)

    Large, T.H.; Lambert, M.P.; Cohen, N.M.; Klein, W.L.

    1986-01-01

    Histamine was found to stimulate the turnover of phosphatidylinositol (PI) in cultures of neuron-like NE-115 cells. Turnover was measured by increased production of ( 3 H)inositol phosphates (breakdown) and by accelerated incorporation of 32 P into PI (resynthesis). Data were consistent with hydrolysis of polyphosphoinositides being the initial event in receptor-stimulated PI turnover. This response to histamine desensitized within 10 min. Receptor systems for histamine and acetylcholine were tested for possible interactions: PI turnover in response to dual stimulation was approximately equal to the sum of the individual responses while prior desensitization of the acetylcholine receptor system had no effect on subsequent stimulation of the histamine receptor system. These results are consistent with the hypothesis that components of acetylcholine and histamine receptor systems responsible for PI turnover are autonomously organised and regulated. (author)

  17. Cellular activation of hypothalamic hypocretin/orexin neurons facilitates short-term spatial memory in mice.

    Science.gov (United States)

    Aitta-Aho, Teemu; Pappa, Elpiniki; Burdakov, Denis; Apergis-Schoute, John

    2016-12-01

    The hypothalamic hypocretin/orexin (HO) system holds a central role in the regulation of several physiological functions critical for food-seeking behavior including mnemonic processes for effective foraging behavior. It is unclear however whether physiological increases in HO neuronal activity can support such processes. Using a designer rM3Ds receptor activation approach increasing HO neuronal activity resulted in improved short-term memory for novel locations. When tested on a non-spatial novelty object recognition task no significant difference was detected between groups indicating that hypothalamic HO neuronal activation can selectively facilitate short-term spatial memory for potentially supporting memory for locations during active exploration. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. An ATF4-ATG5 signaling in hypothalamic POMC neurons regulates obesity.

    Science.gov (United States)

    Xiao, Yuzhong; Deng, Yalan; Yuan, Feixiang; Xia, Tingting; Liu, Hao; Li, Zhigang; Chen, Shanghai; Liu, Zhixue; Ying, Hao; Liu, Yi; Zhai, Qiwei; Guo, Feifan

    2017-06-03

    ATF4 (activating transcription factor 4) is an important transcription factor that has many biological functions, while its role in hypothalamic POMC (pro-opiomelanocortin-α) neurons in the regulation of energy homeostasis has not been explored. We recently discovered that mice with an Atf4 deletion specific to POMC neurons (PAKO mice) are lean and have higher energy expenditure. Furthermore, these mice are resistant to high-fat diet (HFD)-induced obesity and obesity-related metabolic disorders. Mechanistically, we found the expression of ATG5 (autophagy-related 5) is upregulated in POMC neurons of PAKO mice, and ATF4 regulates ATG5 expression by binding directly to its promoter. Mice with Atf4 and Atg5 double knockout in POMC neurons have reduced energy expenditure and gain more fat mass compared with PAKO mice under a HFD. Finally, the effect of Atf4 knockout in POMC neurons is possibly mediated by enhanced ATG5-dependent macroautophagy/autophagy and α-melanocyte-stimulating hormone (α-MSH) production in the hypothalamus. Together, this work not only identifies a beneficial role for ATF4 in hypothalamic POMC neurons in the regulation of obesity, but also provides a new potential therapeutic target for obesity and obesity-related metabolic diseases.

  19. Brain Innate Immunity Regulates Hypothalamic Arcuate Neuronal Activity and Feeding Behavior

    NARCIS (Netherlands)

    Reis, Wagner L.; Yi, Chun-Xia; Gao, Yuanqing; Tschöp, Mathias H.; Stern, Javier E.

    2015-01-01

    Hypothalamic inflammation, involving microglia activation in the arcuate nucleus (ARC), is proposed as a novel underlying mechanism in obesity, insulin and leptin resistance. However, whether activated microglia affects ARC neuronal activity, and consequently basal and hormonal-induced food intake,

  20. NEUROANATOMICAL ASSOCIATION OF HYPOTHALAMIC HSD2-CONTAINING NEURONS WITH ERα, CATECHOLAMINES, OR OXYTOCIN: IMPLICATIONS FOR FEEDING?

    Directory of Open Access Journals (Sweden)

    Maegan L. Askew

    2015-06-01

    Full Text Available This study used immunohistochemical methods to investigate the possibility that hypothalamic neurons that contain 11-β-hydroxysteroid dehydrogenase type 2 (HSD2 are involved in the control of feeding by rats via neuroanatomical associations with the α subtype of estrogen receptor (ERα, catecholamines, and/or oxytocin. An aggregate of HSD2-containing neurons is located laterally in the hypothalamus, and the numbers of these neurons were greatly increased by estradiol treatment in ovariectomized rats compared to numbers in male rats and in ovariectomized rats that were not given estradiol. However, HSD2-containing neurons were anatomically segregated from ERα-containing neurons in the Ventromedial Hypothalamus and the Arcuate Nucleus. There was an absence of oxytocin-immunolabeled fibers in the area of HSD2-labeled neurons. Taken together, these findings provide no support for direct associations between hypothalamic HSD2 and ERα or oxytocin neurons in the control of feeding. In contrast, there was catecholamine-fiber labeling in the area of HSD2-labeled neurons, and these fibers occasionally were in close apposition to HSD2-labeled neurons. Therefore, we cannot rule out interactions between HSD2 and catecholamines in the control of feeding; however, given the relative sparseness of the appositions, any such interaction would appear to be modest. Thus, these studies do not conclusively identify a neuroanatomical substrate by which HSD2-containing neurons in the hypothalamus may alter feeding, and leave the functional role of hypothalamic HSD2-containing neurons subject to further investigation.

  1. On the acoustic wave sensor response to immortalized hypothalamic neurons at the device-liquid interface

    Directory of Open Access Journals (Sweden)

    Shilin Cheung

    2016-12-01

    Full Text Available The response of a thickness shear mode biosensor to immortalized murine hypothalamic neurons (mHypoE-38 and -46 cells under a variety of conditions and stimuli is discussed. Cellular studies which lead to the production of detectable neuronal responses include neuronal deposition, adhesion and proliferation, alteration in the extent of specific cell-surface interactions, actin filament and microtubule cytoskeletal disruptions, effects of cell depolarization, inhibition of the Na+-K+ pump via ouabain, effects of neuronal synchronization and the effects ligand-receptor interaction (glucagon. In the presence of cells, fs shifts are largely influenced by the damping of the TSM resonator. The formation of cell-surface interactions and hence the increase in coupling and acoustic energy dissipation can be modeled as an additional resistor in the BVD model. Further sensor and cellular changes can be obtained by negating the effects of damping from fs via the use of Rm and θmax. Keywords: Acoustic wave sensor, Hypothalamic neurons, Neuron cell-surface interaction

  2. Microglia Dictate the Impact of Saturated Fat Consumption on Hypothalamic Inflammation and Neuronal Function

    Directory of Open Access Journals (Sweden)

    Martin Valdearcos

    2014-12-01

    Full Text Available Diets rich in saturated fat produce inflammation, gliosis, and neuronal stress in the mediobasal hypothalamus (MBH. Here, we show that microglia mediate this process and its functional impact. Although microglia and astrocytes accumulate in the MBH of mice fed a diet rich in saturated fatty acids (SFAs, only the microglia undergo inflammatory activation, along with a buildup of hypothalamic SFAs. Enteric gavage specifically with SFAs reproduces microglial activation and neuronal stress in the MBH, and SFA treatment activates murine microglia, but not astrocytes, in culture. Moreover, depleting microglia abrogates SFA-induced inflammation in hypothalamic slices. Remarkably, depleting microglia from the MBH of mice abolishes inflammation and neuronal stress induced by excess SFA consumption, and in this context, microglial depletion enhances leptin signaling and reduces food intake. We thus show that microglia sense SFAs and orchestrate an inflammatory process in the MBH that alters neuronal function when SFA consumption is high.

  3. Glucose regulates hypothalamic long-chain fatty acid metabolism via AMP-activated kinase (AMPK) in neurons and astrocytes.

    Science.gov (United States)

    Taïb, Bouchra; Bouyakdan, Khalil; Hryhorczuk, Cécile; Rodaros, Demetra; Fulton, Stephanie; Alquier, Thierry

    2013-12-27

    Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance.

  4. Hypoglycemia: Role of Hypothalamic Glucose-Inhibited (GI) Neurons in Detection and Correction.

    Science.gov (United States)

    Zhou, Chunxue; Teegala, Suraj B; Khan, Bilal A; Gonzalez, Christina; Routh, Vanessa H

    2018-01-01

    Hypoglycemia is a profound threat to the brain since glucose is its primary fuel. As a result, glucose sensors are widely located in the central nervous system and periphery. In this perspective we will focus on the role of hypothalamic glucose-inhibited (GI) neurons in sensing and correcting hypoglycemia. In particular, we will discuss GI neurons in the ventromedial hypothalamus (VMH) which express neuronal nitric oxide synthase (nNOS) and in the perifornical hypothalamus (PFH) which express orexin. The ability of VMH nNOS-GI neurons to depolarize in low glucose closely parallels the hormonal response to hypoglycemia which stimulates gluconeogenesis. We have found that nitric oxide (NO) production in low glucose is dependent on oxidative status. In this perspective we will discuss the potential relevance of our work showing that enhancing the glutathione antioxidant system prevents hypoglycemia associated autonomic failure (HAAF) in non-diabetic rats whereas VMH overexpression of the thioredoxin antioxidant system restores hypoglycemia counterregulation in rats with type 1 diabetes.We will also address the potential role of the orexin-GI neurons in the arousal response needed for hypoglycemia awareness which leads to behavioral correction (e.g., food intake, glucose administration). The potential relationship between the hypothalamic sensors and the neurocircuitry in the hindbrain and portal mesenteric vein which is critical for hypoglycemia correction will then be discussed.

  5. Hypoglycemia: Role of Hypothalamic Glucose-Inhibited (GI Neurons in Detection and Correction

    Directory of Open Access Journals (Sweden)

    Chunxue Zhou

    2018-03-01

    Full Text Available Hypoglycemia is a profound threat to the brain since glucose is its primary fuel. As a result, glucose sensors are widely located in the central nervous system and periphery. In this perspective we will focus on the role of hypothalamic glucose-inhibited (GI neurons in sensing and correcting hypoglycemia. In particular, we will discuss GI neurons in the ventromedial hypothalamus (VMH which express neuronal nitric oxide synthase (nNOS and in the perifornical hypothalamus (PFH which express orexin. The ability of VMH nNOS-GI neurons to depolarize in low glucose closely parallels the hormonal response to hypoglycemia which stimulates gluconeogenesis. We have found that nitric oxide (NO production in low glucose is dependent on oxidative status. In this perspective we will discuss the potential relevance of our work showing that enhancing the glutathione antioxidant system prevents hypoglycemia associated autonomic failure (HAAF in non-diabetic rats whereas VMH overexpression of the thioredoxin antioxidant system restores hypoglycemia counterregulation in rats with type 1 diabetes.We will also address the potential role of the orexin-GI neurons in the arousal response needed for hypoglycemia awareness which leads to behavioral correction (e.g., food intake, glucose administration. The potential relationship between the hypothalamic sensors and the neurocircuitry in the hindbrain and portal mesenteric vein which is critical for hypoglycemia correction will then be discussed.

  6. Interactions of the histamine and hypocretin systems in CNS disorders.

    Science.gov (United States)

    Shan, Ling; Dauvilliers, Yves; Siegel, Jerome M

    2015-07-01

    Histamine and hypocretin neurons are localized to the hypothalamus, a brain area critical to autonomic function and sleep. Narcolepsy type 1, also known as narcolepsy with cataplexy, is a neurological disorder characterized by excessive daytime sleepiness, impaired night-time sleep, cataplexy, sleep paralysis and short latency to rapid eye movement (REM) sleep after sleep onset. In narcolepsy, 90% of hypocretin neurons are lost; in addition, two groups reported in 2014 that the number of histamine neurons is increased by 64% or more in human patients with narcolepsy, suggesting involvement of histamine in the aetiology of this disorder. Here, we review the role of the histamine and hypocretin systems in sleep-wake modulation. Furthermore, we summarize the neuropathological changes to these two systems in narcolepsy and discuss the possibility that narcolepsy-associated histamine abnormalities could mediate or result from the same processes that cause the hypocretin cell loss. We also review the changes in the hypocretin and histamine systems, and the associated sleep disruptions, in Parkinson disease, Alzheimer disease, Huntington disease and Tourette syndrome. Finally, we discuss novel therapeutic approaches for manipulation of the histamine system.

  7. Glucose Regulates Hypothalamic Long-chain Fatty Acid Metabolism via AMP-activated Kinase (AMPK) in Neurons and Astrocytes*

    Science.gov (United States)

    Taïb, Bouchra; Bouyakdan, Khalil; Hryhorczuk, Cécile; Rodaros, Demetra; Fulton, Stephanie; Alquier, Thierry

    2013-01-01

    Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance. PMID:24240094

  8. Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons

    OpenAIRE

    Ren, Hongxia; Lu, Taylor Y.; McGraw, Timothy E.; Accili, Domenico

    2014-01-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin?mediated cell ablation to selectively remove basal hypothalamic Glut4 ...

  9. Oleate induces KATP channel-dependent hyperpolarization in mouse hypothalamic glucose-excited neurons without altering cellular energy charge.

    Science.gov (United States)

    Dadak, Selma; Beall, Craig; Vlachaki Walker, Julia M; Soutar, Marc P M; McCrimmon, Rory J; Ashford, Michael L J

    2017-03-27

    The unsaturated fatty acid, oleate exhibits anorexigenic properties reducing food intake and hepatic glucose output. However, its mechanism of action in the hypothalamus has not been fully determined. This study investigated the effects of oleate and glucose on GT1-7 mouse hypothalamic cells (a model of glucose-excited (GE) neurons) and mouse arcuate nucleus (ARC) neurons. Whole-cell and perforated patch-clamp recordings, immunoblotting and cell energy status measures were used to investigate oleate- and glucose-sensing properties of mouse hypothalamic neurons. Oleate or lowered glucose concentration caused hyperpolarization and inhibition of firing of GT1-7 cells by the activation of ATP-sensitive K + channels (K ATP ). This effect of oleate was not dependent on fatty acid oxidation or raised AMP-activated protein kinase activity or prevented by the presence of the UCP2 inhibitor genipin. Oleate did not alter intracellular calcium, indicating that CD36/fatty acid translocase may not play a role. However, oleate activation of K ATP may require ATP metabolism. The short-chain fatty acid octanoate was unable to replicate the actions of oleate on GT1-7 cells. Although oleate decreased GT1-7 cell mitochondrial membrane potential there was no change in total cellular ATP or ATP/ADP ratios. Perforated patch and whole-cell recordings from mouse hypothalamic slices demonstrated that oleate hyperpolarized a subpopulation of ARC GE neurons by K ATP activation. Additionally, in a separate small population of ARC neurons, oleate application or lowered glucose concentration caused membrane depolarization. In conclusion, oleate induces K ATP- dependent hyperpolarization and inhibition of firing of a subgroup of GE hypothalamic neurons without altering cellular energy charge. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Effect of acute ethanol on beta-endorphin secretion from rat fetal hypothalamic neurons in primary cultures

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, D.K.; Minami, S. (Washington State Univ., Pullman (USA))

    1990-01-01

    To characterize the effect of ethanol on the hypothalamic {beta}-endorphin-containing neurons, rat fetal hypothalamic neurons were maintained in primary culture, and the secretion of {beta}-endorphin ({beta}-EP) was determined after ethanol challenges. Constant exposure to ethanol at doses of 6-50 mM produced a dose-dependent increase in basal secretion of {beta}-EP from these cultured cells. These doses of ethanol did not produce any significant effect on cell viability, DNA or protein content. The stimulated secretion of {beta}-EP following constant ethanol exposure is short-lasting. However, intermittent ethanol exposures maintained the ethanol stimulatory action on {beta}-EP secretion for a longer time. The magnitude of the {beta}-EP response to 50 mM ethanol is similar to that of the {beta}-EP response to 56 mM of potassium. Ethanol-stimulated {beta}-EP secretion required extracellular calcium and was blocked by a calcium channel blocker; a sodium channel blocker did not affect ethanol-stimulated secretion. These results suggest that the neuron culture system is a useful model for studying the cellular mechanisms involved in the ethanol-regulated hypothalamic opioid secretion.

  11. Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons.

    Science.gov (United States)

    Varela, Luis; Suyama, Shigetomo; Huang, Yan; Shanabrough, Marya; Tschöp, Matthias H; Gao, Xiao-Bing; Giordano, Frank J; Horvath, Tamas L

    2017-06-01

    Glucose is the primary driver of hypothalamic proopiomelanocortin (POMC) neurons. We show that endothelial hypoxia-inducible factor 1α (HIF-1α) controls glucose uptake in the hypothalamus and that it is upregulated in conditions of undernourishment, during which POMC neuronal activity is decreased. Endothelium-specific knockdown of HIF-1α impairs the ability of POMC neurons to adapt to the changing metabolic environment in vivo, resulting in overeating after food deprivation in mice. The impaired functioning of POMC neurons was reversed ex vivo or by parenchymal glucose administration. These observations indicate an active role for endothelial cells in the central control of metabolism and suggest that central vascular impairments may cause metabolic disorders. © 2017 by the American Diabetes Association.

  12. Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems

    Directory of Open Access Journals (Sweden)

    Xiao Yu

    2018-01-01

    Full Text Available Sedatives target just a handful of receptors and ion channels. But we have no satisfying explanation for how activating these receptors produces sedation. In particular, do sedatives act at restricted brain locations and circuitries or more widely? Two prominent sedative drugs in clinical use are zolpidem, a GABAA receptor positive allosteric modulator, and dexmedetomidine (DEX, a selective α2 adrenergic receptor agonist. By targeting hypothalamic neuromodulatory systems both drugs induce a sleep-like state, but in different ways: zolpidem primarily reduces the latency to NREM sleep, and is a controlled substance taken by many people to help them sleep; DEX produces prominent slow wave activity in the electroencephalogram (EEG resembling stage 2 NREM sleep, but with complications of hypothermia and lowered blood pressure—it is used for long term sedation in hospital intensive care units—under DEX-induced sedation patients are arousable and responsive, and this drug reduces the risk of delirium. DEX, and another α2 adrenergic agonist xylazine, are also widely used in veterinary clinics to sedate animals. Here we review how these two different classes of sedatives, zolpidem and dexmedetomideine, can selectively interact with some nodal points of the circuitry that promote wakefulness allowing the transition to NREM sleep. Zolpidem enhances GABAergic transmission onto histamine neurons in the hypothalamic tuberomammillary nucleus (TMN to hasten the transition to NREM sleep, and DEX interacts with neurons in the preoptic hypothalamic area that induce sleep and body cooling. This knowledge may aid the design of more precise acting sedatives, and at the same time, reveal more about the natural sleep-wake circuitry.

  13. Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning

    Science.gov (United States)

    Joly-Amado, Aurélie; Denis, Raphaël G P; Castel, Julien; Lacombe, Amélie; Cansell, Céline; Rouch, Claude; Kassis, Nadim; Dairou, Julien; Cani, Patrice D; Ventura-Clapier, Renée; Prola, Alexandre; Flamment, Melissa; Foufelle, Fabienne; Magnan, Christophe; Luquet, Serge

    2012-01-01

    Obesity-related diseases such as diabetes and dyslipidemia result from metabolic alterations including the defective conversion, storage and utilization of nutrients, but the central mechanisms that regulate this process of nutrient partitioning remain elusive. As positive regulators of feeding behaviour, agouti-related protein (AgRP) producing neurons are indispensible for the hypothalamic integration of energy balance. Here, we demonstrate a role for AgRP-neurons in the control of nutrient partitioning. We report that ablation of AgRP-neurons leads to a change in autonomic output onto liver, muscle and pancreas affecting the relative balance between lipids and carbohydrates metabolism. As a consequence, mice lacking AgRP-neurons become obese and hyperinsulinemic on regular chow but display reduced body weight gain and paradoxical improvement in glucose tolerance on high-fat diet. These results provide a direct demonstration of a role for AgRP-neurons in the coordination of efferent organ activity and nutrient partitioning, providing a mechanistic link between obesity and obesity-related disorders. PMID:22990237

  14. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control

    Directory of Open Access Journals (Sweden)

    Thanuja eGali Ramamoorthy

    2015-04-01

    Full Text Available The prevalence of obesity in adults and children has increased globally at an alarming rate. Mounting evidence from both epidemiological studies and animal models indicates that adult obesity and associated metabolic disorders can be programmed by intrauterine and early postnatal environment- a phenomenon known as fetal programming of adult disease. Data from nutritional intervention studies in animals including maternal under- and over-nutrition support the developmental origins of obesity and metabolic syndrome. The hypothalamic neuronal circuits located in the arcuate nucleus controlling appetite and energy expenditure are set early in life and are perturbed by maternal nutritional insults. In this review, we focus on the effects of maternal nutrition in programming permanent changes in these hypothalamic circuits, with experimental evidence from animal models of maternal under- and over-nutrition. We discuss the epigenetic modifications which regulate hypothalamic gene expression as potential molecular mechanisms linking maternal diet during pregnancy to the offspring’s risk of obesity at a later age. Understanding these mechanisms in key metabolic genes may provide insights into the development of preventative intervention strategies.

  15. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control

    Science.gov (United States)

    Gali Ramamoorthy, Thanuja; Begum, Ghazala; Harno, Erika; White, Anne

    2015-01-01

    The prevalence of obesity in adults and children has increased globally at an alarming rate. Mounting evidence from both epidemiological studies and animal models indicates that adult obesity and associated metabolic disorders can be programmed by intrauterine and early postnatal environment- a phenomenon known as “fetal programming of adult disease.” Data from nutritional intervention studies in animals including maternal under- and over-nutrition support the developmental origins of obesity and metabolic syndrome. The hypothalamic neuronal circuits located in the arcuate nucleus controlling appetite and energy expenditure are set early in life and are perturbed by maternal nutritional insults. In this review, we focus on the effects of maternal nutrition in programming permanent changes in these hypothalamic circuits, with experimental evidence from animal models of maternal under- and over-nutrition. We discuss the epigenetic modifications which regulate hypothalamic gene expression as potential molecular mechanisms linking maternal diet during pregnancy to the offspring's risk of obesity at a later age. Understanding these mechanisms in key metabolic genes may provide insights into the development of preventative intervention strategies. PMID:25954145

  16. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit

    DEFF Research Database (Denmark)

    Larsen, P J; Seier, V; Fink-Jensen, A

    2003-01-01

    Cocaine- and amphetamine-regulated transcript (CART) is present in a number of hypothalamic nuclei. Besides actions in circuits regulating feeding behaviour and stress responses, the hypothalamic functions of CART are largely unknown. We report that CART immunoreactivity is present in hypothalami......, supraoptic, paraventricular (PVN) and periventricular nuclei of the hypothalamus. In the PVN, CART-positive neuroendocrine neurones were found in all of cytoarchitectonically identified nuclei. In the periventricular nucleus, approximately one-third of somatostatin cells were also CART......-immunoreactive. In the medial parvicellular subnucleus of the PVN, CART and FG coexisted with thyrotrophin-releasing hormone, whereas very few of the corticotrophin-releasing hormone containing cells were CART-immunoreactive. In the arcuate nucleus, CART was extensively colocalized with pro...

  17. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing.

    Science.gov (United States)

    Le Foll, Christelle; Irani, Boman G; Magnan, Christophe; Dunn-Meynell, Ambrose A; Levin, Barry E

    2009-09-01

    We assessed the mechanisms by which specialized hypothalamic ventromedial nucleus (VMN) neurons utilize both glucose and long-chain fatty acids as signaling molecules to alter their activity as a potential means of regulating energy homeostasis. Fura-2 calcium (Ca(2+)) and membrane potential dye imaging, together with pharmacological agents, were used to assess the mechanisms by which oleic acid (OA) alters the activity of dissociated VMN neurons from 3- to 4-wk-old rats. OA excited up to 43% and inhibited up to 29% of all VMN neurons independently of glucose concentrations. In those neurons excited by both 2.5 mM glucose and OA, OA had a concentration-dependent effective excitatory concentration (EC(50)) of 13.1 nM. Neurons inhibited by both 2.5 mM glucose and OA had an effective inhibitory concentration (IC(50)) of 93 nM. At 0.5 mM glucose, OA had markedly different effects on these same neurons. Inhibition of carnitine palmitoyltransferase, reactive oxygen species formation, long-chain acetyl-CoA synthetase and ATP-sensitive K(+) channel activity or activation of uncoupling protein 2 (UCP2) accounted for only approximately 20% of OA's excitatory effects and approximately 40% of its inhibitory effects. Inhibition of CD36, a fatty acid transporter that can alter cell function independently of intracellular fatty acid metabolism, reduced the effects of OA by up to 45%. Thus OA affects VMN neuronal activity through multiple pathways. In glucosensing neurons, its effects are glucose dependent. This glucose-OA interaction provides a potential mechanism whereby such "metabolic sensing" neurons can respond to differences in the metabolic states associated with fasting and feeding.

  18. Bicarbonate Contributes to GABAA Receptor-Mediated Neuronal Excitation in Surgically-Resected Human Hypothalamic Hamartomas

    Science.gov (United States)

    Do-Young, Kim; Fenoglio, Kristina A.; Kerrigan, John F.; Rho, Jong M.

    2009-01-01

    SUMMARY The role of bicarbonate (HCO3-) in GABAA receptor-mediated depolarization of human hypothalamic hamartoma (HH) neurons was investigated using cellular electrophysiological and calcium imaging techniques. Activation of GABAA receptors with muscimol (30 μM) provoked neuronal excitation in over 70% of large (18-22 μM) HH neurons in HCO3- buffer. Subsequent perfusion of HCO3--free HEPES buffer produced partial suppression of muscimol-induced excitation. Additionally, 53% of large HH neurons under HCO3--free conditions exhibited reduced intracellular calcium accumulation by muscimol. These results suggest that HCO3- efflux through GABAA receptors on a subpopulation of large HH neurons may contribute to membrane depolarization and subsequent activation of L-type calcium channels. PMID:19022626

  19. Astrocytes Modulate a Postsynaptic NMDA–GABAA-Receptor Crosstalk in Hypothalamic Neurosecretory Neurons

    Science.gov (United States)

    Potapenko, Evgeniy S.; Biancardi, Vinicia C.; Zhou, Yiqiang

    2013-01-01

    A dynamic balance between the excitatory and inhibitory neurotransmitters glutamate and GABA is critical for maintaining proper neuronal activity in the brain. This balance is partly achieved via presynaptic interactions between glutamatergic and GABAAergic synapses converging into the same targets. Here, we show that in hypothalamic magnocellular neurosecretory neurons (MNCs), a direct crosstalk between postsynaptic NMDA receptors (NMDARs) and GABAA receptors (GABAARs) contributes to the excitatory/inhibitory balance in this system. We found that activation of NMDARs by endogenous glutamate levels controlled by astrocyte glutamate transporters, evokes a transient and reversible potentiation of postsynaptic GABAARs. This inter-receptor crosstalk is calcium-dependent and involves a kinase-dependent phosphorylation mechanism, but does not require nitric oxide as an intermediary signal. Finally, we found the NMDAR–GABAAR crosstalk to be blunted in rats with heart failure, a pathological condition in which the hypothalamic glutamate–GABA balance is tipped toward an excitatory predominance. Together, our findings support a novel form of glutamate–GABA interactions in MNCs, which involves crosstalk between NMDA and GABAA postsynaptic receptors, whose strength is controlled by the activity of local astrocytes. We propose this inter-receptor crosstalk to act as a compensatory, counterbalancing mechanism to dampen glutamate-mediated overexcitation. Finally, we propose that an uncoupling between NMDARs and GABAARs may contribute to exacerbated neuronal activity and, consequently, sympathohumoral activation in such disease conditions as heart failure. PMID:23303942

  20. Absence of histamine-induced itch in the African naked mole-rat and "rescue" by Substance P.

    Science.gov (United States)

    Smith, Ewan St John; Blass, Gregory R C; Lewin, Gary R; Park, Thomas J

    2010-05-24

    Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber) and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG) neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicin-sensitive. This suggested that naked mole-rat sensory neurons are activated by histamine, but that spinal dorsal horn processing of sensory information is not the same as in other rodents. We have previously shown that naked mole-rats naturally lack substance P (SP) in cutaneous C-fibers, but that the neurokinin-1 receptor is expressed in the superficial spinal cord. This led us to investigate if SP deficiency plays a role in the lack of histamine-induced scratching in this species. After intrathecal administration of SP into the spinal cord we observed robust scratching behavior in response to histamine injection. Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.

  1. Absence of histamine-induced itch in the African naked mole-rat and "rescue" by Substance P

    Directory of Open Access Journals (Sweden)

    Lewin Gary R

    2010-05-01

    Full Text Available Abstract Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicin-sensitive. This suggested that naked mole-rat sensory neurons are activated by histamine, but that spinal dorsal horn processing of sensory information is not the same as in other rodents. We have previously shown that naked mole-rats naturally lack substance P (SP in cutaneous C-fibers, but that the neurokinin-1 receptor is expressed in the superficial spinal cord. This led us to investigate if SP deficiency plays a role in the lack of histamine-induced scratching in this species. After intrathecal administration of SP into the spinal cord we observed robust scratching behavior in response to histamine injection. Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.

  2. Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus (VMH).

    Science.gov (United States)

    Shimazu, Takashi; Minokoshi, Yasuhiko

    2017-05-01

    The ventromedial hypothalamic nucleus (VMH) regulates glucose production in the liver as well as glucose uptake and utilization in peripheral tissues, including skeletal muscle and brown adipose tissue, via efferent sympathetic innervation and neuroendocrine mechanisms. The action of leptin on VMH neurons also increases glucose uptake in specific peripheral tissues through the sympathetic nervous system, with improved insulin sensitivity. On the other hand, subsets of VMH neurons, such as those that express steroidogenic factor 1 (SF1), sense changes in the ambient glucose concentration and are characterized as glucose-excited (GE) and glucose-inhibited (GI) neurons whose action potential frequency increases and decreases, respectively, as glucose levels rise. However, how these glucose-sensing (GE and GI) neurons in the VMH contribute to systemic glucoregulation remains poorly understood. In this review, we provide historical background and discuss recent advances related to glucoregulation by VMH neurons. In particular, the article describes the role of GE neurons in the control of peripheral glucose utilization and insulin sensitivity, which depend on mitochondrial uncoupling protein 2 of the neurons, as well as that of GI neurons in the control of hepatic glucose production through hypoglycemia-induced counterregulatory mechanisms.

  3. Sex difference in physical activity, energy expenditure and obesity driven by a subpopulation of hypothalamic POMC neurons

    Directory of Open Access Journals (Sweden)

    Luke K. Burke

    2016-03-01

    Full Text Available Objective: Obesity is one of the primary healthcare challenges of the 21st century. Signals relaying information regarding energy needs are integrated within the brain to influence body weight. Central among these integration nodes are the brain pro-opiomelanocortin (POMC peptides, perturbations of which disrupt energy balance and promote severe obesity. However, POMC neurons are neurochemically diverse and the crucial source of POMC peptides that regulate energy homeostasis and body weight remains to be fully clarified. Methods: Given that a 5-hydroxytryptamine 2c receptor (5-HT2CR agonist is a current obesity medication and 5-HT2CR agonist's effects on appetite are primarily mediated via POMC neurons, we hypothesized that a critical source of POMC regulating food intake and body weight is specifically synthesized in cells containing 5-HT2CRs. To exclusively manipulate Pomc synthesis only within 5-HT2CR containing cells, we generated a novel 5-HT2CRCRE mouse line and intercrossed it with Cre recombinase-dependent and hypothalamic specific reactivatable PomcNEO mice to restrict Pomc synthesis to the subset of hypothalamic cells containing 5-HT2CRs. This provided a means to clarify the specific contribution of a defined subgroup of POMC peptides in energy balance and body weight. Results: Here we transform genetically programed obese and hyperinsulinemic male mice lacking hypothalamic Pomc with increased appetite, reduced physical activity and compromised brown adipose tissue (BAT into lean, healthy mice via targeted restoration of Pomc function only within 5-HT2CR expressing cells. Remarkably, the same metabolic transformation does not occur in females, who despite corrected feeding behavior and normalized insulin levels remain physically inactive, have lower energy expenditure, compromised BAT and develop obesity. Conclusions: These data provide support for the functional heterogeneity of hypothalamic POMC neurons, revealing that Pomc

  4. Neurogenin 3 Mediates Sex Chromosome Effects on the Generation of Sex Differences in Hypothalamic Neuronal Development

    Directory of Open Access Journals (Sweden)

    Maria Julia Scerbo

    2014-07-01

    Full Text Available The organizational action of testosterone during critical periods of development is the cause of numerous sex differences in the brain. However, sex differences in neuritogenesis have been detected in primary neuronal hypothalamic cultures prepared before the peak of testosterone production by fetal testis. In the present study we assessed the hypothesis of that cell-autonomous action of sex chromosomes can differentially regulate the expression of the neuritogenic gene neurogenin 3 (Ngn3 in male and female hypothalamic neurons, generating sex differences in neuronal development. Neuronal cultures were prepared from male and female E14 mouse hypothalami, before the fetal peak of testosterone. Female neurons showed enhanced neuritogenesis and higher expression of Ngn3 than male neurons. The silencing of Ngn3 abolished sex differences in neuritogenesis, decreasing the differentiation of female neurons. The sex difference in Ngn3 expression was determined by sex chromosomes, as demonstrated using the four core genotypes mouse model, in which a spontaneous deletion of the testis-determining gene Sry from the Y chromosome was combined with the insertion of the Sry gene onto an autosome. In addition, the expression of Ngn3, which is also known to mediate the neuritogenic actions of estradiol, was increased in the cultures treated with the hormone, but only in those from male embryos. Furthermore, the hormone reversed the sex differences in neuritogenesis promoting the differentiation of male neurons. These findings indicate that Ngn3 mediates both cell-autonomous actions of sex chromosomes and hormonal effects on neuritogenesis.

  5. Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance.

    Science.gov (United States)

    Fick, Laura J; Belsham, Denise D

    2010-08-15

    Obesity and type 2 diabetes mellitus represent a significant global health crisis. These two interrelated diseases are typified by perturbed insulin signaling in the hypothalamus. Using novel hypothalamic cell lines, we have begun to elucidate the molecular and intracellular mechanisms involved in the hypothalamic control of energy homeostasis and insulin resistance. In this review, we present evidence of insulin and glucose signaling pathways that lead to changes in neuropeptide gene expression. We have identified some of the molecular mechanisms involved in the control of de novo hypothalamic insulin mRNA expression. And finally, we have defined key mechanisms involved in the etiology of cellular insulin resistance in hypothalamic neurons that may play a fundamental role in cases of high levels of insulin or saturated fatty acids, often linked to the exacerbation of obesity and diabetes.

  6. Pressor response to L-cysteine injected into the cisterna magna of conscious rats involves recruitment of hypothalamic vasopressinergic neurons.

    Science.gov (United States)

    Takemoto, Yumi

    2013-03-01

    The sulfur-containing non-essential amino acid L-cysteine injected into the cisterna magna of adult conscious rats produces an increase in blood pressure. The present study examined if the pressor response to L-cysteine is stereospecific and involves recruitment of hypothalamic vasopressinergic neurons and medullary noradrenergic A1 neurons. Intracisternally injected D-cysteine produced no cardiovascular changes, while L-cysteine produced hypertension and tachycardia in freely moving rats, indicating the stereospecific hemodynamic actions of L-cysteine via the brain. The double labeling immunohistochemistry combined with c-Fos detection as a marker of neuronal activation revealed significantly higher numbers of c-Fos-positive vasopressinergic neurons both in the supraoptic and paraventricular nuclei and tyrosine hydroxylase containing medullary A1 neurons, of L-cysteine-injected rats than those injected with D-cysteine as iso-osmotic control. The results indicate that the cardiovascular responses to intracisternal injection of L-cysteine in the conscious rat are stereospecific and include recruitment of hypothalamic vasopressinergic neurons both in the supraoptic and paraventricular nuclei, as well as of medullary A1 neurons. The findings may suggest a potential function of L-cysteine as an extracellular signal such as neuromodulators in central regulation of blood pressure.

  7. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-03

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Dietary sugars, not lipids, drive hypothalamic inflammation

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2017-08-01

    Conclusions: Combined overconsumption of fat and sugar, but not the overconsumption of fat per se, leads to excessive CML production in hypothalamic neurons, which, in turn, stimulates hypothalamic inflammatory responses such as microgliosis and eventually leads to neuronal dysfunction in the control of energy metabolism.

  9. Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human

    Directory of Open Access Journals (Sweden)

    Katalin eSkrapits

    2015-02-01

    Full Text Available Hypothalamic peptidergic neurons using kisspeptin (KP and its co-transmitters for communication are critically involved in the regulation of mammalian reproduction and puberty. This article provides an overview of neuropeptides present in KP neurons, with a focus on the human species. Immunohistochemical studies reveal that large subsets of human KP neurons synthesize neurokinin B, as also shown in laboratory species. In contrast, dynorphin described in KP neurons of rodents and sheep is found rarely in KP cells of human males and postmenopausal females. Similarly, galanin is detectable in mouse, but not human, KP cells, whereas substance P, cocaine- and amphetamine-regulated transcript and proenkephalin-derived opioids are expressed in varying subsets of KP neurons in humans, but not reported in ARC of other species. Human KP neurons do not contain neurotensin, cholecystokinin, proopiomelanocortin-derivatives, agouti-related protein, neuropeptide Y, somatostatin or tyrosine hydroxylase (dopamine. These data identify the possible co-transmitters of human KP cells. Neurochemical properties distinct from those of laboratory species indicate that humans use considerably different neurotransmitter mechanisms to regulate fertility.

  10. Electrophysiology of Hypothalamic Magnocellular Neurons In vitro: A Rhythmic Drive in Organotypic Cultures and Acute Slices.

    Science.gov (United States)

    Israel, Jean-Marc; Oliet, Stéphane H; Ciofi, Philippe

    2016-01-01

    Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  11. Electrophysiology of hypothalamic magnocellular neurons in vitro: a rhythmic drive in organotypic cultures and acute slices

    Directory of Open Access Journals (Sweden)

    Jean-Marc eIsrael

    2016-03-01

    Full Text Available Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  12. Somato-dendritic localization and signaling by leptin receptors in hypothalamic POMC and AgRP neurons.

    Directory of Open Access Journals (Sweden)

    Sangdeuk Ha

    Full Text Available Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC and agouti-related peptide (AgRP/Neuropeptide Y (NPY/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb. Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM, confocal-laser scanning microscopy (CLSM, and electron microscopy (EM to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb (+/+ mice and in Leprb (db/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin's central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms.

  13. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    Directory of Open Access Journals (Sweden)

    Jun Hu

    Full Text Available Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+, EPSC(-, and EPSC(+/- based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs, using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+ neurons, but increased it in EPSC(- neurons. Unlike EPSC(+ and EPSC(- neurons, EPSC(+/- neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/- neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  14. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    Science.gov (United States)

    Hu, Jun; Jiang, Lin; Low, Malcolm J; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(-), and EPSC(+/-)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(-) neurons. Unlike EPSC(+) and EPSC(-) neurons, EPSC(+/-) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/-) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  15. The Brain–to–Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions

    Science.gov (United States)

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C.; Ali, Almas; Tamarina, Natalia; Philipson, Louis H.; Enquist, Lynn W.; Myers, Martin G.

    2016-01-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. PMID:27207534

  16. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions.

    Science.gov (United States)

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C; Ali, Almas; Tamarina, Natalia; Philipson, Louis H; Enquist, Lynn W; Myers, Martin G; Rhodes, Christopher J

    2016-09-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. © 2016 by the American Diabetes Association.

  17. Ventral medullary neurones excited from the hypothalamic and mid-brain defence areas.

    Science.gov (United States)

    Hilton, S M; Smith, P R

    1984-07-01

    In cats anaesthetised with chloralose, the ventral medulla was explored in and around the strip previously identified as the location of the efferent pathway from the hypothalamic and mid-brain defence areas to the spinal cord, in a search for neurones excited by electrical stimulation of the defence areas. Such units were found mostly in the caudal part of this strip, at a depth of not more than 500 microns from the surface. Nearly all were located in the ventral part of nucleus paragigantocellularis lateralis (PGL) at the level of the rostral pole of the inferior olive. There was evidence of temporal and spatial facilitation, indicating a convergent excitatory input from the defence areas onto neurones in PGL. This is consistent with earlier evidence of a synaptic relay in the efferent pathway at this site. When the pathway is blocked at this site, arterial blood pressure falls profoundly, so activity in these neurones may be essential for the normal level of sympathetic nerve activity.

  18. CaMKII Regulates Synaptic NMDA Receptor Activity of Hypothalamic Presympathetic Neurons and Sympathetic Outflow in Hypertension.

    Science.gov (United States)

    Li, De-Pei; Zhou, Jing-Jing; Zhang, Jixiang; Pan, Hui-Lin

    2017-11-01

    NMDAR activity in the hypothalamic paraventricular nucleus (PVN) is increased and critically involved in heightened sympathetic vasomotor tone in hypertension. Calcium/calmodulin-dependent protein kinase II (CaMKII) binds to and modulates NMDAR activity. In this study, we determined the role of CaMKII in regulating NMDAR activity of PVN presympathetic neurons in male spontaneously hypertensive rats (SHRs). NMDAR-mediated EPSCs and puff NMDA-elicited currents were recorded in spinally projecting PVN neurons in SHRs and male Wistar-Kyoto (WKY) rats. The basal amplitude of evoked NMDAR-EPSCs and puff NMDA currents in retrogradely labeled PVN neurons were significantly higher in SHRs than in WKY rats. The CaMKII inhibitor autocamtide-2-related inhibitory peptide (AIP) normalized the increased amplitude of NMDAR-EPSCs and puff NMDA currents in labeled PVN neurons in SHRs but had no effect in WKY rats. Treatment with AIP also normalized the higher frequency of NMDAR-mediated miniature EPSCs of PVN neurons in SHRs. CaMKII-mediated phosphorylation level of GluN2B serine 1303 (S1303) in the PVN, but not in the hippocampus and frontal cortex, was significantly higher in SHRs than in WKY rats. Lowering blood pressure with celiac ganglionectomy in SHRs did not alter the increased level of phosphorylated GluN2B S1303 in the PVN. In addition, microinjection of AIP into the PVN significantly reduced arterial blood pressure and lumbar sympathetic nerve discharges in SHRs. Our findings suggest that CaMKII activity is increased in the PVN and contributes to potentiated presynaptic and postsynaptic NMDAR activity to elevate sympathetic vasomotor tone in hypertension. SIGNIFICANCE STATEMENT Heightened sympathetic vasomotor tone is a major contributor to the development of hypertension. Although glutamate NMDA receptor (NMDAR)-mediated excitatory drive in the hypothalamus plays a critical role in increased sympathetic output in hypertension, the molecular mechanism involved in

  19. Hyperosmotic stimulus induces reversible angiogenesis within the hypothalamic magnocellular nuclei of the adult rat: a potential role for neuronal vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Vincent Anne

    2005-03-01

    Full Text Available Abstract Background In mammals, the CNS vasculature is established during the postnatal period via active angiogenesis, providing different brain regions with capillary networks of various densities that locally supply adapted metabolic support to neurons. Thereafter this vasculature remains essentially quiescent excepted for specific pathologies. In the adult rat hypothalamus, a particularly dense network of capillary vessels is associated with the supraoptic (SON and paraventricular (PVN nuclei containing the magnocellular neurons secreting vasopressin and oxytocin, two neurohormones involved in the control of the body fluid homoeostasis. In the seventies, it was reported that proliferation of astrocytes and endothelial cells occurs within these hypothalamic nuclei when strong metabolic activation of the vasopressinergic and oxytocinergic neurons was induced by prolonged hyperosmotic stimulation. The aim of the present study was to determine whether such proliferative response to osmotic stimulus is related to local angiogenesis and to elucidate the cellular and molecular mechanisms involved. Results Our results provide evidence that cell proliferation occurring within the SON of osmotically stimulated adult rats corresponds to local angiogenesis. We show that 1 a large majority of the SON proliferative cells is associated with capillary vessels, 2 this proliferative response correlates with a progressive increase in density of the capillary network within the nucleus, and 3 SON capillary vessels exhibit an increased expression of nestin and vimentin, two markers of newly formed vessels. Contrasting with most adult CNS neurons, hypothalamic magnocellular neurons were found to express vascular endothelial growth factor (VEGF, a potent angiogenic factor whose production was increased by osmotic stimulus. When VEGF was inhibited by dexamethasone treatment or by the local application of a blocking antibody, the angiogenic response was strongly

  20. Different perception levels of histamine-induced itch sensation in young adult mice.

    Science.gov (United States)

    Ji, Yeounjung; Jang, Yongwoo; Lee, Wook Joo; Yang, Young Duk; Shim, Won-Sik

    2018-05-01

    Itch is an unpleasant sensation that evokes behavioral responses such as scratching the skin. Interestingly, it is conceived that the perception of itch sensation is influenced by age. Indeed, accumulating evidence supports the idea that even children or younger adults show distinctive itch sensation depending on age. This evidence implies the presence of a mechanism that regulates the perception of itch sensation in an age-dependent fashion. Therefore, the purpose of the present study was to investigate a putative mechanism for the age-dependent perception of itch sensation by comparing histamine-induced scratching behaviors in 45-day old (D45) and 75-day old male "young adult" mice. The results indicated that, following histamine administration, the D75 mice spent a longer time scratching than D45 mice. However, the intensity of the calcium influx induced by histamine in primary culture of dorsal root ganglia (DRG) neurons was not different between D45 and D75 mice. Moreover, no apparent difference was observed in mRNA levels of a characteristic His-related receptor and ion channel. In contrast, the mRNA levels of Toll-Like Receptor 4 (TLR4) were increased approximately by two-fold in D75 DRG compared with D45 DRG. Additionally, D75-derived DRG neurons exhibited enhanced intracellular calcium increase by lipopolysaccharide (LPS, a TLR4 agonist) than those of D45 mice. Furthermore, intensities of calcium influx induced by histamine were significantly potentiated when co-treated with LPS in D75 DRG neurons, but not in those of D45 mice. Thus, it appears that D75 mice showed enhanced histamine-induced scratching behaviors not by increased expression levels of histamine-related genes, but probably due to augmented TLR4 expression in DRG neurons. Consequently, the current study found that different perception levels of histamine-induced itch sensation are present in different age groups of young adult mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Glucose Rapidly Induces Different Forms of Excitatory Synaptic Plasticity in Hypothalamic POMC Neurons

    Science.gov (United States)

    Hu, Jun; Jiang, Lin; Low, Malcolm J.; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(−), and EPSC(+/−)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(−) neurons. Unlike EPSC(+) and EPSC(−) neurons, EPSC(+/−) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/−) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals. PMID:25127258

  2. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch.

    Science.gov (United States)

    Jian, Tunyu; Yang, Niuniu; Yang, Yan; Zhu, Chan; Yuan, Xiaolin; Yu, Guang; Wang, Changming; Wang, Zhongli; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Wu, Guanyi; Tang, Zongxiang

    2016-01-01

    Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)-a histamine H4 receptor special agonist under cutaneous injection-obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3-50 μM) could also induce a dose-dependent increase in intracellular Ca(2+) ([Ca(2+)]i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca(2+) responses. In addition, immepip-induced [Ca(2+)]i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons' responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  3. Identification of amino acids involved in histamine potentiation of GABA(A receptors

    Directory of Open Access Journals (Sweden)

    Ulrike eThiel

    2015-05-01

    Full Text Available Histamine is a neurotransmitter involved in a number of physiological and neuronal functions. In mammals, such as humans and rodents, the histaminergic neurons found in the tuberomamillary nucleus (TMN project widely throughout the central nervous system (CNS. Histamine acts as positive modulator of GABA(A receptors (GABA(ARs and, in high concentrations (10 mM, as negative modulator of the strychnine-sensitive glycine receptor. However, the exact molecular mechanisms by which histamine acts on GABA(ARs are unknown. In our study, we aimed to identify amino acids potentially involved in the modulatory effect of histamine on GABA(ARs. We expressed GABA(ARs with 12 different point mutations in Xenopus laevis oocytes and characterized the effect of histamine on GABA-induced currents using the two-electrode voltage clamp technique. Our data demonstrate that the amino acid residues ß2(N265 and ß2(M286, which are important for modulation by propofol, are not involved in the action of histamine. However, we found that histamine modulation is dependent on the amino acid residues alpha1(R120, ß2(Y157, ß3(D163, ß3(V175 and ß3(Q185. We showed that the amino acid residues ß2(Y157 and ß3(Q185 mediate the positive modulatory effect of histamine on GABA-induced currents, whereas alpha1(R120 and ß2(D163 form a potential histamine interaction site in GABA(ARs.

  4. PROTECTIVE EFFECTS OF HYPOTHALAMIC BETA-ENDORPHIN NEURONS AGAINST ALCOHOL-INDUCED LIVER INJURIES AND LIVER CANCERS IN RAT ANIMAL MODELS

    Science.gov (United States)

    Murugan, Sengottuvelan; Boyadjieva, Nadka; Sarkar, Dipak K.

    2014-01-01

    Background Recently, retrograde tracing has provided evidence for an influence of hypothalamic β-endorphin (BEP) neurons on the liver, but functions of these neurons are not known. We evaluated the effect of BEP neuronal activation on alcohol-induced liver injury and hepatocellular cancer. Methods Male rats received either BEP neuron transplants or control transplants in the hypothalamus and randomly assigned to feeding alcohol-containing liquid diet or control liquid diet for 8 weeks or to treatment of a carcinogen diethylnitrosamine (DEN). Liver tissues of these animals were analyzed histochemically and biochemically for tissue injuries or cancer. Results Alcohol-feeding increased liver weight and induced several histopathological changes such as prominent microvesicular steatosis and hepatic fibrosis. Alcohol feeding also increased protein levels of triglyceride, hepatic stellate cell activation factors and catecholamines in the liver and endotoxin levels in the plasma. However, these effects of alcohol on the liver were reduced in animals with BEP neuron transplants. BEP neuron transplants also suppressed carcinogen-induced liver histopathologies such as extensive fibrosis, large focus of inflammatory infiltration, hepatocelluar carcinoma, collagen deposition, numbers of preneoplastic foci, levels of hepatic stellate cell activation factors and catecholamines, as well as inflammatory milieu and the levels of NK cell cytotoxic factors in the liver. Conclusion These findings are the first evidence for a role of hypothalamic BEP neurons in influencing liver functions. Additionally, the data identify that BEP neuron transplantation prevents hepatocellular injury and hepatocellular carcinoma formation possibly via influencing the immune function. PMID:25581653

  5. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH neurons

    Directory of Open Access Journals (Sweden)

    Christian Cortés-Campos

    2015-09-01

    Full Text Available Gonadotropin-releasing hormone (GnRH is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons.

  6. A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance.

    Science.gov (United States)

    Hoffmann, Hanne M; Mellon, Pamela L

    2016-01-01

    Fertility depends on the correct maturation and function of approximately 800 gonadotropin-releasing hormone (GnRH) neurons in the brain. GnRH neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates fertility. In adulthood, GnRH neurons are scattered throughout the anterior hypothalamic area and project to the median eminence, where GnRH is released into the portal vasculature to stimulate release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary. LH and FSH then regulate gonadal steroidogenesis and gametogenesis. Absence of GnRH neurons or inappropriate GnRH release leads to infertility. Despite the critical role of GnRH neurons in fertility, we still have a limited understanding of the genes responsible for proper GnRH neuron development and function in adulthood. GnRH neurons originate in the olfactory placode then migrate into the brain. Homeodomain transcription factors expressed within GnRH neurons or along their migratory path are candidate genes for inherited infertility. Using a combined in vitro and in vivo approach, we have identified Ventral Anterior Homeobox 1 ( Vax1 ) as a novel homeodomain transcription factor responsible for GnRH neuron maturation and fertility. GnRH neuron counts in Vax1 knock-out embryos revealed Vax1 to be required for the presence of GnRH-expressing cells at embryonic day 17.5 (E17.5), but not at E13.5. To localize the effects of Vax1 on fertility, we generated Vax1 flox mice and crossed them with Gnrh cre mice to specifically delete Vax1 within GnRH neurons. GnRH staining in Vax1 flox/flox :GnRH cre mice show a total absence of GnRH expression in the adult. We performed lineage tracing in Vax1 flox/flox :GnRH cre :RosaLacZ mice which proved GnRH neurons to be alive, but incapable of expressing GnRH. The absence of GnRH leads to delayed puberty, hypogonadism and complete infertility in both sexes. Finally, using the immortalized model GnRH neuron cell lines, GN11 and

  7. [Effect of nociceptin on histamine and serotonin release in the central nervous system].

    Science.gov (United States)

    Gyenge, Melinda; Hantos, Mónika; Laufer, Rudolf; Tekes, Korniléa

    2006-01-01

    Role in pain sensation of both nociceptin (NC), the bioactive heptadecapeptide sequence of preproorphaninFQ and of histamine has been widely evidenced in the central nervous system (CNS). In the current series of experiments effect of intracerebroventricularly (i.c.v.) administered NC (5.5 nmol/rat) on histamine and serotonin levels in blood plasma, CSF and brain areas (hypothalamus and hippocampus) was studies and compared to the effect of the mast cell degranulator Compound 48/80(100microg/kg, i.c.v.) and the neuroactive peptide Substance P (50nmol/rat, i.c.v.). It was found that all the three compounds increased the histamine level in the CNS, however their activity concerning the mast cell-, and neuronal histamine release is different. NC could release histamine from both the mast cells and the neurons and it decreased CNS serotonin levels. Substance P was found the most potent in increasing CNS histamine levels. Compound 48/80 treatment resulted in elevated histamine levels both in the CNS and blood plasma. It is concluded that the histamine releasing effects of i.c.v. administered NC and SP are limited to the CNS, but in the effect of Compound 48/80 its blood-brain barrier impairing activity is also involved. Data also demonstrate that NC has significant effect on both the histaminergic and serotonergic neurotransmission in the CNS.

  8. Activation of hypothalamic RIP-Cre neurons promotes beiging of WAT via sympathetic nervous system.

    Science.gov (United States)

    Wang, Baile; Li, Ang; Li, Xiaomu; Ho, Philip Wl; Wu, Donghai; Wang, Xiaoqi; Liu, Zhuohao; Wu, Kelvin Kl; Yau, Sonata Sy; Xu, Aimin; Cheng, Kenneth Ky

    2018-04-01

    Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat-insulin-promoter-Cre (RIP-Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT Genetic ablation of APPL2 in RIP-Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP-Cre neurons, inactivation of VMH AMPK, or treatment with a β3-adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP-Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP-Cre neurons, in which the APPL2-AMPK signaling axis is crucial for this defending mechanism to cold and obesity. © 2018 The Authors.

  9. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch

    Directory of Open Access Journals (Sweden)

    Tunyu Jian

    2016-01-01

    Full Text Available Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip—a histamine H4 receptor special agonist under cutaneous injection—obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3–50 μM could also induce a dose-dependent increase in intracellular Ca2+ (Ca2+i of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca2+ responses. In addition, immepip-induced Ca2+i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons’ responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  10. Anorexia and impaired glucose metabolism in mice with hypothalamic ablation of Glut4 neurons.

    Science.gov (United States)

    Ren, Hongxia; Lu, Taylor Y; McGraw, Timothy E; Accili, Domenico

    2015-02-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin-mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron-ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  11. Waking action of ursodeoxycholic acid (UDCA involves histamine and GABAA receptor block.

    Directory of Open Access Journals (Sweden)

    Yevgenij Yanovsky

    Full Text Available Since ancient times ursodeoxycholic acid (UDCA, a constituent of bile, is used against gallstone formation and cholestasis. A neuroprotective action of UDCA was demonstrated recently in models of Alzheimer's disease and retinal degeneration. The mechanisms of UDCA action in the nervous system are poorly understood. We show now that UDCA promotes wakefulness during the active period of the day, lacking this activity in histamine-deficient mice. In cultured hypothalamic neurons UDCA did not affect firing rate but synchronized the firing, an effect abolished by the GABA(AR antagonist gabazine. In histaminergic neurons recorded in slices UDCA reduced amplitude and duration of spontaneous and evoked IPSCs. In acutely isolated histaminergic neurons UDCA inhibited GABA-evoked currents and sIPSCs starting at 10 µM (IC(50 = 70 µM and did not affect NMDA- and AMPA-receptor mediated currents at 100 µM. Recombinant GABA(A receptors composed of α1, β1-3 and γ2L subunits expressed in HEK293 cells displayed a sensitivity to UDCA similar to that of native GABA(A receptors. The mutation α1V256S, known to reduce the inhibitory action of pregnenolone sulphate, reduced the potency of UDCA. The mutation α1Q241L, which abolishes GABA(AR potentiation by several neurosteroids, had no effect on GABA(AR inhibition by UDCA. In conclusion, UDCA enhances alertness through disinhibition, at least partially of the histaminergic system via GABA(A receptors.

  12. Role of developmental factors in hypothalamic function

    Directory of Open Access Journals (Sweden)

    Jakob eBiran

    2015-04-01

    Full Text Available The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism’s development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors, secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.

  13. Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis.

    Science.gov (United States)

    Hill, Jennifer W; Xu, Yong; Preitner, Frederic; Fukuda, Makota; Cho, You-Ree; Luo, Ji; Balthasar, Nina; Coppari, Roberto; Cantley, Lewis C; Kahn, Barbara B; Zhao, Jean J; Elmquist, Joel K

    2009-11-01

    Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons. We found that deleting p85alpha alone induced resistance to diet-induced obesity. In contrast, deletion of the p110alpha catalytic subunit of PI3K led to increased weight gain and adipose tissue along with reduced energy expenditure. Independent of these effects, increased PI3K activity in POMC neurons improved insulin sensitivity, whereas decreased PI3K signaling resulted in impaired glucose regulation. These studies show that activity of the PI3K pathway in POMC neurons is involved in not only normal energy regulation but also glucose homeostasis.

  14. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Garrott, Kara; Dyavanapalli, Jhansi; Cauley, Edmund; Dwyer, Mary Kate; Kuzmiak-Glancy, Sarah; Wang, Xin; Mendelowitz, David; Kay, Matthew W

    2017-09-01

    A distinctive hallmark of heart failure (HF) is autonomic imbalance, consisting of increased sympathetic activity, and decreased parasympathetic tone. Recent work suggests that activation of hypothalamic oxytocin (OXT) neurons could improve autonomic balance during HF. We hypothesized that a novel method of chronic selective activation of hypothalamic OXT neurons will improve cardiac function and reduce inflammation and fibrosis in a rat model of HF. Two groups of male Sprague-Dawley rats underwent trans-ascending aortic constriction (TAC) to induce left ventricular (LV) hypertrophy that progresses to HF. In one TAC group, OXT neurons in the paraventricular nucleus of the hypothalamus were chronically activated by selective expression and activation of excitatory DREADDs receptors with daily injections of clozapine N-oxide (CNO) (TAC + OXT). Two additional age-matched groups received either saline injections (Control) or CNO injections for excitatory DREADDs activation (OXT NORM). Heart rate (HR), LV developed pressure (LVDP), and coronary flow rate were measured in isolated heart experiments. Isoproterenol (0.01 nM-1.0 µM) was administered to evaluate β-adrenergic sensitivity. We found that increases in cellular hypertrophy and myocardial collagen density in TAC were blunted in TAC + OXT animals. Inflammatory cytokine IL-1β expression was more than twice higher in TAC than all other hearts. LVDP, rate pressure product (RPP), contractility, and relaxation were depressed in TAC compared with all other groups. The response of TAC and TAC + OXT hearts to isoproterenol was blunted, with no significant increase in RPP, contractility, or relaxation. However, HR in TAC + OXT animals increased to match Control at higher doses of isoproterenol. Activation of hypothalamic OXT neurons to elevate parasympathetic tone reduced cellular hypertrophy, levels of IL-1β, and fibrosis during TAC-induced HF in rats. Cardiac contractility parameters were

  15. Histaminergic responses by hypothalamic neurons that regulate lordosis and their modulation by estradiol.

    Science.gov (United States)

    Dupré, Christophe; Lovett-Barron, Matthew; Pfaff, Donald W; Kow, Lee-Ming

    2010-07-06

    How do fluctuations in the level of generalized arousal of the brain affect the performance of specific motivated behaviors, such as sexual behaviors that depend on sexual arousal? A great deal of previous work has provided us with two important starting points in answering this question: (i) that histamine (HA) serves generalized CNS arousal and (ii) that heightened electrical activity of neurons in the ventromedial nucleus of the hypothalamus (VMN) is necessary and sufficient for facilitating the primary female sex behavior in laboratory animals, lordosis behavior. Here we used patch clamp recording technology to analyze HA effects on VMN neuronal activity. The results show that HA acting through H1 receptors (H1R) depolarizes these neurons. Further, acute administration of estradiol, an estrogen necessary for lordosis behavior to occur, heightens this effect. Hyperpolarization, which tends to decrease excitability and enhance inhibition, was not affected by acute estradiol or mediated by H1R but was mediated by other HA receptor subtypes, H2 and H3. Sampling of mRNA from individual VMN neurons showed colocalization of expression of H1 receptor mRNA with estrogen receptor (ER)-alpha mRNA but also revealed ER colocalization with the other HA receptor subtypes and colocalization of different subtypes with each other. The latter finding provides the molecular basis for complex "push-pull" regulation of VMN neuronal excitability by HA. Thus, in the simplest causal route, HA, acting on VMN neurons through H1R provides a mechanism by which elevated states of generalized CNS arousal can foster a specific estrogen-dependent, aroused behavior, sexual behavior.

  16. Effects of endogenous pyrogen and prostaglandin E2 on hypothalamic neurons in rat brain slices.

    Science.gov (United States)

    Watanabe, T; Morimoto, A; Murakami, N

    1987-06-01

    We investigated the effects of endogenous pyrogen and prostaglandin E2 (PGE2) on the preoptic and anterior hypothalamic (POAH) neurons using brain slice preparations from the rat. Partially purified endogenous pyrogen did not change the activities of most of the neurons in the POAH region when applied locally through a micropipette attached to the recording electrode in proximity to the neurons. This indicates that partially purified endogenous pyrogen does not act directly on the neuronal activity in the POAH region. The partially purified endogenous pyrogen, applied into a culture chamber containing a brain slice, facilitated the activities in 24% of the total neurons tested, regardless of the thermal specificity of the neurons. Moreover, PGE2 added to the culture chamber facilitated 48% of the warm-responsive, 33% of the cold-responsive, and 29% of the thermally insensitive neurons. The direction of change in neuronal activity induced by partially purified endogenous pyrogen appears to be almost the same as that induced by PGE2 when these substances were applied by perfusion to the same neuron in the culture chamber. These results suggest that partially purified pyrogen applied to the perfusate of the culture chamber stimulates some constituents of brain tissue to synthesize and release prostaglandin, which in turn affects the neuronal activity of the POAH region.

  17. Human recombinant factor VIIa may improve heat intolerance in mice by attenuating hypothalamic neuronal apoptosis and damage.

