WorldWideScience

Sample records for hypocrea jecorina trichoderma

  1. Unraveling the Secondary Metabolism of the Biotechnological Important Filamentous Fungus Trichoderma reesei ( Teleomorph Hypocrea jecorina)

    DEFF Research Database (Denmark)

    Jørgensen, Mikael Skaanning

    and they therefore constitute one of the most important sources for pharmaceuticals; including drugs for treatment of infections, for lowering of the cholesterol level in the bloodstream and for minimizing undesirable immune responses. The primary objective of this study was to gain more knowledge about the genetic......The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is one of the most important industrial production organisms, owing to its highly efficient (hemi-)cellulase synthesis and secretion machineries. These enzymes, which in nature allow the fungus to utilize energy bound...... mechanisms leading to biosynthesis of two of the most prominent types of secondary metabolites produced by T. reesei, polyketides and non-ribosomal peptides. Since the molecular tools for T. reesei are not as well-developed as for many other species, the study was initiated with creation of new genetic tools...

  2. Genome Sequencing and Analysis of the Biomass-Degrading Fungus Trichoderma reesei (syn. Hypocrea jecorina)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Antonio D.; Berka, Randy; Henrissat, Bernard; Saloheimo, Markku; Arvas, Mikko; Baker, Scott E.; Chapman, Jaro d; Chertkov, Olga; Coutinho, Pedro M.; Cullen, Dan; Danchin, Etienne G.; Grigoriev, Igor V.; Harris, Paul; Jackson, Melissa ?.; kubicek, Christian P.; Han, Cliff F.; Ho, Isaac; Larrando, Luis F.; Lopez de Leon, Alfredo; Magnuson, Jon K.; Merino, Sandy; Misra, Monica; Nelson, Beth; Putnam, Nicholas; Robbertse, Barbara; Salamov, Asaf; Schmoll, Monika; Terry, Astrid ?.; Thayer, Nina; Westerholm-Parvinen, Ann; Schoch, Conrad L.; Yao, Jian ?.; Barbote, Ravi; Nelson, Mary Anne; Detter, Chris J.; Bruce, David; Kuske, Cheryl; Xie, Gary; Richardson, P. M.; Rokhsar, Daniel S.; Lucas, Susan; Rubin, Eddie M.; Dunn-Coleman, Nigel; Ward, Michael ?.; Brettin, T.

    2008-05-01

    A major thrust of the white biotechnology movement involves the development of enzyme systems which depolymerize biomass to simple sugars which are subsequently converted to sustainable biofuels (e.g., ethanol) and chemical intermediates. The fungus Trichoderma reesei (syn. Hypocrea jecorina) represents a paradigm for the industrial production of highly efficient cellulases and hemicellulases needed for hydrolysis of biomass polysaccharides. Herein we describe intriguing attributes of the T. reeseigenome in relation to the future of fuel biotechnology. The T. reesei genome sequence was derived using a whole genome shotgun approach combined with finishing work to generate an assembly comprising 89 scaffolds totaling 34 Mbp with few gaps. In total, 9,130 gene models were predicted using a combination of ab initio and sequence similarity-based methods and EST data. Considering the industrial utility and effectiveness of its enzymes, the T. reesei genome surprisingly encodes the fewest cellulases and hemicellulases of any fungus having the ability to hydrolyze plant cell wall polysaccharides and whose genome has been sequenced. Many genes encoding carbohydrate active enzymes are distributed non-randomly in groups or clusters that interestingly lie between regions of synteny with other Sordariomycetes. Additionally, the T. reesei genome contains a multitude of genes encoding biosynthetic pathways for secondary metabolites (possible antibacterial and antifungal compounds) which may promote successful competition and survival in the crowded and competitive soil habitat occupied by T. reesei. Our analysis coupled with the availability of genome sequence data provides a roadmap for construction of enhanced T. reesei strains for industrial applications.

  3. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei and a new sympatric agamospecies related to it.

    Directory of Open Access Journals (Sweden)

    Irina S Druzhinina

    Full Text Available BACKGROUND: Trichoderma reesei, a mitosporic green mould, was recognized during the WW II based on a single isolate from the Solomon Islands and since then used in industry for production of cellulases. It is believed to be an anamorph (asexual stage of the common pantropical ascomycete Hypocrea jecorina. METHODOLOGY/PRINCIPAL FINDINGS: We combined molecular evolutionary analysis and multiple methods of phenotype profiling in order to reveal the genetic relationship of T. reesei to H. jecorina. The resulting data show that the isolates which were previously identified as H. jecorina by means of morphophysiology and ITS1 and 2 (rRNA gene cluster barcode in fact comprise several species: i H. jecorina/T. reesei sensu stricto which contains most of the teleomorphs (sexual stages found on dead wood and the wild-type strain of T. reesei QM 6a; ii T. parareesei nom. prov., which contains all strains isolated as anamorphs from soil; iii and two other hypothetical new species for which only one or two isolates are available. In silico tests for recombination and in vitro mating experiments revealed a history of sexual reproduction for H. jecorina and confirmed clonality for T. parareesei nom. prov. Isolates of both species were consistently found worldwide in pantropical climatic zone. Ecophysiological comparison of H. jecorina and T. parareesei nom. prov. revealed striking differences in carbon source utilization, conidiation intensity, photosensitivity and mycoparasitism, thus suggesting adaptation to different ecological niches with the high opportunistic potential for T. parareesei nom. prov. CONCLUSIONS: Our data prove that T. reesei belongs to a holomorph H. jecorina and displays a history of worldwide gene flow. We also show that its nearest genetic neighbour--T. parareesei nom. prov., is a cryptic phylogenetic agamospecies which inhabits the same biogeographic zone. These two species thus provide a so far rare example of sympatric speciation

  4. Use of Hypocrea jecorina (anamorph Trichoderma reesei) as a model system for Trichoderma biocontrol of Pythium blight identifies new targets for genetic strain improvement

    Institute of Scientific and Technical Information of China (English)

    Seidl V; Schmoll M; Scherm B; Balmas V; Seiboth B; Migheli Q; Kubicek C P

    2004-01-01

    @@ Biocontrol by Trichoderma has been studied mainly with selected isolates of T. harzianum, T.atroviride and T. asperellum, which are members of sections Pachybasium and Trichoderma. In contrast, species from section Longibrachiatum have only rarely been studied. On the other hand, one taxon from this section-Hypocrea jecorina (anamorph: Trichoderma reesei)-has been widely used for the production of cellulolytic and hemicellulolytic enzymes and recombinant proteins. As far as Trichoderma is concerned, molecular genetic methods and tools are most advanced in H. jecorina,and its genome has recently been fully sequenced, thus making this taxon a model organism for the genus. Here we will demonstrate that H. jecorina is able to antagonize plant pathogenic fungi in plate confrontation tests, and can protect tomato and cucumber plants against Pythium ultimum blight.Using this as a model case, we made use of available H. jecorina mutants to investigate (a) whether carbon catabolite repression via the Cre1-regulator protein has an impact on biocontrol, and (b)whether cellulase gene expression is necessary for biocontrol of P. ultimum. In the first case, plate confrontation tests and in planta experiments yielded opposite results, i.e. while a Cre1 mutant was more active in antagonization of fungi on plates, the survival rates of P. ultimum-inoculated cucumber plants was lower than with the H. jecorina wild-type strain. Mutants of H. jecorina,unable to form cellulases, were still able to antagonize fungi on plates and provided similar protection of tomatos against P. ultimum as the wild type, indicating that the pronounced biocontrol ability of H.jecorina against fungi with cellulose-containing cell-walls is not due to its high cellulolytic activity. A strain disrupted in the light-modulator gene envoy (Schmoll et al., ms submitted) exhibited in planta biocontrol activity strongly exceeding that of the wild-type strain, thereby providing a first link between Trichoderma

  5. Light-dependent roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Kubicek Christian P

    2009-09-01

    Full Text Available Abstract Background The filamentous ascomycete Hypocrea jecorina (anamorph Trichoderma reesei is primarily known for its efficient enzymatic machinery that it utilizes to decompose cellulosic substrates. Nevertheless, the nature and transmission of the signals initiating and modulating this machinery are largely unknown. Heterotrimeric G-protein signaling represents one of the best studied signal transduction pathways in fungi. Results Analysis of the regulatory targets of the G-protein α subunit GNA1 in H. jecorina revealed a carbon source and light-dependent role in signal transduction. Deletion of gna1 led to significantly decreased biomass formation in darkness in submersed culture but had only minor effects on morphology and hyphal apical extension rates on solid medium. Cellulase gene transcription was abolished in Δgna1 on cellulose in light and enhanced in darkness. However, analysis of strains expressing a constitutively activated GNA1 revealed that GNA1 does not transmit the essential inducing signal. Instead, it relates a modulating signal with light-dependent significance, since induction still required the presence of an inducer. We show that regulation of transcription and activity of GNA1 involves a carbon source-dependent feedback cycle. Additionally we found a function of GNA1 in hydrophobin regulation as well as effects on conidiation and tolerance of osmotic and oxidative stress. Conclusion We conclude that GNA1 transmits a signal the physiological relevance of which is dependent on both the carbon source as well as the light status. The widespread consequences of mutations in GNA1 indicate a broad function of this Gα subunit in appropriation of intracellular resources to environmental (especially nutritional conditions.

  6. The Hypocrea jecorina (Trichoderma reesei hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding region of the wild-type genome

    Directory of Open Access Journals (Sweden)

    Hartl Lukas

    2008-07-01

    Full Text Available Abstract Background The hypercellulolytic mutant Hypocrea jecorina (anamorph Trichoderma reesei RUT C30 is the H. jecorina strain most frequently used for cellulase fermentations and has also often been employed for basic research on cellulase regulation. This strain has been reported to contain a truncated carbon catabolite repressor gene cre1 and is consequently carbon catabolite derepressed. To date this and an additional frame-shift mutation in the glycoprotein-processing β-glucosidase II encoding gene are the only known genetic differences in strain RUT C30. Results In the present paper we show that H. jecorina RUT C30 lacks an 85 kb genomic fragment, and consequently misses additional 29 genes comprising transcription factors, enzymes of the primary metabolism and transport proteins. This loss is already present in the ancestor of RUT C30 – NG 14 – and seems to have occurred in a palindromic AT-rich repeat (PATRR typically inducing chromosomal translocations, and is not linked to the cre1 locus. The mutation of the cre1 locus has specifically occurred in RUT C30. Some of the genes that are lacking in RUT C30 could be correlated with pronounced alterations in its phenotype, such as poor growth on α-linked oligo- and polyglucosides (loss of maltose permease, or disturbance of osmotic homeostasis. Conclusion Our data place a general caveat on the use of H. jecorina RUT C30 for further basic research.

  7. A novel platform for heterologous gene expression in Trichoderma reesei (Teleomorph Hypocrea jecorina)

    DEFF Research Database (Denmark)

    Jørgensen, Mikael Skaanning; Skovlund, Dominique Aubert; Johannesen, Pia Francke;

    2014-01-01

    ABSTRACT: BACKGROUND: The industrially applied filamentous fungus Trichoderma reesei has received substantial interest due to its highly efficient synthesis apparatus of cellulytic enzymes. However, the production of heterologous enzymes in T. reesei still remains low mainly due to lack of tools...

  8. The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a D-mannitol dehydrogenase and is not involved in L-arabinose catabolism

    NARCIS (Netherlands)

    Metz, Benjamin; de Vries, Ronald P; Polak, Stefan; Seidl, Verena; Seiboth, Bernhard

    2009-01-01

    The Hypocrea jecorina LXR1 was described as the first fungal L-xylulose reductase responsible for NADPH dependent reduction of L-xylulose to xylitol in L-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal D-mannitol 2-dehydrogenases. Lxr1 and the orthologous

  9. The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a D-mannitol dehydrogenase and is not involved in L-arabinose catabolism

    NARCIS (Netherlands)

    Metz, Benjamin; de Vries, Ronald P; Polak, Stefan; Seidl, Verena; Seiboth, Bernhard

    2009-01-01

    The Hypocrea jecorina LXR1 was described as the first fungal L-xylulose reductase responsible for NADPH dependent reduction of L-xylulose to xylitol in L-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal D-mannitol 2-dehydrogenases. Lxr1 and the orthologous

  10. Product inhibition of five Hypocrea jecorina cellulases

    DEFF Research Database (Denmark)

    Murphy, Leigh; Westh, Peter; Bohlin, Christina

    2013-01-01

    on individual cellulases hydrolyzing insoluble cellulose remains insufficient. Such knowledge is necessary to pinpoint and quantify inhibitory weak-links in cellulose hydrolysis, but has proven challenging to come by. Here we show that product inhibition of mono-component cellulases hydrolyzing unmodified...... cellulose may be monitored by calorimetry. The key advantage of this approach is that it directly measures the rate of hydrolysis while being essentially blind to the background of added product. We investigated the five major cellulases from Hypocrea jecorina (anamorph: Tricoderma reesei), Cel7A (formerly......Product inhibition of cellulolytic enzymes has been deemed a critical factor in the industrial saccharification of cellulosic biomass. Several investigations have addressed this problem using crude enzyme preparations or commercial (mixed) cellulase products, but quantitative information...

  11. Crystallization and Preliminary X-ray Diffraction Analysis of the Glucuronoyl Esterase Catalytic Domain from Hypocrea jecorina

    Science.gov (United States)

    The catalytic domain of the glucuronoyl esterase from Hypocrea jecorina (anamorph Trichoderma reesei) was over-expressed, purified, and crystallized by sitting-drop vapor-diffusion method using 1.4 M sodium/potassium phosphate pH 6.9. Crystals had space group P212121 and X-ray diffraction data were...

  12. The information highways of a biotechnological workhorse – signal transduction in Hypocrea jecorina

    Directory of Open Access Journals (Sweden)

    Schmoll Monika

    2008-09-01

    Full Text Available Abstract Background The ascomycete Hypocrea jecorina (anamorph Trichoderma reesei is one of the most prolific producers of biomass-degrading enzymes and frequently termed an industrial workhorse. To compete for nutrients in its habitat despite its shortcoming in certain degradative enzymes, efficient perception and interpretation of environmental signals is indispensable. A better understanding of these signals as well as their transmission machinery can provide sources for improvement of biotechnological processes. Results The genome of H. jecorina was analysed for the presence and composition of common signal transduction pathways including heterotrimeric G-protein cascades, cAMP signaling, mitogen activated protein kinases, two component phosphorelay systems, proteins involved in circadian rhythmicity and light response, calcium signaling and the superfamily of Ras small GTPases. The results of this survey are discussed in the context of current knowledge in order to assess putative functions as well as potential impact of alterations of the respective pathways. Conclusion Important findings include an additional, bacterial type phospholipase C protein and an additional 6-4 photolyase. Moreover the presence of 4 RGS-(Regulator of G-protein Signaling proteins and 3 GprK-type G-protein coupled receptors comprising an RGS-domain suggest a more complex posttranslational regulation of G-protein signaling than in other ascomycetes. Also the finding, that H. jecorina, unlike yeast possesses class I phosducins which are involved in phototransduction in mammals warrants further investigation. An alteration in the regulation of circadian rhythmicity may be deduced from the extension of both the class I and II of casein kinases, homologues of which are implicated in phosphorylation of FRQ in Neurospora crassa. On the other hand, a shortage in the number of the pathogenicity related PTH11-type G-protein coupled receptors (GPCRs as well as a lack of

  13. Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina.

    Science.gov (United States)

    Druzhinina, Irina S; Schmoll, Monika; Seiboth, Bernhard; Kubicek, Christian P

    2006-03-01

    The ascomycete Hypocrea jecorina (Trichoderma reesei), an industrial producer of cellulases and hemicellulases, can efficiently degrade plant polysaccharides. However, the catabolic pathways for the resulting monomers and their relationship to enzyme induction are not well known. Here we used the Biolog Phenotype MicroArrays technique to evaluate the growth of H. jecorina on 95 carbon sources. For this purpose, we compared several wild-type isolates, mutants producing different amounts of cellulases, and strains transformed with a heterologous antibiotic resistance marker gene. The wild-type isolates and transformed strains had the highest variation in growth patterns on individual carbon sources. The cellulase mutants were relatively similar to their parental strains. Both in the mutant and in the transformed strains, the most significant changes occurred in utilization of xylitol, erythritol, D-sorbitol, D-ribose, D-galactose, L-arabinose, N-acetyl-D-glucosamine, maltotriose, and beta-methyl-glucoside. Increased production of cellulases was negatively correlated with the ability to grow on gamma-aminobutyrate, adonitol, and 2-ketogluconate; and positively correlated with that on d-sorbitol and saccharic acid. The reproducibility, relative simplicity, and high resolution (+/-10% of increase in mycelial density) of the phenotypic microarrays make them a useful tool for the characterization of mutant and transformed strains and for a global analysis of gene function.

  14. Production and optimization of L-glutaminase enzyme from Hypocrea jecorina pure culture.

    Science.gov (United States)

    Bülbül, Dilara; Karakuş, Emine

    2013-01-01

    L-Glutaminase (L-glutamine amidohydrolase, EC 3.5.1.2) is the important enzyme that catalyzes the deamination of L-glutamine to L-glutamic acid and ammonium ions. Recently, L-glutaminase has received much attention with respect to its therapeutic and industrial applications. It acts as a potent antileukemic agent and shows flavor-enhancing capacity in the production of fermented foods. Glutaminase activity is widely distributed in plants, animal tissues, and microorganisms, including bacteria, yeasts, and fungi. This study presents microbial production of glutaminase enzyme from Hypocrea jecorina pure culture and determination of optimum conditions and calculation of kinetic parameters of the produced enzyme. The optimum values were determined by using sa Nesslerization reaction for our produced glutaminase enzyme. The optimum pH value was determined as 8.0 and optimum temperature as 50°C for the glutaminase enzyme. The Km and Vmax values, the kinetic parameters, of enzyme produced from Hypocrea jecorina, pure culture were determined as 0.491 mM for Km and 13.86 U/L for Vmax by plotted Lineweaver-Burk graphing, respectively. The glutaminase enzyme from H. jecorina microorganism has very high thermal and storage stability.

  15. Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity

    Institute of Scientific and Technical Information of China (English)

    Christian P. KUBICEK; Monika KOMON-ZELAZOWSKA; Irina S. DRUZHININA

    2008-01-01

    Hypocrea/Trichoderma is a genus of soil-borne or wood-decaying fungi containing members important to mankind as producers of industrial enzymes and biocontrol agents against plant pathogens, but also as opportunistic pathogens of immuno-compromised humans and animals, while others can cause damage to cultivated mushroom. With the recent advent of a reliable, BarCode-aided identification system for all known taxa of Trichoderma and Hypocrea, it became now possible to study some of the biological fundamentals of the diversity in this fungal genus in more detail. In this article, we will therefore review recent progress in (1) the understanding of the geographic distribution of individual taxa; (2) mechanisms of speciation leading to development of mushroom diseases and facultative human mycoses; and (3) the possible correlation of specific traits of secondary metabolism and molecular phylogeny.

  16. Biochemical Characterization and Crystal Structures of a Fungal Family 3 β-Glucosidase, Cel3A from Hypocrea jecorina*

    Science.gov (United States)

    Karkehabadi, Saeid; Helmich, Kate E.; Kaper, Thijs; Hansson, Henrik; Mikkelsen, Nils-Egil; Gudmundsson, Mikael; Piens, Kathleen; Fujdala, Meredith; Banerjee, Goutami; Scott-Craig, John S.; Walton, Jonathan D.; Phillips, George N.; Sandgren, Mats

    2014-01-01

    Cellulase mixtures from Hypocrea jecorina are commonly used for the saccharification of cellulose in biotechnical applications. The most abundant β-glucosidase in the mesophilic fungus Hypocrea jecorina is HjCel3A, which hydrolyzes the β-linkage between two adjacent molecules in dimers and short oligomers of glucose. It has been shown that enhanced levels of HjCel3A in H. jecorina cellulase mixtures benefit the conversion of cellulose to glucose. Biochemical characterization of HjCel3A shows that the enzyme efficiently hydrolyzes (1,4)- as well as (1,2)-, (1,3)-, and (1,6)-β-d-linked disaccharides. For crystallization studies, HjCel3A was produced in both H. jecorina (HjCel3A) and Pichia pastoris (Pp-HjCel3A). Whereas the thermostabilities of HjCel3A and Pp-HjCel3A are the same, Pp-HjCel3A has a higher degree of N-linked glycosylation. Here, we present x-ray structures of HjCel3A with and without glucose bound in the active site. The structures have a three-domain architecture as observed previously for other glycoside hydrolase family 3 β-glucosidases. Both production hosts resulted in HjCel3A structures that have N-linked glycosylations at Asn208 and Asn310. In H. jecorina-produced HjCel3A, a single N-acetylglucosamine is present at both sites, whereas in Pp-HjCel3A, the P. pastoris-produced HjCel3A enzyme, the glycan chains consist of 8 or 4 saccharides. The glycosylations are involved in intermolecular contacts in the structures derived from either host. Due to the different sizes of the glycosylations, the interactions result in different crystal forms for the two protein forms. PMID:25164811

  17. Biochemical characterization and crystal structures of a fungal family 3 β-glucosidase, Cel3A from Hypocrea jecorina.

    Science.gov (United States)

    Karkehabadi, Saeid; Helmich, Kate E; Kaper, Thijs; Hansson, Henrik; Mikkelsen, Nils-Egil; Gudmundsson, Mikael; Piens, Kathleen; Fujdala, Meredith; Banerjee, Goutami; Scott-Craig, John S; Walton, Jonathan D; Phillips, George N; Sandgren, Mats

    2014-11-07

    Cellulase mixtures from Hypocrea jecorina are commonly used for the saccharification of cellulose in biotechnical applications. The most abundant β-glucosidase in the mesophilic fungus Hypocrea jecorina is HjCel3A, which hydrolyzes the β-linkage between two adjacent molecules in dimers and short oligomers of glucose. It has been shown that enhanced levels of HjCel3A in H. jecorina cellulase mixtures benefit the conversion of cellulose to glucose. Biochemical characterization of HjCel3A shows that the enzyme efficiently hydrolyzes (1,4)- as well as (1,2)-, (1,3)-, and (1,6)-β-D-linked disaccharides. For crystallization studies, HjCel3A was produced in both H. jecorina (HjCel3A) and Pichia pastoris (Pp-HjCel3A). Whereas the thermostabilities of HjCel3A and Pp-HjCel3A are the same, Pp-HjCel3A has a higher degree of N-linked glycosylation. Here, we present x-ray structures of HjCel3A with and without glucose bound in the active site. The structures have a three-domain architecture as observed previously for other glycoside hydrolase family 3 β-glucosidases. Both production hosts resulted in HjCel3A structures that have N-linked glycosylations at Asn(208) and Asn(310). In H. jecorina-produced HjCel3A, a single N-acetylglucosamine is present at both sites, whereas in Pp-HjCel3A, the P. pastoris-produced HjCel3A enzyme, the glycan chains consist of 8 or 4 saccharides. The glycosylations are involved in intermolecular contacts in the structures derived from either host. Due to the different sizes of the glycosylations, the interactions result in different crystal forms for the two protein forms.

  18. Evaluation of a Hypocrea jecorina Enzyme Preparation for Hydrolysis of Tifton 85 Bermudagrass

    Science.gov (United States)

    Ximenes, E. A.; Brandon, S. K.; Doran-Peterson, J.

    Tifton 85 bermudagrass, developed at the ARS-USDA in Tifton, GA, is grown on over ten million acres in the USA for hay and forage. Of the bermudagrass cultivars, Tifton 85 exhibits improved digestibility because the ratio of ether- to ester-linked phenolic acids has been lowered using traditional plant breeding techniques. A previously developed pressurized batch hot water (PBHW) method was used to treat Tifton 85 bermudagrass for enzymatic hydrolysis. Native grass (untreated) and PBHW-pretreated material were compared as substrates for fungal cultivation to produce enzymes. Cellulase activity, measured via the filter paper assay, was higher for fungi cultivated on PBHW-pretreated grass, whereas the other nine enzyme assays produced higher activities for the untreated grass. Ferulic acid and vanillin levels increased significantly for the enzyme preparations produced using PBHW-pretreated grass and the release of these phenolic compounds may have contributed to the observed reduction in enzyme activities. Culture supernatant from Tifton 85 bermudagrass-grown fungi were combined with two commercial enzyme preparations and the enzyme activity profiles are reported. The amount of reducing sugar liberated by the enzyme mixture from Hypocrea jecorina (after 192 h incubation with untreated bermudagrass) individually or in combination with feruloyl esterase was 72.1 and 84.8%, respectively, of the commercial cellulase preparation analyzed under the same conditions.

  19. Improved cellulolytic efficacy in Penicilium decumbens via heterologous expression of Hypocrea jecorina endoglucanase II

    Directory of Open Access Journals (Sweden)

    Qin Yuqi

    2013-01-01

    Full Text Available Hypocrea jecorina endoglucanase II (Hjegl2 was heterologously expressed in Penicillium decumbens (yielding strain Pd::Hjegl2. After induction in cellulose containing media, strain Pd::Hjeg2 displayed increased carboxymethylcellulase activity (CMCase, 5.77 IU/ml, representing a 21% increase and cellulose degradation determined with a filter paper assay (FPA, 0.40 IU/ml, 67% increase, as compared to the parent strain. In media supplemented with glucose (2%, Pd::Hjegl2, displayed 51.2-fold and 3-fold higher CMCase and FPA activities, respectively, as compared to the parent strain. No changes in the expression levels of the four main native cellulase genes of P. decumbens (Pdegl1, Pdegl2, Pdcbh1, and Pdcbh2 were noted between the transformant and wild-type strains. These data support the idea that Hjegl2 cleaves both internal and terminal glycosidic residues, in a relatively random and processive manner. In situ polyacrylamide gelactivity staining of extracts derived from wild-type and Pd::Hjegl2 revealed two additional active fractions in the latter strain; one with a molecular mass ~50-65 KDa and another ~80-116 kDa.

  20. Genetic diversity and species pattern of Trichoderma and Hypocrea in Manipur using in silico analysis.

    Science.gov (United States)

    Kamala, Thongram; Devi, Sarangthem Indira; Thingnam, Gourshyam; Somkuwar, Bharat Gopalrao

    2013-01-01

    We investigated the occurrence and genetic diversity of Trichoderma and Hypocrea in Manipur which lies in the Indo-Burma biodiversity hot spot region. 65 Trichoderma isolates were identified at species level by morphological as well as sequence based analysis of the internal transcribed spacer region 1 and 4. Altogether 22 different species of Trichoderma and Hypocrea were found, of which Trichoderma harzianum represent the dominant species. Phylogenetic analysis reveals a clear cut distinction of strains isolated from various collection sites which further hints the need for detail study of Trichoderma on molecular level.

  1. The production of Multiple Small Peptaibol Families by Single 14-Module Peptide Synthetases in Trichoderma/Hypocrea

    Energy Technology Data Exchange (ETDEWEB)

    Degenkolb, Thomas; Aghchehb, Razieh Karimi; Dieckmann, Ralf; Neuhof, Torsten; Baker, Scott E.; Druzhinina, Irina S.; Kubicek, Christian P.; Brückner, Hans; von Dohren, Hans

    2012-03-01

    The most common peptaibibiotic structures are 11-residue peptaibols found widely distributed in the genus Trichoderma/Hypocrea. Frequently associated are 14-residue peptaibols sharing partial sequence identity. Genome sequencing projects of 3 Trichoderma strains of the major clades reveal the presence of up to 3 types of nonribosomal peptide synthetases with 7, 14, or 18-20 amino acid adding modules. We here provide evidence that the 14-module NRPS type found in T. virens, T. reesei (teleomorph Hypocrea jecorina) and T. atroviride produces both 11- and 14- residue peptaibols based on the disruption of the respective NRPS gene of T. reesei, and bioinformatic analysis of their amino acid activating domains and modules. The structures of these peptides may be predicted from the gene structures and have been confirmed by analysis of families of 11- and 14-residue peptaibols from the strain 618, termed hypojecorins A (23 sequences determined, 4 new) and B (3 new sequences), and the recently established trichovirins A from T. virens. The distribution of 11- and 14-residue products is strain-specific and depends on growth conditions as well. Possible mechanisms of module skipping are discussed.

  2. Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters?

    Institute of Scientific and Technical Information of China (English)

    DRUZHININA Irina; KUBICEK Christian P.

    2005-01-01

    Trichoderma/Hypocrea is a genus of soil-borne or wood-decaying fungi containing members important to mankind as producers of industrial enzymes and biocontrol agents against plant pathogens, but also as opportunistic pathogens of immunocompromised humans. Species identification, while essential in view of the controversial properties of taxa ofthis genus, has been problematic by traditional methods. Here we will present a critical survey of the various identification methods in use. In addition,we will present an update on the taxonomy and phylogeny of the 88 taxa (which occur as 14 holomorphs, 49 teleomorphs and 25 anamorphs in nature) of Trichoderma/Hypocrea that have been confirmed by a combination of morphological, physiological and genetic approaches.

  3. Phylogeny and biodiversity of Trichoderma and Hypocrea and its implications on taxonomy

    Institute of Scientific and Technical Information of China (English)

    Christian P Kubicek

    2004-01-01

    @@ Safe strain identification and species recognition is an important issue for Trichoderma and Hypocrea,because members of the genus are economically important producers of industrial enzymes and antibiotics, have application as biocontrol agents against plant pathogens, whereas some have become known as opportunistic pathogens of immunocompromised mammals and humans. However, classical approaches based on the use of morphological and phenetic characters have been difficult to apply, due to the plasticity of characters and the discordance of morphological and molecular evolution.

  4. Trichoderma (Hypocrea) species with green ascospores from China

    NARCIS (Netherlands)

    Zhu, Z.X.; Zhuang, W.Y.

    2015-01-01

    Stromata of Trichoderma species having green ascospores were collected in various regions of China. Based on morphology of the sexual and asexual morph, culture characteristics, and sequence analyses of rpb2 and tef1 genes, 17 species with green ascospores were identified. Among them, Trichoderma ro

  5. Trichoderma (Hypocrea) species with green ascospores from China

    NARCIS (Netherlands)

    Zhu, Z.X.; Zhuang, W.Y.