    Science.gov (United States)

    Hsu, Chuan-Chih; Chen, Sheng-Hsien; Lin, Cheng-Hsien; Yung, Ming-Chi

    2014-10-01

    Intolerance to heat exposure is believed to be associated with hypothalamo-pituitary-adrenocortical (HPA) axis impairment [reflected by decreases in blood concentrations of both adrenocorticotrophic-hormone (ACTH) and corticosterone]. The purpose of this study was to determine the effect of human recombinant factor VIIa (rfVIIa) on heat intolerance, HPA axis impairment, and hypothalamic inflammation, ischemic and oxidative damage, and apoptosis in mice under heat stress. Immediately after heat stress (41.2 °C for 1 h), mice were treated with vehicle (1 mL/kg of body weight) or rfVIIa (65-270 µg/kg of body weight) and then returned to room temperature (26 °C). Mice still alive on day 4 of heat exposure were considered survivors. Cellular ischemia markers (e.g., glutamate, lactate-to-pyruvate ratio), oxidative damage markers (e.g., nitric oxide metabolite, hydroxyl radials), and pro-inflammatory cytokines (e.g., interleukin-6, interleukin-1β, tumor necrosis factor-α) in hypothalamus were determined. In addition, blood concentrations of both ACTH and corticosterone were measured. Hypothalamic cell damage was assessed by determing the neuronal damage scores, whereas the hypothalamic cell apoptosis was determined by assessing the numbers of cells stained with terminal deoxynucleotidyl transferase-mediated αUTP nick-end labeling, caspase-3-positive cells, and platelet endothelial cell adhesion molecula-1-positive cells in hypothalamus. Compared with vehicle-treated heated mice, rfVIIa-treated heated mice had significantly higher fractional survival (8/10 vs 1/10), lesser thermoregulatory deficit (34.1 vs 24.8 °C), lesser extents of ischemic, oxidative, and inflammatory markers in hypothalamus, lesser neuronal damage scores and apoptosis in hypothalamus, and lesser HPA axis impairment. Human recombinant factor VIIa appears to exert a protective effect against heatstroke by attenuating hypothalamic cell apoptosis (due to ischemic, inflammatory, and oxidative damage

  18. To Ingest or Rest? Specialized Roles of Lateral Hypothalamic Area Neurons in Coordinating Energy Balance

    Directory of Open Access Journals (Sweden)

    Juliette A. Brown

    2015-02-01

    Full Text Available Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH or orexins/hypocretins (OX are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.

  19. A glial variant of the vesicular monoamine transporter is required to store histamine in the Drosophila visual system.

    Directory of Open Access Journals (Sweden)

    Rafael Romero-Calderón

    2008-11-01

    Full Text Available Unlike other monoamine neurotransmitters, the mechanism by which the brain's histamine content is regulated remains unclear. In mammals, vesicular monoamine transporters (VMATs are expressed exclusively in neurons and mediate the storage of histamine and other monoamines. We have studied the visual system of Drosophila melanogaster in which histamine is the primary neurotransmitter released from photoreceptor cells. We report here that a novel mRNA splice variant of Drosophila VMAT (DVMAT-B is expressed not in neurons but rather in a small subset of glia in the lamina of the fly's optic lobe. Histamine contents are reduced by mutation of dVMAT, but can be partially restored by specifically expressing DVMAT-B in glia. Our results suggest a novel role for a monoamine transporter in glia that may be relevant to histamine homeostasis in other systems.

  20. Direct versus indirect actions of ghrelin on hypothalamic NPY neurons.

    Science.gov (United States)

    Hashiguchi, Hiroshi; Sheng, Zhenyu; Routh, Vanessa; Gerzanich, Volodymyr; Simard, J Marc; Bryan, Joseph

    2017-01-01

    Assess direct versus indirect action(s) of ghrelin on hypothalamic NPY neurons. Electrophysiology was used to measure ion channel activity in NPY-GFP neurons in slice preparations. Ca2+ imaging was used to monitor ghrelin activation of isolated NPY GFP-labeled neurons. Immunohistochemistry was used to localize Trpm4, SUR1 and Kir6.2 in the hypothalamus. Acylated ghrelin depolarized the membrane potential (MP) of NPY-GFP neurons in brain slices. Depolarization resulted from a decreased input resistance (IR) in ~70% of neurons (15/22) or an increased IR in the remainder (7/22), consistent with the opening or closing of ion channels, respectively. Although tetrodotoxin (TTX) blockade of presynaptic action potentials reduced ghrelin-induced changes in MP and IR, ghrelin still significantly depolarized the MP and decreased IR in TTX-treated neurons, suggesting that ghrelin directly opens cation channel(s) in NPY neurons. In isolated NPY-GFP neurons, ghrelin produced a sustained rise of [Ca2+]c, with an EC50 ~110 pM. Pharmacologic studies confirmed that the direct action of ghrelin was through occupation of the growth hormone secretagogue receptor, GHS-R, and demonstrated the importance of the adenylate cyclase/cAMP/protein kinase A (PKA) and phospholipase C/inositol triphosphate (PLC/IP3) pathways as activators of 5' AMP-activated protein kinase (AMPK). Activation of isolated neurons was not affected by CNQX or TTX, but reducing [Na+]o suppressed activation, suggesting a role for Na+-permeable cation channels. SUR1 and two channel partners, Kir6.2 and Trpm4, were identified immunologically in NPY-GFP neurons in situ. The actions of SUR1 and Trpm4 modulators were informative: like ghrelin, diazoxide, a SUR1 agonist, elevated [Ca2+]c and glibenclamide, a SUR1 antagonist, partially suppressed ghrelin action, while 9-phenanthrol and flufenamic acid, selective Trpm4 antagonists, blocked ghrelin actions on isolated neurons. Ghrelin activation was unaffected by nifedipine and

  1. Increased hypothalamic serotonin turnover in inflammation-induced anorexia.

    Science.gov (United States)

    Dwarkasing, J T; Witkamp, R F; Boekschoten, M V; Ter Laak, M C; Heins, M S; van Norren, K

    2016-05-20

    Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.

  2. Activation of the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory actions in immortalized hypothalamic neurons.

    Science.gov (United States)

    Wellhauser, Leigh; Belsham, Denise D

    2014-03-27

    Overnutrition and the ensuing hypothalamic inflammation is a major perpetuating factor in the development of metabolic diseases, such as obesity and diabetes. Inflamed neurons of the CNS fail to properly regulate energy homeostasis leading to pathogenic changes in glucose handling, feeding, and body weight. Hypothalamic neurons are particularly sensitive to pro-inflammatory signals derived locally and peripherally, and it is these neurons that become inflamed first upon high fat feeding. Given the prevalence of metabolic disease, efforts are underway to identify therapeutic targets for this inflammatory state. At least in the periphery, omega-3 fatty acids and their receptor, G-protein coupled receptor 120 (GPR120), have emerged as putative targets. The role for GPR120 in the hypothalamus or CNS in general is poorly understood. Here we introduce a novel, immortalized cell model derived from the rat hypothalamus, rHypoE-7, to study GPR120 activation at the level of the individual neuron. Gene expression levels of pro-inflammatory cytokines were studied by quantitative reverse transcriptase-PCR (qRT-PCR) upon exposure to tumor necrosis factor α (TNFα) treatment in the presence or absence of the polyunsaturated omega-3 fatty acid docosahexaenoic acid (DHA). Signal transduction pathway involvement was also studied using phospho-specific antibodies to key proteins by western blot analysis. Importantly, rHypoE-7 cells exhibit a transcriptional and translational inflammatory response upon exposure to TNFα and express abundant levels of GPR120, which is functionally responsive to DHA. DHA pretreatment prevents the inflammatory state and this effect was inhibited by the reduction of endogenous GPR120 levels. GPR120 activates both AKT (protein kinase b) and ERK (extracellular signal-regulated kinase); however, the anti-inflammatory action of this omega-3 fatty acid (FA) receptor is AKT- and ERK-independent and likely involves the GPR120-transforming growth factor

  3. Hypothalamic inflammation: a double-edged sword to nutritional diseases

    Science.gov (United States)

    Cai, Dongsheng; Liu, Tiewen

    2015-01-01

    The hypothalamus is one of the master regulators of various physiological processes, including energy balance and nutrient metabolism. These regulatory functions are mediated by discrete hypothalamic regions that integrate metabolic sensing with neuroendocrine and neural controls of systemic physiology. Neurons and non-neuronal cells in these hypothalamic regions act supportively to execute metabolic regulations. Under conditions of brain and hypothalamic inflammation, which may result from overnutrition-induced intracellular stresses or disease-associated systemic inflammatory factors, extracellular and intracellular environments of hypothalamic cells are disrupted, leading to central metabolic dysregulations and various diseases. Recent research has begun to elucidate the effects of hypothalamic inflammation in causing diverse components of metabolic syndrome leading to diabetes and cardiovascular disease. These new understandings have provocatively expanded previous knowledge on the cachectic roles of brain inflammatory response in diseases, such as infections and cancers. This review describes the molecular and cellular characteristics of hypothalamic inflammation in metabolic syndrome and related diseases as opposed to cachectic diseases, and also discusses concepts and potential applications of inhibiting central/hypothalamic inflammation to treat nutritional diseases. PMID:22417140

  4. Efferent connections from the lateral hypothalamic region and the lateral preoptic area to the hypothalamic paraventricular nucleus of the rat

    DEFF Research Database (Denmark)

    Larsen, P J; Hay-Schmidt, Anders; Mikkelsen, J D

    1994-01-01

    , iontophoretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin were delivered into distinct areas of the lateral hypothalamic region. Neurons of the intermediate hypothalamic area projected mainly to the PVN subnuclei, which contained parvicellular neuroendocrine cells. In contrast...

  5. Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry.

    Science.gov (United States)

    Sheng, Zhenyu; Santiago, Ammy M; Thomas, Mark P; Routh, Vanessa H

    2014-09-01

    Lateral hypothalamic area (LHA) orexin neurons modulate reward-based feeding by activating ventral tegmental area (VTA) dopamine (DA) neurons. We hypothesize that signals of peripheral energy status influence reward-based feeding by modulating the glucose sensitivity of LHA orexin glucose-inhibited (GI) neurons. This hypothesis was tested using electrophysiological recordings of LHA orexin-GI neurons in brain slices from 4 to 6week old male mice whose orexin neurons express green fluorescent protein (GFP) or putative VTA-DA neurons from C57Bl/6 mice. Low glucose directly activated ~60% of LHA orexin-GFP neurons in both whole cell and cell attached recordings. Leptin indirectly reduced and ghrelin directly enhanced the activation of LHA orexin-GI neurons by glucose decreases from 2.5 to 0.1mM by 53±12% (n=16, Pglucose sensitivity. Fasting increased activation of LHA orexin-GI neurons by decreased glucose, as would be predicted by these hormonal effects. We also evaluated putative VTA-DA neurons in a novel horizontal slice preparation containing the LHA and VTA. Decreased glucose increased the frequency of spontaneous excitatory post-synaptic currents (sEPSCs; 125 ± 40%, n=9, Pneurons. sEPSCs were completely blocked by AMPA and NMDA glutamate receptor antagonists (CNQX 20 μM, n=4; APV 20μM, n=4; respectively), demonstrating that these sEPSCs were mediated by glutamatergic transmission onto VTA DA neurons. Orexin-1 but not 2 receptor antagonism with SB334867 (10μM; n=9) and TCS-OX2-29 (2μM; n=5), respectively, blocks the effects of decreased glucose on VTA DA neurons. Thus, decreased glucose increases orexin-dependent excitatory glutamate neurotransmission onto VTA DA neurons. These data suggest that the glucose sensitivity of LHA orexin-GI neurons links metabolic state and reward-based feeding. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Evolution of triiodothyronine nuclear binding sites in hypothalamic serum-free cultures: evidence for their presence in neurons and astrocytes

    International Nuclear Information System (INIS)

    Puymirat, J.; Faivre-Bauman, A.

    1986-01-01

    ( 125 I)Triiodothyronine (T 3 ) nuclear binding was studied in hypothalamic cultures from fetal mouse grown in serum-free medium. In enriched neuronal cultures, the apparent dissociation constant of the binding does not change with time in vitro (7 x 10 -11 M), but the maximum binding capacity (MBC) doubles between day 7 and day 14 in vitro. We show here for the first time that homologous astrocyte cell cultures, devoid of neurons as checked by tetanus toxin binding, also display T 3 nuclear binding, with the same affinity as neuronal cultures. However, their MBC is 3 times lower than that of neurons after a week in vitro, and increases more quickly thereafter (Author)

  7. Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons

    Directory of Open Access Journals (Sweden)

    Jong-Woo Sohn

    2016-08-01

    Full Text Available Objective: The ventromedial hypothalamic nucleus (VMH regulates energy balance and glucose homeostasis. Leptin and insulin exert metabolic effects via their cognate receptors expressed by the steroidogenic factor 1 (SF1 neurons within the VMH. However, detailed cellular mechanisms involved in the regulation of these neurons by leptin and insulin remain to be identified. Methods: We utilized genetically-modified mouse models and performed patch-clamp electrophysiology experiments to resolve this issue. Results: We identified distinct populations of leptin-activated and leptin-inhibited SF1 neurons. In contrast, insulin uniformly inhibited SF1 neurons. Notably, we found that leptin-activated, leptin-inhibited, and insulin-inhibited SF1 neurons are distinct subpopulations within the VMH. Leptin depolarization of SF1 neuron also required the PI3K p110β catalytic subunit. This effect was mediated by the putative transient receptor potential C (TRPC channel. On the other hand, hyperpolarizing responses of SF1 neurons by leptin and insulin required either of the p110α or p110β catalytic subunits, and were mediated by the putative ATP-sensitive K+ (KATP channel. Conclusions: Our results demonstrate that specific PI3K catalytic subunits are responsible for the acute effects of leptin and insulin on VMH SF1 neurons, and provide insights into the cellular mechanisms of leptin and insulin action on VMH SF1 neurons that regulate energy balance and glucose homeostasis. Author Video: Author Video Watch what authors say about their articles Keywords: Cellular mechanism, Conditional knockout mouse, Patch clamp technique, Functional heterogeneity, Homeostasis

  8. β-arrestin regulates estradiol membrane-initiated signaling in hypothalamic neurons.

    Directory of Open Access Journals (Sweden)

    Angela M Wong

    Full Text Available Estradiol (E2 action in the nervous system is the result of both direct nuclear and membrane-initiated signaling (EMS. E2 regulates membrane estrogen receptor-α (ERα levels through opposing mechanisms of EMS-mediated trafficking and internalization. While ß-arrestin-mediated mERα internalization has been described in the cortex, a role of ß-arrestin in EMS, which underlies multiple physiological processes, remains undefined. In the arcuate nucleus of the hypothalamus (ARH, membrane-initiated E2 signaling modulates lordosis behavior, a measure of female sexually receptivity. To better understand EMS and regulation of ERα membrane levels, we examined the role of ß-arrestin, a molecule associated with internalization following agonist stimulation. In the present study, we used an immortalized neuronal cell line derived from embryonic hypothalamic neurons, the N-38 line, to examine whether ß-arrestins mediate internalization of mERα. β-arrestin-1 (Arrb1 was found in the ARH and in N-38 neurons. In vitro, E2 increased trafficking and internalization of full-length ERα and ERαΔ4, an alternatively spliced isoform of ERα, which predominates in the membrane. Treatment with E2 also increased phosphorylation of extracellular-signal regulated kinases 1/2 (ERK1/2 in N-38 neurons. Arrb1 siRNA knockdown prevented E2-induced ERαΔ4 internalization and ERK1/2 phosphorylation. In vivo, microinfusions of Arrb1 antisense oligodeoxynucleotides (ODN into female rat ARH knocked down Arrb1 and prevented estradiol benzoate-induced lordosis behavior compared with nonsense scrambled ODN (lordosis quotient: 3 ± 2.1 vs. 85.0 ± 6.0; p < 0.0001. These results indicate a role for Arrb1 in both EMS and internalization of mERα, which are required for the E2-induction of female sexual receptivity.

  9. Lowering glucose level elevates [Ca2+]i in hypothalamic arcuate nucleus NPY neurons through P/Q-type Ca2+ channel activation and GSK3β inhibition

    Science.gov (United States)

    Chen, Yu; Zhou, Jun; Xie, Na; Huang, Chao; Zhang, Jun-qi; Hu, Zhuang-li; Ni, Lan; Jin, You; Wang, Fang; Chen, Jian-guo; Long, Li-hong

    2012-01-01

    Aim: To identify the mechanisms underlying the elevation of intracellular Ca2+ level ([Ca2+]i) induced by lowering extracellular glucose in rat hypothalamic arcuate nucleus NPY neurons. Methods: Primary cultures of hypothalamic arcuate nucleus (ARC) neurons were prepared from Sprague-Dawley rats. NPY neurons were identified with immunocytochemical method. [Ca2+]i was measured using fura-2 AM. Ca2+ current was recorded using whole-cell patch clamp recording. AMPK and GSK3β levels were measured using Western blot assay. Results: Lowering glucose level in the medium (from 10 to 1 mmol/L) induced a transient elevation of [Ca2+]i in ARC neurons, but not in hippocampal and cortical neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons depended on extracellular Ca2+, and was blocked by P/Q-type Ca2+channel blocker ω-agatoxin TK (100 nmol/L), but not by L-type Ca2+ channel blocker nifedipine (10 μmol/L) or N-type Ca2+channel blocker ω-conotoxin GVIA (300 nmol/L). Lowering glucose level increased the peak amplitude of high voltage-activated Ca2+ current in ARC neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons was blocked by the AMPK inhibitor compound C (20 μmol/L), and enhanced by the GSK3β inhibitor LiCl (10 mmol/L). Moreover, lowering glucose level induced the phosphorylation of AMPK and GSK3β, which was inhibited by compound C (20 μmol/L). Conclusion: Lowering glucose level enhances the activity of P/Q type Ca2+channels and elevates [Ca2+]i level in hypothalamic arcuate nucleus neurons via inhibition of GSK3β. PMID:22504905

  10. Increasing fatty acid oxidation remodels the hypothalamic neurometabolome to mitigate stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph W McFadden

    Full Text Available Modification of hypothalamic fatty acid (FA metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1 and fatty acid oxidation (FAOx, exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS, and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.

  11. Hypothalamic lipophagy and energetic balance

    OpenAIRE

    Singh, Rajat

    2011-01-01

    Autophagy is a conserved cellular turnover process that degrades unwanted cytoplasmic material within lysosomes. Through ?in bulk? degradation of cytoplasmic proteins and organelles, including lipid droplets, autophagy helps provide an alternative fuel source, in particular, when nutrients are scarce. Recent work demonstrates a role for autophagy in hypothalamic agouti-related peptide (AgRP) neurons in regulation of food intake and energy balance. The induction of autophagy in hypothalamic ne...

  12. Bottom-Up versus Top-Down Induction of Sleep by Zolpidem Acting on Histaminergic and Neocortex Neurons

    Science.gov (United States)

    Uygun, David S.; Ye, Zhiwen; Zecharia, Anna Y.; Harding, Edward C.; Yu, Xiao; Yustos, Raquel; Vyssotski, Alexei L.; Brickley, Stephen G.

    2016-01-01

    Zolpidem, a GABAA receptor-positive modulator, is the gold-standard drug for treating insomnia. Zolpidem prolongs IPSCs to decrease sleep latency and increase sleep time, effects that depend on α2 and/or α3 subunit-containing receptors. Compared with natural NREM sleep, zolpidem also decreases the EEG power, an effect that depends on α1 subunit-containing receptors, and which may make zolpidem-induced sleep less optimal. In this paper, we investigate whether zolpidem needs to potentiate only particular GABAergic pathways to induce sleep without reducing EEG power. Mice with a knock-in F77I mutation in the GABAA receptor γ2 subunit gene are zolpidem-insensitive. Using these mice, GABAA receptors in the frontal motor neocortex and hypothalamic (tuberomammillary nucleus) histaminergic-neurons of γ2I77 mice were made selectively sensitive to zolpidem by genetically swapping the γ2I77 subunits with γ2F77 subunits. When histamine neurons were made selectively zolpidem-sensitive, systemic administration of zolpidem shortened sleep latency and increased sleep time. But in contrast to the effect of zolpidem on wild-type mice, the power in the EEG spectra of NREM sleep was not decreased, suggesting that these EEG power-reducing effects of zolpidem do not depend on reduced histamine release. Selective potentiation of GABAA receptors in the frontal cortex by systemic zolpidem administration also reduced sleep latency, but less so than for histamine neurons. These results could help with the design of new sedatives that induce a more natural sleep. SIGNIFICANCE STATEMENT Many people who find it hard to get to sleep take sedatives. Zolpidem (Ambien) is the most widely prescribed “sleeping pill.” It makes the inhibitory neurotransmitter GABA work better at its receptors throughout the brain. The sleep induced by zolpidem does not resemble natural sleep because it produces a lower power in the brain waves that occur while we are sleeping. We show using mouse genetics

  13. Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons.

    Science.gov (United States)

    Xia, J X; Xiong, J X; Wang, H K; Duan, S M; Ye, J N; Hu, Z A

    2012-01-10

    Hypocretin neurons in the lateral hypothalamus, a new wakefulness-promoting center, have been recently regarded as an important target involved in endogenous adenosine-regulating sleep homeostasis. The GABAergic synaptic transmissions are the main inhibitory afferents to hypocretin neurons, which play an important role in the regulation of excitability of these neurons. The inhibitory effect of adenosine, a homeostatic sleep-promoting factor, on the excitatory glutamatergic synaptic transmissions in hypocretin neurons has been well documented, whether adenosine also modulates these inhibitory GABAergic synaptic transmissions in these neurons has not been investigated. In this study, the effect of adenosine on inhibitory postsynaptic currents (IPSCs) in hypocretin neurons was examined by using perforated patch-clamp recordings in the acute hypothalamic slices. The findings demonstrated that adenosine suppressed the amplitude of evoked IPSCs in a dose-dependent manner, which was completely abolished by 8-cyclopentyltheophylline (CPT), a selective antagonist of adenosine A1 receptor but not adenosine A2 receptor antagonist 3,7-dimethyl-1-(2-propynyl) xanthine. A presynaptic origin was suggested as following: adenosine increased paired-pulse ratio as well as reduced GABAergic miniature IPSC frequency without affecting the miniature IPSC amplitude. Further findings demonstrated that when the frequency of electrical stimulation was raised to 10 Hz, but not 1 Hz, a time-dependent depression of evoked IPSC amplitude was detected in hypocretin neurons, which could be partially blocked by CPT. However, under a higher frequency at 100 Hz stimulation, CPT had no action on the depressed GABAergic synaptic transmission induced by such tetanic stimulation in these hypocretin neurons. These results suggest that endogenous adenosine generated under certain stronger activities of synaptic transmissions exerts an inhibitory effect on GABAergic synaptic transmission in hypocretin

  14. Histamine 50-skin-prick test: a tool to diagnose histamine intolerance.

    Science.gov (United States)

    Kofler, Lukas; Ulmer, Hanno; Kofler, Heinz

    2011-01-01

    Background. Histamine intolerance results from an imbalance between histamine intake and degradation. In healthy persons, dietary histamine can be sufficiently metabolized by amine oxidases, whereas persons with low amine oxidase activity are at risk of histamine toxicity. Diamine oxidase (DAO) is the key enzyme in degradation. Histamine elicits a wide range of effects. Histamine intolerance displays symptoms, such as rhinitis, headache, gastrointestinal symptoms, palpitations, urticaria and pruritus. Objective. Diagnosis of histamine intolerance until now is based on case history; neither a validated questionnaire nor a routine test is available. It was the aim of this trial to evaluate the usefullness of a prick-test for the diagnosis of histamine intolerance. Methods. Prick-testing with 1% histamine solution and wheal size-measurement to assess the relation between the wheal in prick-test, read after 20 to 50 minutes, as sign of slowed histamine degradation as well as history and symptoms of histamine intolerance. Results. Besides a pretest with 17 patients with HIT we investigated 156 persons (81 with HIT, 75 controls): 64 out of 81 with histamine intolerance(HIT), but only 14 out of 75 persons from the control-group presented with a histamine wheal ≥3 mm after 50 minutes (P < .0001). Conclusion and Clinical Relevance. Histamine-50 skin-prickt-test offers a simple tool with relevance.

  15. Stress and Sucrose Intake Modulate Neuronal Activity in the Anterior Hypothalamic Area in Rats.

    Science.gov (United States)

    Mitra, Arojit; Guèvremont, Geneviève; Timofeeva, Elena

    2016-01-01

    The anterior hypothalamic area (AHA) is an important integrative relay structure for a variety of autonomic, endocrine, and behavioral responses including feeding behavior and response to stress. However, changes in the activity of the AHA neurons during stress and feeding in freely moving rats are not clear. The present study investigated the firing rate and burst activity of neurons in the central nucleus of the AHA (cAHA) during sucrose intake in non-stressful conditions and after acute stress in freely behaving rats. Rats were implanted with micro-electrodes into the cAHA, and extracellular multi-unit activity was recorded during 1-h access to 10% sucrose in non-stressful conditions or after acute foot shock stress. Acute stress significantly reduced sucrose intake, total sucrose lick number, and lick frequency in licking clusters, and increased inter-lick intervals. At the cluster start (CS) of sucrose licking, the cAHA neurons increased (CS-excited, 20% of the recorded neurons), decreased (CS-inhibited, 42% of the neurons) or did not change (CS-nonresponsive, 38% of the neurons) their firing rate. Stress resulted in a significant increase in the firing rate of the CS-inhibited neurons by decreasing inter-spike intervals within the burst firing of these neurons. This increase in the stress-induced firing rate of the CS-inhibited neurons was accompanied by a disruption of the correlation between the firing rate of CS-inhibited and CS-nonresponsive neurons that was observed in non-stressful conditions. Stress did not affect the firing rate of the CS-excited and CS-nonresponsive neurons. However, stress changed the pattern of burst firing of the CS-excited and CS-nonresponsive neurons by decreasing and increasing the burst number in the CS-excited and CS-nonresponsive neurons, respectively. These results suggest that the cAHA neurons integrate the signals related to stress and intake of palatable food and play a role in the stress- and eating-related circuitry.

  16. Hippocampal Ghrelin-positive neurons directly project to arcuate hypothalamic and medial amygdaloid nuclei. Could they modulate food-intake?

    Science.gov (United States)

    Russo, Cristina; Russo, Antonella; Pellitteri, Rosalia; Stanzani, Stefania

    2017-07-13

    Feeding is a process controlled by a complex of associations between external and internal stimuli. The processes that involve learning and memory seem to exert a strong control over appetite and food intake, which is modulated by a gastrointestinal hormone, Ghrelin (Ghre). Recent studies claim that Ghre is involved in cognitive and neurobiological mechanisms that underlie the conditioning of eating behaviors. The expression of Ghre increases in anticipation of food intake based on learned behaviors. The hippocampal Ghre-containing neurons neurologically influence the orexigenic hypothalamus and consequently the learned feeding behavior. The CA1 field of Ammon's horn of the hippocampus (H-CA1) constitutes the most important neural substrate to control both appetitive and ingestive behavior. It also innervates amygdala regions that in turn innervate the hypothalamus. A recent study also implies that Ghre effects on cue-potentiated feeding behavior occur, at the least, via indirect action on the amygdala. In the present study, we investigate the neural substrates through which endogenous Ghre communicates conditioned appetite and feeding behavior within the CNS. We show the existence of a neural Ghre dependent pathway whereby peripherally-derived Ghre activates H-CA1 neurons, which in turn activate Ghre-expressing hypothalamic and amygdaloid neurons to stimulate appetite and feeding behavior. To highlight this pathway, we use two fluorescent retrograde tracers (Fluoro Gold and Dil) and immunohistochemical detection of Ghre expression in the hippocampus. Triple fluorescent-labeling has determined the presence of H-CA1 Ghre-containing collateralized neurons that project to the hypothalamus and amygdala monosynaptically. We hypothesize that H-Ghre-containing neurons in H-CA1 modulate food-intake behavior through direct pathways to the arcuate hypothalamic nucleus and medial amygdaloid nucleus. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  18. Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography

    International Nuclear Information System (INIS)

    Watanabe, Takehiko; Yanai, Kazuhiko

    2001-01-01

    Since one of us, Takehiko Watanabe (TW), elucidated the location and distribution of the histaminergic neuron system in the brain with antibody raised against L-histidine decarboxylase (a histamine-forming enzyme, HDC) as a marker in 1984 and came to Tohoku University School of Medicine in Sendai, we have been collaborating on the functions of this neuron system by using pharmacological agents, knockout mice of the histamine-related genes, and, in some cases, positron emission tomography (PET). Many of our graduate students and colleagues have been actively involved in histamine research since 1985. Our extensive studies have clarified some of the functions of histamine neurons using methods from molecular techniques to non-invasive human PET imaging. Histamine neurons are involved in many brain functions, such as spontaneous locomotion, arousal in wake-sleep cycle, appetite control, seizures, learning and memory, aggressive behavior and emotion. Particularly, the histaminergic neuron system is one of the most important neuron systems to maintain and stimulate wakefulness. Histamine also functions as a biprotection system against various noxious and unfavorable stimuli (for examples, convulsion, nociception, drug sensitization, ischemic lesions, and stress). Although activators of histamine neurons have not been clinically available until now, we would like to point out that the activation of the histaminergic neuron system is important to maintain mental health. Here, we summarize the newly-discovered functions of histamine neurons mainly on the basis of results from our research groups. (author)

  19. Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Takehiko; Yanai, Kazuhiko [Tohoku Univ., Sendai (Japan). Graduate School of Medicine

    2001-12-01

    Since one of us, Takehiko Watanabe (TW), elucidated the location and distribution of the histaminergic neuron system in the brain with antibody raised against L-histidine decarboxylase (a histamine-forming enzyme, HDC) as a marker in 1984 and came to Tohoku University School of Medicine in Sendai, we have been collaborating on the functions of this neuron system by using pharmacological agents, knockout mice of the histamine-related genes, and, in some cases, positron emission tomography (PET). Many of our graduate students and colleagues have been actively involved in histamine research since 1985. Our extensive studies have clarified some of the functions of histamine neurons using methods from molecular techniques to non-invasive human PET imaging. Histamine neurons are involved in many brain functions, such as spontaneous locomotion, arousal in wake-sleep cycle, appetite control, seizures, learning and memory, aggressive behavior and emotion. Particularly, the histaminergic neuron system is one of the most important neuron systems to maintain and stimulate wakefulness. Histamine also functions as a biprotection system against various noxious and unfavorable stimuli (for examples, convulsion, nociception, drug sensitization, ischemic lesions, and stress). Although activators of histamine neurons have not been clinically available until now, we would like to point out that the activation of the histaminergic neuron system is important to maintain mental health. Here, we summarize the newly-discovered functions of histamine neurons mainly on the basis of results from our research groups. (author)

  20. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1?7 Cells) for Evaluation of the Neuroendocrine Effects of Essential Oils

    OpenAIRE

    Mizuno, Dai; Konoha-Mizuno, Keiko; Mori, Miwako; Yamazaki, Kentaro; Haneda, Toshihiro; Koyama, Hironari; Kawahara, Masahiro

    2015-01-01

    Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer’s disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1–7 cells). In this study, we evaluated the effects of essential oils on neuronal deat...

  1. Leptin activates oxytocin neurons of the hypothalamic paraventricular nucleus in both control and diet-induced obese rodents.

    Directory of Open Access Journals (Sweden)

    Mario Perello

    Full Text Available The adipocyte-derived hormone leptin acts in the brain to reduce body weight and fat mass. Recent studies suggest that parvocellular oxytocin (OXT neurons of the hypothalamic paraventricular nucleus (PVN can mediate body weight reduction through inhibition of food intake and increased energy expenditure. However, the role of OXT neurons of the PVN as a primary target of leptin has not been investigated. Here, we studied the potential role of OXT neurons of the PVN in leptin-mediated effects on body weight regulation in fasted rats. We demonstrated that intracerebroventricular (ICV leptin activates STAT3 phosphorylation in OXT neurons of the PVN, showed that this occurs in a subpopulation of OXT neurons that innervate the nucleus of the solitary tract (NTS, and provided further evidence suggesting a role of OXT to mediate leptin's actions on body weight. In addition, our results indicated that OXT neurons are responsive to ICV leptin and mediate leptin effects on body weight in diet induced obese (DIO rats, which are resistant to the anorectic effects of the hormone. Thus, we conclude that leptin targets a specific subpopulation of parvocellular OXT neurons of the PVN, and that this action may be important for leptin's ability to reduce body weight in both control and obese rats.

  2. Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness.

    Directory of Open Access Journals (Sweden)

    Daisuke Kohno

    2016-11-01

    Full Text Available The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC: glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanism underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2 and taste type 1 receptor 3 (T1R3 and senses sweet tastes. T1R2 and T1R3 receptors are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10-5 M-10-2 M dose dependently increased [Ca2+]i in 12-16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentage of proopiomelanocortin (POMC neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular

  3. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness.

    Science.gov (United States)

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca 2+ concentration ([Ca 2+ ] i ) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10 -5 -10 -2 M dose dependently increased [Ca 2+ ] i in 12-16% of ARC neurons. The sucralose-induced [Ca 2+ ] i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca 2+ ] i increase was inhibited under an extracellular Ca 2+ -free condition and in the presence of an L-type Ca 2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation

  4. Glucose and insulin induce Ca2+ signaling in nesfatin-1 neurons in the hypothalamic paraventricular nucleus.

    Science.gov (United States)

    Gantulga, Darambazar; Maejima, Yuko; Nakata, Masanori; Yada, Toshihiko

    2012-04-20

    Nucleobindin-2 derived nesfatin-1 in the hypothalamic paraventricular nucleus (PVN) plays a role in inhibition of feeding. The neural pathways downstream of PVN nesfatin-1 have been extensively investigated. However, regulation of the PVN nesfatin-1 neurons remains unclear. Since starvation decreases and refeeding stimulates nesfatin-1 expression specifically in the PVN, this study aimed to clarify direct effects of meal-evoked metabolic factors, glucose and insulin, on PVN nesfatin-1 neurons. High glucose (10mM) and insulin (10(-13)M) increased cytosolic calcium concentration ([Ca(2+)](i)) in 55 of 331 (16.6%) and 32 of 249 (12.9%) PVN neurons, respectively. Post [Ca(2+)](i) measurement immunocytochemistry identified that 58.2% of glucose-responsive and 62.5% of insulin-responsive neurons were immunoreactive to nesfatin-1. Furthermore, a fraction of the glucose-responsive nesfatin-1 neurons also responded to insulin, and vice versa. Some of the neurons that responded to neither glucose nor insulin were recruited to [Ca(2+)](i) increases by glucose and insulin in combination. Our data demonstrate that glucose and insulin directly interact with and increase [Ca(2+)](i) in nesfatin-1 neurons in the PVN, and that the nesfatin-1 neuron is the primary target for them in the PVN. The results suggest that high glucose- and insulin-induced activation of PVN nesfatin-1 neurons serves as a mechanism through which meal ingestion stimulates nesfatin-1 neurons in the PVN and thereby produces satiety. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Lipopolysaccharide (LPS) stimulates adipokine and socs3 gene expression in mouse brain and pituitary gland in vivo, and in N-1 hypothalamic neurons in vitro.

    Science.gov (United States)

    Brown, Russell; Imran, Syed A; Wilkinson, Michael

    2009-04-30

    Adipokines that modulate metabolic and inflammatory responses, such as resistin (rstn) and fasting-induced adipose factor (fiaf), are also expressed in mouse brain and pituitary gland. Since lipopolysaccharide (LPS)-induced endotoxinemia provokes an anorectic response via a hypothalamic-dependent mechanism we hypothesized that LPS would also modify hypothalamic adipokine expression. Challenging male CD-1 mice with LPS (5 mg/kg; s.c.) significantly reduced bodyweight (24 h) and realtime RT-PCR revealed time- and tissue-dependent increases in rstn, fiaf and suppressor of cytokine signaling-3 (socs-3) mRNA in hypothalamic, pituitary, cortical and adipose tissues. Gene expression was rapidly increased (3-6 h) in the hypothalamus and pituitary, but returned to normal within 24 h. In contrast, with the exception of rstn in fat, the expression of target genes remained elevated in cortex and visceral fat at 24 h post-injection. In order to more specifically examine the hypothalamic response to LPS we investigated its effects directly on N-1 hypothalamic neurons in vitro. LPS (25 microg/mL; 3 h) had no effect on rstn mRNA, but significantly stimulated fiaf and socs-3 expression. Although various toll-like receptor 4 (TLR4) antagonists (parthenolide, PD098059, and SB202190) did not prevent the LPS-induced increases in fiaf and socs-3, they did partially attenuate its stimulatory effects. We conclude that LPS treatment increases the expression of central, and possibly neuronal, adipokine genes which may influence local tissue repair and function, but could also have downstream consequences on the hypothalamic control of appetite and energy metabolism following an inflammatory insult.

  6. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Karina H. Solís

    2017-12-01

    Full Text Available Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H1 receptor (H1R which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H1R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2 and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H1R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H1R expression by qRT-PCR and Western blot and, finally, we tested H1R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers and partially reverted the increased level of MAP2 protein at E14, concluding that H1R have an important role in the increased neurogenesis within the dorsal telencephalon

  7. Delineating the regulation of energy homeostasis using hypothalamic cell models.

    Science.gov (United States)

    Wellhauser, Leigh; Gojska, Nicole M; Belsham, Denise D

    2015-01-01

    Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Tryptase potentiates enteric nerve activation by histamine and serotonin: Relevance for the effects of mucosal biopsy supernatants from irritable bowel syndrome patients.

    Science.gov (United States)

    Ostertag, D; Annahazi, A; Krueger, D; Michel, K; Demir, I E; Ceyhan, G O; Zeller, F; Schemann, M

    2017-09-01

    We previously showed that mucosal biopsy supernatants from irritable bowel syndrome patients activated neurons despite low concentrations of tryptase, histamine, and serotonin which individually would not cause spike discharge. We studied the potentiating responses between these mediators on excitability of enteric neurons. Calcium-imaging was performed using the calcium-sensitive dye Fluo-4 AM in human submucous plexus preparations from 45 individuals. Histamine, serotonin, and tryptase were applied alone and in combinations to evaluate nerve activation which was assessed by analyzing increase in intracellular Ca 2+ ([Ca 2+ ] i ), the proportion of responding neurons and the product of both defined as Ca-neuroindex (NI). Protease activated receptor (PAR) 2 activating peptide, PAR2 antagonist and the serine protease-inhibitor FUT-175 were used to particularly investigate the role of proteases. Histamine or serotonin (1 μmol/L each) evoked only few small responses (median NI [25%/75%]: 0 [0/148]; 85 [0/705] respectively). Their combined application evoked statistically similar responses (216 [21/651]). Addition of the PAR2 activator tryptase induced a significantly higher Ca-NI (1401 [867/4075]) compared to individual application of tryptase or to coapplied histamine and serotonin. This synergistic potentiation was neither mimicked by PAR2 activating peptide nor reversed by the PAR2 antagonist GB83, but abolished by FUT-175. We observed synergistic potentiation between histamine, serotonin, and tryptase in enteric neurons, which is mediated by proteolytic activity rather than PAR2 activation. This explained neuronal activation by a cocktail of these mediators despite their low concentrations and despite a relatively small PAR2-mediated response in human submucous neurons. © 2017 John Wiley & Sons Ltd.

  9. Communication between mast cells and rat submucosal neurons.

    Science.gov (United States)

    Bell, Anna; Althaus, Mike; Diener, Martin

    2015-08-01

    Histamine is a mast cell mediator released e.g. during food allergy. The aim of the project was to identify the effect of histamine on rat submucosal neurons and the mechanisms involved. Cultured submucosal neurons from rat colon express H1, H2 and H3 receptors as shown by immunocytochemical staining confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) with messenger RNA (mRNA) isolated from submucosal homogenates as starting material. Histamine evoked a biphasic rise of the cytosolic Ca(2+) concentration in cultured submucosal neurons, consisting in a release of intracellularly stored Ca(2+) followed by an influx from the extracellular space. Although agonists of all three receptor subtypes evoked an increase in the cytosolic Ca(2+) concentration, experiments with antagonists revealed that mainly H1 (and to a lesser degree H2) receptors mediate the response to histamine. In coculture experiments with RBL-2H3 cells, a mast cell equivalent, compound 48/80, evoked an increase in the cytosolic Ca(2+) concentration of neighbouring neurons. Like the response to native histamine, the neuronal response to the mast cell degranulator was strongly inhibited by the H1 receptor antagonist pyrilamine and reduced by the H2 receptor antagonist cimetidine. In rats sensitized against ovalbumin, exposure to the antigen induced a rise in short-circuit current (I sc) across colonic mucosa-submucosa preparations without a significant increase in paracellular fluorescein fluxes. Pyrilamine strongly inhibited the increase in I sc, a weaker inhibition was observed after blockade of protease receptors or 5-lipoxygenase. Consequently, H1 receptors on submucosal neurons seem to play a pivotal role in the communication between mast cells and the enteric nervous system.

  10. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    David R. Grattan

    2016-04-01

    Full Text Available In this issue of Cell Reports, Stagkourakis et al. (2016 report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  11. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats.

    Directory of Open Access Journals (Sweden)

    Khaled Abdallah

    Full Text Available Several lines of evidence suggest that the hypothalamus is involved in trigeminal pain processing. However, the organization of descending hypothalamic projections to the spinal trigeminal nucleus caudalis (Sp5C remains poorly understood. Microinjections of the retrograde tracer, fluorogold (FG, into the Sp5C, in rats, reveal that five hypothalamic nuclei project to the Sp5C: the paraventricular nucleus, the lateral hypothalamic area, the perifornical hypothalamic area, the A11 nucleus and the retrochiasmatic area. Descending hypothalamic projections to the Sp5C are bilateral, except those from the paraventricular nucleus which exhibit a clear ipsilateral predominance. Moreover, the density of retrogradely FG-labeled neurons in the hypothalamus varies according to the dorso-ventral localization of the Sp5C injection site. There are much more labeled neurons after injections into the ventrolateral part of the Sp5C (where ophthalmic afferents project than after injections into its dorsomedial or intermediate parts (where mandibular and maxillary afferents, respectively, project. These results demonstrate that the organization of descending hypothalamic projections to the spinal dorsal horn and Sp5C are different. Whereas the former are ipsilateral, the latter are bilateral. Moreover, hypothalamic projections to the Sp5C display somatotopy, suggesting that these projections are preferentially involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in rats. Therefore, our results suggest that the control of trigeminal and spinal dorsal horn processing of nociceptive information by hypothalamic neurons is different and raise the question of the role of bilateral, rather than unilateral, hypothalamic control.

  12. Orexin A/Hypocretin Modulates Leptin Receptor-Mediated Signaling by Allosteric Modulations Mediated by the Ghrelin GHS-R1A Receptor in Hypothalamic Neurons.

    Science.gov (United States)

    Medrano, Mireia; Aguinaga, David; Reyes-Resina, Irene; Canela, Enric I; Mallol, Josefa; Navarro, Gemma; Franco, Rafael

    2018-06-01

    The hypothalamus is a key integrator of nutrient-seeking signals in the form of hormones and metabolites originated in both the central nervous system and the periphery. The main autocrine and paracrine target of orexinergic-related hormones such as leptin, orexin/hypocretin, and ghrelin are neuropeptide Y neurons located in the arcuate nucleus of the hypothalamus. The aim of this study was to investigate the expression and the molecular and functional relationships between leptin, orexin/hypocretin and ghrelin receptors. Biophysical studies in a heterologous system showed physical interactions between them, with potential formation of heterotrimeric complexes. Functional assays showed robust allosteric interactions particularly different when the three receptors are expressed together. Further biochemical and pharmacological assays provided evidence of heterotrimer functional expression in primary cultures of hypothalamic neurons. These findings constitute evidence of close relationships in the action of the three hormones already starting at the receptor level in hypothalamic cells.

  13. Hypothalamic glucose sensing: making ends meet

    Directory of Open Access Journals (Sweden)

    Vanessa eRouth

    2014-12-01

    Full Text Available The neuroendocrine system governs essential survival and homeostatic functions. For example, growth is needed for development. Thermoregulation maintains optimal core temperature in a changing environment. Reproduction ensures species survival. Stress and immune responses enable an organism to overcome external and internal threats. The circadian system regulates arousal and sleep such that vegetative and active functions do not overlap. All of these functions require a significant portion of the body’s energy. As the integrator of the neuroendocrine system, the hypothalamus carefully assesses the energy status of the body in order to appropriately partition resources to provide for each system without compromising the others. While doing so the hypothalamus must ensure that adequate glucose levels are preserved for brain function since glucose is the primary fuel of the brain. To this end, the hypothalamus contains specialized glucose sensing neurons which are scattered throughout the nuclei controlling distinct neuroendocrine functions. We hypothesize that these neurons play a key role in enabling the hypothalamus to partition energy to meet these peripheral survival needs without endangering the brain’s glucose supply. The goal of this review is to describe the varied mechanisms underlying glucose sensing in neurons within discrete hypothalamic nuclei. We will then evaluate the way in which peripheral energy status regulates glucose sensitivity. For example, during energy deficit such as fasting specific hypothalamic glucose sensing neurons become sensitized to decreased glucose. This increases the gain of the information relay when glucose availability is a greater concern for the brain. Finally, changes in glucose sensitivity under pathological conditions (e.g., recurrent insulin-hypoglycemia, diabetes will be addressed. The overall goal of this review is to place glucose sensing neurons within the context of hypothalamic control of

  14. Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway.

    Science.gov (United States)

    Chaker, Zayna; George, Caroline; Petrovska, Marija; Caron, Jean-Baptiste; Lacube, Philippe; Caillé, Isabelle; Holzenberger, Martin

    2016-05-01

    Hypothalamic tanycytes are specialized glial cells lining the third ventricle. They are recently identified as adult stem and/or progenitor cells, able to self-renew and give rise to new neurons postnatally. However, the long-term neurogenic potential of tanycytes and the pathways regulating lifelong cell replacement in the adult hypothalamus are largely unexplored. Using inducible nestin-CreER(T2) for conditional mutagenesis, we performed lineage tracing of adult hypothalamic stem and/or progenitor cells (HySC) and demonstrated that new neurons continue to be born throughout adult life. This neurogenesis was targeted to numerous hypothalamic nuclei and produced different types of neurons in the dorsal periventricular regions. Some adult-born neurons integrated the median eminence and arcuate nucleus during aging and produced growth hormone releasing hormone. We showed that adult hypothalamic neurogenesis was tightly controlled by insulin-like growth factors (IGF). Knockout of IGF-1 receptor from hypothalamic stem and/or progenitor cells increased neuronal production and enhanced α-tanycyte self-renewal, preserving this stem cell-like population from age-related attrition. Our data indicate that adult hypothalamus retains the capacity of cell renewal, and thus, a substantial degree of structural plasticity throughout lifespan. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Targeting of histamine producing cells by EGCG: a green dart against inflammation?

    Science.gov (United States)

    Melgarejo, Esther; Medina, Miguel Angel; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2010-09-01

    The human body is made of some 250 different cell types. From them, only a small subset of cell types is able to produce histamine. They include some neurons, enterochromaffin-like cells, gastrin-containing cells, mast cells, basophils, and monocytes/macrophages, among others. In spite of the reduced number of these histamine-producing cell types, they are involved in very different physiological processes. Their deregulation is related with many highly prevalent, as well as emergent and rare diseases, mainly those described as inflammation-dependent pathologies, including mastocytosis, basophilic leukemia, gastric ulcer, Crohn disease, and other inflammatory bowel diseases. Furthermore, oncogenic transformation switches some non-histamine-producing cells to a histamine producing phenotype. This is the case of melanoma, small cell lung carcinoma, and several types of neuroendocrine tumors. The bioactive compound epigallocatechin-3-gallate (EGCG), a major component of green tea, has been shown to target histamine-producing cells producing great alterations in their behavior, with relevant effects on their proliferative potential, as well as their adhesion, migration, and invasion potentials. In fact, EGCG has been shown to have potent anti-inflammatory, anti-tumoral, and anti-angiogenic effects and to be a potent inhibitor of the histamine-producing enzyme, histidine decarboxylase. Herein, we review the many specific effects of EGCG on concrete molecular targets of histamine-producing cells and discuss the relevance of these data to support the potential therapeutic interest of this compound to treat inflammation-dependent diseases.

  16. Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping

    Directory of Open Access Journals (Sweden)

    Vito Salvador Hernandez

    2016-11-01

    Full Text Available The arginine-vasopressin (AVP-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs are known for their role in hydro-electrolytic balance control via their projections to neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula, and other brain regions, in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA. The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS, consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN and supraoptic (SON nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptors mRNA were not detected, using the same method. Water-deprivation for 24 hrs, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze test, and this effect was mimicked by bilateral microinfusion of VP into the CeA. Anxious behavior induced by either water deprivation or VP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of central amygdala inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala.

  17. Effects of tamoxifen on neuronal morphology, connectivity and biochemistry of hypothalamic ventromedial neurons: Impact on the modulators of sexual behavior.

    Science.gov (United States)

    Sá, Susana I; Teixeira, Natércia; Fonseca, Bruno M

    2018-01-01

    Tamoxifen (TAM) is a selective estrogen receptor modulator, widely used in the treatment and prevention of estrogen-dependent breast cancer. Although with great clinical results, women on TAM therapy still report several side effects, such as sexual dysfunction, which impairs quality of life. The anatomo-functional substrates of the human sexual behavior are still unknown; however, these same substrates are very well characterized in the rodent female sexual behavior, which has advantage of being a very simple reflexive response, dependent on the activation of estrogen receptors (ERs) in the ventrolateral division of the hypothalamic ventromedial nucleus (VMNvl). In fact, in the female rodent, the sexual behavior is triggered by increasing circulation levels of estradiol that changes the nucleus neurochemistry and modulates its intricate neuronal network. Therefore, we considered of notice the examination of the possible neurochemical alterations and the synaptic plasticity impairment in VMNvl neurons of estradiol-primed female rats treated with TAM that may be in the basis of this neurological disorder. Accordingly, we used stereological and biochemical methods to study the action of TAM in axospinous and axodendritic synaptic plasticity and on ER expression. The administration of TAM changed the VMNvl neurochemistry by reducing ERα mRNA and increasing ERβ mRNA expression. Furthermore, present results show that TAM induced neuronal atrophy and reduced synaptic connectivity, favoring electrical inactivity. These data suggest that these cellular and molecular changes may be a possible neuronal mechanism of TAM action in the disruption of the VMNvl network, leading to the development of behavioral disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Structure-activity studies with carboxy- and amino-terminal fragments of neurotensin on hypothalamic neurons in vitro.

    Science.gov (United States)

    Baldino, F; Davis, L G; Wolfson, B

    1985-09-09

    The purpose of this study was to determine the structural requirements for the activity of neurotensin (NT1-13) on preoptic/anterior hypothalamic (POAH) neurons in vitro. Standard explant culture electrophysiological techniques were employed. NT was administered to POAH cultures through the superfusion fluid, or, to the vicinity of individual neurons by pressure ejection (0.5-10 psi) from micropipettes. Computer-generated, peri-event histograms were used to quantitate neuronal responses. Pressure ejection of NT1-13 (50 pM to 1 microM) consistently produced an excitatory effect on 30 of 42 neurons. The remaining cells were either inhibited or unaffected. Application of the C-terminal hexapeptide, NT8-13, but not the N-terminal octapeptide, NT1-8 (less than or equal to 1 mM), produced an excitatory response in 21 of 30 neurons, but was less potent than NT1-13. Application of an N-acetylated NT8-13 fragment (NTAC8-13) produced a response that was similar to that produced by NT8-13. The excitatory effects of NT1-13 and NT8-13 were maintained in medium which effectively blocked synaptic transmission (0 mM Ca2+/12 mM Mg2+ 1 mM EGTA). These data indicate that the C-terminal hexapeptide, but not the N-terminal octapeptide, produces a dose-related, excitatory effect on single neurons in the POAH in vitro. The persistence of these effects in Ca2+-free medium supports a postsynaptic site of action for these peptides.

  19. Hypothalamic pathogenesis of type 2 diabetes.

    Science.gov (United States)

    Koshiyama, Hiroyuki; Hamamoto, Yoshiyuki; Honjo, Sachiko; Wada, Yoshiharu; Lkeda, Hiroki

    2006-01-01

    There have recently been increasing experimental and clinical evidences suggesting that hypothalamic dysregulation may be one of the underlying mechanisms of abnormal glucose metabolism. First, increased hypothalamic-pituitary-adrenal axis activity induced by uncontrollable excess stress may cause diabetes mellitus as well as dyslipidemia, visceral obesity, and osteoporosis with some resemblance to Cushing's disease. Second, several molecules are known to be expressed both in pancreas and hypothalamus; adenosine triphosphate-sensitive potassium channels, malonyl-CoA, glucokinase, and AMP-activated protein kinase. Those molecules appear to form an integrated hypothalamic system, which may sense hypothalamic fuel status, especially glucose level, and inhibit action of insulin on hepatic gluconeogenesis, thereby forming a brain-liver circuit. Third, hypothalamic resistance to insulin as an adiposity signal may be involved in pathogenesis of peripheral insulin resistance. The results with mice with a neuron-specific disruption of the insulin receptor gene or those lacking insulin receptor substrate 2 in hypothalamus supported this possibility. Finally, it has very recently been suggested that dysregulation of clock genes in hypothalamus may cause abnormal glucose metabolism. Taken together, it is plausible that some hypothalamic abnormality may underlie at least some portion of type 2 diabetes or insulin resistance in humans, and this viewpoint of hypothalamic pathogenesis of type 2 diabetes may lead to the development of new drugs for type 2 diabetes.

  20. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation.

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2011-07-01

    Full Text Available Hypoxia-inducible factor (HIF is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance.

  1. Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation

    Science.gov (United States)

    Zhang, Hai; Zhang, Guo; Gonzalez, Frank J.; Park, Sung-min; Cai, Dongsheng

    2011-01-01

    Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance. PMID:21814490

  2. Metabolic Impact on the Hypothalamic Kisspeptin-Kiss1r Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Fazal Wahab

    2018-03-01

    Full Text Available A large body of data has established the hypothalamic kisspeptin (KP and its receptor, KISS1R, as major players in the activation of the neuroendocrine reproductive axis at the time of puberty and maintenance of reproductive capacity in the adult. Due to its strategic location, this ligand-receptor pair acts as an integrator of cues from gonadal steroids as well as of circadian and seasonal variation-related information on the reproductive axis. Besides these cues, the activity of the hypothalamic KP signaling is very sensitive to the current metabolic status of the body. In conditions of energy imbalance, either positive or negative, a number of alterations in the hypothalamic KP signaling pathway have been documented in different mammalian models including nonhuman primates and human. Deficiency of metabolic fuels during fasting causes a marked reduction of Kiss1 gene transcript levels in the hypothalamus and, hence, decreases the output of KP-containing neurons. Food intake or exogenous supply of metabolic cues, such as leptin, reverses metabolic insufficiency-related changes in the hypothalamic KP signaling. Likewise, alterations in Kiss1 expression have also been reported in other situations of energy imbalance like diabetes and obesity. Information related to the body’s current metabolic status reaches to KP neurons both directly as well as indirectly via a complex network of other neurons. In this review article, we have provided an updated summary of the available literature on the regulation of the hypothalamic KP-Kiss1r signaling by metabolic cues. In particular, the potential mechanisms of metabolic impact on the hypothalamic KP-Kiss1r signaling, in light of available evidence, are discussed.

  3. Hypothalamic neurones governing glucose homeostasis.

    Science.gov (United States)

    Coppari, R

    2015-06-01

    The notion that the brain directly controls the level of glucose in the blood (glycaemia) independent of its known action on food intake and body weight has been known ever since 1849. That year, the French physiologist Dr Claude Bernard reported that physical puncture of the floor of the fourth cerebral ventricle rapidly leads to an increased level of sugar in the blood (and urine) in rabbits. Despite this important discovery, it took approximately 150 years before significant efforts aimed at understanding the underlying mechanism of brain-mediated control of glucose metabolism were made. Technological developments allowing for genetically-mediated manipulation of selected molecular pathways in a neurone-type-specific fashion unravelled the importance of specific molecules in specific neuronal populations. These neuronal pathways govern glucose metabolism in the presence and even in the absence of insulin. Also, a peculiarity of these pathways is that certain biochemically-defined neurones govern glucose metabolism in a tissue-specific fashion. © 2015 British Society for Neuroendocrinology.

  4. Localization and function of histamine H3 receptor in the nasal mucosa

    OpenAIRE

    Suzuki, Shinya; Takeuchi, Kazuhiko; Majima, Yuichi

    2008-01-01

    BACKGROUND: Histamine is an important chemical mediator of allergic rhinitis (AR). Histamine H3 receptors H3R are located on cholinergic and NANC neurons of the myenteric plexus, and activation of H3R regulates gastric acid secretion. However, little is known about the localization and function of H3R in the upper airway. OBJECTIVE: The objective of this study was to examine the localization and possible function of H3R in the nasal mucosa. METHODS: We extracted total RNA from the inferior tu...

  5. Chronic exposure to KATP channel openers results in attenuated glucose sensing in hypothalamic GT1-7 neurons.

    Science.gov (United States)

    Haythorne, Elizabeth; Hamilton, D Lee; Findlay, John A; Beall, Craig; McCrimmon, Rory J; Ashford, Michael L J

    2016-12-01

    Individuals with Type 1 diabetes (T1D) are often exposed to recurrent episodes of hypoglycaemia. This reduces hormonal and behavioural responses that normally counteract low glucose in order to maintain glucose homeostasis, with altered responsiveness of glucose sensing hypothalamic neurons implicated. Although the molecular mechanisms are unknown, pharmacological studies implicate hypothalamic ATP-sensitive potassium channel (K ATP ) activity, with K ATP openers (KCOs) amplifying, through cell hyperpolarization, the response to hypoglycaemia. Although initial findings, using acute hypothalamic KCO delivery, in rats were promising, chronic exposure to the KCO NN414 worsened the responses to subsequent hypoglycaemic challenge. To investigate this further we used GT1-7 cells to explore how NN414 affected glucose-sensing behaviour, the metabolic response of cells to hypoglycaemia and K ATP activity. GT1-7 cells exposed to 3 or 24 h NN414 exhibited an attenuated hyperpolarization to subsequent hypoglycaemic challenge or NN414, which correlated with diminished K ATP activity. The reduced sensitivity to hypoglycaemia was apparent 24 h after NN414 removal, even though intrinsic K ATP activity recovered. The NN414-modified glucose responsiveness was not associated with adaptations in glucose uptake, metabolism or oxidation. K ATP inactivation by NN414 was prevented by the concurrent presence of tolbutamide, which maintains K ATP closure. Single channel recordings indicate that NN414 alters K ATP intrinsic gating inducing a stable closed or inactivated state. These data indicate that exposure of hypothalamic glucose sensing cells to chronic NN414 drives a sustained conformational change to K ATP , probably by binding to SUR1, that results in loss of channel sensitivity to intrinsic metabolic factors such as MgADP and small molecule agonists. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Estimation of in vitro activity of tuberoinfundibular dopaminergic neurons by measurement of DOPA synthesis in the median eminence of hypothalamic slices.

    Science.gov (United States)

    Arita, J; Kimura, F

    1984-12-01

    A new method for estimation of in vitro neurosecretory activity of tuberoinfundibular dopaminergic (TIDA) neurons was developed by measuring the rate of synthesis of dihydroxyphenylalanine (DOPA) in the median eminence of hypothalamic slices. Sagittal hypothalamic slices of ovariectomized rats were incubated in a medium containing 3-hydroxybenzylhydrazine (NSD 1015), an inhibitor of DOPA decarboxylase. DOPA accumulated in the median eminence following incubation with NSD 1015 was determined by high-performance liquid chromatography with electro-chemical detection. The amount of DOPA accumulated in vitro in the median eminence was maximal in a medium containing 10 mM NSD 1015 and linear up to 120 min at 37 degrees C. Increasing the concentration of tyrosine in medium stimulated the synthesis of DOPA in the median eminence. The synthesis of DOPA was blocked by 1 mM alpha-methyltyrosine, an inhibitor of tyrosine hydroxylase. The rate of in vitro synthesis of DOPA in the median eminence was 33% of that of in vivo synthesis. Incubation in a medium containing 50 mM K+ to depolarize neurons caused a 2.4-fold increase in DOPA synthesis in the median eminence. The high K+-induced increase in DOPA synthesis was blocked by omission of Ca2+ and addition of 1 mM EGTA into the medium, suggesting Ca2+ dependency of depolarization-activated DOPA synthesis. These results indicate that this in vitro assay is a useful means to study the regulatory mechanisms of TIDA neurons.

  7. Histamine Enhances Theta-Coupled Spiking and Gamma Oscillations in the Medial Entorhinal Cortex Consistent With Successful Spatial Recognition.

    Science.gov (United States)

    Chen, Quanhui; Luo, Fenlan; Yue, Faguo; Xia, Jianxia; Xiao, Qin; Liao, Xiang; Jiang, Jun; Zhang, Jun; Hu, Bo; Gao, Dong; He, Chao; Hu, Zhian

    2017-06-07

    Encoding of spatial information in the superficial layers of the medial entorhinal cortex (sMEC) involves theta-modulated spiking and gamma oscillations, as well as spatially tuned grid cells and border cells. Little is known about the role of the arousal-promoting histaminergic system in the modification of information encoded in the sMEC in vivo, and how such histamine-regulated information correlates with behavioral functions. Here, we show that histamine upregulates the neural excitability of a significant proportion of neurons (16.32%, 39.18%, and 52.94% at 30 μM, 300 μM, and 3 mM, respectively) and increases local theta (4-12 Hz) and gamma power (low: 25-48 Hz; high: 60-120 Hz) in the sMEC, through activation of histamine receptor types 1 and 3. During spatial exploration, the strength of theta-modulated firing of putative principal neurons and high gamma oscillations is enhanced about 2-fold by histamine. The histamine-mediated increase of theta phase-locking of spikes and high gamma power is consistent with successful spatial recognition. These results, for the first time, reveal possible mechanisms involving the arousal-promoting histaminergic system in the modulation of spatial cognition. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Mechanosensing in hypothalamic osmosensory neurons.

    Science.gov (United States)

    Prager-Khoutorsky, Masha

    2017-11-01

    Osmosensory neurons are specialized cells activated by increases in blood osmolality to trigger thirst, secretion of the antidiuretic hormone vasopressin, and elevated sympathetic tone during dehydration. In addition to multiple extrinsic factors modulating their activity, osmosensory neurons are intrinsically osmosensitive, as they are activated by increased osmolality in the absence of neighboring cells or synaptic contacts. This intrinsic osmosensitivity is a mechanical process associated with osmolality-induced changes in cell volume. This review summarises recent findings revealing molecular mechanisms underlying the mechanical activation of osmosensory neurons and highlighting important roles of microtubules, actin, and mechanosensitive ion channels in this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Histamine fish poisoning revisited.