    2015-01-01

    Stromata of Trichoderma species having green ascospores were collected in various regions of China. Based on morphology of the sexual and asexual morph, culture characteristics, and sequence analyses of rpb2 and tef1 genes, 17 species with green ascospores were identified. Among them, Trichoderma

  6. Biodiversity and distribution of Hypocrea/Trichoderma species in New Zealand

    Institute of Scientific and Technical Information of China (English)

    Sarah L Dodd; Alison Stewart

    2004-01-01

    @@ With increased imports of foreign microbes either as commercial biocontrol products or for the purposes of research, there is potentially an increased threat to indigenous beneficial microflora. In the present study, indigenous species of the fungal genus Hypocrea/Trichoderma are being used as a model system to determine the impact of foreign microbes on the native microflora of New Zealand. In order to protect such microflora, one has to first be aware of what is currently present and what sites, if any,are most vulnerable. A preliminary survey for the presence and diversity of species of Hypocrea/Trichoderma is currently underway in New Zealand and samples are being assessed from forest soils,agricultural soils, orchards, garden soils, sclerotia of various plant pathogens and pasture land. To date 238 isolates have been identified using both morphological characters and DNA sequence data from the ITS regions of the ribosomal gene cluster (ITS1 & ITS2) and, in some instances, sequence of the elongation factor gene (EF1-α) . Isolates were found to represent 16 known species plus three species as yet undescribed. In forest soils T. harzianum /T. inhamatum (31%) and T. viride (29%)followed by T. fertile (13%), were clearly the most abundant species and the remaining five species found in forests ( T. atroviride, T. koningii, T. aureoviride, H. cf. flavovirens anamorph and one unknown) each accounting for <8% of the total. Dominance by the species T. harzianum/inhamatum is consistent with studies done in South-East Asia, a mid-European primeval floodplainforest and Moscow. In contrast, when isolations were conducted with a bias for biocontrol capabilities it was found that the species T. atroviride (29%), T. koningii (17%), T. harzianum (15%)and T. viride (12%) dominated respectively. This survey is currently ongoing in New Zealand.Future studies will monitor indigenous species and strains following inoculation of specific microbes to assess the impact of the

  7. Production of cellulolytic enzymes by fungal cultures. [Aspergillus, Trichoderma, Chaetomium, Stachybotrys, and Hypocrea

    Energy Technology Data Exchange (ETDEWEB)

    Pyc, R.; Fiechter, A. Galas, E.

    1977-01-01

    Twelve fungal cultures belonging to the genera of Aspergillus, Trichoderma, Chaetomium, Stachybotrys, and Hypocrea were screened for the production of cellulolytic activity. All twelve were found to degrade xylan, avicel, and carboxymethylcellulose. More cellulolytic activity was obtained with shaken cultures than with still cultures and the addition of citrate-phosphate buffer to the media greatly depressed the levels of cellulolytic activity. Varying the composition of the mineral salts in the medium had no effect on the cellulolytic activity. The growth of Aspergillus wentii under controlled conditions in a bioreactor showed that the cellulolytic activity was not affected by the aeration rate or the type of stirrer. The rate of stirring, however, did effect the cellulolytic activity, as at lower stirring speeds considerable wall growth occurred which resulted in low levels of cellulolytic activity. Culture supernatant from Aspergillus wentii was found to hydrolyze from 30-32% of Solka-Floc and from 2-10% of corn cobs, wheat straw, and newsprint. The extensive hydrolysis of Solka-Floc indicates that with suitable treated cellulosic wastes and appropriate enzymes, appreciable amounts of sugars could be obtained.

  8. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions.

    Science.gov (United States)

    Hoyos-Carvajal, Lilliana; Orduz, Sergio; Bissett, John

    2009-09-01

    The genus Trichoderma has been studied for production of enzymes and other metabolites, as well as for exploitation as effective biological control agents. The biodiversity of Trichoderma has seen relatively limited study over much of the neotropical region. In the current study we assess the biodiversity of 183 isolates from Mexico, Guatemala, Panama, Ecuador, Peru, Brazil and Colombia, using morphological, metabolic and genetic approaches. A comparatively high diversity of species was found, comprising 29 taxa: Trichoderma asperellum (60 isolates), Trichoderma atroviride (3), Trichoderma brevicompactum (5), Trichoderma crassum (3), Trichoderma erinaceum (3), Trichoderma gamsii (2), Trichoderma hamatum (2), Trichoderma harzianum (49), Trichoderma koningiopsis (6), Trichoderma longibrachiatum (3), Trichoderma ovalisporum (1), Trichoderma pubescens (2), Trichoderma rossicum (4), Trichoderma spirale (1), Trichoderma tomentosum (3), Trichoderma virens (8), Trichoderma viridescens (7) and Hypocrea jecorina (3) (anamorph: Trichoderma reesei), along with 11 currently undescribed species. T. asperellum was the prevalent species and was represented by two distinct genotypes with different metabolic profiles and habitat preferences. The second predominant species, T. harzianum, was represented by three distinct genotypes. The addition of 11 currently undescribed species is evidence of the considerable unresolved biodiversity of Trichoderma in neotropical regions. Sequencing of the internal transcribed spacer regions (ITS) of the ribosomal repeat could not differentiate some species, and taken alone gave several misidentifications in part due to the presence of nonorthologous copies of the ITS in some isolates.

  9. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    Science.gov (United States)

    2011-01-01

    Background Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Results Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei. Conclusions The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants. PMID:21501500

  10. A screening system for carbon sources enhancing beta-N-acetylglucosaminidase formation in Hypocrea atroviridis (Trichoderma atroviride).

    Science.gov (United States)

    Seidl, Verena; Druzhinina, Irina S; Kubicek, Christian P

    2006-07-01

    To identify carbon sources that trigger beta-N-acetylglucosaminidase (NAGase) formation in Hypocrea atroviridis (anamorph Trichoderma atroviride), a screening system was designed that consists of a combination of Biolog Phenotype MicroArray plates, which contain 95 different carbon sources, and specific enzyme activity measurements using a chromogenic substrate. The results revealed growth-dependent kinetics of NAGase formation and it was shown that NAGase activities were enhanced on carbon sources sharing certain structural properties, especially on alpha-glucans (e.g. glycogen, dextrin and maltotriose) and oligosaccharides containing galactose. Enzyme activities were assessed in the wild-type and a H. atroviridis Deltanag1 strain to investigate the influence of the two NAGases, Nag1 and Nag2, on total NAGase activity. Reduction of NAGase levels in the Deltanag1 strain in comparison to the wild-type was strongly carbon-source and growth-phase dependent, indicating the distinct physiological roles of the two proteins. The transcript abundance of nag1 and nag2 was increased on carbon sources with elevated NAGase activity, indicating transcriptional regulation of these genes. The screening method for the identification of carbon sources that induce enzymes or a gene of interest, as presented in this paper, can be adapted for other purposes if appropriate enzyme or reporter assays are available.

  11. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes.

    Science.gov (United States)

    Badino, Silke F; Christensen, Stefan J; Kari, Jeppe; Windahl, Michael S; Hvidt, Søren; Borch, Kim; Westh, Peter

    2017-08-01

    Synergy between cellulolytic enzymes is essential in both natural and industrial breakdown of biomass. In addition to synergy between endo- and exo-lytic enzymes, a lesser known but equally conspicuous synergy occurs among exo-acting, processive cellobiohydrolases (CBHs) such as Cel7A and Cel6A from Hypocrea jecorina. We studied this system using microcrystalline cellulose as substrate and found a degree of synergy between 1.3 and 2.2 depending on the experimental conditions. Synergy between enzyme variants without the carbohydrate binding module (CBM) and its linker was strongly reduced compared to the wild types. One plausible interpretation of this is that exo-exo synergy depends on the targeting role of the CBM. Many earlier works have proposed that exo-exo synergy was caused by an auxiliary endo-lytic activity of Cel6A. However, biochemical data from different assays suggested that the endo-lytic activity of both Cel6A and Cel7A were 10(3) -10(4) times lower than the common endoglucanase, Cel7B, from the same organism. Moreover, the endo-lytic activity of Cel7A was 2-3-fold higher than for Cel6A, and we suggest that endo-like activity of Cel6A cannot be the main cause for the observed synergy. Rather, we suggest the exo-exo synergy found here depends on different specificities of the enzymes possibly governed by their CBMs. Biotechnol. Bioeng. 2017;114: 1639-1647. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Biology and biotechnology of Trichoderma

    Science.gov (United States)

    Schuster, André

    2010-01-01

    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications. PMID:20461510

  13. Hypocrea peltata: a mycological Dr Jekyll and Mr Hyde?

    Science.gov (United States)

    Samuels, Gary J; Ismaiel, Adnan

    2011-01-01

    Hypocrea peltata (Pezizomycotina, Hypocreales, Hypocreaceae) is a common, widespread essentially subtropical species, with an uncharacteristically large stroma and asci containing four large and four small bicellular ascospores. Its only anamorph consists of indehiscent aleuriospores; it does not form a Trichoderma anamorph, which is typical of most Trichoderma/Hypocrea species. Hypocrea peltata grows very well at 37 C. The large stromata and failure to form a Trichoderma anamorph could lead one to doubt its generic placement. However sequences of the internal transcribed spacer region (ITS), 28S nuclear large subunit (LSU) of rDNA and RNA polymerase subunit II (rpb2) regions indicate that it represents a unique lineage within Trichoderma/Hypocrea. ITS and rbp2 sequences derived from cultures of H. peltata are identical to the "unidentified Hypocreaceae" reported in the literature as being isolated from lung of a patient with non-fatal pulmonary fibrosis.

  14. Identifying beneficial qualities of Trichoderma parareesei for plants.

    Science.gov (United States)

    Rubio, M Belén; Quijada, Narciso M; Pérez, Esclaudys; Domínguez, Sara; Monte, Enrique; Hermosa, Rosa

    2014-03-01

    Trichoderma parareesei and Trichoderma reesei (teleomorph Hypocrea jecorina) produce cellulases and xylanases of industrial interest. Here, the anamorphic strain T6 (formerly T. reesei) has been identified as T. parareesei, showing biocontrol potential against fungal and oomycete phytopathogens and enhanced hyphal growth in the presence of tomato exudates or plant cell wall polymers in in vitro assays. A Trichoderma microarray was used to examine the transcriptomic changes in T6 at 20 h of interaction with tomato plants. Out of a total 34,138 Trichoderma probe sets deposited on the microarray, 250 showed a significant change of at least 2-fold in expression in the presence of tomato plants, with most of them being downregulated. T. parareesei T6 exerted beneficial effects on tomato plants in terms of seedling lateral root development, and in adult plants it improved defense against Botrytis cinerea and growth promotion under salt stress. Time course expression patterns (0 to 6 days) observed for defense-related genes suggest that T6 was able to prime defense responses in the tomato plants against biotic and abiotic stresses. Such responses undulated, with a maximum upregulation of the jasmonic acid (JA)/ethylene (ET)-related LOX1 and EIN2 genes and the salt tolerance SOS1 gene at 24 h and that of the salicylic acid (SA)-related PR-1 gene at 48 h after T6 inoculation. Our study demonstrates that the T. parareesei T6-tomato interaction is beneficial to both partners.

  15. Identifying Beneficial Qualities of Trichoderma parareesei for Plants

    Science.gov (United States)

    Rubio, M. Belén; Quijada, Narciso M.; Pérez, Esclaudys; Domínguez, Sara; Hermosa, Rosa

    2014-01-01

    Trichoderma parareesei and Trichoderma reesei (teleomorph Hypocrea jecorina) produce cellulases and xylanases of industrial interest. Here, the anamorphic strain T6 (formerly T. reesei) has been identified as T. parareesei, showing biocontrol potential against fungal and oomycete phytopathogens and enhanced hyphal growth in the presence of tomato exudates or plant cell wall polymers in in vitro assays. A Trichoderma microarray was used to examine the transcriptomic changes in T6 at 20 h of interaction with tomato plants. Out of a total 34,138 Trichoderma probe sets deposited on the microarray, 250 showed a significant change of at least 2-fold in expression in the presence of tomato plants, with most of them being downregulated. T. parareesei T6 exerted beneficial effects on tomato plants in terms of seedling lateral root development, and in adult plants it improved defense against Botrytis cinerea and growth promotion under salt stress. Time course expression patterns (0 to 6 days) observed for defense-related genes suggest that T6 was able to prime defense responses in the tomato plants against biotic and abiotic stresses. Such responses undulated, with a maximum upregulation of the jasmonic acid (JA)/ethylene (ET)-related LOX1 and EIN2 genes and the salt tolerance SOS1 gene at 24 h and that of the salicylic acid (SA)-related PR-1 gene at 48 h after T6 inoculation. Our study demonstrates that the T. parareesei T6-tomato interaction is beneficial to both partners. PMID:24413597

  16. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species

    DEFF Research Database (Denmark)

    Röhrich, Christian René; Jaklitsch, Walter Michael; Voglmayr, Hermann

    2014-01-01

    Approximately 950 individual sequences of nonribosomally biosynthesised peptides are produced by the genus Trichoderma/Hypocreathat belong to a perpetually growing class of mostly linear antibiotic oligopeptides, which are rich in the non-proteinogenic α-aminoisobutyric acid (Aib). Thus, they are......Approximately 950 individual sequences of nonribosomally biosynthesised peptides are produced by the genus Trichoderma/Hypocreathat belong to a perpetually growing class of mostly linear antibiotic oligopeptides, which are rich in the non-proteinogenic α-aminoisobutyric acid (Aib). Thus...

  17. Development of Specific Substrates for Hypocrea jecorina Cellulases

    DEFF Research Database (Denmark)

    Rasmussen, Tina Secher

    is needed. In order to develop suitable reagents to specifically identify and quantify individual cellulases in a mixture it is necessary to construct specific substrates for assay of each enzyme individually. Although all cellulases catalyze the cleavage of b-1,4-glycosidic bonds, it is likely......  During the last decades a considerable amount of interest has focused on transformation of cellulosic biomass to renewable energy sources such as ethanol.1,2 Cellulases, secreted by different microorganisms, are key enzymes in this process. However, the degradation of cellulose is a difficult...... that they exhibit different substrate specificities. Therefore, a small library of derivatives of 2,4-dinitrophenyl cellobioside (2,4-DNPC) and 3,4-dinitrophenyl cellobioside (3,4-DNPC) was prepared. These derivatives contained a series of substituents (X and Y) located at the O4' and O6' position. Inspection...

  18. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Directory of Open Access Journals (Sweden)

    Denton Jai A

    2011-11-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei (Hypocrea jecorina is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species.

  19. The influence of some factors on β-1,4-xylanase activity of the filamentous fungus Trichoderma reesei QM9414

    Directory of Open Access Journals (Sweden)

    Alexandru Manoliu

    2012-03-01

    Full Text Available The mesophyllic fungus Trichoderma reesei (anamorph to Hypocrea jecorina is an important biotechnological tool, known for its ability to secrete large quantities of hydrolytic enzymes. Renewable biomass, such as agricultural and forest wastes are used to produce microbial enzymes in various industrial processes such as food, feed and bioethanol industries. In raw biomass materials, such as wheat straws, barley straws and maize stalks, the main polysaccharide is cellulose which is closely associated with hemicelluloses like xylan, manan and xyloguclan. In consequence, the hydrolysis of these materials requires the concerted action of several enzymes, namely cellulases and xylanases. Endo-xylanase (endo-1,4--xylanase, EC 3.2.1.8 is the key enzyme involved in xylan hydrolysis, the mainhemicellulosic component of plant cell walls. The metabolic activity and enzyme productivity of Trichoderma reesei isinfluenced by various environmental conditions. In this context, we analysed the effect of pH, cultivation period, thenature of the substrate used and the nitrogen source on enzymatic activity. The maximum xylanase yield was recorded at a initial pH of 4 (116.189 IU/ml for barley and 5 for wheat (88.578 IU/ml, respectively maize (116.583 IU/ml. The bestsubstrate for endo-xylanase activity was maize stalks (90.446 IU/ml at a a concentration of 30g/L.

  20. A versatile toolkit for high throughput functional genomics with Trichoderma reesei

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Andre; Bruno, Kenneth S.; Collett, James R.; Baker, Scott E.; Seiboth, Bernhard; Kubicek, Christian P.; Schmoll, Monika

    2012-01-02

    The ascomycete fungus, Trichoderma reesei (anamorph of Hypocrea jecorina), represents a biotechnological workhorse and is currently one of the most proficient cellulase producers. While strain improvement was traditionally accomplished by random mutagenesis, a detailed understanding of cellulase regulation can only be gained using recombinant technologies. RESULTS: Aiming at high efficiency and high throughput methods, we present here a construction kit for gene knock out in T. reesei. We provide a primer database for gene deletion using the pyr4, amdS and hph selection markers. For high throughput generation of gene knock outs, we constructed vectors using yeast mediated recombination and then transformed a T. reesei strain deficient in non-homologous end joining (NHEJ) by spore electroporation. This NHEJ-defect was subsequently removed by crossing of mutants with a sexually competent strain derived from the parental strain, QM9414.CONCLUSIONS:Using this strategy and the materials provided, high throughput gene deletion in T. reesei becomes feasible. Moreover, with the application of sexual development, the NHEJ-defect can be removed efficiently and without the need for additional selection markers. The same advantages apply for the construction of multiple mutants by crossing of strains with different gene deletions, which is now possible with considerably less hands-on time and minimal screening effort compared to a transformation approach. Consequently this toolkit can considerably boost research towards efficient exploitation of the resources of T. reesei for cellulase expression and hence second generation biofuel production.

  1. Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin

    Science.gov (United States)

    A new species of Trichoderma (teleomorph Hypocrea, Ascomycota, Sordariomycetes, Hypocreales, Hypocreaceae), T. amazonicum, endophytic on the living sapwood and leaves of Hevea spp. trees is described. Trichoderma amazonicum is distinguished from closely related species in the Harzianum clade (e.g. ...

  2. Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo‐oligosaccharides

    DEFF Research Database (Denmark)

    Momeni, Majid Haddad; Ubhayasekera, Wimal; Sandgren, Mats;

    2015-01-01

    The filamentous fungus Hypocrea jecorina (anamorph of Trichoderma reesei) is the predominant source of enzymes for industrial saccharification of lignocellulose biomass. The major enzyme, cellobiohydrolase Cel7A, constitutes nearly half of the total protein in the secretome. The performance...

  3. Molecular modeling studies of L-arabinitol 4-dehydrogenase of Hypocrea jecorina

    DEFF Research Database (Denmark)

    Tiwari, Manish; Lee, Jung-Kul

    2010-01-01

    in order to provide better insight into the possible catalytic events in these domains. The 3D structure of NAD(+)-dependent LAD1 was developed based on the crystal structure of human sorbitol dehydrogenase as a template. A series of molecular mechanics and dynamics operations were performed to find...

  4. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates.

    Science.gov (United States)

    Peciulyte, Ausra; Anasontzis, George E; Karlström, Katarina; Larsson, Per Tomas; Olsson, Lisbeth

    2014-11-01

    The industrial production of cellulolytic enzymes is dominated by the filamentous fungus Trichoderma reesei (anamorph of Hypocrea jecorina). In order to develop optimal enzymatic cocktail, it is of importance to understand the natural regulation of the enzyme profile as response to the growth substrate. The influence of the complexity of cellulose on enzyme production by the microorganisms is not understood. In the present study we attempted to understand how different physical and structural properties of cellulose-rich substrates affected the levels and profiles of extracellular enzymes produced by T. reesei. Enzyme production by T. reesei Rut C-30 was studied in submerged cultures on five different cellulose-rich substrates, namely, commercial cellulose Avicel® and industrial-like cellulosic pulp substrates which consist mainly of cellulose, but also contain residual hemicellulose and lignin. In order to evaluate the hydrolysis of the substrates by the fungal enzymes, the spatial polymer distributions were characterised by cross-polarisation magic angle spinning carbon-13 nuclear magnetic resonance (CP/MAS (13)C-NMR) in combination with spectral fitting. Proteins in culture supernatants at early and late stages of enzyme production were labeled by Tandem Mass Tags (TMT) and protein profiles were analysed by liquid chromatography-tandem mass spectrometry. The data have been deposited to the ProteomeXchange with identifier PXD001304. In total 124 proteins were identified and quantified in the culture supernatants, including cellulases, hemicellulases, other glycoside hydrolases, lignin-degrading enzymes, auxiliary activity 9 (AA9) family (formerly GH61), supporting activities of proteins and enzymes acting on cellulose, proteases, intracellular proteins and several hypothetical proteins. Surprisingly, substantial differences in the enzyme profiles were found even though there were minor differences in the chemical composition between the cellulose-rich substrates.

  5. Integrated genomic and transcriptomic analysis reveals mycoparasitism as the ancestoral life style of Trichoderma

    Energy Technology Data Exchange (ETDEWEB)

    Kubicek, Christian P.; Herrera-Estrella, Alfredo; Seidl, Verena; Crom, St& #233; phane Le; Martinez, Diego A.; Druzhinina, Irina S.; Zeilinger, Susanne; Casas-Flores, Sergio; Horwitz, Benjamin A.; Mukherjee, Prasun K.; Mukherjee, Mala; Kredics, L& #225; szlo; Alcaraz, Luis David; Aerts, Andrea; Antal, Zsuzsanna; Atanasova, Lea; Cervantes-Badillo, Mayte Guadalupe; Challacombe, Jean; Chertkov, Olga; McCluskey, Kevin; Coulpier, Fanny; Deshpande, Nandan; D& #246; hren, Hans von; Ebbole, Daniel J.; Esquivel-Naranjo, Edgardo Ulises; Fekete, Erzs& #233; bet; Flipphi, Michel; Glaser, Fabian; Gomez-Rodriguez, Elida Yazmin; Gruber, Sabine; Han, Cliff; Henrissat, Bernard; Hermosa, Rosa; Hern& #225; ndez-O?ate, Miguel; Karaffa, Levente; Kosti, Idit; Lindquist, Erika; Lucas, Susan; L& #252; beck, Mette; L& #252; beck, Peter Stephensen; Margeot, Antoine; Metz, Benjamin; Misra, Monica; Nevalainen, Helena; Omann, Markus; Packer, Nicolle; Perrone, Giancarlo; Uresti-Rivera, Edith Elena; Salamov, Asaf; Schmoll, Monika; Seiboth, Bernhard; Shapiro, Harris; Sukno, Serenella; Tamayo-Ramos, Juan Antonio; Thon, Michael; Tisch, Doris; Wiest, Aric; Wilkinson, Heather H.; Zhang, Michael; Coutinho, Pedro M.; Kenerley, Charles M.; Monte, Enrique; Baker, Scott E.; Grigoriev, Igor V.

    2011-04-29

    Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.

  6. Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization.

    Science.gov (United States)

    Błaszczyk, Lidia; Strakowska, Judyta; Chełkowski, Jerzy; Gąbka-Buszek, Agnieszka; Kaczmarek, Joanna

    2016-08-01

    The aim of this study was to explore the species diversity of Trichoderma obtained from samples of wood collected in the forests of the Gorce Mountains (location A), Karkonosze Mountains (location B) and Tatra Mountains (location C) in Central Europe and to examine the cellulolytic and xylanolytic activity of these species as an expression of their probable role in wood decay processes. The present study has led to the identification of the following species and species complex: Trichoderma atroviride P. Karst., Trichoderma citrinoviride Bissett, Trichoderma cremeum P. Chaverri & Samuels, Trichoderma gamsii Samuels & Druzhin., Trichoderma harzianum complex, Trichoderma koningii Oudem., Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans, Trichoderma longibrachiatum Rifai, Trichoderma longipile Bissett, Trichoderma sp. (Hypocrea parapilulifera B.S. Lu, Druzhin. & Samuels), Trichoderma viride Schumach. and Trichoderma viridescens complex. Among them, T. viride was observed as the most abundant species (53 % of all isolates) in all the investigated locations. The Shannon's biodiversity index (H), evenness (E), and the Simpson's biodiversity index (D) calculations for each location showed that the highest species diversity and evenness were recorded for location A-Gorce Mountains (H' = 1.71, E = 0.82, D = 0.79). The preliminary screening of 119 Trichoderma strains for cellulolytic and xylanolytic activity showed the real potential of all Trichoderma species originating from wood with decay symptoms to produce cellulases and xylanases-the key enzymes in plant cell wall degradation.

  7. Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities.

    Science.gov (United States)

    Sandoval-Denis, Marcelo; Sutton, Deanna A; Cano-Lira, José F; Gené, Josepa; Fothergill, Annette W; Wiederhold, Nathan P; Guarro, Josep

    2014-06-01

    A set of 73 isolates of the emerging fungus Trichoderma isolated from human and animal clinical specimens were characterized morphologically and molecularly using a multilocus sequence analysis that included the internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA and fragments of the translation elongation factor 1 alpha (Tef1), endochitinase CHI18-5 (Chi18-5), and actin 1 (Act1) genes. The most frequent species was Trichoderma longibrachiatum (26%), followed by Trichoderma citrinoviride (18%), the Hypocrea lixii/Trichoderma harzianum species complex (15%), the newly described species Trichoderma bissettii (12%), and Trichoderma orientale (11%). The most common anatomical sites of isolation in human clinical specimens were the respiratory tract (40%), followed by deep tissue (30%) and superficial tissues (26%), while all the animal-associated isolates were obtained from superficial tissue samples. Susceptibilities of the isolates to eight antifungal drugs in vitro showed mostly high MICs, except for voriconazole and the echinocandins.

  8. Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Jiwei Zhang

    Full Text Available BACKGROUND: The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2(G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. CONCLUSIONS/SIGNIFICANCE: Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute

  9. Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other’s development

    Science.gov (United States)

    Friedl, Martina A.

    2012-01-01

    In this paper, we report on the in situ diversity of the mycotrophic fungus Trichoderma (teleomorph Hypocrea, Ascomycota, Dikarya) revealed by a taxon-specific metagenomic approach. We designed a set of genus-specific internal transcribed spacer (ITS)1 and ITS2 rRNA primers and constructed a clone library containing 411 molecular operational taxonomic units (MOTUs). The overall species composition in the soil of the two distinct ecosystems in the Danube floodplain consisted of 15 known species and two potentially novel taxa. The latter taxa accounted for only 1.5 % of all MOTUs, suggesting that almost no hidden or uncultivable Hypocrea/Trichoderma species are present at least in these temperate forest soils. The species were unevenly distributed in vertical soil profiles although no universal factors controlling the distribution of all of them (chemical soil properties, vegetation type and affinity to rhizosphere) were revealed. In vitro experiments simulating infrageneric interactions between the pairs of species that were detected in the same soil horizon showed a broad spectrum of reactions from very strong competition over neutral coexistence to the pronounced synergism. Our data suggest that only a relatively small portion of Hypocrea/Trichoderma species is adapted to soil as a habitat and that the interaction between these species should be considered in a screening for Hypocrea/Trichoderma as an agent(s) of biological control of pests. PMID:22075025

  10. Screening the Biosphere: The Fungicolous Fungus Trichoderma phellinicola, a Prolific Source of Hypophellins, New 17-, 18-, 19-, and 20-Residue Peptaibiotics

    DEFF Research Database (Denmark)

    Röhrich, Christian René; Iversen, Anita; Jaklitsch, Walter Michael;

    2013-01-01

    To investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened a specimen of the fungicolous fungus Trichoderma phellinicola (syn. Hypocrea phellinicola) growing on its natural host Phellinus ferruginosus. Results revealed that a particular group...

  11. Contribución al estudio del sistema de lipasas de Trichoderma harzianum

    OpenAIRE

    Jorge, Maria de Lurdes Antunes

    2016-01-01

    [ES]Entre los hongos del género Trichoderma se han descrito algunas especies importantes como agentes de biocontrol, tales como las parejas anamorfo/teleomorfo T. harzianum/Hypocrea lixii, T. viride/H. rufa, T. atroviride/H. atroviridis y T. virens/H. virens. Trichoderma tiene una amplia distribución geográfica, está presente en casi todos los suelos y en hábitats diversos (creciendo en madera, corteza, sobre y dentro otros hongos y sustratos innumerables). Por su adaptación a distintos en...

  12. CBH1 homologs and varian CBH1 cellulase

    Energy Technology Data Exchange (ETDEWEB)

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  13. CBH1 homologs and varian CBH1 cellulase

    Science.gov (United States)

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  14. Trichoderma genes

    Science.gov (United States)

    Foreman, Pamela [Los Altos, CA; Goedegebuur, Frits [Vlaardingen, NL; Van Solingen, Pieter [Naaldwijk, NL; Ward, Michael [San Francisco, CA

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  15. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism

    Science.gov (United States)

    2013-01-01

    Background Trichoderma is a genus of mycotrophic filamentous fungi (teleomorph Hypocrea) which possess a bright variety of biotrophic and saprotrophic lifestyles. The ability to parasitize and/or kill other fungi (mycoparasitism) is used in plant protection against soil-borne fungal diseases (biological control, or biocontrol). To investigate mechanisms of mycoparasitism, we compared the transcriptional responses of cosmopolitan opportunistic species and powerful biocontrol agents Trichoderma atroviride and T. virens with tropical ecologically restricted species T. reesei during confrontations with a plant pathogenic fungus Rhizoctonia solani. Results The three Trichoderma spp. exhibited a strikingly different transcriptomic response already before physical contact with alien hyphae. T. atroviride expressed an array of genes involved in production of secondary metabolites, GH16 ß-glucanases, various proteases and small secreted cysteine rich proteins. T. virens, on the other hand, expressed mainly the genes for biosynthesis of gliotoxin, respective precursors and also glutathione, which is necessary for gliotoxin biosynthesis. In contrast, T. reesei increased the expression of genes encoding cellulases and hemicellulases, and of the genes involved in solute transport. The majority of differentially regulated genes were orthologues present in all three species or both in T. atroviride and T. virens, indicating that the regulation of expression of these genes is different in the three Trichoderma spp. The genes expressed in all three fungi exhibited a nonrandom genomic distribution, indicating a possibility for their regulation via chromatin modification. Conclusion This genome-wide expression study demonstrates that the initial Trichoderma mycotrophy has differentiated into several alternative ecological strategies ranging from parasitism to predation and saprotrophy. It provides first insights into the mechanisms of interactions between Trichoderma and other fungi

  16. Trichoderma koningiopsis:A New Chinese Record of the Genus Trichoderma%木霉属中国新记录种Trichoderma koningiopsis记述

    Institute of Scientific and Technical Information of China (English)

    李广记; 陈捷; 刘铜; 刘力行

    2010-01-01

    在华东地区木霉菌资源调查中,利用内转录间隔区(ITS)序列分析和形态学鉴定方法,对从土壤中分离到的木霉菌进行鉴定,发现一个中国新纪录种,即拟康宁木霉.Trichoderma koningiopsis/Hypocrea koningiopsis Samuels,C.Suarez & H.C.Evans sp.nov..该种典型的形态特征是在PDA以及CMD(玉米粉琼脂)上有瓶梗层出现象,而在MA(麦芽提取物)培养基上没有此特征.

  17. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp.

    Science.gov (United States)

    Mishra, Aradhana; Kumari, Madhuree; Pandey, Shipra; Chaudhry, Vasvi; Gupta, K C; Nautiyal, C S

    2014-08-01

    The aim of this work was to synthesize gold nanoparticles by Trichoderma viride and Hypocrea lixii. The biosynthesis of the nanoparticles was very rapid and took 10 min at 30 °C when cell-free extract of the T. viride was used, which was similar by H. lixii but at 100 °C. Biomolecules present in cell free extracts of both fungi were capable to synthesize and stabilize the formed particles. Synthesis procedure was very quick and environment friendly which did not require subsequent processing. The biosynthesized nanoparticles served as an efficient biocatalyst which reduced 4-nitrophenol to 4-aminophenol in the presence of NaBH₄ and had antimicrobial activity against pathogenic bacteria. To the best of our knowledge, this is the first report of such rapid biosynthesis of gold nanoparticles within 10 min by Trichoderma having plant growth promoting and plant pathogen control abilities, which served both, as an efficient biocatalyst, and a potent antimicrobial agent.