    Science.gov (United States)

    Lehane, L; Olley, J

    2000-06-30

    Histamine (or scombroid) fish poisoning (HFP) is reviewed in a risk-assessment framework in an attempt to arrive at an informed characterisation of risk. Histamine is the main toxin involved in HFP, but the disease is not uncomplicated histamine poisoning. Although it is generally associated with high levels of histamine (> or =50 mg/100 g) in bacterially contaminated fish of particular species, the pathogenesis of HFP has not been clearly elucidated. Various hypotheses have been put forward to explain why histamine consumed in spoiled fish is more toxic than pure histamine taken orally, but none has proved totally satisfactory. Urocanic acid, like histamine, an imidazole compound derived from histidine in spoiling fish, may be the "missing factor" in HFP. cis-Urocanic acid has recently been recognised as a mast cell degranulator, and endogenous histamine from mast cell degranulation may augment the exogenous histamine consumed in spoiled fish. HFP is a mild disease, but is important in relation to food safety and international trade. Consumers are becoming more demanding, and litigation following food poisoning incidents is becoming more common. Producers, distributors and restaurants are increasingly held liable for the quality of the products they handle and sell. Many countries have set guidelines for maximum permitted levels of histamine in fish. However, histamine concentrations within a spoiled fish are extremely variable, as is the threshold toxic dose. Until the identity, levels and potency of possible potentiators and/or mast-cell-degranulating factors are elucidated, it is difficult to establish regulatory limits for histamine in foods on the basis of potential health hazard. Histidine decarboxylating bacteria produce histamine from free histidine in spoiling fish. Although some are present in the normal microbial flora of live fish, most seem to be derived from post-catching contamination on board fishing vessels, at the processing plant or in the

  10. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis.

    Science.gov (United States)

    Nordström, Viola; Willershäuser, Monja; Herzer, Silke; Rozman, Jan; von Bohlen Und Halbach, Oliver; Meldner, Sascha; Rothermel, Ulrike; Kaden, Sylvia; Roth, Fabian C; Waldeck, Clemens; Gretz, Norbert; de Angelis, Martin Hrabě; Draguhn, Andreas; Klingenspor, Martin; Gröne, Hermann-Josef; Jennemann, Richard

    2013-01-01

    Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase). As a major mechanism of central nervous system (CNS) metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR) in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos) in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg) display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV)-mediated Ugcg delivery to the arcuate nucleus (Arc) significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis.

  11. The alpha(2)-adrenoceptors do not modify the activity of tyrosine hydroxylase, corticoliberine, and neuropeptide Y producing hypothalamic magnocellular neurons ion the Long Evans and Brattleboro rats

    DEFF Research Database (Denmark)

    Bundzikova, J; Pirnik, Z; Zelena, D

    2010-01-01

    The hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei are activated by body salt-fluid variations. Stimulation of alpha(2)-adrenoceptors by an agonist-xylazine (XYL) activates oxytocinergic but not vasopressinergic magnocellular neurons. In this study, tyrosine hydroxylase (TH), cort...

  12. Reduced responses of submucous neurons from irritable bowel syndrome patients to a cocktail containing histamine, serotonin, TNFα and tryptase (IBS-cocktail

    Directory of Open Access Journals (Sweden)

    Daniela eOstertag

    2015-12-01

    Full Text Available Background & Aims:Malfunctions of enteric neurons are believed to play an important role in the pathophysiology of irritable bowel syndrome (IBS. Our aim was to investigate whether neuronal activity in biopsies from IBS patients is altered in comparison to healthy controls (HC.Methods:Activity of human submucous neurons in response to electrical nerve stimulation and local application of nicotine or a mixture of histamine, serotonin, tryptase and TNF-α (IBS-cocktail was recorded in biopsies from 17 HC and 35 IBS patients with the calcium-sensitive-dye Fluo-4 AM. The concentrations of the mediators resembeled those found in biopsy supernatants or blood. Neuronal activity in guinea-pig submucous neurons was studied with the voltage-sensitive-dye di-8-ANEPPS. Results:Activity in submucous ganglia in response to nicotine or electrical nerve stimulation was not different between HC and IBS patients (P=0.097 or P=0.448. However, the neuronal response after application of the IBS-cocktail was significantly decreased (P=0.039 independent of whether diarrhea (n=12, constipation (n=5 or bloating (n=5 was the predominant symptom. In agreement with this we found that responses of submucous ganglia conditioned by overnight incubation with IBS mucosal biopsy supernatant to spritz application of this supernatant was significantly reduced (P=0.019 when compared to incubation with HC supernatant.Conclusion:We demonstrated for the first time reduced neuronal responses in mucosal IBS biopsies to an IBS mediator cocktail. While excitability to classical stimuli of enteric neurons was comparable to HC, the activation by the IBS-cocktail was decreased. This was very likely due to desensitization to mediators constantly released by mucosal and immune cells in the gut wall of IBS patients.

  13. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  14. Hypocretin/orexin loss changes the hypothalamic immune response.

    Science.gov (United States)

    Tanaka, Susumu; Takizawa, Nae; Honda, Yoshiko; Koike, Taro; Oe, Souichi; Toyoda, Hiromi; Kodama, Tohru; Yamada, Hisao

    2016-10-01

    Hypocretin, also known as orexin, maintains the vigilance state and regulates various physiological processes, such as arousal, sleep, food intake, energy expenditure, and reward. Previously, we found that when wild-type mice and hypocretin/ataxin-3 littermates (which are depleted of hypothalamic hypocretin-expressing neurons postnatally) were administered lipopolysaccharide (LPS), the two genotypes exhibited significant differences in their sleep/wake cycle, including differences in the degree of increase in sleep periods and in recovery from sickness behaviour. In the present study, we examined changes in the hypothalamic vigilance system and in the hypothalamic expression of inflammatory factors in response to LPS in hypocretin/ataxin-3 mice. Peripheral immune challenge with LPS affected the hypothalamic immune response and vigilance states. This response was altered by the loss of hypocretin. Hypocretin expression was inhibited after LPS injection in both hypocretin/ataxin-3 mice and their wild-type littermates, but expression was completely abolished only in hypocretin/ataxin-3 mice. Increases in the number of histidine decarboxylase (HDC)-positive cells and in Hdc mRNA expression were found in hypocretin/ataxin-3 mice, and this increase was suppressed by LPS. Hypocretin loss did not impact the change in expression of hypothalamic inflammatory factors in response to LPS, except for interferon gamma and colony stimulating factor 3. The number of c-Fos-positive/HDC-positive cells in hypocretin/ataxin-3 mice administered LPS injections was elevated, even during the rest period, in all areas, suggesting that there is an increase in the activity of histaminergic neurons in hypocretin/ataxin-3 mice following LPS injection. Taken together, our results suggest a novel role for hypocretin in the hypothalamic response to peripheral immune challenge. Our findings contribute to the understanding of the pathophysiology of narcolepsy. Copyright © 2016 Elsevier Inc. All

  15. The histamine content of oriental foods.

    Science.gov (United States)

    Chin, K W; Garriga, M M; Metcalfe, D D

    1989-05-01

    Several of the symptoms of scombroid poisoning (i.e. histamine toxicity) resemble those observed in people suffering from Chinese restaurant syndrome. Therefore, the histamine content of representative Chinese cuisine, which included 31 common dishes, 12 condiments and 12 basic ingredients from several sources, was measured using a sensitive and specific radioenzymatic assay. A further enzymatic procedure involving diamine oxidase was used to verify that the substance measured was histamine. A total of 184 assays were performed on 57 samples in the study. High levels of histamine were found in the cheeses, which were used as positive controls (863.6 micrograms histamine/g blue cheese and 107.4 micrograms histamine/g Parmesan cheese), and in some common condiments, including tamari (2392.2 micrograms histamine/g sample) and one brand of soy sauce (220.4 micrograms histamine/g sample). The histamine content of four condiments and three common dishes was over 10 micrograms histamine/g sample, while four condiments and 16 common dishes contained less than 1 microgram histamine/g sample. Calculations involving representative amounts of food that can be consumed at a typical oriental meal suggest that, in some cases, histamine intake may approach toxic levels. The results are discussed with regard to the possible role of histamine in reactions associated with restaurant meals.

  16. Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure.

    Science.gov (United States)

    Ciriello, J; Caverson, M M; McMurray, J C; Bruckschwaiger, E B

    2013-10-10

    Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo

  17. Hypothalamic mTOR signaling regulates food intake.

    Science.gov (United States)

    Cota, Daniela; Proulx, Karine; Smith, Kathi A Blake; Kozma, Sara C; Thomas, George; Woods, Stephen C; Seeley, Randy J

    2006-05-12

    The mammalian Target of Rapamycin (mTOR) protein is a serine-threonine kinase that regulates cell-cycle progression and growth by sensing changes in energy status. We demonstrated that mTOR signaling plays a role in the brain mechanisms that respond to nutrient availability, regulating energy balance. In the rat, mTOR signaling is controlled by energy status in specific regions of the hypothalamus and colocalizes with neuropeptide Y and proopiomelanocortin neurons in the arcuate nucleus. Central administration of leucine increases hypothalamic mTOR signaling and decreases food intake and body weight. The hormone leptin increases hypothalamic mTOR activity, and the inhibition of mTOR signaling blunts leptin's anorectic effect. Thus, mTOR is a cellular fuel sensor whose hypothalamic activity is directly tied to the regulation of energy intake.

  18. Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2018-01-01

    Conclusions: Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism.

  19. Histamine metabolism in cluster headache and migraine. Catabolism of /sup 14/C histamine

    Energy Technology Data Exchange (ETDEWEB)

    Sjaastad, O; Sjaastad, O V

    1977-09-12

    Various parameters of histamine metabolism were studied in patients with migraine, cluster headache and chronic paroxysmal hemicrania. These included urinary excretion of radioactivity and of /sup 14/C histamine and its metabolites, exhaled /sup 14/CO/sub 2/ and fecal radioactivity after oral as well as subcutaneous administration of radioactive histamine. No marked deviation from the normal was found except in one patient with the cluster headache variant, chronic paroxysmal hemicrania, in whom an aberration in /sup 14/C histamine degradation seemed to be present. Only minute quantities of the /sup 14/C histamine metabolite C14 imidazoleacetic acid riboside seemed to be formed during a period with severe paraxysms. During a symptom-free period no deviation from normal was observed. The most likely explanation for this finding seems to be a defect in the conversion of imidazoleacetic acid to its riboside. This defect may possibly explain the increased urinary excretion of histamine in this particular patient. The relationship of this metabolic aberration to the production of headache still remains dubious for various reasons.

  20. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure.

    Science.gov (United States)

    Pandit, Sudip; Jo, Ji Yoon; Lee, Sang Ung; Lee, Young Jae; Lee, So Yeong; Ryu, Pan Dong; Lee, Jung Un; Kim, Hyun-Woo; Jeon, Byeong Hwa; Park, Jin Bong

    2015-08-01

    γ-Aminobutyric acid (GABA) generates persistent tonic inhibitory currents (Itonic) and conventional inhibitory postsynaptic currents in the hypothalamic paraventricular nucleus (PVN) via activation of GABAA receptors (GABAARs). We investigated the pathophysiological significance of astroglial GABA uptake in the regulation of Itonic in the PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM). The Itonic of PVN-RVLM neurons were significantly reduced in heart failure (HF) compared with sham-operated (SHAM) rats. Reduced Itonic sensitivity to THIP argued for the decreased function of GABAAR δ subunits in HF, whereas similar Itonic sensitivity to benzodiazepines argued against the difference of γ2 subunit-containing GABAARs in SHAM and HF rats. HF Itonic attenuation was reversed by a nonselective GABA transporter (GAT) blocker (nipecotic acid, NPA) and a GAT-3 selective blocker, but not by a GAT-1 blocker, suggesting that astroglial GABA clearance increased in HF. Similar and minimal Itonic responses to bestrophin-1 blockade in SHAM and HF neurons further argued against a role for astroglial GABA release in HF Itonic attenuation. Finally, the NPA-induced inhibition of spontaneous firing was greater in HF than in SHAM PVN-RVLM neurons, whereas diazepam induced less inhibition of spontaneous firing in HF than in SHAM neurons. Overall, our results showed that combined with reduced GABAARs function, the enhanced astroglial GABA uptake-induced attenuation of Itonic in HF PVN-RVLM neurons explains the deficit in tonic GABAergic inhibition and increased sympathetic outflow from the PVN during heart failure. Copyright © 2015 the American Physiological Society.

  1. Sexual behavior reduces hypothalamic androgen receptor immunoreactivity

    NARCIS (Netherlands)

    Fernandez-Guasti, Alonso; Swaab, Dick; Rodríguez-Manzo, Gabriela

    2003-01-01

    Male sexual behavior is regulated by limbic areas like the medial preoptic nucleus (MPN), the bed nucleus of the stria terminalis (BST), the nucleus accumbens (nAcc) and the ventromedial hypothalamic nucleus (VMN). Neurons in these brain areas are rich in androgen receptors (AR) and express

  2. Exercise protects against high-fat diet-induced hypothalamic inflammation.

    Science.gov (United States)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D; Woods, Stephen C; Hofmann, Susanna M

    2012-06-25

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing local production of specific interleukins and cytokines, and these in turn may further promote systemic metabolic disease. Whether or how this microglial activation can be averted or reversed is unknown. Since running exercise improves systemic metabolic health and has been found to promote neuronal survival as well as the recovery of brain functions after injury, we hypothesized that regular treadmill running may blunt the effect of western diet on hypothalamic inflammation. Using low-density lipoprotein receptor deficient (l dlr-/-) mice to better reflect human lipid metabolism, we first confirmed that microglial activation in the hypothalamus is severely increased upon exposure to a high-fat, or "western", diet. Moderate, but regular, treadmill running exercise markedly decreased hypothalamic inflammation in these mice. Furthermore, the observed decline in microglial activation was associated with an improvement of glucose tolerance. Our findings support the hypothesis that hypothalamic inflammation can be reversed by exercise and suggest that interventions to avert or reverse neuronal damage may offer relevant potential in obesity treatment and prevention. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Essential Role for Hypothalamic Calcitonin Receptor‒Expressing Neurons in the Control of Food Intake by Leptin.

    Science.gov (United States)

    Pan, Warren; Adams, Jessica M; Allison, Margaret B; Patterson, Christa; Flak, Jonathan N; Jones, Justin; Strohbehn, Garth; Trevaskis, James; Rhodes, Christopher J; Olson, David P; Myers, Martin G

    2018-04-01

    The adipocyte-derived hormone leptin acts via its receptor (LepRb) on central nervous system neurons to communicate the repletion of long-term energy stores, to decrease food intake, and to promote energy expenditure. We generated mice that express Cre recombinase from the calcitonin receptor (Calcr) locus (Calcrcre mice) to study Calcr-expressing LepRb (LepRbCalcr) neurons, which reside predominantly in the arcuate nucleus (ARC). Calcrcre-mediated ablation of LepRb in LepRbCalcrknockout (KO) mice caused hyperphagic obesity. Because LepRb-mediated transcriptional control plays a crucial role in leptin action, we used translating ribosome affinity purification followed by RNA sequencing to define the transcriptome of hypothalamic Calcr neurons, along with its alteration in LepRbCalcrKO mice. We found that ARC LepRbCalcr cells include neuropeptide Y (NPY)/agouti-related peptide (AgRP)/γ-aminobutyric acid (GABA) ("NAG") cells as well as non-NAG cells that are distinct from pro-opiomelanocortin cells. Furthermore, although LepRbCalcrKO mice exhibited dysregulated expression of several genes involved in energy balance, neither the expression of Agrp and Npy nor the activity of NAG cells was altered in vivo. Thus, although direct leptin action via LepRbCalcr cells plays an important role in leptin action, our data also suggest that leptin indirectly, as well as directly, regulates these cells.

  4. Hypothalamic growth hormone receptor (GHR) controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons.

    Science.gov (United States)

    Cady, Gillian; Landeryou, Taylor; Garratt, Michael; Kopchick, John J; Qi, Nathan; Garcia-Galiano, David; Elias, Carol F; Myers, Martin G; Miller, Richard A; Sandoval, Darleen A; Sadagurski, Marianna

    2017-05-01

    The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb)-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (Lepr EYFPΔGHR ). The mice were generated by crossing the Lepr cre on the cre-inducible ROSA26-EYFP mice to GHR L/L mice. Parameters of body composition and glucose homeostasis were evaluated. Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in Lepr EYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in Lepr EYFPΔGHR mice. These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding.

  5. Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Savina Apolloni

    2017-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a late-onset motor neuron disease where activated glia release pro-inflammatory cytokines that trigger a vicious cycle of neurodegeneration in the absence of resolution of inflammation. Given the well-established role of histamine as a neuron-to-glia alarm signal implicated in brain disorders, the aim of this study was to investigate the expression and regulation of the histaminergic pathway in microglial activation in ALS mouse model and in humans. By examining the contribution of the histaminergic system to ALS, we found that particularly via H1 and H4 receptors, histamine promoted an anti-inflammatory profile in microglia from SOD1-G93A mice by modulating their activation state. A decrease in NF-κB and NADPH oxidase 2 with an increase in arginase 1 and P2Y12 receptor was induced by histamine only in the ALS inflammatory environment, but not in the healthy microglia, together with an increase in IL-6, IL-10, CD163, and CD206 phenotypic markers in SOD1-G93A cells. Moreover, histaminergic H1, H2, H3, and H4 receptors, and histamine metabolizing enzymes histidine decarboxylase, histamine N-methyltransferase, and diamine oxidase were found deregulated in spinal cord, cortex, and hypothalamus of SOD1-G93A mice during disease progression. Finally, by performing a meta-analysis study, we found a modulated expression of histamine-related genes in cortex and spinal cord from sporadic ALS patients. Our findings disclose that histamine acts as anti-inflammatory agent in ALS microglia and suggest a dysregulation of the histaminergic signaling in ALS.

  6. Indirect evidence for decreased hypothalamic somatostatinergic tone in anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Andersen, M; Flyvbjerg, A

    2002-01-01

    in the central feeding mechanism in anorexia nervosa (AN). Peripheral administration of pyridostigmine (PD) minimizes the release of hypothalamic SRIH. DESIGN: To study the influence of hypothalamic somatostatinergic inhibition on the exaggerated somatotroph responsiveness to GHRH in patients with severe AN, two...... indirectly to greater SRIH withdrawal and greater GHRH release in anorexia nervosa. Moreover, hypothalamic SRIH activity seems to be inversely related to cortisol levels, indirectly supporting the hypothesis that SRIH and CRH neuronal activity are inversely related in anorexia nervosa. Leptin, which...... is believed to act on hypothalamic feeding mechanisms, seems to be positively related to SRIH activity. Finally, the present data demonstrate that the potentiating effect of pyridostigmine in anorexia nervosa is related to body mass index and increases upon weight gain, suggesting that the low...

  7. Caudal fourth ventricular administration of the AMPK activator 5-aminoimidazole-4-carboxamide-riboside regulates glucose and counterregulatory hormone profiles, dorsal vagal complex metabolosensory neuron function, and hypothalamic Fos expression.

    Science.gov (United States)

    Ibrahim, Baher A; Tamrakar, Pratistha; Gujar, Amit D; Cherian, Ajeesh Koshy; Briski, Karen P

    2013-09-01

    This study investigated the hypothesis that estrogen controls hindbrain AMP-activated protein kinase (AMPK) activity and regulation of blood glucose, counterregulatory hormone secretion, and hypothalamic nerve cell transcriptional status. Dorsal vagal complex A2 noradrenergic neurons were laser microdissected from estradiol benzoate (E)- or oil (O)-implanted ovariectomized female rats after caudal fourth ventricular (CV4) delivery of the AMPK activator 5-aminoimidazole-4-carboxamide-riboside (AICAR), for Western blot analysis. E advanced AICAR-induced increases in A2 phospho-AMPK (pAMPK) expression and in blood glucose levels and was required for augmentation of Fos, estrogen receptor-α (ERα), monocarboxylate transporter-2, and glucose transporter-3 protein in A2 neurons and enhancement of corticosterone secretion by this treatment paradigm. CV4 AICAR also resulted in site-specific modifications in Fos immunolabeling of hypothalamic metabolic structures, including the paraventricular, ventromedial, and arcuate nuclei. The current studies demonstrate that estrogen regulates AMPK activation in caudal hindbrain A2 noradrenergic neurons during pharmacological replication of energy shortage in this area of the brain, and that this sensor is involved in neural regulation of glucostasis, in part, through control of corticosterone secretion. The data provide unique evidence that A2 neurons express both ERα and -β proteins and that AMPK upregulates cellular sensitivity to ERα-mediated signaling during simulated energy insufficiency. The results also imply that estrogen promotes glucose and lactate uptake by these cells under those conditions. Evidence for correlation between hindbrain AMPK and hypothalamic nerve cell genomic activation provides novel proof for functional connectivity between this hindbrain sensor and higher order metabolic brain loci while demonstrating a modulatory role for estrogen in this interaction. Copyright © 2013 Wiley Periodicals, Inc.

  8. Estradiol target neurons in the hypothalamic arcuate nucleus and lateral ventromedial nucleus of young adult, reproductively senescent, and monosodium glutamate-lesioned female golden hamsters

    International Nuclear Information System (INIS)

    Blaha, G.C.; Lamperti, A.A.

    1983-01-01

    Histoautoradiographic methods were used to assess estrogen target neurons in the hypothalamic arcuate nucleus (ARC) and ventromedial nucleus, lateral portion (LVM), comparing young adult and aged female golden hamsters. A subgroup of young adult females had ARC lesions induced by monosodium glutamate at neonatal day 8. All were ovariectomized to remove endogenous estrogens. Controls were given nonradioactive estradiol. After 3 H-estradiol ( 3 H-E2) was injected intravenously, hypothalami were removed, frozen, and processed for histoautoradiography. In the ARC and LVM the ratio of 3 H-E2 labelled neurons to total neurons counted was significantly lower in the older animals. Young females with ARC lesions had very few 3 H-E2 labelled neurons remaining in the ARC but had a normal complement in the LVM. Although 3 H-E2 labelled ARC neurons were notably decreased in old females, those ARC neurons that were labelled in the old had virtually the same frequency distribution of the labelling index as in the young, suggesting no change in the average estrogen uptake per target cell

  9. Hypothalamic growth hormone receptor (GHR controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb expressing neurons

    Directory of Open Access Journals (Sweden)

    Gillian Cady

    2017-05-01

    Full Text Available Objective: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR are active in the central nervous system (CNS and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. Methods: To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR. The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. Results: Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. Conclusion: These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding. Keywords: Growth hormone receptor, Hypothalamus, Leptin receptor, Glucose production, Liver

  10. Histamine and Tyramine in Food.

    Science.gov (United States)

    1985-05-01

    FISH PRODUCTS 44 ON THE JAPANESE MARKET TABLE 4-9 TYRAMINE AND HISTAMINE IN FRUITS, 48 VEGETABLES AND THEIR PRODUCTS TABLE 5-1 SCOMBROTOXIN (HISTAMINE...Products The histamine and tyramine content of fruits, vegetables and their products is shown in Table 4-9. The fruits of avocado , lemon, and...VEGETABLES, AND THEIR PRODUCTS (ug/g) ITEM HISTAMINE TYRAMINE REFERENCE Apple 0 6 Avocado 23 78 Bananas 7 79, 80, 81, 82 Banana Peel - 65 81 Barley - 10

  11. Comparison of methods for intestinal histamine application

    DEFF Research Database (Denmark)

    Vind, S; Søondergaard, I; Poulsen, L K

    1991-01-01

    The study was conducted to investigate whether introduction of histamine in enterosoluble capsules produced the same amount of urinary histamine metabolites as that found after application of histamine through a duodeno-jejunal tube. Secondly, to examine whether a histamine-restrictive or a fast ...... conclude that oral administration of enterosoluble capsules is an easy and appropriate method for intestinal histamine challenge. Fast and histamine-restrictive diets are not necessary, but subjects should record unexpected responses in a food and symptom diary.......The study was conducted to investigate whether introduction of histamine in enterosoluble capsules produced the same amount of urinary histamine metabolites as that found after application of histamine through a duodeno-jejunal tube. Secondly, to examine whether a histamine-restrictive or a fast...... all other intervals did not differ significantly between the two challenge regimens. Fast (water only) and histamine-restrictive diet versus non-restrictive diet did not affect the urinary MIAA. MIAA was significantly higher overall during the first 24 h after challenge than in any other fraction. We...

  12. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2016-12-17

    Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Fluorometric determination of histamine in cheese.

    Science.gov (United States)

    Chambers, T L; Staruszkiewicz, W F

    1978-09-01

    Thirty-one samples of cheese obtained from retail outlets were analyzed for histamine, using an official AOAC fluorometric method. The types of cheese analyzed and the ranges of histamine found were: colby, 0.3--2.8; camembert, 0.4--4.2; cheddar, 1.2--5.8; gouda, 1.3--2.4; provolone, 2.0--23.5; roquefort, 1.0--16.8; mozzarella 1.6--5.0; and swiss, 0.4--250 mg histamine/100 g. Ten of the 12 samples of swiss cheese contained less than 16 mg histamine/100 g. The remaining 2 samples which contained 116 and 250 mg histamine/100 g were judged organoleptically to be of poor quality. An investigation of one processing facility showed that the production of histamine in swiss cheese may have been a result of a hydrogen peroxide/low temperature treatment of the milk supply. Recovery of histamine added to methanol extracts of cheese ranged from 93 to 105%. Histamine content was confirmed by high pressure liquid chromatographic analysis of the methanol extracts.

  14. Molecular Regulation of Histamine Synthesis

    Directory of Open Access Journals (Sweden)

    Hua Huang

    2018-06-01

    Full Text Available Histamine is a critical mediator of IgE/mast cell-mediated anaphylaxis, a neurotransmitter and a regulator of gastric acid secretion. Histamine is a monoamine synthesized from the amino acid histidine through a reaction catalyzed by the enzyme histidine decarboxylase (HDC, which removes carboxyl group from histidine. Despite the importance of histamine, transcriptional regulation of HDC gene expression in mammals is still poorly understood. In this review, we focus on discussing advances in the understanding of molecular regulation of mammalian histamine synthesis.

  15. CART neurons in the arcuate nucleus and lateral hypothalamic area exert differential controls on energy homeostasis

    Directory of Open Access Journals (Sweden)

    Jackie Lau

    2018-01-01

    Full Text Available Objective: The cocaine- and amphetamine-regulated transcript (CART codes for a pivotal neuropeptide important in the control of appetite and energy homeostasis. However, limited understanding exists for the defined effector sites underlying CART function, as discrepant effects of central CART administration have been reported. Methods: By combining Cart-cre knock-in mice with a Cart adeno-associated viral vector designed using the flip-excision switch (AAV-FLEX technology, specific reintroduction or overexpression of CART selectively in CART neurons in the arcuate nucleus (Arc and lateral hypothalamic area (LHA, respectively, was achieved. The effects on energy homeostasis control were investigated. Results: Here we show that CART neuron-specific reintroduction of CART into the Arc and LHA leads to distinct effects on energy homeostasis control. Specifically, CART reintroduction into the Arc of otherwise CART-deficient Cartcre/cre mice markedly decreased fat mass and body weight, whereas CART reintroduction into the LHA caused significant fat mass gain and lean mass loss, but overall unaltered body weight. The reduced adiposity in ArcCART;Cartcre/cre mice was associated with an increase in both energy expenditure and physical activity, along with significantly decreased Npy mRNA levels in the Arc but with no change in food consumption. Distinctively, the elevated fat mass in LHACART;Cartcre/cre mice was accompanied by diminished insulin responsiveness and glucose tolerance, greater spontaneous food intake, and reduced energy expenditure, which is consistent with the observed decrease of brown adipose tissue temperature. This is also in line with significantly reduced tyrosine hydroxylase (Th and notably increased corticotropin-releasing hormone (Crh mRNA expressions in the paraventricular nucleus (PVN. Conclusions: Taken together, these results identify catabolic and anabolic effects of CART in the Arc and LHA, respectively, demonstrating for

  16. Pubertally born neurons and glia are functionally integrated into limbic and hypothalamic circuits of the male Syrian hamster.

    Science.gov (United States)

    Mohr, Margaret A; Sisk, Cheryl L

    2013-03-19

    During puberty, the brain goes through extensive remodeling, involving the addition of new neurons and glia to brain regions beyond the canonical neurogenic regions (i.e., dentate gyrus and olfactory bulb), including limbic and hypothalamic cell groups associated with sex-typical behavior. Whether these pubertally born cells become functionally integrated into neural circuits remains unknown. To address this question, we gave male Syrian hamsters daily injections of the cell birthdate marker bromodeoxyuridine throughout puberty (postnatal day 28-49). Half of the animals were housed in enriched environments with access to a running wheel to determine whether enrichment increased the survival of pubertally born cells compared with the control environment. At 4 wk after the last BrdU injection, animals were allowed to interact with a receptive female and were then killed 1 h later. Triple-label immunofluorescence for BrdU, the mature neuron marker neuronal nuclear antigen, and the astrocytic marker glial fibrillary acidic protein revealed that a proportion of pubertally born cells in the medial preoptic area, arcuate nucleus, and medial amygdala differentiate into either mature neurons or astrocytes. Double-label immunofluorescence for BrdU and the protein Fos revealed that a subset of pubertally born cells in these regions is activated during sociosexual behavior, indicative of their functional incorporation into neural circuits. Enrichment affected the survival and activation of pubertally born cells in a brain region-specific manner. These results demonstrate that pubertally born cells located outside of the traditional neurogenic regions differentiate into neurons and glia and become functionally incorporated into neural circuits that subserve sex-typical behaviors.

  17. An updated view of hypothalamic-vascular-pituitary unit function and plasticity.

    Science.gov (United States)

    Le Tissier, Paul; Campos, Pauline; Lafont, Chrystel; Romanò, Nicola; Hodson, David J; Mollard, Patrice

    2017-05-01

    The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic-pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment.

  18. Hypothalamic BOLD response to glucose intake and hypothalamic volume are similar in anorexia nervosa and healthy control subjects

    Directory of Open Access Journals (Sweden)

    Anna M Van Opstal

    2015-05-01

    Full Text Available Background. Inconsistent findings about the neurobiology of Anorexia Nervosa (AN hinder the development of effective treatments for this severe mental disorder. Therefore the need arises for elucidation of neurobiological factors involved in the pathophysiology of AN. The hypothalamus plays a key role in the neurobiological processes that govern food intake and energy homeostasis, processes that are disturbed in anorexia nervosa (AN. The present study will assess the hypothalamic response to energy intake and the hypothalamic structure in patients with AN and healthy controls. Methods. 10 women aged 18-30 years diagnosed with AN and 11 healthy, lean (BMI <23 kg/m2 women in the same age range were recruited. We used functional magnetic resonance imaging (MRI to determine function of the hypothalamus in response to glucose. Structural MRI was used to determine differences in hypothalamic volume and local grey volume using manual segmentation and voxel-based morphometry.Results. No differences were found in hypothalamic volume and neuronal activity in response to a glucose load between the patients and controls. Whole brain structural analysis showed a significant decrease in grey matter volume in the cingulate cortex in the AN patients, bilaterally.Conclusions. We argue that in spite of various known changes in the hypothalamus the direct hypothalamic response to glucose intake is similar in AN patients and healthy controls.

  19. Functional MRI of human hypothalamic responses following glucose ingestion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Graaf, C. de; Stafleu, A.; Osch, M.J.P. van; Grond, J. van der

    2005-01-01

    The hypothalamus is intimately involved in the regulation of food intake, integrating multiple neural and hormonal signals. Several hypothalamic nuclei contain glucose-sensitive neurons, which play a crucial role in energy homeostasis. Although a few functional magnetic resonance imaging (fMRI)

  20. Neural input is critical for arcuate hypothalamic neurons to mount intracellular signaling responses to systemic insulin and deoxyglucose challenges in male rats: implications for communication within feeding and metabolic control networks.

    Science.gov (United States)

    Khan, Arshad M; Walker, Ellen M; Dominguez, Nicole; Watts, Alan G

    2014-02-01

    The hypothalamic arcuate nucleus (ARH) controls rat feeding behavior in part through peptidergic neurons projecting to the hypothalamic paraventricular nucleus (PVH). Hindbrain catecholaminergic (CA) neurons innervate both the PVH and ARH, and ablation of CA afferents to PVH neuroendocrine neurons prevents them from mounting cellular responses to systemic metabolic challenges such as insulin or 2-deoxy-d-glucose (2-DG). Here, we asked whether ablating CA afferents also limits their ARH responses to the same challenges or alters ARH connectivity with the PVH. We examined ARH neurons for three features: (1) CA afferents, visualized by dopamine-β-hydroxylase (DBH)- immunoreactivity; (2) activation by systemic metabolic challenge, as measured by increased numbers of neurons immunoreactive (ir) for phosphorylated ERK1/2 (pERK1/2); and (3) density of PVH-targeted axons immunoreactive for the feeding control peptides Agouti-related peptide and α-melanocyte-stimulating hormone (αMSH). Loss of PVH DBH immunoreactivity resulted in concomitant ARH reductions of DBH-ir and pERK1/2-ir neurons in the medial ARH, where AgRP neurons are enriched. In contrast, pERK1/2 immunoreactivity after systemic metabolic challenge was absent in αMSH-ir ARH neurons. Yet surprisingly, axonal αMSH immunoreactivity in the PVH was markedly increased in CA-ablated animals. These results indicate that (1) intrinsic ARH activity is insufficient to recruit pERK1/2-ir ARH neurons during systemic metabolic challenges (rather, hindbrain-originating CA neurons are required); and (2) rats may compensate for a loss of CA innervation to the ARH and PVH by increased expression of αMSH. These findings highlight the existence of a hierarchical dependence for ARH responses to neural and humoral signals that influence feeding behavior and metabolism.

  1. Vascular Effects of Histamine

    African Journals Online (AJOL)

    olayemitoyin

    effects of histamine are mediated via H1 and H2 receptors and the actions are modulated by H3 receptor subtype located on presynaptic ... neurotransmittion in the central nervous system and .... Autoinhibition of brain histamine release.

  2. Sweet taste signaling functions as a hypothalamic glucose sensor

    Directory of Open Access Journals (Sweden)

    Xueying Ren

    2009-06-01

    Full Text Available Brain glucosensing is essential for normal body glucose homeostasis and neuronal function. However, the exact signaling mechanisms involved in the neuronal sensing of extracellular glucose levels remain poorly understood. Of particular interest is the identification of candidate membrane molecular sensors allowing neurons to change firing rates independently of intracellular glucose metabolism. Here we describe for the first time the expression of the taste receptor genes Tas1r1, Tas1r2 and Tas1r3, and their associated G-protein genes, in the mammalian brain. Neuronal expression of taste genes was detected in different nutrient-sensing forebrain regions, including the paraventricular and arcuate nuclei of the hypothalamus, the CA fields and dentate gyrus of the hippocampus, the habenula, and cortex. Expression was also observed in the intra-ventricular epithelial cells of the choroid plexus. These same regions were found to express the corresponding gene products that form the heterodimeric T1R2/T1R3 and T1R1/T1R3 sweet and L-amino acid taste G-protein coupled receptors, respectively. These regions were also found to express the taste G-protein α-Gustducin. Moreover, in vivo studies in mice demonstrate that the hypothalamic expression of taste-related genes is regulated by the nutritional state of the animal, with food deprivation significantly increasing expression levels of Tas1r1 and Tas1r2 in hypothalamus, but not in cortex. Furthermore, exposing mouse hypothalamic cells to a low-glucose medium, while maintaining normal L-amino acid concentrations, specifically resulted in higher expression levels of the sweet-associated gene Tas1r2. This latter effect was reversed by adding the non-metabolizable artificial sweetener sucralose to the low-glucose medium, indicating that taste-like signaling in hypothalamic neurons does not require intracellular glucose oxidation. Our findings suggest that the G-protein coupled sweet receptor T1R2/T1R3 is a

  3. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  4. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    Science.gov (United States)

    Heap, Lucy A.; Vanwalleghem, Gilles C.; Thompson, Andrew W.; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K.

    2018-01-01

    The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil. PMID:29403362

  5. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    Directory of Open Access Journals (Sweden)

    Lucy A. Heap

    2018-01-01

    Full Text Available The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC/stratum griseum periventriculare (SPV, and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil.

  6. Radioenzymatic assay for measurement of tissue concentrations of histamine: adaptation to correct for adherence of histamine to mechanical homogenizers

    International Nuclear Information System (INIS)

    Brown, J.K.; Frey, M.J.; Reed, B.R.; Leff, A.R.; Shields, R.; Gold, W.M.

    1984-01-01

    Because adherence of histamine to glass is well-known, we tested for its adherence to a mechanical homogenizer commonly used in the extraction of histamine from tissue samples. During 60 sec of homogenization, 15% to 17% of the histamine originally present in the samples ''disappeared,'' and the reason for the disappearance was reversible binding of histamine to the homogenizer. Adding trace amounts of [ 14 C]histamine to each sample before homogenization and measuring the disappearance of radioactivity during homogenization permitted correction for binding to the homogenizer. This technique for correction was validated by the measurement of endogenous concentrations of histamine in the tracheal posterior membranes of six dogs (range of mean concentrations: 0.63 to 1.51 ng/mg wet weight) followed by the measurement of known amounts of exogenous histamine added before homogenization to tracheal tissue samples from the same dogs. In the latter samples, 96 +/- 13% (mean +/- SEM) of the histamine added was measured by our technique. We conclude that binding of histamine to mechanical homogenizers may be an important cause of inaccuracy of the enzymatic assay for the measurement of histamine concentrations in tissue but that such binding may but that such binding may be easily corrected for

  7. In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium.

    Science.gov (United States)

    Grosicki, Marek; Wójcik, Tomasz; Chlopicki, Stefan; Kieć-Kononowicz, Katarzyna

    2016-04-15

    It is a well-known fact that histamine is involved in eosinophil-dependent inflammatory responses including cellular chemotaxis and migration. Nevertheless, the relative role of histamine receptors in the mechanisms of eosinophils adhesion to endothelial cells is not known. Therefore the aim of presented study was to examine the effect of selective histamine receptors ligands on eosinophils adhesion to endothelium. For that purpose the highly purified human eosinophils have been isolated from the peripheral blood. The viability and functional integrity of isolated eosinophils have been validated in several tests. Histamine as well as 4-methylhistamine (selective H4 agonist) in concentration-dependent manner significantly increased number of eosinophils that adhere to endothelium. Among the selective histamine receptors antagonist or H1 inverse agonist only JNJ7777120 (histamine H4 antagonist) and thioperamide (dual histamine H3/H4 antagonist) had direct effect on eosinophils adhesion to endothelial cells. Antagonists of H1 (diphenhydramine, mepyramine) H2 (ranitidine and famotidine) and H3 (pitolisant) histamine receptors were ineffective. To the best of our knowledge, this is the first study to demonstrate that histamine receptor H4 plays a dominant role in histamine-induced eosinophils adhesion to endothelium. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Sickle erythrocytes enhance phenylephrine and histamine ...

    African Journals Online (AJOL)

    Sickle erythrocytes enhance phenylephrine and histamine contractions of isolated rabbit carotid arteries. ... enhancement of histamine contractions, compared with phenylephrine (in AS and SS), suggests a possible role for histamine in the increased vascular tone and vaso-occlusive crisis in sickle cell disease.

  9. Facial injections of pruritogens and algogens excite partly overlapping populations of primary and second-order trigeminal neurons in mice.

    Science.gov (United States)

    Akiyama, T; Carstens, M Iodi; Carstens, E

    2010-11-01

    Intradermal cheek injection of pruitogens or algogens differentially elicits hindlimb scratching or forelimb wiping, suggesting that these behaviors distinguish between itch and pain. We studied whether pruritogens and algogens excite separate or overlapping populations of primary afferent and second-order trigeminal neurons in mice. Calcium imaging of primary sensory trigeminal ganglion (TG) cells showed that 15.4% responded to histamine, 5.8% to the protease-activated receptor (PAR)-2 agonist, 13.4% to allyl isothiocyanate (AITC), and 36.7% to capsaicin. AITC and/or capsaicin activated the vast majority of histamine- and PAR-2 agonist-sensitive TG cells. A chemical search strategy identified second-order neurons in trigeminal subnucleus caudalis (Vc) responsive to histamine, the PAR-2 agonist, or AITC. A minority of histamine or PAR-2 agonist-responsive Vc neurons responded to the other pruritogen, whereas a large majority of puritogen-responsive Vc neurons responded to capsaicin and/or AITC. A minority of AITC-responsive Vc neurons responded to pruritogens, whereas most responded to capsaicin. These data indicate that most primary and higher-order trigeminal sensory neurons are activated by both pruritic and algesic stimuli, although a minority exhibit selectivity. The results are discussed in terms of population codes for itch and pain that result in distinct behavioral responses of hindlimb scratching and forelimb wiping that are mediated at lumbar and cervical segmental levels, respectively.

  10. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species.

    Science.gov (United States)

    Malmlöf, Kjell; Hastrup, Sven; Wulff, Birgitte Schellerup; Hansen, Barbara C; Peschke, Bernd; Jeppesen, Claus Bekker; Hohlweg, Rolf; Rimvall, Karin

    2007-04-15

    The main purpose of this study was to examine the effects of a selective histamine H(3) receptor antagonist, NNC 38-1202, on caloric intake in pigs and in rhesus monkeys. The compound was given intragastrically (5 or 15 mg/kg), to normal pigs (n=7) and subcutaneously (1 or 0.1mg/kg) to obese rhesus monkeys (n=9). The energy intake recorded following administration of vehicle to the same animals served as control for the effect of the compound. In addition, rhesus monkey and pig histamine H(3) receptors were cloned from hypothalamic tissues and expressed in mammalian cell lines. The in vitro antagonist potencies of NNC 38-1202 at the H(3) receptors were determined using a functional GTPgammaS binding assay. Porcine and human H(3) receptors were found to have 93.3% identity at the amino acid level and the close homology between the monkey and human H(3) receptors (98.4% identity) was confirmed. The antagonist potencies of NNC 38-1202 at the porcine, monkey and human histamine H(3) receptors were high as evidenced by K(i)-values being clearly below 20 nM, whereas the K(i)-value on the rat H(3) receptor was significantly higher (56+/-6.0 nM). NNC 38-1202, given to pigs in a dose of 15 mg/kg, produced a significant (p<0.05) reduction (55%) of calorie intake compared with vehicle alone, (132.6+/-10.0 kcal/kgday versus 59.7+/-10.2 kcal/kgday). In rhesus monkeys administration of 0.1 and 1mg/kg decreased (p<0.05) average calorie intakes by 40 and 75%, respectively. In conclusion, the present study demonstrates that antagonistic targeting of the histamine H(3) receptor decreases caloric intake in higher mammalian species.

  11. The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release

    OpenAIRE

    Rau, Andrew R.; Hentges, Shane T.

    2017-01-01

    Hypothalamic agouti-related peptide (AgRP) neurons potently stimulate food intake, whereas proopiomelanocortin (POMC) neurons inhibit feeding. Whether AgRP neurons exert their orexigenic actions, at least in part, by inhibiting anorexigenic POMC neurons remains unclear. Here, the connectivity between GABA-releasing AgRP neurons and POMC neurons was examined in brain slices from male and female mice. GABA-mediated spontaneous IPSCs (sIPSCs) in POMC neurons were unaffected by disturbing GABA re...

  12. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 colocalizes with insulin receptor substrate 4 (IRS4 in the hypothalamic neurons and mediates IRS4 degradation

    Directory of Open Access Journals (Sweden)

    Xia Zefeng

    2011-09-01

    Full Text Available Abstract Background The arcuate nucleus of the hypothalamus regulates food intake. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 is expressed in neuropeptide Y and proopiomelanocortin (POMC neurons in the arcuate nucleus, target neurons in the regulation of food intake and metabolism by insulin and leptin. However, the target protein(s of Asb-4 in these neurons remains unknown. Insulin receptor substrate 4 (IRS4 is an adaptor molecule involved in the signal transduction by both insulin and leptin. In the present study we examined the colocalization and interaction of Asb-4 with IRS4 and the involvement of Asb-4 in insulin signaling. Results In situ hybridization showed that the expression pattern of Asb-4 was consistent with that of IRS4 in the rat brain. Double in situ hybridization showed that IRS4 colocalized with Asb-4, and both Asb-4 and IRS4 mRNA were expressed in proopiomelanocortin (POMC and neuropeptide Y (NPY neurons within the arcuate nucleus of the hypothalamus. In HEK293 cells co-transfected with Myc-tagged Asb-4 and Flag-tagged IRS4, Asb-4 co-immunoprecipitated with IRS4; In these cells endogenous IRS4 also co-immunoprecipitated with transfected Myc-Asb-4; Furthermore, Asb-4 co-immunoprecipitated with IRS4 in rat hypothalamic extracts. In HEK293 cells over expression of Asb-4 decreased IRS4 protein levels and deletion of the SOCS box abolished this effect. Asb-4 increased the ubiquitination of IRS4; Deletion of SOCS box abolished this effect. Expression of Asb-4 decreased both basal and insulin-stimulated phosphorylation of AKT at Thr308. Conclusions These data demonstrated that Asb-4 co-localizes and interacts with IRS4 in hypothalamic neurons. The interaction of Asb-4 with IRS4 in cell lines mediates the degradation of IRS4 and decreases insulin signaling.

  13. A treasure trove of hypothalamic neurocircuitries governing body weight homeostasis.

    Science.gov (United States)

    Vianna, Claudia R; Coppari, Roberto

    2011-01-01

    Changes in physical activities and feeding habits have transformed the historically rare disease of obesity into a modern metabolic pandemic. Obesity occurs when energy intake exceeds energy expenditure over time. This energy imbalance significantly increases the risk for cardiovascular disease and type 2 diabetes mellitus and as such represents an enormous socioeconomic burden and health threat. To combat obesity, a better understanding of the molecular mechanisms and neurocircuitries underlying normal body weight homeostasis is required. In the 1940s, pioneering lesion experiments unveiled the importance of medial and lateral hypothalamic structures. In the 1980s and 1990s, several neuropeptides and peripheral hormones critical for appropriate feeding behavior, energy expenditure, and hence body weight homeostasis were identified. In the 2000s, results from metabolic analyses of genetically engineered mice bearing mutations only in selected neuronal groups greatly advanced our knowledge of the peripheral/brain feedback-loop modalities by which central neurons control energy balance. In this review, we will summarize these recent progresses with particular emphasis on the biochemical identities of hypothalamic neurons and molecular components underlying normal appetite, energy expenditure, and body weight homeostasis. We will also parse which of those neurons and molecules are critical components of homeostatic adaptive pathways against obesity induced by hypercaloric feeding.

  14. Reduced α-MSH Underlies Hypothalamic ER-Stress-Induced Hepatic Gluconeogenesis.

    Science.gov (United States)

    Schneeberger, Marc; Gómez-Valadés, Alicia G; Altirriba, Jordi; Sebastián, David; Ramírez, Sara; Garcia, Ainhoa; Esteban, Yaiza; Drougard, Anne; Ferrés-Coy, Albert; Bortolozzi, Analía; Garcia-Roves, Pablo M; Jones, John G; Manadas, Bruno; Zorzano, Antonio; Gomis, Ramon; Claret, Marc

    2015-07-21

    Alterations in ER homeostasis have been implicated in the pathophysiology of obesity and type-2 diabetes (T2D). Acute ER stress induction in the hypothalamus produces glucose metabolism perturbations. However, the neurobiological basis linking hypothalamic ER stress with abnormal glucose metabolism remains unknown. Here, we report that genetic and induced models of hypothalamic ER stress are associated with alterations in systemic glucose homeostasis due to increased gluconeogenesis (GNG) independent of body weight changes. Defective alpha melanocyte-stimulating hormone (α-MSH) production underlies this metabolic phenotype, as pharmacological strategies aimed at rescuing hypothalamic α-MSH content reversed this phenotype at metabolic and molecular level. Collectively, our results posit defective α-MSH processing as a fundamental mediator of enhanced GNG in the context of hypothalamic ER stress and establish α-MSH deficiency in proopiomelanocortin (POMC) neurons as a potential contributor to the pathophysiology of T2D. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Histamine Induces Alzheimer’s Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures

    Directory of Open Access Journals (Sweden)

    Jonathan C. Sedeyn

    2015-01-01

    Full Text Available Among the top ten causes of death in the United States, Alzheimer’s disease (AD is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP, and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses—a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin—were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD.

  16. Hypothalamic Circuits for Predation and Evasion.

    Science.gov (United States)

    Li, Yi; Zeng, Jiawei; Zhang, Juen; Yue, Chenyu; Zhong, Weixin; Liu, Zhixiang; Feng, Qiru; Luo, Minmin

    2018-02-21

    The interactions between predator and prey represent some of the most dramatic events in nature and constitute a matter of life and death for both sides. The hypothalamus has been implicated in driving predation and evasion; however, the exact hypothalamic neural circuits underlying these behaviors remain poorly defined. Here, we demonstrate that inhibitory and excitatory projections from the mouse lateral hypothalamus (LH) to the periaqueductal gray (PAG) in the midbrain drive, respectively, predation and evasion. LH GABA neurons were activated during predation. Optogenetically stimulating PAG-projecting LH GABA neurons drove strong predatory attack, and inhibiting these cells reversibly blocked predation. In contrast, LH glutamate neurons were activated during evasion. Stimulating PAG-projecting LH glutamate neurons drove evasion and inhibiting them impeded predictive evasion. Therefore, the seemingly opposite behaviors of predation and evasion are tightly regulated by two dissociable modular command systems within a single neural projection from the LH to the PAG. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release.

    Science.gov (United States)

    Crosby, Karen M; Baimoukhametova, Dinara V; Bains, Jaideep S; Pittman, Quentin J

    2015-09-23

    Somatodendritically released peptides alter synaptic function through a variety of mechanisms, including autocrine actions that liberate retrograde transmitters. Cholecystokinin (CCK) is a neuropeptide expressed in neurons in the dorsomedial hypothalamic nucleus (DMH), a region implicated in satiety and stress. There are clear demonstrations that exogenous CCK modulates food intake and neuropeptide expression in the DMH, but there is no information on how endogenous CCK alters synaptic properties. Here, we provide the first report of somatodendritic release of CCK in the brain in male Sprague Dawley rats. CCK is released from DMH neurons in response to repeated postsynaptic depolarizations, and acts in an autocrine fashion on CCK2 receptors to enhance postsynaptic NMDA receptor function and liberate the retrograde transmitter, nitric oxide (NO). NO subsequently acts presynaptically to enhance GABA release through a soluble guanylate cyclase-mediated pathway. These data provide the first demonstration of synaptic actions of somatodendritically released CCK in the hypothalamus and reveal a new form of retrograde plasticity, depolarization-induced potentiation of inhibition. Significance statement: Somatodendritic signaling using endocannabinoids or nitric oxide to alter the efficacy of afferent transmission is well established. Despite early convincing evidence for somatodendritic release of neurohypophysial peptides in the hypothalamus, there is only limited evidence for this mode of release for other peptides. Here, we provide the first evidence for somatodendritic release of the satiety peptide cholecystokinin (CCK) in the brain. We also reveal a new form of synaptic plasticity in which postsynaptic depolarization results in enhancement of inhibition through the somatodendritic release of CCK. Copyright © 2015 the authors 0270-6474/15/3513160-11$15.00/0.

  18. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1-7 Cells) for Evaluation of the Neuroendocrine Effects of Essential Oils.

    Science.gov (United States)

    Mizuno, Dai; Konoha-Mizuno, Keiko; Mori, Miwako; Yamazaki, Kentaro; Haneda, Toshihiro; Koyama, Hironari; Kawahara, Masahiro

    2015-01-01

    Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer's disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1-7 cells). In this study, we evaluated the effects of essential oils on neuronal death induced by hydrogen peroxide (H2O2), aluminum, zinc, or the antagonist of estrogen receptor (tamoxifen). Among tests of various essential oils, we found that H2O2-induced neuronal death was attenuated by the essential oils of damask rose, eucalyptus, fennel, geranium, ginger, kabosu, mandarin, myrrh, and neroli. Damask rose oil had protective effects against aluminum-induced neurotoxicity, while geranium and rosemary oil showed protective activity against zinc-induced neurotoxicity. In contrast, geranium oil and ginger oil enhanced the neurotoxicity of tamoxifen. Our in vitro assay system could be useful for the neuropharmacological and endocrine pharmacological studies of essential oils.

  19. Emerging Signaling Pathway in Arcuate Feeding-Related Neurons: Role of the Acbd7

    Directory of Open Access Journals (Sweden)

    Damien Lanfray

    2017-06-01

    Full Text Available The understanding of the mechanisms whereby energy balance is regulated is essential to the unraveling of the pathophysiology of obesity. In the last three decades, focus was put on the metabolic role played by the hypothalamic neurons expressing proopiomelanocortin (POMC and cocaine and amphetamine regulated transcript (CART and the neurons co-localizing agouti-related peptide (AgRP, neuropeptide Y (NPY, and gamma-aminobutyric acid (GABA. These neurons are part of the leptin-melanocortin pathway, whose role is key in energy balance regulation. More recently, the metabolic involvement of further hypothalamic uncharacterized neuron populations has been suggested. In this review, we discuss the potential homeostatic implication of hypothalamic GABAergic neurons that produce Acyl-Coa-binding domain containing protein 7 (ACBD7, precursor of the nonadecaneuropeptide (NDN, which has recently been characterized as a potent anorexigenic neuropeptide capable of relaying the leptin anorectic/thermogenic effect via the melanocortin system.

  20. Impact of hypothalamic reactive oxygen species in the control of energy metabolism and food intake

    Directory of Open Access Journals (Sweden)

    Anne eDrougard

    2015-02-01

    Full Text Available Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC and agouti-related protein (AgRP/neuropeptide Y (NPY neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,..., neurotransmitters and nutrients (glucose, lipids,.... The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes.In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  1. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake.

    Science.gov (United States)

    Drougard, Anne; Fournel, Audren; Valet, Philippe; Knauf, Claude

    2015-01-01

    Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  2. Membrane potential dye imaging of ventromedial hypothalamus neurons from adult mice to study glucose sensing.

    Science.gov (United States)

    Vazirani, Reema P; Fioramonti, Xavier; Routh, Vanessa H

    2013-11-27

    Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.

  3. Disrupted-in-Schizophrenia-1 is essential for normal hypothalamic-pituitary-interrenal (HPI) axis function.

    Science.gov (United States)

    Eachus, Helen; Bright, Charlotte; Cunliffe, Vincent T; Placzek, Marysia; Wood, Jonathan D; Watt, Penelope J

    2017-06-01

    Psychiatric disorders arise due to an interplay of genetic and environmental factors, including stress. Studies in rodents have shown that mutants for Disrupted-In-Schizophrenia-1 (DISC1), a well-accepted genetic risk factor for mental illness, display abnormal behaviours in response to stress, but the mechanisms through which DISC1 affects stress responses remain poorly understood. Using two lines of zebrafish homozygous mutant for disc1, we investigated behaviour and functioning of the hypothalamic-pituitary-interrenal (HPI) axis, the fish equivalent of the hypothalamic-pituitary-adrenal (HPA) axis. Here, we show that the role of DISC1 in stress responses is evolutionarily conserved and that DISC1 is essential for normal functioning of the HPI axis. Adult zebrafish homozygous mutant for disc1 show aberrant behavioural responses to stress. Our studies reveal that in the embryo, disc1 is expressed in neural progenitor cells of the hypothalamus, a conserved region of the vertebrate brain that centrally controls responses to environmental stressors. In disc1 mutant embryos, proliferating rx3+ hypothalamic progenitors are not maintained normally and neuronal differentiation is compromised: rx3-derived ff1b+ neurons, implicated in anxiety-related behaviours, and corticotrophin releasing hormone (crh) neurons, key regulators of the stress axis, develop abnormally, and rx3-derived pomc+ neurons are disorganised. Abnormal hypothalamic development is associated with dysfunctional behavioural and neuroendocrine stress responses. In contrast to wild type siblings, disc1 mutant larvae show altered crh levels, fail to upregulate cortisol levels when under stress and do not modulate shoal cohesion, indicative of abnormal social behaviour. These data indicate that disc1 is essential for normal development of the hypothalamus and for the correct functioning of the HPA/HPI axis. © The Author 2017. Published by Oxford University Press.

  4. The histamine content of dried flying fish products in Taiwan and the isolation of halotolerant histamine-forming bacteria.

    Science.gov (United States)

    Kung, Hsien-Feng; Huang, Chun-Yung; Lin, Chia-Min; Liaw, Lon-Hsiu; Lee, Yi-Chen; Tsai, Yung-Hsiang

    2015-06-01

    Thirty dried flying fish products were purchased from fishing village stores in Taiwan and tested to detect the presence of histamine and histamine-forming bacteria. Except for histamine and cadaverine, the average content of various biogenic amines in the tested samples was less than 3.5 mg/100 g. Eight (26.6%) dried flying fish samples had histamine levels greater than the United States Food and Drug Administration guideline of 5 mg/100 g for scombroid fish and/or scombroid products, whereas four (13.3%) samples contained more than the hazard action level of 50 mg/100 g. One histamine-producing bacterial isolate was identified as Staphylococcus xylosus by 16S rDNA sequencing with polymerase chain reaction amplification. This isolate was capable of producing 507.8 ppm of histamine in trypticase soy broth supplemented with 1.0% l-histidine (TSBH). The S. xylosus isolate was a halotolerant bacterium that had a consistent ability to produce more than 300 ppm of histamine at 3% sodium chloride concentration in TSBH medium after 72 hours. Copyright © 2015. Published by Elsevier B.V.

  5. The histamine content of dried flying fish products in Taiwan and the isolation of halotolerant histamine-forming bacteria

    Directory of Open Access Journals (Sweden)

    Hsien-Feng Kung

    2015-06-01

    Full Text Available Thirty dried flying fish products were purchased from fishing village stores in Taiwan and tested to detect the presence of histamine and histamine-forming bacteria. Except for histamine and cadaverine, the average content of various biogenic amines in the tested samples was less than 3.5 mg/100 g. Eight (26.6% dried flying fish samples had histamine levels greater than the United States Food and Drug Administration guideline of 5 mg/100 g for scombroid fish and/or scombroid products, whereas four (13.3% samples contained more than the hazard action level of 50 mg/100 g. One histamine-producing bacterial isolate was identified as Staphylococcus xylosus by 16S rDNA sequencing with polymerase chain reaction amplification. This isolate was capable of producing 507.8 ppm of histamine in trypticase soy broth supplemented with 1.0% l-histidine (TSBH. The S. xylosus isolate was a halotolerant bacterium that had a consistent ability to produce more than 300 ppm of histamine at 3% sodium chloride concentration in TSBH medium after 72 hours.

  6. Effects of intranasal insulin application on the hypothalamic BOLD response to glucose ingestion

    DEFF Research Database (Denmark)

    van Opstal, Anna M.; Akintola, Abimbola A.; Elst, Marjan van der

    2017-01-01

    The hypothalamus is a crucial structure in the brain that responds to metabolic cues and regulates energy homeostasis. Patients with type 2 diabetes demonstrate a lack of hypothalamic neuronal response after glucose ingestion, which is suggested to be an underlying cause of the disease. In this s......The hypothalamus is a crucial structure in the brain that responds to metabolic cues and regulates energy homeostasis. Patients with type 2 diabetes demonstrate a lack of hypothalamic neuronal response after glucose ingestion, which is suggested to be an underlying cause of the disease...... effect. Our data provide proof of concept for future experiments testing the potential of intranasal application of insulin to ameliorate defective homeostatic control in patients with type 2 diabetes....

  7. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area – an anterograde tract-tracing study

    Directory of Open Access Journals (Sweden)

    Rege Sugárka Papp

    2014-05-01

    Full Text Available The projections from the dorsolateral hypothalamic area (DLH to the lower brainstem have been investigated by using biotinylated dextran amine (BDA, an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area, and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribution patterns of BDA-positive fibers were mapped on serial sections between the hypothalamus and spinal cord in 22 rats. BDA-labeled fibers were observable over 100 different brainstem areas, nuclei or subdivisions. Injections into the 8 DLH subdivisions established distinct topographical patterns. In general, the density of labeled fibers was low in the lower brainstem. High density of fibers was seen only 4 of the 116 areas: in the lateral and ventrolateral parts of the periaqueductal gray, the Barrington’s and the pedunculopontine tegmental nuclei. All of the biogenic amine cell groups in the lower brainstem (9 noradrenaline, 3 adrenaline and 9 serotonin cell groups received labeled fibers, some of them from all, or at least 7 DLH subdivisions, mainly from perifornical and ventral lateral hypothalamic neurons. Some of the tegmental nuclei and nuclei of the reticular formation were widely innervated, although the density of the BDA-labeled fibers was generally low. No definitive descending BDA-positive pathway, but long-run solitaire BDA-labeled fibers were seen in the lower brainstem. These descending fibers joined some of the large tracts or fasciculi in the brainstem. The distribution pattern of BDA-positive fibers of DLH origin throughout the lower brainstem was comparable to patterns of previously published orexin- or melanin-concentrating hormone-immunoreactive fibers with somewhat differences.