  18. 木霉菌属的定义及其属下分类%Delineation of the genus Trichoderma and its sub-genus division

    Institute of Scientific and Technical Information of China (English)

    杨合同; 唐文华; 徐砚珂; 王加宁; 姚碗生

    2002-01-01

    本文总结了木霉菌属的界定以及木霉菌属的属下分类.Bissett等人把木霉菌属(Trichoderma)分为5个组,共31个种.Hypocreanum组包括一个种,即T.lactea;Longibrachiatum组包括4个种,即T.longibrachiatum, T. citroviride, T. pseudokoingii 和 T. parceramosum; Saturnisporum 组包括2个种, 即T. saturnisporum 和 T. ghaneuse ; Pach ybasium 组包括20个种, 即T. crassum , T. croceum , T. f asciculatum , T. fertile, T. flavo f uscum , Trichoderma anamorph of Hypocrea gelatinosa, T. hamatum, T. harzianum, T. longipilis, T. minutisporum, T. oblongisporum, T. polysporum, T. pubescens, Trichoderma anamorph of Hypocrea semiorbis, T. spirale,T. strictipilis, T. striggosum, T. tomentosum 和 T. virens; Trichoderma 组包括4个种, 即T. viride,T.aureoviride,T.koningii和T.atroviride.以上是木霉菌属目前最完整的分类体系.

  19. Trichoderma as an endophyte

    Science.gov (United States)

    Trichoderma species have been studied for many years for their usefulness in plant disease management. For much of this time, studies focused on the attributes of Trichoderma as a soil saprophyte possessing abilities such as mycoparasitism and antibiosis that directly impact pathogens. The ability...

  20. Biodiversity of Trichoderma Community in the Tidal Flats and Wetland of Southeastern China.

    Science.gov (United States)

    Saravanakumar, Kandasamy; Yu, Chuanjin; Dou, Kai; Wang, Meng; Li, Yaqian; Chen, Jie

    2016-01-01

    To investigate the biodiversity of Trichoderma (Hypocreaceae) and their relation to sediment physical and chemical properties, we collected a total of 491 sediment samples from coastal wetlands (tidal flat and wetland) in Southeast China. Further, we applied two types of molecular approaches such as culture dependent and independent methods for identification of Trichoderma spp. A total of 254 isolates were obtained and identified to 13 species such as T. aureoviride, T. asperellum, T. harzianum, T. atroviride, T. koningiopsis, T. longibrachiatum, T. koningii. T. tawa, T. viridescens, T. virens, T. hamatum, T. viride, and T. velutinum by the culture-dependent (CD) method of these, T. tawa was newly described in China. Subsequently, the culture indepented method of 454 pyrosequencing analysis revealed a total of six species such as T. citrinoviride, T. virens, T. polysporum, T. harzianum/Hypocrea lixii and two unknown species. Notably, T. citrinoviride and T. polysporum were not found by the CD method. Therefore, this work revealed that the combination of these two methods could show the higher biodiversity of Trichoderma spp., than either of this method alone. Among the sampling sites, Hangzhou, Zhejiang Province, exhibited rich biodiversity and low in Fengxian. Correlation and Redundancy discriminant analysis (RDA) revealed that sediment properties of temperature, redox potential (Eh) and pH significantly influenced the biodiversity of Trichoderma spp.

  1. Trichoderma species from China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chu-long; XU Tong

    2004-01-01

    @@ Seventeen species of Trichoderma, isolated from soil or tree bark from China are identified based on morphological and physiological characters, and from their phylogenetic position inferred from parsimony analyses of nucleotide sequences of the internal transcribed spacer regions of the rDNA cluster (ITS1 and 2) and partial sequences of translation elongation factor 1-alpha (tef1) . There were T. citrinoviride, T. longibrachiatum, T. sinensis in section Longibrachiatum, T. atroviride, T.koningii, T. viride, T. asperellum, T. hamatum, T. erinaceum in section Trichoderma, T.harzianum (H.lixii) , T. inhamatum, T. velutinum , T. cerinum , T. strictipile , T. spirale ,T. virens, H. nigrovirens (Trichoderma sp.) in section Pachybasium. Among them four species:T. asperellum , T. velutinum , T. cerinum , T. spirale were reported firstly in China. In addition, two suspected new taxa (Trichoderma spp.) in Trichoderma section were proposed:Trichoderma sp. 1 (ZAUT261, 4, 4A, 15A, 2C), Trichoderma sp. 2 (2B, 5, 7A, 7B, 9A).Trichoderma sp. 1 was similar to T. hamatum , but the temperature optimum for mycelial growth was lower than that of T. hamatum and the species tended to form hemisphaerical pustule with Telatively larger conidia (average length 4.6 μm × 2.8 μm). Trichoderma sp. 2 was distinguished morphologically from related species T. strigosum, T. pubescens, T. erinaceum, T. hamatum and Trichoderma sp. 1 in pustules on CMD without fertile or sterile conidiophore elongation and distinctive phialide shape, the conidiophore branches similar to T. koningii, but the conidia similar to T. viride, subglobose, conspicuously tuberculate.

  2. A novel glutamine biosensor based on zinc oxide nanorod and glutaminase enzyme from Hypocria jecorina.

    Science.gov (United States)

    Albayrak, Dilruba; Karakuş, Emine

    2016-01-01

    A novel biosensor for determination of L-glutamine in pharmaceutical glutamine powder was developed via immobilizing our produced glutaminase enzyme from Hypocria jecorina onto our prepared zinc oxide (ZnO) nanorod and chitosan. ZnO nanorods were prepared as surface-dependent and surface-independent and both were used. The biosensor is specific for L-glutamine and the peculiar analytical properties (linearity range, reproducibility, and accuracy) of it were experimentally determined. The optimum operating conditions of the biosensor such as buffer concentration, buffer pH, and medium temperature effect on the response of biosensor were studied. Km and Vmax values for the our-producing glutaminase enzyme from Hypocria jecorina immobilized on the biosensor were also determined as 0.29 mM and 208.33 mV/min., respectively, from Lineweaver-Burk plot. The biosensor was then used for the determination of glutamine contained in pharmaceutical formulations.

  3. Xylan oligosaccharides and cellobiohydrolase I (TrCeI7A) interaction and effect on activity

    DEFF Research Database (Denmark)

    Baumann, Martin Johannes; Borch, Kim; Westh, Peter

    2011-01-01

    Background The well-studied cellulase mixture secreted by Trichoderma reesei (anamorph to Hypocrea jecorina) contains two cellobiohydolases (CBHs), cellobiohydrolase I (TrCel7A) and cellobiohydrolase II (TrCeI6A), that are core enzymes for the solubilisation of cellulose. This has attracted...... towards, respectively, soluble and insoluble substrates, we propose a competitive mechanism for XOS inhibition of TrCel7A with phosphoric swollen cellulose as a substrate....

  4. Antipathy of Trichoderma against Sclerotium rolfsii Sacc.: Evaluation of Cell Wall-Degrading Enzymatic Activities and Molecular Diversity Analysis of Antagonists.

    Science.gov (United States)

    Hirpara, Darshna G; Gajera, Harsukh P; Hirpara, Hitesh Z; Golakiya, Balubhai A

    2017-01-01

    The fungus Trichoderma is a teleomorph of the Hypocrea genus and associated with biological control of plant diseases. The microscopic, biochemical, and molecular characterization of Trichoderma was carried out and evaluated for in vitro antagonistic activity against the fungal pathogen Sclerotium rolfsii causing stem rot disease in groundnut. In total, 11 isolates of Trichoderma were examined for antagonism at 6 and 12 days after inoculation (DAI). Out of 11, T. virens NBAII Tvs12 evidenced the highest (87.91%) growth inhibition of the test pathogen followed by T. koningii MTCC 796 (67.03%), T. viride NBAII Tv23 (63.74%), and T. harzianum NBAII Th1 (60.44%). Strong mycoparasitism was observed in the best antagonist Tvs12 strain during 6-12 DAI. The specific activity of cell wall-degrading enzymes - chitinase and β-1,3-glucanase - was positively correlated with growth inhibition of the test pathogen. In total, 18 simple sequence repeat (SSR) polymorphisms were reported to amplify 202 alleles across 11 Trichoderma isolates. The average polymorphism information content for SSR markers was found to be 0.80. The best antagonist Tvs 12 was identified with 7 unique SSR alleles amplified by 5 SSR markers. Clustering patterns of 11 Trichoderma strains showed the best antagonist T. virens NBAII Tvs 12 outgrouped with a minimum 3% similarity from the rest of Trichoderma. © 2017 S. Karger AG, Basel.

  5. Snuffelen aan Trichoderma

    NARCIS (Netherlands)

    Baars, J.J.P.

    2011-01-01

    Problemen met groene schimmel in champignon-compost blijven zich voor doen, ondanks alle genomen maatregelen. In een onderzoek van Plant Research International wordt nu getracht, via geurprofielen Trichoderma aggressivum al tijdens het doorgroeien aan te tonen.

  6. Snuffelen aan Trichoderma

    NARCIS (Netherlands)

    Baars, J.J.P.

    2011-01-01

    Problemen met groene schimmel in champignon-compost blijven zich voor doen, ondanks alle genomen maatregelen. In een onderzoek van Plant Research International wordt nu getracht, via geurprofielen Trichoderma aggressivum al tijdens het doorgroeien aan te tonen.

  7. isolated from Trichoderma harzianum

    African Journals Online (AJOL)

    SAM

    2014-05-21

    May 21, 2014 ... soil fungi, well known for their biocontrol ability against a wide range of plant ... associated with the ability of Trichoderma spp. to control ..... its potential role in the biocontrol of root-knot nematode Meloidogyne incognita.

  8. Marine Isolates of Trichoderma spp. as Potential Halotolerant Agents of Biological Control for Arid-Zone Agriculture ▿ †

    Science.gov (United States)

    Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S.; Viterbo, Ada; Yarden, Oded

    2011-01-01

    The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents. PMID:21666030

  9. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture.

    Science.gov (United States)

    Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S; Viterbo, Ada; Yarden, Oded

    2011-08-01

    The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents.

  10. Trichoderma stromaticum and its overseas relatives

    Science.gov (United States)

    Trichoderma stromaticum, T. rossicum and newly discovered species form a new lineage in Trichoderma. Phylogenetic and phenotypic diversity in Trichoderma stromaticum are examined in light of reported differences in ecological parameters and AFLP patterns. Multilocus phylogenetic analysis using 4 gen...

  11. 木霉属2中国新记录种%Two new Chinese record species of the genus Trichoderma

    Institute of Scientific and Technical Information of China (English)

    孙瑞艳; 刘志诚; 陈捷

    2013-01-01

    [Objective] The objective of this study was to examine taxonomic position of two Trichoderma strains which were isolated from soil in southern China. [Methods] PDAm was used as a selective medium for isolating Trichoderma, then two strain was indetified by analysis of internal transcribed spacer regions of the rRNA gene cluster (ITS), partial sequences of transcription extensions factor 1-alpha (tefl-a) and observation of morphological characters. For phylogenetic analyses in MEGA 4.0, both ITS and tefl-a gene sequences were analyzed using the maximum parsimony approach of close-neighbor-interchange algorithm with search level 3, in which the initial trees were obtained with the random addition of sequences (1 000 replicates). (Results] The ITS gene sequences of the strain CM01 were naturally clustered with ITS gene sequences of Trichoderma intricatum strain GJS 02-78 in GenBank with 99% of homology, and had the closest phylogenetic relationship with T. intricatum GJS 02-78, Trichoderma atroviride DAOM 179514 in phylogenetic tree which based on ITS sequences of strains; the tefl-a gene sequence of the strain CM01 were naturally clustered with Hypocrea intricate strain GJS 02-78 are the closest phylogenetic relatives with 99% of homology, and had the closest phylogenetic relationship with H. intri-cata GJS 02-78 in phylogenetic tree which based on tefl-a sequences of strains; its morphological description accorded with type strain's. Meantime, the ITS gene sequences of the strain SCGA5003 were naturally clustered with ITS gene sequences of Trichoderma stromaticum strain GJS 97-181 in GenBank with 99% of homology, and had the closest phylogenetic relationship with T. stromaticum GJS 97-179, GJS 97-180, GJS 97-181, GJS 97-182, GJS 97-183 in phylogenetic tree which based on ITS sequences of strains; the tefl-a gene sequence of the strain SCGA5003 were naturally clustered with T. stromaticum strain GJS 97-183 in GenBank with 94% of homology, and had closest relationship

  12. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  13. Screening the natural habitat: New peptaibiotics from specimens and pure cultures of the fungicolous fungus Hypocrea pulvinata

    DEFF Research Database (Denmark)

    Roehrich, C. R.; Iversen, Anita; Degenkolb, T.

    2012-01-01

    In order to further investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened specimens of the fungicolous fungus Hypocrea pulvinata growing on its natural hosts Piptoporus betulinus and Fomitopsis pinicola1. Using a peptaibiomics approach2, we...

  14. Disentangling the Trichoderma viridescens complex

    NARCIS (Netherlands)

    Jaklitsch, W.M.; Samuels, G.J.; Ismaiel, A.; Voglmayr, H.

    2013-01-01

    Trichoderma viridescens is recognised as a species complex. Multigene analyses based on the translation elongation factor 1-alpha encoding gene (tef1), a part of the rpb2 gene, encoding the second largest RNA polymerase subunit and the larger subunit of ATP citrate lyase (acl1) reveals 13 phylogenet

  15. Disentangling the Trichoderma viridescens complex

    NARCIS (Netherlands)

    Jaklitsch, W.M.; Samuels, G.J.; Ismaiel, A.; Voglmayr, H.

    2013-01-01

    Trichoderma viridescens is recognised as a species complex. Multigene analyses based on the translation elongation factor 1-alpha encoding gene (tef1), a part of the rpb2 gene, encoding the second largest RNA polymerase subunit and the larger subunit of ATP citrate lyase (acl1) reveals 13

  16. Trichoderma for climate resilient agriculture.

    Science.gov (United States)

    Kashyap, Prem Lal; Rai, Pallavi; Srivastava, Alok Kumar; Kumar, Sudheer

    2017-08-01

    Climate change is one of the biggest challenges of the twenty-first century for sustainable agricultural production. Several reports highlighted the need for better agricultural practices and use of eco-friendly methods for sustainable crop production under such situations. In this context, Trichoderma species could be a model fungus to sustain crop productivity. Currently, these are widely used as inoculants for biocontrol, biofertilization, and phytostimulation. They are reported to improve photosynthetic efficiency, enhance nutrient uptake and increase nitrogen use efficiency in crops. Moreover, they can be used to produce bio-energy, facilitate plants for adaptation and mitigate adverse effect of climate change. The technological advancement in high throughput DNA sequencing and biotechnology provided deep insight into the complex and diverse biotic interactions established in nature by Trichoderma spp. and efforts are being made to translate this knowledge to enhance crop growth, resistance to disease and tolerance to abiotic stresses under field conditions. The discovery of several traits and genes that are involved in the beneficial effects of Trichoderma spp. has resulted in better understanding of the performance of bioinoculants in the field, and will lead to more efficient use of these strains and possibly to their improvement by genetic modification. The present mini-review is an effort to elucidate the molecular basis of plant growth promotion and defence activation by Trichoderma spp. to garner broad perspectives regarding their functioning and applicability for climate resilient agriculture.

  17. Biology and biotechnology of Trichoderma

    OpenAIRE

    Schuster, André; Schmoll, Monika

    2010-01-01

    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as ...

  18. Trichoderma species collected from Iran

    Institute of Scientific and Technical Information of China (English)

    Doostmorad Zafari

    2004-01-01

    @@ In order to identify Trichoderma species isolated from Iran, Trichoderma selective media and malt extract agar (MEA) were used to isolate Trichoderma species from the soil samples. All the cultures were purified on 2% water agar by hyphal tip method prior to morphological examination.Morphological observations were carried out on the cultures grown on 2% MEA and oat meal agar at 20℃ under ambient laboratory conditions. Macroscopic features of colony and microscopic features of conidiophore, phialid and conidium including position of phialids on conidiophore and shape and size of phialids and conidia were studied and recorded 3-5 days after inoculation. Out of 36 tested isolates, using morphological features and molecular data obtained from ITS1, ITS2 and 5.8S regions fourteen species were identified as follow: T. atroviride, T. ghanense, T. spirale, T. erinaceum, T. citrinoviride, T. saturnisporum,T. longibrachiatum , T. hamatum , T. harzianum, T. inhamatum , T. tomentosum , T.virens, T. asperellum, T. koningii. Among the species T. harzianum and T. virens isolates were the most frequent species. In addition of the mentioned species two Tichoderma sp. were collected from walnut rhizospher that they are not fit to any described species so far. Although one of them are T. brevicumpactum introduced informally.

  19. Species diversity of Trichoderma in Poland

    Science.gov (United States)

    Fifteen species of Trichoderma were identified from among 118 strains originating from different regions and ecological niches in Poland. This low number indicates low species diversity of Trichoderma in this Central European region. Using the ITS1-ITS2 regions, 64 strains were positively identified...

  20. Trichoderma: the genomics of opportunistic success

    Energy Technology Data Exchange (ETDEWEB)

    Druzhinina, Irina S.; Seiboth, Verena Seidl; Estrella, Alfredo Herrera; Horwitz, Benjamin A.; Kenerley, Charles M.; Monte, Enrique; Mukherjee, Prasun K.; Zeilinger, Susanne; Grigoriev, Igor V.; Kubicek, Christian P.

    2011-01-01

    Trichoderma is a genus of common filamentous fungi that display a remarkable range of lifestyles and interactions with other fungi, animals and plants. Because of their ability to antagonize plant-pathogenic fungi and to stimulate plant growth and defence responses, some Trichoderma strains are used for biological control of plant diseases. In this Review, we discuss recent advances in molecular ecology and genomics which indicate that the interactions of Trichoderma spp. with animals and plants may have evolved as a result of saprotrophy on fungal biomass (mycotrophy) and various forms of parasitism on other fungi (mycoparasitism), combined with broad environmental opportunism.

  1. Increasing rice plant growth by Trichoderma sp.

    Science.gov (United States)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  2. Biological control of Meloidogyne incognita by Trichoderma ...

    African Journals Online (AJOL)

    ... and Serratia marcescens and their related enzymatic changes in tomato roots. ... of such possibly induced systemic resistance (ISR) elicitors was compared with that ... nematode management, Serratia marcescens, Trichoderma harzianum, ...

  3. Gliocladium and Trichoderma in agricultural soil

    Institute of Scientific and Technical Information of China (English)

    LIANG Chen; LI Bao-du; LU Guo-zhong

    2004-01-01

    @@ Gliocladium and Trichoderma are common fungi in agricultural soil. Several species of them were isolated and identified, great diversity was displayed in different agricultural soils of different crops,agricultural climate zones, different seasons, depths, different treated soybean cyst nematode soil,healthy and diseased crop soil. Among five crops soil samples, wheat and corn soil were found to possess the largest number of Gliocladium and Trichoderma separately. Gliocladium and Trichoderma of three major crops showed consistent changing patterns with seasonal variation. Corn soil displayed distinct vertical distribution of Trichoderna. There is a different distribution of the two fungi in diseased and healthy plant soil. Among the various isolated methods, diluted plate method is the best for isolating Gliocladium, and Trichoderma could be found in plant residue method and be tolerant to steam for two minutes. In the soybean cyst nematode soil mycobiota, the frequency of Gliocladium is higher than that of the others fungi, and Trichoderma may have the role of bioremediation in herbicide treated soil. Similarly, Gliocladium occurred frequently in different climate zones.

  4. The Terpenoid Biosynthesis Toolkit of Trichoderma.

    Science.gov (United States)

    Bansal, Ravindra; Mukherjee, Prasun Kumar

    2016-04-01

    The widely used biotechnologically important fungi belonging to the genus Trichoderma are rich sources of secondary metabolites. Even though the genomes of several Trichoderma spp. have been published, and data are available on the genes involved in biosynthesis of non-ribosomal peptide synthetases and polyketide synthases, no genome-wide data are available for the terpenoid biosynthesis machinery in these organisms. In the present study, we have identified the genes involved in terpene biosynthesis in the genomes of three Trichoderma spp., viz., T. virens, T. atroviride and T. reesei. While the genes involved in the condensation steps are highly conserved across the three species, these fungi differed in the number and organization of terpene cyclases. T. virens genome harbours eleven terpene cyclases, while T. atroviride harbours seven, and T. reeseisix in their genomes; seven, three and two being part of putative secondary metabolism related gene clusters.

  5. Screening of Trichoderma strains tolerant to benzimidazole

    Institute of Scientific and Technical Information of China (English)

    LIU Kai-qi; XIANG Mei-mei; LIU Ren; ZENG Yong-san; ZHOU Hong-zi; YU Jin-feng; JIANG Xin-yin; ZHANG Yue-li

    2004-01-01

    @@ The screening of isolates and the assay of biocontrol mechanisms of Trichoderma were studied systematically in laboratory and greenhouse in vivo. The proteins tolerant to benzimidazole in Trichoderma strains were purified, and their physical and chemical properties were detected. Compared their biological activities in vitro and vivo in greenhouse, nine biocontrol strains (including Ty- 10-2, LTR-2, Tj-5-1, Tj-5-4, Ty- 11-1, Tj-11-3, Ty- 11-3, Tj-3-3-2, Tj-3-3-4) were screened. These biocontrol strains had faster rates of growth and higher inhibition to gray mould (Bortrytis cinerea),and the inhibition was stable. The effects of controlling gray mould in greenhouse with the screened Trichoderma strains were 70 % and 50 % in vivo.

  6. Hypocrol A, a new tyrosol derivative from a sponge-derived strain of the fungus Hypocrea koningii.

    Science.gov (United States)

    Ding, Li-Jian; Yuan, Wei; Li, Ying-Xin; Liao, Xiao-Jian; Sun, Huan; Peng, Qi; Han, Bing-Nan; Lin, Hou-Wen; Li, Zhi-Yong; Yang, Fan; Xu, Shi-Hai

    2016-07-01

    In continuation of our search for new antibacterial and antioxidant metabolites from sponge-derived fungi, one new tyrosol derivative, hypocrol A (1), together with four known congeners, trichodenol B (2), 4-hydroxyphenethyl acetate (3), 4-hydroxyphenethyl tetradecanoate (4) and 1-oleyltyrosol (5), was isolated from the strain Hypocrea koningii PF04. Their planar structures were unequivocally elucidated by spectroscopic methods and comparison with the literature data. All the compounds displayed weak antibacterial activities against Staphylococcus aureus, methicillin-resistant S. aureus and Escherichia coli, whereas compounds 1 and 2 exhibited a moderate antioxidant efficacy in the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay with IC50 values of 48.5 and 97.4 μg/mL, respectively.

  7. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.

    Science.gov (United States)

    Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K

    2015-06-01

    Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.

  8. Trichoderma species form endophytic associations within Theobroma cacao trichomes.

    Science.gov (United States)

    Bailey, Bryan A; Strem, Mary D; Wood, Delilah

    2009-12-01

    Trichoderma species are usually considered soil organisms that colonize plant roots, sometimes forming a symbiotic relationship. Recent studies demonstrate that Trichoderma species are also capable of colonizing the above ground tissues of Theobroma cacao (cacao) in what has been characterized as an endophytic relationship. Trichoderma species can be re-isolated from surface sterilized cacao stem tissue, including the bark and xylem, the apical meristem, and to a lesser degree from leaves. SEM analysis of cacao stems colonized by strains of four Trichoderma species (Trichoderma ovalisporum-DIS 70a, Trichoderma hamatum-DIS 219b, Trichoderma koningiopsis-DIS 172ai, or Trichoderma harzianum-DIS 219f) showed a preference for surface colonization of glandular trichomes versus non-glandular trichomes. The Trichoderma strains colonized the glandular trichome tips and formed swellings resembling appresoria. Hyphae were observed emerging from the glandular trichomes on surface sterilized stems from cacao seedlings that had been inoculated with each of the four Trichoderma strains. Fungal hyphae were observed under the microscope emerging from the trichomes as soon as 6h after their isolation from surface sterilized cacao seedling stems. Hyphae were also observed, in some cases, emerging from stalk cells opposite the trichome head. Repeated single trichome/hyphae isolations verified that the emerging hyphae were the Trichoderma strains with which the cacao seedlings had been inoculated. Strains of four Trichoderma species were able to enter glandular trichomes during the colonization of cacao stems where they survived surface sterilization and could be re-isolated. The penetration of cacao trichomes may provide the entry point for Trichoderma species into the cacao stem allowing systemic colonization of this tissue.

  9. Applications of Trichoderma formulations in crop protection

    Institute of Scientific and Technical Information of China (English)

    Monte E; Rodríguez A; Rey M; Axpilicueta A; Gómez M I; de la Vina G; Grondona I; Llobell A

    2004-01-01

    @@ The choice of active Trichoderma strains is important in designing effective and safe biocontrol applications. Many species of Trichoderma have multiple strategies for fungal antagonism and indirect effects on plant health, such as growth promotion, systemic resistance induction and fertility improvements. Some strains are powerful antibiotic producers, and their suitability for use in biocontrol systems must be carefully assessed. However, many other active strains have no antibiotic capacity, and these are likely to be more useful in food production systems since they have not adverse effects on important groups of beneficial soil organisms. We have assessed the performance of selected naturally occurring Trichoderma strains (singly and in combination) and developed TUSAL , a mixture of Trichoderma harzianum and T. viride that has demonstrated to be effective against major pathogens in sugar beet and horticulture. TUSAL , has been bulked up and tested under field conditions, showing positive effects on precocity and root development, and increasing the crop production in field trials carried out in different pathosystems. The environmental impact of TUSAL strains on beneficial organisms in the environment were assessed before release, and molecular detection methods were developed to monitor the presence and performance of strains in the field.

  10. Trichoderma asperellum reconsidered: two cryptic species

    Science.gov (United States)

    Analysis of a world-wide collection of strains of Trichoderma asperellum using multilocus genealogies of four genomic regions (tef1, rbp2, act, ITS1, 2, 5.8s), sequence polymorphism-derived (SPD) markers, matrix-assisted laser desorption/ionisation–time of flight mass spectrometry (MALDI-TOF MS) of ...

  11. Novel understanding of Trichoderma interaction mechanisms

    Institute of Scientific and Technical Information of China (English)

    Matteo Lorito

    2004-01-01

    @@ Trichoderma- based biofungicides are a reality in commercial agriculture, with more than 50formulations registered worldwide as biopesticides or biofertilizers. Several research strategies have been applied to identify the main genes and compounds involved in the complex, three-way interactions between fungal antagonists, plants and microbial pathogens. Proteome and genome analyses have greatly enhanced our ability to conduct targeted and genome-based functional studies. We have obtained reproducible 2-D maps of the entire fungal proteome in various conditions of interaction,which permitted the isolation of many proteins related to specific functions. Many differential proteins from several biocontrol strains of Trichoderma spp. during the in vivo interaction with different plants and/or several phytopathogenic fungi have been isolated and analyzed by MALDI-TOF.Relevant genes have been cloned and specifically inactivated, to demonstrate their function in biocontrol and induction of disease resistance. GFP-based reporter systems with interaction-inducible promoters allowed the characterization of regulatory sequences activated by the presence of the pathogen or the plant. From extensive cDNA and EST libraries of genes expressed during Trichoderma-pathogen-plant interactions, we are identified and determined the role of a variety of novel genes and gene-products, including ABC transporters specifically induced during antagonism with other microbes; enzymes and other proteins that produce or act as novel elicitors of Induced Resistance in plant and promote root growth and crop yield; proteins possibly responsible of a gene-forgene avirulent interaction between Trichoderma and plants; mycoparasitism-related inducers released from fungal pathogens and that activate biocontrol in Trichoderma; fungal promoters specifically induced during mycoparasitism and plant colonization; plant proteins and a novel phytoalexin induced by the presence of the fungal antagonist; etc

  12. Identification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approach.

    Science.gov (United States)

    Scherm, Barbara; Schmoll, Monika; Balmas, Virgilio; Kubicek, Christian P; Migheli, Quirico

    2009-02-01

    A rapid subtraction hybridization approach was used to isolate genes differentially expressed during mycelial contact between Trichoderma harzianum (Hypocrea lixii) and Rhizoctonia solani, and could serve as marker genes for selection of superior biocontrol strains. Putatively positive clones were evaluated by transcription analysis during mycelial contact with R. solani versus growth on glucose, and for their differential transcription between two strains with either strong or poor biocontrol capability before, at, and after contact with R. solani. Besides four clones, which had similarity to putative but as yet uncharacterized proteins, they comprised ribosomal proteins, proteins involved in transcriptional switch and regulation, amino acid and energy catabolism, multidrug resistance, and degradation of proteins and glucans. Transcription of three clones was evaluated in five T. harzianum strains under confrontation conditions with R. solani. Two clones-acetyl-xylane esterase AXE1 and endoglucanase Cel61b-showed significant upregulation during in vivo confrontation of a T. harzianum strain that successively demonstrated a very high antagonistic capability towards R. solani, while expression was progressively lower in a series of T. harzianum strains with intermediate to poor antagonistic activity. These clones are promising candidates for use as markers in the screening of improved T. harzianum biocontrol strains.

  13. Bayesian inference towards the resolution of molecular evolution:application to the "Trichoderma harzianum sensu lato" clade

    Institute of Scientific and Technical Information of China (English)

    Druzhinina I S; Kubicek C P

    2004-01-01

    @@ The Hypocrea lixii/Trichoderma harzianum species aggregate contains a group of taxa (H. lixii/T.harzianum , T. aggressivum , T. tomentosum , T. cerinum , T. velutinum , H. tawa ) of which some (e. g. T. harzianum) are important for biocontrol of plant pathogenic fungi in agriculture, whereas others are aggressive pathogens of Agaricus spp. and Pleurotus spp. in mushroom farms (T. aggressivum), or opportunistic pathogens of immunocompromised mammals including humans (T. harzianum). We characterized the evolutionary properties of three genomic regions in Hypocrea/Trichoderma: the internal transcribed spacer regions ITS1 and 2 of rDNA, the large intron of translation elongation factor 1-alpha (tef1a), and a portion of the large exon of the endochitinase 42 gene (ech42 ), selected the best model which describes the evolution of every fragment, tested the molecular clock hypothesis and made an estimation of the usability of the combined three fragments data matrix for the phylogenetic analysis of the genus as a whole as well as on the level of the holomorphic H. liaxii/T. harzianum species clade and separate clonal lineages. To this end, we applied Bayesian phylogenetic inferences to 124 sequences of ITS1 and 2 and of the large tef1a intron, and to 64 ech42 gene sequences to resolve the evolution of H. lixii/T. harzianum with respect to the position of other taxa with closely related phenotypes. The resulting phylogram clearly identified T.aggressivum, T. velutinum, H. tawa, T. cerinum and T. tomentosum as phylogenetic species, and in addition identified three new unknown phylogenetic species as members of this clacle. The clear distinction between T. tomentosum and T. cerinum was not recognized in all trees, but was supported by multivariate analysis of phenotype micro arrays. In contrast, H. lixii/T. harzianum did not form a single phylogenetic species in this study, as its monophyly was not supported in any analysis. Strains morphologically identified as H. lixii

  14. Transpiration rates of rice plants treated with Trichoderma spp.

    Science.gov (United States)

    Doni, Febri; Anizan, I.; Che Radziah C. M., Z.; Yusoff, Wan Mohtar Wan

    2014-09-01

    Trichoderma spp. are considered as successful plant growth promoting fungi and have positive role in habitat engineering. In this study, the potential for Trichoderma spp. to regulate transpiration process in rice plant was assessed experimentally under greenhouse condition using a completely randomized design. The study revealed that Trichoderma spp. have potential to enhance growth of rice plant through transpirational processes. The results of the study add to the advancement of the understanding as to the role of Trichoderma spp. in improving rice physiological process.