  8. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions

    Directory of Open Access Journals (Sweden)

    Alvarez-Bolado Gonzalo

    2012-01-01

    Full Text Available Abstract Background The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM to map the lineages derived from Shh-expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary. Results Shh-expressing progenitors labeled at an early stage (before embryonic day (E9.5 contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia. Progenitors labeled at later stages (after E9.5 give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh-expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes. Conclusions We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh-expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly

  9. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance

    Science.gov (United States)

    Loh, Kim; Fukushima, Atsushi; Zhang, Xinmei; Galic, Sandra; Briggs, Dana; Enriori, Pablo J.; Simonds, Stephanie; Wiede, Florian; Reichenbach, Alexander; Hauser, Christine; Sims, Natalie A.; Bence, Kendra K.; Zhang, Sheng; Zhang, Zhong-Yin; Kahn, Barbara B.; Neel, Benjamin G.; Andrews, Zane B.; Cowley, Michael A.; Tiganis, Tony

    2011-01-01

    SUMMARY In obesity, anorectic responses to leptin are diminished, giving rise to the concept of ‘leptin resistance’. Increased expression of protein tyrosine phosphatase 1B (PTP1B) has been associated with the attenuation of leptin signaling and development of cellular leptin resistance. Here we report that hypothalamic levels of the tyrosine phosphatase TCPTP are also elevated in obesity to attenuate the leptin response. We show that mice that lack TCPTP in neuronal cells have enhanced leptin sensitivity and are resistant to high fat diet-induced weight gain and the development of leptin resistance. Also, intracerebroventricular administration of a TCPTP inhibitor enhances leptin signaling and responses in mice. Moreover, the combined deletion of TCPTP and PTP1B in neuronal cells has additive effects in the prevention of diet-induced obesity. Our results identify TCPTP as a critical negative regulator of hypothalamic leptin signaling and causally link elevated TCPTP to the development of cellular leptin resistance in obesity. PMID:22000926

  10. Symptoms of pseudoallergy and histamine metabolism disorders

    Directory of Open Access Journals (Sweden)

    Joanna Kacik

    2016-09-01

    Full Text Available Histamine intolerance is a poorly investigated type of hypersensitivity responsible for a number of often serious symptoms, erroneously interpreted as food allergy. Endogenous histamine originates from the histidine amino acid with the help of the histidine decarboxylase enzyme. Apart from the endogenous production histamine may be supplied to the body with food. Slow-maturing and fermenting products are characterised by particularly high levels of histamine. Some food products stimulate excessive release of histamine from stores in the body as well as containing significant amounts of it. These products include spices, herbs, dried fruits and a large group of food additives. Histamine intolerance is considered to be a condition in which the amount of histamine in the body exceeds its tolerance threshold, which leads to the development of adverse reactions. These reactions primarily include skin symptoms (pruritus, urticaria, skin reddening, acne lesions, angioedema, respiratory symptoms (nasal obstruction and watery discharge, sneezing, coughing, wheezing, gastrointestinal symptoms (abdominal cramps, diarrhoea, bloating, nervous system symptoms (headaches, fatigue, irritability, anxiety, panic attacks, cardiovascular symptoms (tachycardia, hypotension, chest pain, primary dysmenorrhoea and many more. It is estimated that nearly 1% of society is susceptible to histamine intolerance. The diagnosis of this disorder is based on observing at least two characteristic symptoms and their disappearance or improvement following histamine-free diet. A new, although not easily accessible diagnostic tool is assay for serum diamine oxidase activity, which correlates to a significant extent with symptoms of histamine intolerance. Normal activity of diamine oxidase is considered to be the amount of >80 HDU/mL, decreased activity – 40–80 HDU/mL and severely decreased activity – <40 HDU/mL. Currently the option of diamine oxidase supplementation is

  11. Ecto-nucleoside triphosphate diphosphohydrolase 3 in the ventral and lateral hypothalamic area of female rats: morphological characterization and functional implications

    Directory of Open Access Journals (Sweden)

    Kiss David S

    2009-04-01

    Full Text Available Abstract Background Based on its distribution in the brain, ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3 may play a role in the hypothalamic regulation of homeostatic systems, including feeding, sleep-wake behavior and reproduction. To further characterize the morphological attributes of NTPDase3-immunoreactive (IR hypothalamic structures in the rat brain, here we investigated: 1. The cellular and subcellular localization of NTPDase3; 2. The effects of 17β-estradiol on the expression level of hypothalamic NTPDase3; and 3. The effects of NTPDase inhibition in hypothalamic synaptosomal preparations. Methods Combined light- and electron microscopic analyses were carried out to characterize the cellular and subcellular localization of NTPDase3-immunoreactivity. The effects of estrogen on hypothalamic NTPDase3 expression was studied by western blot technique. Finally, the effects of NTPDase inhibition on mitochondrial respiration were investigated using a Clark-type oxygen electrode. Results Combined light- and electron microscopic analysis of immunostained hypothalamic slices revealed that NTPDase3-IR is linked to ribosomes and mitochondria, is predominantly present in excitatory axon terminals and in distinct segments of the perikaryal plasma membrane. Immunohistochemical labeling of NTPDase3 and glutamic acid decarboxylase (GAD indicated that γ-amino-butyric-acid- (GABA ergic hypothalamic neurons do not express NTPDase3, further suggesting that in the hypothalamus, NTPDase3 is predominantly present in excitatory neurons. We also investigated whether estrogen influences the expression level of NTPDase3 in the ventrobasal and lateral hypothalamus. A single subcutaneous injection of estrogen differentially increased NTPDase3 expression in the medial and lateral parts of the hypothalamus, indicating that this enzyme likely plays region-specific roles in estrogen-dependent hypothalamic regulatory mechanisms. Determination of

  12. Increased Sleep Need and Reduction of Tuberomammillary Histamine Neurons after Rodent Traumatic Brain Injury.

    Science.gov (United States)

    Noain, Daniela; Büchele, Fabian; Schreglmann, Sebastian R; Valko, Philipp O; Gavrilov, Yuri V; Morawska, Marta M; Imbach, Lukas L; Baumann, Christian R

    2018-01-01

    Although sleep-wake disturbances are prevalent and well described after traumatic brain injury, their pathophysiology remains unclear, most likely because human traumatic brain injury is a highly heterogeneous entity that makes the systematic study of sleep-wake disturbances in relation to trauma-induced histological changes a challenging task. Despite increasing interest, specific and effective treatment strategies for post-traumatic sleep-wake disturbances are still missing. With the present work, therefore, we aimed at studying acute and chronic sleep-wake disturbances by electrophysiological means, and at assessing their histological correlates after closed diffuse traumatic brain injury in rats with the ultimate goal of generating a model of post-traumatic sleep-wake disturbances and associated histopathological findings that accurately represents the human condition. We assessed sleep-wake behavior by means of standard electrophysiological recordings before and 1, 7, and 28 days after sham or traumatic brain injury procedures. Sleep-wake findings were then correlated to immunohistochemically labeled and stereologically quantified neuronal arousal systems. Compared with control animals, we found that closed diffuse traumatic brain injury caused increased sleep need one month after trauma, and sleep was more consolidated. As histological correlate, we found a reduced number of histamine immunoreactive cells in the tuberomammillary nucleus, potentially related to increased neuroinflammation. Monoaminergic and hypocretinergic neurotransmitter systems in the hypothalamus and rostral brainstem were not affected, however. These results suggest that our rat traumatic brain injury model reflects human post-traumatic sleep-wake disturbances and associated histopathological findings very accurately, thus providing a study platform for novel treatment strategies for affected patients.

  13. An In Vitro System Comprising Immortalized Hypothalamic Neuronal Cells (GT1–7 Cells for Evaluation of the Neuroendocrine Effects of Essential Oils

    Directory of Open Access Journals (Sweden)

    Dai Mizuno

    2015-01-01

    Full Text Available Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for symptoms including anxiety. Furthermore, it was reportedly effective for the care of several diseases such as Alzheimer’s disease and depressive illness. To investigate the pharmacological effects of essential oils, we developed an in vitro assay system using immortalized hypothalamic neuronal cells (GT1–7 cells. In this study, we evaluated the effects of essential oils on neuronal death induced by hydrogen peroxide (H2O2, aluminum, zinc, or the antagonist of estrogen receptor (tamoxifen. Among tests of various essential oils, we found that H2O2-induced neuronal death was attenuated by the essential oils of damask rose, eucalyptus, fennel, geranium, ginger, kabosu, mandarin, myrrh, and neroli. Damask rose oil had protective effects against aluminum-induced neurotoxicity, while geranium and rosemary oil showed protective activity against zinc-induced neurotoxicity. In contrast, geranium oil and ginger oil enhanced the neurotoxicity of tamoxifen. Our in vitro assay system could be useful for the neuropharmacological and endocrine pharmacological studies of essential oils.

  14. A search for presynaptic inhibitory histamine receptors in guinea-pig tissues: Further H3 receptors but no evidence for H4 receptors.

    Science.gov (United States)

    Petri, Doris; Schlicker, Eberhard

    2016-07-01

    The histamine H4 receptor is coupled to Gi/o proteins and expressed on inflammatory cells and lymphoid tissues; it was suggested that this receptor also occurs in the brain or on peripheral neurones. Since many Gi/o protein-coupled receptors, including the H3 receptor, serve as presynaptic inhibitory receptors, we studied whether the sympathetic neurones supplying four peripheral tissues and the cholinergic neurones in the hippocampus from the guinea-pig are equipped with release-modulating H4 and H3 receptors. For this purpose, we preincubated tissue pieces from the aorta, atrium, renal cortex and vas deferens with (3)H-noradrenaline and hippocampal slices with (3)H-choline and determined the electrically evoked tritium overflow. The stimulation-evoked overflow in the five superfused tissues was inhibited by the muscarinic receptor agonist oxotremorine, which served as a positive control, but not affected by the H4 receptor agonist 4-methylhistamine. The H3 receptor agonist R-α-methylhistamine inhibited noradrenaline release in the peripheral tissues without affecting acetylcholine release in the hippocampal slices. Thioperamide shifted the concentration-response curve of histamine in the aorta and the renal cortex to the right, yielding apparent pA2 values of 8.0 and 8.1, respectively, which are close to its affinity at other H3 receptors but higher by one log unit than its pKi at the H4 receptor of the guinea-pig. In conclusion, histamine H4 receptors could not be identified in five experimental models of the guinea-pig that are suited for the detection of presynaptic inhibitory receptors whereas H3 receptors could be shown in the peripheral tissues but not in the hippocampus. This article is part of the Special Issue entitled 'Histamine Receptors'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Hypothalamic neuroendocrine circuitry is programmed by maternal obesity: interaction with postnatal nutritional environment.

    Directory of Open Access Journals (Sweden)

    Hui Chen

    Full Text Available OBJECTIVE: Early life nutrition is critical for the development of hypothalamic neurons involved in energy homeostasis. We previously showed that intrauterine and early postnatal overnutrition programmed hypothalamic neurons expressing the appetite stimulator neuropeptide Y (NPY and suppressor proopiomelanocortin (POMC in offspring at weaning. However, the long-term effects of such programming and its interactions with post-weaning high-fat-diet (HFD consumption are unclear. RESEARCH DESIGN AND METHODS: Female Sprague Dawley rats were exposed to chow or HFD for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1, litters were adjusted to 3/litter to induce postnatal overnutrition (vs. 12 in control. At postnatal day 20, half of the rats from each maternal group were weaned onto chow or HFD for 15 weeks. Hypothalamic appetite regulators, and fuel (glucose and lipid metabolic markers were measured. RESULTS: Offspring from obese dams gained more weight than those from lean dams independent of post-weaning diet. Maternal obesity interacted with post-weaning HFD consumption to cause greater levels of hyperphagia, adiposity, hyperlipidemia, and glucose intolerance in offspring. This was linked to increased hypothalamic NPY signaling and leptin resistance in adult offspring. Litter size reduction had a detrimental impact on insulin and adiponectin, while hypothalamic NPY and POMC mRNA expression were suppressed in the face of normal energy intake and weight gain. CONCLUSIONS: Maternal obesity, postnatal litter size reduction and post-weaning HFD consumption caused obesity via different neuroendocrine mechanism. There were strong additive effects of maternal obesity and post-weaning HFD consumption to increase the metabolic disorders in offspring.

  16. Dissecting the hypothalamic pathways that underlie innate behaviors.

    Science.gov (United States)

    Zha, Xi; Xu, Xiaohong

    2015-12-01

    Many complex behaviors that do not require learning are displayed and are termed innate. Although traditionally the subject matter of ethology, innate behaviors offer a unique entry point for neuroscientists to dissect the physiological mechanisms governing complex behaviors. Since the last century, converging evidence has implicated the hypothalamus as the central brain area that controls innate behaviors. Recent studies using cutting-edge tools have revealed that genetically-defined populations of neurons residing in distinct hypothalamic nuclei and their associated neural pathways regulate the initiation and maintenance of diverse behaviors including feeding, sleep, aggression, and parental care. Here, we review the newly-defined hypothalamic pathways that regulate each innate behavior. In addition, emerging general principles of the neural control of complex behaviors are discussed.

  17. Albizia lebbeck suppresses histamine signaling by the inhibition of histamine H1 receptor and histidine decarboxylase gene transcriptions.

    Science.gov (United States)

    Nurul, Islam Mohammed; Mizuguchi, Hiroyuki; Shahriar, Masum; Venkatesh, Pichairajan; Maeyama, Kazutaka; Mukherjee, Pulok K; Hattori, Masashi; Choudhuri, Mohamed Sahabuddin Kabir; Takeda, Noriaki; Fukui, Hiroyuki

    2011-11-01

    Histamine plays major roles in allergic diseases and its action is mediated mainly by histamine H(1) receptor (H1R). We have demonstrated that histamine signaling-related H1R and histidine decarboxylase (HDC) genes are allergic diseases sensitive genes and their expression level affects severity of the allergic symptoms. Therefore, compounds that suppress histamine signaling should be promising candidates as anti-allergic drugs. Here, we investigated the effect of the extract from the bark of Albizia lebbeck (AL), one of the ingredients of Ayruvedic medicines, on H1R and HDC gene expression using toluene-2,4-diisocyanate (TDI) sensitized allergy model rats and HeLa cells expressing endogenous H1R. Administration of the AL extract significantly decreased the numbers of sneezing and nasal rubbing. Pretreatment with the AL extract suppressed TDI-induced H1R and HDC mRNA elevations as well as [(3)H]mepyramine binding, HDC activity, and histamine content in the nasal mucosa. AL extract also suppressed TDI-induced up-regulation of IL-4, IL-5, and IL-13 mRNA. In HeLa cells, AL extract suppressed phorbol-12-myristate-13-acetate- or histamine-induced up-regulation of H1R mRNA. Our data suggest that AL alleviated nasal symptoms by inhibiting histamine signaling in TDI-sensitized rats through suppression of H1R and HDC gene transcriptions. Suppression of Th2-cytokine signaling by AL also suggests that it could affect the histamine-cytokine network. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Regional differential effects of the novel histamine H3 receptor antagonist 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) on histamine release in the central nervous system of freely moving rats.

    Science.gov (United States)

    Giannoni, Patrizia; Medhurst, Andrew D; Passani, Maria Beatrice; Giovannini, Maria Grazia; Ballini, Chiara; Corte, Laura Della; Blandina, Patrizio

    2010-01-01

    After oral administration, the nonimidazole histamine H(3) receptor antagonist, 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254), increased histamine release from the tuberomammillary nucleus, where all histaminergic somata are localized, and from where their axons project to the entire brain. To further understand functional histaminergic circuitry in the brain, dual-probe microdialysis was used to pharmacologically block H(3) receptors in the tuberomammillary nucleus, and monitor histamine release in projection areas. Perfusion of the tuberomammillary nucleus with GSK189254 increased histamine release from the tuberomammillary nucleus, nucleus basalis magnocellularis, and cortex, but not from the striatum or nucleus accumbens. Cortical acetylcholine (ACh) release was also increased, but striatal dopamine release was not affected. When administered locally, GSK189254 increased histamine release from the nucleus basalis magnocellularis, but not from the striatum. Thus, defined by their sensitivity to GSK189254, histaminergic neurons establish distinct pathways according to their terminal projections, and can differentially modulate neurotransmitter release in a brain region-specific manner. Consistent with its effects on cortical ACh release, systemic administration of GSK189254 antagonized the amnesic effects of scopolamine in the rat object recognition test, a cognition paradigm with important cortical components.

  19. Lateral hypothalamic thyrotropin-releasing hormone neurons: distribution and relationship to histochemically defined cell populations in the rat.

    Science.gov (United States)

    Horjales-Araujo, E; Hellysaz, A; Broberger, C

    2014-09-26

    The lateral hypothalamic area (LHA) constitutes a large component of the hypothalamus, and has been implicated in several aspects of motivated behavior. The LHA is of particular relevance to behavioral state control and the maintenance of arousal. Due to the cellular heterogeneity of this region, however, only some subpopulations of LHA cells have been properly anatomically characterized. Here, we have focused on cells expressing thyrotropin-releasing hormone (TRH), a peptide found in the LHA that has been implicated as a promoter of arousal. Immunofluorescence and in situ hybridization were used to map the LHA TRH population in the rat, and cells were observed to form a large ventral cluster that extended throughout almost the entire rostro-caudal axis of the hypothalamus. Almost no examples of coexistence were seen when sections were double-stained for TRH and markers of other LHA populations, including the peptides hypocretin/orexin, melanin-concentrating hormone and neurotensin. In the juxtaparaventricular area, however, a discrete group of TRH-immunoreactive cells were also stained with antisera against enkephalin and urocortin 3. Innervation from the metabolically sensitive hypothalamic arcuate nucleus was investigated by double-staining for peptide markers of the two centrally projecting groups of arcuate neurons, agouti gene-related peptide and α-melanocyte-stimulating hormone, respectively; both populations of terminals were observed forming close appositions on TRH cells in the LHA. The present study indicates that TRH-expressing cells form a unique population in the LHA that may serve as a link between metabolic signals and the generation of arousal. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Fluoxetine Induces Proliferation and Inhibits Differentiation of Hypothalamic Neuroprogenitor Cells In Vitro

    Science.gov (United States)

    Sousa-Ferreira, Lígia; Aveleira, Célia; Botelho, Mariana; Álvaro, Ana Rita; Pereira de Almeida, Luís; Cavadas, Cláudia

    2014-01-01

    A significant number of children undergo maternal exposure to antidepressants and they often present low birth weight. Therefore, it is important to understand how selective serotonin reuptake inhibitors (SSRIs) affect the development of the hypothalamus, the key center for metabolism regulation. In this study we investigated the proliferative actions of fluoxetine in fetal hypothalamic neuroprogenitor cells and demonstrate that fluoxetine induces the proliferation of these cells, as shown by increased neurospheres size and number of proliferative cells (Ki-67+ cells). Moreover, fluoxetine inhibits the differentiation of hypothalamic neuroprogenitor cells, as demonstrated by decreased number of mature neurons (Neu-N+ cells) and increased number of undifferentiated cells (SOX-2+ cells). Additionally, fluoxetine-induced proliferation and maintenance of hypothalamic neuroprogenitor cells leads to changes in the mRNA levels of appetite regulator neuropeptides, including Neuropeptide Y (NPY) and Cocaine-and-Amphetamine-Regulated-Transcript (CART). This study provides the first evidence that SSRIs affect the development of hypothalamic neuroprogenitor cells in vitro with consequent alterations on appetite neuropeptides. PMID:24598761

  1. Nascent histamine induces α-synuclein and caspase-3 on human cells

    Energy Technology Data Exchange (ETDEWEB)

    Caro-Astorga, Joaquín; Fajardo, Ignacio; Ruiz-Pérez, María Victoria; Sánchez-Jiménez, Francisca; Urdiales, José Luis, E-mail: jlurdial@uma.es

    2014-09-05

    Highlights: • Nascent histamine alters cyclin expression pattern. • Nascent histamine increases expression of α-synuclein. • Nascent histamine activates caspase-3. - Abstract: Histamine (Hia) is the most multifunctional biogenic amine. It is synthetized by histidine decarboxylase (HDC) in a reduced set of mammalian cell types. Mast cells and histaminergic neurons store Hia in specialized organelles until the amine is extruded by exocytosis; however, other immune and cancer cells are able to produce but not store Hia. The intracellular effects of Hia are still not well characterized, in spite of its physiopathological relevance. Multiple functional relationships exist among Hia metabolism/signaling elements and those of other biogenic amines, including growth-related polyamines. Previously, we obtained the first insights for an inhibitory effect of newly synthetized Hia on both growth-related polyamine biosynthesis and cell cycle progression of non-fully differentiated mammalian cells. In this work, we describe progress in this line. HEK293 cells were transfected to express active and inactive versions of GFP-human HDC fusion proteins and, after cell sorting by flow cytometry, the relative expression of a large number of proteins associated with cell signaling were measured using an antibody microarray. Experimental results were analyzed in terms of protein–protein and functional interaction networks. Expression of active HDC induced a cell cycle arrest through the alteration of the levels of several proteins such as cyclin D1, cdk6, cdk7 and cyclin A. Regulation of α-synuclein and caspase-3 was also observed. The analyses provide new clues on the molecular mechanisms underlying the regulatory effects of intracellular newly synthetized Hia on cell proliferation/survival, cell trafficking and protein turnover. This information is especially interesting for emergent and orphan immune and neuroinflammatory diseases.

  2. Degradation of Histamine by Lactobacillus plantarum Isolated from Miso Products.

    Science.gov (United States)

    Kung, Hsien-Feng; Lee, Yi-Chen; Huang, Ya-Ling; Huang, Yu-Ru; Su, Yi-Cheng; Tsai, Yung-Hsiang

    2017-10-01

    Histamine is a toxic chemical and is the causative agent of food poisoning. This foodborne toxin may be degraded by the oxidative deamination activity of certain microorganisms. In this study, we isolated four histamine-degrading Lactobacillus plantarum bacteria from miso products. Among them, L. plantarum D-103 exhibited 100% degradation of histamine in de Man Rogosa Sharpe (MRS) broth containing 50 ppm of histamine after 24 h of incubation at 30°C. The optimal growth, histamine oxidase, and histamine-degrading activity of L. plantarum D-103 were observed in histamine MRS broth at pH 7.0, 3% NaCl, and 30°C. It also exhibited tolerance to broad ranges of pH (4 to 10) and salt concentrations (0 to 12%) in histamine MRS broth. Therefore, the histamine-degrading L. plantarum D-103 might be used as an additive culture to prevent histamine accumulation in miso products during fermentation.

  3. AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors

    Science.gov (United States)

    Dietrich, Marcelo O; Bober, Jeremy; Ferreira, Jozélia G; Tellez, Luis A; Mineur, Yann S; Souza, Diogo O; Gao, Xiao-Bing; Picciotto, Marina R; Araújo, Ivan; Liu, Zhong-Wu; Horvath, Tamas L

    2012-01-01

    It is not known whether behaviors unrelated to feeding are affected by hypothalamic regulators of hunger. We found that impairment of Agouti-related protein (AgRP) circuitry by either Sirt1 knockdown in AgRP-expressing neurons or early postnatal ablation of these neurons increased exploratory behavior and enhanced responses to cocaine. In AgRP circuit–impaired mice, ventral tegmental dopamine neurons exhibited enhanced spike timing–dependent long-term potentiation, altered amplitude of miniature postsynaptic currents and elevated dopamine in basal forebrain. Thus, AgRP neurons determine the set point of the reward circuitry and associated behaviors. PMID:22729177

  4. Do enteric neurons make hypocretin? ☆

    OpenAIRE

    Baumann, Christian R.; Clark, Erika L.; Pedersen, Nigel P.; Hecht, Jonathan L.; Scammell, Thomas E.

    2007-01-01

    Hypocretins (orexins) are wake-promoting neuropeptides produced by hypothalamic neurons. These hypocretin-producing cells are lost in people with narcolepsy, possibly due to an autoimmune attack. Prior studies described hypocretin neurons in the enteric nervous system, and these cells could be an additional target of an autoimmune process. We sought to determine whether enteric hypocretin neurons are lost in narcoleptic subjects. Even though we tried several methods (including whole mounts, s...

  5. 3H-histamine release from human leukocytes

    International Nuclear Information System (INIS)

    Stahl Skov, P.; Norn, S.; Weeke, B.

    1979-01-01

    A rapid, simple, and inexpensive method for large scale screening of patients suspected of type I allergy has been developed. The method is based on in vitro incorporation of 3 H-histamine in the leukocytes of the patient, whereafter release of labelled histamine is measured after provocation of the cells with the suspected allergen. The new method was compared with the conventional basophil histamine release technique by in vitro provocation of six asthmatic patients under suspicion of type I allergy against animal dander, house dust, and mite, and an almost identical release of histamine was observed in both assays. (author)

  6. [11C]Doxepin binding to histamine H1 receptors in living human brain in association with attentive waking and circadian rhythm

    Directory of Open Access Journals (Sweden)

    Kazuhiko eYanai

    2012-06-01

    Full Text Available Molecular imaging in neuroscience is a new research field that enables visualization of the impact of molecular events on brain structure and function in humans. While magnetic resonance-based imaging techniques can provide complex information at the level of system, positron emission tomography (PET enables determination of the distribution and density of receptor and enzyme in the human brain. Previous studies using [11C]raclopride revealed that the release of neuronal dopamine was increased in human brain by psychostimulants or reward stimuli. Following on from these previous studies, we examined whether the levels of neuronal release of histamine might change [11C]doxepin binding to the H1 receptors under the influence of physiological stimuli. The purpose of the present study was to evaluate the test-retest reliability of quantitative measurement of [11C]doxepin binding between morning and afternoon and between resting and attentive waking conditions in healthy human subjects. There was a trend for a decrease in [11C]doxepin binding during attentive calculation tasks compared with that in resting conditions, but the difference (approximately 10% was not significant. In contrast, the binding potential of [11C]doxepin in the anterior cingulate gyrus was significantly higher in the morning than that in the afternoon (approximately 19%, suggesting that higher histamine release in the morning would decrease the [11C]doxepin binding in the afternoon. This study suggests that non-invasive measurement of neuronal histamine release is feasible in humans by PET ligand-activation study, although the development of a tracer with better signal-to-noise properties is needed.

  7. Nitric Oxide and Histamine Signal Attempts to Swallow: A Component of Learning that Food Is Inedible in "Aplysia"

    Science.gov (United States)

    Katzoff, Ayelet; Miller, Nimrod; Susswein, Abraham J.

    2010-01-01

    Memory that food is inedible in "Aplysia" arises from training requiring three contingent events. Nitric oxide (NO) and histamine are released by a neuron responding to one of these events, attempts to swallow food. Since NO release during training is necessary for subsequent memory and NO substitutes for attempts to swallow, it was suggested that…

  8. Influence of serial electrical stimulations of perifornical and posterior hypothalamic orexin-containing neurons on regulation of sleep homeostasis and sleep-wakefulness cycle recovery from experimental comatose state and anesthesia-induced deep sleep.

    Science.gov (United States)

    Chijavadze, E; Chkhartishvili, E; Babilodze, M; Maglakelidze, N; Nachkebia, N

    2013-11-01

    The work was aimed for the ascertainment of following question - whether Orexin-containing neurons of dorsal and lateral hypothalamic, and brain Orexinergic system in general, are those cellular targets which can speed up recovery of disturbed sleep homeostasis and accelerate restoration of sleep-wakefulness cycle phases during some pathological conditions - experimental comatose state and/or deep anesthesia-induced sleep. Study was carried out on white rats. Modeling of experimental comatose state was made by midbrain cytotoxic lesions at intra-collicular level.Animals were under artificial respiration and special care. Different doses of Sodium Ethaminal were used for deep anesthesia. 30 min after comatose state and/or deep anesthesia induced sleep serial electrical stimulations of posterior and/or perifornical hypothalamus were started. Stimulation period lasted for 1 hour with the 5 min intervals between subsequent stimulations applied by turn to the left and right side hypothalamic parts.EEG registration of cortical and hippocampal electrical activity was started immediately after experimental comatose state and deep anesthesia induced sleep and continued continuously during 72 hour. According to obtained new evidences, serial electrical stimulations of posterior and perifornical hypothalamic Orexin-containing neurons significantly accelerate recovery of sleep homeostasis, disturbed because of comatose state and/or deep anesthesia induced sleep. Speed up recovery of sleep homeostasis was manifested in acceleration of coming out from comatose state and deep anesthesia induced sleep and significant early restoration of sleep-wakefulness cycle behavioral states.

  9. Increased glutamic acid decarboxylase expression in the hypothalamic suprachiasmatic nucleus in depression

    NARCIS (Netherlands)

    Wu, Xueyan; Balesar, R.A.; Lu, Jing; Farajnia, Sahar; Zhu, Qiongbin; Huang, Manli; Bao, Ai-Min; Swaab, D.F.

    2017-01-01

    In depression, disrupted circadian rhythms reflect abnormalities in the central circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN). Although many SCN neurons are said to be GABAergic, it was not yet known whether and how SCN GABA changes occur in the SCN in depression. We,

  10. Fetal alcohol programming of hypothalamic proopiomelanocortin system by epigenetic mechanisms and later life vulnerability to stress.

    Science.gov (United States)

    Bekdash, Rola; Zhang, Changqing; Sarkar, Dipak

    2014-09-01

    Hypothalamic proopiomelanocortin (POMC) neurons, one of the major regulators of the hypothalamic-pituitary-adrenal (HPA) axis, immune functions, and energy homeostasis, are vulnerable to the adverse effects of fetal alcohol exposure (FAE). These effects are manifested in POMC neurons by a decrease in Pomc gene expression, a decrement in the levels of its derived peptide β-endorphin and a dysregulation of the stress response in the adult offspring. The HPA axis is a major neuroendocrine system with pivotal physiological functions and mode of regulation. This system has been shown to be perturbed by prenatal alcohol exposure. It has been demonstrated that the perturbation of the HPA axis by FAE is long-lasting and is linked to molecular, neurophysiological, and behavioral changes in exposed individuals. Recently, we showed that the dysregulation of the POMC system function by FAE is induced by epigenetic mechanisms such as hypermethylation of Pomc gene promoter and an alteration in histone marks in POMC neurons. This developmental programming of the POMC system by FAE altered the transcriptome in POMC neurons and induced a hyperresponse to stress in adulthood. These long-lasting epigenetic changes influenced subsequent generations via the male germline. We also demonstrated that the epigenetic programming of the POMC system by FAE was reversed in adulthood with the application of the inhibitors of DNA methylation or histone modifications. Thus, prenatal environmental influences, such as alcohol exposure, could epigenetically modulate POMC neuronal circuits and function to shape adult behavioral patterns. Identifying specific epigenetic factors in hypothalamic POMC neurons that are modulated by fetal alcohol and target Pomc gene could be potentially useful for the development of new therapeutic approaches to treat stress-related diseases in patients with fetal alcohol spectrum disorders. Copyright © 2014 by the Research Society on Alcoholism.

  11. Circadian profiling reveals higher histamine plasma levels and lower diamine oxidase serum activities in 24% of patients with suspected histamine intolerance compared to food allergy and controls.

    Science.gov (United States)

    Pinzer, T C; Tietz, E; Waldmann, E; Schink, M; Neurath, M F; Zopf, Y

    2018-04-01

    Histamine intolerance is thought to trigger manifold clinical symptoms after ingesting histamine-rich food due to reduced activity of diamine oxidase (DAO). No study has hitherto systematically assessed daily fluctuations of histamine levels and DAO activities in symptomatic patients. The aim of the study was to investigate the presence of histamine intolerance, to therefore establish day profiles of histamine levels and DAO activities, and to compare the results between patients with suspected histamine intolerance, food allergy and healthy controls. We determined day profiles of histamine plasma levels and DAO serum activities in 33 patients with suspected histamine intolerance, in 21 patients with proven food allergy and in 10 healthy control patients. Clinical symptoms, food intolerances and further clinical and laboratory chemical parameters were evaluated. Twenty-four percent (8 of 33) suspected histamine-intolerant patients showed elevated histamine levels during the day. That might be caused by constantly and significantly reduced DAO activities in these patients compared to food-allergic and control patients. The remaining 25 patients presented normal histamine levels and DAO activities, but an increased prevalence of multiple food intolerances compared to the other subgroup of suspected histamine-intolerants. There was no correlation between subjective complaints and serological histamine parameters in patients with suspected histamine intolerance. We determined by daily profiling that decreased DAO activities correlated with elevated histamine levels in a subgroup of suspected histamine-intolerants. This finding discriminates these patients from food intolerant individuals with similar clinical symptoms and strongly suggests the presence of histamine intolerance. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  12. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    Science.gov (United States)

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  13. OCCURANCE OF HISTAMINE IN FISH PRODUCTS ON MARKET

    Directory of Open Access Journals (Sweden)

    R. Mancusi

    2012-08-01

    Full Text Available Histamine fish poisoning is quite common and occur in consequence of microbial decarboxylase whose activity begin early in the post-mortem but are triggered in consequence of abuse in the shelf life of fish products. In this study forty-eight samples of tuna, mackerel, anchovies, sardines, fresh or processed were sampled from fish shops and supermarkets in the City of Bologna in the period from January to July 2010. Concentration of histamine was assessed using ELISA quantitative test and presence of psicrotrophic histamine forming bacteria was searched using a modified Niven agar medium which allow detection of suspect colonies that were confirmed by PCR for detecting the presence of the histidine decarboxylase genes in their DNA. The positive colonies were then identified on the basis of their morphology, Gram reaction and biochemical characteristics with API20E. The differential capability of the Niven agar was found to be low and approximately one fifth of the suspect colonies were confirmed by the PCR test, which however included both strong and weak histamine producing strains. The presence of Morganella morganii was associated with concentration of histamine 460 mg∙kg-1 above the allowed limit in a sample of tuna sampled from a fish shop. The same bacterium was found in samples of Atlantic horse mackerel (Trachurus trachurus. High histamine concentration (between 258 and > 300 mg∙kg-1 were observed in salted European pilchard and European anchovy (228 mg∙kg-1 sold loose in supermarkets. Because temperature abuse could occur when Tuna (fresh/defrozen are hold on chopping board to sell fresh cuts and during shelf life of salted pilchard and pickled anchovies held in opened cans in chilled display cabinets for extended period, which might results in very high histamine concentration, controls on time and temperature at the retail, in addition to those done during the harvest and processing are needed. The studies aiming at

  14. Histamine and Antihistamines / Histamin i antihistamini

    Directory of Open Access Journals (Sweden)

    Stojković Nikola

    2015-03-01

    Full Text Available Poslednjih godina beleži se kontinuirani rast prevalencije alergijskih oboljenja. Alergijski imunski odgovor predstavlja jednu kompleksnu mrežu ćelijskih događaja u kojoj učestvuju mnogobrojne imunske ćelije i medijatori. On predstavlja interakciju urođenog i stečenog imunskog odgovora. Ključnu ulogu u imunološkoj kaskadi zauzima histamin, prirodni sastojak tela, koga u alergijskom inflamatornom odgovoru oslobađaju mastociti i bazofili. Cilj ovog rada bio je naglasiti ulogu histamina u alergijskim imunološkim događajima, njegov efekat na Th1 i Th2 subpopulaciju limfocita i produkciju odgovarajućih citokina, kao i ulogu blokatora histamina u tretmanu ovih stanja. Histamin ostvaruje svoj efekat vezivanjem za četiri tipa svojih receptora koji su široko distribuirani u organizmu. Blokatori histamina blokiraju mnogobrojne efekte histamina vezivanjem za ove receptore. Cetirizin, visoko selektivni antihistaminik druge generacije, ne ostvaruje svoje efekte samo vezivanjem za H1 receptore već dovodi do atenuisanja mnogobrojnih zbivanja tokom inflamacijskog procesa. Dobro poznavanje efekata histaminskih blokatora, među njima i cetirizina, može dovesti do pravog odabira terapije u tretmanu alergijskih oboljenja.

  15. Serum diamine oxidase activity in patients with histamine intolerance.

    Science.gov (United States)

    Manzotti, G; Breda, D; Di Gioacchino, M; Burastero, S E

    2016-03-01

    Intolerance to various foods, excluding bona fide coeliac disease and lactose intolerance, represents a growing cause of patient visits to allergy clinics.Histamine intolerance is a long-known, multifaceted clinical condition triggered by histamine-rich foods and alcohol and/or by drugs that liberate histamine or block diamine oxidase (DAO), the main enzyme involved in the metabolism of ingested histamine. Histamine limitation diets impose complex, non-standardized restrictions that may severely impact the quality of life of patients. We retrospectively evaluated 14 patients who visited allergy outpatient facilities in northern Italy with a negative diagnosis for IgE-mediated food hypersensitivity, coeliac disease, conditions related to gastric hypersecretion, and systemic nickel hypersensitivity, and who previously underwent a histamine limitation diet with benefits for their main symptoms. Serum diamine oxidase levels and the clinical response to diamine oxidase supplementation were investigated. We found that 10 out of 14 patients had serum DAO activityintolerance. Moreover, 13 out of 14 patients subjectively reported a benefit in at least one of the disturbances related to food intolerances following diamine oxidase supplementation. The mean value (±SD) of diamine oxidase activity in the cohort of patients with histamine intolerance symptoms was 7.04±6.90 U/mL compared to 39.50±18.16 U/mL in 34 healthy controls (P=0.0031). In patients with symptoms triggered by histamine-rich food, measuring the serum diamine oxidase activity can help identify subjects who can benefit from a histamine limitation diet and/or diamine oxidase supplementation.Properly designed, controlled studies investigating histamine intolerance that include histamine provocation are indispensable for providing insights into the area of food intolerances, which are currently primarily managed with non-scientific approaches in Italy. © The Author(s) 2015.

  16. Anti-Tribbles Pseudokinase 2 (TRIB2)-Immunization Modulates Hypocretin/Orexin Neuronal Functions.

    Science.gov (United States)

    Tanaka, Susumu; Honda, Yoshiko; Honda, Makoto; Yamada, Hisao; Honda, Kazuki; Kodama, Tohru

    2017-01-01

    Recent findings showed that 16%-26% of narcolepsy patients were positive for anti-tribbles pseudokinase 2 (TRIB2) antibody, and the intracerebroventricular administration of immunoglobulin-G purified from anti-TRIB2 positive narcolepsy patients caused hypocretin/orexin neuron loss. We investigated the pathophysiological role of TRIB2 antibody using TRIB2-immunized rats and hypocretin/ataxin-3 transgenic (ataxin-3) mice. Plasma, cerebrospinal fluid (CSF), and hypothalamic tissues from TRIB2-immunized rats were collected. Anti-TRIB2 titers, hypocretin contents, mRNA expressions, the cell count of hypocretin neurons, and immunoreactivity of anti-TRIB2 antibodies on hypocretin neurons were investigated. The plasma from ataxin-3 mice was also used to determine the anti-TRIB2 antibody titer changes following the loss of hypocretin neurons. TRIB2 antibody titers increased in the plasma and CSF of TRIB2-immunized rats. The hypothalamic tissue immunostained with the sera from TRIB2-immunized rats revealed positive signals in the cytoplasm of hypcretin neurons. While no changes were found regarding hypothalamic hypocretin contents or cell counts, but there were significant decreases of the hypocretin mRNA level and release into the CSF. The plasma from over 26-week-old ataxin-3 mice, at the advanced stage of hypocretin cell destruction, showed positive reactions against TRIB2 antigen, and positive plasma also reacted with murine hypothalamic hypocretin neurons. Our results suggest that the general activation of the immune system modulates the functions of hypocretin neurons. The absence of a change in hypocretin cell populations suggested that factors other than anti-TRIB2 antibody play a part in the loss of hypocretin neurons in narcolepsy. The increased anti-TRIB2 antibody after the destruction of hypocretin neurons suggest that anti-TRIB2 antibody in narcolepsy patients is the consequence rather than the inciting cause of hypocretin cell destruction. © Sleep Research

  17. Glucose and hypothalamic astrocytes: More than a fueling role?

    Science.gov (United States)

    Leloup, C; Allard, C; Carneiro, L; Fioramonti, X; Collins, S; Pénicaud, L

    2016-05-26

    Brain plays a central role in energy homeostasis continuously integrating numerous peripheral signals such as circulating nutrients, and in particular blood glucose level, a variable that must be highly regulated. Then, the brain orchestrates adaptive responses to modulate food intake and peripheral organs activity in order to achieve the fine tuning of glycemia. More than fifty years ago, the presence of glucose-sensitive neurons was discovered in the hypothalamus, but what makes them specific and identifiable still remains disconnected from their electrophysiological signature. On the other hand, astrocytes represent the major class of macroglial cells and are now recognized to support an increasing number of neuronal functions. One of these functions consists in the regulation of energy homeostasis through neuronal fueling and nutrient sensing. Twenty years ago, we discovered that the glucose transporter GLUT2, the canonical "glucosensor" of the pancreatic beta-cell together with the glucokinase, was also present in astrocytes and participated in hypothalamic glucose sensing. Since then, many studies have identified other actors and emphasized the astroglial participation in this mechanism. Growing evidence suggest that astrocytes form a complex network and have to be considered as spatially coordinated and regulated metabolic units. In this review we aim to provide an updated view of the molecular and respective cellular pathways involved in hypothalamic glucose sensing, and their relevance in physiological and pathological states. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. GHRELIN ACTIVATES HYPOPHYSIOTROPIC CORTICOTROPIN-RELEASING FACTOR NEURONS INDEPENDENTLY OF THE ARCUATE NUCLEUS

    Science.gov (United States)

    Cabral, Agustina; Portiansky, Enrique; Sánchez-Jaramillo, Edith; Zigman, Jeffrey M.; Perello, Mario

    2016-01-01

    Previous work has established that the hormone ghrelin engages the hypothalamic-pituitary-adrenal neuroendocrine axis via activation of corticotropin-releasing factor (CRF) neurons of the hypothalamic paraventricular nucleus (PVN). The neuronal circuitry that mediates this effect of ghrelin is currently unknown. Here, we show that ghrelin-induced activation of PVN CRF neurons involved inhibition of γ-aminobutyric acid (GABA) inputs, likely via ghrelin binding sites that were localized at GABAergic terminals within the PVN. While ghrelin activated PVN CRF neurons in the presence of neuropeptide Y (NPY) receptor antagonists or in arcuate nucleus (ARC)-ablated mice, it failed to do it so in mice with ghrelin receptor expression limited to ARC agouti gene related protein (AgRP)/NPY neurons. These data support the notion that ghrelin activates PVN CRF neurons via inhibition of local GABAergic tone, in an ARC-independent manner. Furthermore, these data suggest that the neuronal circuits mediating ghrelin’s orexigenic action vs. its role as a stress signal are anatomically dissociated. PMID:26874559

  19. Deletion of Suppressor of Cytokine Signaling 3 from Forebrain Neurons Delays Infertility and Onset of Hypothalamic Leptin Resistance in Response to a High Caloric Diet.

    Science.gov (United States)

    McEwen, Hayden J L; Inglis, Megan A; Quennell, Janette H; Grattan, David R; Anderson, Greg M

    2016-07-06

    The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the

  20. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward.

    Science.gov (United States)

    Kelley, Ann E; Baldo, Brian A; Pratt, Wayne E; Will, Matthew J

    2005-12-15

    Work over the past decade has supported the idea that discrete aspects of appetitive motivation are differentially mediated by separate but interacting neurochemical systems within the nucleus accumbens (Acb). We review herein a series of studies in rats comparing the effects of manipulating Acb amino acid, opioid, acetylcholine, and dopamine systems on tests of free-feeding and food-reinforced operant responding. Results from our laboratory and in the literature support three general conclusions: (1) GABA output neurons localized exclusively within the Acb shell directly influence hypothalamic effector mechanisms for feeding motor patterns, but do not participate in the execution of more complex food-seeking strategies; (2) enkephalinergic neurons distributed throughout the Acb and caudate-putamen mediate the hedonic impact of palatable (high sugar/fat) foods, and these neurons are under modulatory control by striatal cholinergic interneurons; and (3) dopamine transmission in the Acb governs general motoric and arousal processes related to response selection and invigoration, as well as motor learning-related plasticity. These dissociations may reflect the manner in which these neurochemical systems differentially access pallido-thalamo-cortical loops reaching the voluntary motor system (in the case of opioids and dopamine), versus more restricted efferent connections to hypothalamic motor/autonomic control columns (in the case of Acb shell GABA and glutamate systems). Moreover, we hypothesize that while these systems work in tandem to coordinate the anticipatory and consummatory phases of feeding with hypothalamic energy-sensing substrates, the striatal opioid network evolved a specialized capacity to promote overeating of energy-dense foods beyond acute homeostatic needs, to ensure an energy reserve for potential future famine.

  1. Evidence for a role of proline and hypothalamic astrocytes in the regulation of glucose metabolism in rats.

    Science.gov (United States)

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M; Lam, Tony K T; Gutiérrez-Juárez, Roger

    2013-04-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our results showed that increasing the availability of proline in rats either centrally (MBH) or systemically acutely lowered blood glucose. Pancreatic clamp studies revealed that this hypoglycemic effect was due to a decrease of hepatic glucose production secondary to an inhibition of glycogenolysis, gluconeogenesis, and glucose-6-phosphatase flux. The effect of proline was mimicked by glutamate, an intermediary of proline metabolism. Interestingly, proline's action was markedly blunted by pharmacological inhibition of hypothalamic lactate dehydrogenase (LDH) suggesting that metabolic flux through LDH was required. Furthermore, short hairpin RNA-mediated knockdown of hypothalamic LDH-A, an astrocytic component of the ANLS, also blunted the glucoregulatory action of proline. Thus our studies suggest not only a new role for proline in the regulation of hepatic glucose production but also indicate that hypothalamic astrocytes are involved in the regulatory mechanism as well.

  2. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats.

    Directory of Open Access Journals (Sweden)

    Gloria E Hoffman

    Full Text Available A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC, would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness.

  3. Histamine Potentiates Cyclosomatostatin-Induced Catalepsy in Old Rats

    Directory of Open Access Journals (Sweden)

    Ionov

    2015-05-01

    Full Text Available Background The decreased level of somatostatin and increased level of histamine are detected in the Parkinsonian brain. In old Wistar rats, the brain somatostatin deficiency can initiate catalepsy that suggests the pathogenic significance of this abnormality in Parkinson’s disease (PD. The ability of histamine to affect the somatostatin deficiency action is not studied. Objectives The current study aimed to examine if histamine alters the cataleptogenic activity of the brain somatostatin deficiency in Wistar rats. Materials and Methods The animals used in the study were 100 - 110 and 736 - 767 days old. Catalepsy was evaluated by the bar test. The inhibition of the brain somatostatin activity was simulated by I.C.V. administration of cyclosomatostatin (cycloSOM, a somatostatin receptor antagonist. Results CycloSOM (0.2, 1.0, and 5.0 µg and histamine (1.0 and 10.0 µg alone were ineffective in both young and old animals. In combination, however, cycloSOM and histamine initiated cataleptic response in old rats. Effect of the combination was inhibited by H1 and H2 but not H3 antagonists. Conclusions CycloSOM and histamine synergistically exert catalepsy in old rats. In light of these data, the combination of the decreased brain level of somatostatin and increased brain level of histamine may be of pathogenic relevance for extrapyramidal signs in PD.

  4. In Vivo Histamine Optical Nanosensors

    Directory of Open Access Journals (Sweden)

    Heather A. Clark

    2012-08-01

    Full Text Available In this communication we discuss the development of ionophore based nanosensors for the detection and monitoring of histamine levels in vivo. This approach is based on the use of an amine-reactive, broad spectrum ionophore which is capable of recognizing and binding to histamine. We pair this ionophore with our already established nanosensor platform, and demonstrate in vitro and in vivo monitoring of histamine levels. This approach enables capturing rapid kinetics of histamine after injection, which are more difficult to measure with standard approaches such as blood sampling, especially on small research models. The coupling together of in vivo nanosensors with ionophores such as nonactin provide a way to generate nanosensors for novel targets without the difficult process of designing and synthesizing novel ionophores.

  5. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals

    Science.gov (United States)

    Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A.

    2017-01-01

    Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding “non-neuronal” cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed. PMID:28377744

  6. Distinct types of feeding related neurons in mouse hypothalamus

    Directory of Open Access Journals (Sweden)

    Yan eTang

    2016-05-01

    Full Text Available The last two decades of research provided evidence for a substantial heterogeneity among feeding-related neurons (FRNs in the hypothalamus. However, it remains unclear how FRNs differ in their firing patterns during food intake. Here, we investigated the relationship between the activity of neurons in mouse hypothalamus and their feeding behavior. Using tetrode-based in vivo recording technique, we identified various firing patterns of hypothalamic FRNs, which, after the initiation of food intake, can be sorted into four types: sharp increase (type I, slow increase (type II, sharp decrease (type III and sustained decrease (type IV of firing rates. The feeding-related firing response of FRNs was rigidly related to the duration of food intake and, to a less extent, associated with the type of food. The majority of these FRNs responded to glucose and leptin and exhibited electrophysiological characteristics of putative GABAergic neurons. In conclusion, our study demonstrated the diversity of neurons in the complex hypothalamic network coordinating food intake.

  7. Rapid shift in substrate utilization driven by hypothalamic Agrp neurons

    OpenAIRE

    Cavalcanti-De-Albuquerque, Joao; Dietrich, Marcelo; Bober, Jeremy; Zimmer, Marcelo

    2016-01-01

    Agrp neurons drive feeding. To what extend these neurons participate in the regulation of other homeostatic processes is not well understood. We investigated the role of Agrp neurons in substrate utilization in mice. Activation of Agrp neurons was sufficient to rapidly increase RER and carbohydrate utilization, while decreasing fat utilization. These metabolic changes were linearly correlated with carbohydrates ingested, but not protein or fat ingestion. However, even in the absence of ingest...

  8. Prolyl carboxypeptidase in Agouti-related Peptide neurons modulates food intake and body weight

    Directory of Open Access Journals (Sweden)

    Giuseppe Bruschetta

    2018-04-01

    Full Text Available Objective: Prolyl carboxypeptidase (PRCP plays a role in the regulation of energy metabolism by inactivating hypothalamic α-melanocyte stimulating hormone (α-MSH levels. Although detected in the arcuate nucleus, limited PRCP expression has been observed in the arcuate POMC neurons, and its site of action in regulating metabolism is still ill-defined. Methods: We performed immunostaining to assess the localization of PRCP in arcuate Neuropeptide Y/Agouti-related Peptide (NPY/AgRP neurons. Hypothalamic explants were then used to assess the intracellular localization of PRCP and its release at the synaptic levels. Finally, we generated a mouse model to assess the role of PRCP in NPY/AgRP neurons of the arcuate nucleus in the regulation of metabolism. Results: Here we show that PRCP is expressed in NPY/AgRP-expressing neurons of the arcuate nucleus. In hypothalamic explants, stimulation by ghrelin increased PRCP concentration in the medium and decreased PRCP content in synaptic extract, suggesting that PRCP is released at the synaptic level. In support of this, hypothalamic explants from mice with selective deletion of PRCP in AgRP neurons (PrcpAgRPKO showed reduced ghrelin-induced PRCP concentration in the medium compared to controls mice. Furthermore, male PrcpAgRPKO mice had decreased body weight and fat mass compared to controls. However, this phenotype was sex-specific as female PrcpAgRPKO mice show metabolic differences only when challenged by high fat diet feeding. The improved metabolism of PrcpAgRPKO mice was associated with reduced food intake and increased energy expenditure, locomotor activity, and hypothalamic α-MSH levels. Administration of SHU9119, a potent melanocortin receptor antagonist, selectively in the PVN of PrcpAgRPKO male mice increased food intake to a level similar to that of control mice. Conclusions: Altogether, our data indicate that PRCP is released at the synaptic levels and that PRCP in AgRP neurons contributes to

  9. Fenspiride inhibits histamine-induced responses in a lung epithelial cell line.

    Science.gov (United States)

    Quartulli, F; Pinelli, E; Broué-Chabbert, A; Gossart, S; Girard, V; Pipy, B

    1998-05-08

    Using the human lung epithelial WI26VA4 cell line, we investigated the capacity of fenspiride, an anti-inflammatory drug with anti-bronchoconstrictor properties, to interfere with histamine-induced intracellular Ca2+ increase and eicosanoid formation. Histamine and a histamine H1 receptor agonist elicited a rapid and transient intracellular Ca2+ increase (0-60 s) in fluo 3-loaded WI26VA4 cells. This response was antagonized by the histamine H1 receptor antagonist, diphenhydramine, the histamine H2 receptor antagonist, cimetidine, having no effect. Fenspiride (10(-7)-10(-5) M) inhibited the histamine H1 receptor-induced Ca2+ increase. In addition, histamine induced a biphasic increase in arachidonic acid release. The initial rise (0-30 s), a rapid and transient arachidonic acid release, was responsible for the histamine-induced intracellular Ca2+ increase. In the second phase release (15-60 min), a sustained arachidonic acid release appeared to be associated with the formation of cyclooxygenase and lipoxygenase metabolites. Fenspiride (10(-5) M) abolished both phases of histamine-induced arachidonic acid release. These results suggest that anti-inflammatory and antibronchoconstrictor properties of fenspiride may result from the inhibition of these effects of histamine.

  10. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge.

    Science.gov (United States)

    Wang, Yu-Feng; Sun, Min-Yu; Hou, Qiuling; Hamilton, Kathryn A

    2013-04-01

    The neuropeptide vasopressin is crucial to mammalian osmotic regulation. Local hypoosmotic challenge transiently decreases and then increases vasopressin secretion. To investigate mechanisms underlying this transient response, we examined the effects of hypoosmotic challenge on the electrical activity of rat hypothalamic supraoptic nucleus (SON) vasopressin neurons using patch-clamp recordings. We found that 5 min exposure of hypothalamic slices to hypoosmotic solution transiently increased inhibitory postsynaptic current (IPSC) frequency and reduced the firing rate of vasopressin neurons. Recovery occurred by 10 min of exposure, even though the osmolality remained low. The γ-aminobutyric acid (GABA)A receptor blocker, gabazine, blocked the IPSCs and the hypoosmotic suppression of firing. The gliotoxin l-aminoadipic acid blocked the increase in IPSC frequency at 5 min and the recovery of firing at 10 min, indicating astrocytic involvement in hypoosmotic modulation of vasopressin neuronal activity. Moreover, β-alanine, an osmolyte of astrocytes and GABA transporter (GAT) inhibitor, blocked the increase in IPSC frequency at 5 min of hypoosmotic challenge. Confocal microscopy of immunostained SON sections revealed that astrocytes and magnocellular neurons both showed positive staining of vesicular GATs (VGAT). Hypoosmotic stimulation in vivo reduced the number of VGAT-expressing neurons, and increased co-localisation and molecular association of VGAT with glial fibrillary acidic protein that increased significantly by 10 min. By 30 min, neuronal VGAT labelling was partially restored, and astrocytic VGAT was relocated to the ventral portion while it decreased in the somatic zone of the SON. Thus, synergistic astrocytic and neuronal GABAergic inhibition could ensure that vasopressin neuron firing is only transiently suppressed under hypoosmotic conditions. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  11. Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis.

    Science.gov (United States)

    Sarruf, David A; Yu, Fang; Nguyen, Hong T; Williams, Diana L; Printz, Richard L; Niswender, Kevin D; Schwartz, Michael W

    2009-02-01

    In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-gamma agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARgamma is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARgamma distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spanning the hypothalamus, the ventral tegmental area, and the nucleus tractus solitarius. In several brain areas, nuclear PPARgamma immunoreactivity was detected in cells that costained for neuronal nuclei, a neuronal marker. In the hypothalamus, PPARgamma immunoreactivity was observed in a majority of neurons in the arcuate (including both agouti related protein and alpha-MSH containing cells) and ventromedial hypothalamic nuclei and was also present in the hypothalamic paraventricular nucleus, the lateral hypothalamic area, and tyrosine hydroxylase-containing neurons in the ventral tegmental area but was not expressed in the nucleus tractus solitarius. To validate and extend these histochemical findings, we generated mice with neuron-specific PPARgamma deletion using nestin cre-LoxP technology. Compared with littermate controls, neuron-specific PPARgamma knockout mice exhibited dramatic reductions of both hypothalamic PPARgamma mRNA levels and PPARgamma immunoreactivity but showed no differences in food intake or body weight over a 4-wk study period. We conclude that: 1) PPARgamma mRNA and protein are expressed in the hypothalamus, 2) neurons are the predominant source of PPARgamma in the central nervous system, although it is likely expressed by nonneuronal cell types as well, and 3) arcuate nucleus neurons that control energy homeostasis and glucose metabolism are among those in which PPARgamma is expressed.

  12. Histamine (Scombroid) Fish Poisoning: a Comprehensive Review.

    Science.gov (United States)

    Feng, Charles; Teuber, Suzanne; Gershwin, M Eric

    2016-02-01

    Histamine fish poisoning, also known as scombroid poisoning, is the most common cause of ichythyotoxicosis worldwide and results from the ingestion of histamine-contaminated fish in the Scombroidae and Scomberesocidae families, including mackerel, bonito, albacore, and skipjack. This disease was first described in 1799 in Britain and re-emerged in the medical literature in the 1950s when outbreaks were reported in Japan. The symptoms associated with histamine fish poisoning are similar to that of an allergic reaction. In fact, such histamine-induced reactions are often misdiagnosed as IgE-mediated fish allergy. Indeed, histamine fish poisoning is still an underrecognized disease. In this review, we discuss the epidemiology, pathophysiology, evaluation, and treatment of scombroid disease. Because more than 80% of fish consumed in the USA is now imported from other countries, the disease is intimately linked with the global fish trade (National Marine Fisheries Service, 2012). Preventing future scombroid outbreaks will require that fishermen, public health officials, restaurant workers, and medical professionals work together to devise international safety standards and increase awareness of the disease. The implications of scombroid poisoning go far beyond that of fish and have broader implications for the important issues of food safety.

  13. Histamine formation in flying fish contaminated with Staphylococcus xylosus

    Directory of Open Access Journals (Sweden)

    Hsien-Feng Kung

    2016-06-01

    Full Text Available Abstract Histamine is the main causative agent of scombroid poisoning. However, unlike scombroid fish, histamine poisoning due to consumption of flying fish has never been reported. In this study, the white muscle of flying fish had high levels of free histidine at approximately 423.9 mg/100 g, and was inoculated with Staphylococcus xylosus Q2 isolated from dried flying fish at 5.0 log CFU/g and stored at −20 to 35°C to investigate histamine-related quality. The histamine contents quickly increased to higher than 50 mg/100 g in samples stored at 25 and 35°C within 12 h as well as stored at 15°C within 48 h. However, bacterial growth and histamine formation were controlled by cold storage of the samples at 4°C or below. Once the frozen flying fish samples stored at −20°C for 2 months were thawed and stored at 25°C after 24 h, histamine started to accumulate rapidly (>50 mg/100 g of fish. Therefore, flying fish muscle was a good substrate for histamine formation by bacterial histidine decarboxylation at elevated temperatures (>15°C when it is contaminated with S. xylosus. In conclusion, since the improperly contaminated flying fish muscle with S. xylosus could lead to production of hazardous levels of histamine over time when stored at temperatures >15°C, the flying fish should be stored below 4 °C or below to control proliferation of S. xylosus, and TVBN and histamine production.

  14. Inhibition of deprivation-induced food intake by GABA(A) antagonists: roles of the hypothalamic, endocrine and alimentary mechanisms.

    Science.gov (United States)

    Kamatchi, Ganesan L; Rathanaswami, Palaniswami

    2012-07-01

    The role of gamma amino butyric acid A receptors/neurons of the hypothalamic, endocrine and alimentary systems in the food intake seen in hunger was studied in 20 h food-deprived rats. Food deprivation decreased blood glucose, serum insulin and produced hyperphagia. The hyperphagia was inhibited by subcutaneous or ventromedial hypothalamic administration of gamma amino butyric acid A antagonists picrotoxin or bicuculline. Although results of blood glucose was variable, insulin level was increased by picrotoxin or bicuculline. In contrast, lateral hypothalamic administration of these agents failed to reproduce the above changes. Subcutaneous administration of picrotoxin or bicuculline increased gastric content, decreased gastric motility and small bowel transit. In contrast, ventromedial or lateral hypothalamic administration of picrotoxin or bicuculline failed to alter the gastric content but decreased the small bowel transit. The results of alimentary studies suggest that gamma amino butyric acid neurons of both ventromedial and lateral hypothalamus selectively regulate small bowel transit but not the gastric content. It may be concluded that ventromedial hypothalamus plays a dominant role in the regulation of food intake and that picrotoxin or bicuculline inhibited food intake by inhibiting gamma amino butyric acid receptors of the ventromedial hypothalamus, increasing insulin level and decreasing the gut motility.

  15. A new generation of anti-histamines : Histamine H4 receptor antagonists on their way to the clinic

    NARCIS (Netherlands)

    Engelhardt, Harald; Smits, Rogier A; Leurs, Rob; Haaksma, Eric E J; de Esch, Iwan J P

    At the turn of the millennium, the DNA sequence encoding the histamine H4 receptor (H4R) was identified in data from human genome databases. Considering the clinical importance of H1R and H2R ligands, and the clinical trials that are ongoing for H3R ligands, the latest addition to the histamine

  16. Hypothalamic projections to the ventral medulla oblongata in the rat, with special reference to the nucleus raphe pallidus: a study using autoradiographic and HRP techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, Yasuhiko

    1985-10-07

    Hypothalamic descending projections to the medullary ventral surface were studied autoradiographically in the rat. A small amount of (/sup 3/H)leucine was injected unilaterally into various parts of the hypothalamus by air pressure. Abundant and characteristic terminal labelings were observed bilaterally in the nucleus raphe pallidus, the ventral surface to the pyramidal tract and the nucleus interfascicularis hypoglossi, after injections into the dorsal posterior hypothalamic area caudal to the paraventricular hypothalamic nucleus. Conspicuous, but less numerous labelings were observed in the nucleus raphe obscurus and the ipsilateral raphe magnus. After an injection of (/sup 3/H)leucine into the hypothalamus and injections of horseradish peroxidase (HRP) into the spinal cord in the same animal, silver grains were densely distributed around HRP-labeled neurons in the nucleus raphe pallidus including the nucleus interfascicularis hypoglossi. The present results suggest that the dorsal posterior hypothalamic area projects directly to the spinal-projecting neurons of the nucleus raphe pallidus. 53 refs.; 9 figs.

  17. Blood histamine release: A new allergy blood test

    International Nuclear Information System (INIS)

    Faraj, B.A.; Gottlieb, G.R.; Camp, V.M.; Lollies, P.

    1985-01-01

    Allergen-mediated histamine release from human leukocytes represents an important model for in vitro studies of allergic reactions. The purpose of this study was to determine whether the measurement of histamine released in allergic patients (pts) by radioenzymatic assay following mixing of their blood with common allergens represents a reliable index for diagnosis of atopic allergy. Three categories of allergies were used: (1) housedust and mite; (2) cat and dog dander; (3) trees and grasses and ragweed mixture. The presence of allergy was established by intradermal skin testing in the study group of 82 pts. Significant atopy was defined as ≥ 3+ (overall range 0-4 +, negative to maximum) on skin testing. The test was carried out in tubes with 0.5 ml heparinized blood, 0.5 ml tris albumin buffer, and one of the allergens (60-100 PNU/ml). In 20 controls without allergy, there always was ≤ 4% histamine release (normal response). A significant allergen-mediated histamine release, ranging from 12 to 30% of the total blood histamine content, was observed in 96% of the pts with skin test sensitivity of ≥ 3+. There was good agreement between skin testing and histamine release in terms of the allergen causing the response. Thus, measurement of histamine release in blood in response to allergen challenge represents a clinically useful in vitro test for the diagnosis of atopic allergy. Because data can be obtained from a single sample and are highly quantitative, this new method should have application to the longitudinal study of allergic pts and to the assessment of interventions

  18. Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis.

    Science.gov (United States)

    Chrétien, Chloé; Fenech, Claire; Liénard, Fabienne; Grall, Sylvie; Chevalier, Charlène; Chaudy, Sylvie; Brenachot, Xavier; Berges, Raymond; Louche, Katie; Stark, Romana; Nédélec, Emmanuelle; Laderrière, Amélie; Andrews, Zane B; Benani, Alexandre; Flockerzi, Veit; Gascuel, Jean; Hartmann, Jana; Moro, Cédric; Birnbaumer, Lutz; Leloup, Corinne; Pénicaud, Luc; Fioramonti, Xavier

    2017-02-01

    The mediobasal hypothalamus (MBH) contains neurons capable of directly detecting metabolic signals such as glucose to control energy homeostasis. Among them, glucose-excited (GE) neurons increase their electrical activity when glucose rises. In view of previous work, we hypothesized that transient receptor potential canonical type 3 (TRPC3) channels are involved in hypothalamic glucose detection and the control of energy homeostasis. To investigate the role of TRPC3, we used constitutive and conditional TRPC3-deficient mouse models. Hypothalamic glucose detection was studied in vivo by measuring food intake and insulin secretion in response to increased brain glucose level. The role of TRPC3 in GE neuron response to glucose was studied by using in vitro calcium imaging on freshly dissociated MBH neurons. We found that whole-body and MBH TRPC3-deficient mice have increased body weight and food intake. The anorectic effect of intracerebroventricular glucose and the insulin secretory response to intracarotid glucose injection are blunted in TRPC3-deficient mice. TRPC3 loss of function or pharmacological inhibition blunts calcium responses to glucose in MBH neurons in vitro. Together, the results demonstrate that TRPC3 channels are required for the response to glucose of MBH GE neurons and the central effect of glucose on insulin secretion and food intake. © 2017 by the American Diabetes Association.

  19. The dorso-lateral recess of the hypothalamic ventricle in neonatal rats.

    Science.gov (United States)

    Menéndez, A; Alvarez-Uría, M

    1987-10-01

    Light and electron microscopy of the hypothalamic ventricle in neonatal rats demonstrate morphological specializations of the ventricular wall at the level of the premammillary region of the third ventricle. The morphological features are: (1) A ventricular recess that we have called the "hypothalamic dorso-lateral recess" (HDR). (2) The presence of intraventricular capillaries near the dorso-lateral recess. (3) The HDR possessing a specialized ependymal lining; this consists of non-ciliated cells with short microvilli and bleb-like processes. (4) The existence of cerebrospinal fluid-contacting neurons within the HDR. (5) The presence of numerous phagocytic supraependymal cells. The HDR is not found in adult rats. This indicates that the dorso-lateral recess may play a physiological role during development.

  20. An Investigation into the Effects of Peptide Neurotransmitters and Intracellular Second Messengers in Rat Central Neurons in Culture.