  15. Antioxident activity of the mangrove endophytic fungus (Trichoderma sp.)

    Institute of Scientific and Technical Information of China (English)

    Saravanakumar Kandasamy; Kathiresan Kandasamy

    2014-01-01

    Objective: To test antioxidant property of the endophytic Trichoderma species isolated from the leaves of 12 mangroves of Andaman Nicobar Islands. Methods: Eight strains of Trichoderma species were found predominant and their crude extracts were assessed for antioxidant activity by using seven assays.Results:EMFCAS8 and other strains also showed considerable activity. Total antioxidant activity varied with the strains and it was maximum in Trichoderma Conclusions: This work concluded that mangroves are rich in endophytic Trichoderma species with potential for antioxidant activity.

  16. Diversity of Trichoderma in greenhouse soil

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-hui; SUN Xiao-dong; YANG Rui-xiu; YANG Hong; LU Guo-zhong

    2004-01-01

    @@ The protected agricultural production has become one of the fast growing and widespread cultivation technology in the north parts of China. Continuous cultivation of single crop or less rotation of crops usually resulted in the large amount of accumulation of soilborne pathogens and serious crop diseases in the greenhouse. After a few years of investigation of soilborne fungi in the north parts of China, nearly one hundred species of mictosporic fungi have been identified by the authors. Among these fungi 11species of Trichoderma have been morphologically identified, namely T. atroviride, T.aureoviride, T. citrinoviride , T. fertile, T. harzianum , T. inhamatum , T.longibrachiatum, T. parceramosum, T. reeseii, T. virens and T. viride. Trichoderm is found to be a frequently occurring genus of fungi in greenhouse soil. As an important component of effective beneficial antibiotic mycoparasites in soil Trichoderma plays an important part to regulate the balance of beneficial and harmful soilborne microorganisms.

  17. Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil.

    Science.gov (United States)

    Hong, J W; Park, J Y; Gadd, G M

    2010-06-01

    This study aimed to isolate and identify potential polycyclic aromatic hydrocarbon (PAH)-degrading and/or metal-tolerant fungi from PAH-contaminated and metal-contaminated soils. Pyrene-degrading fungi were isolated from contaminated soil and tested for metal (Cu, Zn and Pb) compound solubilization and metal accumulation. Three strains of Fusarium solani and one of Hypocrea lixii were able to degrade more than 60% of initial supplied pyrene (100 mg l(-1)) after 2 weeks. The isolates were grown on toxic metal (Cu, Pb and Zn)-containing media: all isolates accumulated Cu in their mycelia to values ranging from c. 5.9 to 10.4 mmol per kg dry weight biomass. The isolates were also able to accumulate Zn (c. 3.7-7.2 mmol per kg dry weight biomass) from zinc phosphate-amended media. None of the isolates accumulated Pb. These fungal isolates appear to show promise for use in bioremediation of pyrene or related xenobiotics and removal of copper and zinc from wastes contaminated singly or in combination with these substances. Microbial responses to mixed organic and inorganic pollution are seldom considered: this research highlights the abilities of certain fungal strains to interact with both xenobiotics and toxic metals and is relevant to other studies on natural attenuation and bioremediation of polluted sites.

  18. 杀菌剂对甘薯致病菌Hypocrea sp.SP-4和Rhizopus stolonifer SP-1生长影响研究%Studies on Influence of Fungicide on Growth of Hypocrea sp.SP-4 and Rhizopus stolonifer SP-1 of Pathogenic Bacteria of Sweet Potato

    Institute of Scientific and Technical Information of China (English)

    段鹏; 张义正; 谭雪梅

    2011-01-01

    为了研究杀菌剂对甘薯致病菌 Hypocrea sp.SP-4和Rhizopus stolonifer SP-1生长的抑制效果,本文从腐烂的甘薯块根中分离到的匍枝根霉SP-1(Rhizopus stolonifer SP-1)和Hypocrea sp.SP-4的孢子接种在含有不同杀菌剂浓度的PDA培养基上,在13℃和28℃条件下培养.同时也将2种孢子接种在甘薯块根上,进行培养观察.结果表明:2株真菌低温条件下,在不含杀茵剂的培养皿上的生长速度明显比28℃条件下要缓慢些;甲基托布津和多茵灵对Hypocrea sp.SP-4和R.stolonifer SP-1生长抑制的稀释度分别为1000倍和500倍.在28℃条件下,2种杀菌剂对Hypocrea sp.SP-4都有良好的抑制效果,但对R.stolonifer SP-1抑制率,甲基托布津只有21%,多菌灵则有58%.在用杀菌剂抑制甘薯块根侵染的过程中还发现,甘薯块根在没有创伤的情况下,2株真菌在低温条件下不会引起腐烂,说明它们是通过伤口侵染甘薯块根的.综合几个指标可以得出:适度低温和避免甘薯块根出现伤口能够减少甘薯块根被真菌侵染.%In order to study on influence of fungicide on growth of Rhizopus stolonifer SP-1 and Hypocrea sp SP-4 of pathogenic bacteria of sweet potato, spores of Rhizopus stolonifer SP-1 and Hypocrea sp SP-4 isolated from spoilage root tuber of sweet potato were inoculated on PDA medium plate and root tuber of sweet potato including different concentrations of fungicide, and cultivated at 13℃ and 28℃. The results showed that they grew more slowly at 13℃ than 28℃. Dilution concentration of thiophanate-methyl and carbendazol to inhibit the growth of Hypocrea sp SP-4 and R. stolonifer SP-1 is 1000 and 500-fold, respectively. Both fungicides could efficiently inhibit the growth of Hypocrea sp SP-4. However, the inhibition rate of thiophanate-methyl and carbendazol to R. stolonifer SP-1 is 21% and 58%, respectively. The results also showed in the course of fungicide inhibiting the infection of root tuber of

  19. Identification of Trichoderma strains by image analysis of HPLC chromatograms

    DEFF Research Database (Denmark)

    Thrane, Ulf; Poulsen, S.B.; Nirenberg, H.I.

    2001-01-01

    Forty-four Trichoderma strains from water-damaged building materials or indoor dust were classified with chromatographic image analysis on full chromatographic matrices obtained by high performance liquid chromatography with UV detection of culture extracts. The classes were compared with morphol......Forty-four Trichoderma strains from water-damaged building materials or indoor dust were classified with chromatographic image analysis on full chromatographic matrices obtained by high performance liquid chromatography with UV detection of culture extracts. The classes were compared...... with morphological identification and rDNA sequence data, and for each class all strains were of the same identity. With all three techniques each strain - except one - was identified as the same species. These strains belonged to Trichoderma atroviride (nine strains), Trichoderma viride (three strains), Trichoderma...... harzianum (10 strains), Trichoderma citrinoviride (12 strains), and Trichoderma longibrachiatum (nine strains). The odd strain was identified as Trichoderma hamatum by morphology and rDNA sequencing. but not by image analysis as no reference strains of this species were included. It is concluded...

  20. Trichoderma genes in plants for stress tolerance- status and prospects.

    Science.gov (United States)

    Nicolás, Carlos; Hermosa, Rosa; Rubio, Belén; Mukherjee, Prasun K; Monte, Enrique

    2014-11-01

    Many filamentous fungi from the genus Trichoderma are well known for their anti-microbial properties. Certain genes from Trichoderma spp. have been identified and transferred to plants for improving biotic and abiotic stress tolerance, as well for applications in bioremediation. Several Trichoderma genomes have been sequenced and many are in the pipeline, facilitating high throughput gene analysis and increasing the availability of candidate transgenes. This, coupled with improved plant transformation systems, is expected to usher in a new era in plant biotechnology where several genes from these antagonistic fungi can be transferred into plants to achieve enhanced stress tolerance, bioremediation activity, herbicide tolerance, and reduction of phytotoxins. In this review, we illustrate the major achievements made by transforming plants with Trichoderma genes as well as their possible mode of action. Moreover, examples of efficient application of genetically modified plants as biofactories to produce active Trichoderma enzymes are indicated.

  1. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.

    Science.gov (United States)

    Zhang, Xinjian; Harvey, Paul R; Stummer, Belinda E; Warren, Rosemary A; Zhang, Guangzhi; Guo, Kai; Li, Jishun; Yang, Hetong

    2015-09-01

    Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research

  2. Vision and development in Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    Casas S; Cortés C; Ríos M; Rosales T; Bibbins M; Olmedo V; Herrera-Estrella A

    2004-01-01

    @@ Phototropism, the induction of carotenogenesis and reproductive structures, and resetting of the circadian rhythm are controlled by blue light. Trichoderma is used as a photomorphogenetic model due to its ability to conidiate upon exposure to light. In total darkness, T. atroviride grows indefinitely as a mycelium provided that nutrients are not limiting. However, nutrient deprivation and light trigger the conidiation process. A pulse of blue light given to a radially growing colony induces synchronous sporulation. A ring of conidiophores bearing green conidia is produced at what had been the colony perimeter at the time of the light pulse. All known responses to blue light in N. crassa are initiated by a couple of transcription factors encoded by the white-collar genes (wc -1 and wc-2). WC-1 and WC-2 bind to the promoters of light regulated genes to rapidly activate transcription in response to light. In T. atroviride the photolyase encoding gene phr1 undergoes fast transcriptional activation in response to light. The presence of putative WCC binding boxes in the promoter of phr1 , suggested that light responses in Trichoderma could be under the control of white-collar homologues. We cloned two genes and demonstrated by gene replacement that both are essential for photoconidiation and photolyase gene expression. Therefore, they were named blue-light regulator one and two (blr1 and blr2 ). The BLR1 protein has all the characteristics of a blue-light photoreceptor. The generation of subtractive cDNA libraries allowed us to identify novel, BLR independent, light responses including the regulation of gene expression by blue-light. In addition, we recently initiated a Trichoderma ESTs sequencing project. Until now, we have sequenced above 3000 ESTs, from which we have obtained approximately 1800 unigenes. This unigene set was printed in microarrays and used to search for light induced genes. Twenty five clearly induced and around thirty repressed genes have been

  3. Cellulose hydrolysis by immobilized Trichoderma reesei cellulase.

    Science.gov (United States)

    Jones, Paetrice O; Vasudevan, Palligarnai T

    2010-01-01

    Cellulose hydrolysis by immobilized Trichoderma reesei cellulase in the presence of a low viscosity ionic liquid, 1-ethyl-3-methylimidazolium diethyl phosphate (EMIM-DEP), was investigated. Preparation of the carrier-free immobilized cellulase was optimized with respect to concentration of the cross-linker and the type of precipitant. The addition of 2% (v/v) EMIM-DEP during hydrolysis gave an initial reaction rate 2.7 times higher than the hydrolysis rate with no ionic liquid. The initial yield after 2 h was 0.7 g glucose/g cellulose, and the carrier-free immobilized cellulase (CFIC) was effectively re-used five times.

  4. Genetic regulation of conidiation in Trichoderma hamatun

    Institute of Scientific and Technical Information of China (English)

    Johanna Steyaert; Travis Glare; Alison Stewart; Margaret Carpenter; Hayley Ridgway

    2004-01-01

    @@ Achieving a balance between vegetative growth and spore production is essential for successful biocontrol by fungi. Low sporulation rates in the field can result in poor establishment and survival,whereas failure of conidia to recognise hosts can lead to persistence without efficacy. Commercial biocontrol products involve bulk preparations of conidia, however considerable variability in conidiation rates exists between biocontrol agents, which can restrict choice of strain for production. The majority of studies on Trichoderma conidiation have focused on the species T. viride and T. atroviride.These species form conidia in response to blue and near-UV light and/or nutrient deprivation and conidiation proceeds in a highly co-ordinated fashion, however relatively little is known on the genetic basis of Trichoderrma conidiation. In addition, whilst photoconidiation appears to be a general response detailed studies in other Trichoderma species are absent. In this study, conidiation in the lesser known biocontrol species T. hamatum is being investigated using a combined morphological and molecular approach. In contrast to T. atroviride, conidiation in response to blue-light was weaker and variable and suggested that additional triggers may be required for the T. hamatum photoresponse. A series of comparative photoconidiation assays are currently being undertaken investigating the effect of inoculum type and abiotic factors on timing and intensity of the response.Results will be discussed in relation to the current knowledge on conidial morphogenesis in Trichoderma. In addition to these morphological assays, a selection of genes implicated in sporulation and the blue-light responses are currently being isolated and characterised from T. hamatum. Two genes, phr1 and cmp1 , which were isolated previously from T. atroviride will be used as early and late markers of gene expression during the photoresponse in T. hamatum in order to define time points for harvesting

  5. [Constitutive synthesis of cellulase by Trichoderma lignorum].

    Science.gov (United States)

    Lobanok, A G; Pavlovskaia, Zh I

    1977-01-01

    The induction of cellulase synthesis by lactose was studied in the resting cells of Trichoderma lignorum OM 534. The effect depended on the concentration of lactose, pH, and the age of the mycelium. The induction of the enzyme synthesis by lactose is supressed by glucose and its metabolites. The repression by glucose is partly eliminated by Cyk 3'-5'-AMP, theophylline, and coffeine. The induction of cellulase by lactose is regarded as a derepression of the synthesis of this enzyme as a result of slow assimilation of the disaccharide. The synthesis of cellulase in T. lignorum is presumed to be constitutive.

  6. Growth Inhibition of Colletotrichum gloeosporioides by Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis and Pseudomonas fluorescens

    Directory of Open Access Journals (Sweden)

    Febrilia Nur ‘Aini

    2015-11-01

    Full Text Available Colletotrichum  gloeosporioides is  a  disease  which  can  cause  significant yield  loss  of  cocoa.  The  objective  of  this  research  is  to  investigate  the  abilityof  antagonist  microbes,  Trichoderma  harzianum,  Trichoderma  koningii,  Bacillus subtilis  and Pseudomonas  fluorescens  in  controlling  gloeosporioides  biologically  in  laboratorium  condition.  The  experiment  was  carried  out  in  Crop  Protection  Laboratory,  Indonesian  Coffee  and  Cocoa  Research  Institute.  Results of  this  research  showed  that  antagonist  fungi,  T.  harzianum,  T.  koningii,  had  a stronger  ability  in  inhibiting  growth  of  C.  gloeosporioides about  83%  compared  to  the  ability  of  antagonist  bacteria,  B.  subtilis  and P.  fluorescens,  only about  49%. Key words: Growth  inhibition,  Colletotrichum  gloeosporioides,  Trichoderma  harzianum, Trichoderma koningii,  Bacillus subtilis, Pseudomonas fluorescens.

  7. Impacto de herbicidas em isolados de Trichoderma spp

    National Research Council Canada - National Science Library

    Reis, M.R; Leão, E.U; Santos, G.R; Sarmento-Brum, R.B.C; Gonçalves, C.G; Cardon, C.H; Silva, D.B

    2013-01-01

    ... a interação desse com os demais métodos de controle empregados em determinada cultura. Dessa forma, objetivou-se avaliar a fungitoxicidade dos herbicidas sobre o crescimento e desenvolvimento dos isolados de Trichoderma spp...

  8. Erythritol production on wheat straw using Trichoderma reesei

    National Research Council Canada - National Science Library

    Jovanović, Birgit; Mach, Robert L; Mach-Aigner, Astrid R

    2014-01-01

    We overexpressed the err1 gene in the Trichoderma reesei wild-type and in the cellulase hyperproducing, carbon catabolite derepressed strain Rut-C30 in order to investigate the possibility of producing erythritol with T. reesei...

  9. High xylanase production by Trichoderma viride using pineapple ...

    African Journals Online (AJOL)

    SAM

    2014-05-28

    May 28, 2014 ... assayed for extracellular activity and total secreted protein. All ... peel (Passiflora edulis), orange peel (Citrus sinensis), rice peel .... Wheat bran ..... xylanase by Trichoderma reesei on xylan-and cellulose-based media.

  10. Comparative Efficacy and Economic Viability of Trichoderma Strains ...

    African Journals Online (AJOL)

    ... of Trichoderma Strains as Bio-Control Agents for the Control of Phytophthora ... Log in or Register to get access to full text downloads. ... treatment (FP) while revenue accrued (RA) and revenue-cost-ratio were also determined accordingly.

  11. Trichoharzianol, a new antifungal from Trichoderma harzianum F031.

    Science.gov (United States)

    Jeerapong, Chotika; Phupong, Worrapong; Bangrak, Phuwadol; Intana, Warin; Tuchinda, Patoomratana

    2015-04-15

    A new decalin derivative, trichoharzianol (1), together with three known compounds, eujavanicol A (2), 5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (3), and 4,6-dihydroxy-5-methylphthalide (4), were isolated from Trichoderma harzianum F031. For the first time, compounds 2-4 were reported from the Trichoderma species. Their structures were characterized by spectroscopic methods. Trichoharzianol (1) showed the highest antifungal activity against Colletotrichum gloeosporioides, with a minimum inhibitory concentration (MIC) of 128 μg/mL.

  12. BIOLOGICAL CONTRAOL OF PHYTOPATHOGENS USING ANTAGONIST TRICHODERMA VIRIDE

    OpenAIRE

    D.S.R. RAJENDRA SINGH; SHAIK SAYEED; K. BRUNDA EVI; B. BHADRAIAH

    2006-01-01

    Antagonistic fungus i.e. Trichoderma viride was tested in vitro against seven phytopathogens viz., Aspergillus niger, A. fumigatus, Macrophimina phaseolina, Fusarium oxysporum, F. solani, Paecilomyces varoti and sclerotium rolfsii. Trichoderma viride exhibited the antagonistic effect against these phytopathogens. Under dual culture the hyphal growth of the phytopathogens was inhibited at the zone of contact with the hyphae of the antagonist. Microscopic examination revealed that hyphal tips o...

  13. Trichoderma spp. decrease Fusarium root rot in common bean

    Directory of Open Access Journals (Sweden)

    Hudson Teixeira

    2012-12-01

    Full Text Available The effectiveness of six Trichoderma-based commercial products (TCP in controlling Fusarium root rot (FRR in common bean was assessed under field conditions. Three TCP, used for seed treatment or applied in the furrow, increased seedling emergence as much as the fungicide fludioxonil. FRR incidence was not affected, but all TCP and fludioxonil reduced the disease severity, compared to control. Application of Trichoderma-based products was as effective as that of fludioxonil in FRR management.

  14. Impacto de herbicidas em isolados de Trichoderma spp. Impact of herbicides on strains of Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    M.R. Reis

    2013-06-01

    Full Text Available O uso de microrganismos é uma alternativa para o controle de doenças em plantas. Todavia, é prudente verificar a interação desse com os demais métodos de controle empregados em determinada cultura. Dessa forma, objetivou-se avaliar a fungitoxicidade dos herbicidas sobre o crescimento e desenvolvimento dos isolados de Trichoderma spp. Utilizou-se o delineamento inteiramente casualizado, em esquema fatorial 6 x 6 x 4, com quatro repetições. O fator A correspondeu aos herbicidas pendimethalin, clomazone, carfentrazone-ethyl, oxadiazon, thiobencarb + propanil e byspiribac-sodium; o fator B, às doses dos herbicidas - 0, 25, 50, 75, 100 e 200% da dose recomendada; e o fator C, aos isolados de Trichoderma spp. AJAM 18, CE 66, TRI 01 e TRI 02. O ensaio foi realizado em condições in vitro; avaliaram-se o crescimento micelial radial (CMR e a esporulação dos isolados após aplicação dos herbicidas. Observaram-se diferenças de sensibilidade dos isolados para o mesmo produto testado. O oxadiazon reduziu o CMR dos isolados AJAM 18 e TRI 01 em 66 e 35%, respectivamente. No entanto, reduziu apenas 16% do CMR do isolado TRI 02 e não alterou o CMR do isolado CE 66 mesmo em 200% da dose recomendada. Verificaram-se diferentes efeitos dos produtos em cada isolado. A mistura comercial de thiobencarb+propanil foi altamente tóxica aos isolados de Trichoderma spp., com reduções em torno de 85% no CMR e no número de esporos. Por outro lado, o byspiribac-sodium pouco afetou os isolados, apresentando reduções inferiores a 10% no CMR e na esporulação. O carfentrazone-ethyl e byspiribac-sodium demonstraram ser compatíveis com os isolados de Trichoderma spp. estudados.The use of microorganisms is an alternative for the control of plant diseases. However, one should verify its interaction with other methods of control used for a particular crop. The objective of this work was to evaluate the effect of herbicide fungitoxicity on the growth and

  15. Biocontrol of Rhizoctonia solani with Trichoderma Spp.

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ From over 800 fungal strains of Trichoderma Spp. , 6 strains were found to greatly inhibit the growing of Rhizocotonia solani, the pathogen of rice sheath blight in dual culture. Among them, strain T3 was the best antagonist,which reduced the growing of the pathogen by 52.54% (Table 1). In field, both the pesticide Jinggangmycin and the mixture of T1 T6 could reduce the severity of rice sheath blight(Table 2), which resulted in the increases of seed setting rate and 1000 grain weight. Because the effect of the antagonists on the control of the pathogen could be partially realized in the watery environment, studies on the biocontrol mechanism of the fungi should be strengthened to help the establishment of a best way of antagonist utilization.

  16. Sphaeroplast formation and regeneration in Trichoderma reesei

    Energy Technology Data Exchange (ETDEWEB)

    Picataggio, S.K.; Schamhart, D.H.J.; Montenecourt, B.S.; Eveleigh, D.E.

    1983-01-01

    Sphaeroplasts from several genetically marked strains of Trichoderma reesei were readily prepared through enzymatic hydrolysis of mycelial suspensions utilizing Driselase, a commercially available lytic enzyme preparation. The efficiency of sphaeroplast formation was dependent upon a number of factors. Young mycelium was far more susceptible to lysis than older hyphae. Additionally, the yields of sphaeroplasts were directly proportional to the mycelial concentration within the range tested. The combined application of Driselase and chitinase (Streptomyces griseus) to mycelial suspensions resulted in increased sphaeroplast yields from young (18 h) as well as older (24 h) mycelia. The parameters defined here allow the rapid, inexpensive production of 10/sup 7/ sphaeroplasts/ml. Regeneration of T. reesei sphaeroplasts proceeded by the production of chains of sphaeroplast-like cells followed by true hyphal formation. The frequency of regeneration to mycelial form was dependent upon the length of exposure of mycelium to the lytic enzyme.

  17. Trichodermaerin: a diterpene lactone from Trichoderma asperellum

    Directory of Open Access Journals (Sweden)

    Suchada Chantrapromma

    2014-04-01

    Full Text Available The title compound, C20H28O3, known as `trichodermaerin' [systematic name: (4E-4,9,15,16,16-pentamethyl-6-oxatetracyclo[10.3.1.01,10.05,9]hexadec-4-ene-7,13-dione], is a diterpene lactone which was isolated from Trichoderma asperellum. The structure has a tetracycic 6–5–7–5 ring system, with the cyclohexanone ring adopting a twisted half-chair conformation and the cyclopentane ring adopting a half-chair conformation, whereas the cycloheptene and tetrahydrofurananone rings are in chair and envelope (with the methyl-substituted C atom as the flap conformations, respectively. The three-dimensional architecture is stabilized by C—H...O interactions.

  18. Trichodermaerin: a diterpene lactone from Trichoderma asperellum

    Science.gov (United States)

    Chantrapromma, Suchada; Jeerapong, Chotika; Phupong, Worrapong; Quah, Ching Kheng; Fun, Hoong-Kun

    2014-01-01

    The title compound, C20H28O3, known as ‘trichodermaerin’ [systematic name: (4E)-4,9,15,16,16-penta­methyl-6-oxa­tetra­cyclo­[10.3.1.01,10.05,9]hexa­dec-4-ene-7,13-dione], is a diterpene lactone which was isolated from Trichoderma asperellum. The structure has a tetra­cycic 6–5–7–5 ring system, with the cyclo­hexa­none ring adopting a twisted half-chair conformation and the cyclo­pentane ring adopting a half-chair conformation, whereas the cyclo­heptene and tetra­hydro­furan­anone rings are in chair and envelope (with the methyl-substituted C atom as the flap) conformations, respectively. The three-dimensional architecture is stabilized by C—H⋯O inter­actions. PMID:24826124

  19. Application of DNA bar codes for screening of industrially important fungi: the haplotype of Trichoderma harzianum sensu stricto indicates superior chitinase formation.

    Science.gov (United States)

    Nagy, Viviana; Seidl, Verena; Szakacs, George; Komoń-Zelazowska, Monika; Kubicek, Christian P; Druzhinina, Irina S

    2007-11-01

    Selection of suitable strains for biotechnological purposes is frequently a random process supported by high-throughput methods. Using chitinase production by Hypocrea lixii/Trichoderma harzianum as a model, we tested whether fungal strains with superior enzyme formation may be diagnosed by DNA bar codes. We analyzed sequences of two phylogenetic marker loci, internal transcribed spacer 1 (ITS1) and ITS2 of the rRNA-encoding gene cluster and the large intron of the elongation factor 1-alpha gene, tef1, from 50 isolates of H. lixii/T. harzianum, which were also tested to determine their ability to produce chitinases in solid-state fermentation (SSF). Statistically supported superior chitinase production was obtained for strains carrying one of the observed ITS1 and ITS2 and tef1 alleles corresponding to an allele of T. harzianum type strain CBS 226.95. A tef1-based DNA bar code tool, TrichoCHIT, for rapid identification of these strains was developed. The geographic origin of the strains was irrelevant for chitinase production. The improved chitinase production by strains containing this haplotype was not due to better growth on N-acetyl-beta-D-glucosamine or glucosamine. Isoenzyme electrophoresis showed that neither the isoenzyme profile of N-acetyl-beta-glucosaminidases or the endochitinases nor the intensity of staining of individual chitinase bands correlated with total chitinase in the culture filtrate. The superior chitinase producers did not exhibit similarly increased cellulase formation. Biolog Phenotype MicroArray analysis identified lack of N-acetyl-beta-D-mannosamine utilization as a specific trait of strains with the chitinase-overproducing haplotype. This observation was used to develop a plate screening assay for rapid microbiological identification of the strains. The data illustrate that desired industrial properties may be an attribute of certain populations within a species, and screening procedures should thus include a balanced mixture of all

  20. Effect of infesting soil with Trichoderma harzianum and amendment with coffee pulp on survival of Armillaria

    NARCIS (Netherlands)

    Otieno, W.; Jeger, M.J.; Termorshuizen, A.J.

    2003-01-01

    Six isolates of Trichoderma were screened for antagonism to Armillaria in tea stem sections buried in the soil. The inability of Armillaria to invade Trichoderma-colonized stem sections and the reduction of its viability in the plant materials following invasion of these by Trichoderma were used as

  1. Advances in biocontrol mechanism and application of Trichoderma spp. for plant diseases

    Institute of Scientific and Technical Information of China (English)

    HUANG Caihong; YANG Qian

    2007-01-01

    Trichoderma spp. is a filamentous soil fungus known as an effective biocontrol agent of a range of important airborne and soilborne pathogens, it has universal distribution and economic importance. This article reviewed the researches on biocontrol mechanism for plant diseases and application of Trichoderma spp., especially Trichoderma harzianum in recent years.

  2. Effect of infesting soil with Trichoderma harzianum and amendment with coffee pulp on survival of Armillaria

    NARCIS (Netherlands)

    Otieno, W.; Jeger, M.J.; Termorshuizen, A.J.

    2003-01-01

    Six isolates of Trichoderma were screened for antagonism to Armillaria in tea stem sections buried in the soil. The inability of Armillaria to invade Trichoderma-colonized stem sections and the reduction of its viability in the plant materials following invasion of these by Trichoderma were used as

  3. Biosynthesis and Uptake of Copper Nanoparticles by Dead Biomass of Hypocrea lixii Isolated from the Metal Mine in the Brazilian Amazon Region

    Science.gov (United States)

    Salvadori, Marcia R.; Lepre, Luiz F.; Ando, Rômulo A.; Oller do Nascimento, Cláudio A.; Corrêa, Benedito

    2013-01-01

    A biological system for the biosynthesis of nanoparticles (NPs) and uptake of copper from wastewater, using dead biomass of Hypocrea lixii was analyzed and described for the first time. The equilibrium and kinetics investigation of the biosorption of copper onto dead, dried and live biomass of fungus were performed as a function of initial metal concentration, pH, temperature, agitation and inoculum volume. The high biosorption capacity was observed for dead biomass, completed within 60 min of contact, at pH 5.0, temperature of 40°C and agitation speed of 150 rpm with a maximum copper biosorption of 19.0 mg g−1. The equilibrium data were better described using the Langmuir isotherm and kinetic analysis indicated that copper biosorption follows a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the fungus were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). NPs were mainly spherical, with an average size of 24.5 nm, and were synthesized extracellularly. The X-ray diffraction (XRD) analysis confirms the presence of metallic copper particles. Infrared spectroscopy (FTIR) study revealed that the amide groups interact with the particles, which was accountable for the stability of NPs. This method further confirmed the presence of proteins as stabilizing and capping agents surrounding the copper NPs. These studies demonstrate that dead biomass of Hypocrea lixii provides an economic and technically feasible option for bioremediation of wastewater and is a potential candidate for industrial-scale production of copper NPs. PMID:24282549

  4. Three new species of Trichoderma with hyaline ascospores from China.

    Science.gov (United States)

    Zhu, Z X; Zhuang, W Y

    2015-01-01

    Collections of Trichoderma having hyaline ascospores from different areas of China were examined. Using combined analyses of morphological data, culture characters and phylogenetic information based on rDNA sequences of partial nuc translation elongation factor 1-α encoding gene (TEF1-α) and the gene encoding the second largest nuc RNA polymerase subunit (RPB2), three new species, Trichoderma applanatum, T. oligosporum and T. sinoluteum, were discovered and are described. Trichoderma applanatum produces continuous flat to pulvinate, white to cream stromata with dense orange or pale brown ostioles, and simple acremonium-like to verticillium-like conidiophores, belongs to the Hypocreanum clade and is closely related to T. decipiens. Trichoderma oligosporum forms reddish brown stromata with a downy surface, hyaline conidia and gliocladium-like conidiophores, and is closely related to but distinct from T. crystalligenum in the Psychrophila clade. Trichoderma sinoluteum, as a member of the Polysporum clade, is characterized by pale yellow stromata, white pustulate conidiomata, pachybasium-like conidiophores, and hyaline conidia. Differences between the new species and their close relatives are discussed.

  5. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    NARCIS (Netherlands)

    Kubichek, C.P.; Tamayo Ramos, J.A.

    2011-01-01

    Background: Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/

  6. Two new Chinese record of the genus Trichoderma: Trichoderma pleuroticola and T.pleurotum%木霉属中国新纪录种Trichoderma pleuroticola和T.pleurotum

    Institute of Scientific and Technical Information of China (English)

    张广志; 杨合同; 张新建; 李纪顺; 陈凯; 黄玉杰

    2013-01-01

    [Objective] Identification of two Trichoderma isolates were isolated from the soil in vegetable greenhouses and the pileus of Asafoetida mushroom. [Methods] By combination of morphological charaters and application of internal transcribed spacer (ITS). [Results] Two Trichoderma isolates were identified as Trichoderma pleuroticola S.H.Yu & Park sp. nov. and Trichoderma pleurotum S.H.Yu & Park. The morphological charaters of T. pleuroticola is similar with T. harzianum, but its conidiospore is obviously more than T. harzianum, secretes dark brown pigment, and forms yellow crystal on PDA medium. The typical characteristics of Trichoderma pleurotum is that its conidiophores are mostly solitary and more or less prostrate, branches scattered, arising separately and bearing crowded whorls of appressed phialides at the apex rsembling the conidiophore in Gliocladium. [Conclusion] Two Trichoderma isolates are T. pleuroticola and T. pleurotum respectively, which are two new record species in China.%[目的]对蔬菜大棚土壤中和阿魏菇腐烂的菌盖上分离的两株木霉菌进行分类鉴定.[方法]结合形态学分类特征和ITS序列分析的方法进行鉴定.[结果]从蔬菜大棚的土壤中和阿魏菇腐烂的菌盖上分离的两株木霉菌分别为Trichoderma pleuroticola和T.pleurotum.T.pleuroticola的形态特征与T.harzianum相似,但其分生孢子显著大于T.harzianum的分生孢子,且在PDA上产生黑褐色的色素以及黄色的结晶物.T.pleurotum 典型特征是分生孢子梗单生,有时匍匐,分枝散生,初级分枝和分生孢子梗顶端聚生,类似粘帚霉.[结论]分离的两株木霉分别是T.pleuroticola和T.pleurotum,为木霉菌中国新纪录种.

  7. Unraveling Trichoderma species in the attine ant environment: description of three new taxa.

    Science.gov (United States)

    Montoya, Quimi Vidaurre; Meirelles, Lucas Andrade; Chaverri, Priscila; Rodrigues, Andre

    2016-05-01

    Fungus-growing "attine" ants forage diverse substrates to grow fungi for food. In addition to the mutualistic fungal partner, the colonies of these insects harbor a rich microbiome composed of bacteria, filamentous fungi and yeasts. Previous work reported some Trichoderma species in the fungus gardens of leafcutter ants. However, no studies systematically addressed the putative association of Trichoderma with attine ants, especially in non-leafcutter ants. Here, a total of 62 strains of Trichoderma were analyzed using three molecular markers (ITS, tef1 and rpb2). In addition, 30 out of 62 strains were also morphologically examined. The strains studied correspond to the largest sampling carried out so far for Trichoderma in the attine ant environment. Our results revealed the richness of Trichoderma in this environment, since we found 20 Trichoderma species, including three new taxa described in the present work (Trichoderma attinorum, Trichoderma texanum and Trichoderma longifialidicum spp. nov.) as well as a new phylogenetic taxon (LESF 545). Moreover, we show that all 62 strains grouped within different clades across the Trichoderma phylogeny, which are identical or closely related to strains derived from several other environments. This evidence supports the transient nature of the genus Trichoderma in the attine ant colonies. The discovery of three new species suggests that the dynamic foraging behavior of these insects might be responsible for accumulation of transient fungi into their colonies, which might hold additional fungal taxa still unknown to science.

  8. Study on Biological Control Of Rhizoctonia solani via Trichoderma

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Strain T02-25 was selected from approximately 30 rhizosphere isolates of Trichoderma species isolated from roots of crops. Its biological activity against Rhizoctonia solani was determined for the control efficacy to pepper seedling blight caused by R. solani in the field. The assay methods were treating R. solani sclerotia by Trichoderma conidial suspension (106cfu ml-1) and scattering Thichoderma rice bran over the pepper root medium. The results showed that T02-25 was active against R. solani in both ways, and its control efficacy was 82.7% and 78.0%, respectively. In addition to comparison of the efficacy of the two application methods, the relationship of different factors in the control efficacy of Trichoderma against R. solani was discussed.

  9. Biological control of banana black Sigatoka disease with Trichoderma

    Directory of Open Access Journals (Sweden)

    Poholl Adan Sagratzki Cavero

    2015-06-01

    Full Text Available Black Sigatoka disease caused by Mycosphaerella fijiensis is the most severe banana disease worldwide. The pathogen is in an invasive phase in Brazil and is already present in most States of the country. The potential of 29 isolates of Trichoderma spp. was studied for the control of black Sigatoka disease under field conditions. Four isolates were able to significantly reduce disease severity and were further tested in a second field experiment. Isolate 2.047 showed the best results in both field experiments and was selected for fungicide sensitivity tests and mass production. This isolate was identified as Trichoderma atroviride by sequencing fragments of the ITS region of the rDNA and tef-1α of the RNA polymerase. Trichoderma atroviride was as effective as the fungicide Azoxystrobin, which is recommended for controlling black Sigatoka. This biocontrol agent has potential to control the disease and may be scaled-up for field applications on rice-based solid fermentation

  10. Trichoderma songyi sp. nov., a new species associated with the pine mushroom (Tricholoma matsutake).

    Science.gov (United States)

    Park, Myung Soo; Oh, Seung-Yoon; Cho, Hae Jin; Fong, Jonathan J; Cheon, Woo-Jae; Lim, Young Woon

    2014-10-01

    A new species, Trichoderma songyi, was found to be associated with the pine mushroom (Tricholoma matsutake) in Korea. This species was isolated from three different substrates: Tricholoma matsutake basidiomata, as well as roots of Pinus densiflora and soil in the fairy ring. Based on its molecular and phenotypic characteristics, we demonstrate that Trichoderma songyi is unique and distinguishable from closely related species. We performed phylogenetic analyses based on two molecular markers, the genes for both translation elongation factor 1-alpha and the second largest subunit of RNA polymerase II. Phylogenetic analyses showed that Trichoderma songyi is closely related to Trichoderma koningii aggregate and Trichoderma caerulescens. Morphologically, Trichoderma songyi can be distinguished from these closely related taxa by its growth rates, colony morphology on PDA in darkness, and coconut-like odour. Due to the economic importance of the pine mushroom, the relationship between Trichoderma songyi and Tricholoma matsutake should be studied further.

  11. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    Science.gov (United States)

    Yao, Risheng; Li, Manman; Deng, Shengsong; Hu, Huajia; Wang, Huai; Li, Fenghe

    2012-04-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  12. Competition in artifical plant growth media by Trichoderma spp

    DEFF Research Database (Denmark)

    Sarocco, Sabrina; Lübeck, Mette; Vannacci, Giovanni

    of the reason why more biocontrol agents are reaching the market place. A comparative evaluation of life strategies of both the pathogen and its antagonists is required to predict the fate of a biopesticide in agricultural systems.The objectives of this work have been: 1) to screen a collection of Trichoderma...... isolates in a natural pot mix in order to select potential fungal antagonists to be employed in the biocontrol of Rhizoctonia solani damping-off of radish, and 2) to verify the hypothesis that competition for a food base plays a role in reducing pathogen activity. Fifteen Trichoderma spp., selected among...

  13. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    Institute of Scientific and Technical Information of China (English)

    姚日生; 李曼曼; 邓胜松; 胡华佳; 王淮; 李凤和

    2012-01-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  14. Competition in artifical plant growth media by Trichoderma spp

    DEFF Research Database (Denmark)

    Sarocco, Sabrina; Lübeck, Mette; Vannacci, Giovanni

    of the reason why more biocontrol agents are reaching the market place. A comparative evaluation of life strategies of both the pathogen and its antagonists is required to predict the fate of a biopesticide in agricultural systems.The objectives of this work have been: 1) to screen a collection of Trichoderma...... isolates in a natural pot mix in order to select potential fungal antagonists to be employed in the biocontrol of Rhizoctonia solani damping-off of radish, and 2) to verify the hypothesis that competition for a food base plays a role in reducing pathogen activity. Fifteen Trichoderma spp., selected among...

  15. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review.

    Science.gov (United States)

    Zafra, German; Cortés-Espinosa, Diana V

    2015-12-01

    Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils.

  16. Comparative genomics provide insights into evolution of trichoderma nutrition style.

    Science.gov (United States)

    Xie, Bin-Bin; Qin, Qi-Long; Shi, Mei; Chen, Lei-Lei; Shu, Yan-Li; Luo, Yan; Wang, Xiao-Wei; Rong, Jin-Cheng; Gong, Zhi-Ting; Li, Dan; Sun, Cai-Yun; Liu, Gui-Ming; Dong, Xiao-Wei; Pang, Xiu-Hua; Huang, Feng; Liu, Weifeng; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Song, Xiao-Yan

    2014-02-01

    Saprotrophy on plant biomass is a recently developed nutrition strategy for Trichoderma. However, the physiology and evolution of this new nutrition strategy is still elusive. We report the deep sequencing and analysis of the genome of Trichoderma longibrachiatum, an efficient cellulase producer. The 31.7-Mb genome, smallest among the sequenced Trichoderma species, encodes fewer nutrition-related genes than saprotrophic T. reesei (Tr), including glycoside hydrolases and nonribosomal peptide synthetase-polyketide synthase. Homology and phylogenetic analyses suggest that a large number of nutrition-related genes, including GH18 chitinases, β-1,3/1,6-glucanases, cellulolytic enzymes, and hemicellulolytic enzymes, were lost in the common ancestor of T. longibrachiatum (Tl) and Tr. dN/dS (ω) calculation indicates that all the nutrition-related genes analyzed are under purifying selection. Cellulolytic enzymes, the key enzymes for saprotrophy on plant biomass, are under stronger purifying selection pressure in Tl and Tr than in mycoparasitic species, suggesting that development of the nutrition strategy of saprotrophy on plant biomass has increased the selection pressure. In addition, aspartic proteases, serine proteases, and metalloproteases are subject to stronger purifying selection pressure in Tl and Tr, suggesting that these enzymes may also play important roles in the nutrition. This study provides insights into the physiology and evolution of the nutrition strategy of Trichoderma.

  17. Pengendalian Hayati Penyakit Akar Merah pada Akasia dengan Trichoderma

    Directory of Open Access Journals (Sweden)

    S. M. Widyastuti

    1998-12-01

    Full Text Available The experiment was aimed to measure the distribution and intensity of root rot disease of Acacia spp. in the urban forest at the campus of Gadjah Mada University, to isolate and identify the causal organism and to select Trichoderma sp. as biological agent for controlling the disease. The pathogenicity of the causal organism was tested using Crotalaria juncea L. and trunk of A. mangium Willd. (10 cm diameter, 8 cm length as indicator plant. The ability of Trichoderma sp. as antagonist was tested in vitro. It was concluded that the pathogen of the root rot disease was Ganoderma philippii. The pathogen attacked for species of Acacia spp. in the location namely A. auriculiformis, A. mangium, A. oraria, and A. crassicarpa. Of the total individual trees of those species in the campus, as much as 38.6%, 22.2%, and 66.7% were attacked by the root rot pathogen respectively. Of the 20 Trichoderma spp. isolate capable to inhibit the pathogen in vitro, three isolates were found as promising agents for biological control of the pathogen. The promising isolates were T. resei/T23, T. koningii/T1, and T. koningii/T16 with inhibition effectivity of 94.58%; 93.66%; and 91.76% respectively. Key words: biological control, red root-rot disease, Trichoderma, acacia

  18. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia

    Science.gov (United States)

    Jaklitsch, W.M.; Voglmayr, H.

    2015-01-01

    The first large-scale survey of sexual and asexual Trichoderma morphs collected from plant and fungal materials conducted in Southern Europe and Macaronesia including a few collections from French islands east of Africa yielded more than 650 specimens identified to the species level. Routine sequencing of tef1 revealed a genetic variation among these isolates that exceeds previous experience and ca. 90 species were recognized, of which 74 are named and 17 species newly described. Aphysiostroma stercorarium is combined in Trichoderma. For the first time a sexual morph is described for T. hamatum. The hitherto most complete phylogenetic tree is presented for the entire genus Trichoderma, based on rpb2 sequences. For the first time also a genus-wide phylogenetic tree based on acl1 sequences is shown. Detailed phylogenetic analyses using tef1 sequences are presented in four separate trees representing major clades of Trichoderma. Discussions involve species composition of clades and ecological and biogeographic considerations including distribution of species. PMID:26955191

  19. The Longibrachiatum Clade of Trichoderma: a revision with new species

    Science.gov (United States)

    The Longibrachiatum Clade of Trichoderma is revised. Eight new species are described (T. aethiopicum, T. capillare, T. flagellatum, T. gillesii, T. gracile, T. pinnatum, T. saturnisporopsis, T. solani). The twenty-one species known to belong to the Longibrachiatum Clade are included in a synoptic ke...

  20. Enzymatic hydrolysis of cocoa pod husks. [Trichoderma reesei

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.K.; Oldham, J.H.; Martin, A.M

    1984-07-01

    Laboratory results are presented of the bioconversion of cellulose from cocoa pod husks, utilizing cellulase from three mutants of Trichoderma reesei. Total reducing sugars in filtered hydrolysates were estimated by the dinitrosalicylic acid method. The sugars present were identified by paper chromatography as glucose and xylose.

  1. Metabolites of Trichoderma species isolated from damp building materials.

    Science.gov (United States)

    McMullin, David R; Renaud, Justin B; Barasubiye, Tharcisse; Sumarah, Mark W; Miller, J David

    2017-07-01

    Buildings that have been flooded often have high concentrations of Trichoderma spores in the air while drying. Inhaled spores and spore and mycelial fragments contain large amounts of fungal glucan and natural products that contribute to the symptoms associated with indoor mould exposures. In this study, we considered both small molecules and peptaibol profiles of T. atroviride, T. koningiopsis, T. citrinoviride, and T. harzianum strains obtained from damp buildings in eastern Canada. Twenty-residue peptaibols and sorbicillin-derived metabolites (1-6) including a new structure, (R)-vertinolide (1), were characterized from T. citrinoviride. Trichoderma koningiopsis produced several koninginins (7-10), trikoningin KA V, and the 11-residue lipopeptaibols trikoningin KB I and trikoningin KB II. Trichoderma atroviride biosynthesized a mixture of 19-residue trichorzianine-like peptaibols, whereas T. harzianum produced 18-residue trichokindin-like peptaibols and the 11-residue harzianin HB I that was subsequently identified from the studied T. citrinoviride strain. Two α-pyrones, 6-pentyl-pyran-2-one (11) and an oxidized analog (12), were produced by both T. atroviride and T. harzianum. Aside from exposure to low molecular weight natural products, inhalation of Trichoderma spores and mycelial fragments may result in exposure to membrane-disrupting peptaibols. This investigation contributes to a more comprehensive understanding of the biologically active natural products produced by fungi commonly found in damp buildings.

  2. Identification of Trichoderma strains by image analysis of HPLC chromatograms

    DEFF Research Database (Denmark)

    Thrane, Ulf; Poulsen, S.B.; Nirenberg, H.I.

    2001-01-01

    Forty-four Trichoderma strains from water-damaged building materials or indoor dust were classified with chromatographic image analysis on full chromatographic matrices obtained by high performance liquid chromatography with UV detection of culture extracts. The classes were compared with morphol...

  3. Trichoderma volatiles effecting Arabidopsis

    DEFF Research Database (Denmark)

    Ramadan, Metwaly; Gigolashvili, Tamara; Grosskinsky, Dominik Kilian;

    2015-01-01

    of Trichoderma asperellum IsmT5 on Arabidopsis thaliana. During co-cultivation of T. asperellum IsmT5 without physical contact to A. thaliana we observed smaller but vital and robust plants. The exposed plants exhibit increased trichome numbers, accumulation of defense-related compounds such as H2O2, anthocyanin...

  4. Fermentation of Foc TR4-infected bananas and Trichoderma spp.

    Science.gov (United States)

    Yang, J; Li, B; Liu, S W; Biswas, M K; Liu, S; Wei, Y R; Zuo, C W; Deng, G M; Kuang, R B; Hu, C H; Yi, G J; Li, C Y

    2016-10-17

    Fusarium wilt (also known as Panama disease) is one of the most destructive banana diseases, and greatly hampers the global production of bananas. Consequently, it has been very detrimental to the Chinese banana industry. An infected plant is one of the major causes of the spread of Fusarium wilt to nearby regions. It is essential to develop an efficient and environmentally sustainable disease control method to restrict the spread of Fusarium wilt. We isolated Trichoderma spp from the rhizosphere soil, roots, and pseudostems of banana plants that showed Fusarium wilt symptoms in the infected areas. Their cellulase activities were measured by endoglucanase activity, β-glucosidase activity, and filter paper activity assays. Safety analyses of the Trichoderma isolates were conducted by inoculating them into banana plantlets. The antagonistic effects of the Trichoderma spp on the Fusarium pathogen Foc tropical Race 4 (Foc TR4) were tested by the dual culture technique. Four isolates that had high cellulase activity, no observable pathogenicity to banana plants, and high antagonistic capability were identified. The isolates were used to biodegrade diseased banana plants infected with GFP-tagged Foc TR4, and the compost was tested for biological control of the infectious agent; the results showed that the fermentation suppressed the incidence of wilt and killed the pathogen. This study indicates that Trichoderma isolates have the potential to eliminate the transmission of Foc TR4, and may be developed into an environmentally sustainable treatment for controlling Fusarium wilt in banana plants.

  5. Functional genomic approach to the study of biodiversitywithin Trichoderma

    Institute of Scientific and Technical Information of China (English)

    Monte E; Hermosa M R; González F J; Rey M; Cardoza R E; Gutiérrez S; Delgado Jarana J; Llobell A

    2004-01-01

    @@ Trichoderma is a fungal genus of great and demonstrable biotechnological value, but its genome is poorly surveyed compared with other model microorganisms. Due to their ubiquity and rapid substrate colonization, Trichoderma species have been widely used as biocontrol organisms for agriculture, and their enzyme systems are widely used in industry. Therefore, there is a clear interest to explore beyond the phenotype to exploit the underlying genetic systems using functional genomics tools. The great diversity of species within the Trichoderma genus, the absence of optimized systems for its exploration, and the great variety of genes expressed under a wide range of ambient conditions are the main challenges to consider when starting a comprehensive functional genomics study. An initial project started by three Spanish groups has been extended into the project TRICHOEST, funded by the EU (FP5, QLRT-2001-02032) to target the transcriptome analysis of selected Trichoderma strains with biocontrol potential, in conditions related to antagonism, nutrient stress and plant interactions. Once specific conditions were defined, cDNA libraries were produced and used for EST sequencing. Nine strains from seven Trichoderma species have been considered in this study and an important amount of gene sequence data has been generated, analyzed and used to compare the gene expression in different strains.In parallel to sequencing, genomic expression studies were carried out by means of macro-arrays to identify genes expressed in specific conditions. In silico analysis of DNA sequencing data together with macro-array expression results have lead to a selection based on the potential use of the gene sequences.The selected clone sequences were completed and cloned in appropriate vectors to initiate functional analysis by means of expression studies in homologous and heterologous systems.

  6. Effect of the edaphic factors and metal content in soil on the diversity of Trichoderma spp.

    Science.gov (United States)

    Racić, Gordana; Körmöczi, Péter; Kredics, László; Raičević, Vera; Mutavdžić, Beba; Vrvić, Miroslav M; Panković, Dejana

    2017-02-01

    Influence of edaphic factors and metal content on diversity of Trichoderma species at 14 different soil sampling locations, on two depths, was examined. Forty-one Trichoderma isolates from 14 sampling sites were determined as nine species based on their internal transcribed spacer (ITS) sequences. Our results indicate that weakly alkaline soils are rich sources of Trichoderma strains. Also, higher contents of available K and P are connected with higher Trichoderma diversity. Increased metal content in soil was not inhibiting factor for Trichoderma species occurrence. Relationship between these factors was confirmed by locally weighted sequential smoothing (LOESS) nonparametric smoothing analysis. Trichoderma strain (Szeged Microbiology Collection (SZMC) 22669) from soil with concentrations of Cr and Ni above remediation values should be tested for its potential for bioremediation of these metals in polluted soils.

  7. Construction of engineering Trichoderma strains and their characteristics against tomato gray mold

    Institute of Scientific and Technical Information of China (English)

    LIU Xian; ZHUANG Jing-hua; GAO Zeng-gui; YANG Chang-cheng; CHEN Jie

    2004-01-01

    @@ The transformed Trichoderma strains Ttrm31, Ttrm34 and Ttrm55 were obtained from Trichoderma wild strain T21 mutated by REMI technique for more effective biocontrol of tomato gray mold (Botrytis cinerea) with Trichoderma agent. Those transformants appeared much better in biocontrol activity in vitro or in vivo against tomato gray mold were better than that of wild strain T21. The main results were as follow:

  8. Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe

    OpenAIRE

    2012-01-01

    The present study includes the molecular characteristics of Trichoderma pleurotum and Trichoderma pleuroticola isolates collected from green moulded cereal straw substrates at 47 oyster mushroom farms in Poland. The screening of the 80 Trichoderma isolates was performed by morphological observation and by using the multiplex PCR assay. This approach enabled specific detection of 47 strains of T. pleurotum and 2 strains of T. pleuroticola. Initial identifications were confirmed by sequencing t...

  9. Isolated sinusitis sphenoidalis caused by Trichoderma longibrachiatum in an immunocompetent patient with headache.

    Science.gov (United States)

    Molnár-Gábor, Etelka; Dóczi, Ilona; Hatvani, Lóránt; Vágvölgyi, Csaba; Kredics, László

    2013-08-01

    We present a case of isolated sinusitis sphenoidalis caused by Trichoderma longibrachiatum, an emerging causal agent of fungal infections with an often fatal outcome. A Trichoderma strain was isolated from secretion obtained from the sinus sphenoidalis of a rhinosinusitis patient and identified by sequence analysis of two loci as Trichoderma longibrachiatum from the Longibrachiatum Clade of the genus Trichoderma. T. longibrachiatum can trigger a fatal pathomechanism in immunodeficient patients, but only rarely causes disease in healthy people. The case presented is unique because the patient was not immunocompromised.

  10. Biodegradation of sulfosulphuron in agricultural soil by Trichoderma sp.

    Science.gov (United States)

    Yadav, U; Choudhury, P P

    2014-11-01

    Sulfosulphuron-degrading fungus was isolated by enrichment technique from the sulfosulphuron-contaminated soil of wheat rhizosphere. To assess the biodegradation potential of isolated Trichoderma sp., minimal potato dextrose agar broth with different levels of sulfosulphuron (up to 2 g l(-1) ) was evaluated in the growth and biotransformation experiments. ESI LC-MS/MS analysis revealed the presence of degradation products 2-amino-4,6-dimethoxypyrimidine (I) and 2-ethylsulfonyl imidazo{1,2-a} pyridine-3-sulfonamide-2-ethylsulfonyl imidazo{1,2-a} pyridine-3-sulfonamide (II) indicating the cleavage of the urea bridge and the presence of the by-product N-(4,6-dimethoxypyrimidin-2-yl)urea (III) indicating the degradation of sulfonylamide linkage. Two other metabolites, N-(4,6-dimethoxypyrimidin-2-yl)-N'-hydroxyurea (IV) and N, N'-bis(4,6-dimethoxypyrimidin-2-yl)urea (V), were also identified. From the previous reports, it was found that the degradation of sulfonyl urea herbicides took place through the chemical degradation of the sulfonylurea bridge followed by microbial degradation. During this investigation, Trichoderma sp. grew well with and degraded sulfosulphuron via both the decarboxylation on the sulphonyl urea bridge and the hydrolytic cleavage of the sulfonylamide linkage as demonstrated by the formation of metabolites. Trichoderma is nonphytopathogenic in nature, and some species of it restrict the growth of soil-dwelling phytopathogens. Therefore, it is a promising candidate for the decontamination of soil from sulfosulphuron residues. The degradation of sulfosulphuron by any individual fungus is being reported for the first time. Trichoderma sp. isolated from wheat-rhizospheric soil could survive in minimal broth rich in sulfosulphuron. Previous reports have described the complete degradation of any sulfonyl urea herbicides by micro-organisms only after the pH-dependent chemical hydrolysis of the sulfonyl urea bridge of the herbicide. This study

  11. Synthesis of an antiviral drug precursor from chitin using a saprophyte as a whole-cell catalyst

    Directory of Open Access Journals (Sweden)

    Steiger Matthias G

    2011-12-01

    Full Text Available Abstract Background Recent incidents, such as the SARS and influenza epidemics, have highlighted the need for readily available antiviral drugs. One important precursor currently used for the production of Relenza, an antiviral product from GlaxoSmithKline, is N-acetylneuraminic acid (NeuNAc. This substance has a considerably high market price despite efforts to develop cost-reducing (biotechnological production processes. Hypocrea jecorina (Trichoderma reesei is a saprophyte noted for its abundant secretion of hydrolytic enzymes and its potential to degrade chitin to its monomer N-acetylglucosamine (GlcNAc. Chitin is considered the second most abundant biomass available on earth and therefore an attractive raw material. Results In this study, we introduced two enzymes from bacterial origin into Hypocrea, which convert GlcNAc into NeuNAc via N-acetylmannosamine. This enabled the fungus to produce NeuNAc from the cheap starting material chitin in liquid culture. Furthermore, we expressed the two recombinant enzymes as GST-fusion proteins and developed an enzyme assay for monitoring their enzymatic functionality. Finally, we demonstrated that Hypocrea does not metabolize NeuNAc and that no NeuNAc-uptake by the fungus occurs, which are important prerequisites for a potential production strategy. Conclusions This study is a proof of concept for the possibility to engineer in a filamentous fungus a bacterial enzyme cascade, which is fully functional. Furthermore, it provides the basis for the development of a process for NeuNAc production as well as a general prospective design for production processes that use saprophytes as whole-cell catalysts.

  12. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species.

    Science.gov (United States)

    López-Quintero, Carlos A; Atanasova, Lea; Franco-Molano, A Esperanza; Gams, Walter; Komon-Zelazowska, Monika; Theelen, Bart; Müller, Wally H; Boekhout, Teun; Druzhinina, Irina

    2013-11-01

    The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and the partial sequence of the translation elongation factor 1 alpha (tef1) gene revealed that the diversity of Trichoderma was dominated (71 %) by three common cosmopolitan species, namely Trichoderma harzianum sensu lato (41 %), Trichoderma spirale (17 %) and Trichoderma koningiopsis (13 %). Four ITS 1 and 2 phylotypes (13 strains) could not be identified with certainty. Multigene phylogenetic analysis and phenotype profiling of four strains with an ITS1 and 2 phylotype similar to Trichoderma strigosum revealed a new sister species of the latter that is described here as Trichoderma strigosellum sp. nov. Sequence similarity searches revealed that this species also occurs in soils of Malaysia and Cameroon, suggesting a pantropical distribution.

  13. 40 CFR 180.1293 - Trichoderma gamsii strain ICC 080; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma gamsii strain ICC 080... RESIDUES IN FOOD Exemptions From Tolerances § 180.1293 Trichoderma gamsii strain ICC 080; exemption from the requirement of a tolerance. Trichoderma gamsii strain ICC 080 is exempted from the requirement...

  14. 40 CFR 180.1294 - Trichoderma asperellum strain ICC 012; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma asperellum strain ICC 012... RESIDUES IN FOOD Exemptions From Tolerances § 180.1294 Trichoderma asperellum strain ICC 012; exemption from the requirement of a tolerance. Trichoderma asperellum strain ICC 012 is exempted from...

  15. 40 CFR 180.1201 - Trichoderma harzianum strain T-39; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma harzianum strain T-39... RESIDUES IN FOOD Exemptions From Tolerances § 180.1201 Trichoderma harzianum strain T-39; exemption from the requirement of a tolerance. Trichoderma harzianum strain T-39 is exempt from the requirement of...

  16. Ecological plasticity of Trichoderma fungi in leached chernozem

    Science.gov (United States)

    Svistova, I. D.; Senchakova, T. Yu.

    2010-03-01

    The autecological properties of Trichoderma fungi ecotypes isolated from the leached chernozem of the forest-steppe zone of the European part of Russia have been studied. We were the first who carried out the complex study of the synecological relations of micromycetes of such kinds in a system including the soil, microbial community, and plants, i.e., their relations with soil saprotrophic fungi, bacteria, actinomycetes, plants, and pathogenic fungi. It was shown that the ecological plasticity of the Trichoderma genus in the soil of this zone is determined by its growth rate, the optimum pH and temperature, the biosynthesis of extracellular hydrolytic enzymes, the biological action of mycotoxins, and the ability for parasitism. The efficiency of the introduction of Trichoderma species typical and atypical for the leached chernozem into this soil and their influence on the structure of the microbial community were evaluated. The T. pseudokoningii ecotype, which produces cellulolytic enzymes, is very promising for industrial biotechnology, and the T. harzianum ecotype can be used in soil biotechnology for the biocontrol of chernozem. The addition of a commercial trichodermin preparation into the chernozem damages the structure of its microbial community.

  17. ANTAGONISMO IN VITRO DE Trichoderma spp. A Verticillium dahliae KLEB

    Directory of Open Access Journals (Sweden)

    MARTINS-CORDER M.P.

    1998-01-01

    Full Text Available O presente trabalho visou testar e selecionar isolados selvagens de Trichoderma spp. quanto à capacidade antagônica ao fungo fitopatogênico Verticillium dahliae. Os ensaios in vitro consistiram de testes para avaliar a capacidade hiperparasítica e de antibiose através da produção de metabólitos voláteis e não voláteis. Pela técnica de culturas pareadas, 47 isolados de diversas espécies de Trichoderma foram avaliados e, pelos resultados obtidos, 20 foram selecionados. Através do teste de antibiose, selecionaram-se 7 isolados: T15P e Tal-1 (T. viride, TW6 e CNP311A (T. koningii, CNP17 e TCII (T. harzianum e Tal-10 (T. aureoviride os quais inibiram completamente o crescimento micelial de V. dahliae através da produção de metabólitos. Observações microscópicas demonstraram interações de hifas entre Trichoderma sp. e V. dahliae, tais como: enrolamento, crescimento paralelo de ambos, formação de ganchos.