    Science.gov (United States)

    1988-02-04

    Purkinje neurons. 3. Neuromodulation of synaptic efficacy in an invertebrate preparation that may be a useful model system for the actions of histamine in...neurotransmitters, neuromodulators , affect brain function. Nerve cells are the functional units of the brain, and changes in neuronal activity are ultimately

  1. Activation of Microglia by Histamine and Substance P

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2014-08-01

    Full Text Available Background: Activated microglia perform many of the immune effector functions typically associated with macrophages. However, the regulators involved in microglial activation are not well defined. Because microglia play a pivotal role in immune surveillance of the CNS, we studied the effect of the neuromediators histamine and substance P on microglia. Methods: The induction of microglial activation by histamine and substance P was examined using primary cultured microglia. Fluorescent images were acquired with a confocal microscope. The levels of TNF-α and IL-6 were measured with a commercial ELISA kit. Intracellular reactive oxygen species (ROS levels were determined by dichlorodihydrofluorescein oxidation. The mitochondrial membrane potential was assessed with the MitoProbe™ JC-1 assay kit. Results: We found that the neuromediators histamine and substance P were able to stimulate microglial activation and the subsequent production of ROS and proinflammatory factors TNF-α and IL-6. These effects were partially abolished by antagonists of the histamine receptors H1 and H4 and of the substance P receptors NK-1, NK-2 and NK-3. Histamine induced mitochondrial membrane depolarization in microglia. Conclusions: These results indicate that the neuromediators histamine and SP can trigger microglial activation and release of pro-inflammatory factors from microglia, thus contributing to the development of microglia-mediated inflammation in the brain.

  2. Influence of iodinated contrast media on the activities of histamine inactivating enzymes diamine oxidase and histamine N-methyltransferase in vitro.

    Science.gov (United States)

    Kuefner, M A; Feurle, J; Petersen, J; Uder, M; Schwelberger, H G

    2014-01-01

    Iodinated contrast media can cause pseudoallergic reactions associated with histamine release in significant numbers of patients. To clarify whether these adverse reactions may be aggravated by a compromised histamine catabolism we asked if radiographic contrast agents in vitro inhibit the histamine inactivating enzymes diamine oxidase (DAO) and histamine N-methyltransferase (HMT). Nine iodinated contrast agents were tested in vitro. Following pre-incubation of purified porcine kidney DAO and recombinant human HMT with 0.1-10mM of the respective contrast medium (H2O and specific inhibitors of DAO and HMT as controls) enzyme activities were determined by using radiometric micro assays. None of the contrast media irrespective of their structure showed significant inhibition of the activities of DAO and HMT. Pre-incubation of the enzymes with specific inhibitors led to complete inhibition of the respective enzymatic activity. The iodinated contrast media tested in vitro did not exhibit inhibition of histamine converting enzymes at physiologically relevant concentrations. However due to the in vitro character of this study these results do not directly reflect the in vivo situation. Copyright © 2012 SEICAP. Published by Elsevier Espana. All rights reserved.

  3. Conditional expression of Pomc in the Lepr-positive subpopulation of POMC neurons is sufficient for normal energy homeostasis and metabolism.

    Science.gov (United States)

    Lam, Daniel D; Attard, Courtney A; Mercer, Aaron J; Myers, Martin G; Rubinstein, Marcelo; Low, Malcolm J

    2015-04-01

    Peptides derived from the proopiomelanocortin (POMC) precursor are critical for the normal regulation of many physiological parameters, and POMC deficiency results in severe obesity and metabolic dysfunction. Conversely, augmentation of central nervous system melanocortin function is a promising therapeutic avenue for obesity and diabetes but is confounded by detrimental cardiovascular effects including hypertension. Because the hypothalamic population of POMC-expressing neurons is neurochemically and neuroanatomically heterogeneous, there is interest in the possible dissociation of functionally distinct POMC neuron subpopulations. We used a Cre recombinase-dependent and hypothalamus-specific reactivatable PomcNEO allele to restrict Pomc expression to hypothalamic neurons expressing leptin receptor (Lepr) in mice. In contrast to mice with total hypothalamic Pomc deficiency, which are severely obese, mice with Lepr-restricted Pomc expression displayed fully normal body weight, food consumption, glucose homeostasis, and locomotor activity. Thus, Lepr+ POMC neurons, which constitute approximately two-thirds of the total POMC neuron population, are sufficient for normal regulation of these parameters. This functional dissociation approach represents a promising avenue for isolating therapeutically relevant POMC neuron subpopulations.

  4. Human eosinophils - potential pharmacological model applied in human histamine H4 receptor research.

    Science.gov (United States)

    Grosicki, Marek; Kieć-Kononowicz, Katarzyna

    2015-01-01

    Histamine and histamine receptors are well known for their immunomodulatory role in inflammation. In this review we describe the role of histamine and histamine H4 receptor on human eosinophils. In the first part of article we provide short summary of histamine and histamine receptors role in physiology and histamine related therapeutics used in clinics. We briefly describe the human histamine receptor H4 and its ligands, as well as human eosinophils. In the second part of the review we provide detailed description of known histamine effects on eosinophils including: intracellular calcium concentration flux, actin polymerization, cellular shape change, upregulation of adhesion proteins and cellular chemotaxis. We provide proofs that these effects are mainly connected with the activation of histamine H4 receptor. When examining experimental data we discuss the controversial results and limitations of the studies performed on isolated eosinophils. In conclusion we believe that studies on histamine H4 receptor on human eosinophils can provide interesting new biomarkers that can be used in clinical studies of histamine receptors, that in future might result in the development of new strategies in the treatment of chronic inflammatory conditions like asthma or allergy, in which eosinophils are involved.

  5. Challenges in Developing a Biochip for Intact Histamine Using Commercial Antibodies

    Directory of Open Access Journals (Sweden)

    Leena Mattsson

    2017-12-01

    Full Text Available This study describes the development and the challenges in the development of an on-chip immunoassay for histamine using commercially available antibodies. Histamine can be used as an indicator of food freshness and quality, but it is also a relevant marker in clinical diagnostics. Due to its low molecular weight, simple structure and thus low immunogenicity production of high specificity and affinity antibodies is difficult. From six commercial anti-histamine antibodies tested, only two bound the histamine free in the solution. A fluorescent on-chip immunoassay for histamine was established with a dynamic range of 8–111 µg/mL using polyclonal anti-histamine antibody H7403 from Sigma (Mendota Heights, MN, USA. The anti-histamine antibodies described and used in published literature are thoroughly reviewed and the quality of commercial antibodies and their traceability and quality issues are highlighted and extensively discussed.

  6. Existence of carcinine, a histamine-related compound, in mammalian tissues

    International Nuclear Information System (INIS)

    Flancbaum, L.; Brotman, D.N.; Fitzpatrick, J.C.; Van Es, Theodorus; Kasziba, E.; Fisher, H.

    1990-01-01

    Carcinine (β-alanylhistamine) was synthesized in vitro from histamine and β-alanine. It was detected quantitatively using an HPLC method previously described for the quantification of the related compounds histamine, histidine, carnosine and 3-methylhistamine. Carcinine was identified in several tissues of the rat, guinea pig, mouse and human, and was then shown to be metabolically related in vivo to histamine, histidine, carnosine and 3-methylhistamine through radioisotopic labeling. The results demonstrate that carcinine may be concurrently quantitated using the same HPLC method as that used to measure histamine, histidine, carnosine and 3-methylhistamine. These findings suggest a role for carcinine in the carnosine-histidine-histamine metabolic pathway and the mammalian physiologic response to stress

  7. Hypothalamic regulation of thyroid-stimulating hormone and prolactin release : the role of thyrotrophin-releasing hormone

    NARCIS (Netherlands)

    G.A.C. van Haasteren (Goedele)

    1995-01-01

    textabstractThyrotrophin-releasing-hormone (TRH), a tripeptide, is produced by hypothalamic neurons and transported along their axons to the median eminence (ME). From there it is released at nerve terminals into hypophyseal portal blood. It is then transported to the anterior pituitary gland where

  8. Time-dependent histamine release from stored human blood products

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Edvardsen, L; Vangsgaard, K

    1996-01-01

    storage. Whole blood (six units), plasma-reduced whole blood (six units), and plasma- and buffy coat-reduced (saline-adenine-glucose-mannitol) (SAGM) blood (six units) from unpaid healthy donors were stored in the blood bank for 35 days at 4 degrees C. Plasma histamine and total cell-bound histamine......Perioperative transfusion of whole blood has been shown to amplify trauma-induced immunosuppression, which could be attenuated by perioperative administration of histamine2 receptor antagonists. Supernatants from different blood products were, therefore, analysed for histamine content during.......0 (range 176.0-910.0) nmol/l in whole blood and 475.0 (range 360.0-1560.0) nmol/l in plasma-reduced whole blood, while it was undetectable in SAGM blood. Spontaneous histamine release increased in a time-dependent manner from a median of 6.7 (range 2.2-17.4) nmol/l at the time of storage to 175.0 (range 33...

  9. Measurement of plasma histamine: description of an improved method and normal values

    International Nuclear Information System (INIS)

    Dyer, J.; Warren, K.; Merlin, S.; Metcalfe, D.D.; Kaliner, M.

    1982-01-01

    The single isotopic-enzymatic assay of histamine was modified to increase its sensitivity and to facilitate measurement of plasma histamine levels. The modification involved extracting 3 H-1-methylhistamine (generated by the enzyme N-methyltransferase acting on histamine in the presence of S-[methyl- 3 H]-adenosyl-L-methionine) into chloroform and isolating the 3 H-1-methylhistamine by thin-layer chromatography (TLC). The TLC was developed in acetone:ammonium hydroxide (95:10), and the methylhistamine spot (Rf . 0.50) was identified with an o-phthalaldehyde spray, scraped from the plate, and assayed in a scintillation counter. The assay in plasma demonstrated a linear relationship from 200 to 5000 pg histamine/ml. Plasma always had higher readings than buffer, and dialysis of plasma returned these values to the same level as buffer, suggesting that the baseline elevations might be attributable to histamine. However, all histamine standard curves were run in dialyzed plasma to negate any additional influences plasma might exert on the assay. The arithmetic mean (+/- SEM) in normal plasma histamine was 318.4 +/- 25 pg/ml (n . 51), and the geometric mean was 280 +/- 35 pg/ml. Plasma histamine was significantly elevated by infusion of histamine at 0.05 to 1.0 micrograms/kg/min or by cold immersion of the hand of a cold-urticaria patient. Therefore this modified isotopic-enzymatic assay of histamine is extremely sensitive, capable of measuring fluctuations in plasma histamine levels within the normal range, and potentially useful in analysis of the role histamine plays in human physiology

  10. Role of histamine receptors in the effects of histamine on the production of reactive oxygen species by whole blood phagocytes

    Czech Academy of Sciences Publication Activity Database

    Vašíček, Ondřej; Lojek, Antonín; Jančinová, V.; Nosál, R.; Číž, Milan

    2014-01-01

    Roč. 100, č. 1 (2014), s. 67-72 ISSN 0024-3205 R&D Projects: GA MŠk(CZ) LD11010 Institutional support: RVO:68081707 Keywords : Histamine * Histamine receptors * Reactive oxygen species Subject RIV: BO - Biophysics Impact factor: 2.702, year: 2014

  11. An "enigmatic" L-carnosine (β-alanyl-L-histidine)? Cell proliferative activity as a fundamental property of a natural dipeptide inherent to traditional antioxidant, anti-aging biological activities: balancing and a hormonally correct agent, novel patented oral therapy dosage formulation for mobility, skeletal muscle power and functional performance, hypothalamic-pituitary- brain relationship in health, aging and stress studies.

    Science.gov (United States)

    Babizhayev, Mark A; Yegorov, Yegor E

    2015-01-01

    Hypothalamic releasing and inhibiting hormones are major neuroendocrine regulators of human body metabolism being driven directly to the anterior pituitary gland via hypothalamic-hypophyseal portal veins. The alternative physiological or therapeutic interventions utilizing the pharmaco-nutritional boost of imidazole-containing dipeptides (non-hydrolized oral form of carnosine, carcinine, N-acetylcarnosine lubricant eye drops) can maintain health, enhance physical exercise performance and prevent ageing. Carnosine (β-alanyl-L-histidine) is synthesized in mammalian skeletal muscle. There is an evidence that the release of carnosine from the skeletal muscle sarcomeres moieties during physical exercise affects autonomic neurotransmission and physiological functions. Carnosine released from skeletal muscle during exercise acts as a powerful afferent physiological signaling stimulus for hypothalamus, may be transported into the hypothalamic tuberomammillary nucleus (TMN), specifically to TMN-histamine neurons and hydrolyzed herewith via activities of carnosine-degrading enzyme (carnosinase 2) localized in situ. Through the colocalized enzymatic activity of Histidine decarboxylase in the histaminergic neurons, the resulting L-histidine may subsequently be converted into histamine, which could be responsible for the effects of carnosine on neurotransmission and physiological function. Carnosine and its imidazole-containing dipeptide derivatives are renowned for their anti-aging, antioxidant, membrane protective, metal ion chelating, buffering, anti-glycation/ transglycating activities used to prevent and treat a spectrum of age-related and metabolic diseases, such as neurodegenerative disease, sight threatening eye diseases, Diabetes mellitus and its complications, cancers and other disorders due to their wide spectrum biological activities. The precursor of carnosine (and related imidazole containing compounds) synthesis in skeletal muscles beta-alanine is used as the

  12. Effects of Bidens pilosa L. var. radiata SCHERFF treated with enzyme on histamine-induced contraction of guinea pig ileum and on histamine release from mast cells.

    Science.gov (United States)

    Matsumoto, Takayuki; Horiuchi, Masako; Kamata, Katsuo; Seyama, Yoshiyuki

    2009-06-01

    The medical mechanism against type I allergies is to block the release or production of chemical mediators from mast cells or to block the H(1)-receptor signaling. We previously reported that the anti-allergic action of the dry powder from Bidens pilosa L. var. radiata SCHERFF treated with the enzyme cellulosine (eMMBP) was dependent on the inhibition of histamine release from mast cells. Here, we investigate that the effect of fractions in eMMBP on the histamine-induced contraction in guinea pig ileum and on the release of histamine in rat peritoneal mast cells. The histamine-induced contraction in guinea pig ileum is dose-dependently inhibited by ketotifen, an antagonist of H(1)-receptor. Fractions contained caffeic acid, caffeoylquinic acid and fractions contained flavonoids such as hyperin and isoquercitrin in eMMBP inhibit histamine release from mast cells, but only flavonoids such as hyperin, isoquercitrin and rutin suppress the histamine-induced contraction in guinea pig ileum. Moreover, the histamine-induced contraction was not affected by caffeic acid, however, such contraction was significantly inhibited by rutin. These results suggest that the primary antagonists of H(1)- receptor are different from the components in eMMBP that inhibit histamine release, and that these components participate in the anti-allergic activity of eMMBP.

  13. Histamine poisoning and control measures in fish and fishery products

    Directory of Open Access Journals (Sweden)

    Pierina eVisciano

    2014-09-01

    Full Text Available Histamine poisoning is one of the most common form of intoxication caused by the ingestion of fish and fishery products. Cooking, canning or freezing cannot reduce the levels of histamine because this compound is heat stable. All humans are susceptible to histamine and its effects can be described as intolerance or intoxication depending on the severity of the symptoms. The amount of histamine in food, the individual sensitivity and the detoxification activity in human organism represent the main factors affecting the toxicological response in consumers. Histamine is the only biogenic amine with regulatory limits set by European Legislation, up to a maximum of 200 mg/kg in fresh fish and 400 mg/kg in fishery products treated by enzyme maturation in brine.

  14. Medullary Reticular Neurons Mediate Neuropeptide Y-Induced Metabolic Inhibition and Mastication.

    Science.gov (United States)

    Nakamura, Yoshiko; Yanagawa, Yuchio; Morrison, Shaun F; Nakamura, Kazuhiro

    2017-02-07

    Hypothalamic neuropeptide Y (NPY) elicits hunger responses to increase the chances of surviving starvation: an inhibition of metabolism and an increase in feeding. Here we elucidate a key central circuit mechanism through which hypothalamic NPY signals drive these hunger responses. GABAergic neurons in the intermediate and parvicellular reticular nuclei (IRt/PCRt) of the medulla oblongata, which are activated by NPY-triggered neural signaling from the hypothalamus, potentially through the nucleus tractus solitarius, mediate the NPY-induced inhibition of metabolic thermogenesis in brown adipose tissue (BAT) via their innervation of BAT sympathetic premotor neurons. Intriguingly, the GABAergic IRt/PCRt neurons innervating the BAT sympathetic premotor region also innervate the masticatory motor region, and stimulation of the IRt/PCRt elicits mastication and increases feeding as well as inhibits BAT thermogenesis. These results indicate that GABAergic IRt/PCRt neurons mediate hypothalamus-derived hunger signaling by coordinating both autonomic and feeding motor systems to reduce energy expenditure and to promote feeding. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Hypothalamic neuronal toll-like receptor 2 protects against age-induced obesity

    OpenAIRE

    Shechter, Ravid; London, Anat; Kuperman, Yael; Ronen, Ayal; Rolls, Asya; Chen, Alon; Schwartz, Michal

    2013-01-01

    Toll-like receptors (TLRs) are traditionally associated with immune-mediated host defense. Here, we ascribe a novel extra-immune, hypothalamic-associated function to TLR2, a TLR-family member known to recognize lipid components, in the protection against obesity. We found that TLR2-deficient mice exhibited mature-onset obesity and susceptibility to high-fat diet (HFD)-induced weight gain, via modulation of food intake. Age-related obesity was still evident in chimeric mice, carrying comparabl...

  16. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    Directory of Open Access Journals (Sweden)

    Antonio eZorzano

    2015-06-01

    Full Text Available Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1 cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy. Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.

  17. Loss of Autophagy in Proopiomelanocortin Neurons Perturbs Axon Growth and Causes Metabolic Dysregulation

    Science.gov (United States)

    Coupé, Bérengère; Ishii, Yuko; Dietrich, Marcelo O; Komatsu, Masaaki; Horvath, Tamas L.; Bouret, Sebastien G.

    2012-01-01

    Summary The hypothalamic melanocortin system, which includes neurons that produce proopiomelanocortin (POMC)-derived peptides, is a major negative regulator of energy balance. POMC neurons begin to acquire their unique properties during neonatal life. The formation of functional neural systems requires massive cytoplasmic remodeling that may involve autophagy, an important intracellular mechanism for the degradation of damaged proteins and organelles. Here we investigated the functional and structural effects of the deletion of an essential autophagy gene, Atg7, in POMC neurons. Lack of Atg7 in POMC neurons caused higher post-weaning body weight, increased adiposity, and glucose intolerance. These metabolic impairments were associated with an age-dependant accumulation of ubiquitin/p62-positive aggregates in the hypothalamus and a disruption in the maturation of POMC-containing axonal projections. Together, these data provide direct genetic evidence that Atg7 in POMC neurons is required for normal metabolic regulation and neural development, and they implicate hypothalamic autophagy deficiency in the pathogenesis of obesity. PMID:22285542

  18. An indirect action contributes to c-fos induction in paraventricular hypothalamic nucleus by neuropeptide Y

    Science.gov (United States)

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively...

  19. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

    Science.gov (United States)

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jérôme; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana Del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2016-03-16

    Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Evidence for a Role of Proline and Hypothalamic Astrocytes in the Regulation of Glucose Metabolism in Rats

    OpenAIRE

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M.; Lam, Tony K.T.; Gutiérrez-Juárez, Roger

    2013-01-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our result...

  1. Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Vercruysse, Pauline; Sinniger, Jérôme; El Oussini, Hajer; Scekic-Zahirovic, Jelena; Dieterlé, Stéphane; Dengler, Reinhard; Meyer, Thomas; Zierz, Stephan; Kassubek, Jan; Fischer, Wilhelm; Dreyhaupt, Jens; Grehl, Torsten; Hermann, Andreas; Grosskreutz, Julian; Witting, Anke; Van Den Bosch, Ludo; Spreux-Varoquaux, Odile; Ludolph, Albert C; Dupuis, Luc

    2016-04-01

    Amyotrophic lateral sclerosis, the most common adult-onset motor neuron disease, leads to death within 3 to 5 years after onset. Beyond progressive motor impairment, patients with amyotrophic lateral sclerosis suffer from major defects in energy metabolism, such as weight loss, which are well correlated with survival. Indeed, nutritional intervention targeting weight loss might improve survival of patients. However, the neural mechanisms underlying metabolic impairment in patients with amyotrophic lateral sclerosis remain elusive, in particular due to the lack of longitudinal studies. Here we took advantage of samples collected during the clinical trial of pioglitazone (GERP-ALS), and characterized longitudinally energy metabolism of patients with amyotrophic lateral sclerosis in response to pioglitazone, a drug with well-characterized metabolic effects. As expected, pioglitazone decreased glycaemia, decreased liver enzymes and increased circulating adiponectin in patients with amyotrophic lateral sclerosis, showing its efficacy in the periphery. However, pioglitazone did not increase body weight of patients with amyotrophic lateral sclerosis independently of bulbar involvement. As pioglitazone increases body weight through a direct inhibition of the hypothalamic melanocortin system, we studied hypothalamic neurons producing proopiomelanocortin (POMC) and the endogenous melanocortin inhibitor agouti-related peptide (AGRP), in mice expressing amyotrophic lateral sclerosis-linked mutant SOD1(G86R). We observed lower Pomc but higher Agrp mRNA levels in the hypothalamus of presymptomatic SOD1(G86R) mice. Consistently, numbers of POMC-positive neurons were decreased, whereas AGRP fibre density was elevated in the hypothalamic arcuate nucleus of SOD1(G86R) mice. Consistent with a defect in the hypothalamic melanocortin system, food intake after short term fasting was increased in SOD1(G86R) mice. Importantly, these findings were replicated in two other amyotrophic

  2. UVB-induced systemic immunosuppression: role of mast cells and histamine

    International Nuclear Information System (INIS)

    Hart, P.H.; Grimbaldeston, M.A.; Finlay-Jones, J.J.

    1999-01-01

    Full text: UVB radiation (290-320 nm) is immunosuppressive by multiple mechanisms allowing the outgrowth of UV-induced tumours in both mouse and man. Furthermore, patients with non-melanoma skin cancers have a higher risk of death from other cancers which could be explained by UV-induced immunomodulation. The mechanism(s) of suppression by UVB depend on whether the sensitising antigen is applied to the irradiated site ('local') or to non-irradiated sites ('systemic'). In the former, the activity of UV-induced TNFα is important as it affects the migration of Langerhans cells to draining lymph nodes. In contrast, histamine from dermal mast cells is critical to the early events by which UVB can suppress systemic immune responses. The prevalence of dermal mast cells in 7 strains and substrains of mice correlates directly with their susceptibility to UVB-induced systemic immunosuppression. Furthermore, mast cell depleted mice (Wf/Wf) are resistant to UVB-induced systemic immunomodulation. However, they become susceptible after reconstitution of the site to be irradiated with bone marrow derived mast cell precursors. The mice also gain susceptibility to cis-urocanic acid-induced systemic immunomodulation. There is considerable evidence that histamine is the mast cell product critical to downstream immunosuppressive events. Firstly, physiological concentrations of histamine suppress contact hypersensitivity responses. Secondly, histamine receptor antagonists halve UVB-induced systemic immunosuppression. Thirdly, mice with different UVB-susceptibilities are equally susceptible to histamine-induced immunosuppression, and finally, histamine can suppress contact hypersensitivity responses in Wf/Wf mice. We suggest that histamine may be immunomodulatory by multiple pathways. Histamine can induce the production of immunosuppressive prostanoids from keratinocytes. A lymphocyte-derived, histamine-induced suppressor factor was reported in the 1970's. More recently histamine has

  3. Stimulation of cell proliferation by histamine H2 receptors in dimethylhdrazine-induced adenocarcinomata.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1978-03-01

    Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.

  4. Knockin of Cre Gene at Ins2 Locus Reveals No Cre Activity in Mouse Hypothalamic Neurons.

    Science.gov (United States)

    Li, Ling; Gao, Lin; Wang, Kejia; Ma, Xianhua; Chang, Xusheng; Shi, Jian-Hui; Zhang, Ye; Yin, Kai; Liu, Zhimin; Shi, Yuguang; Xie, Zhifang; Zhang, Weiping J

    2016-02-02

    The recombination efficiency and cell specificity of Cre driver lines are critical for exploring pancreatic β cell biology with the Cre/LoxP approach. Some commonly used Cre lines are based on the short Ins2 promoter fragment and show recombination activity in hypothalamic neurons; however, whether this stems from endogenous Ins2 promoter activity remains controversial. In this study, we generated Ins2-Cre knockin mice with a targeted insertion of IRES-Cre at the Ins2 locus and demonstrated with a cell lineage tracing study that the Ins2 gene is not transcriptionally active in the hypothalamus. The Ins2-Cre driver line displayed robust Cre expression and activity in pancreatic β cells without significant alterations in insulin expression. In the brain, Cre activity was mainly restricted to the choroid plexus, without significant recombination detected in the hippocampus or hypothalamus by the LacZ or fluorescent tdTomato reporters. Furthermore, Ins2-Cre mice exhibited normal glucose tolerance and insulin secretion upon glucose stimulation in vivo. In conclusion, this Ins2-Cre driver line allowed high-fidelity detection of endogenous Ins2 promoter activity in vivo, and the negative activity in the hypothalamus demonstrated that this system is a promising alternative tool for studying β cell biology.

  5. Hypothalamic demyelination causing panhypopituitarism.

    Science.gov (United States)

    Dixon-Douglas, Julia; Burgess, John; Dreyer, Michael

    2018-05-01

    Hypothalamic involvement in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) is rare and endocrinopathies involving the hypothalamic-pituitary axis in patients with demyelinating conditions have rarely been reported. We present two cases of MS/NMOSD with associated hypothalamic-pituitary involvement and subsequent hypopituitarism, including the first report of a patient with hypothalamic demyelination causing panhypopituitarism. Differential diagnoses, including alemtuzumab-related and primary pituitary pathology are discussed. © 2018 Royal Australasian College of Physicians.

  6. Neurons of the A5 region are required for the tachycardia evoked by electrical stimulation of the hypothalamic defence area in anaesthetized rats.

    Science.gov (United States)

    López-González, M V; Díaz-Casares, A; Peinado-Aragonés, C A; Lara, J P; Barbancho, M A; Dawid-Milner, M S

    2013-08-01

    In order to assess the possible interactions between the pontine A5 region and the hypothalamic defence area (HDA), we have examined the pattern of double staining for c-Fos protein immunoreactivity (c-Fos-ir) and tyrosine hydroxylase, throughout the rostrocaudal extent of the A5 region in spontaneously breathing anaesthetized male Sprague-Dawley rats during electrical stimulation of the HDA. Activation of the HDA elicited a selective increase in c-Fos-ir with an ipsilateral predominance in catecholaminergic and non-catecholaminergic A5 somata (P HDA. Cardiorespiratory changes were analysed in response to electrical stimulation of the HDA before and after ipsilateral microinjection of muscimol within the A5 region. Stimulation of the HDA evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (P HDA stimulation were reduced (P HDA and the A5 region, extracellular recordings of putative A5 neurones were obtained during HDA stimulation. Seventy-five A5 cells were recorded, 35 of which were affected by the HDA (47%). These results indicate that neurones of the A5 region participate in the cardiovascular response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.

  7. Study to investigate the difference in reaction to intracutaneously and orally administered histamine between suspected histamine-intolerant patients and healthy volunteers

    NARCIS (Netherlands)

    den Broeder E; Kortboyer JM; Koers WJ; Bruijnzeel-Koomen CAFM; de Haan-Brand A; Wolthers BG; Breukelman H; Meulenbelt J; NVIC; ARO; afdeling Dermatologie en Allergologie (Academisch Ziekenhuis Utrecht); afdeling KCSB (Academisch Ziekenhuis Groningen)

    1996-01-01

    In een dubbelblinde placebo gecontroleerde, vergelijkende studie werd aan 16 histamine intolerante patienten en aan 16 gezonde proefpersonen histamine toegediend. Het doel van de studie was het ontwikkelen van een relatief simpele en betrouwbare test voor het stellen van de diagnose

  8. JMJD3 Is Crucial for the Female AVPV RIP-Cre Neuron-Controlled Kisspeptin-Estrogen Feedback Loop and Reproductive Function.

    Science.gov (United States)

    Song, Anying; Jiang, Shujun; Wang, Qinghua; Zou, Jianghuan; Lin, Zhaoyu; Gao, Xiang

    2017-06-01

    The hypothalamic-pituitary-gonadal axis controls development, reproduction, and metabolism. Although most studies have focused on the hierarchy from the brain to the gonad, many questions remain unresolved concerning the feedback from the gonad to the central nervous system, especially regarding the potential epigenetic modifications in hypothalamic neurons. In the present report, we generated genetically modified mice lacking histone H3 lysine 27 (H3K27) demethylase Jumonji domain-containing 3 (JMJD3) in hypothalamic rat-insulin-promoter-expressing neurons (RIP-Cre neurons). The female mutant mice displayed late-onset obesity owing to reduced locomotor activity and decreased energy expenditure. JMJD3 deficiency in RIP-Cre neurons also results in delayed pubertal onset, an irregular estrous cycle, impaired fertility, and accelerated ovarian failure in female mice owing to the dysregulation of the hypothalamic-ovarian axis. We found that JMJD3 directly regulates Kiss1 gene expression by binding to the Kiss1 promoter and triggering H3K27me3 demethylation in the anteroventral periventricular (AVPV) nucleus. Further study confirmed that the aberrations arose from impaired kisspeptin signaling in the hypothalamic AVPV nucleus and subsequent estrogen deficiency. Estrogen replacement therapy can reverse obesity in mutant mice. Moreover, we demonstrated that Jmjd3 is an estrogen target gene in the hypothalamus. These results provide direct genetic and molecular evidence that JMJD3 is a key mediator for the kisspeptin-estrogen feedback loop. Copyright © 2017 Endocrine Society.

  9. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    Science.gov (United States)

    Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and ne...

  10. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    2018-04-01

    Full Text Available Proopiomelanocortin (POMC neurons in the arcuate nucleus of the hypothalamus (ARC respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR, immunohistochemistry, electrophysiology, TRPV1 knock-out (KO, and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5 carrying a Cre-dependent channelrhodopsin-2 (ChR2-enhanced yellow fluorescent protein (eYFP expression cassette under the control of the two neuronal POMC enhancers (nPEs. Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake.

  11. Do enteric neurons make hypocretin? ☆

    Science.gov (United States)

    Baumann, Christian R.; Clark, Erika L.; Pedersen, Nigel P.; Hecht, Jonathan L.; Scammell, Thomas E.

    2008-01-01

    Hypocretins (orexins) are wake-promoting neuropeptides produced by hypothalamic neurons. These hypocretin-producing cells are lost in people with narcolepsy, possibly due to an autoimmune attack. Prior studies described hypocretin neurons in the enteric nervous system, and these cells could be an additional target of an autoimmune process. We sought to determine whether enteric hypocretin neurons are lost in narcoleptic subjects. Even though we tried several methods (including whole mounts, sectioned tissue, pre-treatment of mice with colchicine, and the use of various primary antisera), we could not identify hypocretin-producing cells in enteric nervous tissue collected from mice or normal human subjects. These results raise doubts about whether enteric neurons produce hypocretin. PMID:18191238

  12. Evaluation of the Histamine Content and Potential Toxicity of Some of Consumable food

    Directory of Open Access Journals (Sweden)

    M Zarei

    2017-02-01

    Full Text Available ABSTRACT Background & aim: Consuming high amounts of histamine with food causes histamine poisoning among its consumers. Much information about the content of histamine in various food products is not available in the country. In the present study, the amount of histamine in food samples consumed in human diet which are based on existing data sources can contain histamine were measured. Methods: In the present study, 240 samples of 16 different types of food consumed in the human diet were examined. Histamine was extracted with 75 % ethanol- 0.4 N HCl in fresh and canned fish samples and extracted in other samples with  0.1 N HCl. After passing the extracts through ion exchange chromatography, the fluorescence derivative of histamine which was generated by O-phthaldialdehyde and the amount of fluorescent light was measured at excitation wavelength of 350 nm and emission wavelength of 444 nm respectively. Data were analyzed using descriptive statistics. Results: Spinach, fresh fish, canned fish and aubergine samples showed the high level of histamine with the mean levels of 5.04, 3.83, 2.77 and 2.64 mg/100g respectively. All samples tested contains histamine but 53.3, 20.0, 13.3 and 13.3 percent of the samples of these foods contains higher amounts histamine (5mg/100gr  respectively.Low levels of histamine was observed in a number of samples including tomato, pickles, nuts, bananas, oranges, melons, cheese, curd, yogurt and dough but no detectable histamine was found  olive and tea. Conclusion: In addition to confirming the fact that fish and seafood products have a high risk of histamine poisoning, but it showed that the risk of histamine poisoning in humans after consumption of fish and its products will not be less than spinach and aubergine.

  13. PENINGKATAN KADAR HISTAMIN PADA IKAN LAUT YANG SUDAH DIOLAH

    Directory of Open Access Journals (Sweden)

    Djarismawati Djarismawati

    2012-10-01

    Full Text Available  It was very difficult to recover the condition of people·s nutntion especially among the children during the economic crisis, even though that problem could be overcome by consuming protein especially from sea-fish. But handling food originated from sea-fish was very difficult, because sea-fish could be easily contaminated by toxins. In this study the histamine contents in fresh and processed sea-fish will be analized. The objective of the study was to test the best way of fish cooking to minimize the histamine content. The limiting time of the fish remain fresh after taken from the market was also studied. The result showed that the time taken to bring the fish from the sampling points to the laboratory and the way of fish cooking would influence the histamine content in cooked fish. We also found that cooking fish with coconut milk has resulted the lowest histamine content as compared with frying or roasting. Keywords: histamine, sea fish, nutrition

  14. DETERMINATION OF HISTAMINE IN FISH USING ELISA TECHNIQUE

    NARCIS (Netherlands)

    KRUGER, C; SEWING, U; STENGEL, G; KEMA, [No Value; WESTERMANN, J; MANZ, B

    1995-01-01

    The analysis of histamine in fish and fish products via competitive ELISA is described. The advantages of this method are easy sample preparation and handling, screening capabilities, and low costs. Automation enables the performance of the assay with higher series of samples. The Histamine-ELISA is

  15. Evidence for dynamic network regulation of Drosophila photoreceptor function from mutants lacking the neurotransmitter histamine

    Directory of Open Access Journals (Sweden)

    An eDau

    2016-03-01

    Full Text Available Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdcJK910 mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdcJK910 photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdcJK910 photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdcJK910 R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdcJK910 mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.

  16. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice

    Science.gov (United States)

    Estrogens act in the ventromedial hypothalamic nucleus (VMH) to regulate body weight homeostasis. However, the molecular mechanisms underlying these estrogenic effects are unknown. We show that activation of estrogen receptor-a (ERa) stimulates neural firing of VMH neurons expressing ERa, and these ...

  17. Determination of histamine in Iranian cheese using enzyme-linked ...

    African Journals Online (AJOL)

    john

    enzyme-linked immunosorbent assay (ELISA) method. Mojtaba ... Histamine is a simple chemical substance created during processing of the amine acid histidine. Histamine is also an .... Institute of environment Health and Forensic. Sciences ...

  18. Prenatal exposure to dietary fat induces changes in the transcriptional factors, TEF and YAP, which may stimulate differentiation of peptide neurons in rat hypothalamus.

    Directory of Open Access Journals (Sweden)

    Kinning Poon

    Full Text Available Gestational exposure to a high-fat diet (HFD stimulates the differentiation of orexigenic peptide-expressing neurons in the hypothalamus of offspring. To examine possible mechanisms that mediate this phenomenon, this study investigated the transcriptional factor, transcription enhancer factor-1 (TEF, and co-activator, Yes-associated protein (YAP, which when inactivated stimulate neuronal differentiation. In rat embryos and postnatal offspring prenatally exposed to a HFD compared to chow, changes in hypothalamic TEF and YAP and their relationship to the orexigenic peptide, enkephalin (ENK, were measured. The HFD offspring at postnatal day 15 (P15 exhibited in the hypothalamic paraventricular nucleus a significant reduction in YAP mRNA and protein, and increased levels of inactive and total TEF protein, with no change in mRNA. Similarly, HFD-exposed embryos at embryonic day 19 (E19 showed in whole hypothalamus significantly decreased levels of YAP mRNA and protein and TEF mRNA, and increased levels of inactive TEF protein, suggesting that HFD inactivates TEF and YAP. This was accompanied by increased density and fluorescence intensity of ENK neurons. A close relationship between TEF and ENK was suggested by the finding that TEF co-localizes with this peptide in hypothalamic neurons and HFD reduced the density of TEF/ENK co-labeled neurons, even while the number and fluorescence intensity of single-labeled TEF neurons were increased. Increased YAP inactivity by HFD was further evidenced by a decrease in number and fluorescence intensity of YAP-containing neurons, although the density of YAP/ENK co-labeled neurons was unaltered. Genetic knockdown of TEF or YAP stimulated ENK expression in hypothalamic neurons, supporting a close relationship between these transcription factors and neuropeptide. These findings suggest that prenatal HFD exposure inactivates both hypothalamic TEF and YAP, by either decreasing their levels or increasing their inactive

  19. Cold urticaria: inhibition of cold-induced histamine release by doxantrazole.

    Science.gov (United States)

    Bentley-Phillips, C B; Eady, R A; Greaves, M W

    1978-10-01

    Thirteen patients with cold urticaria were studied to assess the effect of the systemic drug doxantrazole, which has actions resembling disodium cromoglycate, on cold evoked histamine release. The patients, all of whom developed an immediate local whealing response after cooling of the forearm, demonstrated release of histamine into venous blood draining that forearm. Following doxantrazole treatment, significant suppression of histamine release occurred. In some but not all patients this was accompanied by diminution of urtication in response to cooling. A double-blind study was carried out in 3 subjects, all of whom showed diminished cold-stimulated histamine release after doxantrazole. Two of these showed clinical improvement. Doxantrazole had no effect on erythema due to intradermal histamine, but did suppress the erythematous reaction to intradermal injection of compound 48/80. Our results suggest that doxantrazole or related anti-allergic agents might be useful in the treatment of cold urticaria.

  20. Anatomy of melancholia: focus on hypothalamic-pituitary-adrenal axis overactivity and the role of vasopressin.

    LENUS (Irish Health Repository)

    Dinan, Timothy G

    2012-02-03

    Overactivity of the hypothalamic-pituitary-adrenal (HPA) axis characterized by hypercortisolism, adrenal hyperplasia and abnormalities in negative feedback is the most consistently described biological abnormality in melancholic depression. Corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) are the main secretagogues of the HPA\\/stress system. Produced in the parvicellular division of the hypothalamic paraventricular nucleus the release of these peptides is influenced by inputs from monoaminergic neurones. In depression, anterior pituitary CRH1 receptors are down-regulated and response to CRH infusion is blunted. By contrast, vasopressin V3 receptors on the anterior pituitary show enhanced response to AVP stimulation and this enhancement plays a key role in maintaining HPA overactivity.

  1. The Histamine H4 Receptor: From Orphan to the Clinic

    Directory of Open Access Journals (Sweden)

    Robin L. Thurmond

    2015-03-01

    Full Text Available The histamine H4 receptor (H4R was first noted as a sequence in genomic databases that had features of a G-protein coupled receptor. This putative receptor was found to bind histamine consistent with its homology to other histamine receptors and thus became the fourth member of the histamine receptor family. Due to the previous success of drugs that target the H1 and H2 receptors, an effort was made to understand the function of this receptor and determine if it represented a drug target. Taking advantage of the vast literature on histamine, a search for histamine activity that did not appear to be mediated by the other three histamine receptors was undertaken. From this asthma and pruritus emerged as areas of particular interest. Histamine has long been suspected to play a role in the pathogenesis of asthma, but antihistamines that target the H1 and H2 receptors have not been shown to be effective for this condition. The use of selective ligands in animal models of asthma has now potentially filled this gap by showing a role for the H4R in mediating lung function and inflammation. A similar story exists for chronic pruritus associated with conditions such as atopic dermatitis. Antihistamines that target the H1 receptor are effective in reducing acute pruritus, but are ineffective in pruritus experienced by patients with atopic dermatitis. As for asthma, animal models have now suggested a role for the H4R in mediating pruritic responses, with antagonists to the H4R reducing pruritus in a number of different conditions. The anti-pruritic effect of H4R antagonists has recently been shown in human clinical studies, validating the preclinical findings in the animal models. A selective H4R antagonist inhibited histamine-induced pruritus in health volunteers and reduced pruritus in patients with atopic dermatitis. The history to date of the H4R provides an excellent example of the deorphanization of a novel receptor and the translation of this into

  2. Alcohol alters hypothalamic glial-neuronal communications involved in the neuroendocrine control of puberty: In vivo and in vitro assessments.

    Science.gov (United States)

    Dees, W L; Hiney, J K; Srivastava, V K

    2015-11-01

    The onset of puberty is the result of the increased secretion of hypothalamic luteinizing hormone-releasing hormone (LHRH). The pubertal process can be altered by substances that can affect the prepubertal secretion of this peptide. Alcohol is one such substance known to diminish LHRH secretion and delay the initiation of puberty. The increased secretion of LHRH that normally occurs at the time of puberty is due to a decrease of inhibitory tone that prevails prior to the onset of puberty, as well as an enhanced development of excitatory inputs to the LHRH secretory system. Additionally, it has become increasingly clear that glial-neuronal communications are important for pubertal development because they play an integral role in facilitating the pubertal rise in LHRH secretion. Thus, in recent years attempts have been made to identify specific glial-derived components that contribute to the development of coordinated communication networks between glia and LHRH cell bodies, as well as their nerve terminals. Transforming growth factor-α and transforming growth factor-β1 are two such glial substances that have received attention in this regard. This review summarizes the use of multiple neuroendocrine research techniques employed to assess these glial-neuronal communication pathways involved in regulating prepubertal LHRH secretion and the effects that alcohol can have on their respective functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Hypothalamic glioma masquerading as craniopharyngioma

    Directory of Open Access Journals (Sweden)

    Sameer Vyas

    2013-01-01

    Full Text Available Hypothalamic glioma account for 10-15% of supratentorial tumors in children. They usually present earlier (first 5 years of age than craniopharyngioma. Hypothalamic glioma poses a diagnostic dilemma with craniopharyngioma and other hypothalamic region tumors, when they present with atypical clinical or imaging patterns. Neuroimaging modalities especially MRI plays a very important role in scrutinizing the lesions in the hypothalamic region. We report a case of a hypothalamic glioma masquerading as a craniopharyngioma on imaging along with brief review of both the tumors.

  4. Histamine H3 receptor: A novel therapeutic target in alcohol dependence?

    Directory of Open Access Journals (Sweden)

    Pertti ePanula

    2012-05-01

    Full Text Available The brain histaminergic system is one of the diffuse modulatory neurotransmitter systems which regulate neuronal activity in many brain areas. Studies on both rats and mice indicate that histamine H3 receptor antagonists decrease alcohol drinking in several models, like operant alcohol administration and drinking in the dark paradigm. Alcohol-induced place preference is also affected by these drugs. Moreover, mice lacking H3R do not drink alcohol like their wild type littermates, and they do not show alcohol-induced place preference. Although the mechanisms of these behaviors are still being investigated, we propose that H3R antagonists are promising candidates for use in human alcoholics, as these drugs are already tested for treatment of other disorders like narcolepsy and sleep disorders.

  5. Increased melanin concentrating hormone receptor type I in the human hypothalamic infundibular nucleus in cachexia

    NARCIS (Netherlands)

    Unmehopa, Unga A.; van Heerikhuize, Joop J.; Spijkstra, Wenda; Woods, John W.; Howard, Andrew D.; Zycband, Emanuel; Feighner, Scott D.; Hreniuk, Donna L.; Palyha, Oksana C.; Guan, Xiao-Ming; Macneil, Douglas J.; van der Ploeg, Lex H. T.; Swaab, Dick F.

    2005-01-01

    Melanin-concentrating hormone (MCH) exerts a positive regulation on appetite and binds to the G protein-coupled receptors, MCH1R and MCH2R. In rodents, MCH is produced by neurons in the lateral hypothalamus with projections to various hypothalamic and other brain sites. In the present study, MCH1R

  6. Increased melanin concentrating hormone receptor type I in the human hypothalamic infundibular nucleus in cachexia.

    NARCIS (Netherlands)

    Unmehopa, U.A.; Heerikhuize, J.J. van; Spijkstra, W.; Woods, J.W.; Howard, A.D.; Zycband, E.; Feighner, S.D.; Hreniuk, D.L.; Palyha, O.C.; Guan, X.-M.; MacNeil, D.J.; Ploeg, L.H.T.; Swaab, D.F.

    2005-01-01

    Melanin-concentrating hormone (MCH) exerts a positive regulation on appetite and binds to the G protein-coupled receptors, MCH1R and MCH2R. In rodents, MCH is produced by neurons in the lateral hypothalamus with projections to various hypothalamic and other brain sites. In the present study, MCH1R

  7. Hypothalamic control of energy and glucose metabolism.

    Science.gov (United States)

    Sisley, Stephanie; Sandoval, Darleen

    2011-09-01

    The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.

  8. Hypothalamic control of pituitary and adrenal hormones during hypothermia.

    Science.gov (United States)

    Okuda, C; Miyazaki, M; Kuriyama, K

    1986-01-01

    In order to investigate neuroendocrinological mechanisms of hypothermia, we determined the changes in plasma concentrations of corticosterone (CS), prolactin (PRL), and thyrotropin (TSH), and their correlations with alterations in hypothalamic dopamine (DA) and thyrotropin releasing hormone (TRH), in rats restrained and immersed in a water bath at various temperatures. A graded decrease of body temperature induced a progressive increase in the plasma level of CS, whereas that of PRL showed a drastic decrease. The plasma level of TSH also showed an increase during mild hypothermia (about 35 degrees C), but this increase was not evident during profound hypothermia (below 24 degrees C). The changes in these hormones were readily reversed by rewarming animals. Although DA content in the hypothalamus was not affected, its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), showed an increase following the decrease of body temperature. Pretreatment of the animals with sulpiride, a D2-antagonist, prevented the hypothermia-induced inhibition of PRL release. Hypothalamic TRH was significantly decreased during mild hypothermia, and it returned to control levels after rewarming. These results suggest that the decrease in plasma PRL induced by hypothermia may be associated with the activation of hypothalamic DA neurons, whereas the increase in plasma TSH during mild hypothermia seems to be caused by the increased release of TRH in the hypothalamus.

  9. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area—an anterograde tract-tracing study

    OpenAIRE

    Papp, Rege S.; Palkovits, Miklós

    2014-01-01

    The projections from the dorsolateral hypothalamic area (DLH) to the lower brainstem have been investigated by using biotinylated dextran amine (BDA), an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area), and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribu...

  10. Differential protein expression profile in the hypothalamic GT1-7 cell line after exposure to anabolic androgenic steroids.

    Directory of Open Access Journals (Sweden)

    Freddyson J Martínez-Rivera

    Full Text Available The abuse of anabolic androgenic steroids (AAS has been considered a major public health problem during decades. Supraphysiological doses of AAS may lead to a variety of neuroendocrine problems. Precisely, the hypothalamic-pituitary-gonadal (HPG axis is one of the body systems that is mainly influenced by steroidal hormones. Fluctuations of the hormonal milieu result in alterations of reproductive function, which are made through changes in hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH. In fact, previous studies have shown that AAS modulate the activity of these neurons through steroid-sensitive afferents. To increase knowledge about the cellular mechanisms induced by AAS in GnRH neurons, we performed proteomic analyses of the murine hypothalamic GT1-7 cell line after exposure to 17α-methyltestosterone (17α-meT; 1 μM. These cells represent a good model for studying regulatory processes because they exhibit the typical characteristics of GnRH neurons, and respond to compounds that modulate GnRH in vivo. Two-dimensional difference in gel electrophoresis (2D-DIGE and mass spectrometry analyses identified a total of 17 different proteins that were significantly affected by supraphysiological levels of AAS. Furthermore, pathway analyses showed that modulated proteins were mainly associated to glucose metabolism, drug detoxification, stress response and cell cycle. Validation of many of these proteins, such as GSTM1, ERH, GAPDH, PEBP1 and PDIA6, were confirmed by western blotting. We further demonstrated that AAS exposure decreased expression of estrogen receptors and GnRH, while two important signaling pathway proteins p-ERK, and p-p38, were modulated. Our results suggest that steroids have the capacity to directly affect the neuroendocrine system by modulating key cellular processes for the control of reproductive function.

  11. Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control.

    Science.gov (United States)

    Ramírez, Sara; Gómez-Valadés, Alicia G; Schneeberger, Marc; Varela, Luis; Haddad-Tóvolli, Roberta; Altirriba, Jordi; Noguera, Eduard; Drougard, Anne; Flores-Martínez, Álvaro; Imbernón, Mónica; Chivite, Iñigo; Pozo, Macarena; Vidal-Itriago, Andrés; Garcia, Ainhoa; Cervantes, Sara; Gasa, Rosa; Nogueiras, Ruben; Gama-Pérez, Pau; Garcia-Roves, Pablo M; Cano, David A; Knauf, Claude; Servitja, Joan-Marc; Horvath, Tamas L; Gomis, Ramon; Zorzano, Antonio; Claret, Marc

    2017-06-06

    Proopiomelanocortin (POMC) neurons are critical sensors of nutrient availability implicated in energy balance and glucose metabolism control. However, the precise mechanisms underlying nutrient sensing in POMC neurons remain incompletely understood. We show that mitochondrial dynamics mediated by Mitofusin 1 (MFN1) in POMC neurons couple nutrient sensing with systemic glucose metabolism. Mice lacking MFN1 in POMC neurons exhibited defective mitochondrial architecture remodeling and attenuated hypothalamic gene expression programs during the fast-to-fed transition. This loss of mitochondrial flexibility in POMC neurons bidirectionally altered glucose sensing, causing abnormal glucose homeostasis due to defective insulin secretion by pancreatic β cells. Fed mice lacking MFN1 in POMC neurons displayed enhanced hypothalamic mitochondrial oxygen flux and reactive oxygen species generation. Central delivery of antioxidants was able to normalize the phenotype. Collectively, our data posit MFN1-mediated mitochondrial dynamics in POMC neurons as an intrinsic nutrient-sensing mechanism and unveil an unrecognized link between this subset of neurons and insulin release. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin

    OpenAIRE

    Wang, Qian; Liu, Chen; Uchida, Aki; Chuang, Jen-Chieh; Walker, Angela; Liu, Tiemin; Osborne-Lawrence, Sherri; Mason, Brittany L.; Mosher, Christina; Berglund, Eric D.; Elmquist, Joel K.; Zigman, Jeffrey M.

    2014-01-01

    The hormone ghrelin stimulates eating and helps maintain blood glucose upon caloric restriction. While previous studies have demonstrated that hypothalamic arcuate AgRP neurons are targets of ghrelin, the overall relevance of ghrelin signaling within intact AgRP neurons is unclear. Here, we tested the functional significance of ghrelin action on AgRP neurons using a new, tamoxifen-inducible AgRP-CreERT2 transgenic mouse model that allows spatiotemporally-controlled re-expression of physiologi...

  13. Determination of histamine in milkfish stick implicated in food-borne poisoning

    Directory of Open Access Journals (Sweden)

    Yi-Chen Lee

    2016-01-01

    Full Text Available An incident of food-borne poisoning causing illness in 37 victims due to ingestion of fried fish sticks occurred in September 2014, in Tainan city, southern Taiwan. Leftovers of the victims' fried fish sticks and 16 other raw fish stick samples from retail stores were collected and tested to determine the occurrence of histamine and histamine-forming bacteria. Two suspected fried fish samples contained 86.6 mg/100 g and 235.0 mg/100 g histamine; levels that are greater than the potential hazard action level (50 mg/100 g in most illness cases. Given the allergy-like symptoms of the victims and the high histamine content in the suspected fried fish samples, this food-borne poisoning was strongly suspected to be caused by histamine intoxication. Moreover, the fish species of suspected samples was identified as milkfish (Chanos chanos, using polymerase chain reaction direct sequence analysis. In addition, four of the 16 commercial raw milkfish stick samples (25% had histamine levels greater than the US Food & Drug Administration guideline of 5.0 mg/100 g for scombroid fish and/or products. Ten histamine-producing bacterial strains, capable of producing 373–1261 ppm of histamine in trypticase soy broth supplemented with 1.0% L-histidine, were identified as Enterobacter aerogenes (4 strains, Enterobacter cloacae (1 strain, Morganella morganii (2 strains, Serratia marcescens (1 strain, Hafnia alvei (1 strain, and Raoultella orithinolytica (1 strain, by 16S ribosomal DNA sequencing with polymerase chain reaction amplification.

  14. Interactions of the orexin/hypocretin neurones and the histaminergic system.

    Science.gov (United States)

    Sundvik, M; Panula, P

    2015-02-01

    Histaminergic and orexin/hypocretin systems are components in the brain wake-promoting system. Both are affected in the sleep disorder narcolepsy, but the role of histamine in narcolepsy is unclear. The histaminergic neurones are activated by the orexin/hypocretin system in rodents, and the development of the orexin/hypocretin neurones is bidirectionally regulated by the histaminergic system in zebrafish. This review summarizes the current knowledge of the interactions of these two systems in normal and pathological conditions in humans and different animal models. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  15. Anti-histaminic potentials of Cnidoscolus aconitifolius in the ...

    African Journals Online (AJOL)

    Similarly, the observable significant reduction in the paw size was comparable to the Ibuprofen (100 mg/kg). Different concentrations of EECA (0.025, 0.05, 0.1 and 0.2 mg/kg) were assessed on the histamine release from the mast cells. The rats administered with 0.2mg/kg had the most profound effects on the histamine ...

  16. Histamine-2 receptor antagonists as immunomodulators: new therapeutic views?

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen

    1996-01-01

    Considerable evidence has emerged to suggest that histamine participates in the regulation of the inflammatory response, immune reaction, coagulation cascade, and cardiovascular function. Furthermore, histamine may play a major role in the growth of normal and malignant tissue as a regulator of p...

  17. Development of an animal model for heavy ion radiation-induced nausea and vomiting

    International Nuclear Information System (INIS)

    Yamatodani, Atsushi; Yamamoto, Kouichi; Nohara, Kyoko

    2003-01-01

    Emesis is one of the most characteristic side effects of radiation therapy. Clinical and pharmacological findings indicate that the peripheral serotonergic pathway is predominantly involved in the development of radiation-induced emesis, but the precise etiology is still unknown. We previously demonstrated that the activation of the histaminergic neuron system in the brain is essential for the development of motion-induced emesis (motion sickness). In this study, we studied the effects of heavy-ion irradiation on the hypothalamic histamine release measured in vivo with a microdialysis method in mice. Total body irradiation at dose of 8 Gy (carbon ion: 290 MeV/u, 6 cm spread-out Bragg peak (SOBP)) did not cause any significant changes in the histamine release in mice. These findings indicate that the central histaminergic activation is not involved in the development of radiation-induced emesis in mice. (author)

  18. The Hypocretin/Orexin Neuronal Networks in Zebrafish.

    Science.gov (United States)

    Elbaz, Idan; Levitas-Djerbi, Talia; Appelbaum, Lior

    2017-01-01

    The hypothalamic Hypocretin/Orexin (Hcrt) neurons secrete two Hcrt neuropeptides. These neurons and peptides play a major role in the regulation of feeding, sleep wake cycle, reward-seeking, addiction, and stress. Loss of Hcrt neurons causes the sleep disorder narcolepsy. The zebrafish has become an attractive model to study the Hcrt neuronal network because it is a transparent vertebrate that enables simple genetic manipulation, imaging of the structure and function of neuronal circuits in live animals, and high-throughput monitoring of behavioral performance during both day and night. The zebrafish Hcrt network comprises ~16-60 neurons, which similar to mammals, are located in the hypothalamus and widely innervate the brain and spinal cord, and regulate various fundamental behaviors such as feeding, sleep, and wakefulness. Here we review how the zebrafish contributes to the study of the Hcrt neuronal system molecularly, anatomically, physiologically, and pathologically.

  19. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation.

    Science.gov (United States)

    Coupé, Bérengère; Ishii, Yuko; Dietrich, Marcelo O; Komatsu, Masaaki; Horvath, Tamas L; Bouret, Sebastien G

    2012-02-08

    The hypothalamic melanocortin system, which includes neurons that produce pro-opiomelanocortin (POMC)-derived peptides, is a major negative regulator of energy balance. POMC neurons begin to acquire their unique properties during neonatal life. The formation of functional neural systems requires massive cytoplasmic remodeling that may involve autophagy, an important intracellular mechanism for the degradation of damaged proteins and organelles. Here we investigated the functional and structural effects of the deletion of an essential autophagy gene, Atg7, in POMC neurons. Lack of Atg7 in POMC neurons caused higher postweaning body weight, increased adiposity, and glucose intolerance. These metabolic impairments were associated with an age-dependent accumulation of ubiquitin/p62-positive aggregates in the hypothalamus and a disruption in the maturation of POMC-containing axonal projections. Together, these data provide direct genetic evidence that Atg7 in POMC neurons is required for normal metabolic regulation and neural development, and they implicate hypothalamic autophagy deficiency in the pathogenesis of obesity. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Histamine protects bone marrow against cellular damage induced by Ionizing radiation

    International Nuclear Information System (INIS)

    Medina, Vanina; Sambuco, Lorena; Massari, Noelia; Cricco, Graciela; Martin, Gabriela; Bergoc, Rosa; Rivera, Elena S.

    2008-01-01

    After surgery, radiotherapy is arguably one of the most important treatments for cancer, especially for localized disease that has not spread. However, ionizing radiation is toxic not only to tumor cells but also to healthy tissues causing serious adverse effects to patients. We have recently reported that histamine prevents ionizing radiation-induced toxicity on mouse small intestine. The aim of the present work was to determine whether histamine is able to protect bone marrow cells against ionizing radiation damage. For that purpose 56 mice were divided into 4 groups. Histamine and Histamine-10Gy groups received a daily subcutaneous histamine injection (0.1 mg/kg) starting 20 hours before irradiation and continued till the end of experimental period; untreated group received saline. Histamine-10Gy and untreated-10Gy groups were irradiated with a single dose on whole-body using Cesium-137 source (7 Gy/min) and were sacrificed 3 days after irradiation. Bone marrow was removed, fixed and stained with hematoxylin and eosin. The number of megacariocytes per 40x field, bone marrow tropism, edema, vascular damage, and other histological characteristics of bone marrow cells were evaluated. We further determined by immunohistochemistry the expression of proliferating cell nuclear antigen (PCNA) and cells in the S phase of the cell cycle were identified by immunohistochemical detection of 5-bromo-2'-deoxyuridine (BrdU) incorporation. Results indicate that histamine treatment substantially reduced the grade of aplasia, the edema and the vascular damage induced by ionizing radiation on bone marrow. Additionally, histamine preserved medullar components increasing significantly the number of megacariocytes per field (5.4 ± 0.4 vs. 2.8 ± 0.4 in Control-10 Gy, P<0.01). This effect was associated with an increased proliferation rate determined by the augmented PCNA expression and BrdU incorporation of bone marrow cells. On the basis of these results, we conclude that histamine

  1. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    Science.gov (United States)

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  2. Characteristics of recombinantly expressed rat and human histamine H3 receptors.

    Science.gov (United States)

    Wulff, Birgitte S; Hastrup, Sven; Rimvall, Karin

    2002-10-18

    Human and rat histamine H(3) receptors were recombinantly expressed and characterized using receptor binding and a functional cAMP assay. Seven of nine agonists had similar affinities and potencies at the rat and human histamine H(3) receptor. S-alpha-methylhistamine had a significantly higher affinity and potency at the human than rat receptor, and for 4-[(1R*,2R*)-2-(5,5-dimethyl-1-hexynyl)cyclopropyl]-1H-imidazole (Perceptin) the preference was the reverse. Only two of six antagonists had similar affinities and potencies at the human and the rat histamine H(3) receptor. Ciproxifan, thioperamide and (1R*,2R*)-trans-2-imidazol-4 ylcyclopropyl) (cyclohexylmethoxy) carboxamide (GT2394) had significantly higher affinities and potencies at the rat than at the human histamine H(3) receptor, while for N-(4-chlorobenzyl)-N-(7-pyrrolodin-1-ylheptyl)guanidine (JB98064) the preference was the reverse. All antagonists also showed potent inverse agonism properties. Iodoproxyfan, Perceptin, proxyfan and GR175737, compounds previously described as histamine H(3) receptor antagonists, acted as full or partial agonists at both the rat and the human histamine H(3) receptor. Copyright 2002 Elsevier Science B.V.

  3. PENGGUNAAN EKSTRAK TEH HIJAU (Camellia sinensis SEBAGAI PENGHAMBAT PEMBENTUKAN HISTAMIN PADA IKAN SEBELUM DIOLAH

    Directory of Open Access Journals (Sweden)

    Endang Sri Heruwati

    2009-12-01

    Full Text Available Penelitian penggunaan ekstrak teh hijau (Camellia sinensis sebagai penghambat pembentukan histamin pada ikan telah dilakukan. Ikan, terutama dari jenis skombroid, sangat rentan mengalami kerusakan karena terjadinya perubahan asam amino histidin yang terkandung dalam ikan menjadi senyawa histamin yang bersifat alergen, yang dikatalisasi oleh enzim histamin dekarboksilase (HDC. Teh hijau diketahui mengandung polifenol berupa senyawa epigalokatekingalat (EGCG yang merupakan penghambat enzim HDC, sehingga dekarboksilasi histidin menjadi histamin dapat dicegah. Perendaman ikan tongkol dalarn ekstrak teh hijau pada konsentrasi 0, 2, dan 4% dilakukan selama 30 menit, diikuti dengan pernindangan dalam larutan gararn 15% selama 30 menit diteruskan dengan penyimpanan ikan pindang pada suhu kamar. Pengambilan sampel dilakukan setiap hari selarna 4 hari penyimpanan untuk diamati perubahan mutu kimiawi (TVB dan kadar histarnin, mikrobiologi JPC dan bakteri pembentuk histamin, serta organoleptik (kenampakan, bau, tekstur, lendir, rasa. Hasil penelitian menunjukkan bahwa ikan yang direndam dalam ekstrak teh 4% mempunyai kadar histamin 21,3 ppm, jauh lebih rendah dibandingkan dengan ikan yang direndam dalam ekstrak teh 2% dan 0% yang masing-masing mencapai 64,4 pprn dan 101,4 ppm. Penghambatan pembentukan histamin oleh ekstrak teh hijau masih terjadi selama penyimpanan, yang terlihat dari rendahnya jumlah bakteri pembentuk histarnin dan kadar histamin dibandingkan dengan kontrol. Pada penyimpanan hari ke-3, penghambatan pembentukan histamin oleh ekstrak teh hijau tidak efektif, kemungkinan karena terlalu tingginya jurnlah bakteri pembentuk histamin, yaitu mencapai 108 cfu/g.

  4. High-performance liquid chromatographic determination of histamine in biological samples: the cerebrospinal fluid challenge--a review.