  18. Identification of novel Trichoderma hamatum genes expressed during mycoparasitism

    Institute of Scientific and Technical Information of China (English)

    Margaret Carpenter; Alison Stewart; Hayley Ridgway

    2004-01-01

    @@ Trichoderma species are currently used as biocontrol agents for crop diseases caused by a number of fungal plant pathogens. However, their biocontrol performance in the field can be unreliable and it is likely that more consistent performance could be achieved through knowledge and manipulation of the genes involved. For example, induction of the genes could be optimised for variable environmental and physiological conditions, superior strains could be selected more effectively and novel strains could be created. One method by which Trichoderma species accomplish biocontrol is mycoparasitism. Several genes involved in the mycoparasitic interaction have previously been characterised, however these consist predominantly of those that encode enzymes that degrade fungal cell walls. In the current study subtractive hybridisation was used to target genes expressed when Trichoderma hamatum and the plant pathogen Sclerotinia sclerotiorum were cultured together, subtracting genes expressed when each are grown individually. This experimental design has the potential to yield T.hamatum genes involved in mycoparasitism of S. sclerotiorum, and S. sclerotiorum genes upregulated in host defence. The cDNA fragments yielded by the subtraction were characterised with respect to expression, sequence and species of origin. A number of novel T. hamatum genes which were up-regulated during mycoparasitism were identified.

  19. Trichoderma species fungemia after high-dose chemotherapy and autologous stem cell transplantation: a case report.

    Science.gov (United States)

    Festuccia, M; Giaccone, L; Gay, F; Brunello, L; Maffini, E; Ferrando, F; Talamo, E; Boccadoro, M; Serra, R; Barbui, A; Bruno, B

    2014-08-01

    We present a case of Trichoderma fungemia with pulmonary involvement in a multiple myeloma patient, who was severely immunocompromised and heavily treated with high-dose melphalan, and underwent autologous hematopoietic cell transplantation. This is the first report, to our knowledge, of proven Trichoderma fungemia, defined by published criteria, successfully treated with voriconazole.

  20. Combined inoculation of Pseudomonas fluorescens and Trichoderma harzianum for enhancing plant growth of vanilla (Vanilla planifolia).

    Science.gov (United States)

    Sandheep, A R; Asok, A K; Jisha, M S

    2013-06-15

    This study was conducted to evaluate the plant growth promoting efficiency of combined inoculation of rhizobacteria on Vanilla plants. Based on the in vitro performance of indigenous Trichoderma spp. and Pseudomonas spp., four effective antagonists were selected and screened under greenhouse experiment for their growth enhancement potential. The maximum percentage of growth enhancement were observed in the combination of Trichoderma harzianum with Pseudomonas fluorescens treatment followed by Pseudomonas fluorescens, Trichoderma harzianum, Pseudomonas putida and Trichoderma virens, respectively in decreasing order. Combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens registered the maximum length of vine (82.88 cm), highest number of leaves (26.67/plant), recorded the highest fresh weight of shoots (61.54 g plant(-1)), fresh weight of roots (4.46 g plant(-1)) and dry weight of shoot (4.56 g plant(-1)) where as the highest dry weight of roots (2.0806 g plant(-1)) were achieved with treatments of Pseudomonas fluorescens. Among the inoculated strains, combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens recorded the maximum nitrogen uptake (61.28 mg plant(-1)) followed by the combined inoculation of Trichoderma harzianum (std) and Pseudomonas fluorescens (std) (55.03 mg plant(-1)) and the highest phosphorus uptake (38.80 mg plant(-1)) was recorded in dual inoculation of Trichoderma harzianum and Pseudomonas fluorescens.

  1. 21 CFR 184.1250 - Cellulase enzyme preparation derived from Trichoderma longibrachiatum.

    Science.gov (United States)

    2010-04-01

    ... incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the... Trichoderma longibrachiatum. 184.1250 Section 184.1250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1250 Cellulase enzyme preparation derived from Trichoderma longibrachiatum. (a) Cellulase...

  2. Methods for the Evaluation of the Bioactivity and Biocontrol Potential of Species of Trichoderma.

    Science.gov (United States)

    Steyaert, Johanna; Hicks, Emily; Kandula, Janaki; Kandula, Diwakar; Alizadeh, Hossein; Braithwaite, Mark; Yardley, Jessica; Mendoza-Mendoza, Artemio

    2016-01-01

    Members of the genus Trichoderma comprise the majority of commercial fungal biocontrol agents of plant diseases. As such, there is a wealth of information available on the analysis of their biocontrol potential and the mechanisms behind their superior abilities. This chapter aims to summarize the most common methods utilized within a Trichoderma biocontrol program for assessing the biological properties of individual strains.

  3. Trichoderma Biocontrol: Signal Transduction Pathways Involved in Host Sensing and Mycoparasitism

    Directory of Open Access Journals (Sweden)

    Susanne Zeilinger

    2007-01-01

    Full Text Available Fungi of the genus Trichoderma are used as biocontrol agents against several plant pathogenic fungi like Rhizoctonia spp., Pythium spp., Botrytis cinerea and Fusarium spp. which cause both soil-borne and leaf- or flower-borne diseases of agricultural plants. Plant disease control by Trichoderma is based on complex interactions between Trichoderma, the plant pathogen and the plant. Until now, two main components of biocontrol have been identified: direct activity of Trichoderma against the plant pathogen by mycoparasitism and induced systemic resistance in plants. As the mycoparasitic interaction is host-specific and not merely a contact response, it is likely that signals from the host fungus are recognised by Trichoderma and provoke transcription of mycoparasitism-related genes.In the last few years examination of signalling pathways underlying Trichoderma biocontrol started and it was shown that heterotrimeric G-proteins and mitogen-activated protein (MAP kinases affected biocontrol-relevant processes such as the production of hydrolytic enzymes and antifungal metabolites and the formation of infection structures. MAPK signalling was also found to be involved in induction of plant systemic resistance in Trichoderma virens and in the hyperosmotic stress response in Trichoderma harzianum. Analyses of the function of components of the cAMP pathway during Trichoderma biocontrol revealed that mycoparasitism-associated coiling and chitinase production as well as secondary metabolism are affected by the internal cAMP level; in addition, a cross talk between regulation of light responses and the cAMP signalling pathway was found in Trichoderma atroviride.

  4. Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens.

    Science.gov (United States)

    Zachow, Christin; Berg, Christian; Müller, Henry; Monk, Jana; Berg, Gabriele

    2016-10-10

    Trichoderma strains exhibit enormous potential for applications in biotechnology, in particular as biocontrol agents against pathogens. However, little is known about the diversity of plant-associated Trichoderma communities at a global scale and their antagonistic spectrum. In order to gather information about structure and function, we compared Trichoderma biomes of endemic (Aeonium, Diospyros, Hebe, Rhododendron) and cosmopolitan plants (Zea mays) in a global study encompassing the area Northwest Africa to New Zealand via the European Alps and Madagascar. At the quantitative level we found no differences between cosmopolitan and endemic plants. Statistically significant differences were detected at the qualitative level: Trichoderma populations of endemic plants were highly specific and diverse with hot spots appearing in Madagascar and New Zealand. By contrast, maize plants from all sites shared the majority of Trichoderma species (65.5%). Interestingly, the high above ground biodiversity in ecosystems containing endemic plants was confirmed by a high below ground Trichoderma diversity. Despite the differences, we found a global Trichoderma core community shared by all analysed plants, which was dominated by T. koningii and T. koningiopsis. Amplicon-based network analyses revealed a high similarity between maize Trichoderma grown world-wide and distinct populations of endemic plants. Furthermore, Trichoderma strains from endemic plants showed a higher antagonistic activity against fungal pathogens compared to maize-associated strains. Our results showed that endemic plants are associated with a specific Trichoderma microbiome which possesses a high antagonistic activity indicating that it has potential to be used for biocontrol purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Optimization of solid fermentation of cellulase from Trichoderma koningii

    Institute of Scientific and Technical Information of China (English)

    LI Pei-jun; JING De-bing; ZHOU Qi-xing; ZHANG Chun-gui

    2004-01-01

    To exploit peashrub resources in Ordos as fodders, it is very crucial to realize industrial production of cheap cellulase of high activity by optimizing culture technology, especially culture substrate. In this study, a new prescription experiment based on uniform design ideal was invented and successfully applied in the solid fermentation of Trichoderma koningii F244, which being performed with two different temperature degrees. The activities of FPA, cotton lyase, CMCase and β-glucosidase were assayed and then mathematical models of enzymatic activities, which were figured out by Unconstraint Mathematical Programming, were developed by Multivariate Regression Program of SPSS10.0. Enzymatic activities of optimized substrate prescriptions corresponding to mathematical models were forecasted to determine an ideal substrate prescription. It is revealed that in solid fermentation, Tween80 has negative effect on cellulase production. Furthermore, the ideal prescription for cellulase complex production by Trichoderma koningii F244 was straw powder 16.9%,wheat bran 26.5%, (NH4)2SO4 9.5% and water 47.1%, whose corresponding cellulase activity was expected to be at the same high level with that of Trichoderma reesei Q9414 on its own recommended substrate. Especially, goats mainly fed on peashrub tissues mixed with cellulase complex of this prescription and culture technology, got an incremental ratio of 0.3 kg/d, which brought a very promising feeding prospect for local peashrub resource. By populization of this cellulase complex, it can integrate living standard, economic construction of local residents into vegetational restoration tightly and thus this paper will be very meaningful to be use for reference for western China like Ordos to realize its sustainable development of economy, society and environment.

  6. Trichoderma strains- Silybum marianum hairy root cultures interactions

    Directory of Open Access Journals (Sweden)

    T. Hasanloo

    2015-03-01

    Full Text Available Background and objectives: Silymarin is a unique flavonoid complex with documented hepatoprotective properties. Silybum  marianum hairy root culture as a source for producing silymarin has been an important strategy for study the cell signaling pathway. In the present investigation Trichoderma strains- Silybum marianum hairy root cultures interactions have been studied. Methods: The effects of two Trichoderma Strains (KHB and G46-7 (0, 0.5, 1, 2 and 4 mg/ 50 mL culture in 6 different exposure times (0, 24, 48, 72, 96 and 120 h have been investigated on flavonolignans production. The flavonolignans were analyzed by High Performance Liquid Chromatography method. Cell signaling pathway was evaluated by determination of H2O2 content, peroxidase and ascorbate peroxidase activities. Results:The elicitation effects of two Trichoderma Strains (KHB and G46-7 were examined on flavonolignans accumulation and the activation of cell defense system in S. marianum hairy root cultures. The results indicated that the highest silymarin accumulation (0.45 and 0.33 mg/g DW was obtained in media elicited with 0.5 mg/50 mL cultures of T. harzianum Strains (KHB and G46-3, respectively after 120 h. Feeding time experiments indicated that a significant higher content of silymarin production was achieved after 120 and 72 h in media treated with 0.5 mg/50 mL cultures of KHB and G46-3, respectively. Our results showed that S. marianum treated by KHB strain, increased taxifolin, silychristin, isosilybin and silydianin productions significantly. The H2O2 content in the control hairy root cultures remained lower than the treated cultures. There was significant enhancement in both peroxidase and ascorbate peroxidase activities in treated hairy roots reaching a peak after 72 h. Conclusion: These findings suggested that some Trichoderma strains are positive elicitors for promoting silymarin accumulation in S. marianum hairy root cultures. The results also suggested the presence

  7. Proteomic mapping of secreted proteins of Trichoderma spp.

    Institute of Scientific and Technical Information of China (English)

    Li S; Bramley P M; Smith J; Cannon P F

    2004-01-01

    @@ A series of highly taxonomically diverse Trichoderma strains were investigated using proteomic approaches, to investigate the utility of protein profiles as taxonomic markers and to identify proteins of potential economic importance. Initial studies have focused on a comparison of single strains of T.aureoviride, T. saturnisporum, T. polysporum, T. longbrachiatum and T. spirale, along with two strains of T. harzianum. All seven strains were grown in synthetic medium supplemented with 2 % (w/v) glycerol, to maximize the diversity of extracellular protein production. Samples of secreted protein were separated by 2D gel electrophoresis and will be characterized by MALDI-TOF peptide fingerprinting.

  8. Genetic improvement of Trichoderma ability to induce systemic resistance

    Institute of Scientific and Technical Information of China (English)

    Ciliento R; Mach R L; Lorito M; Woo S L; Di Benedetto P; Ruocco M; Scala F; Soriente I; Ferraioli S; Brunner K; Zeilinger S

    2004-01-01

    @@ The beneficial applications of Trichoderma spp. in agriculture include not only the control of plant pathogens, but also the improvement of plant growth, micronutrient availability, and plant tolerance to abiotic stress. In addition, it has been suggested that these fungi are able to increase plant disease resistance by activating induced systemic resistance (ISR) . The mode of action of these beneficial fungi in the Trichoderma -plant-pathogen interaction are many, complex and not completely understood. Numerous lytic enzymes have been characterized, the encoding genes (ech42 gluc78,nag1 from T. atroviride strain P1) cloned, and their role in biocontrol demonstrated. The corresponding biocontrol-related inducible promoters have been used in a reporter system based on the Aspergillus niger glucose oxidase gene (goxA) to monitor biocontrol activity. Glucose oxidase catalyzes the oxygen-dependent oxidation of D-glucose to D-glucono-1, 5-lactone and hydrogen peroxide; this latter compound is known to have an antifungal effect and activate the plant defence cascade, thus increasing resistance to pathogen attack. T. atroviride P1 transformants with various promoters gox were tested as seed coating treatments on bean seeds planted in soil infested with a soilborne fungal pathogen. Successively, the emergent leaves were inoculated with a foliar pathogen to determine the effect of the GOX transformants on biocontrol and resistance to pathogen attack.Inoculations with the P1-GOX transformants not only reduced disease symptoms caused by a soil pathogen, but also the lesions of various foliar pathogens applied far from the Trichoderma colonization, thus activating ISR. A similar approach is being use to genetically improve T.harzianum T22, a rhizosphere competent and commercially marketed strain not transformed yet, by using four different gox gene constructs under the control of constitutive and inducible promoters.Plasmids have been introduced in Trichoderma by

  9. [Anticancer properties of Trichoderma asperellum 302 from buried soils].

    Science.gov (United States)

    Tukhbatova, R I; Fattakhova, A N; Alimova, F K

    2014-01-01

    Melanoma is one of the most malignant tumors, which leaves no chance of survival in the case of the "bang". There are various ways to treat tumors, however, recently in the field of cancer research, there are studies in which fungal metabolites have been used as antitumor agents. In this study we examined the effect of the culture fluid of the fungus Trichoderma asperellum 302 on the growth and development of melanoma B 16. We have shown that these culture fluid has anticancer properties, causing destruction of tumor tissue. Obtained data open new possibilities and prospects for the use of active substances derived from fungi in the complex therapy of cancer.

  10. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp.

    Science.gov (United States)

    Keswani, Chetan; Mishra, Sandhya; Sarma, Birinchi Kumar; Singh, Surya Pratap; Singh, Harikesh Bahadur

    2014-01-01

    Recent shift in trends of agricultural practices from application of synthetic fertilizers and pesticides to organic farming has brought into focus the use of microorganisms that carryout analogous function. Trichoderma spp. is one of the most popular genera of fungi commercially available as a plant growth promoting fungus (PGPF) and biological control agent. Exploitation of the diverse nature of secondary metabolites produced by different species of Trichoderma augments their extensive utility in agriculture and related industries. As a result, Trichoderma has achieved significant success as a powerful biocontrol agent at global level. The endorsement of Trichoderma spp. by scientific community is based on the understanding of its mechanisms of action against a large set of fungal, bacterial and in certain cases viral infections. However, it is still an agnostic view that there could be any single major mode of operation, although it is argued that all mechanisms operate simultaneously in a synchronized fashion. The central idea behind this review article is to emphasize the potentiality of applications of target specific secondary metabolites of Trichoderma for controlling phytopathogens as a substitute of commercially available whole organism formulations. With the aim to this point, we have compiled an inclusive list of secondary metabolites produced by different species of Trichoderma and their applications in diverse areas with the major emphasis on agriculture. Outlining the importance and diverse activities of secondary metabolites of Trichoderma besides its relevance to agriculture would generate greater understanding of their other important and beneficial applications apart from target specific biopesticides.

  11. The potentiality of Trichoderma harzianum in alleviation the adverse effects of salinity in faba bean plants.

    Science.gov (United States)

    Abd El-Baki, G K; Mostafa, Doaa

    2014-12-01

    The interaction between sodium chloride and Trichoderma harzianum (T24) on growth parameters, ion contents, MDA content, proline, soluble proteins as well as SDS page protein profile were studied in Vicia faba Giza 429. A sharp reduction was found in fresh and dry mass of shoots and roots with increasing salinity. Trichoderma treatments promoted the growth criteria as compared with corresponding salinized plants. The water content and leaf area exhibited a marked decrease with increasing salinity. Trichoderma treatments induced a progressive increase in both parameters. Both proline and MDA contents were increased progressively as the salinity rose in the soil. Trichoderma treatments considerably retarded the accumulation of both parameters in shoots and roots. Both Na+ and K+ concentration increased in both organs by enhancing salinity levels. The treatment with Trichoderma harzianum enhanced the accumulation of both ions. Exposure of plants to different concentrations of salinity, or others treated with Trichoderma harzianum produced marked changes in their protein pattern. Three types of alterations were observed: the synthesis of certain proteins declined significantly, specific synthesis of certain other proteins were markedly observed and synthesis of a set specific protein was induced de novo in plant treated with Trichoderma harzianum.

  12. Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants.

    Science.gov (United States)

    Doni, Febri; Isahak, Anizan; Che Mohd Zain, Che Radziah; Wan Yusoff, Wan Mohtar

    2014-01-01

    Trichoderma spp., a known beneficial fungus is reported to have several mechanisms to enhance plant growth. In this study, the effectiveness of seven isolates of Trichoderma spp. to promote growth and increase physiological performance in rice was evaluated experimentally using completely randomized design under greenhouse condition. This study indicated that all the Trichoderma spp. isolates tested were able to increase several rice physiological processes which include net photosynthetic rate, stomatal conductance, transpiration, internal CO2 concentration and water use efficiency. These Trichoderma spp. isolates were also able to enhance rice growth components including plant height, leaf number, tiller number, root length and root fresh weight. Among the Trichoderma spp. isolates, Trichoderma sp. SL2 inoculated rice plants exhibited greater net photosynthetic rate (8.66 μmolCO2 m(-2) s(-1)), internal CO2 concentration (336.97 ppm), water use efficiency (1.15 μmoCO2/mmoH2O), plant height (70.47 cm), tiller number (12), root length (22.5 cm) and root fresh weight (15.21 g) compared to the plants treated with other Trichoderma isolates tested. We conclude that beneficial fungi can be used as a potential growth promoting agent in rice cultivation.

  13. Suppression of Pythium spp. by Trichoderma spp. during germination of tomato seeds in soilless growing media.

    Science.gov (United States)

    Aerts, R; De Schutter, B; Rombouts, L

    2002-01-01

    In the Flemish horticulture Pythium spp. is an important pathogen of tomato plants (Lycopersicon esculenthum) in soilless growing media. Therefore some experiments were conducted to evaluate the possibility of decreasing the damage caused by Pythium spp. by Trichoderma spp. In a tray with several growing media, a suspension of Trichoderma conidia (10(6)/ml growing medium) was applied two weeks before sowing. On some objects, a compost extract (Biostimulus) was added. The growing media used in the experiment were rockwool, recycled rockwool and recycled coconut fibre. After sowing, the trays were covered with perlite. Three isolates of Trichoderma spp.: T. asperellum (Biofungus), T. harzianum (Tri 003) and Trichoderma sp. (KHK) and two isolates of Pythium spp.: P. ultimum (MUCL) en P. aphanidermatum (HRI, UK) were used. Propamocarb was used as a chemical standard. The use of coconut fibre growing medium resulted in a higher percentage (36%) of germination than the rockwool media when only Pythium spp. was used. The presence of the spontaneous developing microflora in the coconut fibre medium gave probably also a suppression of Pythium spp. For that reason the results of the suppression by Trichoderma spp. are not easy to explain and very variable on the different objects. Pythium ultimum was more suppressed than P. aphanidermatum on all the growing media and the application of all the Trichoderma isolates increased the germination percentage of tomato seeds. T. asperellum (Biofungus) gave on rockwool also a good result for the suppression of P. aphanidermatum (increasing of germination with 48%). This effect was comparable with the propamocarb treatment (48%). T. harzianum (Tri 003) gave a small suppression (22%) and Trichoderma sp. (KHK) gave almost no suppression of P. aphanidermatum (7%). When less Trichoderma conidia were applied the germination percentage decreased. The adding of a compost extract (Biostimulus) had no influence on the results. This experiment

  14. Comparative molecular evolution of Trichoderma chitinases in response to mycoparasitic interactions

    DEFF Research Database (Denmark)

    Ihrmark, Katarina; Asmail, Nashwan; Ubhayasekera, Wimal;

    2010-01-01

    Certain species of the fungal genus Trichoderma are potent mycoparasites and are used for biological control of fungal diseases on agricultural crops. In Trichoderma, whole-genome sequencing reveal between 20 and 36 different genes encoding chitinases, hydrolytic enzymes that are involved in the ...... clades are observed. These observations show that Trichoderma chitinases chi18-13 and chi18-15 evolve in a manner consistent with rapid co-evolutionary interactions and identifies putative target regions involved in determining substrate-specificity....

  15. Isolation, Purification, and Structural Identification of an Antifungal Compound from a Trichoderma Strain.

    Science.gov (United States)

    Li, Chong-Wei; Song, Rui-Qing; Yang, Li-Bin; Deng, Xun

    2015-08-01

    Trichoderma strain T-33 has been demonstrated to have inhibitory effect on the fungus species Cytospora chrysosperma. Here, an active antifungal compound was obtained from Trichoderma strain T-33 extract via combined separation technologies, including organic solvent extraction, liquid chromatography, and thin-layer chromatography. The purified compound was further characterized by advanced analytical technologies to elucidate its chemical structure. Results indicated that the active antifungal compound in Trichoderma strain T-33 extract is 2,5- cyclohexadiene-1,4-dione-2,6-bis (1,1-dimethylethyl).

  16. Antagnism of three strains of Trichoderma spp.against mycelial growth of Rhizoctonia salani

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-ze; TU Yan-la

    2004-01-01

    @@ Three strains of Trichoderma spp. TVll2, TX003, TY009 obtained from previous experiments could inhibit the sclerotial formation of two strains of Rhizoctonia salani AG1 (-1A) isolated from the rice paddies in Hanzhou of China. However, it is unclear if there are the antagonism and mycoparasitism of the Trichoderma strains tested against the mycelial growth of R. solani . The objective of this research was to evaluate the ability of the Trichoderma strains to inhibit the mycelial growth of R. solani in vitro .

  17. Fatal case of Trichoderma harzianum infection in a renal transplant recipient.

    Science.gov (United States)

    Guarro, J; Antolín-Ayala, M I; Gené, J; Gutiérrez-Calzada, J; Nieves-Díez, C; Ortoneda, M

    1999-11-01

    We describe the second known case of human infection by Trichoderma harzianum. A disseminated fungal infection was detected in the postmortem examination of a renal transplant recipient and confirmed in culture. The only other reported infection by this fungus caused peritonitis in a diabetic patient. The in vitro antifungal susceptibilities of the clinical strain and three other strains of Trichoderma species to six antifungal drugs are provided. This case illustrates the widening spectrum of opportunistic Trichoderma spp. in immunocompromised patients and emphasizes the problems in diagnosing invasive fungal diseases.

  18. Parasitism of Rhizoctonia solani by strains of Trichoderma spp. Parasitismo de Rhizoctonia solani por linhagens de Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Itamar Soares de Melo

    2000-03-01

    Full Text Available Rhizoctonia solani causes serious diseases in a wide range of plant species. The fungus Trichoderma has been shown to be particularly effective in the control of the pathogen. Thus, this research was carried out to screen fourteen Trichoderma strains against R. solani in vitro. All strains tested inhibited the growth of R. solani. Three T. koningii strains produced toxic metabolites with strong activity against R. solani, inhibiting the mycelial growth by 79%. T. harzianum, Th-9 reduced the viability of sclerotia of R. solani by 81.8% and T. koningii, TK-5 reduced by 53%. Electron microscopic observations revealed that all T. harzianum strains interacted with R. solani. Th-9 grew toward and coiled around the host cells, penetrating and destroying the hyphae. Penetration of host cells was apparently accomplished by mechanical activity.Rhizoctonia solani é um dos mais destrutivos patógenos de plantas cultivadas. Métodos alternativos de controle têm sido empregados com sucesso, particularmente, utilizando-se o fungo Trichoderma. Este trabalho visou, portanto, selecionar linhagens efetivas desse micoparasita contra o patógeno. Onze linhagens de T. harzianum e três de T. koningii foram testadas in vitro com relação ao parasitismo de hifas e de escleródios e produção de metabólitos tóxicos. Todas as linhagens de Trichoderma spp. inibiram o crescimento miceliano de R. solani e as três linhagens de T. koningii produziram potentes antibióticos, que inibiram mais de 79% o crescimento do patógeno. Uma linhagem de T. harzianum, Th-9, reduziu a viabilidade dos escleródios em 81,8% e uma de T. koningii em 53%. Microscopia eletrônica de varredura revelou que todas as linhagens de T. harzianum parasitaram R. solani enquanto nenhuma linhagem de T. koningii interagiu com R. solani, possivelmente, devido à forte inibição causada pelos metabólitos que impediu o contato entre os dois fungos. T. harzianum, Th-9, cresceu ao redor, penetrou e

  19. Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil.

    Science.gov (United States)

    Al-Sadi, Abdullah M; Al-Oweisi, Fatma A; Edwards, Simon G; Al-Nadabi, Hamed; Al-Fahdi, Ahmed M

    2015-07-28

    Trichoderma is one of the most common fungi in soil. However, little information is available concerning the diversity of Trichoderma in soil with no previous history of cultivation. This study was conducted to investigate the most common species and the level of genetic relatedness of Trichoderma species from uncultivated soil in relation to cultivated soil and potting media. A total of 24, 15 and 13 Trichoderma isolates were recovered from 84 potting media samples, 45 cultivated soil samples and 65 uncultivated soil samples, respectively. Analysis based on the internal transcribed spacer region of the ribosomal RNA (rRNA) and the translation elongation factor gene (EF1) indicated the presence of 9 Trichoderma species: T. harzianum (16 isolates), T. asperellum (13), T. citrinoviride (9), T. orientalis (3), T. ghanense (3), T. hamatum (3), T. longibrachiatum (2), T. atroviride (2), and T. viride (1). All species were found to occur in potting media samples, while five Trichoderma species were recovered from the cultivated soils and four from the uncultivated soils. AFLP analysis of the 52 Trichoderma isolates produced 52 genotypes and 993 polymorphic loci. Low to moderate levels of genetic diversity were found within populations of Trichoderma species (H = 0.0780 to 0.2208). Analysis of Molecular Variance indicated the presence of very low levels of genetic differentiation (Fst = 0.0002 to 0.0139) among populations of the same Trichoderma species obtained from the potting media, cultivated soil and uncultivated soil. The study provides evidence for occurrence of Trichoderma isolates in soil with no previous history of cultivation. The lack of genetic differentiation among Trichoderma populations from potting media, cultivated soil and uncultivated soil suggests that some factors could have been responsible for moving Trichoderma propagules among the three substrates. The study reports for the first time the presence of 4 Trichoderma species in Oman: T

  20. POTENCIAL FARMACOINDUSTRIAL DE Trichoderma harzianum PARA FINS FARMACOTERAPÊUTICOS

    Directory of Open Access Journals (Sweden)

    Luís Fernando Albarello Gellen

    2014-12-01

    Full Text Available Linhagens de Trichoderma estão bem difundidas nos processos de controle de fitopatógenos, além disto, para promoção do desenvolvimento e crescimento das culturas onde são inoculados, estes benefícios dão-se pela gama de processos desempenhados por este organismo, os processos são classificados em parasitismo, antibiose e competição, além de secretarem produtos enzimáticos com ações degradantes, compostos voláteis e antimicrobianos. Por meio de testes de produção enzimática, confronto em placa, metabólitos voláteis e sensibilização do agente, os isolados de Trichoderma harzianum mostraram-se como um potente produtor de substâncias antimicrobianas e antifúngicas perante Sthaphylococcus aureus, Streptococcus pyogenes, E. coli, Pseudomonas aeruginosa, E. faecalis e Rhodotorula sp., Candida albicans, Candida parapsilosis e Candida lusitaniae. Palavras-chave: antimicrobianos, antifúngicas, metabólitos, sensibilização. DOI: http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v4n4p91-96

  1. Quality of Agricultural by Products Fermented by Trichoderma harzianum

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2014-10-01

    Full Text Available (Kualitas limbah produk pertanian yang difermentasi dengan trichoderma harzianum ABSTRAK. Telah dilakukan penelitian untuk mengetahui pengaruh fermentasi menggunakan Trichoderma harzianum terhadap kualitas limbah pertanian sehingga dapat digunakan sebagai bahan pakan non konvensional pada ternak unggas. Sekam padi, kulit pisang dan kulit nanas digunakan dalam penelitian ini dan difermentasi dengan T. harzianum selama 7 hari. Penelitian dirancang menggunakan Rancangan Acak Lengkap pola faktorial dengan 2 faktor yaitu 3 jenis limbah pertanian (sekam padi, kulit pisang dan kulit nanas dan 4 level T. harzianum ( 0, 4, 8 dan 12%. Setiap unit perlakuan diulang 4 kali. Parameter yang diamati yaitu kandungan bahan kering, protein kasar dan serat kasar. Data yang dihimpun dianalisis menggunakan analisis ragam (ANOVA dan Uji Jarak Berganda Duncan. Hasil penelitian memperlihatkan bahwa terdapat perbedaan yang nyata (P<0.05 kualitas kulit nanas, kulit pisang dan sekam padi setelah difermentasi menggunakan T. harzianum. Kandungan protein kasar kulit nanas dan sekam padi lebih tinggi dibandingkan kulit pisang sedangkan kandungan serat kasarnya lebih rendah. Semakin meningkat level penggunaan T. harzianum pada fermentasi kulit nanas dan sekam padi maka semakin meningkat kandungan protein kasar dan semakin menurun kandungan serat kasarnya. Berbeda dengan kulit pisang, yang kualitasnya tidak nyata dipengaruhi oleh meningkatnya level T. harzianum. Disimpulkan bahwa T. harzianum dapat digunakan untuk memfermentasi limbah pertanian yang kaya kandungan serat untuk meningkatkan kandungan protein dan menurunkan serat kasarnya. Kulit nanas dan sekam padi memiliki kualitas lebih tinggi setelah difermentasi menggunakan 12 % T. harzianum. Kulit pisang tidak disarankan untuk difermentasi menggunakan T. harzianum.