    Science.gov (United States)

    Wang, Zhaopin; Wu, Juanli; Wu, Shihua; Bao, Aimin

    2013-04-24

    Histamine, a neurotransmitter crucially involved in a number of basic physiological functions, undergoes changes in neuropsychiatric disorders. Detection of histamine in biological samples such as cerebrospinal fluid (CSF) is thus of clinical importance. The most commonly used method for measuring histamine levels is high performance liquid chromatography (HPLC). However, factors such as very low levels of histamine, the even lower CSF-histamine and CSF-histamine metabolite levels, especially in certain neuropsychiatric diseases, rapid formation of histamine metabolites, and other confounding elements during sample collection, make analysis of CSF-histamine and CSF-histamine metabolites a challenging task. Nonetheless, this challenge can be met, not only with respect to HPLC separation column, derivative reagent, and detector, but also in terms of optimizing the CSF sample collection. This review aims to provide a general insight into the quantitative analyses of histamine in biological samples, with an emphasis on HPLC instruments, methods, and hyphenated techniques, with the aim of promoting the development of an optimal and practical protocol for the determination of CSF-histamine and/or CSF-histamine metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Cardiovascular responses to chemical stimulation of the hypothalamic arcuate nucleus in the rat: role of the hypothalamic paraventricular nucleus.

    Directory of Open Access Journals (Sweden)

    Tetsuya Kawabe

    Full Text Available The mechanism of cardiovascular responses to chemical stimulation of the hypothalamic arcuate nucleus (ARCN was studied in urethane-anesthetized adult male Wistar rats. At the baseline mean arterial pressure (BLMAP close to normal, ARCN stimulation elicited decreases in MAP and sympathetic nerve activity (SNA. The decreases in MAP elicited by ARCN stimulation were attenuated by either gamma-aminobutyric acid (GABA, neuropeptide Y (NPY, or beta-endorphin receptor blockade in the ipsilateral hypothalamic paraventricular nucleus (PVN. Combined blockade of GABA-A, NPY1 and opioid receptors in the ipsilateral PVN converted the decreases in MAP and SNA to increases in these variables. Conversion of inhibitory effects on the MAP and SNA to excitatory effects following ARCN stimulation was also observed when the BLMAP was decreased to below normal levels by an infusion of sodium nitroprusside. The pressor and tachycardic responses to ARCN stimulation at below normal BLMAP were attenuated by blockade of melanocortin 3/4 (MC3/4 receptors in the ipsilateral PVN. Unilateral blockade of GABA-A receptors in the ARCN increased the BLMAP and heart rate (HR revealing tonic inhibition of the excitatory neurons in the ARCN. ARCN stimulation elicited tachycardia regardless of the level of BLMAP. ARCN neurons projecting to the PVN were immunoreactive for glutamic acid decarboxylase 67 (GAD67, NPY, and beta-endorphin. These results indicated that: 1 at normal BLMAP, decreases in MAP and SNA induced by ARCN stimulation were mediated via GABA-A, NPY1 and opioid receptors in the PVN, 2 lowering of BLMAP converted decreases in MAP following ARCN stimulation to increases in MAP, and 3 at below normal BLMAP, increases in MAP and HR induced by ARCN stimulation were mediated via MC3/4 receptors in the PVN. These results provide a base for future studies to explore the role of ARCN in cardiovascular diseases.

  6. FT-Raman and QM/MM study of the interaction between histamine and DNA

    International Nuclear Information System (INIS)

    Ruiz-Chica, A.J.; Soriano, A.; Tunon, I.; Sanchez-Jimenez, F.M.; Silla, E.; Ramirez, F.J.

    2006-01-01

    The interaction between histamine and highly polymerized calf-thymus DNA has been investigated using FT-Raman spectroscopy and the hybrid QM/MM (quantum mechanics/molecular mechanics) methodology. Raman spectra of solutions containing histamine and calf-thymus DNA, at different molar ratios, were recorded. Solutions were prepared at physiological settings of pH and ionic strength, using both natural and heavy water as the solvent. The analysis of the spectral changes on the DNA Raman spectra when adding different concentrations of histamine allowed us to identify the reactive sites of DNA and histamine, which were used to built two minor groove and one intercalated binding models. They were further used as starting points of the QM/MM theoretical study. However, minimal energy points were only reached for the two minor groove models. For each optimized structure, we calculated analytical force constants of histamine molecule in order to perform the vibrational dynamics. Normal mode descriptions allowed us to compare calculated wavenumbers for DNA-interacting histamine to those measured in the Raman spectra of DNA-histamine solutions

  7. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Mohammad eKhanfar

    2016-05-01

    Full Text Available With the very recent market approval of pitolisant (Wakix®, the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.

  8. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia.

    Science.gov (United States)

    Tsunekawa, Taku; Banno, Ryoichi; Mizoguchi, Akira; Sugiyama, Mariko; Tominaga, Takashi; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Sugimura, Yoshihisa; Arima, Hiroshi

    2017-02-01

    Protein tyrosine phosphatase 1B (PTP1B) regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD), remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3) was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO) on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT). In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia

    Directory of Open Access Journals (Sweden)

    Taku Tsunekawa

    2017-02-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD, remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3 was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT. In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions.

  10. Orexin/Hypocretin and Organizing Principles for a Diversity of Wake-Promoting Neurons in the Brain.

    Science.gov (United States)

    Schöne, Cornelia; Burdakov, Denis

    2017-01-01

    An enigmatic feature of behavioural state control is the rich diversity of wake-promoting neural systems. This diversity has been rationalized as 'robustness via redundancy', wherein wakefulness control is not critically dependent on one type of neuron or molecule. Studies of the brain orexin/hypocretin system challenge this view by demonstrating that wakefulness control fails upon loss of this neurotransmitter system. Since orexin neurons signal arousal need, and excite other wake-promoting neurons, their actions illuminate nonredundant principles of arousal control. Here, we suggest such principles by reviewing the orexin system from a collective viewpoint of biology, physics and engineering. Orexin peptides excite other arousal-promoting neurons (noradrenaline, histamine, serotonin, acetylcholine neurons), either by activating mixed-cation conductances or by inhibiting potassium conductances. Ohm's law predicts that these opposite conductance changes will produce opposite effects on sensitivity of neuronal excitability to current inputs, thus enabling orexin to differentially control input-output gain of its target networks. Orexin neurons also produce other transmitters, including glutamate. When orexin cells fire, glutamate-mediated downstream excitation displays temporal decay, but orexin-mediated excitation escalates, as if orexin transmission enabled arousal controllers to compute a time integral of arousal need. Since the anatomical and functional architecture of the orexin system contains negative feedback loops (e.g. orexin ➔ histamine ➔ noradrenaline/serotonin-orexin), such computations may stabilize wakefulness via integral feedback, a basic engineering strategy for set point control in uncertain environments. Such dynamic behavioural control requires several distinct wake-promoting modules, which perform nonredundant transformations of arousal signals and are connected in feedback loops.

  11. Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area – an anterograde tract-tracing study

    OpenAIRE

    Rege Sugárka Papp; Rege Sugárka Papp; Miklos ePalkovits; Miklos ePalkovits

    2014-01-01

    The projections from the dorsolateral hypothalamic area (DLH) to the lower brainstem have been investigated by using biotinylated dextran amine (BDA), an anterograde tracer in rats. The DLH can be divided into 3 areas (dorsomedial hypothalamus, perifornical area, lateral hypothalamic area), and further subdivided into 8 subdivisions. After unilateral stereotaxic injections of BDA into individual DLH subdivisions, the correct sites of injections were controlled histologically, and the distribu...

  12. The effect of intracerebroventricular injection of L-glutamate on the hypothalamic GnRH content in rat

    International Nuclear Information System (INIS)

    Fu Qiang; He Haoming

    2001-01-01

    Objective: To investigate the effect of intracerebroventricular injection of L-Glutamate (L-Glu) on hypothalamic gonadotrophin-releasing hormone (GnRH) content in male rats. Methods: The GnRH content in the supernatant of hypothalamic homogenates was measured by RIA. Results: The mean values of hypothalamic GnRH content in rat were 1.59 +- 0.41, 0.88 +- 0.34, 0.70 +- 0.42 ng/10mg wet tissue 40 min after intracerebroventricular injection of 0.01176, 0.1176, 1.176 μg/20 μl L-Glu respectively, which were significantly lower than those in controls with saline injections (P 3 H-Glu in rat at 40 min the author found that the intake of 3 H-glu by MBH was 1069.82 +- 490.33 cpm/10 mg wet tissues, the highest value among those taken by cerebrum, cerebellum, pituitary, POA and MBH itself. Conclusion: L-Glu probably participates in the regulation of functional activity of GnRH neurons in the hypothalamus

  13. Histamine as an emergent indoor contaminant: Accumulation and persistence in bed bug infested homes.

    Directory of Open Access Journals (Sweden)

    Zachary C DeVries

    Full Text Available Histamine is used in bronchial and dermal provocation, but it is rarely considered an environmental risk factor in allergic disease. Because bed bugs defecate large amounts of histamine as a component of their aggregation pheromone, we sought to determine if histamine accumulates in household dust in bed bug infested homes, and the effects of bed bug eradication with spatial heat on histamine levels in dust. We collected dust in homes and analyzed for histamine before, and up to three months after bed bug eradication. Histamine levels in bed bug infested homes were remarkably high (mean = 54.6±18.9 μg/100 mg of sieved household dust and significantly higher than in control homes not infested with bed bugs (mean < 2.5±1.9 μg/100 mg of sieved household dust. Heat treatments that eradicated the bed bug infestations failed to reduce histamine levels, even three months after treatment. We report a clear association between histamine levels in household dust and bed bug infestations. The high concentrations, persistence, and proximity to humans during sleep suggest that bed bug-produced histamine may represent an emergent contaminant and pose a serious health risk in the indoor environment.

  14. Modulation of Mast Cell Toll-Like Receptor 3 Expression and Cytokines Release by Histamine

    Directory of Open Access Journals (Sweden)

    Guogang Xie

    2018-05-01

    Full Text Available Background/Aims: As a major inflammatory molecule released from mast cell activation, histamine has been reported to regulate TLRs expression and cytokine production in inflammatory cells present in the microenvironment. In this study, we determined the ability of histamine to modulate TLRs expression and cytokine production in mast cells. Methods: HMC-1 and P815 cells were exposed to various concentrations of histamine in the presence or absence of histamine antagonist for 2, 6 or 16 h. The effect of histamine on the expression of TLR3 protein and mRNA was analyzed by flow cytometry、 RT-PCR and immunofluorescent microscopy. Furthermore, we also examined the effect of histamine on the secretion of MCP-1 and IL-13 from mast cells by ELISA. Results: The amplification of TLR3 mRNA and protein expression in mast cells was observed after incubation with histamine, which was accompanied by increasing secretion of IL-13 and MCP-1 via H1 receptor. The signaling pathways of PI3K/ Akt and Erk1/2/MAPK contributed to these induction effects. Conclusion: These results demonstrate that histamine up-regulates the expression of TLR3 and secretion of IL-13 and MCP-1 in mast cells, thus identifying a new mechanism for the histamine inducing allergic response.

  15. Histamine receptors in human detrusor smooth muscle cells: physiological properties and immunohistochemical representation of subtypes.

    Science.gov (United States)

    Neuhaus, Jochen; Weimann, Annett; Stolzenburg, Jens-Uwe; Dawood, Waled; Schwalenberg, Thilo; Dorschner, Wolfgang

    2006-06-01

    The potent inflammatory mediator histamine is released from activated mast cells in interstitial cystitis (IC). Here, we report on the histamine receptor subtypes involved in the intracellular calcium response of cultured smooth muscle cells (cSMC). Fura-2 was used to monitor the calcium response in cSMC, cultured from human detrusor biopsies. The distribution of histamine receptor subtypes was addressed by immunocytochemistry in situ and in vitro. Histamine stimulated a maximum of 92% of the cells (n=335), being more effective than carbachol (70%, n=920). HTMT (H1R-agonist), dimaprit (H2R) and MTH (H3R) lead to significant lower numbers of reacting cells (60, 48 and 54%). Histamine receptor immunoreactivity (H1R, H2R, H3R, H4R) was found in situ and in vitro. Histamine-induced calcium increase is mediated by distinct histamine receptors. Thus, pre-therapeutic evaluation of histamine receptor expression in IC patients may help to optimize therapy by using a patient-specific cocktail of subtype-specific histamine receptor antagonists.

  16. Gap Junctions Contribute to Ictal/Interictal Genesis in Human Hypothalamic Hamartomas

    Directory of Open Access Journals (Sweden)

    Jie Wu

    2016-06-01

    Full Text Available Human hypothalamic hamartoma (HH is a rare subcortical lesion associated with treatment-resistant epilepsy. Cellular mechanisms responsible for epileptogenesis are unknown. We hypothesized that neuronal gap junctions contribute to epileptogenesis through synchronous activity within the neuron networks in HH tissue. We studied surgically resected HH tissue with Western-blot analysis, immunohistochemistry, electron microscopy, biocytin microinjection of recorded HH neurons, and microelectrode patch clamp recordings with and without pharmacological blockade of gap junctions. Normal human hypothalamus tissue was used as a control. Western blots showed increased expression of both connexin-36 (Cx36 and connexin-43 (Cx43 in HH tissue compared with normal human mammillary body tissue. Immunohistochemistry demonstrated that Cx36 and Cx43 are expressed in HH tissue, but Cx36 was mainly expressed within neuron clusters while Cx43 was mainly expressed outside of neuron clusters. Gap-junction profiles were observed between small HH neurons with electron microscopy. Biocytin injection into single recorded small HH neurons showed labeling of adjacent neurons, which was not observed in the presence of a neuronal gap-junction blocker, mefloquine. Microelectrode field recordings from freshly resected HH slices demonstrated spontaneous ictal/interictal-like discharges in most slices. Bath-application of gap-junction blockers significantly reduced ictal/interictal-like discharges in a concentration-dependent manner, while not affecting the action-potential firing of small gamma-aminobutyric acid (GABA neurons observed with whole-cell patch-clamp recordings from the same patient's HH tissue. These results suggest that neuronal gap junctions between small GABAergic HH neurons participate in the genesis of epileptic-like discharges. Blockade of gap junctions may be a new therapeutic strategy for controlling seizure activity in HH patients.

  17. Histamine and the regulation of body weight

    DEFF Research Database (Denmark)

    Jørgensen, Emilie A; Knigge, Ulrich; Warberg, Jørgen

    2007-01-01

    Energy intake and expenditure is regulated by a complex interplay between peripheral and central factors. An exhaustive list of peptides and neurotransmitters taking part in this complex regulation of body weight exists. Among these is histamine, which acts as a central neurotransmitter. In the p......Energy intake and expenditure is regulated by a complex interplay between peripheral and central factors. An exhaustive list of peptides and neurotransmitters taking part in this complex regulation of body weight exists. Among these is histamine, which acts as a central neurotransmitter...

  18. Developmental changes in hypothalamic oxytocin and oxytocin receptor mRNA expression and their sensitivity to fasting in male and female rats.

    Science.gov (United States)

    Matsuzaki, Toshiya; Iwasa, Takeshi; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kawami, Takako; Murakami, Masahiro; Yamasaki, Mikio; Yamamoto, Yuri; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-04-01

    Oxytocin (OT) affects the central nervous system and is involved in a variety of social and non-social behaviors. Recently, the role played by OT in energy metabolism and its organizational effects on estrogen receptor alpha (ER-α) during the neonatal period have gained attention. In this study, the developmental changes in the hypothalamic mRNA levels of OT, the OT receptor (OTR), and ER-α were evaluated in male and female rats. In addition, the fasting-induced changes in the hypothalamic mRNA levels of OT and the OTR were evaluated. Hypothalamic explants were taken from postnatal day (PND) 10, 20, and 30 rats, and the mRNA level of each molecule was measured. Hypothalamic OT mRNA expression increased throughout the developmental period in both sexes. The rats' hypothalamic OTR mRNA levels were highest on PND 10 and decreased throughout the developmental period. In the male rats, the hypothalamic mRNA levels of ER-α were higher on PND 30 than on PND 10. On the other hand, no significant differences in hypothalamic ER-α mRNA expression were detected among the examined time points in the female rats, although hypothalamic ER-α mRNA expression tended to be higher on PND 30 than on PND 10. Significant positive correlations were detected between hypothalamic OT and ER-α mRNA expression in both the male and female rats. Hypothalamic OT mRNA expression was not affected by fasting at any of the examined time points in either sex. These results indicate that hypothalamic OT expression is not sensitive to fasting during the developmental period. In addition, as a positive correlation was detected between hypothalamic OT and ER-α mRNA expression, these two molecules might interact with each other to induce appropriate neuronal development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Nutritive, Post-ingestive Signals Are the Primary Regulators of AgRP Neuron Activity

    Directory of Open Access Journals (Sweden)

    Zhenwei Su

    2017-12-01

    Full Text Available Summary: The brain regulates food intake by processing sensory cues and peripheral physiological signals, but the neural basis of this integration remains unclear. Hypothalamic, agouti-related protein (AgRP-expressing neurons are critical regulators of food intake. AgRP neuron activity is high during hunger and is rapidly reduced by the sight and smell of food. Here, we reveal two distinct components of AgRP neuron activity regulation: a rapid but transient sensory-driven signal and a slower, sustained calorie-dependent signal. We discovered that nutrients are necessary and sufficient for sustained reductions in AgRP neuron activity and that activity reductions are proportional to the calories obtained. This change in activity is recapitulated by exogenous administration of gut-derived satiation signals. Furthermore, we showed that the nutritive value of food trains sensory systems—in a single trial—to drive rapid, anticipatory AgRP neuron activity inhibition. Together, these data demonstrate that nutrients are the primary regulators of AgRP neuron activity. : Su et al. demonstrate that nutrient content in the GI tract is rapidly signaled to hypothalamic neurons activated by hunger. This rapid effect is mediated by three satiation signals that synergistically reduce the activity of AgRP neurons. These findings uncover how hunger circuits in the brain are regulated and raise the possibility that hunger can be pharmacologically controlled. Keywords: calcium imaging, AgRP neurons, calories, satiation signals, sensory regulation, single trial learning, cholecystokinin, CCK, peptide tyrosine tyrosine, PYY, amylin, homeostasis

  20. Immunochemical cross-reactivity between albumin and solid-phase adsorbed histamine

    DEFF Research Database (Denmark)

    Poulsen, L K; Nolte, H; Søndergaard, I

    1990-01-01

    For production of an antibody against histamine, this was coupled to human serum albumin (HSA) and used for immunization of rabbits. To test the antiserum, an immunoradiometric assay was developed comprising solid-phase bound histamine, antisera and radiolabelled protein A. Titration and inhibition...

  1. Histamine modulation of the basal ganglia circuitry in the development of pathological grooming

    Science.gov (United States)

    Rapanelli, Maximiliano; Frick, Luciana

    2017-01-01

    Aberrant histaminergic function has been proposed as a cause of tic disorders. A rare mutation in the enzyme that produces histamine (HA), histidine decarboxylase (HDC), has been identified in patients with Tourette syndrome (TS). Hdc knockout mice exhibit repetitive behavioral pathology and neurochemical characteristics of TS, establishing them as a plausible model of tic pathophysiology. Where, when, and how HA deficiency produces these effects has remained unclear: whether the contribution of HA deficiency to pathogenesis is acute or developmental, and where in the brain the relevant consequences of HA deficiency occur. Here, we address these key pathophysiological questions, using anatomically and cellularly targeted manipulations in mice. We report that specific ablation or chemogenetic silencing of histaminergic neurons in the tuberomammillary nucleus (TMN) of the hypothalamus leads to markedly elevated grooming, a form of repetitive behavioral pathology, and to elevated markers of neuronal activity in both dorsal striatum and medial prefrontal cortex. Infusion of HA directly into the striatum reverses this behavioral pathology, confirming that acute HA deficiency mediates the effect. Bidirectional chemogenetic regulation reveals that dorsal striatum neurons activated after TMN silencing are both sufficient to produce repetitive behavioral pathology and necessary for the full expression of the effect. Chemogenetic activation of TMN-regulated medial prefrontal cortex neurons, in contrast, increases locomotion and not grooming. These data confirm the centrality of striatal regulation by neurotransmitter HA in the adult in the production of pathological grooming. PMID:28584117

  2. Histamine as an emergent indoor contaminant: Accumulation and persistence in bed bug infested homes.

    Science.gov (United States)

    DeVries, Zachary C; Santangelo, Richard G; Barbarin, Alexis M; Schal, Coby

    2018-01-01

    Histamine is used in bronchial and dermal provocation, but it is rarely considered an environmental risk factor in allergic disease. Because bed bugs defecate large amounts of histamine as a component of their aggregation pheromone, we sought to determine if histamine accumulates in household dust in bed bug infested homes, and the effects of bed bug eradication with spatial heat on histamine levels in dust. We collected dust in homes and analyzed for histamine before, and up to three months after bed bug eradication. Histamine levels in bed bug infested homes were remarkably high (mean = 54.6±18.9 μg/100 mg of sieved household dust) and significantly higher than in control homes not infested with bed bugs (mean emergent contaminant and pose a serious health risk in the indoor environment.

  3. Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (Echinodermata: Echinoidea

    Directory of Open Access Journals (Sweden)

    Sutherby Josh

    2012-04-01

    Full Text Available Abstract Background A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement, i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA, a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus. Results Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae. Conclusions We

  4. Le dosage de l'histamine plasmatique lors de réactions anaphylactoïdes chez le sujet anesthésié: Influence des méthodes de prélèvement et de la préparation du plasma sur l'histaminémie mesurée [Plasma histamine assay in anaphylactoid reactions of the anesthetized subject. Effects of collection methods and plasma preparation on measured histamine

    OpenAIRE

    Lorenz, Wilfried; Neugebauer, E.; Schmal, A.

    1982-01-01

    Plasma histamine assay in man is indicated for the diagnosis of histamine release, as well as the elucidation of the mechanisms of adverse drug reactions, and the identification of clinical situations in anaesthesia and surgery where a pathological plasma histamine level may occur. Normal and pathological plasma histamine levels vary considerably in the literature. Data from various studies, especially one involving 300 patients in Heidelberg (G.F.R.), allow us to define the normal range for ...

  5. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience.

    Science.gov (United States)

    Singh-Taylor, A; Molet, J; Jiang, S; Korosi, A; Bolton, J L; Noam, Y; Simeone, K; Cope, J; Chen, Y; Mortazavi, A; Baram, T Z

    2018-03-01

    Resilience to stress-related emotional disorders is governed in part by early-life experiences. Here we demonstrate experience-dependent re-programming of stress-sensitive hypothalamic neurons, which takes place through modification of neuronal gene expression via epigenetic mechanisms. Specifically, we found that augmented maternal care reduced glutamatergic synapses onto stress-sensitive hypothalamic neurons and repressed expression of the stress-responsive gene, Crh. In hypothalamus in vitro, reduced glutamatergic neurotransmission recapitulated the repressive effects of augmented maternal care on Crh, and this required recruitment of the transcriptional repressor repressor element-1 silencing transcription factor/neuron restrictive silencing factor (NRSF). Increased NRSF binding to chromatin was accompanied by sequential repressive epigenetic changes which outlasted NRSF binding. chromatin immunoprecipitation-seq analyses of NRSF targets identified gene networks that, in addition to Crh, likely contributed to the augmented care-induced phenotype, including diminished depression-like and anxiety-like behaviors. Together, we believe these findings provide the first causal link between enriched neonatal experience, synaptic refinement and induction of epigenetic processes within specific neurons. They uncover a novel mechanistic pathway from neonatal environment to emotional resilience.

  6. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons.

    Science.gov (United States)

    Claret, Marc; Smith, Mark A; Batterham, Rachel L; Selman, Colin; Choudhury, Agharul I; Fryer, Lee G D; Clements, Melanie; Al-Qassab, Hind; Heffron, Helen; Xu, Allison W; Speakman, John R; Barsh, Gregory S; Viollet, Benoit; Vaulont, Sophie; Ashford, Michael L J; Carling, David; Withers, Dominic J

    2007-08-01

    Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. In contrast, AgRP alpha 2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus.

  7. The role of hypothalamic inflammation, the hypothalamic-pituitary-adrenal axis and serotonin in the cancer anorexia-cachexia syndrome.

    Science.gov (United States)

    van Norren, Klaske; Dwarkasing, Jvalini T; Witkamp, Renger F

    2017-09-01

    In cancer patients, the development of cachexia (muscle wasting) is frequently aggravated by anorexia (loss of appetite). Their concurrence is often referred to as anorexia-cachexia syndrome. This review focusses on the recent evidence underlining hypothalamic inflammation as key driver of these processes. Special attention is given to the involvement of hypothalamic serotonin. The anorexia-cachexia syndrome is directly associated with higher mortality in cancer patients. Recent reports confirm its severe impact on the quality of life of patients and their families.Hypothalamic inflammation has been shown to contribute to muscle and adipose tissue loss in cancer via central hypothalamic interleukine (IL)1β-induced activation of the hypothalamic-pituitary-adrenal axis. The resulting release of glucocorticoids directly stimulates catabolic processes in these tissues via activation of the ubiquitin-proteosome pathway. Next to this, hypothalamic inflammation has been shown to reduce food intake in cancer by triggering changes in orexigenic and anorexigenic responses via upregulation of serotonin availability and stimulation of its signalling pathways in hypothalamic tissues. This combination of reduced food intake and stimulation of tissue catabolism represents a dual mechanism by which hypothalamic inflammation contributes to the development and maintenance of anorexia and cachexia in cancer. Hypothalamic inflammation is a driving force in the development of the anorexia-cachexia syndrome via hypothalamic-pituitary-adrenal axis and serotonin pathway activation.

  8. Neonatal ghrelin programs development of hypothalamic feeding circuits

    Science.gov (United States)

    Steculorum, Sophie M.; Collden, Gustav; Coupe, Berengere; Croizier, Sophie; Lockie, Sarah; Andrews, Zane B.; Jarosch, Florian; Klussmann, Sven; Bouret, Sebastien G.

    2015-01-01

    A complex neural network regulates body weight and energy balance, and dysfunction in the communication between the gut and this neural network is associated with metabolic diseases, such as obesity. The stomach-derived hormone ghrelin stimulates appetite through interactions with neurons in the arcuate nucleus of the hypothalamus (ARH). Here, we evaluated the physiological and neurobiological contribution of ghrelin during development by specifically blocking ghrelin action during early postnatal development in mice. Ghrelin blockade in neonatal mice resulted in enhanced ARH neural projections and long-term metabolic effects, including increased body weight, visceral fat, and blood glucose levels and decreased leptin sensitivity. In addition, chronic administration of ghrelin during postnatal life impaired the normal development of ARH projections and caused metabolic dysfunction. Consistent with these observations, direct exposure of postnatal ARH neuronal explants to ghrelin blunted axonal growth and blocked the neurotrophic effect of the adipocyte-derived hormone leptin. Moreover, chronic ghrelin exposure in neonatal mice also attenuated leptin-induced STAT3 signaling in ARH neurons. Collectively, these data reveal that ghrelin plays an inhibitory role in the development of hypothalamic neural circuits and suggest that proper expression of ghrelin during neonatal life is pivotal for lifelong metabolic regulation. PMID:25607843

  9. Major advances in the development of histamine H4 receptor ligands.

    Science.gov (United States)

    Smits, Rogier A; Leurs, Rob; de Esch, Iwan J P

    2009-08-01

    The search for new and potent histamine H4 receptor ligands is leading to a steadily increasing number of scientific publications and patent applications. Several interesting and structurally diverse compounds have been found, but fierce IP competition for a preferred 2-aminopyrimidine scaffold is becoming apparent. Recent investigations into the role of the histamine H(4)R in (patho)physiology and the use of H4R ligands in in vivo disease models reveal enormous potential in the field of inflammation and allergy, among others. The development of ligands that display activity at two or more histamine receptor (HR) subtypes is another clinical opportunity that is currently being explored. Taken together, the histamine H4R field is gearing up for clinical studies and has the potential to deliver another generation of blockbuster drugs.

  10. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels

    Science.gov (United States)

    Serotonin 2C receptors (5-HT2CRs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis ,and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT2CRs have no...

  11. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    Science.gov (United States)

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  12. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents

    Science.gov (United States)

    Benoit, Stephen C.; Kemp, Christopher J.; Elias, Carol F.; Abplanalp, William; Herman, James P.; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G.; Holland, William L.; Clegg, Deborah J.

    2009-01-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-θ to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-θ nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-θ attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-θ activation, resulting in reduced insulin activity. PMID:19726875

  13. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents.

    Science.gov (United States)

    Benoit, Stephen C; Kemp, Christopher J; Elias, Carol F; Abplanalp, William; Herman, James P; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G; Holland, William L; Clegg, Deborah J

    2009-09-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-theta, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-theta was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-theta to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-theta nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-theta attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-theta activation, resulting in reduced insulin activity.

  14. Mct8 and trh co-expression throughout the hypothalamic paraventricular nucleus is modified by dehydration-induced anorexia in rats.

    Science.gov (United States)

    Alvarez-Salas, Elena; Mengod, Guadalupe; García-Luna, Cinthia; Soberanes-Chávez, Paulina; Matamoros-Trejo, Gilberto; de Gortari, Patricia

    2016-04-01

    Thyrotropin-releasing hormone (TRH) is a neuropeptide with endocrine and neuromodulatory effects. TRH from the paraventricular hypothalamic nucleus (PVN) participates in the control of energy homeostasis; as a neuromodulator TRH has anorexigenic effects. Negative energy balance decreases PVN TRH expression and TSH concentration; in contrast, a particular model of anorexia (dehydration) induces in rats a paradoxical increase in TRH expression in hypophysiotropic cells from caudal PVN and high TSH serum levels, despite their apparent hypothalamic hyperthyroidism and low body weight. We compared here the mRNA co-expression pattern of one of the brain thyroid hormones' transporters, the monocarboxylate transporter-8 (MCT8) with that of TRH in PVN subdivisions of dehydration-induced anorexic (DIA) and control rats. Our aim was to identify whether a low MCT8 expression in anorexic rats could contribute to their high TRH mRNA content.We registered daily food intake and body weight of 7-day DIA and control rats and analyzed TRH and MCT8 mRNA co-expression throughout the PVN by double in situ hybridization assays. We found that DIA rats showed increased number of TRHergic cells in caudal PVN, as well as a decreased percentage of TRH-expressing neurons that co-expressed MCT8 mRNA signal. Results suggest that the reduced proportion of double TRH/MCT8 expressing cells may be limiting the entry of hypothalamic triiodothyronine to the greater number of TRH-expressing neurons from caudal PVN and be in part responsible for the high TRH expression in anorexia rats and for the lack of adaptation of their hypothalamic-pituitary-thyroid axis to their low food intake.

  15. Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle.

    Science.gov (United States)

    Santiago, Ammy M; Clegg, Deborah J; Routh, Vanessa H

    2016-12-01

    17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. These data suggest that physiological

  16. Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle

    Science.gov (United States)

    Santiago, Ammy M.; Clegg, Deborah J.; Routh, Vanessa H.

    2016-01-01

    Objective 17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). Methods These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. Results The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. Conclusion

  17. Presynaptic localization of histamine H3-receptors in rat brain

    International Nuclear Information System (INIS)

    Fujimoto, K.; Mizuguchi, H.; Fukui, H.; Wada, H.

    1991-01-01

    The localization of histamine H3-receptors in subcellular fractions from the rat brain was examined in a [3H] (R) alpha-methylhistamine binding assay and compared with those of histamine H1- and adrenaline alpha 1- and alpha 2-receptors. Major [3H](R) alpha-methylhistamine binding sites with increased specific activities ([3H]ligand binding vs. protein amount) were recovered from the P2 fraction by differential centrifugation. Minor [3H](R)alpha-methylhistamine binding sites with increased specific activities were also detected in the P3 fraction. Further subfractionation of the P2 fraction by discontinuous sucrose density gradient centrifugation showed major recoveries of [3H](R)alpha-methylhistamine binding in myelin (MYE) and synaptic plasma membrane (SPM) fractions. A further increase in specific activity was observed in the MYE fraction, but the SPM fraction showed no significant increase in specific activity. Adrenaline alpha 2-receptors, the pre-synaptic autoreceptors, in a [3H] yohimbine binding assay showed distribution patterns similar to histamine H3-receptors. On the other hand, post-synaptic histamine H1- and adrenaline alpha 1-receptors were closely localized and distributed mainly in the SPM fraction with increased specific activity. Only a negligible amount was recovered in the MYE fraction, unlike the histamine H3- and adrenaline alpha 2-receptors

  18. Comparison of in vitro histamine release by ionic and nonionic radiographyic contrast media

    International Nuclear Information System (INIS)

    Faraj, B.A.; Martin, L.G.

    1989-01-01

    This paper discusses a study whose results showed that in 53 hospitalized patients undergoing cardiovascular catheterization, incubation of their blood samples with varying concentrations of an ionic contrast medium (Angiovist-370, 60--631 mM) induced a significant (P < .005) amount of histamine release from whole blood (3.5%--10%), as compared with the histamine release following incubation with a nonionic contrast medium. Data suggest that the use of nonionic contrast media may induce minimal histamine release and thereby involve less patient risk from the histamine-mediated allergic and hemodynamic side effects associated with radiographic contrast media procedures

  19. Extended-gate organic field-effect transistor for the detection of histamine in water

    Science.gov (United States)

    Minamiki, Tsukuru; Minami, Tsuyoshi; Yokoyama, Daisuke; Fukuda, Kenjiro; Kumaki, Daisuke; Tokito, Shizuo

    2015-04-01

    As part of our ongoing research program to develop health care sensors based on organic field-effect transistor (OFET) devices, we have attempted to detect histamine using an extended-gate OFET. Histamine is found in spoiled or decayed fish, and causes foodborne illness known as scombroid food poisoning. The new OFET device possesses an extended gate functionalized by carboxyalkanethiol that can interact with histamine. As a result, we have succeeded in detecting histamine in water through a shift in OFET threshold voltage. This result indicates the potential utility of the designed OFET devices in food freshness sensing.

  20. Cold urticaria. Dissociation of cold-evoked histamine release and urticara following cold challenge.

    Science.gov (United States)

    Keahey, T M; Greaves, M W

    1980-02-01

    Nine patients with acquired cold urticaria were studied to assess the effects of beta-adrenergic agents, xanthines, and corticosteroids on cold-evoked histamine release from skin in vivo. The patients, in all of whom an immediate urticarial response developed after cooling of the forearm, demonstrated release of histamine into the venous blood draining that forearm. Following treatment with aminophylline and albuterol in combination or prednisone alone, suppression of histamine release occurred in all but one patient. In some patients, this was accompanied by a subjective diminution in pruritus or buring, but there was no significant improvement in the ensuing edema or erythema. In one patient, total suppression of histamine release was achieved without any effect on whealing and erythema in response to cold challenge. Our results suggest that histamine is not central to the pathogenesis of vascular changes in acquired cold urticaria.

  1. Measurement of histamine release from human lung tissue ex vivo by microdialysis technique

    DEFF Research Database (Denmark)

    Nissen, Dan; Petersen, Lars Jelstrup; Nolte, H

    1998-01-01

    OBJECTIVE AND DESIGN: Currently no method is available for measurement of mediator release from intact human lung. In this study, a microdialysis technique was used to measure histamine release from mast cells in human lung tissue ex vivo. MATERIAL: Microdialysis fibers of 216 microm were inserted...... responses were observed but data could be reproduced within individual donors. Monocyte chemoattractant protein-1, a potent basophil secretagogue, did not induce histamine release in lung tissue which indicated mast cells to be the histamine source. Substance P did not release histamine in the lung tissue....... CONCLUSIONS: The microdialysis technique allowed measurements of histamine release from mast cells in intact lung ex vivo. The method may prove useful since a number of experiments can be performed in a few hours in intact lung tissue without any dispersion or enzymatic treatment....

  2. Inhibition of basophil histamine release by gangliosides. Further studies on the significance of cell membrane sialic acid in the histamine release process

    DEFF Research Database (Denmark)

    Jensen, C; Norn, S; Thastrup, Ole

    1987-01-01

    with the glucolipid mixture increased the sialic acid content of the cells, and this increase was attributed to an insertion of gangliosides into the cell membrane. The inhibition of histamine release was abolished by increasing the calcium concentration, which substantiates our previous findings that cell membrane......Histamine release from human basophils was inhibited by preincubation of the cells with a glucolipid mixture containing sialic acid-containing gangliosides. This was true for histamine release induced by anti-IgE, Concanavalin A and the calcium ionophore A23187, whereas the release induced by S....... aureus Wood 46 was not affected. It was demonstrated that the inhibitory capacity of the glucolipid mixture could be attributed to the content of gangliosides, since no inhibition was obtained with cerebrosides or with gangliosides from which sialic acid was removed. Preincubation of the cells...

  3. Effect of Intravasclar Influsion of Endogenous Pyrogen or Prostaglandin E2 on Neuronal Activity of Rat's Hypothalamus

    OpenAIRE

    Sakata, Yoshiyuki; Watanabe, Tatsuo; Morimoto, Akio; Murakami, Naotoshi

    1989-01-01

    We investigated the effects of intracarotid infusion of prostaglandin E2 or intravenous infusion of an endogenous pyrogen on the neuronal activity of the neuronal activity of the preoptic and anterior hypothalamic (PO/AH) region in rats. The present results suggest that thermore sponsive neurons of the PO/AH region respond well to intravascular application of prostaglandin E2 or the endogenous pyrogen, compared with thermally insensive neurons. Intravenous infusion of the endogenous pyrogen a...

  4. Hypothalamic Neuroendocrine Correlates of Cutaneous Burn Injury in the Rat. I. Scanning Electron Microscopy

    Science.gov (United States)

    1986-01-01

    cat [9], the rabbit [51], The emergence of a large population of neurons into the subhuman primates [10-12, 24, 25, 38--41], and the human as cerebral...active sub- normal hypothalamic fetal neurografts into the third cerebral stances has been well documented in mammalian cerebro - ventricular lumen of...in trauma. 10. Coates, P. W. Responses of tanycytes in primate third ventricle In: Mamlmalian Terimngenexsis, chapter 9, edited by L. Girar- to

  5. Glucagon Effects on 3H-Histamine Uptake by the Isolated Guinea-Pig Heart during Anaphylaxis

    Directory of Open Access Journals (Sweden)

    Mirko Rosic

    2014-01-01

    Full Text Available We estimated the influence of acute glucagon applications on 3H-histamine uptake by the isolated guinea-pig heart, during a single 3H-histamine passage through the coronary circulation, before and during anaphylaxis, and the influence of glucagon on level of histamine, NO, O2-, and H2O2 in the venous effluent during anaphylaxis. Before anaphylaxis, glucagon pretreatment does not change 3H-histamine Umax and the level of endogenous histamine. At the same time, in the presence of glucagon, 3H-histamine Unet is increased and backflux is decreased when compared to the corresponding values in the absence of glucagon. During anaphylaxis, in the presence of glucagon, the values of 3H-histamine Umax and Unet are significantly higher and backflux is significantly lower in the presence of glucagon when compared to the corresponding values in the absence of glucagon. The level of endogenous histamine during anaphylaxis in the presence of glucagon (6.9–7.38 × 10−8 μM is significantly lower than the histamine level in the absence of glucagon (10.35–10.45 × 10−8 μM. Glucagon pretreatment leads to a significant increase in NO release (5.69 nmol/mL in comparison with the period before glucagon administration (2.49 nmol/mL. Then, in the presence of glucagon, O2- level fails to increase during anaphylaxis. Also, our results show no significant differences in H2O2 levels before, during, and after anaphylaxis in the presence of glucagon, but these values are significantly lower than the corresponding values in the absence of glucagon. In conclusion, our results show that glucagon increases NO release and prevents the increased release of free radicals during anaphylaxis, and decreases histamine level in the venous effluent during cardiac anaphylaxis, which may be a consequence of decreased histamine release and/or intensified histamine capturing by the heart during anaphylaxis.

  6. Glucagon effects on 3H-histamine uptake by the isolated guinea-pig heart during anaphylaxis.

    Science.gov (United States)

    Rosic, Mirko; Parodi, Oberdan; Jakovljevic, Vladimir; Colic, Maja; Zivkovic, Vladimir; Jokovic, Vuk; Pantovic, Suzana

    2014-01-01

    We estimated the influence of acute glucagon applications on (3)H-histamine uptake by the isolated guinea-pig heart, during a single (3)H-histamine passage through the coronary circulation, before and during anaphylaxis, and the influence of glucagon on level of histamine, NO, O2 (-), and H2O2 in the venous effluent during anaphylaxis. Before anaphylaxis, glucagon pretreatment does not change (3)H-histamine Umax and the level of endogenous histamine. At the same time, in the presence of glucagon, (3)H-histamine Unet is increased and backflux is decreased when compared to the corresponding values in the absence of glucagon. During anaphylaxis, in the presence of glucagon, the values of (3)H-histamine Umax and Unet are significantly higher and backflux is significantly lower in the presence of glucagon when compared to the corresponding values in the absence of glucagon. The level of endogenous histamine during anaphylaxis in the presence of glucagon (6.9-7.38 × 10(-8) μM) is significantly lower than the histamine level in the absence of glucagon (10.35-10.45 × 10(-8) μM). Glucagon pretreatment leads to a significant increase in NO release (5.69 nmol/mL) in comparison with the period before glucagon administration (2.49 nmol/mL). Then, in the presence of glucagon, O2 (-) level fails to increase during anaphylaxis. Also, our results show no significant differences in H2O2 levels before, during, and after anaphylaxis in the presence of glucagon, but these values are significantly lower than the corresponding values in the absence of glucagon. In conclusion, our results show that glucagon increases NO release and prevents the increased release of free radicals during anaphylaxis, and decreases histamine level in the venous effluent during cardiac anaphylaxis, which may be a consequence of decreased histamine release and/or intensified histamine capturing by the heart during anaphylaxis.

  7. TCPTP Regulates Insulin Signalling in AgRP Neurons to Coordinate Glucose Metabolism with Feeding.

    Science.gov (United States)

    Dodd, Garron T; Lee-Young, Robert S; Brüning, Jens C; Tiganis, Tony

    2018-04-30

    Insulin regulates glucose metabolism by eliciting effects on peripheral tissues as well as the brain. Insulin receptor (IR) signalling inhibits AgRP-expressing neurons in the hypothalamus to contribute to the suppression of hepatic glucose production (HGP) by insulin, whereas AgRP neuronal activation attenuates brown adipose tissue (BAT) glucose uptake. The tyrosine phosphatase TCPTP suppresses IR signalling in AgRP neurons. Hypothalamic TCPTP is induced by fasting and degraded after feeding. Here we assessed the influence of TCPTP in AgRP neurons in the control of glucose metabolism. TCPTP deletion in AgRP neurons ( Agrp -Cre; Ptpn2 fl/fl ) enhanced insulin sensitivity as assessed by the increased glucose infusion rates and reduced HGP during hyperinsulinemic-euglycemic clamps, accompanied by increased [ 14 C]-2-deoxy-D-glucose uptake in BAT and browned white adipose tissue. TCPTP deficiency in AgRP neurons promoted the intracerebroventricular insulin-induced repression of hepatic gluconeogenesis in otherwise unresponsive food-restricted mice yet had no effect in fed/satiated mice where hypothalamic TCPTP levels are reduced. The improvement in glucose homeostasis in Agrp -Cre; Ptpn2 fl/fl mice was corrected by IR heterozygosity ( Agrp -Cre; Ptpn2 fl/fl ; Insr fl/+ ), causally linking the effects on glucose metabolism with the IR signalling in AgRP neurons. Our findings demonstrate that TCPTP controls IR signalling in AgRP neurons to coordinate HGP and brown/beige adipocyte glucose uptake in response to feeding/fasting. © 2018 by the American Diabetes Association.

  8. Brain Histamine -Methyltransferase as a Possible Target of Treatment for Methamphetamine Overdose

    Directory of Open Access Journals (Sweden)

    Junichi Kitanaka

    2016-01-01

    Full Text Available Stereotypical behaviors induced by methamphetamine (METH overdose are one of the overt symptoms of METH abuse, which can be easily assessed in animal models. Currently, there is no successful treatment for METH overdose. There is increasing evidence that elevated levels of brain histamine can attenuate METH-induced behavioral abnormalities, which might therefore constitute a novel therapeutic treatment for METH abuse and METH overdose. In mammals, histamine N -methyltransferase (HMT is the sole enzyme responsible for degrading histamine in the brain. Metoprine, one of the most potent HMT inhibitors, can cross the blood-brain barrier and increase brain histamine levels by inhibiting HMT. Consequently, this compound can be a candidate for a prototype of drugs for the treatment of METH overdose.

  9. The effect of tartrazine on histamine release from rat peritoneal mast cells.

    Science.gov (United States)

    Safford, R J; Goodwin, B F

    1984-01-01

    The release of histamine from purified rat peritoneal mast cells induced by specific antigen (egg albumin), compound 48/80 and calcium ionophore A23187 was modified by tartrazine. Histamine release induced by 48/80 and antigen was inhibited by the presence of 10(-5) to 10(-2)M tartrazine. The inhibitory effect on egg albumin induced histamine release was maximal when the tartrazine was added simultaneously with egg albumin, and was reduced by increased preincubation of the cells with tartrazine. Tartrazine had a small inhibitory effect on ionophore induced release at high concentrations, but augmented histamine release at tartrazine concentrations of 10(-3) and 10(-4)M. Augmentation of ionophore induced release was maximal at between 0-5 min preincubation of the cells with tartrazine.

  10. Bacteria-induced histamine release from human bronchoalveolar cells and blood leukocytes

    DEFF Research Database (Denmark)

    Clementsen, P; Milman, N; Struve-Christensen, E

    1991-01-01

    23187 resulted in histamine release. S. aureus-induced histamine release from basophils was examined in leukocyte suspensions obtained from the same individuals, and in all experiments release was found. The dose-response curves were similar to those obtained with BAL cells. The bacteria...

  11. Characteristics of the mouse genomic histamine H1 receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Isao; Taniuchi, Ichiro; Kitamura, Daisuke [Kyushu Univ., Fukuoka (Japan)] [and others

    1996-08-15

    We report here the molecular cloning of a mouse histamine H1 receptor gene. The protein deduced from the nucleotide sequence is composed of 488 amino acid residues with characteristic properties of GTP binding protein-coupled receptors. Our results suggest that the mouse histamine H1 receptor gene is a single locus, and no related sequences were detected. Interspecific backcross analysis indicated that the mouse histamine H1 receptor gene (Hrh1) is located in the central region of mouse Chromosome 6 linked to microphthalmia (Mitfmi), ras-related fibrosarcoma oncogene 1 (Raf1), and ret proto-oncogene (Ret) in a region of homology with human chromosome 3p. 12 refs., 3 figs.

  12. Protective role of AgRP neuron's PDK1 against salt-induced hypertension.

    Science.gov (United States)

    Zhang, Boyang; Nakata, Masanori; Lu, Ming; Nakae, Jun; Okada, Takashi; Ogawa, Wataru; Yada, Toshihiko

    2018-06-12

    In the hypothalamic arcuate nucleus (ARC), orexigenic agouti-related peptide (AgRP) neurons regulate feeding behavior and energy homeostasis. The 3-phosphoinositide-dependent protein kinase-1 (PDK1) in AgRP neurons serves as a major signaling molecule for leptin and insulin, the hormones regulating feeding behavior, energy homeostasis and circulation. However, it is unclear whether PDK1 in AGRP neurons is also involved in regulation of blood pressure. This study explored it by generating and analyzing AgRP neuron-specific PDK1 knockout (Agrp-Pdk1 flox/flox ) mice and effect of high salt diet on blood pressure in KO and WT mice was analyzed. Under high salt diet feeding, systolic blood pressure (SBP) of Agrp-Pdk1 flox/flox mice was significantly elevated compared to Agrp-Cre mice. When the high salt diet was switched to control low salt diet, SBP of Agrp-Pdk1 flox/flox mice returned to the basal level observed in Agrp-Cre mice within 1 week. In Agrp-Pdk1 flox/flox mice, urinary noradrenalin excretion and NUCB2 mRNA expression in hypothalamic paraventricular nucleus (PVN) were markedly upregulated. Moreover, silencing of NUCB2 in the PVN counteracted the rises in urinary noradrenalin excretions and SBP. These results demonstrate a novel role of PDK1 in AgRP neurons to counteract the high salt diet-induced hypertension by preventing hyperactivation of PVN nesfatin-1 neurons. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction.

    Directory of Open Access Journals (Sweden)

    Christian Cortés-Campos

    Full Text Available Metabolic interaction via lactate between glial cells and neurons has been proposed as one of the mechanisms involved in hypothalamic glucosensing. We have postulated that hypothalamic glial cells, also known as tanycytes, produce lactate by glycolytic metabolism of glucose. Transfer of lactate to neighboring neurons stimulates ATP synthesis and thus contributes to their activation. Because destruction of third ventricle (III-V tanycytes is sufficient to alter blood glucose levels and food intake in rats, it is hypothesized that tanycytes are involved in the hypothalamic glucose sensing mechanism. Here, we demonstrate the presence and function of monocarboxylate transporters (MCTs in tanycytes. Specifically, MCT1 and MCT4 expression as well as their distribution were analyzed in Sprague Dawley rat brain, and we demonstrate that both transporters are expressed in tanycytes. Using primary tanycyte cultures, kinetic analyses and sensitivity to inhibitors were undertaken to confirm that MCT1 and MCT4 were functional for lactate influx. Additionally, physiological concentrations of glucose induced lactate efflux in cultured tanycytes, which was inhibited by classical MCT inhibitors. Because the expression of both MCT1 and MCT4 has been linked to lactate efflux, we propose that tanycytes participate in glucose sensing based on a metabolic interaction with neurons of the arcuate nucleus, which are stimulated by lactate released from MCT1 and MCT4-expressing tanycytes.

  14. Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Mark A. Smith

    2015-04-01

    Full Text Available Hypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC and agouti-related protein (AgRP neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons.

  15. Validation of the method spectrophotometer in the histamine determination in fresh tuna (Thunnus Tunna)

    International Nuclear Information System (INIS)

    Chacon Silva, F.

    1998-01-01

    The objective of this study was to validate the spectrophotometer method described by Bateman et al. (1994) for the histamine determination in fresh tuna (Thunnus Tunna) and to evaluate the histamine concentration in samples of fresh tuna. To fulfill the recently exposed objectives, the figures of merit were determined like they are it: recovery limits of detection, sensibility and repetitive of the method spectrophotometry and applied the analysis at twenty samples of fresh tuna for copy of the Metropolitan area and three sample like reference of fresh tuna stored 4 degree centigrade by 15 days. The histamine recovery you determines enriching seven ours of fresh tuna with histamine to two levels different 0.613 mg/L and 2.21 mg/L. three samples were left without enriching and you subtract the average to the native histamine. You determines the one it limits of detection using the standard deviation to three levels of concentration of histamine 1.37 mg/L, 2.22 mg/L and 3.22 mg/L, the minimum quantity of hi stamina that you can determine for the method spectrophotometry settling down. The repetitive you determines using the standard deviation for 100 among the average of the histamine values, in seven you replies independent of the same sample. You determines the histamine content, in the fresh tuna Thunnus Tunna of the expends of the Metropolitan Area and in samples of reference stored 4 degrees centigrade by 15 days [es

  16. MR appearance of hypothalamic hamartoma

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, F.J.; Leibrock, L.G.; Huseman, C.A.; Makos, M.M.

    1988-02-01

    Hypothalamic hamartoma is the most common detectable cerebral lesion causing precocious puberty. Two histologically confirmed cases were studied by computerized tomography (CT) and magnetic resonance (MR) imaging. T2 weighted, sagittal MR images were superior to CT in delineating the tumor from surrounding grey matter. The lesion was isointense to grey matter on T1 weighted images allowing exclusion of other hypothalamic tumors. MR will undoubtedly become the imaging modality of choice in the detection of hypothalamic hamartoma.

  17. Paraneoplastic limbic encephalitis with associated hypothalamitis mimicking a hyperdense hypothalamic tumor: a case report

    International Nuclear Information System (INIS)

    Bataduwaarachchi, Vipula R.; Tissera, Nirmali

    2016-01-01

    Paraneoplastic limbic encephalitis is an uncommon association of common malignancies such as small cell lung carcinoma, testicular teratoma, and breast carcinoma. The nonspecific nature of the clinical presentation, lack of freely available diagnostic markers, and requirement for advanced imaging techniques pose a great challenge in the diagnosis of this disease in resource-poor settings. A 64-year-old previously healthy Sri Lankan man was admitted to the general medical unit with subacute memory impairment regarding recent events that had occurred during the previous 3 weeks. Initial noncontrast computed tomography of the brain revealed a hyperdensity in the hypothalamic region surrounded by hypodensities extending toward the bilateral temporal lobes; these findings were consistent with a possible hypothalamic tumor with perilesional edema. The patient later developed cranial diabetes insipidus, which was further suggestive of hypothalamic disease. Interestingly, gadolinium-enhanced magnetic resonance imaging of the brain showed no such lesions; instead, it showed prominent T2-weighted signals in the inner mesial region, characteristic of encephalitis. The possibility of tuberculosis and viral encephalitis was excluded based on cerebrospinal fluid analysis results. Limbic encephalitis with predominant hypothalamitis was suspected based on the radiological pattern. Subsequent screening for underlying malignancy revealed a mass lesion in the right hilum on chest radiographs. Histological examination of the lesion showed small cell lung cancer of the “oat cell” variety. We suggest that the initial appearance of a hyperdensity in the hypothalamus region on noncontrast computed tomography is probably due to hyperemia caused by hypothalamitis. If hypothalamitis is predominant in a patient with paraneoplastic limbic encephalitis, magnetic resonance imaging will help to differentiate it from a hypothalamic secondary deposit. Limbic encephalitis should be considered in

  18. Characteristics in Molecular Vibrational Frequency Patterns between Agonists and Antagonists of Histamine Receptors

    Directory of Open Access Journals (Sweden)

    S. June Oh

    2012-06-01

    Full Text Available To learn the differences between the structure-activity relationship and molecular vibration-activity relationship in the ligand-receptor interaction of the histamine receptor, 47 ligands of the histamine receptor were analyzed by structural similarity and molecular vibrational frequency patterns. The radial tree that was produced by clustering analysis of molecular vibrational frequency patterns shows its potential for the functional classification of histamine receptor ligands.

  19. Liberation of plasma histamine after application of non-ionic contrast media

    International Nuclear Information System (INIS)

    Weiss, H.D.; Jansen, O.; Schallock, J.

    1989-01-01

    In 94 patients the levels of plasmahistamine have been measured after application of three non-ionic contrast media (Iopromid, Iopamidol, Iohexol) and after application of blood-isotonic saline solution. A significant liberation of histamine could be observed after administration of contrast media and also after administration of saline solution. Neither between the three nonionic contrast media nor between the contrast media and the saline solution significant differences could be measured. Administering contrast media after subsequently saline solution the levels of histamine were lower than in case of pure contrast media application. A psychogen induced histamine liberation is discussed. (orig.) [de

  20. PCR detection and identification of histamine-forming bacteria in filleted tuna fish samples.

    Science.gov (United States)

    Ferrario, Chiara; Pegollo, Chiara; Ricci, Giovanni; Borgo, Francesca; Fortina, M Grazia

    2012-02-01

    Total of 14 filleted yellowfin tuna fish (Thunnus albacares) sold in wholesale fish market and supermarkets in Milan, Italy, were purchased and tested to determine microbial count, histamine level, histamine-forming bacteria, and their ability to produce histamine in culture broth. Although histamine level was less than 10 ppm, many samples showed high total viable bacterial and enterobacterial counts that reached dangerous levels after temperature abuse for short periods of time. A PCR assay targeting a 709-bp fragment of the histidine decarboxylase gene (hdc) revealed that 30.5% of the 141 enteric bacteria isolated from samples were positive and potentially able to produce histamine. The hdc positive strains were mainly isolated from fish bought at wholesale fish market, where we observed several possible risk factors, such as handling in poor and non-refrigerated conditions during fillet preparation. These positive strains were identified as Citrobacter koseri/Enterobacter spp. and Morganella morganii, by 16S/23S rRNA internal transcribed spacer amplification and 16S rRNA sequence analysis. The strains showed a variable ability of histamine production, with Morganella morganii being the most active histamine-producing species. A direct DNA extraction from fish and a PCR targeting the hdc gene showed a high degree of concordance with the results obtained through microbiological and chemical analyses, and could aid in the prompt detection of potentially contaminated fish products, before histamine accumulates. The use of methods for the early and rapid detection of bacteria producing biogenic amines is important for preventing accumulation of these toxic substances in food products. In this study, we used a molecular approach for the detection of histamine-forming bacteria in fish. PCR-based methods require expensive equipment and a high degree of training for the user, but are fast (marketing and can be used in the investigation of risk reduction strategies.

  1. The nervus terminalis in amphibians: anatomy, chemistry and relationship with the hypothalamic gonadotropin-releasing hormone system.

    Science.gov (United States)

    Muske, L E; Moore, F L

    1988-01-01

    The nervus terminalis (TN), a component of the olfactory system, is found in most vertebrates. The TN of some fishes and mammals contains neurons immunoreactive (ir) to gonadotropin-releasing hormone (LHRH), and to several other neuropeptides and neurotransmitter systems, but there is little information on TN chemistry in other vertebrate taxa. Using immunocytochemical techniques, we found LHRH-ir neurons in amphibian TNs. In anurans, but not in a urodele, the TN was also found to contain Phe-Met-Arg-Phe-NH2 (FMRFamide) immunoreactivity. LHRH-ir neurons of the TN and those of the septal-hypothalamic system are morphologically homogeneous and form a distinct anatomical continuum in amphibians. Based upon topographical and cytological criteria, we hypothesize that LHRH-ir systems in vertebrates might derive embryonically from the TN.

  2. Computed tomography in hypothalamic hamartoma

    International Nuclear Information System (INIS)

    Mori, Koreaki; Takeuchi, Juji; Hanakita, Junya; Handa, Hajime; Nakano, Yoshihisa.

    1981-01-01

    Two cases of hypothalamic hamartoma were reported. Hypothalamic hamartoma is a rate tumor. The onset of symptoms is in infancy and early childhood. Clinical symptoms are composed of convulsive seizures, laughing spells and precocious puberty. CT finding of hypothalamic hamartoma is a mass in the suprasellar and interpeduncular cisterns which has the same density as the surrounding normal brain. The mass is not enhanced by injection of the contrast material and is easily differentiated from other masses in the suprasellar region. (author)

  3. Hepatic Branch Vagus Nerve Plays a Critical Role in the Recovery of Post-Ischemic Glucose Intolerance and Mediates a Neuroprotective Effect by Hypothalamic Orexin-A

    Science.gov (United States)

    Harada, Shinichi; Yamazaki, Yui; Koda, Shuichi; Tokuyama, Shogo

    2014-01-01

    Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A. PMID:24759941

  4. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    Directory of Open Access Journals (Sweden)

    Shinichi Harada

    Full Text Available Orexin-A (a neuropeptide in the hypothalamus plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve with orexin-1 receptor and c-Fos (activated neural cells marker. These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  5. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents

    OpenAIRE

    Benoit, Stephen C.; Kemp, Christopher J.; Elias, Carol F.; Abplanalp, William; Herman, James P.; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G.; Holland, William L.; Clegg, Deborah J.

    2009-01-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of ...

  6. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Xudong Sun

    2017-06-01

    Full Text Available Background/Aims: Subacute ruminal acidosis (SARA is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Methods: Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor cultured in different pH medium (pH 7.2 or 5.5. qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. Results: The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2 and acidic (pH=5.5 medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α, interleukin 6 (IL-6 and interleukin 1 beta (IL-1β, thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. Conclusion: The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway.

  7. Hypothalamic PGC-1α Protects Against High-Fat Diet Exposure by Regulating ERα

    Directory of Open Access Journals (Sweden)

    Eugenia Morselli

    2014-10-01

    Full Text Available High-fat diets (HFDs lead to obesity and inflammation in the central nervous system (CNS. Estrogens and estrogen receptor α (ERα protect premenopausal females from the metabolic complications of inflammation and obesity-related disease. Here, we demonstrate that hypothalamic PGC-1α regulates ERα and inflammation in vivo. HFD significantly increased palmitic acid (PA and sphingolipids in the CNS of male mice when compared to female mice. PA, in vitro, and HFD, in vivo, reduced PGC-1α and ERα in hypothalamic neurons and astrocytes of male mice and promoted inflammation. PGC-1α depletion with ERα overexpression significantly inhibited PA-induced inflammation, confirming that ERα is a critical determinant of the anti-inflammatory response. Physiologic relevance of ERα-regulated inflammation was demonstrated by reduced myocardial function in male, but not female, mice following chronic HFD exposure. Our findings show that HFD/PA reduces PGC-1α and ERα, promoting inflammation and decrements in myocardial function in a sex-specific way.

  8. Hypothalamic PGC-1α protects against high-fat diet exposure by regulating ERα.

    Science.gov (United States)

    Morselli, Eugenia; Fuente-Martin, Esther; Finan, Brian; Kim, Min; Frank, Aaron; Garcia-Caceres, Cristina; Navas, Carlos Rodriguez; Gordillo, Ruth; Neinast, Michael; Kalainayakan, Sarada P; Li, Dan L; Gao, Yuanqing; Yi, Chun-Xia; Hahner, Lisa; Palmer, Biff F; Tschöp, Matthias H; Clegg, Deborah J

    2014-10-23

    High-fat diets (HFDs) lead to obesity and inflammation in the central nervous system (CNS). Estrogens and estrogen receptor α (ERα) protect premenopausal females from the metabolic complications of inflammation and obesity-related disease. Here, we demonstrate that hypothalamic PGC-1α regulates ERα and inflammation in vivo. HFD significantly increased palmitic acid (PA) and sphingolipids in the CNS of male mice when compared to female mice. PA, in vitro, and HFD, in vivo, reduced PGC-1α and ERα in hypothalamic neurons and astrocytes of male mice and promoted inflammation. PGC-1α depletion with ERα overexpression significantly inhibited PA-induced inflammation, confirming that ERα is a critical determinant of the anti-inflammatory response. Physiologic relevance of ERα-regulated inflammation was demonstrated by reduced myocardial function in male, but not female, mice following chronic HFD exposure. Our findings show that HFD/PA reduces PGC-1α and ERα, promoting inflammation and decrements in myocardial function in a sex-specific way.

  9. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex

    Science.gov (United States)

    Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel; Grewe, Benjamin F.; Schnitzer, Mark J.; Anderson, David J.

    2017-10-01

    All animals possess a repertoire of innate (or instinctive) behaviours, which can be performed without training. Whether such behaviours are mediated by anatomically distinct and/or genetically specified neural pathways remains unknown. Here we report that neural representations within the mouse hypothalamus, that underlie innate social behaviours, are shaped by social experience. Oestrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) control mating and fighting in rodents. We used microendoscopy to image Esr1+ neuronal activity in the VMHvl of male mice engaged in these social behaviours. In sexually and socially experienced adult males, divergent and characteristic neural ensembles represented male versus female conspecifics. However, in inexperienced adult males, male and female intruders activated overlapping neuronal populations. Sex-specific neuronal ensembles gradually separated as the mice acquired social and sexual experience. In mice permitted to investigate but not to mount or attack conspecifics, ensemble divergence did not occur. However, 30 minutes of sexual experience with a female was sufficient to promote the separation of male and female ensembles and to induce an attack response 24 h later. These observations uncover an unexpected social experience-dependent component to the formation of hypothalamic neural assemblies controlling innate social behaviours. More generally, they reveal plasticity and dynamic coding in an evolutionarily ancient deep subcortical structure that is traditionally viewed as a ‘hard-wired’ system.

  10. Early and late histamine release induced by albumin, hetastarch and polygeline: some unexpected findings.

    Science.gov (United States)

    Celik, I; Duda, D; Stinner, B; Kimura, K; Gajek, H; Lorenz, W

    2003-10-01

    The perioperative use of colloidal plasma substitutes is still under discussion. We therefore conducted a prospective randomised study with three commonly used plasma substitutes to examine their histamine releasing effects in 21 volunteers. MATERIAL OR SUBJETS: 21 male volunteers were enrolled in this prospective, randomised, controlled clinical study. Endpoints were the incidence of early and late histamine release and the time course of the release kinetics. Normovolemic hemodilution technique was used with hydroxyethyl starch (n = 6), human albumin (n = 6) and polygeline (n = 9). Measurement and observation period was 240 min after the start of the plasma substitute infusion. Heart rate, blood pressure, SaO(2), clinical symptoms/signs and plasma histamine were measured during the observation period. The incidence of histamine release over the whole observation period in all three groups was 100%. Histamine release occurred frequently in all three groups until 30 min (50%-78%) and up to 240 min (late release reaction: 67%-83%) after the start of infusion. Surprisingly even hydroxyethyl starch, which is regarded as a generally safe and effective plasma substitute, caused high incidences of late histamine release (67%). Histamine release is a well known side effect of polygeline and - to a lesser extent - also of albumin, but was a novel finding for hydroxyethyl starch. We demonstrated for the first time histamine releasing effects of hydroxyethyl starch over a long period of time after administration. This perioperatively and for intensive care possibly relevant finding should make clinicians aware of late side effects not yet connected with the clinical use of these colloidal plasma substitutes.

  11. Role of changes in functional status of hypothalamic-pituitary-adrenocortical axis in immunoenhancement after low dose radiation

    International Nuclear Information System (INIS)

    Liu Shuzheng; Zhao Yong; Han Zhenbo

    1994-01-01

    Whole-body irradiation (WBI) of mice with 75 mGy X-rays caused increase in 5-hydroxytryptamine (5HT) content of hypothalamus and decrease in serum adrenocorticotropic hormone (ACTH) and corticosterone (CS) level, accompanied with potentiation of immune functions, expressed as increased spontaneous incorporation of 3 H-TdR into thymocytes, augmented proliferative reaction of the splenocytes to Con A and increased production of interleukin-2 by the splenocytes. After intra hypothalamic injection of 5HT there occurred a lowering of serum ACTH level and enhancement of immune reactivity of the splenic and thymic lymphocytes. It is assumed that low dose radiation could influence the central 5-hydroxytryptaminergic neurons causing increase in hypothalamic 5HT content and this, in turn, decreases pituitary secretion of ACTH with a down-regulation of the adrenocortical function. This would partially release the tonic suppression normally exerted on the immune organs by the hypothalamic-pituitary-adrenocortical axis, thus leading to potentiation of immune functions. These neuroendocrine changes should be considered as an important factor in the analysis of the mechanism of immunoenhancement after WBI with low doses

  12. Effect of terfenadine on nasal, eustachian tube, and pulmonary function after provocative intranasal histamine challenge.

    Science.gov (United States)

    Skoner, D P; Doyle, W J; Boehm, S; Fireman, P

    1991-12-01

    Previous studies have documented that intranasal histamine challenge results in nasal and eustachian tube obstruction (ETO) in human volunteers. The purpose of the present study was to assess the effect of pretreatment with terfenadine, a nonsedating antihistamine on the pathophysiologic consequences of intranasal histamine challenge. Fifteen subjects with allergic rhinitis were challenged intranasally with saline and increasing histamine doses (0.01, 0.1, 0.5, 1.0, 5.0, and 10.0 mg) before pretreatment (baseline) and after 1 week of pretreatment with terfenadine, 60 mg b.i.d., terfenadine, 120 mg b.i.d., and placebo. Nasal conductance as measured by posterior rhinomanometry showed a dose-dependent, monotonic decrease following sequential administration of the histamine solutions, but there were no apparent differences in the average responses among the four challenge sessions. The frequency of ETO after histamine challenge was decreased by pretreatment with both doses of terfenadine, although this was not significant. Histamine-induced sneezing and rhinorrhea, but not congestion, were significantly reduced by terfenadine pretreatment. There was no evidence of extension of the histamine effects to the lower airway. The results of the present study suggest that terfenadine, a nonsedating antihistamine, had a favorable effect on sneezing and rhinorrhea after provocative intranasal histamine challenge, but did not significantly attenuate the subjective or objective nasal and ET obstructive responses.

  13. Role of Non-Neuronal Cells in Body Weight and Appetite Control

    Science.gov (United States)

    Argente-Arizón, Pilar; Freire-Regatillo, Alejandra; Argente, Jesús; Chowen, Julie A.

    2015-01-01

    The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control. PMID:25859240

  14. Relation between histamine release and dye permeability of pulmonary blood-air barrier in x-irradiated rat

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, H [Kobe Univ. (Japan). School of Medicine

    1976-04-01

    The histamine-release kinetics and the influence of released histamine on the permeability of the pulmonary blood-air(BA) barrier during the early period after either whole-body or thoracic x irradiation of the rat were studied. Histamine contents of skin and lung of the irradiated rat decreased rapidly, reaching a minimum at 5 h, and this histamine depletion continued for at least 7 days. Conversely, in circulating blood histamine increased during the early period of 5 h and then decreased gradually. This early increase was linear up to 500R and then became saturated between 500 and 1,000R. Administration of polymixine B (5mg/100g body weight) to rats liberated histamine similarly. Rat sera containg histamine released soon after irradiation enhanced the capillary permeability of Evans blue(EB) in the guinea pig skin reaction, which was effectively countered by pretreatment of the guinea pig with anti-histaminic pyribenzamine (29..mu..g/100g body weight), but not by anti-serotonic chlorpromazine (0.3mg/100g body weight). Similarly, perhaps only the EB-bound serum albumin (EB-albumin), that was seen in alveolar perfusate, penetrated more through the pulmonary BA-barrier with increasing x-ray dose, in parallel with the increase in blood histamine. Pyribenzamine inhibited this effect effectively, but cysteamine (a radical scavenger) did so only partially. Thus, it seems possible that at soon after x irradiation the enhanced permeability of EB-albumin through the BA barrier of rat lung is due preferentially to the pharmacologic action of released histamine and subsidiarily to radiation damage to pulmonary cells.

  15. Negative Effects of High Glucose Exposure in Human Gonadotropin-Releasing Hormone Neurons

    OpenAIRE

    Morelli, Annamaria; Comeglio, Paolo; Sarchielli, Erica; Cellai, Ilaria; Vignozzi, Linda; Vannelli, Gabriella B.; Maggi, Mario

    2013-01-01

    Metabolic disorders are often associated with male hypogonadotropic hypogonadism, suggesting that hypothalamic defects involving GnRH neurons may impair the reproductive function. Among metabolic factors hyperglycemia has been implicated in the control of the reproductive axis at central level, both in humans and in animal models. To date, little is known about the direct effects of pathological high glucose concentrations on human GnRH neurons. In this study, we investigated the high glucose...

  16. Morphological Analysis of the Axonal Projections of EGFP-Labeled Esr1-Expressing Neurons in Transgenic Female Medaka.

    Science.gov (United States)

    Zempo, Buntaro; Karigo, Tomomi; Kanda, Shinji; Akazome, Yasuhisa; Oka, Yoshitaka

    2018-02-01

    Some hypothalamic neurons expressing estrogen receptor α (Esr1) are thought to transmit a gonadal estrogen feedback signal to gonadotropin-releasing hormone 1 (GnRH1) neurons, which is the final common pathway for feedback regulation of reproductive functions. Moreover, estrogen-sensitive neurons are suggested to control sexual behaviors in coordination with reproduction. In mammals, hypothalamic estrogen-sensitive neurons release the peptide kisspeptin and regulate GnRH1 neurons. However, a growing body of evidence in nonmammalian species casts doubt on the regulation of GnRH1 neurons by kisspeptin neurons. As a step toward understanding how estrogen regulates neuronal circuits for reproduction and sex behavior in vertebrates in general, we generated a transgenic (Tg) medaka that expresses enhanced green fluorescent protein (EGFP) specifically in esr1-expressing neurons (esr1 neurons) and analyzed their axonal projections. We found that esr1 neurons in the preoptic area (POA) project to the gnrh1 neurons. We also demonstrated by transcriptome and histological analyses that these esr1 neurons are glutamatergic or γ-aminobutyric acidergic (GABAergic) but not kisspeptinergic. We therefore suggest that glutamatergic and GABAergic esr1 neurons in the POA regulate gnrh1 neurons. This hypothesis is consistent with previous studies in mice that found that glutamatergic and GABAergic transmission is critical for estrogen-dependent changes in GnRH1 neuron firing. Thus, we propose that this neuronal circuit may provide an evolutionarily conserved mechanism for regulation of reproduction. In addition, we showed that telencephalic esr1 neurons project to medulla, which may control sexual behavior. Moreover, we found that some POA-esr1 neurons coexpress progesterone receptors. These neurons may form the neuronal circuits that regulate reproduction and sex behavior in response to the serum estrogen/progesterone. Copyright © 2018 Endocrine Society.

  17. Noxious heat and scratching decrease histamine-induced itch and skin blood flow.

    Science.gov (United States)

    Yosipovitch, Gil; Fast, Katharine; Bernhard, Jeffrey D

    2005-12-01

    The aim of this study was to assess the effect of thermal stimuli or distal scratching on skin blood flow and histamine-induced itch in healthy volunteers. Twenty-one healthy volunteers participated in the study. Baseline measurements of skin blood flow were obtained on the flexor aspect of the forearm. These measurements were compared with skin blood flow after various stimuli: heating the skin, cooling the skin, noxious cold 2 degrees C, noxious heat 49 degrees C, and scratching via a brush with controlled pressure. Afterwards histamine iontophoresis was performed and skin blood flow and itch intensity were measured immediately after the above-mentioned stimuli. Scratching reduced mean histamine-induced skin blood flow and itch intensity. Noxious heat pain increased basal skin blood flow but reduced histamine-induced maximal skin blood flow and itch intensity. Cold pain and cooling reduced itch intensity, but neither affected histamine-induced skin blood flow. Sub-noxious warming the skin did not affect the skin blood flow or itch intensity. These findings suggest that heat pain and scratching may inhibit itch through a neurogenic mechanism that also affects skin blood flow.

  18. Increased release of histamine in patients with respiratory symptoms related to perfume.

    Science.gov (United States)

    Elberling, J; Skov, P S; Mosbech, H; Holst, H; Dirksen, A; Johansen, J D

    2007-11-01

    Environmental perfume exposure may cause respiratory symptoms. Individuals with asthma and perfume contact allergy report such symptoms more frequently than others. However, immunologic mechanisms have not been demonstrated and the symptoms are not associated with IgE-mediated allergy. The study aimed to investigate whether basophils from patients with respiratory symptoms related to perfume released more histamine in the presence of perfume as compared with healthy volunteers. Histamine release was measured by the glass fibre method. Blood was obtained from healthy volunteers (n=20) and patients with respiratory symptoms related to perfume (n=17) attending a dermatological outpatient clinic for patch testing. The effect of an international brand perfume was investigated using the basophil histamine release test with perfume. Furthermore, basophils from a healthy non-atopic donor were incubated with participant's sera and histamine release induced by perfume was measured. In both groups incremental perfume concentrations showed a positive and significant (Pperfume concentration, the basophils released significantly (PPerfume induces a dose-dependent non-IgE-mediated release of histamine from human peripheral blood basophils. Increased basophil reactivity to perfume was found in patients with respiratory symptoms related to perfume.

  19. Medical therapy of hypothalamic diseases

    International Nuclear Information System (INIS)

    Werder, K. von; Mueller, O.A.

    1985-01-01

    Hormonal disturbances caused by hypothalamic pathology can be treated effectively by target hormone replacement in the case of failure of glandotropic hormone secretion. Hyposomatotropism in children has to be substituted by parenteral administration of growth hormone. In addition gonadotropins respectively gonadotropin releasing factor have to be given in order to restore fertility in hypothalamic hypogonadism. Posterior pituitary failure can be adequately replaced by administration of analogues of antidiuretic hormone. Hypothalamic pathology causing hypersecretion of anterior pituitary hormones may also be accessable to medical treatment. This pertains particularly to hyperprolactinemia and precocious puberty. However, there is no medical therapy so far for hypothalamic disturbances leading to veterative dysfunction like disturbances of temperature regulation and control of thirst and polyphagia. In this situation symptomatic correction of the abnormality represents the only possibility to keep these patients alive. (Author)

  20. Withdrawal of repeated morphine enhances histamine-induced scratching responses in mice.

    Science.gov (United States)

    Abe, Kenji; Kobayashi, Kanayo; Yoshino, Saori; Taguchi, Kyoji; Nojima, Hiroshi

    2015-04-01

    An itch is experientially well known that the scratching response of conditions such as atopic dermatitis is enhanced under psychological stress. Morphine is typical narcotic drug that induces a scratching response upon local application as an adverse drug reaction. Although long-term treatment with morphine will cause tolerance and dependence, morphine withdrawal can cause psychologically and physiologically stressful changes in humans. In this study, we evaluated the effects of morphine withdrawal on histamine-induced scratching behavior in mice. Administration of morphine with progressively increasing doses (10-50 mg/kg, i.p.) was performed for 5 consecutive days. At 3, 24, 48, and 72 hr after spontaneous withdrawal from the final morphine dose, histamine was intradermally injected into the rostral part of the back and then the number of bouts of scratching in 60 min was recorded and summed. We found that at 24 hr after morphine withdrawal there was a significant increase in histamine-induced scratching behavior. The spinal c-Fos positive cells were also significantly increased. The relative adrenal weight increased and the relative thymus weight decreased, both significantly. Moreover, the plasma corticosterone levels changed in parallel with the number of scratching bouts. These results suggest that morphine withdrawal induces a stressed state and enhances in histamine-induced scratching behavior. Increased reaction against histamine in the cervical vertebrae will participate in this stress-induced itch enhancement.

  1. PENGGUNAAN EKSTRAK TEH HIJAU (Camellia sinensis) SEBAGAI PENGHAMBAT PEMBENTUKAN HISTAMIN PADA IKAN SEBELUM DIOLAH

    OpenAIRE

    Endang Sri Heruwati; Farida Ariyani; Radestya Triwibowo; Novalia Rachmawati; Irma Hermana

    2009-01-01

    Penelitian penggunaan ekstrak teh hijau (Camellia sinensis) sebagai penghambat pembentukan histamin pada ikan telah dilakukan. Ikan, terutama dari jenis skombroid, sangat rentan mengalami kerusakan karena terjadinya perubahan asam amino histidin yang terkandung dalam ikan menjadi senyawa histamin yang bersifat alergen, yang dikatalisasi oleh enzim histamin dekarboksilase (HDC). Teh hijau diketahui mengandung polifenol berupa senyawa epigalokatekingalat (EGCG) yang merupakan penghambat enzim H...

  2. Regulation of gonadotropin-releasing hormone neurons by glucose

    Science.gov (United States)

    Roland, Alison V.; Moenter, Suzanne M.

    2011-01-01

    Reproduction is influenced by energy balance, but the physiological pathways mediating their relationship have not been fully elucidated. As the central regulators of fertility, gonadotropin-releasing hormone (GnRH) neurons integrate numerous physiological signals, including metabolic cues. Circulating glucose levels regulate GnRH release and may in part mediate the effects of negative energy balance on fertility. Existing evidence suggests that neural pathways originating in the hindbrain, as well as in the hypothalamic feeding nuclei, transmit information concerning glucose availability to GnRH neurons. Here we review recent evidence suggesting that GnRH neurons may directly sense changes in glucose availability by a mechanism involving adenosine monophosphate-activated protein kinase (AMPK). These findings expand our understanding of how metabolic signaling in the brain regulates reproduction. PMID:21855365

  3. Histamine and tryptase in nasal lavage fluid after allergen challenge

    DEFF Research Database (Denmark)

    Jacobi, H H; Skov, P S; Poulsen, L K

    1999-01-01

    BACKGROUND: Antihistamines (H1-receptor antagonists) act by competitive antagonism of histamine at H1-receptors. In addition, high concentrations of some antihistamines inhibit allergen-induced histamine release from mast cells in vitro. OBJECTIVE: The purpose of this study was to determine...... the effect of intranasal azelastine or systemic cetirizine (both potent antihistamines) on the allergen-induced release of mast-cell mediators from the human nasal mucosa in vivo. METHODS: Patients allergic to birch pollen (n = 11) and control subjects not allergic to birch pollen (n = 5) were included......, nasal allergen challenges were performed, and the number of sneezes were counted. In addition, nasal lavage fluid was collected, and the levels of mast-cell mediators (histamine and tryptase) were measured. RESULTS: The allergen challenge of patients allergic to pollen produced sneezing...

  4. [Performance evaluation of a fluorescamine-HPLC method for determination of histamine in fish and fish products].

    Science.gov (United States)

    Kikuchi, Hiroyuki; Tsutsumi, Tomoaki; Matsuda, Rieko

    2012-01-01

    A method for the quantification of histamine in fish and fish products using tandem solid-phase extraction and fluorescence derivatization with fluorescamine was previously developed. In this study, we improved this analytical method to develop an official test method for quantification of histamine in fish and fish products, and performed a single laboratory study to validate it. Recovery tests of histamine from fillet (Thunnus obesus), and two fish products (fish sauce and salted and dried whole big-eye sardine) that were spiked at the level of 25 and 50 µg/g for T. obesus, and 50 and 100 µg/g for the two fish products, were carried out. The recoveries of histamine from the three samples tested were 88.8-99.6% with good repeatability (1.3-2.1%) and reproducibility (2.1-4.7%). Therefore, this method is acceptable for the quantification of histamine in fish and fish products. Moreover, surveillance of histamine content in food on the market was conducted using this method, and high levels of histamine were detected in some fish products.

  5. A facile molecularly imprinted polymer-based fluorometric assay for detection of histamine

    DEFF Research Database (Denmark)

    Feng, Xiaotong; Ashley, Jon; Zhou, Tongchang

    2018-01-01

    urgently needed. In this paper, we developed a facile and cost-effective molecularly imprinted polymer (MIP)-based fluorometric assay to directly quantify histamine. Histamine-specific MIP nanoparticles (nanoMIPs) were synthesized using a modified solid-phase synthesis method. They were then immobilized...

  6. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway.

    Science.gov (United States)

    Sun, Xudong; Yuan, Xue; Chen, Liang; Wang, Tingting; Wang, Zhe; Sun, Guoquan; Li, Xiaobing; Li, Xinwei; Liu, Guowen

    2017-01-01

    Subacute ruminal acidosis (SARA) is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) cultured in different pH medium (pH 7.2 or 5.5). qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2) and acidic (pH=5.5) medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β), thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine.

    Science.gov (United States)

    Linares, Daniel M; del Rio, Beatriz; Redruello, Begoña; Ladero, Victor; Martin, M Cruz; Fernandez, Maria; Ruas-Madiedo, Patricia; Alvarez, Miguel A

    2016-04-15

    Tyramine and histamine, the most toxic biogenic amines (BA), are often found in high concentrations in certain foods. Prompted by the limited knowledge of BA toxicity, and increasing awareness of the risks associated with high intakes of dietary BA, the in vitro cytotoxicity of tyramine and histamine was investigated. Tyramine and histamine were toxic for HT29 intestinal cell cultures at concentrations commonly found in BA-rich food, as determined by real-time cell analysis. Surprisingly, tyramine had a stronger and more rapid cytotoxic effect than histamine. Their mode of action was also different, while tyramine caused cell necrosis, histamine induced apoptosis. To avoid health risks, the BA content of foods should be reduced and legal limits established for tyramine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. West syndrome associated with administration of a histamine H1 antagonist, oxatomide.

    Science.gov (United States)

    Yamashita, Yushiro; Isagai, Takeo; Seki, Yoshitaka; Ohya, Takashi; Nagamitsu, Shinichiro; Matsuishi, Toyojiro

    2004-01-01

    We report a 4-month-old female infant who developed West syndrome eleven days after administration of a histamine H1 antagonist, oxatomide, for atopic dermatitis. It has been reported that some histamine H1 antagonists induce seizures in epileptic patients. The age, the interval between oxatomide administration, and the onset of West syndrome and its clinical course were similar to two previously reported 3-month-old infants with West syndrome associated with ketotifen administration. We should be cautious in using the histamine H1 antagonists, oxatomide and ketotifen, in young infants because such agents could potentially disturb the anticonvulsive central histaminergic system.

  9. Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice.

    Science.gov (United States)

    Smith, Mark A; Katsouri, Loukia; Irvine, Elaine E; Hankir, Mohammed K; Pedroni, Silvia M A; Voshol, Peter J; Gordon, Matthew W; Choudhury, Agharul I; Woods, Angela; Vidal-Puig, Antonio; Carling, David; Withers, Dominic J

    2015-04-21

    Hypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.

    Science.gov (United States)

    Zuure, Wieteke A; Roberts, Amy L; Quennell, Janette H; Anderson, Greg M

    2013-11-06

    The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.

  11. Comparison of analytical methods for the determination of histamine in reference canned fish samples

    Science.gov (United States)

    Jakšić, S.; Baloš, M. Ž.; Mihaljev, Ž.; Prodanov Radulović, J.; Nešić, K.

    2017-09-01

    Two screening methods for histamine in canned fish, an enzymatic test and a competitive direct enzyme-linked immunosorbent assay (CD-ELISA), were compared with the reversed-phase liquid chromatography (RP-HPLC) standard method. For enzymatic and CD-ELISA methods, determination was conducted according to producers’ manuals. For RP-HPLC, histamine was derivatized with dansyl-chloride, followed by RP-HPLC and diode array detection. Results of analysis of canned fish, supplied as reference samples for proficiency testing, showed good agreement when histamine was present at higher concentrations (above 100 mg kg-1). At a lower level (16.95 mg kg-1), the enzymatic test produced some higher results. Generally, analysis of four reference samples according to CD-ELISA and RP-HPLC showed good agreement for histamine determination (r=0.977 in concentration range 16.95-216 mg kg-1) The results show that the applied enzymatic test and CD-ELISA appeared to be suitable screening methods for the determination of histamine in canned fish.

  12. Activation of the hypothalamic-pituitary-adrenal axis by addictive drugs: different pathways, common outcome.

    Science.gov (United States)

    Armario, Antonio

    2010-07-01

    Addictive drugs (opiates, ethanol, cannabinoids (CBs), nicotine, cocaine, amphetamines) induce activation of the hypothalamic-pituitary-adrenal (HPA) axis, with the subsequent release of adrenocorticotropic hormone and glucocorticoids. The sequence of events leading to HPA activation appears to start within the brain, suggesting that activation is not secondary to peripheral homeostatic alterations. The precise neurochemical mechanisms and brain pathways involved are markedly dependent on the particular drug, although it is assumed that information eventually converges into the hypothalamic paraventricular nucleus (PVN). Whereas some drugs may act on the hypothalamus or directly within PVN neurons (i.e. ethanol), others exert their primary action outside the PVN (i.e. CBs, nicotine, cocaine). Corticotropin-releasing hormone (CRH) has a critical role in most cases, but the changes in c-fos and CRH gene expression in the PVN also reveal differences among drugs. More studies are needed to understand how addictive drugs act on this important neuroendocrine system and their functional consequences. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Necdin, a Prader-Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development.

    Science.gov (United States)

    Miller, Nichol L G; Wevrick, Rachel; Mellon, Pamela L

    2009-01-15

    Prader-Willi syndrome (PWS) is a complex genetic disorder characterized by hyperphagia, obesity and hypogonadotrophic hypogonadism, all highly suggestive of hypothalamic dysfunction. The NDN gene, encoding the MAGE family protein, necdin, maps to the PWS chromosome region and is highly expressed in mature hypothalamic neurons. Adult mice lacking necdin have reduced numbers of gonadotropin-releasing hormone (GnRH) neurons, but the mechanism for this reduction is unknown. Herein, we show that, although necdin is not expressed in an immature, migratory GnRH neuronal cell line (GN11), high levels are present in a mature GnRH neuronal cell line (GT1-7). Furthermore, overexpression of necdin activates GnRH transcription through cis elements bound by the homeodomain repressor Msx that are located in the enhancer and promoter of the GnRH gene, and knock-down of necdin expression reduces GnRH gene expression. In fact, overexpression of Necdin relieves Msx repression of GnRH transcription through these elements and necdin co-immunoprecipitates with Msx from GnRH neuronal cells, indicating that necdin may activate GnRH gene expression by preventing repression of GnRH gene expression by Msx. Finally, necdin is necessary for generation of the full complement of GnRH neurons during mouse development and extension of GnRH axons to the median eminence. Together, these results indicate that lack of necdin during development likely contributes to the hypogonadotrophic hypogonadal phenotype in individuals with PWS.

  14. Necdin, a Prader–Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development

    Science.gov (United States)

    Miller, Nichol L.G.; Wevrick, Rachel; Mellon, Pamela L.

    2009-01-01

    Prader–Willi syndrome (PWS) is a complex genetic disorder characterized by hyperphagia, obesity and hypogonadotrophic hypogonadism, all highly suggestive of hypothalamic dysfunction. The NDN gene, encoding the MAGE family protein, necdin, maps to the PWS chromosome region and is highly expressed in mature hypothalamic neurons. Adult mice lacking necdin have reduced numbers of gonadotropin-releasing hormone (GnRH) neurons, but the mechanism for this reduction is unknown. Herein, we show that, although necdin is not expressed in an immature, migratory GnRH neuronal cell line (GN11), high levels are present in a mature GnRH neuronal cell line (GT1-7). Furthermore, overexpression of necdin activates GnRH transcription through cis elements bound by the homeodomain repressor Msx that are located in the enhancer and promoter of the GnRH gene, and knock-down of necdin expression reduces GnRH gene expression. In fact, overexpression of Necdin relieves Msx repression of GnRH transcription through these elements and necdin co-immunoprecipitates with Msx from GnRH neuronal cells, indicating that necdin may activate GnRH gene expression by preventing repression of GnRH gene expression by Msx. Finally, necdin is necessary for generation of the full complement of GnRH neurons during mouse development and extension of GnRH axons to the median eminence. Together, these results indicate that lack of necdin during development likely contributes to the hypogonadotrophic hypogonadal phenotype in individuals with PWS. PMID:18930956

  15. The effect of nitric oxide synthase inhibition on histamine induced headache and arterial dilatation in migraineurs

    DEFF Research Database (Denmark)

    Lassen, L H; Christiansen, I; Iversen, Helle Klingenberg

    2003-01-01

    -decrease in MCA blood velocity, or dilatation of neither the temporal nor the radial artery. L-NMMA constricted the temporal artery by 8% before histamine infusion, whereas the radial artery was unaffected. The temporal artery dilated 4-5 times more than the radial artery during histamine infusion. In conclusion...... the use of a NOS inhibitor in the highest possible dose did not block the histamine-induced headache response or arterial dilatation. Either the concentration of L-NMMA reaching the smooth muscle cell was insufficient or, histamine dilates arteries and causes headache via NO independent mechanisms. Our...... results showed for the first time a craniospecificity for the vasodilating effect of histamine and for the arterial effects of NOS inhibition....

  16. Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner.

    Science.gov (United States)

    Moorman, David E; James, Morgan H; Kilroy, Elisabeth A; Aston-Jones, Gary

    2016-03-01

    Orexin (ORX) (also known as hypocretin) neurons are located exclusively in the posterior hypothalamus, and are involved in a wide range of behaviours, including motivation for drugs of abuse such as alcohol. Hypothalamic subregions contain functionally distinct populations of ORX neurons that may play different roles in regulating drug-motivated and alcohol-motivated behaviours. To investigate the role of ORX neurons in ethanol (EtOH) seeking, we measured Fos activation of ORX neurons in rats following three different measures of EtOH seeking and preference: (i) context-induced reinstatement, or ABA renewal; (ii) cue-induced reinstatement of extinguished responding for EtOH; and (iii) a home cage task in which preference for EtOH (vs. water) was measured in the absence of either reinforcer. We found significant activation of ORX neurons in multiple subregions across all three behavioural tests. Notably, ORX neuron activation in the lateral hypothalamus correlated with the degree of seeking in context reinstatement and the degree of preference in home cage preference testing. In addition, Fos activation in ORX neurons in the dorsomedial hypothalamic and perifornical areas was correlated with context and home cage seeking/preference, respectively. Surprisingly, we found no relationship between the degree of cue-induced reinstatement and ORX neuron activation in any region, despite robust activation overall during reinstatement. These results demonstrate a strong relationship between ORX neuron activation and EtOH seeking/preference, but one that is differentially expressed across ORX field subregions, depending on reinstatement modality. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Interaction of active compounds from Aegle marmelos CORREA with histamine-1 receptor

    Science.gov (United States)

    Nugroho, Agung Endro; Agistia, Dany Dwi; Tegar, Maulana; Purnomo, Hari

    2013-01-01

    The aim of this study is to determine the affinity of six active compounds of Aegle Marmelos Correa, they are (E, R)-Marmin, skimmianine, (S)-aegeline, aurapten, zeorin, and dustanin as antihistamines in histamine H1 receptor in comparison to cetirizin, diphenhydramine and chlorpheniramine as ligands comparison. Previously, in the in vitro study marmin obviously antagonized the histamine H1 receptor in a competitive manner. Methods: molecular docking to determine the interaction of ligand binding to its receptor. Lower docking score indicates more stable binding to that protein. Results: Marmin, skimmianine, aegeline, aurapten, zeorin, and dustanin were potential to develop as antihistamine agents, especially as histamine H1 receptor antagonists by interacting with amino acid residues, Asp107, Lys179, Lys191, Asn198, and Trp428 of histamine H1 receptor. Conclusions: Based on molecular docking, Amino acid residues involved in ligand protein interactions were Asp107, Lys179, Lys191, Asn198, and Trp428. PMID:23750086

  18. Involvement of prostaglandins and histamine in radiation-induced temperature responses in rats

    International Nuclear Information System (INIS)

    Kandasamy, S.B.; Hunt, W.A.

    1990-01-01

    Exposure of rats to 1-15 Gy of gamma radiation induced hyperthermia, whereas exposure to 20-150 Gy produced hypothermia. Since radiation exposure induced the release of prostaglandins (PGs) and histamine, the role of PGs and histamine in radiation-induced temperature changes was examined. Radiation-induced hyper- and hypothermia were antagonized by pretreatment with indomethacin, a cyclooxygenase inhibitor. Intracerebroventricular administration of PGE2 and PGD2 induced hyper- and hypothermia, respectively. Administration of SC-19220, a specific PGE2 antagonist, attenuated PGE2- and radiation-induced hyperthermia, but it did not antagonize PGD2- or radiation-induced hypothermia. Consistent with an apparent role of histamine in hypothermia, administration of disodium cromoglycate (a mast cell stabilizer), mepyramine (H1-receptor antagonist), or cimetidine (H2-receptor antagonist) attenuated PGD2- and radiation-induced hypothermia. These results suggest that radiation-induced hyperthermia is mediated via PGE2 and that radiation-induced hypothermia is mediated by another PG, possibly PGD2, via histamine

  19. Moderate long-term modulation of neuropeptide Y in hypothalamic arcuate nucleus induces energy balance alterations in adult rats.

    Directory of Open Access Journals (Sweden)

    Lígia Sousa-Ferreira

    Full Text Available Neuropeptide Y (NPY produced by arcuate nucleus (ARC neurons has a strong orexigenic effect on target neurons. Hypothalamic NPY levels undergo wide-ranging oscillations during the circadian cycle and in response to fasting and peripheral hormones (from 0.25 to 10-fold change. The aim of the present study was to evaluate the impact of a moderate long-term modulation of NPY within the ARC neurons on food consumption, body weight gain and hypothalamic neuropeptides. We achieved a physiological overexpression (3.6-fold increase and down-regulation (0.5-fold decrease of NPY in the rat ARC by injection of AAV vectors expressing NPY and synthetic microRNA that target the NPY, respectively. Our work shows that a moderate overexpression of NPY was sufficient to induce diurnal over-feeding, sustained body weight gain and severe obesity in adult rats. Additionally, the circulating levels of leptin were elevated but the immunoreactivity (ir of ARC neuropeptides was not in accordance (POMC-ir was unchanged and AGRP-ir increased, suggesting a disruption in the ability of ARC neurons to response to peripheral metabolic alterations. Furthermore, a dysfunction in adipocytes phenotype was observed in these obese rats. In addition, moderate down-regulation of NPY did not affect basal feeding or normal body weight gain but the response to food deprivation was compromised since fasting-induced hyperphagia was inhibited and fasting-induced decrease in locomotor activity was absent.These results highlight the importance of the physiological ARC NPY levels oscillations on feeding regulation, fasting response and body weight preservation, and are important for the design of therapeutic interventions for obesity that include the NPY.

  20. On the role of serotonin and histamine in neurohumoral mechanisms of postirradiation diarrhea in rats

    International Nuclear Information System (INIS)

    Legeza, V.I.; Shagoyan, M.G.; Markovskaya, I.V.; Vasil'eva, T.P.; Pozharisskaya, T.D.; Alekseeva, I.I.; Lokteva, O.I.

    1990-01-01

    In experiments with rats exposed to 200 Gy radiation it was shown that the diarrhea effect of serotonin under the effect of radiation is implemented via D- and M-type receptors, and that of histamine via H 1 and H 2 receptors. Serotonin and histamine, that were released under the effect of radiation from endocrine and mast cells of the digestive tract stimulated the propulsion activity of the intestine whereas histamine, in addition, inhibited the absorption process. It is suggested that serotonin and histamine antagonists should be used as means of preventing of radiation-induced diarrhea

  1. Afferent neuronal control of type-I gonadotropin releasing hormone (GnRH neurons in the human

    Directory of Open Access Journals (Sweden)

    Erik eHrabovszky

    2013-09-01

    Full Text Available Understanding the regulation of the human menstrual cycle represents an important ultimate challenge of reproductive neuroendocrine research. However, direct translation of information from laboratory animal experiments to the human is often complicated by strikingly different and unique reproductive strategies and central regulatory mechanisms that can be present in even closely related animal species. In all mammals studied so far, type-I gonadotropin releasing hormone (GnRH synthesizing neurons form the final common output way from the hypothalamus in the neuroendocrine control of the adenohypophysis. Under various physiological and pathological conditions, hormonal and metabolic signals either regulate GnRH neurons directly or act on upstream neuronal circuitries to influence the pattern of pulsatile GnRH secretion into the hypophysial portal circulation. Neuronal afferents to GnRH cells convey important metabolic-, stress-, sex steroid-, lactational- and circadian signals to the reproductive axis, among other effects. This article gives an overview of the available neuroanatomical literature that described the afferent regulation of human GnRH neurons by peptidergic, monoaminergic and amino acidergic neuronal systems. Recent studies of human genetics provided evidence that central peptidergic signaling by kisspeptins and neurokinin B play particularly important roles in puberty onset and later, in the sex steroid-dependent feedback regulation of GnRH neurons. This review article places special emphasis on the topographic distribution, sexual dimorphism, aging-dependent neuroanatomical changes and plastic connectivity to GnRH neurons of the critically important human hypothalamic kisspeptin and neurokinin B systems.

  2. Neuroanatomy of melanocortin-4 receptor pathway in the lateral hypothalamic area.

    Science.gov (United States)

    Cui, Huxing; Sohn, Jong-Woo; Gautron, Laurent; Funahashi, Hisayuki; Williams, Kevin W; Elmquist, Joel K; Lutter, Michael

    2012-12-15

    The central melanocortin system regulates body energy homeostasis including the melanocortin-4 receptor (MC4R). The lateral hypothalamic area (LHA) receives dense melanocortinergic inputs from the arcuate nucleus of the hypothalamus and regulates multiple processes including food intake, reward behaviors, and autonomic function. By using a mouse line in which green fluorescent protein (GFP) is expressed under control of the MC4R gene promoter, we systemically investigated MC4R signaling in the LHA by combining double immunohistochemistry, electrophysiology, and retrograde tracing techniques. We found that LHA MC4R-GFP neurons coexpress neurotensin as well as the leptin receptor but do not coexpress other peptide neurotransmitters found in the LHA including orexin, melanin-concentrating hormone, and nesfatin-1. Furthermore, electrophysiological recording demonstrated that leptin, but not the MC4R agonist melanotan II, hyperpolarizes the majority of LHA MC4R-GFP neurons in an ATP- sensitive potassium channel-dependent manner. Retrograde tracing revealed that LHA MC4R-GFP neurons do not project to the ventral tegmental area, dorsal raphe nucleus, nucleus accumbens, and spinal cord, and only limited number of neurons project to the nucleus of the solitary tract and parabrachial nucleus. Our findings provide new insights into MC4R signaling in the LHA and its potential implications in homeostatic regulation of body energy balance. Copyright © 2012 Wiley Periodicals, Inc.

  3. Biosensor cell assay for measuring real-time aldosterone-induced release of histamine from mesenteric arteries

    DEFF Research Database (Denmark)

    Dalgaard, Emil G; Andersen, Kenneth; Svenningsen, Per

    2017-01-01

    as a sensitive biosensor assay for histamine release from isolated mouse mesenteric arteries. Activation of the H1 receptor by histamine was measured as an increased number of intracellular Ca(2+) transient peaks using fluorescence imaging RESULTS: The developed biosensor was sensitive to histamine...... in physiological relevant concentrations and responded to substances released by the artery preparation. Aldosterone treatment of mesenteric arteries from wild type mice for 50 minutes resulted in an increased number of intracellular Ca(2+) transient peaks in the biosensor cells, which was significantly inhibited...... by the histamine H1 blocker pyrilamine. Mesenteric arteries from mast cell deficient SASH mice induced similar pyrilamine-sensitive Ca(2+) transient response in the biosensor cells. Mesenteric arteries from wild type and SASH mice expressed histamine decarboxylase mRNA, indicating that mast cells are not the only...

  4. Mast cell-derived histamine mediates cystitis pain.

    Directory of Open Access Journals (Sweden)

    Charles N Rudick

    2008-05-01

    Full Text Available Mast cells trigger inflammation that is associated with local pain, but the mechanisms mediating pain are unclear. Interstitial cystitis (IC is a bladder disease that causes debilitating pelvic pain of unknown origin and without consistent inflammation, but IC symptoms correlate with elevated bladder lamina propria mast cell counts. We hypothesized that mast cells mediate pelvic pain directly and examined pain behavior using a murine model that recapitulates key aspects of IC.Infection of mice with pseudorabies virus (PRV induces a neurogenic cystitis associated with lamina propria mast cell accumulation dependent upon tumor necrosis factor alpha (TNF, TNF-mediated bladder barrier dysfunction, and pelvic pain behavior, but the molecular basis for pelvic pain is unknown. In this study, both PRV-induced pelvic pain and bladder pathophysiology were abrogated in mast cell-deficient mice but were restored by reconstitution with wild type bone marrow. Pelvic pain developed normally in TNF- and TNF receptor-deficient mice, while bladder pathophysiology was abrogated. Conversely, genetic or pharmacologic disruption of histamine receptor H1R or H2R attenuated pelvic pain without altering pathophysiology.These data demonstrate that mast cells promote cystitis pain and bladder pathophysiology through the separable actions of histamine and TNF, respectively. Therefore, pain is independent of pathology and inflammation, and histamine receptors represent direct therapeutic targets for pain in IC and other chronic pain conditions.

  5. Hypothalamic dysfunction following whole-brain irradiation

    International Nuclear Information System (INIS)

    Mechanick, J.I.; Hochberg, F.H.; LaRocque, A.

    1986-01-01

    The authors describe 15 cases with evidence of hypothalamic dysfunction 2 to 9 years following megavoltage whole-brain x-irradiation for primary glial neoplasm. The patients received 4000 to 5000 rads in 180- to 200-rad fractions. Dysfunction occurred in the absence of computerized tomography-delineated radiation necrosis or hypothalamic invasion by tumor, and antedated the onset of dementia. Fourteen patients displayed symptoms reflecting disturbances of personality, libido, thirst, appetite, or sleep. Hyperprolactinemia (with prolactin levels up to 70 ng/ml) was present in all of the nine patients so tested. Of seven patients tested with thyrotropin-releasing hormone, one demonstrated an abnormal pituitary gland response consistent with a hypothalamic disorder. Seven patients developed cognitive abnormalities. Computerized tomography scans performed a median of 4 years after tumor diagnosis revealed no hypothalamic tumor or diminished density of the hypothalamus. Cortical atrophy was present in 50% of cases and third ventricular dilatation in 58%. Hypothalamic dysfunction, heralded by endocrine, behavioral, and cognitive impairment, represents a common, subtle form of radiation damage

  6. Influence of physical damage and freezing on histamine concentration and microbiological quality of yellowfin tuna during processing

    Directory of Open Access Journals (Sweden)

    Gonzalo García-Tapia

    2013-09-01

    Full Text Available Yellowfin tuna has a high level of free histidine in their muscle, which can lead to histamine formation by microorganisms if temperature abuse occurs during handling and further processing. The objective of this study was to measure levels of histamine in damaged and undamaged thawed muscle to determine the effect of physical damage on the microbial count and histamine formation during the initial steps of canning processing and to isolate and identify the main histamine-forming microorganisms present in the flesh of yellowfin tuna. Total mesophilic and psicrophilic microorganisms were determined using the standard plate method. The presence of histamine-forming microorganisms was determined in a modified Niven's agar. Strains were further identified using the API 20E kit for enterobacteriaceae and Gram-negative bacilli. Physically damaged tuna did not show higher microbiological contamination than that of undamaged muscle tuna. The most active histamine-forming microorganism present in tuna flesh was Morganella morganii. Other decarboxylating microorganisms present were Enterobacter agglomerans and Enterobacter cloacae. Physical damage of tune during catching and handling did not increase the level of histamine or the amount of microorganisms present in tuna meat during frozen transportation, but they showed a higher risk of histamine-forming microorganism growth during processing.

  7. Hypothalamic digoxin, hemispheric dominance, and neurobiology of love and affection.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-05-01

    The human hypothalamus produces an endogenous membrane Na+-K+ ATPase inhibitor, digoxin, which can regulate neuronal transmission. The digoxin status and neurotransmitter patterns were studied in individuals with a predilection to fall in love. It was also studied in individuals with differing hemispheric dominance to find out the role of cerebral dominance in this respect. In individuals with a predilection to fall in love there was decreased digoxin synthesis, increased membrane Na+-K+ ATPase activity, decreased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern correlated with that obtained in left hemispheric chemical dominance. Hemispheric dominance and hypothalamic digoxin could regulate the predisposition to fall in love.

  8. Impact of maternal high fat diet on hypothalamic transcriptome in neonatal Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Sanna Barrand

    Full Text Available Maternal consumption of a high fat diet during early development has been shown to impact the formation of hypothalamic neurocircuitry, thereby contributing to imbalances in appetite and energy homeostasis and increasing the risk of obesity in subsequent generations. Early in postnatal life, the neuronal projections responsible for energy homeostasis develop in response to appetite-related peptides such as leptin. To date, no study characterises the genome-wide transcriptional changes that occur in response to exposure to high fat diet during this critical window. We explored the effects of maternal high fat diet consumption on hypothalamic gene expression in Sprague Dawley rat offspring at postnatal day 10. RNA-sequencing enabled discovery of differentially expressed genes between offspring of dams fed a high fat diet and offspring of control diet fed dams. Female high fat diet offspring displayed altered expression of 86 genes (adjusted P-value<0.05, including genes coding for proteins of the extra cellular matrix, particularly Collagen 1a1 (Col1a1, Col1a2, Col3a1, and the imprinted Insulin-like growth factor 2 (Igf2 gene. Male high fat diet offspring showed significant changes in collagen genes (Col1a1 and Col3a1 and significant upregulation of two genes involved in regulation of dopamine availability in the brain, tyrosine hydroxylase (Th and dopamine reuptake transporter Slc6a3 (also known as Dat1. Transcriptional changes were accompanied by increased body weight, body fat and body length in the high fat diet offspring, as well as altered blood glucose and plasma leptin. Transcriptional changes identified in the hypothalamus of offspring of high fat diet mothers could alter neuronal projection formation during early development leading to abnormalities in the neuronal circuitry controlling appetite in later life, hence priming offspring to the development of obesity.

  9. Histamine is not released in acute thermal injury in human skin in vivo: a microdialysis study

    DEFF Research Database (Denmark)

    Petersen, Lars Jelstrup; Pedersen, Juri Lindy; Skov, Per Stahl

    2009-01-01

    BACKGROUND: Animal models have shown histamine to be released from the skin during the acute phase of a burn injury. The role of histamine during the early phase of thermal injuries in humans remains unclear. PURPOSE: The objectives of this trial were to study histamine release in human skin during...

  10. Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot

    Directory of Open Access Journals (Sweden)

    Eun-Seo Lim

    2016-12-01

    Full Text Available Abstract The objectives of this study were to identify the histamine-forming bacteria and bacteriocin- producing lactic acid bacteria (LAB isolated from Myeolchi-jeot according to sequence analysis of the 16S rRNA gene, to evaluate the inhibitory effects of the bacteriocin on the growth and histamine accumulation of histamine-forming bacteria, and to assess the physico-chemical properties of the bacteriocin. Based on 16S rRNA gene sequences, histamine-forming bacteria were identified as Bacillus licheniformis MCH01, Serratia marcescens MCH02, Staphylococcus xylosus MCH03, Aeromonas hydrophila MCH04, and Morganella morganii MCH05. The five LAB strains identified as Pediococcus acidilactici MCL11, Leuconostoc mesenteroides MCL12, Enterococcus faecium MCL13, Lactobacillus sakei MCL14, and Lactobacillus acidophilus MCL15 were found to produce an antibacterial compound with inhibitory activity against the tested histamine-producing bacteria. The inhibitory activity of these bacteriocins obtained from the five LAB remained stable after incubation at pH 4.0–8.0 and heating for 10 min at 80 °C; however, the bacteriocin activity was destroyed after treatment with papain, pepsin, proteinase K, α-chymotrypsin, or trypsin. Meanwhile, these bacteriocins produced by the tested LAB strains also exhibited histamine-degradation ability. Therefore, these antimicrobial substances may play a role in inhibiting histamine formation in the fermented fish products and preventing seafood-related food-borne disease caused by bacterially generated histamine.

  11. Histamine poisoning from insect consumption: an outbreak investigation from Thailand.

    Science.gov (United States)

    Chomchai, Summon; Chomchai, Chulathida

    2018-02-01

    Insect consumption is a common practice in the Asian culture and all over the world. We are reporting an outbreak investigation of histamine poisoning from ingestion of fried insects. On 24 July 2014, a group of students at a seminar presented to Angthong Provincial Hospital, Thailand, with pruritic rash after ingesting snacks consisting of fried insects from a vendor. We initiated an outbreak investigation with retrospective cohort design and collected samples of remaining foods for analyses. Attack rates, relative risks and their confidence intervals (CI) were calculated. Out of 227 students, 28 developed illnesses that were consistent with our case definition which included, flushing, pruritus, urticarial rashes, headache, nausea, vomiting, diarrhea, dyspnea and bronchospasm. Two children were hospitalized for progressive bronchospasm overnight without serious complications. The types of food ingested included a lunch that was provided at the seminar for all students and snacks that 41 students bought from the only vendor in the vicinity. The snacks included fried grasshoppers, silkworm pupae, common green frogs, bamboo borers, crickets and meat balls. The attack rates were highest (82.6 and 85.0%) among students who ingested fried grasshoppers and silkworm pupae and lowest (4.4 and 5.3%) among those who did not ingest them, with relative risk of 18.7 (95% CI 9.6-36.4) for grasshoppers and 16.0 (95% CI 8.8-29.3) for silkworm pupae. Histamine concentrations in the fried grasshoppers and silkworm pupae were 9.73 and 7.66 mg/100g, respectively. Through epidemiological analysis and laboratory confirmation, we have illustrated that histamine poisoning can occur from ingestion of fried insects. We postulate that histidine, which is present in high concentration in grasshoppers and silkworm pupae, is decarboxylated by bacteria to histamine, a heat stable toxin. The ingestion of histamine is responsible for the clinical pictures being reported.

  12. Hypothalamic glycogen synthase kinase 3β has a central role in the regulation of food intake and glucose metabolism.

    Science.gov (United States)

    Benzler, Jonas; Ganjam, Goutham K; Krüger, Manon; Pinkenburg, Olaf; Kutschke, Maria; Stöhr, Sigrid; Steger, Juliane; Koch, Christiane E; Ölkrug, Rebecca; Schwartz, Michael W; Shepherd, Peter R; Grattan, David R; Tups, Alexander

    2012-10-01

    GSK3β (glycogen synthase kinase 3β) is a ubiquitous kinase that plays a key role in multiple intracellular signalling pathways, and increased GSK3β activity is implicated in disorders ranging from cancer to Alzheimer's disease. In the present study, we provide the first evidence of increased hypothalamic signalling via GSK3β in leptin-deficient Lep(ob/ob) mice and show that intracerebroventricular injection of a GSK3β inhibitor acutely improves glucose tolerance in these mice. The beneficial effect of the GSK3β inhibitor was dependent on hypothalamic signalling via PI3K (phosphoinositide 3-kinase), a key intracellular mediator of both leptin and insulin action. Conversely, neuron-specific overexpression of GSK3β in the mediobasal hypothalamus exacerbated the hyperphagia, obesity and impairment of glucose tolerance induced by a high-fat diet, while having little effect in controls fed standard chow. These results demonstrate that increased hypothalamic GSK3β signalling contributes to deleterious effects of leptin deficiency and exacerbates high-fat diet-induced weight gain and glucose intolerance.

  13. Paraventricular nucleus of the human hypothalamus in primary hypertension: Activation of corticotropin-releasing hormone neurons

    NARCIS (Netherlands)

    Goncharuk, Valeri D.; van Heerikhuize, Joop; Swaab, Dick F.; Buijs, Ruud M.

    2002-01-01

    By using quantitative immunohistochemical and in situ hybridization techniques, we studied corticotropin-releasing hormone (CRH)-producing neurons of the hypothalamic paraventricular nucleus (PVN) in patients who suffered from primary hypertension and died due to acute cardiac failure. The control

  14. Morphological Characterization of the Action Potential Initiation Segment in GnRH Neuron Dendrites and Axons of Male Mice.

    Science.gov (United States)

    Herde, Michel K; Herbison, Allan E

    2015-11-01

    GnRH neurons are the final output neurons of the hypothalamic network controlling fertility in mammals. In the present study, we used ankyrin G immunohistochemistry and neurobiotin filling of live GnRH neurons in brain slices from GnRH-green fluorescent protein transgenic male mice to examine in detail the location of action potential initiation in GnRH neurons with somata residing at different locations in the basal forebrain. We found that the vast majority of GnRH neurons are bipolar in morphology, elaborating a thick (primary) and thinner (secondary) dendrite from opposite poles of the soma. In addition, an axon-like process arising predominantly from a proximal dendrite was observed in a subpopulation of GnRH neurons. Ankyrin G immunohistochemistry revealed the presence of a single action potential initiation zone ∼27 μm in length primarily in the secondary dendrite of GnRH neurons and located 30 to 140 μm distant from the cell soma, depending on the type of process and location of the cell body. In addition to dendrites, the GnRH neurons with cell bodies located close to hypothalamic circumventricular organs often elaborated ankyrin G-positive axon-like structures. Almost all GnRH neurons (>90%) had their action potential initiation site in a process that initially, or ultimately after a hairpin loop, was coursing in the direction of the median eminence. These studies indicate that action potentials are initiated in different dendritic and axonal compartments of the GnRH neuron in a manner that is dependent partly on the neuroanatomical location of the cell body.

  15. Bronchial histamine challenge. A combined interrupter-dosimeter method compared with a standard method

    DEFF Research Database (Denmark)

    Pavlovic, M; Holstein-Rathlou, N H; Madsen, F

    1985-01-01

    We compared the provocative concentration (PC) values obtained by two different methods of performing bronchial histamine challenge. One test was done on an APTA, an apparatus which allows simultaneous provocation with histamine and measurement of airway resistance (Rtot) by the interrupter metho...

  16. DRP1 Suppresses Leptin and Glucose Sensing of POMC Neurons.

    Science.gov (United States)

    Santoro, Anna; Campolo, Michela; Liu, Chen; Sesaki, Hiromi; Meli, Rosaria; Liu, Zhong-Wu; Kim, Jung Dae; Diano, Sabrina

    2017-03-07

    Hypothalamic pro-opiomelanocortin (POMC) neurons regulate energy and glucose metabolism. Intracellular mechanisms that enable these neurons to respond to changes in metabolic environment are ill defined. Here we show reduced expression of activated dynamin-related protein (pDRP1), a mitochondrial fission regulator, in POMC neurons of fed mice. These POMC neurons displayed increased mitochondrial size and aspect ratio compared to POMC neurons of fasted animals. Inducible deletion of DRP1 of mature POMC neurons (Drp1 fl/fl -POMC-cre:ER T2 ) resulted in improved leptin sensitivity and glucose responsiveness. In Drp1 fl/fl -POMC-cre:ER T2 mice, POMC neurons showed increased mitochondrial size, ROS production, and neuronal activation with increased expression of Kcnj11 mRNA regulated by peroxisome proliferator-activated receptor (PPAR). Furthermore, deletion of DRP1 enhanced the glucoprivic stimulus in these neurons, causing their stronger inhibition and a greater activation of counter-regulatory responses to hypoglycemia that were PPAR dependent. Together, these data unmasked a role for mitochondrial fission in leptin sensitivity and glucose sensing of POMC neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Sickle erythrocytes enhance phenylephrine and histamine

    African Journals Online (AJOL)

    Dr Olaleye

    the influence of sickle erythrocyte on contractile responses induced by phenylephrine and histamine. ... obtained from subjects of different haemoglobin (Hb) genotypes (AA, AS and SS), under ... the sixth position of the β-chain of the hemoglobin S. Address for ... blood pressure values in sickle cell anaemia subjects as.

  18. Litter size variation in hypothalamic gene expression determines adult metabolic phenotype in Brandt's voles (Lasiopodomys brandtii.

    Directory of Open Access Journals (Sweden)

    Xue-Ying Zhang

    Full Text Available Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large (10-12 and small (3-4 litter sizes, of Brandt's voles (Lasiopodomys brandtii, a rodent species from Inner Mongolia grassland in China.Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large litters, accompanied by increased food intake during development. There were no significant differences in serum leptin levels or leptin receptor (OB-Rb mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor of cytokine signaling 3 (SOCS3 mRNA in adulthood increased in small litters compared to that in large litters. As a result, the agouti-related peptide (AgRP mRNA increased in the offspring from small litters.These findings support our hypothesis that natural litter size has a permanent effect on offspring metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of metabolic fitness in adulthood.

  19. Typical and Atypical Antipsychotic Drugs Increase Extracellular Histamine Levels in the Rat Medial Prefrontal Cortex: Contribution of Histamine H1 Receptor Blockade

    Directory of Open Access Journals (Sweden)

    Kjell A Svensson

    2012-05-01

    Full Text Available Atypical antipsychotics such as clozapine and olanzapine have been shown to enhance histamine turnover and this effect has been hypothesized to contribute to their improved therapeutic profile compared to typical antipsychotics. In the present study, we examined the effects of antipsychotic drugs on histamine (HA efflux in the mPFC of the rat by means of in vivo microdialysis and sought to differentiate the receptor mechanisms which underlie such effects. Olanzapine and clozapine increased mPFC HA efflux in a dose related manner. Increased HA efflux was also observed after quetiapine, chlorpromazine and perphenazine treatment. We found no effect of the selective 5-HT2A antagonist MDL100907, 5-HT2c antagonist SB242084 or the 5-HT6 antagonist Ro 04-6790 on mPFC HA efflux. HA efflux was increased following treatment with selective H1 receptor antagonists pyrilamine, diphenhydramine and triprolidine, the H3 receptor antagonist ciproxifan and the mixed 5HT2A/H1 receptor antagonist ketanserin. The potential novel antipsychotic drug FMPD, which has a lower affinity at H1 receptors than olanzapine, did not affect HA efflux. Similarly, other antipsychotics with lower H1 receptor affinity (risperidone, aripiprazole and haloperidol were also without effect on HA efflux. Perfusion of clozapine and pyrilamine into the TMN, but not the mPFC, increased local HA efflux. Finally, HA efflux after antipsychotic treatment was significantly correlated with affinity at H1 receptors whereas 9 other receptors, including 5-HT2A, were not. These results demonstrate that both typical and atypical antipsychotics increase mPFC histamine efflux and this effect may be mediated via antagonism of histamine H1 receptors.

  20. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales

    Science.gov (United States)

    Mandelblat-Cerf, Yael; Ramesh, Rohan N; Burgess, Christian R; Patella, Paola; Yang, Zongfang; Lowell, Bradford B; Andermann, Mark L

    2015-01-01

    Agouti-related-peptide (AgRP) neurons—interoceptive neurons in the arcuate nucleus of the hypothalamus (ARC)—are both necessary and sufficient for driving feeding behavior. To better understand the functional roles of AgRP neurons, we performed optetrode electrophysiological recordings from AgRP neurons in awake, behaving AgRP-IRES-Cre mice. In free-feeding mice, we observed a fivefold increase in AgRP neuron firing with mounting caloric deficit in afternoon vs morning recordings. In food-restricted mice, as food became available, AgRP neuron firing dropped, yet remained elevated as compared to firing in sated mice. The rapid drop in spiking activity of AgRP neurons at meal onset may reflect a termination of the drive to find food, while residual, persistent spiking may reflect a sustained drive to consume food. Moreover, nearby neurons inhibited by AgRP neuron photostimulation, likely including satiety-promoting pro-opiomelanocortin (POMC) neurons, demonstrated opposite changes in spiking. Finally, firing of ARC neurons was also rapidly modulated within seconds of individual licks for liquid food. These findings suggest novel roles for antagonistic AgRP and POMC neurons in the regulation of feeding behaviors across multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.07122.001 PMID:26159614

  1. Neuronal Rap1 Regulates Energy Balance, Glucose Homeostasis, and Leptin Actions

    Directory of Open Access Journals (Sweden)

    Kentaro Kaneko

    2016-09-01

    Full Text Available The CNS contributes to obesity and metabolic disease; however, the underlying neurobiological pathways remain to be fully established. Here, we show that the small GTPase Rap1 is expressed in multiple hypothalamic nuclei that control whole-body metabolism and is activated in high-fat diet (HFD-induced obesity. Genetic ablation of CNS Rap1 protects mice from dietary obesity, glucose imbalance, and insulin resistance in the periphery and from HFD-induced neuropathological changes in the hypothalamus, including diminished cellular leptin sensitivity and increased endoplasmic reticulum (ER stress and inflammation. Furthermore, pharmacological inhibition of CNS Rap1 signaling normalizes hypothalamic ER stress and inflammation, improves cellular leptin sensitivity, and reduces body weight in mice with dietary obesity. We also demonstrate that Rap1 mediates leptin resistance via interplay with ER stress. Thus, neuronal Rap1 critically regulates leptin sensitivity and mediates HFD-induced obesity and hypothalamic pathology and may represent a potential therapeutic target for obesity treatment.

  2. Changes in responsiveness to serotonin on rat ventromedial hypothalamic neurons after food deprivation.

    Science.gov (United States)

    Nishimura, F; Nishihara, M; Torii, K; Takahashi, M

    1996-07-01

    The effects of food deprivation on responsiveness of neurons in the ventromedial nucleus of the hypothalamus (VMH) to serotonin (5-HT), norepinephrine (NE), gamma-aminobutyric acid (GABA), and neuropeptide Y (NPY) were investigated using brain slices in vitro along with behavioral changes in vivo during fasting. Adult male rats were fasted for 48 h starting at the beginning of the dark phase (lights on: 0700-1900 h). The animals showed a significant loss of body weight on the second day of fasting and an increase in food consumption on the first day of refeeding. During fasting, voluntary locomotor activity was significantly increased in the light phase but not during the dark phase. Plasma catecholamine levels were not affected by fasting. In vitro electrophysiological study showed that, in normally fed rats, 5-HT and NE induced both excitatory and inhibitory responses, while GABA and NPY intensively suppressed unit activity in the VMH. Food deprivation for 48 h significantly changed the responsiveness of VMH neurons to 5-HT, for instance, the ratio of neurons whose activity was facilitated by 5-HT was significantly decreased. The responsiveness of VMH neurons to NE, GABA, and NPY was not affected by food deprivation. These results suggest that food deprivation decreases the facilitatory response of VMH neurons to 5-HT, and that this change in responsiveness to 5-HT is at least partially involved in the increase in food intake motivation and locomotor activity during fasting.

  3. Male mice ultrasonic vocalizations enhance female sexual approach and hypothalamic kisspeptin neuron activity.

    Science.gov (United States)

    Asaba, Akari; Osakada, Takuya; Touhara, Kazushige; Kato, Masahiro; Mogi, Kazutaka; Kikusui, Takefumi

    2017-08-01

    Vocal communication in animals is important for ensuring reproductive success. Male mice emit song-like "ultrasonic vocalizations (USVs)" when they encounter female mice, and females show approach to the USVs. However, it is unclear whether USVs of male mice trigger female behavioral and endocrine responses in reproduction. In this study, we first investigated the relationship between the number of deliveries in breeding pairs for 4months and USVs syllables emitted from those paired males during 3min of sexual encounter with unfamiliar female mice. There was a positive correlation between these two indices, which suggests that breeding pairs in which males could emit USVs more frequently had more offspring. Further, we examined the effect of USVs of male mice on female sexual behavior. Female mice showed more approach behavior towards vocalizing males than devocalized males. Finally, to determine whether USVs of male mice could activate the neural system governing reproductive function in female mice, the activation of kisspeptin neurons, key neurons to drive gonadotropin-releasing hormone neurons in the hypothalamus, was examined using dual-label immunocytochemistry with cAMP response element-binding protein phosphorylation (pCREB). In the arcuate nucleus (Arc), the number of kisspeptin neurons expressing pCREB significantly increased after exposure to USVs of male as compared with noise exposure group. In conclusion, our results suggest that USVs of male mice promote fertility in female mice by activating both their approaching behavior and central kisspeptin neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Histamine delays gastric emptying of solid food in man through histamine, receptors

    International Nuclear Information System (INIS)

    Sridhar, K.; Lange, R.; McCallum, R.W.