  2. Trichoderma spp.对樟子松枯梢病病原菌的影响%Effect of Trichoderma spp.on the Pathogen of Sphaeropsis Blight of Pinus sylvestris var.mongolica

    Institute of Scientific and Technical Information of China (English)

    宋瑞清; 周秀华

    2004-01-01

    通过Trichoderma属3个菌株与樟子松枯梢病菌(Sphaeropsis sapinea)对峙培养试验的结果表明:Trichoderma viride 1, Trichoderma viride 2及Trichoderma harzianum对樟子松枯梢病病原菌都有抑制效果,其中Trichoderma viride 2对病原菌的相对抑制效果最好,且其相对抑制效果随着时间的增加而增长,在40h达到最高,为73.55.Trichoderma viride 1和Trichoderma harzianum对病原菌的相对抑制效果在16h达到最高,分别为4.86及2.59.

  3. Studies on the control of Fusarium oxysporum f.sp.cubense with Trichoderma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yue-li; LIU Kai-qi; XIANG Mei-mei; LIU Ren

    2004-01-01

    @@ One hundred and fifty one isolates of Trichoderma were collected mainly from more than 40 soil samples and other materials in Guangdong Province (including Chigang, Zhanjiang, Wuchuan,Panyu, Zhaoqing, Dongguan, Humen, Qingyuan, Guanzhou) and the soil samples were also from different plant rhizosphere (including rice, different fruits and different vegetables). It was shown that 39 isolates of Trichoderma grew faster than other isolates using growth velocity experiments.The 39 isolates could effectively inhibit Fusarium oxysporum f. sp. cubense (E. F. Sm) Sny. &Hans.by dual cultural experiments. The inhibited activity included the antifungal activities of its metabolite,mycoparasitic activities and the lytic enzymes by dual culture, electronic microcopy and enzyme assay.At present, studies on the taxonomy of the 151 isolates of Trichoderma are carried out in our experiments, some Trichoderma species aggregates will be identified according to the taxonomy system revised by Rifai and Bissett.

  4. Production of chitinases with Trichoderma harzianun isolates using solid substrate fermentation

    Institute of Scientific and Technical Information of China (English)

    Viviana Nagy

    2004-01-01

    @@ Over forty Trichoderma harzianum isolates have been screened in solid substrate fermentation (SSF)for chitinase production. Strains were isolated from Asian soil and tree bark samples. Identification was performed in Canada and Austria by classical and molecular taxonomical methods.

  5. Carbendazim resistance and calculation effective concentration of carbendazim for Trichoderma harzianum

    Institute of Scientific and Technical Information of China (English)

    Elham Siassi; YANG Qian

    2005-01-01

    There is a method for investigating the transformation of resistance gene of carbendazim into Trichoderma harzianum. In order to introduce the resistance to benzimidazole fungicide into bio-control microorganism Trichoderma harzianum was transformed with the resistance gene. In this study, we investigate resistance level and calculate EC 50 ( effective concentration of carbendazim that can survive 50% of Trichoderma harzianum in that concentration) and stability of the resistance for the transformant isolate of Trichoderma harzianum.Results show the transformants can growth on the medium containing more than 1 000 μg/ml carbendazim and the resistance is stabled after 10 times transfer on non-selective medium and have EC 50 average about, 1 200μg/ml.

  6. Comparative molecular evolution of Trichoderma chitinases in response to mycoparasitic interactions

    DEFF Research Database (Denmark)

    Ihrmark, Katarina; Asmail, Nashwan; Ubhayasekera, Wimal

    2010-01-01

    Certain species of the fungal genus Trichoderma are potent mycoparasites and are used for biological control of fungal diseases on agricultural crops. In Trichoderma, whole-genome sequencing reveal between 20 and 36 different genes encoding chitinases, hydrolytic enzymes that are involved...... in the mycoparasitic attack. Sequences of Trichoderma chitinase genes chi18-5, chi18-13, chi18-15 and chi18-17, which all exhibit specific expression during mycoparasitism-related conditions, were determined from up to 13 different taxa and studied with regard to their evolutionary patterns. Two of them, chi18......-usage and contains five codons that evolve under positive selection and three groups of co-evolving sites. Regions of high amino acid variability are preferentially localized to substrate- or product side of the catalytic clefts. Differences in amino acid diversity/conservation patterns between different Trichoderma...

  7. Characterization of Aspergillus aculeatus β-glucosidase 1 accelerating cellulose hydrolysis with Trichoderma cellulase system

    National Research Council Canada - National Science Library

    Baba, Yutaro; Sumitani, Jun-ichi; Tani, Shuji; Kawaguchi, Takashi

    2015-01-01

    Aspergillus aculeatus β-glucosidase 1 (AaBGL1), which promotes cellulose hydrolysis by Trichoderma cellulase system, was characterized and compared some properties to a commercially supplied orthologue in A. niger (AnBGL...

  8. Examining the Potential of Plasma-Assisted Pretreated Wheat Straw for Enzyme Production by Trichoderma reesei

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Lehmann, Linda Olkjær; Schultz-Jensen, Nadja

    2012-01-01

    Plasma-assisted pretreated wheat straw was investigated for cellulase and xylanase production by Trichoderma reesei fermentation. Fermentations were conducted with media containing washed and unwashed plasma-assisted pretreated wheat straw as carbon source which was sterilized by autoclavation...

  9. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production.

    Science.gov (United States)

    Qualhato, Thiago Fernandes; Lopes, Fabyano Alvares Cardoso; Steindorff, Andrei Stecca; Brandão, Renata Silva; Jesuino, Rosália Santos Amorim; Ulhoa, Cirano José

    2013-09-01

    Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.

  10. Trichoderma chlorosporum,a new record of endophytic fungi from Dendrobium nobile in China%中国木霉属内生真菌一个新记录种Trichoderma chlorosporum

    Institute of Scientific and Technical Information of China (English)

    袁志林; 陈益存; 章初龙; 林福呈; 陈连庆

    2008-01-01

    @@ 1 INTRODUCTION Typically,Trichoderma spp.are free-living fungi most frequently isolated from soils and have been extensively studied due to their remarkable biocontrol and plant-growth promoting capacity.There is increasing evidence that sometimes they display flexible lifestyle and penetrate epidermis of roots and act as opportunistic,avirulent plant symbiont(Harman et al.2004).Recently,a Trichoderma species living as endophyte,Trichoderma taxi C.L.Zhang et al.(2007),has been recognized.

  11. Efficiency of treatments for controlling Trichoderma spp during spawning in cultivation of lignicolous mushrooms.

    Science.gov (United States)

    Colavolpe, María Belén; Mejía, Santiago Jaramillo; Albertó, Edgardo

    2014-01-01

    Trichoderma spp is the cause of the green mold disease in mushroom cultivation production. Many disinfection treatments are commonly applied to lignocellulose substrates to prevent contamination. Mushroom growers are usually worried about the contaminations that may occur after these treatments during handling or spawning. The aim of this paper is to estimate the growth of the green mold Trichoderma sp on lignocellulose substrates after different disinfection treatments to know which of them is more effective to avoid contamination during spawning phase. Three different treatments were assayed: sterilization (121 °C), immersion in hot water (60 and 80 °C), and immersion in alkalinized water. Wheat straw, wheat seeds and Eucalyptus or Populus sawdust were used separately as substrates. After the disinfection treatments, bagged substrates were sprayed with 3 mL of suspension of conidia of Trichoderma sp (10(5) conidia/mL) and then separately spawned with Pleurotus ostreatus or Gymnopilus pampeanus. The growth of Trichoderma sp was evaluated based on a qualitative scale. Trichoderma sp could not grow on non-sterilized substrates. Immersions in hot water treatments and immersion in alkalinized water were also unfavorable treatments for its growth. Co- cultivation with mushrooms favored Trichoderma sp growth. Mushroom cultivation disinfection treatments of lignocellulose substrates influence on the growth of Trichoderma sp when contaminations occur during spawning phase. The immersion in hot water at 60 °C for 30 min or in alkalinized water for 36 h, are treatments which better reduced the contaminations with Trichoderma sp during spawning phase for the cultivation of lignicolous species.

  12. Randomly Amplified Polymorphic DNA of Trichoderma isolates and antagonism against Rhizoctonia solani

    OpenAIRE

    Larissa Brandão Góes; Ana Bolena Lima da Costa; Laurineide Lopes de Carvalho Freire; Neiva Tinti de Oliveira

    2002-01-01

    Random Amplified Polymorphic DNA (RAPD) procedure was used to examine the genetic variability among fourteen isolates of Trichoderma and their ability to antagonize Rhizoctonia solani using a dual-culture assay for correlation among RAPD products and their hardness to R. solani. Seven oligodeoxynucleotide primers were selected for the RAPD assays which resulted in 197 bands for 14 isolates of Trichoderma. The data were entered into a binary matrix and a similarity matrix was constructed using...

  13. Efficiency of treatments for controlling Trichoderma spp during spawning in cultivation of lignicolous mushrooms

    Directory of Open Access Journals (Sweden)

    María Belén Colavolpe

    2014-12-01

    Full Text Available Trichoderma spp is the cause of the green mold disease in mushroom cultivation production. Many disinfection treatments are commonly applied to lignocellulose substrates to prevent contamination. Mushroom growers are usually worried about the contaminations that may occur after these treatments during handling or spawning. The aim of this paper is to estimate the growth of the green mold Trichoderma sp on lignocellulose substrates after different disinfection treatments to know which of them is more effective to avoid contamination during spawning phase. Three different treatments were assayed: sterilization (121 ºC, immersion in hot water (60 and 80 ºC, and immersion in alkalinized water. Wheat straw, wheat seeds and Eucalyptus or Populus sawdust were used separately as substrates. After the disinfection treatments, bagged substrates were sprayed with 3 mL of suspension of conidia of Trichoderma sp (10(5 conidia/mL and then separately spawned with Pleurotus ostreatus or Gymnopilus pampeanus. The growth of Trichoderma sp was evaluated based on a qualitative scale. Trichoderma sp could not grow on non-sterilized substrates. Immersions in hot water treatments and immersion in alkalinized water were also unfavorable treatments for its growth. Co- cultivation with mushrooms favored Trichoderma sp growth. Mushroom cultivation disinfection treatments of lignocellulose substrates influence on the growth of Trichoderma sp when contaminations occur during spawning phase. The immersion in hot water at 60 ºC for 30 min or in alkalinized water for 36 h, are treatments which better reduced the contaminations with Trichoderma sp during spawning phase for the cultivation of lignicolous species.

  14. Trichoderma spp.capable of growing at low temperatures with biocontrol potential

    Institute of Scientific and Technical Information of China (English)

    Szakacs G; Tavaszi A

    2004-01-01

    @@ Though there are successful commercial biocontrol products with Trichoderma spp. In many countries including US, Israel and Europe, their usefulness is limited in cold environments such as mid-and northern part of Europe, US and Canada, especially in the late fall, winter and early spring period.Trichoderma isolates capable of growing at low temperatures (5-10 ℃) and showing good antagonistic properties against plant pathogenic fungi may have therefore both scientific and commercial value.

  15. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum).

    Science.gov (United States)

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Srivastava, Suchi; Chauhan, Reshu; Awasthi, Surabhi; Mishra, Seema; Dwivedi, Sanjay; Tripathi, Preeti; Kalra, Alok; Tripathi, Rudra D; Nautiyal, Chandra S

    2017-04-01

    Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fatal Case of Trichoderma harzianum Infection in a Renal Transplant Recipient

    OpenAIRE

    1999-01-01

    We describe the second known case of human infection by Trichoderma harzianum. A disseminated fungal infection was detected in the postmortem examination of a renal transplant recipient and confirmed in culture. The only other reported infection by this fungus caused peritonitis in a diabetic patient. The in vitro antifungal susceptibilities of the clinical strain and three other strains of Trichoderma species to six antifungal drugs are provided. This case illustrates the widening spectrum o...

  17. Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants.

    Science.gov (United States)

    Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Dairou, Julien

    2013-08-01

    Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil.

  18. Validation of a novel sequential cultivation method for the production of enzymatic cocktails from Trichoderma strains.

    Science.gov (United States)

    Florencio, C; Cunha, F M; Badino, A C; Farinas, C S

    2015-02-01

    The development of new cost-effective bioprocesses for the production of cellulolytic enzymes is needed in order to ensure that the conversion of biomass becomes economically viable. The aim of this study was to determine whether a novel sequential solid-state and submerged fermentation method (SF) could be validated for different strains of the Trichoderma genus. Cultivation of the Trichoderma reesei Rut-C30 reference strain under SF using sugarcane bagasse as substrate was shown to be favorable for endoglucanase (EGase) production, resulting in up to 4.2-fold improvement compared with conventional submerged fermentation. Characterization of the enzymes in terms of the optimum pH and temperature for EGase activity and comparison of the hydrolysis profiles obtained using a synthetic substrate did not reveal any qualitative differences among the different cultivation conditions investigated. However, the thermostability of the EGase was influenced by the type of carbon source and cultivation system. All three strains of Trichoderma tested (T. reesei Rut-C30, Trichoderma harzianum, and Trichoderma sp INPA 666) achieved higher enzymatic productivity when cultivated under SF, hence validating the proposed SF method for use with different Trichoderma strains. The results suggest that this bioprocess configuration is a very promising development for the cellulosic biofuels industry.

  19. Screening of different Trichoderma species against agriculturally important foliar plant pathogens.

    Science.gov (United States)

    Prabhakaran, Narayanasamy; Prameeladevi, Thokala; Sathiyabama, Muthukrishnan; Kamil, Deeba

    2015-01-01

    Different isolates of Trichoderma were isolated from soil samples which were collected from different part of India. These isolates were grouped into four Trichoderma species viz., Trichoderma asperellum (Ta), T. harzianum (Th), T. pseudokoningii (Tp) and T. longibrachiatum (Tl) based on their morphological characters. Identification of the above isolates was also confirmed through ITS region analysis. These Trichoderma isolates were tested for in vitro biological control of Alternaria solani, Bipolaris oryzae, Pyricularia oryzae and Sclerotinia scierotiorum which cause serious diseases like early blight (target spot) of tomato and potato, brown leaf spot disease in rice, rice blast disease, and white mold disease in different plants. Under in vitro conditions, all the four species of Trichoderma (10 isolates) proved 100% potential inhibition against rice blast pathogen Pyracularia oryzae. T. harzianum (Th-01) and T. asperellum (Ta-10) were effective with 86.6% and 97.7%, growth inhibition of B. oryzae, respectively. Among others, T. pseudokoningii (Tp-08) and T. Iongibrachiatum (Tl-09) species were particularly efficient in inhibiting growth of S. sclerotiorum by 97.8% and 93.3%. T. Iongibrachiatum (TI-06 and TI-07) inhibited maximum mycelial growth of A. solani by 87.6% and 84.75. However, all the T. harzianum isolates showed significantly higher inhibition against S. sclerotiorum (CD value 9.430), causing white mold disease. This study led to the selection of potential Trichoderma isolates against rice blast, early blight, brown leaf spot in rice and white mold disease in different crops.

  20. Novel traits of Trichoderma predicted through the analysis of its secretome.

    Science.gov (United States)

    Druzhinina, Irina S; Shelest, Ekaterina; Kubicek, Christian P

    2012-12-01

    Mycotrophic species of Trichoderma are among the most common fungi isolated from free soil, dead wood and as parasites on sporocarps of other fungi (mycoparasites). In addition, they undergo various other biotrophic associations ranging from rhizosphere colonization and endophytism up to facultative pathogenesis on such animals as roundworms and humans. Together with occurrence on a variety of less common substrata (marine invertebrates, artificial materials, indoor habitats), these lifestyles illustrate a wealthy opportunistic potential of the fungus. One tropical species, Trichoderma reesei, has become a prominent producer of cellulases and hemicellulases, whereas several other species are applied in agriculture for the biological control of phytopathogenic fungi. The sequencing of the complete genomes of the three species (T. reesei, T. virens, and T. atroviride) has led to a deepened understanding of Trichoderma lifestyle and its molecular physiology. In this review, we present the in silico predicted secretome of Trichoderma, and - in addition to the unique features of carbohydrate active enzymes - demonstrate the importance of such protein families as proteases, oxidative enzymes, and small cysteine-rich proteins, all of that received little attention in Trichoderma genetics so far. We also discuss the link between Trichoderma secretome and biology of the fungus.

  1. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan.

    Science.gov (United States)

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz Ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.

  2. Biological control of rice brown spot with native isolates of three Trichoderma species.

    Science.gov (United States)

    Khalili, Elham; Sadravi, Mehdi; Naeimi, Shahram; Khosravi, Vahid

    2012-01-01

    Brown spot caused by Bipolaris oryzae is an important rice disease in Southern coast of Caspian Sea, the major rice growing region in Iran. A total of 45 Trichoderma isolates were obtained from rice paddy fields in Golestan and Mazandaran provinces which belonged to Trichoderma harzianum, T. virens and T. atroviride species. Initially, they were screened against B. oryzae by antagonism tests including dual culture, volatile and nonvolatile metabolites and hyperparasitism. Results showed that Trichoderma isolates can significantly inhibit mycelium growth of pathogen in vitro by producing volatile and nonvolatile metabolites Light microscopic observations showed no evidence of mycoparasitic behaviour of the tested isolates of Trichoderma spp. such as coiling around the B. oryzae. According to in vitro experiments, Trichoderma isolates were selected in order to evaluate their efficacy in controlling brown spot in glasshouse using seed treatment and foliar spray methods. Concerning the glasshouse tests, two strains of T. harzianum significantly controlled the disease and one strain of T. atroviride increased the seedling growth. It is the first time that the biological control of rice brown spot and increase of seedling growth with Trichoderma species have been studied in Iran.

  3. Tolerance to chitosan by Trichoderma species is associated with low membrane fluidity.

    Science.gov (United States)

    Zavala-González, Ernesto A; Lopez-Moya, Federico; Aranda-Martinez, Almudena; Cruz-Valerio, Mayra; Lopez-Llorca, Luis Vicente; Ramírez-Lepe, Mario

    2016-07-01

    The effect of chitosan on growth of Trichoderma spp., a cosmopolitan genus widely exploited for their biocontrol properties was evaluated. Based on genotypic (ITS of 18S rDNA) characters, four isolates of Trichoderma were identified as T. pseudokoningii FLM16, T. citrinoviride FLM17, T. harzianum EZG47, and T. koningiopsis VSL185. Chitosan reduces radial growth of Trichoderma isolates in concentration-wise manner. T. koningiopsis VSL185 was the most chitosan tolerant isolate in all culture media amended with chitosan (0.5-2.0 mg ml(-1) ). Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC) were determined showing that T. koningiopsis VSL185 displays higher chitosan tolerance with MIC value >2000 μg ml(-1) while for other Trichoderma isolates MIC values were around 10 μg ml(-1) . Finally, free fatty acid composition reveals that T. koningiopsis VSL185, chitosan tolerant isolate, displays lower linolenic acid (C18:3) content than chitosan sensitive Trichoderma isolates. Our findings suggest that low membrane fluidity is associated with chitosan tolerance in Trichoderma spp. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Novel traits of Trichoderma predicted through the analysis of its secretome

    Science.gov (United States)

    Druzhinina, Irina S; Shelest, Ekaterina; Kubicek, Christian P

    2012-01-01

    Abstract Mycotrophic species of Trichoderma are among the most common fungi isolated from free soil, dead wood and as parasites on sporocarps of other fungi (mycoparasites). In addition, they undergo various other biotrophic associations ranging from rhizosphere colonization and endophytism up to facultative pathogenesis on such animals as roundworms and humans. Together with occurrence on a variety of less common substrata (marine invertebrates, artificial materials, indoor habitats), these lifestyles illustrate a wealthy opportunistic potential of the fungus. One tropical species, Trichoderma reesei, has become a prominent producer of cellulases and hemicellulases, whereas several other species are applied in agriculture for the biological control of phytopathogenic fungi. The sequencing of the complete genomes of the three species (T. reesei, T. virens, and T. atroviride) has led to a deepened understanding of Trichoderma lifestyle and its molecular physiology. In this review, we present the in silico predicted secretome of Trichoderma, and – in addition to the unique features of carbohydrate active enzymes – demonstrate the importance of such protein families as proteases, oxidative enzymes, and small cysteine-rich proteins, all of that received little attention in Trichoderma genetics so far. We also discuss the link between Trichoderma secretome and biology of the fungus. PMID:22924408

  5. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan

    Science.gov (United States)

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463

  6. Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism

    Directory of Open Access Journals (Sweden)

    Lin Yao

    2016-06-01

    Full Text Available Abstract Metabolites of mycoparasitic fungal species such as Trichoderma harzianum 88 have important biological roles. In this study, two new ketoacyl synthase (KS fragments were isolated from cultured Trichoderma harzianum 88 mycelia using degenerate primers and analysed using a phylogenetic tree. The gene fragments were determined to be present as single copies in Trichoderma harzianum 88 through southern blot analysis using digoxigenin-labelled KS gene fragments as probes. The complete sequence analysis in formation of pksT-1 (5669 bp and pksT-2 (7901 bp suggests that pksT-1 exhibited features of a non-reducing type I fungal PKS, whereas pksT-2 exhibited features of a highly reducing type I fungal PKS. Reverse transcription polymerase chain reaction indicated that the isolated genes are differentially regulated in Trichoderma harzianum 88 during challenge with three fungal plant pathogens, which suggests that they participate in the response of Trichoderma harzianum 88 to fungal plant pathogens. Furthermore, disruption of the pksT-2 encoding ketosynthase–acyltransferase domains through Agrobacterium -mediated gene transformation indicated that pksT-2 is a key factor for conidial pigmentation in Trichoderma harzianum 88.

  7. KADAR GLUKOSA DARI HIDROLISIS SELULOSA PADA ECENG GONDOK MENGGUNAKAN Trichoderma viride DENGAN VARIASI TEMPERATUR DAN WAKTU FERMENTASI

    Directory of Open Access Journals (Sweden)

    Purbowatiningrum R Sarjono

    2012-11-01

    Full Text Available Telah kita ketahui bahwa eceng gondok merupakan salah satu sumber selulosa yang melimpah di alam dan dapat dimanfaatkan sebagai sumber karbon bagi jamur Trichoderma viride. Eceng gondok memiliki bobot kering selulosa 21,5%, hemiselulosa 33,9% dan lignin 7,01%. Trichoderma viride adalah jamur saprofit yang berpotensi memproduksi selulase yang mampu mendegradasi ikatan β-1,4-glikosida pada rantai selulosa untuk menghasilkan glukosa. Glukosa dapat dimanfaatkan dalam produksi sirup gula, asam organik dan bioetanol. Penelitian ini bertujuan untuk mendapatkan Trichoderma viride yang mampu tumbuh pada media pertumbuhan hasil modifikasi eceng gondok serta memperoleh temperatur optimum aktivitas Trichoderma viride dalam menghidrolisis eceng gondok dan waktu fermentasi terbaik dalam menghasilkan glukosa. Proses pertama adalah persiapan sampel enceng gondok meliputi delignifikasi, kurva pertumbuhan Trichoderma viride dibuat dalam media modifikasi eceng gondok untuk mengetahui waktu optimum pertumbuhan Trichoderma viride. Penentuan temperatur optimum dan waktu fermentasi terbaik dari aktivitas Trichoderma viride didasarkan pada glukosa yang dihasilkan dari hidrolisis selulosa pada eceng gondok menggunakan metode Nelson Somogyi. Berdasarkan penelitian diperoleh hasil bahwa Trichoderma viride mampu tumbuh pada media modifikasi eceng gondok. Temperatur optimum aktivitas Trichoderma viride dalam menghidrolisis selulosa pada eceng gondok adalah 35oC dan waktu fermentasi terbaik dihasilkannya glukosa pada jam ke-96 yaitu sebesar 1,3864 mg/L.

  8. Promoção do crescimento do feijoeiro e controle da antracnose por Trichoderma spp Plant growth promotion of common bean and anthracnose control by Trichoderma spp

    Directory of Open Access Journals (Sweden)

    Erica Aparecida de Souza Pedro

    2012-11-01

    Full Text Available O objetivo deste trabalho foi avaliar a capacidade de Trichoderma spp. em promover o crescimento de plantas de feijão e reduzir a severidade da antracnose do feijoeiro (Colletotrichum lindemuthianum, bem como identificar os isolados mais eficientes. Sessenta isolados de Trichoderma spp. foram avaliados quanto à capacidade de promoção do crescimento nas plantas. Os sete isolados que mais se destacaram foram adicionados ao substrato de cultivo e avaliados quanto à redução na severidade da antracnose em plantas de feijão tratadas com conídios de C. lindemuthianum. Os mais eficientes no controle da doença foram identificados por sequenciamento de DNA. O isolado IB 28/07 foi avaliado nas concentrações 0,5, 1, 1,5 e 2% (peso:volume, que reduziram a severidade da doença em 41,51, 55,15, 81,82 e 96,06%, respectivamente. Os isolados mais eficientes de Trichoderma spp. podem proporcionar aumentos superiores a 30% na produção de matéria seca da parte aérea das plantas e reduzir a severidade da doença entre 63 e 98%. Esses isolados foram identificados como pertencentes às espécies Trichoderma harzianum, T. strigosum e T. theobromicola.The objective of this work was to evaluate the ability of Trichoderma spp. to promote growth of common bean plants and to reduce severity of anthracnose (Colletotrichum lindemuthianum, as well as to identify the best performing isolates. Sixty Trichoderma spp. isolates were evaluated as to their capacity to promote growth in common bean. The seven isolates that stood out were added to the culture substrate and assessed for reduction in severity of anthracnose in bean plants treated with C. lindemuthianum conidia. The most efficient isolates in controlling the disease were identified by DNA sequencing. The IB 28/07 isolate was evaluated in the concentrations 0.5, 1, 1.5, and 2% (weight:volume, which reduced disease severity in 41.51, 55.15, 81.82, and 96.06%, respectively. The most efficient Trichoderma spp

  9. Biodegradation of wastepaper by cellulase from Trichoderma viride.

    Science.gov (United States)

    van Wyk, J P H; Mohulatsi, M

    2003-01-01

    Environmental issues such as the depletion of non-renewable energy resources and pollution are topical. The extent of solid waste production is of global concern and development of its bioenergy potential can combine issues such as pollution control and bioproduct development, simultaneously. Various wastepaper materials, a major component of solid waste, were treated with the cellulase enzyme from Trichoderma viride, thus bioconverting their cellulose component into fermentable sugars. All wastepaper materials exhibited different susceptibilities towards the cellulase as well as the production of non-similar sugar releasing patterns when increasing amounts of paper were treated with a fixed enzyme concentration. The hydrolysis of wastepaper with changing enzyme concentrations and incubation periods also resulted in dissimilar sugar-producing tendencies. A general decline in hydrolytic efficiency was observed when increasing sugar concentrations were produced during biodegradation of all wastepaper materials.

  10. The Post-genomic Era of Trichoderma reesei: What's Next?

    Science.gov (United States)

    Gupta, Vijai Kumar; Steindorff, Andrei Stecca; de Paula, Renato Graciano; Silva-Rocha, Rafael; Mach-Aigner, Astrid R; Mach, Robert L; Silva, Roberto N

    2016-12-01

    The ascomycete Trichoderma reesei is one of the most well studied cellulolytic microorganisms. This fungus is widely used in the biotechnology industry, mainly in the production of biofuels. Due to its importance, its genome was sequenced in 2008, opening new avenues to study this microorganism. In this 'post-genomic' era, a transcriptomic and proteomic era has emerged. Here, we present an overview of new findings in the gene expression regulation network of T. reesei. We also discuss new rational strategies to obtain mutants that produce hydrolytic enzymes with a higher yield, using metabolic engineering. Finally, we present how synthetic biology strategies can be used to create engineered promoters to efficiently synthesize enzymes for biomass degradation to produce bioethanol.

  11. Protoplast fusion enhances lignocellulolytic enzyme activities in Trichoderma reesei.

    Science.gov (United States)

    Cui, Yu-xiao; Liu, Jia-jing; Liu, Yan; Cheng, Qi-yue; Yu, Qun; Chen, Xin; Ren, Xiao-dong

    2014-12-01

    Protoplast fusion was used to obtain a higher production of lignocellulolytic enzymes with protoplast fusion in Trichoderma reesei. The fusant strain T. reesei JL6 was obtained from protoplast fusion from T. reesei strains QM9414, MCG77, and Rut C-30. Filter paper activity of T. reesei JL6 increased by 18% compared with that of Rut C-30. β-Glucosidase, hemicellulase and pectinase activities of T. reesei JL6 were also higher. The former activity was 0.39 Uml(-1), while those of QM9414, MCG77, and Rut C-30 were 0.13, 0.11, and 0.16 Uml(-1), respectively. Pectinase and hemicellulase activities of JL6 were 5.4 and 15.6 Uml(-1), respectively, which were slightly higher than those of the parents. The effects of corn stover and wheat bran carbon sources on the cellulase production and growth curve of T. reesei JL6 were also investigated.

  12. Effect of Paecilomyces lilacinus, Trichoderma harzianum and Trichoderma virens fungal extracts on the hatchability of Ancylostoma eggs.

    Science.gov (United States)

    Hofstätter, Bianca Delgado Menezes; Oliveira da Silva Fonseca, Anelise; de Souza Maia Filho, Fernando; de Souza Silveira, Julia; Persici, Beatriz Maroneze; Pötter, Luciana; Silveira, Andressa; Antoniolli, Zaida Inês; Brayer Pereira, Daniela Isabel

    Ancylostoma species have demanded attention due to their zoonotic potential. The use of anthelmintics is the usual method to prevent environmental contamination by Ancylostoma eggs and larvae. Nematophagous fungi have been widely used in their biological control due to the fungus ability to capture and digest free nematode forms. The aim of this study was to evaluate the effect of four different fungal extracts of Paecilomyces lilacinus (n=2), Trichoderma harzianum (n=1) and Trichoderma virens (n=1) isolates on the hatchability of Ancylostoma eggs. Fungal extracts consisted of fungal broth culture supernatant without filtration (crude extract) and filtered broth (filtered extract), macerated mycelium (crude macerate), and macerated mycelium submitted to filtration (filtered macerate). The Ancylostoma eggs were obtained from the feces of naturally infected dogs. In vitro assays were performed in five replicates and consisted of four treatments and one control group. The activity of the fungal extracts of each evaluated fungus differed (p<0.05) from those of the control group, showing significant ovicidal activity. The hatching of the eggs suffered reduction percentages of 68.43% and 47.05% with P. lilacinus, and 56.43% with T. harzianum, when crude macerate extract was used. The reduction with the macerate extract of T. virens was slightly lower (52.25%) than that for the filtered macerate (53.64%). The results showed that all extracts were effective in reducing the hatchability of Ancylostoma eggs. The ovicidal effect observed is likely to have been caused by the action of hydrolytic enzymes secreted by the fungi. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2...