    1984-01-01

    The authors have shown that histamine (H) contracts the cat pylorus and duodenum through H/sub 1/ receptor mechanisms. The authors investigated the effect of H infusion on gastric emptying (GE) and the role of H/sub 1/ and H/sub 2/ receptor blockade in healthy volunteers. Radionuclide GE studies were performed using chicken liver labeled in vivo with /sup 99m/Technetium-sulfur colloid as a marker of solid food. Study days were as follows: a baseline GE study (Day 1); H infused continuously IV at a rate of 40 μg/kg/hr during the GE study (Day 2); an IV bolus of 50 mg of diphenhydramine (Day 3), or 300 mg cimetidine (Day 4) given just prior to the continuous infusion of H; a final day when cimetidine was given alone (Day 5). GE was monitored for 2 hours on each day. The results of days 1, 2 and 3 are summarized below (+p<0.05 vs baseline or Day 1). Pretreatment with cimetidine (Day 4) augmented the delay in GE induced by H infusion, while cimetidine without H (Day 5) had no effect on GE. The authors conclude that: 1) H given at a dose which elicits maximal acid secretory response in man significantly delays GE; and 2) H/sub 1/ receptor blockade but not H/sub 2/ blockade prevented this effect. Histamine may play a modulatory role in human gastric emptying through an H/sub 1/ receptor mechanism

  5. Pharmacology of JB-9315, a new selective histamine H2-receptor antagonist.

    Science.gov (United States)

    Palacios, B; Montero, M J; Sevilla, M A; San Román, L

    1998-02-01

    1. The histamine H2-receptor antagonistic activity and antisecretory and antiulcer effects of JB-9315 were studied in comparison with the standard H2 blocker ranitidine. 2. In vitro, JB-9315 is a competitive antagonist of histamine H2 receptors in the isolated, spontaneously beating guinea-pig right atrium, with a pA2 value of 7.30 relative to a value of 7.36 for ranitidine. JB-9315 was specific for the histamine H2 receptor because, at high concentration, it did not affect histamine- or acetylcholine-induced contractions in guinea-pig isolated ileum or rat isolated duodenum, respectively. 3. JB-9315 dose dependently inhibited histamine-, pentagastrin- or carbachol-stimulated acid secretion and basal secretion in the perfused stomach preparation of the anesthetized rat. In the pylorus-ligated rat after intraperitoneal administration, total acid output over 4 h was inhibited by JB-9315 with an ID50 of 32.8 mg/kg, confirming its H2-receptor antagonist properties. 4. JB-9315 showed antiulcer activity against cold stress plus indomethacin-induced lesions with an ID50 of 6.8 mg/kg. 5. JB-9315, 50 and 100 mg/kg, inhibited macroscopic gastric hemorrhagic lesions induced by ethanol. In contrast, ranitidine (50 mg/kg) failed to reduce these lesions. 6. These results indicate that JB-9315 is a new antiulcer drug that exerts a cytoprotective effect in addition to its gastric antisecretory activity.

  6. Role of Hypothalamic Melanocortin System in Adaptation of Food Intake to Food Protein Increase in Mice

    Science.gov (United States)

    Pillot, Bruno; Duraffourd, Céline; Bégeot, Martine; Joly, Aurélie; Luquet, Serge; Houberdon, Isabelle; Naville, Danielle; Vigier, Michèle; Gautier-Stein, Amandine; Magnan, Christophe; Mithieux, Gilles

    2011-01-01

    The hypothalamic melanocortin system—the melanocortin receptor of type 4 (MC4R) and its ligands: α-melanin-stimulating hormone (α-MSH, agonist, inducing hypophagia), and agouti-related protein (AgRP, antagonist, inducing hyperphagia)—is considered to play a central role in the control of food intake. We tested its implication in the mediation of the hunger-curbing effects of protein-enriched diets (PED) in mice. Whereas there was a 20% decrease in food intake in mice fed on the PED, compared to mice fed on an isocaloric starch-enriched diet, there was a paradoxical decrease in expression of the hypothalamic proopiomelanocortin gene, precursor of α-MSH, and increase in expression of the gene encoding AgRP. The hypophagia effect of PED took place in mice with invalidation of either MC4R or POMC, and was even strengthened in mice with ablation of the AgRP-expressing neurons. These data strongly suggest that the hypothalamic melanocortin system does not mediate the hunger-curbing effects induced by changes in the macronutrient composition of food. Rather, the role of this system might be to defend the body against the variations in food intake generated by the nutritional environment. PMID:21544212

  7. Role of hypothalamic melanocortin system in adaptation of food intake to food protein increase in mice.

    Directory of Open Access Journals (Sweden)

    Bruno Pillot

    Full Text Available The hypothalamic melanocortin system--the melanocortin receptor of type 4 (MC4R and its ligands: α-melanin-stimulating hormone (α-MSH, agonist, inducing hypophagia, and agouti-related protein (AgRP, antagonist, inducing hyperphagia--is considered to play a central role in the control of food intake. We tested its implication in the mediation of the hunger-curbing effects of protein-enriched diets (PED in mice. Whereas there was a 20% decrease in food intake in mice fed on the PED, compared to mice fed on an isocaloric starch-enriched diet, there was a paradoxical decrease in expression of the hypothalamic proopiomelanocortin gene, precursor of α-MSH, and increase in expression of the gene encoding AgRP. The hypophagia effect of PED took place in mice with invalidation of either MC4R or POMC, and was even strengthened in mice with ablation of the AgRP-expressing neurons. These data strongly suggest that the hypothalamic melanocortin system does not mediate the hunger-curbing effects induced by changes in the macronutrient composition of food. Rather, the role of this system might be to defend the body against the variations in food intake generated by the nutritional environment.

  8. Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons.

    Science.gov (United States)

    Li, Ying; Xu, Youfen; van den Pol, Anthony N

    2013-03-01

    In mature neurons, GABA is the primary inhibitory neurotransmitter. In contrast, in developing neurons, GABA exerts excitatory actions, and in some neurons GABA-mediated excitatory synaptic activity is more prevalent than glutamate-mediated excitation. Hypothalamic neuropeptides that modulate cognitive arousal and energy homeostasis, hypocretin/orexin and neuropeptide Y (NPY), evoked reversed effects on synaptic actions that were dependent on presynaptic GABA release onto melanin-concentrating hormone (MCH) neurons. MCH neurons were identified by selective green fluorescent protein (GFP) expression in transgenic mice. In adults, hypocretin increased GABA release leading to reduced excitation. In contrast, in the developing brain as studied here with analysis of miniature excitatory postsynaptic currents, paired-pulse ratios, and evoked potentials, hypocretin acted presynaptically to enhance the excitatory actions of GABA. The ability of hypocretin to enhance GABA release increases inhibition in adult neurons but paradoxically enhances excitation in developing MCH neurons. In contrast, NPY attenuation of GABA release reduced inhibition in mature neurons but enhanced inhibition during development by attenuating GABA excitation. Both hypocretin and NPY also evoked direct actions on developing MCH neurons. Hypocretin excited MCH cells by activating a sodium-calcium exchanger and by reducing potassium currents; NPY reduced activity by increasing an inwardly rectifying potassium current. These data for the first time show that both hypocretin and NPY receptors are functional presynaptically during early postnatal hypothalamic development and that both neuropeptides modulate GABA actions during development with a valence of enhanced excitation or inhibition opposite to that of the adult state, potentially allowing neuropeptide modulation of use-dependent synapse stabilization.

  9. Calcitonin gene-related peptide alters the firing rates of hypothalamic temperature sensitive and insensitive neurons

    Directory of Open Access Journals (Sweden)

    Grimm Eleanor R

    2008-07-01

    Full Text Available Abstract Background Transient hyperthermic shifts in body temperature have been linked to the endogenous hormone calcitonin gene-related peptide (CGRP, which can increase sympathetic activation and metabolic heat production. Recent studies have demonstrated that these centrally mediated responses may result from CGRP dependent changes in the activity of thermoregulatory neurons in the preoptic and anterior regions of the hypothalamus (POAH. Results Using a tissue slice preparation, we recorded the single-unit activity of POAH neurons from the adult male rat, in response to temperature and CGRP (10 μM. Based on the slope of firing rate as a function of temperature, neurons were classified as either warm sensitive or temperature insensitive. All warm sensitive neurons responded to CGRP with a significant decrease in firing rate. While CGRP did not alter the firing rates of some temperature insensitive neurons, responsive neurons showed an increase in firing rate. Conclusion With respect to current models of thermoregulatory control, these CGRP dependent changes in firing rate would result in hyperthermia. This suggests that both warm sensitive and temperature insensitive neurons in the POAH may play a role in producing this hyperthermic shift in temperature.

  10. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice

    Science.gov (United States)

    Zhang, Rong; Asai, Masato; Mahoney, Carrie E; Joachim, Maria; Shen, Yuan; Gunner, Georgia; Majzoub, Joseph A

    2016-01-01

    A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, while extra-hypothalamic CRH plays a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma ACTH, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open field, elevated plus maze, holeboard, light-dark box, and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus, and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation. PMID:27595593

  11. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a.

    Science.gov (United States)

    Yelin-Bekerman, Laura; Elbaz, Idan; Diber, Alex; Dahary, Dvir; Gibbs-Bar, Liron; Alon, Shahar; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-10-01

    Sleep has been conserved throughout evolution; however, the molecular and neuronal mechanisms of sleep are largely unknown. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate sleep\\wake states, feeding, stress, and reward. To elucidate the mechanism that enables these various functions and to identify sleep regulators, we combined fluorescence cell sorting and RNA-seq in hcrt:EGFP zebrafish. Dozens of Hcrt-neuron-specific transcripts were identified and comprehensive high-resolution imaging revealed gene-specific localization in all or subsets of Hcrt neurons. Clusters of Hcrt-neuron-specific genes are predicted to be regulated by shared transcription factors. These findings show that Hcrt neurons are heterogeneous and that integrative molecular mechanisms orchestrate their diverse functions. The voltage-gated potassium channel Kcnh4a, which is expressed in all Hcrt neurons, was silenced by the CRISPR-mediated gene inactivation system. The mutant kcnh4a (kcnh4a(-/-)) larvae showed reduced sleep time and consolidation, specifically during the night, suggesting that Kcnh4a regulates sleep.

  12. Cowhage-induced itch as an experimental model for pruritus. A comparative study with histamine-induced itch.

    Directory of Open Access Journals (Sweden)

    Alexandru D P Papoiu

    2011-03-01

    Full Text Available Histamine is the prototypical pruritogen used in experimental itch induction. However, in most chronic pruritic diseases, itch is not predominantly mediated by histamine. Cowhage-induced itch, on the other hand, seems more characteristic of itch occurring in chronic pruritic diseases.We tested the validity of cowhage as an itch-inducing agent by contrasting it with the classical itch inducer, histamine, in healthy subjects and atopic dermatitis (AD patients. We also investigated whether there was a cumulative effect when both agents were combined.Fifteen healthy individuals and fifteen AD patients were recruited. Experimental itch induction was performed in eczema-free areas on the volar aspects of the forearm, using different itch inducers: histamine, cowhage and their combination thereof. Itch intensity was assessed continuously for 5.5 minutes after stimulus application using a computer-assisted visual analogue scale (COVAS.In both healthy and AD subjects, the mean and peak intensity of itch were higher after the application of cowhage compared to histamine, and were higher after the combined application of cowhage and histamine, compared to histamine alone (p<0.0001 in all cases. Itch intensity ratings were not significantly different between healthy and AD subjects for the same itch inducer used; however AD subjects exhibited a prolonged itch response in comparison to healthy subjects (p<0.001.Cowhage induced a more intense itch sensation compared to histamine. Cowhage was the dominant factor in itch perception when both pathways were stimulated in the same time. Cowhage-induced itch is a suitable model for the study of itch in AD and other chronic pruritic diseases, and it can serve as a new model for testing antipruritic drugs in humans.

  13. Increased release of histamine in patients with respiratory symptoms related to perfume

    DEFF Research Database (Denmark)

    Elberling, J; Skov, P S; Mosbech, H

    2007-01-01

    BACKGROUND: Environmental perfume exposure may cause respiratory symptoms. Individuals with asthma and perfume contact allergy report such symptoms more frequently than others. However, immunologic mechanisms have not been demonstrated and the symptoms are not associated with IgE-mediated allergy....... The study aimed to investigate whether basophils from patients with respiratory symptoms related to perfume released more histamine in the presence of perfume as compared with healthy volunteers. METHODS: Histamine release was measured by the glass fibre method. Blood was obtained from healthy volunteers (n......=20) and patients with respiratory symptoms related to perfume (n=17) attending a dermatological outpatient clinic for patch testing. The effect of an international brand perfume was investigated using the basophil histamine release test with perfume. Furthermore, basophils from a healthy non...

  14. Effects of spaceflight on hypothalamic peptide systems controlling pituitary growth hormone dynamics

    Science.gov (United States)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1992-01-01

    Possible effects of reduced gravity on central hypophysiotropic systems controlling growth hormone (GH) secretion were investigated in rats flown on Cosmos 1887 and 2044 biosatellites. Immunohistochemical (IHC)staining for the growth hormone-releasing factor (GRF), somatostatin (SS), and other hypothalamic hormones was performed on hypothalami obtained from rats. IHC analysis was complemented by quantitative in situ assessments of mRNAs encoding the precursors for these hormones. Data obtained suggest that exposure to microgravity causes a preferential reduction in GRF peptide and mRNA levels in hypophysiotropic neurons, which may contribute to impared GH secretion in animals subjected to spaceflight. Effects of weightlessness are not mimicked by hindlimb suspension in this system.

  15. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways.

    OpenAIRE

    Imbernon, Monica; Beiroa, Daniel; Vázquez, María J.; Morgan, Donald A.; Veyrat–Durebex, Christelle; Porteiro, Begoña; Díaz–Arteaga, Adenis; Senra, Ana; Busquets, Silvia; Velásquez, Douglas A.; Al–Massadi, Omar; Varela, Luis; Gándara, Marina; López–Soriano, Francisco–Javier; Gallego, Rosalía

    2013-01-01

    BACKGROUND AIMS Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin concentrating hormone (MCH) deficient mice are hypophagic lean and do not develop hepatosteatosis when fed a high fat diet. Herein we sought to investigate the role of MCH an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area on hepatic and adipocyte metabolism. METHODS Chronic central administration of MCH and adenoviral vectors increasing MCH sign...

  16. Induction of histamine release in vitro from rat peritoneal mast cells by extracts of grain dust.

    Science.gov (United States)

    Warren, C P; Holford-Strevens, V

    1986-01-01

    The ability of extracts of grain dust and wheat to induce histamine release from rat peritoneal cells was investigated. Some grain dusts, with a high endotoxin content, were found to produce cytotoxic histamine release. Extract of wheat dust, with a low endotoxin release, produced noncytotoxic histamine release from peritoneal cells but not from purified mast cells. This reaction was dependent on the presence of phosphatidyl serine. The agent did not appear to be a lectin because histamine release was not enhanced by passive sensitization of mast cells with IgE. The activity occurred only over a narrow range of concentrations of the extract of wheat. The cause was unclear. PMID:2423321

  17. Histamine H3 receptors and its antagonism as a novel mechanism for antipsychotic effect: a current preclinical & clinical perspective.

    Science.gov (United States)

    Mahmood, Danish

    2016-10-01

    Histamine H 3 receptors are present as autoreceptors on histaminergic neurons and as heteroreceptors on nonhistaminergic neurones. They control the release and synthesis of histamine and several other key neurotransmitters in the brain. H 3 antagonism may be a novel approach to develop a new class of antipsychotic medications given the gathering evidence reporting therapeutic efficacy in several central nervous system disorders. Several medications such as cariprazine, lurasidone, LY214002, bexarotene, rasagiline, raloxifene, BL-1020 and ITI-070 are being developed to treat the negative symptoms and cognitive impairments of schizophrenia. These medications works through diverse mechanisms which include agonism at metabotropic glutamate receptor (mGluR2/3), partial agonism at dopamine D 2 , D 3 and serotonin 5-HT 1A receptors, antagonism at D 2 , 5-HT 2A, 5-HT 2B and 5-HT 7 receptors, combined dopamine antagonism with GABA agonist activity, inhibition of monoamine oxidase-B, modulation of oestrogen receptor, and activation of nuclear retinoid X receptor. However, still specific safe therapy for psychosis remains at large. Schizophrenia is a severe neuropsychiatric disorder result both from hyper- and hypo-dopaminergic transmission causing positive and negative symptoms, respectively. Pharmacological stimulation of dopamine release in the prefrontal cortex has been a viable approach in treating negative symptoms and cognitive deficits of schizophrenia symptoms that are currently not well treated and continue to represent significant unmet medical challenges. Administration of H 3 antagonists/inverse agonists increase extracellular dopamine concentrations in rat prefrontal cortex, but not in the striatum suggesting that antagonism via H 3 receptor may be a potential target for treating negative symptoms and cognitive deficits associated with schizophrenia. Further, insights are emerging into the potential role of histamine H 3 receptors as a target of antiobesity

  18. Arcuate NPY neurons sense and integrate peripheral metabolic signals to control feeding.

    Science.gov (United States)

    Kohno, Daisuke; Yada, Toshihiko

    2012-12-01

    NPY neuron in the hypothalamic arcuate nucleus is a key feeding center. Studies have shown that NPY neuron in the arcuate nucleus has a role to induce food intake. The arcuate nucleus is structurally unique with lacking blood brain barrier. Peripheral energy signals including hormones and nutrition can reach the arcuate nucleus. In this review, we discuss sensing and integrating peripheral signals in NPY neurons. In the arcuate nucleus, ghrelin mainly activates NPY neurons. Leptin and insulin suppress the ghrelin-induced activation in 30-40% of the ghrelin-activated NPY neurons. Lowering glucose concentration activates 40% of NPY neurons. These results indicate that NPY neuron in the arcuate nucleus is a feeding center in which major peripheral energy signals are directly sensed and integrated. Furthermore, there are subpopulations of NPY neurons in regard to their responsiveness to peripheral signals. These findings suggest that NPY neuron in the arcuate nucleus is an essential feeding center to induce food intake in response to peripheral metabolic state. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The effect of vacuum packaging on histamine changes of milkfish sticks at various storage temperatures.

    Science.gov (United States)

    Kung, Hsien-Feng; Lee, Yi-Chen; Lin, Chiang-Wei; Huang, Yu-Ru; Cheng, Chao-An; Lin, Chia-Min; Tsai, Yung-Hsiang

    2017-10-01

    The effects of polyethylene packaging (PEP) (in air) and vacuum packaging (VP) on the histamine related quality of milkfish sticks stored at different temperatures (-20°C, 4°C, 15°C, and 25°C) were studied. The results showed that the aerobic plate count (APC), pH, total volatile basic nitrogen (TVBN), and histamine contents increased as storage time increased when the PEP and VP samples were stored at 25°C. At below 15°C, the APC, TVBN, pH, and histamine levels in PEP and VP samples were retarded, but the VP samples had considerably lower levels of APC, TVBN, and histamine than PEP samples. Once the frozen fish samples stored at -20°C for 2 months were thawed and stored at 25°C, VP retarded the increase of histamine in milkfish sticks as compared to PEP. In summary, this result suggested the milkfish sticks packed with VP and stored below 4°C could prevent deterioration of product quality and extend shelf-life. Copyright © 2017. Published by Elsevier B.V.

  20. The synaptic cell adhesion molecule, SynCAM1, mediates astrocyte-to-astrocyte and astrocyte-to-GnRH neuron adhesiveness in the mouse hypothalamus.

    Science.gov (United States)

    Sandau, Ursula S; Mungenast, Alison E; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel; Ojeda, Sergio R

    2011-06-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication.

  1. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri.

    Science.gov (United States)

    Molenaar, D; Bosscher, J S; ten Brink, B; Driessen, A J; Konings, W N

    1993-05-01

    Lactobacillus buchneri ST2A vigorously decarboxylates histidine to the biogenic amine histamine, which is excreted into the medium. Cells grown in the presence of histidine generate both a transmembrane pH gradient, inside alkaline, and an electrical potential (delta psi), inside negative, upon addition of histidine. Studies of the mechanism of histidine uptake and histamine excretion in membrane vesicles and proteoliposomes devoid of cytosolic histidine decarboxylase activity demonstrate that histidine uptake, histamine efflux, and histidine/histamine exchange are electrogenic processes. Histidine/histamine exchange is much faster than the unidirectional fluxes of these substrates, is inhibited by an inside-negative delta psi and is stimulated by an inside positive delta psi. These data suggest that the generation of metabolic energy from histidine decarboxylation results from an electrogenic histidine/histamine exchange and indirect proton extrusion due to the combined action of the decarboxylase and carrier-mediated exchange. The abundance of amino acid decarboxylation reactions among bacteria suggests that this mechanism of metabolic energy generation and/or pH regulation is widespread.

  2. Studies on the role of central histamine in the acquisition of a radiation-induced conditioned taste aversion

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1982-01-01

    The experiments described in this report were designed to test two hypotheses about how exposure to low-level radiation can affect the behavior of an organism: first, tht radiation effects on behavior are mediated by a radiation-induced release of histamine; and second, that this radiation-induced histamine release can exert relatively direct effects on the central nervous system. The results of the first experiment showed that microinjection of histamine directly into the fourth ventricle of rats produced a taste aversion to a novel sucrose solution. Pretreating rats with intraventricular H 1 or H 2 blockers was not effective in preventing the acquisition of the radiation-induced aversion, although the H 1 blocker did prevent the acquisition of a histamine-induced taste aversion. It also was not possible to establish a cross-tolerance between centrally administered histamine and radiation. The results are interpreted as not supporting the hypothesis that a radiation-induced release of central histamine mediates the acquisition of a conditioned taste aversion following exposure to low-level radiation

  3. Validation of basophil histamine release against the autologous serum skin test and outcome of serum-induced basophil histamine release studies in a large population of chronic urticaria patients

    DEFF Research Database (Denmark)

    Platzer, M H; Grattan, C E H; Poulsen, Lars K.

    2005-01-01

    the immunoglobulin E (IgE) or the high affinity IgE receptor (FcepsilonRI) and serum-induced histamine release (HR) from basophils and mast cells. We have examined the correlation between the ASST and a new basophil histamine-releasing assay (the HR-Urtikaria test) in a group of well-characterized CU patients...... and subsequently determined the frequency of HR-Urticaria-positive sera from a larger population of CU patients....

  4. Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states.

    Directory of Open Access Journals (Sweden)

    Sachiko Chikahisa

    Full Text Available Mast cell activation and degranulation can result in the release of various chemical mediators, such as histamine and cytokines, which significantly affect sleep. Mast cells also exist in the central nervous system (CNS. Since up to 50% of histamine contents in the brain are from brain mast cells, mediators from brain mast cells may significantly influence sleep and other behaviors. In this study, we examined potential involvement of brain mast cells in sleep/wake regulations, focusing especially on the histaminergic system, using mast cell deficient (W/W(v mice. No significant difference was found in the basal amount of sleep/wake between W/W(v mice and their wild-type littermates (WT, although W/W(v mice showed increased EEG delta power and attenuated rebound response after sleep deprivation. Intracerebroventricular injection of compound 48/80, a histamine releaser from mast cells, significantly increased histamine levels in the ventricular region and enhanced wakefulness in WT mice, while it had no effect in W/W(v mice. Injection of H1 antagonists (triprolidine and mepyramine significantly increased the amounts of slow-wave sleep in WT mice, but not in W/W(v mice. Most strikingly, the food-seeking behavior observed in WT mice during food deprivation was completely abolished in W/W(v mice. W/W(v mice also exhibited higher anxiety and depression levels compared to WT mice. Our findings suggest that histamine released from brain mast cells is wake-promoting, and emphasizes the physiological and pharmacological importance of brain mast cells in the regulation of sleep and fundamental neurobehavior.

  5. Magnocellular Neurons and Posterior Pituitary Function.

    Science.gov (United States)

    Brown, Colin H

    2016-09-15

    The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  6. Histamine intolerance as a cause of chronic digestive complaints in pediatric patients

    Directory of Open Access Journals (Sweden)

    Antonio Rosell-Camps

    2013-04-01

    Full Text Available Introduction: histamine intolerance (HI is a poorly described disease in gastroenterology that may present with predominant digestive complaints. The goals of this study include a report of two cases diagnosed in a pediatric gastroenterology clinic. Material and methods: observational, retrospective study of patients diagnosed with HI from September 2010 to December 2011 at the pediatric gastroenterology clinic of a tertiary hospital. They were deemed to have a diagnosis of HI in the presence of 2 or more characteristic digestive complaints, decreased diamino oxidase (DAO levels and/or response to a low histamine diet with negative IgE-mediated food allergy tests. Results: sixteen patients were diagnosed. Males predominated versus females (11/5. Mean age at symptom onset was 4 years (6 months vs. 13 years and 6 months and mean age at diagnosis was 6 years and 6 months (17 months vs. 13 years and 11 months, with an interval of 2 years and 1 month between symptom onset and diagnosis (5 months vs. 4 years. Predominant symptoms included diffuse abdominal pain (16/16, intermittent diarrhea (10/16, headache (5/16, intermittent vomiting (4/16, and skin rash (2/16. The diagnosis was established by measuring plasma diamino oxidase levels, which were below 10 kU/L (normal > 10 kU/L in 14 cases, and symptom clearance on initiating a low histamine diet. In two patients DAO levels were above 10 kU/L but responded to diet. Treatment was based on a diet low in histamine-contaning food, and antihistamines H1 y H2 had to be added for two cases. Conclusions: histamine intolerance is a little known disease with a potentially relevant incidence. Predominant complaints include diffuse abdominal pain, diarrhea, headache, and chronic intermittent vomiting. Its diagnosis is based on clinical suspicion, plasma DAO measurement, and response to a low histamine diet. Management with the latter provides immediate improvement.

  7. Precooking as a Control for Histamine Formation during the Processing of Tuna: An Industrial Process Validation.

    Science.gov (United States)

    Adams, Farzana; Nolte, Fred; Colton, James; De Beer, John; Weddig, Lisa

    2018-02-23

    An experiment to validate the precooking of tuna as a control for histamine formation was carried out at a commercial tuna factory in Fiji. Albacore tuna ( Thunnus alalunga) were brought on board long-line catcher vessels alive, immediately chilled but never frozen, and delivered to an on-shore facility within 3 to 13 days. These fish were then allowed to spoil at 25 to 30°C for 21 to 25 h to induce high levels of histamine (>50 ppm), as a simulation of "worst-case" postharvest conditions, and subsequently frozen. These spoiled fish later were thawed normally and then precooked at a commercial tuna processing facility to a target maximum core temperature of 60°C. These tuna were then held at ambient temperatures of 19 to 37°C for up to 30 h, and samples were collected every 6 h for histamine analysis. After precooking, no further histamine formation was observed for 12 to 18 h, indicating that a conservative minimum core temperature of 60°C pauses subsequent histamine formation for 12 to 18 h. Using the maximum core temperature of 60°C provided a challenge study to validate a recommended minimum core temperature of 60°C, and 12 to 18 h was sufficient to convert precooked tuna into frozen loins or canned tuna. This industrial-scale process validation study provides support at a high confidence level for the preventive histamine control associated with precooking. This study was conducted with tuna deliberately allowed to spoil to induce high concentrations of histamine and histamine-forming capacity and to fail standard organoleptic evaluations, and the critical limits for precooking were validated. Thus, these limits can be used in a hazard analysis critical control point plan in which precooking is identified as a critical control point.

  8. Crosstalks between kisspeptin neurons and somatostatin neurons are not photoperiod dependent in the ewe hypothalamus.

    Science.gov (United States)

    Dufourny, Laurence; Lomet, Didier

    2017-12-01

    Seasonal reproduction is under the control of gonadal steroid feedback, itself synchronized by day-length or photoperiod. As steroid action on GnRH neurons is mostly indirect and therefore exerted through interneurons, we looked for neuroanatomical interactions between kisspeptin (KP) neurons and somatostatin (SOM) neurons, two populations targeted by sex steroids, in three diencephalic areas involved in the central control of ovulation and/or sexual behavior: the arcuate nucleus (ARC), the preoptic area (POA) and the ventrolateral part of the ventromedial hypothalamus (VMHvl). KP is the most potent secretagogue of GnRH secretion while SOM has been shown to centrally inhibit LH pulsatile release. Notably, hypothalamic contents of these two neuropeptides vary with photoperiod in specific seasonal species. Our hypothesis is that SOM inhibits KP neuron activity and therefore indirectly modulate GnRH release and that this effect may be seasonally regulated. We used sections from ovariectomized estradiol-replaced ewes killed after photoperiodic treatment mimicking breeding or anestrus season. We performed triple immunofluorescent labeling to simultaneously detect KP, SOM and synapsin, a marker for synaptic vesicles. Sections from the POA and from the mediobasal hypothalamus were examined using a confocal microscope. Randomly selected KP or SOM neurons were observed in the POA and ARC. SOM neurons were also observed in the VMHvl. In both the ARC and POA, nearly all KP neurons presented numerous SOM contacts. SOM neurons presented KP terminals more frequently in the ARC than in the POA and VMHvl. Quantitative analysis failed to demonstrate major seasonal variations of KP and SOM interactions. Our data suggest a possible inhibitory action of SOM on all KP neurons in both photoperiodic statuses. On the other hand, the physiological significance of KP modulation of SOM neuron activity and vice versa remain to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection.

    Science.gov (United States)

    Fioramonti, Xavier; Chrétien, Chloé; Leloup, Corinne; Pénicaud, Luc

    2017-01-01

    The hypothalamus have been recognized for decades as one of the major brain centers for the control of energy homeostasis. This area contains specialized neurons able to detect changes in nutrients level. Among them, glucose-sensing neurons use glucose as a signaling molecule in addition to its fueling role. In this review we will describe the different sub-populations of glucose-sensing neurons present in the hypothalamus and highlight their nature in terms of neurotransmitter/neuropeptide expression. This review will particularly discuss whether pro-opiomelanocortin (POMC) neurons from the arcuate nucleus are directly glucose-sensing. In addition, recent observations in glucose-sensing suggest a subtle system with different mechanisms involved in the detection of changes in glucose level and their involvement in specific physiological functions. Several data point out the critical role of reactive oxygen species (ROS) and mitochondria dynamics in the detection of increased glucose. This review will also highlight that ATP-dependent potassium (K ATP ) channels are not the only channels mediating glucose-sensing and discuss the new role of transient receptor potential canonical channels (TRPC). We will discuss the recent advances in the determination of glucose-sensing machinery and propose potential line of research needed to further understand the regulation of brain glucose detection.

  10. Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection

    Directory of Open Access Journals (Sweden)

    Xavier Fioramonti

    2017-11-01

    Full Text Available The hypothalamus have been recognized for decades as one of the major brain centers for the control of energy homeostasis. This area contains specialized neurons able to detect changes in nutrients level. Among them, glucose-sensing neurons use glucose as a signaling molecule in addition to its fueling role. In this review we will describe the different sub-populations of glucose-sensing neurons present in the hypothalamus and highlight their nature in terms of neurotransmitter/neuropeptide expression. This review will particularly discuss whether pro-opiomelanocortin (POMC neurons from the arcuate nucleus are directly glucose-sensing. In addition, recent observations in glucose-sensing suggest a subtle system with different mechanisms involved in the detection of changes in glucose level and their involvement in specific physiological functions. Several data point out the critical role of reactive oxygen species (ROS and mitochondria dynamics in the detection of increased glucose. This review will also highlight that ATP-dependent potassium (KATP channels are not the only channels mediating glucose-sensing and discuss the new role of transient receptor potential canonical channels (TRPC. We will discuss the recent advances in the determination of glucose-sensing machinery and propose potential line of research needed to further understand the regulation of brain glucose detection.

  11. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin★

    Science.gov (United States)

    Wang, Qian; Liu, Chen; Uchida, Aki; Chuang, Jen-Chieh; Walker, Angela; Liu, Tiemin; Osborne-Lawrence, Sherri; Mason, Brittany L.; Mosher, Christina; Berglund, Eric D.; Elmquist, Joel K.; Zigman, Jeffrey M.

    2013-01-01

    The hormone ghrelin stimulates eating and helps maintain blood glucose upon caloric restriction. While previous studies have demonstrated that hypothalamic arcuate AgRP neurons are targets of ghrelin, the overall relevance of ghrelin signaling within intact AgRP neurons is unclear. Here, we tested the functional significance of ghrelin action on AgRP neurons using a new, tamoxifen-inducible AgRP-CreERT2 transgenic mouse model that allows spatiotemporally-controlled re-expression of physiological levels of ghrelin receptors (GHSRs) specifically in AgRP neurons of adult GHSR-null mice that otherwise lack GHSR expression. AgRP neuron-selective GHSR re-expression partially restored the orexigenic response to administered ghrelin and fully restored the lowered blood glucose levels observed upon caloric restriction. The normalizing glucoregulatory effect of AgRP neuron-selective GHSR expression was linked to glucagon rises and hepatic gluconeogenesis induction. Thus, our data indicate that GHSR-containing AgRP neurons are not solely responsible for ghrelin's orexigenic effects but are sufficient to mediate ghrelin's effects on glycemia. PMID:24567905

  12. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin.

    Science.gov (United States)

    Wang, Qian; Liu, Chen; Uchida, Aki; Chuang, Jen-Chieh; Walker, Angela; Liu, Tiemin; Osborne-Lawrence, Sherri; Mason, Brittany L; Mosher, Christina; Berglund, Eric D; Elmquist, Joel K; Zigman, Jeffrey M

    2014-02-01

    The hormone ghrelin stimulates eating and helps maintain blood glucose upon caloric restriction. While previous studies have demonstrated that hypothalamic arcuate AgRP neurons are targets of ghrelin, the overall relevance of ghrelin signaling within intact AgRP neurons is unclear. Here, we tested the functional significance of ghrelin action on AgRP neurons using a new, tamoxifen-inducible AgRP-CreER(T2) transgenic mouse model that allows spatiotemporally-controlled re-expression of physiological levels of ghrelin receptors (GHSRs) specifically in AgRP neurons of adult GHSR-null mice that otherwise lack GHSR expression. AgRP neuron-selective GHSR re-expression partially restored the orexigenic response to administered ghrelin and fully restored the lowered blood glucose levels observed upon caloric restriction. The normalizing glucoregulatory effect of AgRP neuron-selective GHSR expression was linked to glucagon rises and hepatic gluconeogenesis induction. Thus, our data indicate that GHSR-containing AgRP neurons are not solely responsible for ghrelin's orexigenic effects but are sufficient to mediate ghrelin's effects on glycemia.

  13. Projection from the prefrontal cortex to histaminergic cell groups in the posterior hypothalamic region of the rat. Anterograde tracing with Phaseolus vulgaris leucoagglutinin combined with immunocytochemistry of histidine decarboxylase

    NARCIS (Netherlands)

    Wouterlood, F.G.; Steinbusch, H.W.M.; Luiten, P.G.M.; Bol, J.G.J.M.

    1987-01-01

    We investigated the projection from the infralimbic division of the prefrontal cortex (area 25) to histaminergic neurons in the posterior hypothalamic area. Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected in the prefrontal cortex of rats. Frozen brain sections were subjected to combined

  14. A comparison of in vivo and in vitro human airway reactivity to histamine.

    Science.gov (United States)

    Armour, C L; Lazar, N M; Schellenberg, R R; Taylor, S M; Chan, N; Hogg, J C; Paré, P D

    1984-06-01

    To examine for a relationship between in vivo nonspecific bronchial reactivity to histamine and in vitro smooth muscle response to histamine, we performed inhalation dose-response curves prior to lung surgery in 12 patients and compared this with their bronchial smooth muscle response in vitro. In vivo reactivity was assessed by the provocative concentration of histamine resulting in a 20% fall in forced expiratory volume in one second (PC20), and in vitro reactivity was measured by the negative log of the molar concentration of histamine producing 50% maximal contraction (pD2) as well as maximal tension generated (Tmax). In addition, morphometric analysis was performed on the in vitro tissue to quantitate the amount of smooth muscle present. A wide range of in vivo responses was found in the 12 subjects (PC20-0.065 lead to 16). There was less in vitro variability and no correlation between PC20 and in vitro reactivity assessed by pD20 or Tmax or between PC20 and the percent of smooth muscle.

  15. Enhanced excitatory input to MCH neurons during developmental period of high food intake is mediated by GABA

    Science.gov (United States)

    Li, Ying; van den Pol, Anthony N.

    2010-01-01

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidicin-perforated patch recordings in hypothalamic slices from MCH-GFP transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl− dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA. PMID:19955372

  16. Potential negative effects of anti-histamines on male reproductive function.

    Science.gov (United States)

    Mondillo, Carolina; Varela, María Luisa; Abiuso, Adriana María Belén; Vázquez, Ramiro

    2018-05-01

    Histamine (HA) is a pleiotropic biogenic amine synthesized exclusively by histidine decarboxylase (HDC) in most mammalian tissues. The literature on the role of HA within the male gonad has expanded over the last years, attracting attention to potential unexpected side-effects of anti-histamines on testicular function. In this regard, HA receptors (HRH1, HRH2 and HRH4) have been described in Leydig cells of different species, including human. Via these receptors, HA has been reported to trigger positive or negative interactions with the LH/hCG signaling pathway depending upon its concentration, thereby contributing to the local control of testicular androgen levels. It should then be considered that anti-histamines may affect testicular homeostasis by increasing or decreasing steroid production. Additionally, HRH1 and HRH2 receptors are present in peritubular and germ cells, and HRH2 antagonists have been found to negatively affect peritubular cells and reduce sperm viability. The potential negative impact of anti-histamines on male reproduction becomes even more dramatic if we consider that HA has also been associated with human sexual behavior and penile erection. What is more, although testicular mast cells are the major source of locally produced HA, recent studies have described HDC expression in macrophages, Leydig cells and germ cells, revealing the existence of multiple sources of HA within the testis. Undoubtedly, the more we learn about the testicular histaminergic system, the more opportunities there will be for rational design of drugs aimed at treating HA-related pathologies, with minimum or nule negative impact on fertility. © 2018 Society for Reproduction and Fertility.

  17. Photoperiodic regulation of glycogen metabolism, glycolysis, and glutamine synthesis in tanycytes of the Siberian hamster suggests novel roles of tanycytes in hypothalamic function.

    Science.gov (United States)

    Nilaweera, Kanishka; Herwig, Annika; Bolborea, Matei; Campbell, Gill; Mayer, Claus D; Morgan, Peter J; Ebling, Francis J P; Barrett, Perry

    2011-11-01

    The objective of this study is to investigate the impact of photoperiod on the temporal and spatial expression of genes involved in glucose metabolism in the brain of the seasonal mammal Phodopus sungorus (Siberian hamster). In situ hybridization was performed on brain sections obtained from male hamsters held in long photoperiod (high body weight and developed testes) or short photoperiod (reduced body weight with testicular regression). This analysis revealed upregulation in expression of genes involved in glycogen and glucose metabolism in short photoperiod and localized to the tanycyte layer of the third ventricle. On the basis of these data and a previously identified photoperiod-dependent increase in activity of neighboring hypothalamic neurons, we hypothesized that the observed expression changes may reflect alteration in either metabolic fuel or precursor neurotransmitter supply to surrounding neurons. Gene expression analysis was performed for genes involved in lactate and glutamate transport. This analysis showed that the gene for the lactate transporter MCT2 and glutamate transporter GLAST was decreased in the tanycyte layer in short photoperiod. Expression of mRNA for glutamine synthetase, the final enzyme in the synthesis of the neuronal neurotransmitter precursor, glutamine, was also decreased in short photoperiod. These data suggest a role for tanycytes in modulating glutamate concentrations and neurotransmitter supply in the hypothalamic environment. Copyright © 2011 Wiley-Liss, Inc.

  18. Course and forecast of the hypothalamic pubertal syndrome

    International Nuclear Information System (INIS)

    Kayusheva, I.V.

    1987-01-01

    A total of 223 patients with the hypothalamic pubertal syndrome (HPS) were followed up for 1 to 22 years. The course of HPS was regressive, stable , recurrent or progressive and dependent on the initial depth and spread of hypothalamic lesion, repeated unfavourable hypothalamic exposures, and timely and regular treatment. HPS outcomes were followed up in 190 cases. The recovery was complete in 21.05%, obesity alone persisted in 10.53%, vegetovascular dystonia was persistent in 7.36%, and polycystic ovaries in 5.79%. Neuroendocrine hypothalamic syndrome was the most common (50.53%) HPS outcome. Hormone levels in blood were investigated using radioimmunoassay in patients with neuroendocrine form of HPS

  19. Mast cell histamine-mediated transient inflammation following exposure to nickel promotes nickel allergy in mice.

    Science.gov (United States)

    Kinbara, Masayuki; Bando, Kanan; Shiraishi, Daisuke; Kuroishi, Toshinobu; Nagai, Yasuhiro; Ohtsu, Hiroshi; Takano-Yamamoto, Teruko; Sugawara, Shunji; Endo, Yasuo

    2016-06-01

    We previously reported that allergic responses to nickel (Ni) were minimal in mice deficient in the histamine-forming enzyme histidine decarboxylase (HDC-KO), suggesting an involvement of histamine in allergic responses to Ni. However, it remains unclear how histamine is involved in the process of Ni allergy. Here, we examined the role of histamine in Ni allergy using a murine model previously established by us. Mice were sensitized to Ni by intraperitoneal injection of a NiCl2 -lipopolysaccharide (LPS) mixture. Ten days later, allergic inflammation was elicited by challenging ear-pinnas intradermally with NiCl2 . Then, ear-swelling was measured. Pyrilamine (histamine H1-receptor antagonist) or cromoglicate (mast cell stabilizer) was intravenously injected 1 h before the sensitization or the challenge. In cell-transfer experiments, spleen cells from Ni-sensitized donor mice were intravenously transferred into non-sensitized recipient mice. In both sensitized and non-sensitized mice, 1 mm or more NiCl2 (injected into ear-pinnas) induced transient non-allergic inflammation (Ni-TI) with accompanying mast cell degranulation. LPS did not affect the magnitude of this Ni-TI. Pyrilamine and cromoglicate reduced either the Ni-TI or the ensuing allergic inflammation when administered before Ni-TI (at either the sensitization or elicitation step), but not if administered when the Ni-TI had subsided. Experiments on HDC-KO and H1-receptor-KO mice, and also cell-transfer experiments using these mice, demonstrated histamine's involvement in both the sensitization and elicitation steps. These results suggest that mast cell histamine-mediated Ni-TI promotes subsequent allergic inflammatory responses to Ni, raising the possibility that control of Ni-TI by drugs may be effective at preventing or reducing Ni allergy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Endophytic Fungi Associated With Turmeric (Curcuma longa L. Can Inhibit Histamine-Forming Bacteria in Fish

    Directory of Open Access Journals (Sweden)

    Eris Septiana

    2017-01-01

    Full Text Available Turmeric (Curcuma longa L. is a medicinal plant that is commonly used as spice and preservative. Many types of endophytic fungi have been reported as being associated with medicinal plants and able to synthesize secondary metabolites. In this study, endophytic fungi were isolated from all plant parts of turmeric plants. Identification of the endophytic fungi was done using morphological characteristics and sequencing of the internal transcribed spacer (ITS region of ribosomal DNA. The dual culture method was used for screening antibacterial activity of the endophytic fungi against Morganella morganii, a common histamine-producing bacteria. The disc diffusion method was used to test the ability of water fractions of selected endophytic fungi to inhibit M. morganii growth. Two-dimensional thin layer chromatography was used to determine the fungal extract inhibition activity on histamine formation. In total, 11 endophytic fungi were successfully isolated and identified as Arthrobotrys foliicola, Cochliobolus kusanoi, Daldinia eschscholzii, Fusarium oxysporum, Fusarium proliferatum, Fusarium solani, Fusarium verticillioides, Phanerochaete chrysosporium, and Phaeosphaeria ammophilae. Five isolates showed inhibition activity against M. morganii in the dual culture tests. Based on the disc diffusion assay, A. foliicola and F. verticillioides inhibited the growth of M. morganii as a histamine-producing bacteria, and inhibiting histamine formation in fish. The best effects in inhibiting growth of the histamine-producing bacteria and histamine formation inhibition in fish were produced with F. verticillioides water fraction at 0°C incubation.

  1. The orexin neuropeptide system: Physical activity and hypothalamic function throughout the aging process.

    Directory of Open Access Journals (Sweden)

    Anastasia N Zink

    2014-11-01

    Full Text Available There is a rising medical need for novel therapeutic targets of physical activity. Physical activity spans from spontaneous, low intensity movements to voluntary, high-intensity exercise. Regulation of spontaneous and voluntary movement is distributed over many brain areas and neural substrates, but the specific cellular and molecular mechanisms responsible for mediating overall activity levels are not well understood. The hypothalamus plays a central role in the control of physical activity, which is executed through coordination of multiple signaling systems, including the orexin neuropeptides. Orexin producing neurons integrate physiological and metabolic information to coordinate multiple behavioral states and modulate physical activity in response to the environment. This review is organized around three questions: (1 How do orexin peptides modulate physical activity? (2 What are the effects of aging and lifestyle choices on physical activity? (3 What are the effects of aging on hypothalamic function and the orexin peptides? Discussion of these questions will provide a summary of the current state of knowledge regarding hypothalamic orexin regulation of physical activity during aging and provide a platform on which to develop improved clinical outcomes in age-associated obesity and metabolic syndromes.

  2. Aspirin Augments IgE-Mediated Histamine Release from Human Peripheral Basophils via Syk Kinase Activation

    Directory of Open Access Journals (Sweden)

    Hiroaki Matsuo

    2013-01-01

    Conclusions: Aspirin enhanced histamine release from basophils via increased Syk kinase activation, and that the augmentation of histamine release by NSAIDs or FAs may be one possible cause of worsening symptoms in patients with chronic urticaria and FDEIA.

  3. Effects of histamine and 5-hydroxytryptamine on the growth rate of xenografted human bronchogenic carcinomas.

    Science.gov (United States)

    Sheehan, P F; Baker, T; Tutton, P J; Barkla, D H

    1996-01-01

    1. The influence of histamine and 5-hydroxytryptamine (5-HT) antagonists and agonists on the volume doubling times (Td) of human bronchogenic carcinomas propagated as s.c. xenografts in immunosuppressed mice was examined. 2. The H2-receptor antagonists, cimetidine and ranitidine, increased Td. 3. Treatment with the H2-receptor agonist, 4-methyl histamine, had no effect on Td. 4. Co-administration of 4-methyl histamine and cimetidine abolished the effects of cimetidine. 5. The 5-HT2-receptor antagonists, cinanserin and ketanserin, both increased Td. 6. Treatment with the 5-HT1/2-receptor agonist quipazine (0.1 mg/kg, reflecting 5-HT2 agonist activity) decreased Td, while a higher dose (10.0 mg/kg) had no effect. 7. The 5-HT1/2-receptor antagonist, methiothepin, decreased Td. 8. The 5-HT uptake inhibitor, fluoxetine, increased Td in one tumour line but not in another, while the 5-HT releaser/depletor, fenfluramine, increased Td. 9. Histamine may stimulate tumour growth through the histamine H2-receptor, while the dominant effect of 5-HT is 5-HT1-receptor inhibition. 10. Tumour growth in some bronchogenic carcinomas may involve 5-HT uptake mechanisms.

  4. A genetic basis for functional hypothalamic amenorrhea.

    Science.gov (United States)

    Caronia, Lisa M; Martin, Cecilia; Welt, Corrine K; Sykiotis, Gerasimos P; Quinton, Richard; Thambundit, Apisadaporn; Avbelj, Magdalena; Dhruvakumar, Sadhana; Plummer, Lacey; Hughes, Virginia A; Seminara, Stephanie B; Boepple, Paul A; Sidis, Yisrael; Crowley, William F; Martin, Kathryn A; Hall, Janet E; Pitteloud, Nelly

    2011-01-20

    Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogonadotropic hypogonadism, a congenital form of GnRH deficiency, are associated with hypothalamic amenorrhea. We analyzed the coding sequence of genes associated with idiopathic hypogonadotropic hypogonadism in 55 women with hypothalamic amenorrhea and performed in vitro studies of the identified mutations. Six heterozygous mutations were identified in 7 of the 55 patients with hypothalamic amenorrhea: two variants in the fibroblast growth factor receptor 1 gene FGFR1 (G260E and R756H), two in the prokineticin receptor 2 gene PROKR2 (R85H and L173R), one in the GnRH receptor gene GNRHR (R262Q), and one in the Kallmann syndrome 1 sequence gene KAL1 (V371I). No mutations were found in a cohort of 422 controls with normal menstrual cycles. In vitro studies showed that FGFR1 G260E, FGFR1 R756H, and PROKR2 R85H are loss-of-function mutations, as has been previously shown for PROKR2 L173R and GNRHR R262Q. Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism are found in women with hypothalamic amenorrhea, suggesting that these mutations may contribute to the variable susceptibility of women to the functional changes in GnRH secretion that characterize hypothalamic amenorrhea. Our observations provide evidence for the role of rare variants in common multifactorial disease. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00494169.).

  5. Risk factors for mortality caused by hypothalamic obesity in children with hypothalamic tumours.

    Science.gov (United States)

    Haliloglu, B; Atay, Z; Guran, T; Abalı, S; Bas, S; Turan, S; Bereket, A

    2016-10-01

    Hypothalamic obesity (HyOb) is a common complication of childhood hypothalamic tumours. Patients with HyOb probably have a higher mortality rate than those with other types of obesity due in many cases to obstructive sleep apnoea/hypoventilation. To identify predictive factors for mortality caused by HyOb in children. Twenty children with HyOb secondary to hypothalamic tumours that were followed-up for ≥3 years and aged 6 years at diagnosis (3.71 ± 1.96 vs. 0.83 ± 0.73, P  1 SDS after 6 months of therapy (RR: 8.4, P obesity-related mortality rates were higher in the patients aged  0.05). The mortality rate was also 3.7-fold higher in the patients with a maximum BMI SDS ≥ 3 at any time during the first 3 years after therapy(P > 0.05). An increase in BMI SDS after 6 months of therapy was observed to be a risk factor for mortality caused by HyOb. In addition, age obesity is required. © 2015 World Obesity.

  6. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-03-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor.

  7. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    International Nuclear Information System (INIS)

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-01-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor

  8. Flatfish metamorphosis: a hypothalamic independent process?

    Science.gov (United States)

    Campinho, Marco A; Silva, Nadia; Roman-Padilla, Javier; Ponce, Marian; Manchado, Manuel; Power, Deborah M

    2015-03-15

    Anuran and flatfish metamorphosis are tightly regulated by thyroid hormones that are the necessary and sufficient factors that drive this developmental event. In the present study whole mount in situ hybridization (WISH) and quantitative PCR in sole are used to explore the central regulation of flatfish metamorphosis. Central regulation of the thyroid in vertebrates is mediated by the hypothalamus-pituitary-thyroid (HPT) axis. Teleosts diverge from other vertebrates as hypothalamic regulation in the HPT axis is proposed to be through hypothalamic inhibition although the regulatory factor remains enigmatic. The dynamics of the HPT axis during sole metamorphosis revealed integration between the activity of the thyrotrophes in the pituitary and the thyroid follicles. No evidence was found supporting a role for thyroid releasing hormone (trh) or corticotrophin releasing hormone (crh) in hypothalamic control of TH production during sole metamorphosis. Intriguingly the results of the present study suggest that neither hypothalamic trh nor crh expression changes during sole metamorphosis and raises questions about the role of these factors and the hypothalamus in regulation of thyrotrophs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Validation of histamine determination Method in yoghurt using High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    M Jahedinia

    2014-02-01

    Full Text Available Biogenic amines are organic, basic nitrogenous compounds of low molecular weight that are mainly generated by the enzymatic decarboxylation of amino acids by microorganisms. Dairy products are among the foods with the highest amine content. A wide variety of methods and procedures for determination of histamine and biogenic amines have been established. Amongst, HPLC method is considered as reference method. The aim of this study was to validate Reversed Phase HPLC method determination of histamine in yoghurt. The mobile phase consisted of acetonitrile/water (18:88 v/v and the flow rate was set at 0.5 ml/min using isocratic HPLC. Detection was carried out at 254 nm using UV-detector. Calibration curve that was constructed using peak area of standards was linear and value of correlation coefficient (r2 was estimated at 0.998. Good recoveries were observed for histamine under investigation at all spiking levels and average of recoveries was 84%. The RSD% value from repeatability test was found to be %4.4. Limit of detection and limit of quantitation were 0.14 and 0.42 µ/ml, respectively. The results of validation tests showed that the method is reliable and rapid for quantification of histamine in yoghurt.

  10. Histamine 1 Receptor Blockade Enhances Eosinophil-Mediated Clearance of Adult Filarial Worms.

    Directory of Open Access Journals (Sweden)

    Ellen Mueller Fox

    Full Text Available Filariae are tissue-invasive nematodes that cause diseases such as elephantiasis and river blindness. The goal of this study was to characterize the role of histamine during Litomosoides sigmodontis infection of BALB/c mice, a murine model of filariasis. Time course studies demonstrated that while expression of histidine decarboxylase mRNA increases throughout 12 weeks of infection, serum levels of histamine exhibit two peaks-one 30 minutes after primary infection and one 8 weeks later. Interestingly, mice treated with fexofenadine, a histamine receptor 1 inhibitor, demonstrated significantly reduced worm burden in infected mice compared to untreated infected controls. Although fexofenadine-treated mice had decreased antigen-specific IgE levels as well as lower splenocyte IL-5 and IFNγ production, they exhibited a greater than fourfold rise in eosinophil numbers at the tissue site where adult L. sigmodontis worms reside. Fexofenadine-mediated clearance of L. sigmodontis worms was dependent on host eosinophils, as fexofenadine did not decrease worm burdens in eosinophil-deficient dblGATA mice. These findings suggest that histamine release induced by tissue invasive helminths may aid parasite survival by diminishing eosinophilic responses. Further, these results raise the possibility that combining H1 receptor inhibitors with current anthelmintics may improve treatment efficacy for filariae and other tissue-invasive helminths.

  11. The role of GluN2A and GluN2B NMDA receptor subunits in AgRP and POMC neurons on body weight and glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Aykut Üner

    2015-10-01

    Conclusions: GluN2B-containing NMDA receptors in AgRP neurons play a critical role in central control of body weight homeostasis and blood glucose balance via mechanisms that likely involve regulation of AgRP neuronal survival and structure, and modulation of hypothalamic leptin action.

  12. The effects of histamine and prostaglandin D2 on rat mast-cell cyclic AMP and mediator release

    International Nuclear Information System (INIS)

    Wescott, S.; Kaliner, M.

    1981-01-01

    The possibility that histamine may play a functional role in modulating mast-cell secretion, as has been suggested for basophil degranulation, has both physiologic and pharmacologic implications. Therefore the capacity of histamine to influence rat peritoneal mast-cell (RPMC) cyclic AMP levels and reversed anaphylatic degranulation as reflected in the release of 3H-serotonin (5-HT) was examined. To ascertain that RPMC were functionally responsive to exogenous hormonal stimulation, assessment of prostaglandin (PG) D2 effects on cyclic AMP and 5-HT release were determined in parallel. Although PGD2 (100 microM) increased cyclic AMP and inhibited 5-HT release in the presence of 50 microM aminophylline, histamine (up to 1000 microM) was ineffective was ineffective in both. However, 1000 microM histamine in the presence of 500 microM aminophylline was capable of transiently increasing RPMC cyclic AMP (for 15 to 30 sec) and under these conditions of suppressing 5-HT release. The receptor subtype involved in the suppressive actions of histamine appeared to be of the H-1 type as reflected in the capacity of specific H-1 agonists to reproduce the inhibition of 5-HT release, whereas neither H-2 agonists nor H-2 antagonists had any influence. Thus, under conditions in which phosphodiesterase enzymatic action is impaired, histamine in extremely high concentrations is able to modulate mast-cell secretion. However, it seems very unlikely that this action of histamine has any physiologic significance

  13. Histamine H4 receptor in oral lichen planus.

    Science.gov (United States)

    Salem, A; Al-Samadi, A; Stegajev, V; Stark, H; Häyrinen-Immonen, R; Ainola, M; Hietanen, J; Konttinen, Y T

    2015-04-01

    Oral lichen planus (OLP) is an autoimmune disease characterized by a band-like T-cell infiltrate below the apoptotic epithelial cells and degenerated basement membrane. We tested the hypothesis that the high-affinity histamine H4 receptors (H4 Rs) are downregulated in OLP by high histamine concentrations and proinflammatory T-cell cytokines. Immunohistochemistry and immunofluorescence staining, image analysis and quantitative real-time polymerase chain reaction of tissue samples and cytokine-stimulated cultured SCC-25 and primary human oral keratinocytes. H4 R immunoreactivity was weak in OLP and characterized by mast cell (MC) hyperplasia and degranulation. In contrast to controls, H4 R immunostaining and MC counts were negatively correlated in OLP (P = 0.003). H4 R agonist at nanomolar levels led to a rapid internalization of H4 Rs, whereas high histamine concentration and interferon-γ decreased HRH4 -gene transcripts. Healthy oral epithelial cells are equipped with H4 R, which displays a uniform staining pattern in a MC-independent fashion. In contrast, in OLP, increased numbers of activated MCs associate with increasing loss of epithelial H4 R. Cell culture experiments suggest a rapid H4 R stimulation-dependent receptor internalization and a slow cytokine-driven decrease in H4 R synthesis. H4 R may be involved in the maintenance of healthy oral mucosa. In OLP, this maintenance might be impaired by MC degranulation and inflammatory cytokines. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells

    Directory of Open Access Journals (Sweden)

    Chen Eric Y

    2012-01-01

    Full Text Available Abstract Background Histamine released from mast cells, through complex interactions involving the binding of IgE to FcεRI receptors and the subsequent intracellular Ca2+ signaling, can mediate many allergic/inflammatory responses. The possibility of titanium dioxide nanoparticles (TiO2 NPs, a nanomaterial pervasively used in nanotechnology and pharmaceutical industries, to directly induce histamine secretion without prior allergen sensitization has remained uncertain. Results TiO2 NP exposure increased both histamine secretion and cytosolic Ca2+ concentration ([Ca2+]C in a dose dependent manner in rat RBL-2H3 mast cells. The increase in intracellular Ca2+ levels resulted primarily from an extracellular Ca2+ influx via membrane L-type Ca2+ channels. Unspecific Ca2+ entry via TiO2 NP-instigated membrane disruption was demonstrated with the intracellular leakage of a fluorescent calcein dye. Oxidative stress induced by TiO2 NPs also contributed to cytosolic Ca2+ signaling. The PLC-IP3-IP3 receptor pathways and endoplasmic reticulum (ER were responsible for the sustained elevation of [Ca2+]C and histamine secretion. Conclusion Our data suggests that systemic circulation of NPs may prompt histamine release at different locales causing abnormal inflammatory diseases. This study provides a novel mechanistic link between environmental TiO2 NP exposure and allergen-independent histamine release that can exacerbate manifestations of multiple allergic responses.

  15. Neuronal Rap1 Regulates Energy Balance, Glucose Homeostasis, and Leptin Actions.

    Science.gov (United States)

    Kaneko, Kentaro; Xu, Pingwen; Cordonier, Elizabeth L; Chen, Siyu S; Ng, Amy; Xu, Yong; Morozov, Alexei; Fukuda, Makoto

    2016-09-13

    The CNS contributes to obesity and metabolic disease; however, the underlying neurobiological pathways remain to be fully established. Here, we show that the small GTPase Rap1 is expressed in multiple hypothalamic nuclei that control whole-body metabolism and is activated in high-fat diet (HFD)-induced obesity. Genetic ablation of CNS Rap1 protects mice from dietary obesity, glucose imbalance, and insulin resistance in the periphery and from HFD-induced neuropathological changes in the hypothalamus, including diminished cellular leptin sensitivity and increased endoplasmic reticulum (ER) stress and inflammation. Furthermore, pharmacological inhibition of CNS Rap1 signaling normalizes hypothalamic ER stress and inflammation, improves cellular leptin sensitivity, and reduces body weight in mice with dietary obesity. We also demonstrate that Rap1 mediates leptin resistance via interplay with ER stress. Thus, neuronal Rap1 critically regulates leptin sensitivity and mediates HFD-induced obesity and hypothalamic pathology and may represent a potential therapeutic target for obesity treatment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. [The hypothalamic-pituitary-adrenal axis and depressive disorder: recent progress].

    Science.gov (United States)

    Kunugi, Hiroshi; Hori, Hiroaki; Numakawa, Tadahiro; Ota, Miho

    2012-08-01

    Depression is a stress-induced disorder and there is compelling evidence for the involvement of hypothalamic-pituitary-adrenal (HPA) axis abnormalities in the disease. Chronic hyperactivity of the HPA axis and resultant excessive glucocorticoid (hypercortisolism) may be causal to depression. We demonstrated that the dexamethasone (DEX)/CRH test is a sensitive state-dependent marker to monitor HPA axis abnormalities. Restoration from HPA axis abnormalities occurs with clinical responses to treatment. Brain-derived neurotrophic factor (BDNF) has also been implicated in depression. We found that glucocorticoid (DEX) suppresses BDNF-induced dendrite outgrowth and synaptic formation via blocking the MAPK pathway in early-developing cultured hippocampal neurons. Furthermore, we demonstrated that glucocorticoid receptor (GR) and TrkB (a specific receptor of BDNF) interact and that DEX acutely suppresses BDNF-induced glutamate release by affecting the PLC-gamma pathway in cultured cortical neurons, indicating a mechanism underlying the effect of excessive glucocorticoid on BDNF function and resultant damage in cortical neurons. In a macroscopic view using magnetic resonance imaging (MRI), we found that individuals with hypercortisolism detected by the DEX/CRH test demonstrated volume loss in gray matter and reduced neural network assessed with diffusion tensor imaging in several brain regions. Finally, we observed that individuals with hypocortisolism detected by the DEX/CRH test tend to present more distress symptoms, maladaptive coping styles, and schizotypal personality traits than their counterparts, which points to the important role of hypocortisolism as well as hypercortisolism in depression spectrum disorders.

  17. Mastocytosis and adverse reactions to biogenic amines and histamine-releasing foods : what is the evidence?

    NARCIS (Netherlands)

    Viieg-Boerstra, BJ; van der Heide, S; Elberink, JNGO; Kluin-Nelemans, JC; Dubois, AEJ

    2005-01-01

    Background: It has been suggested that normal concentrations of biogenic amines and 'histamine-releasing foods' may exacerbate symptoms in mastocytosis. The purpose of this study was to look for scientific evidence in the literature on diets restricted in biogenic amines and histamine-releasing

  18. Neuronal Activation After Prolonged Immobilization: Do the Same or Different Neurons Respond to a Novel Stressor?

    Science.gov (United States)

    Marín-Blasco, Ignacio; Muñoz-Abellán, Cristina; Andero, Raül; Nadal, Roser; Armario, Antonio

    2018-04-01

    Despite extensive research on the impact of emotional stressors on brain function using immediate-early genes (e.g., c-fos), there are still important questions that remain unanswered such as the reason for the progressive decline of c-fos expression in response to prolonged stress and the neuronal populations activated by different stressors. This study tackles these 2 questions by evaluating c-fos expression in response to 2 different emotional stressors applied sequentially, and performing a fluorescent double labeling of c-Fos protein and c-fos mRNA on stress-related brain areas. Results were complemented with the assessment of the hypothalamic-pituitary-adrenal axis activation. We showed that the progressive decline of c-fos expression could be related to 2 differing mechanisms involving either transcriptional repression or changes in stimulatory inputs. Moreover, the neuronal populations that respond to the different stressors appear to be predominantly separated in high-level processing areas (e.g., medial prefrontal cortex). However, in low-hierarchy areas (e.g., paraventricular nucleus of the hypothalamus) neuronal populations appear to respond unspecifically. The data suggest that the distinct physiological and behavioral consequences of emotional stressors, and their implication in the development of psychopathologies, are likely to be closely associated with neuronal populations specifically activated by each stressor.

  19. Computed tomography demonstration of a hypothalamic metastasis

    International Nuclear Information System (INIS)

    Chakeres, D.W.

    1983-01-01

    This case report describes a patient who presented with panhypopituitarism secondary to hypothalamic metastasis. A primary hypothalamic abnormality was suggested by computed tomographic (CT) demonstration of a small enhancing circular mass centered within the hypothalamus. Sellar radiographs and cerebral angiography were normal. (orig.)

  20. Computed tomography demonstration of a hypothalamic metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Chakeres, D.W.

    1983-05-01

    This case report describes a patient who presented with panhypopituitarism secondary to hypothalamic metastasis. A primary hypothalamic abnormality was suggested by computed tomographic (CT) demonstration of a small enhancing circular mass centered within the hypothalamus. Sellar radiographs and cerebral angiography were normal.