  14. Cellulolytic and xylanolytic potential of high β-glucosidase-producing Trichoderma from decaying biomass.

    Science.gov (United States)

    Okeke, Benedict C

    2014-10-01

    Availability, cost, and efficiency of microbial enzymes for lignocellulose bioconversion are central to sustainable biomass ethanol technology. Fungi enriched from decaying biomass and surface soil mixture displayed an array of strong cellulolytic and xylanolytic activities. Strains SG2 and SG4 produced a promising array of cellulolytic and xylanolytic enzymes including β-glucosidase, usually low in cultures of Trichoderma species. Nucleotide sequence analysis of internal transcribed spacer 2 (ITS2) region of rRNA gene revealed that strains SG2 and SG4 are closely related to Trichoderma inhamatum, Trichoderma piluliferum, and Trichoderma aureoviride. Trichoderma sp. SG2 crude culture supernatant correspondingly displayed as much as 9.84 ± 1.12, 48.02 ± 2.53, and 30.10 ± 1.11 units mL(-1) of cellulase, xylanase, and β-glucosidase in 30 min assay. Ten times dilution of culture supernatant of strain SG2 revealed that total activities were about 5.34, 8.45, and 2.05 orders of magnitude higher than observed in crude culture filtrate for cellulase, xylanase, and β-glucosidase, respectively, indicating that more enzymes are present to contact with substrates in biomass saccharification. In parallel experiments, Trichoderma species SG2 and SG4 produced more β-glucosidase than the industrial strain Trichoderma reesei RUT-C30. Results indicate that strains SG2 and SG4 have potential for low cost in-house production of primary lignocellulose-hydrolyzing enzymes for production of biomass saccharides and biofuel in the field.

  15. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species.

    Science.gov (United States)

    Jiang, Yuan; Wang, Jin-Liang; Chen, Jing; Mao, Li-Juan; Feng, Xiao-Xiao; Zhang, Chu-Long; Lin, Fu-Cheng

    2016-01-01

    We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon-Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the

  16. Potency of six isolates of biocontrol agents endophytic Trichoderma against fusarium wilt on banana

    Directory of Open Access Journals (Sweden)

    J Taribuka

    2017-01-01

    Full Text Available Fusarium wilt caused by F. oxysporum f.sp. cubense is one of very damaging banana plant diseases which can cause plant death. Disease control using intensive chemical fungicides will have negative impacts on the environment and humans. Endophytic Trichoderma is one of the biological control agents which can reduce the amount of inoculum of pathogens, so it can reduce disease intensity. The objectives of this study was to assess the ability of endophytic Trichoderma in inducing plant resistance against fusarium wilt. Endophytic Trichoderma was obtained from healthy roots of banana from three regencies in Yogyakarta, namely Trichoderma harzianum.swn-1, T. harzianum.swn-2, T. harzianum.psr-1, T. asperrellum, T. gamsii, and T. koningiopsis. Research on induced resintance was conducted in the greenhouse with polybag using Completely Randomized Design with 14 treatments and 3 replications. The results showed that the ability of Trichoderma gamsii antagonism against F. oxysporum f.sp. cubense was 60.61%. T. asperellum and T. harzianum.swn-2 could suppress this disease resulted in disease intensity of 8.33% which categorize as resistant. Trichoderma harzianum.psr-1 was significantly different in stimulating plant vegetative growth. Induced resistance by using endophytic Trichoderma spp. against  F. oxysporum f.sp. cubense showed increase in total phenolic compounds on the third and fourth weeks as well as peroxidase activity on the third, fourth and fifth weeks.  Observation of lignification on  the fifth week  showed that lignification occurred in root xylem

  17. CHARACTERIZATION OF SOIL TRICHODERMA ISOLATES FOR POTENTIAL BIOCONTROL OF PLANT PATHOGENS

    Directory of Open Access Journals (Sweden)

    S. Matei

    2011-12-01

    Full Text Available Various fungal strains belonging to genus Trichoderma act as biological control agents for soil born plant pathogens. Two new strains of Trichoderma harzianum (T.h. and Trichoderma viride (T.v. were isolated from forest soils in Ilfov county and their morphological aspects, enzymatic and antagonistic activity were examined. Current chemical fungicides had constantly, in time, less influence on pathogens due to their diversity, adaptability and increasing resistance.The paper present the morphological characterization of two strains of Trichoderma isolated from forest soils. Growth rate was higher in strain T.v.SP456 (0,675mm/h than in strain T.h.P8 (0,505mm/h when fungi were grown on Czapek culture medium.Morphological description is completed with photographs of colonies in Petri plates and microscopical aspects of fungal structures belonging to Trichoderma strains SP456 and P8.Comparative aspects concerning the level of main enzymes released by T.h. isolate P8 and T.v.SP456 in liquid culture media showed differences as a function of genetic structure of each fungal isolate. The optimum culture media for inducing peroxidase, polyphenol-oxidase, β-1,3-glucanase activity in T.v.SP456 isolate was Czapek and PDA for phenil-alanin-ammonium-oxidase and chitinase. T.v.SP456 was more efficient than T.h.P8 concerning enzymes activity.The interaction between Trichoderma fungal strains SP456 and P8 and strawberry plant pathogen strains, three belonging to Botrytis cinerea (S1, P1, P2 and one to Phytophtora spp. were examined, also. Both Trichoderma strains act as mycoparasites for plant pathogens. The inhibition percent of radial growth was higher for T.v.SP456 when compared with T.h.P8 for almost all pathogenic isolates.

  18. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species

    NARCIS (Netherlands)

    Lopez-Quintero, C.A.; Atanasova, L.; Franco-Molano, A.E.; Gams, W.; Komon-Zelazowska, M.; Theelen, B.; Muller, W.H.; Boekhout, T.; Druzhinina, I.

    2013-01-01

    The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (

  19. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species

    NARCIS (Netherlands)

    Lopez-Quintero, C.A.; Atanasova, L.; Franco-Molano, A.E.; Gams, W.; Komon-Zelazowska, M.; Theelen, B.; Muller, W.H.; Boekhout, T.; Druzhinina, I.

    2013-01-01

    The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2

  20. Trichoderma spp. decrease Fusarium root rot in common bean Trichoderma spp. reduzem a podridão-radicular de Fusário em feijoeiro comum

    Directory of Open Access Journals (Sweden)

    Hudson Teixeira

    2012-12-01

    Full Text Available The effectiveness of six Trichoderma-based commercial products (TCP in controlling Fusarium root rot (FRR in common bean was assessed under field conditions. Three TCP, used for seed treatment or applied in the furrow, increased seedling emergence as much as the fungicide fludioxonil. FRR incidence was not affected, but all TCP and fludioxonil reduced the disease severity, compared to control. Application of Trichoderma-based products was as effective as that of fludioxonil in FRR management.A eficácia de seis produtos comerciais à base de Trichoderma (PCT no controle da podridão-radicular-seca do feijoeiro (PRS foi avaliada em condições de campo. Três PCT, usados no tratamento de sementes ou aplicados no sulco de plantio, aumentaram a emergência das plântulas tanto quanto o fungicida fludioxonil. A incidência de PRS não foi afetada, mas todos os PCT e o fludioxonil reduziram a severidade em relação à testemunha. A aplicação de produtos à base de Trichoderma spp. foi tão eficaz quanto o fludioxonil no manejo da PRS.

  1. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A.; van Wees, Saskia C M

    2014-01-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the ph

  2. The influence of formulation on Trichoderma biological activity and frosty pod rot disease management in Theobroma cacao

    Science.gov (United States)

    Frosty pod rot (FPR), caused by Moniliophthora roreri is responsible for significant losses in Theobroma cacao. Due to the limited options for FPR management, biological control methods using Trichoderma are being studied. Combinations of three formulations and two Trichoderma isolates were studied ...

  3. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A.; van Wees, Saskia C M

    2014-01-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the

  4. Using of green fluorescent reporter gene (GFP) to monitor the fate of Fusarium moniliforme mycoparasitized by Trichoderma viride

    Institute of Scientific and Technical Information of China (English)

    ZHU Ting-heng; WANG Wei-xia; WANG Chang-chun; YANG Rui-qin; CAI Xin-zhong

    2004-01-01

    @@ Fusarium moniliforme Sheld. is a rice pathogenic fungus and causes the disease called Bakanae,which has increasingly damaged rice production in the recent years. Trichoderma spp. has been one of the most widely used biological control agent of plant disease. By geneticaly labelling F. moniliforme with the GFP reporter gene, we have studied the antagonistic action of Trichoderma viride against this pathogenic fungus.

  5. Identification and characterization of Trichoderma species aggressive to Pleurotus in Italy

    Institute of Scientific and Technical Information of China (English)

    Woo S L; Di Benedetto P; Senatore M; Abadi K; Gigante S; Soriente I; Ferraioli S; Scala F; Lorito M

    2004-01-01

    @@ In the late 1980's the development of a severe epidemic of green mold caused by Trichoderma spp.was noted in the commercial production of Agaricus bisporus (champignon) in the United Kingdom,North America, Spain and Holland, which caused extensive economic losses. The parasitic fungi isolated from the edible mushroom belonged to four biotypes, Thl, Th2, Th3 and Th4 of T.harzianum. However, among these biotypes, only Th2 (since classified as T. aggressivum f.europaeum) and Th4 (T. aggressivum f. aggressivum) were identified as the fungi causing problems in Agaricus production. In general, mushroom compost hosts both aggressive and innocuous isolates of Trichoderma, which are not morphologically distinguishable. About four years ago, a problem with green mold became apparent in the production of Pleurotus ostreatus in Northern Italy,which eventually developed to a crisis situation in the South two years later and threatened to seriously compromise the Pleurotus market. This study was initiated to: isolate and identify the aggressive fungi, then morphologically, physiologically and genetically characterize the isolates, determine the source and phases of infection, and study methods of control. Samples were obtained from different phases of compost preparation at the locality of a major producer and supplier of compost to the mushroom industry in Southern Italy, and microbial counts were conducted. Although the presence of Trichoderma was detected in the initial stages of composting, this value was reduced to zero from the phase of pasteurization to seeding with Pleurotus. Trichoderma infestations were noted in the packaged Pleurotus bales at various times during the incubation phase (7-15 days after seeding) and after shipping to the mushroom greenhouses, where the pathogen infestations greatly reduced the quality and quantity of the mushroom yield, as well as the number of potential harvest cycles.Preliminary results from the morphological and genetic

  6. Biocontrol with Trichoderma species for the management of postharvest crown rot of banana

    Directory of Open Access Journals (Sweden)

    G. Sangeetha

    2009-09-01

    Full Text Available Lasiodiplodia theobromae and Colletotrichum musae cause the postharvest crown rot disease complex of banana. In vitro experiments evaluated the effect of twelve isolates of Trichoderma spp. from the soil of organic banana orchards (‘native isolates’ and eight isolates of Trichoderma spp. from culture collections (‘introduced isolates’ on the two pathogens. The native and introduced Trichoderma spp. had varied antagonistic effects against the two pathogens. Eight Trichoderma spp. isolates effective in the in vitro assays were evaluated singly on fruits both at room temperature and in cold storage. Single antagonists did not satisfactorily control crown rot on the fruits as compared with the fungicide carbendazim. However, two isolates of T. viride, one of T. harzianum and one of T. koningii performed well when applied singly, and these were selected for evaluation in isolate mixtures. There was very little antagonism between these isolates. Of 11 two-way, three-way and four-way mixtures of these isolates, the four-way and a three-way mixtures reduced crown rot incidence, both at room temperature and in cold storage, giving better control than carbendazim. The study identified consortia of compatible Trichoderma antagonists with superior biocontrol potential for the management of the postharvest crown rot complex of banana.

  7. Comparative analysis of microsatellites in five different antagonistic Trichoderma species for diversity assessment.

    Science.gov (United States)

    Rai, Shalini; Kashyap, Prem Lal; Kumar, Sudheer; Srivastava, Alok Kumar; Ramteke, Pramod W

    2016-01-01

    Microsatellites provide an ideal molecular markers system to screen, characterize and evaluate genetic diversity of several fungal species. Currently, there is very limited information on the genetic diversity of antagonistic Trichoderma species as determined using a range of molecular markers. In this study, expressed and whole genome sequences available in public database were used to investigate the occurrence, relative abundance and relative density of SSRs in five different antagonistic Trichoderma species: Trichoderma atroviride, T. harzianum, T. reesei, T. virens and T. asperellum. Fifteen SSRs loci were used to evaluate genetic diversity of twenty isolates of Trichoderma spp. from different geographical regions of India. Results indicated that relative abundance and relative density of SSRs were higher in T. asperellum followed by T. reesei and T. atroviride. Tri-nucleotide repeats (80.2%) were invariably the most abundant in all species. The abundance and relative density of SSRs were not influenced by the genome sizes and GC content. Out of eighteen primer sets, only 15 primer pairs showed successful amplification in all the test species. A total of 24 alleles were detected and five loci were highly informative with polymorphism information content values greater than 0.40, these markers provide useful information on genetic diversity and population genetic structure, which, in turn, can exploit for establishing conservation strategy for antagonistic Trichoderma isolates.

  8. Studies on strains of Trichoderma spp. from high altitude of Garhwal Himalayan region.

    Science.gov (United States)

    Joshi, B B; Vishwakarma, M P; Bahukhandi, D; Bhatt, R P

    2012-09-01

    Two species of Trichoderma i.e. T. harzianum and T. viride have been isolated from the soil samples collected from the higher altitude (2000-3500 m) of Garhwal Himalayan region in India. The two species were grown in Petri plates on TSM agar media and it was also observed that the optimum temperature and pH for Trichoderma growth was 30 degrees C and 5.5 respectively. When incubated on TSM agar medium at 4 degrees C, the fungus grew normally with heavy induced sporulation within three weeks of incubation. Induction of sporulation on exposure to low temperature appeared to be strategies for survival of these species in extreme cold environment temperature 4 to 5 degrees C. Antifungal activities of the two species of Trichoderma were demonstrated with phytopathogenic fungi in dual cultures. The antifungal metabolites produced by Trichoderma spp., diffusible as well as volatile, caused abnormalities in pathogenic fungi. Plant growth promotion of Trichoderma spp. was also shown through plant analysis in greenhouse.

  9. Arabidopsis thaliana polyamine content is modified by the interaction with different Trichoderma species.

    Science.gov (United States)

    Salazar-Badillo, Fatima Berenice; Sánchez-Rangel, Diana; Becerra-Flora, Alicia; López-Gómez, Miguel; Nieto-Jacobo, Fernanda; Mendoza-Mendoza, Artemio; Jiménez-Bremont, Juan Francisco

    2015-10-01

    Plants are associated with a wide range of microorganisms throughout their life cycle, and some interactions result on plant benefits. Trichoderma species are plant beneficial fungi that enhance plant growth and development, contribute to plant nutrition and induce defense responses. Nevertheless, the molecules involved in these beneficial effects still need to be identify. Polyamines are ubiquitous molecules implicated in plant growth and development, and in the establishment of plant microbe interactions. In this study, we assessed the polyamine profile in Arabidopsis plants during the interaction with Trichoderma virens and Trichoderma atroviride, using a system that allows direct plant-fungal contact or avoids their physical interaction (split system). The plantlets that grew in the split system exhibited higher biomass than the ones in direct contact with Trichoderma species. After 3 days of interaction, a significant decrease in Arabidopsis polyamine levels was observed in both systems (direct contact and split). After 5 days of interaction polyamine levels were increased. The highest levels were observed with T. atroviride (split system), and with T. virens (direct contact). The expression levels of Arabidopsis ADC1 and ADC2 genes during the interaction with the fungi were also assessed. We observed a time dependent regulation of ADC1 and ADC2 genes, which correlates with polyamine levels. Our data show an evident change in polyamine profile during Arabidopsis - Trichoderma interaction, accompanied by evident alterations in plant root architecture. Polyamines could be involved in the changes undergone by plant during the interaction with this beneficial fungus.

  10. Two new hyaline-ascospored species of Trichoderma and their phylogenetic positions.

    Science.gov (United States)

    Qin, W T; Zhuang, W Y

    2016-01-01

    Collections of hypocrealean fungi found on decaying wood in subtropical regions of China were examined. Two new species, Trichoderma confluens and T. hubeiense, were discovered and are described. Trichoderma confluens is characterized by its widely effuse to rarely pulvinate, yellow stromata with densely disposed yellowish brown ostioles, simple acremonium- to verticillium-like conidiophores, hyaline conidia and multiform chlamydospores. Trichoderma hubeiense has pulvinate, grayish yellow stromata with brownish ostioles, trichoderma- to verticillium-like conidiophores and hyaline conidia. The phylogenetic positions of the two fungi were investigated based on sequence analyses of RNA polymerase II subunit b and translation elongation factor 1-α genes. The results indicate that T. confluens belongs to the Hypocreanum clade and is associated with but clearly separated from T. applanatum and T. decipiens. Trichoderma hubeiense belongs to the Polysporum clade and related to T. bavaricum but obviously differs from other members of the clade in sequence data. Morphological distinctions between the new species and their close relatives are noted and discussed.

  11. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus.

    Science.gov (United States)

    Strakowska, Judyta; Błaszczyk, Lidia; Chełkowski, Jerzy

    2014-07-01

    The degradation of native cellulose to glucose monomers is a complex process, which requires the synergistic action of the extracellular enzymes produced by cellulolytic microorganisms. Among fungi, the enzymatic systems that can degrade native cellulose have been extensively studied for species belonging to the genera of Trichoderma. The majority of the cellulolytic enzymes described so far have been examples of Trichoderma reesei, extremely specialized in the efficient degradation of plant cell wall cellulose. Other Trichoderma species, such as T. harzianum, T. koningii, T. longibrachiatum, and T. viride, known for their capacity to produce cellulolytic enzymes, have been isolated from various ecological niches, where they have proved successful in various heterotrophic interactions. As saprotrophs, these species are considered to make a contribution to the degradation of lignocellulosic plant material. Their cellulolytic potential is also used in interactions with plants, especially in plant root colonization. However, the role of cellulolytic enzymes in species forming endophytic associations with plants or in those existing in the substratum for mushroom cultivation remains unknown. The present review discusses the current state of knowledge about cellulolytic enzymes production by Trichoderma species and the encoding genes, as well as the involvement of these proteins in the lifestyle of Trichoderma.

  12. Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots.

    Science.gov (United States)

    Alonso-Ramírez, Ana; Poveda, Jorge; Martín, Ignacio; Hermosa, Rosa; Monte, Enrique; Nicolás, Carlos

    2014-10-01

    Trichoderma is a soil-borne fungal genus that includes species with a significant impact on agriculture and industrial processes. Some Trichoderma strains exert beneficial effects in plants through root colonization, although little is known about how this interaction takes place. To better understand this process, the root colonization of wild-type Arabidopsis and the salicylic acid (SA)-impaired mutant sid2 by a green fluorescent protein (GFP)-marked Trichoderma harzianum strain was followed under confocal microscopy. Trichoderma harzianum GFP22 was able to penetrate the vascular tissue of the sid2 mutant because of the absence of callose deposition in the cell wall of root cells. In addition, a higher colonization of sid2 roots by GFP22 compared with that in Arabidopsis wild-type roots was detected by real-time polymerase chain reaction. These results, together with differences in the expression levels of plant defence genes in the roots of both interactions, support a key role for SA in Trichoderma early root colonization stages. We observed that, without the support of SA, plants were unable to prevent the arrival of the fungus in the vascular system and its spread into aerial parts, leading to later collapse.

  13. Requalification of a Brazilian Trichoderma Collection and Screening of Its Capability to Decolourise Real Textile Effluent.

    Science.gov (United States)

    Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N; Magalhães, Oliane; Paiva, Laura M; Moreira, Keila A; Lima, Nelson; Souza-Motta, Cristina M

    2017-04-01

    Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma, have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view.

  14. Diversity and effect of Trichoderma spp. associated with green mold disease on Lentinula edodes in China.

    Science.gov (United States)

    Wang, Gangzheng; Cao, Xiantao; Ma, Xiaolong; Guo, Mengpei; Liu, Changhao; Yan, Lianlian; Bian, Yinbing

    2016-08-01

    Lentinula edodes, one of the most important edible mushrooms in China, is affected heavily by the infection of green mold that overgrows mushroom mycelia. We collected the diseased samples from main L. edodes cultivation regions in China to characterize the pathogen and to study the effect of Trichoderma spp. on L. edodes species. We identified six Trichoderma species, that is, T. harzianum, T. atroviride, T. viride, T. pleuroticola, T. longibrachiatum, and T. oblongisporum based on the internal transcribed spacer or tef1-α sequences and morphology characteristics. In confrontation cultures on Petri plates or in tubes, and in L. edodes cultures in a medium containing Trichoderma metabolites, L. edodes mycelia were not only distorted and swollen, but also inhibited by Trichoderma isolates. It is not possible that adjusting pH value or temperature is used for controlling L. edodes green disease, because the growth of most of Trichoderma isolates and L. edodes shared similar pH and temperature conditions. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  15. Trichoderma harzianum T-78 supplementation of compost stimulates the antioxidant defence system in melon plants.

    Science.gov (United States)

    Bernal-Vicente, Agustina; Pascual, José A; Tittarelli, Fabio; Hernández, José A; Diaz-Vivancos, Pedro

    2015-08-30

    Compost is emerging as an alternative plant growing medium in efforts to achieve more sustainable agriculture. The addition of specific microorganisms such as Trichoderma harzianum to plant growth substrates increases yields and reduces plant diseases, but the mechanisms of such biostimulants and the biocontrol effects are not yet fully understood. In this work we investigated how the addition of citrus and vineyard composts, either alone or in combination with T. harzianum T-78, affects the antioxidant defence system in melon plants under nursery conditions. Compost application and/or Trichoderma inoculation modulated the antioxidant defence system in melon plants. The combination of citrus compost and Trichoderma showed a biostimulant effect that correlated with an increase in ascorbate recycling enzymes (monodehydroascorbate reductase, dehydroascorbate reductase) and peroxidase. Moreover, the inoculation of both composts with Trichoderma increased the activity of antioxidant enzymes, especially those involved in ascorbate recycling. Based on the long-established relationship between ascorbic acid and plant defence responses as well as plant growth and development, it can be suggested that ascorbate recycling activities play a major role in the protection provided by Trichoderma and its biostimulant effect and that these outcomes are linked to increases in antioxidant enzymes. We can conclude that the combination of citrus compost and T. harzianum T-78 constitutes a viable, environmentally friendly strategy for improving melon plant production. © 2014 Society of Chemical Industry.

  16. Use of Trichoderma spp.for biological control of the livestock feed contaminant fungus Fusarium proliferatum

    Institute of Scientific and Technical Information of China (English)

    Ruocco M; Ferraioli S; Scala F; Lorito M; Pane F; Ritieni A; Lanzuise S; Ambrosino P; Marra R; Woo S L; Ciliento R; Soriente I

    2004-01-01

    @@ Fusarium spp. are pathogens of many important agricultural crops, and are often strong mycotoxin producers. Fusarium proliferatum, in particular, causes disease in cereals and secretes the toxin Beauvaricin that contaminates livestock feed and cereals, producing a variety of toxicity symptoms ranging from poor weight gain to mortality. Beauvaricin is a cyclodepsipeptide and acts as a potent mycotoxin known to have insecticidal properties. This compound is highly toxic to human cell lines,where it induces apoptosis and specifically inhibits cholesterol acetyltransferase. Nothing is known about the role of this mycotoxin during the interaction of F. proliferatum with other microorganisms, including the fungal antagonists Trichoderma spp. In vitro tests have demonstrated that the antagonistic and mycoparasitic activity of Trichoderma is not inhibited by the presence of Beauvaricin at concentrations up to 10 mg/kg in the substrate. In vivo biocontrol assays on barley and wheat with Trichoderma against F. proliferatum isolates, producing and non-producing Beauvaricin, confirmed the ability of the antagonist to control this pathogen in all cases. Also Trichoderma culture filtrates obtained in conditions that promote _Cell Wall _Degrading Enzyme (CWDE) secretion, were able to inhibit spore germination of different F. proliferatum isolates.These results suggest the possibility of using Trichoderma and/or its metabolites to control contaminants of livestock feed by mycotoxin-producing Fusarium.

  17. Use of Trichoderma spp.in remediation of polluted soils and waters

    Institute of Scientific and Technical Information of China (English)

    Gary E Harmant; James Lynch; Matteo Lorito

    2004-01-01

    @@ Trichoderma spp. probably have a role in remediation of polluted soils and waters. Highly rhizosphere competent strains persist on roots for an extended period of time (at least months) and continuously interact with the plants. They can increase general plant and root growth and increase uptake of a variety of materials. This makes the Trichoderma-plant interaction highly attractive for use in phytoextraction technologies. Moreover, Trichoderma spp. are resistant to a wide range of toxic compounds and can degrade some of these. One highly attractive target for remediation are soils that are polluted with cyanide and metallocyanides. Shrub willows (genus Salix) have been shown to take up and degrade these compounds by unknown mechanisms. Thus, they remove these compounds from soil but there are no cyanide residues in the plants. Similarly, Trichoderma spp. degrade free cyanide via production of extracellular enzymes and take up and then degrade metallocyanides such as Prussian blue. The willow-Trichoderma system therefore provides a plant-microbe system for degradation of these toxic compounds. The fungi also can be used directly in remediation strategies; for example,they degrade polyphenols such as those found in large quantities in waste water from production of olive oil. Thus, the abilities of the fungi to interact and enhance plant growth, their ability to grow in the presence of toxicants and their enzymatic abilities to degrade polluting substances provide a number of opportunities for either plant-microbe or pure fungal systems to remove pollutants from lands and waters.

  18. Biocontrol potential and polyphasic characterization of novel native Trichoderma strains against Macrophomina phaseolina isolated from sorghum and common bean.

    Science.gov (United States)

    Larralde-Corona, C P; Santiago-Mena, M R; Sifuentes-Rincón, A M; Rodríguez-Luna, I C; Rodríguez-Pérez, M A; Shirai, K; Narváez-Zapata, J A

    2008-08-01

    Native strains of Trichoderma isolated from sorghum and common bean crop soils were investigated to assess their biocontrol potential over the phytopathogenic fungus Macrophomina phaseolina, isolated from diseased plants. The Trichoderma strains were characterized with a polyphasic approach, which combined the analysis of their morphological characteristics, enzymatic activity, macro- and microculture test results, rDNA restriction patterns (AFLP), ITS1-5.8S-ITS2 rDNA sequences, and protein profiles. The integration of these data sets can be used to select new isolates as biological control agents against native fungal phytopathogens. In general, we observed a positive correlation between the secretion of beta-1,3-glucanase and N-acetylhexosaminidase, and the biocontrol capacities of all the Trichoderma isolates. Strains with the best hyperparasitic behavior against M. phaseolina isolated from diseased bean and sorghum were Trichoderma sp. (TCBG-2) and Trichoderma koningiopsis (TCBG-8), respectively.

  19. Correlation of gene expression and protein production rate - a system wide study

    Directory of Open Access Journals (Sweden)

    Arvas Mikko

    2011-12-01

    Full Text Available Abstract Background Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. Results We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR. We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. Conclusions Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR.

  20. Implications of cellobiohydrolase glycosylation for use in biomass conversion

    Directory of Open Access Journals (Sweden)

    Decker Stephen R

    2008-05-01

    Full Text Available Abstract The cellulase producing ascomycete, Trichoderma reesei (Hypocrea jecorina, is known to secrete a range of enzymes important for ethanol production from lignocellulosic biomass. It is also widely used for the commercial scale production of industrial enzymes because of its ability to produce high titers of heterologous proteins. During the secretion process, a number of post-translational events can occur, however, that impact protein function and stability. Another ascomycete, Aspergillus niger var. awamori, is also known to produce large quantities of heterologous proteins for industry. In this study, T. reesei Cel7A, a cellobiohydrolase, was expressed in A. niger var. awamori and subjected to detailed biophysical characterization. The purified recombinant enzyme contains six times the amount of N-linked glycan than the enzyme purified from a commercial T. reesei enzyme preparation. The activities of the two enzyme forms were compared using bacterial (microcrystalline and phosphoric acid swollen (amorphous cellulose as substrates. This comparison suggested that the increased level of N-glycosylation of the recombinant Cel7A (rCel7A resulted in reduced activity and increased non-productive binding on cellulose. When treated with the N-glycosidase PNGaseF, the molecular weight of the recombinant enzyme approached that of the commercial enzyme and the activity on cellulose was improved.

  1. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  2. Comparative analysis of the repertoire of G protein-coupled receptors of three species of the fungal genus Trichoderma

    Science.gov (United States)

    2013-01-01

    Background Eukaryotic organisms employ cell surface receptors such as the seven-transmembrane G protein-coupled receptors (GPCRs) as sensors to connect to the environment. GPCRs react to a variety of extracellular cues and are considered to play central roles in the signal transduction in fungi. Several species of the filamentous ascomycete Trichoderma are potent mycoparasites, i.e. can attack and parasitize other fungi, which turns them into successful bio-fungicides for the protection of plants against fungal phytopathogens. The identification and characterization of GPCRs will provide insights into how Trichoderma communicates with its environment and senses the presence of host fungi. Results We mined the recently published genomes of the two mycoparasitic biocontrol agents Trichoderma atroviride and Trichoderma virens and compared the identified GPCR-like proteins to those of the saprophyte Trichoderma reesei. Phylogenetic analyses resulted in 14 classes and revealed differences not only among the three Trichoderma species but also between Trichoderma and other fungi. The class comprising proteins of the PAQR family was significantly expanded both in Trichoderma compared to other fungi as well as in the two mycoparasites compared to T. reesei. Expression analysis of the PAQR-encoding genes of the three Trichoderma species revealed that all except one were actually transcribed. Furthermore, the class of receptors with a DUF300 domain was expanded in T. atroviride, and T. virens showed an expansion of PTH11-like receptors compared to T. atroviride and T. reesei. Conclusions Comparative genome analyses of three Trichoderma species revealed a great diversity of putative GPCRs with genus- and species- specific differences. The expansion of certain classes in the mycoparasites T. atroviride and T. virens is likely to reflect the capability of these fungi to establish various ecological niches and interactions with other organisms such as fungi and plants. These

  3. Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum.

    Science.gov (United States)

    Lopes, Fabyano Alvares Cardoso; Steindorff, Andrei Stecca; Geraldine, Alaerson Maia; Brandão, Renata Silva; Monteiro, Valdirene Neves; Lobo, Murillo; Coelho, Alexandre Siqueira Guedes; Ulhoa, Cirano José; Silva, Roberto Nascimento

    2012-07-01

    Some species of Trichoderma have successfully been used in the commercial biological control of fungal pathogens, e.g., Sclerotinia sclerotiorum, an economically important pathogen of common beans (Phaseolus vulgaris L.). The objectives of the present study were (1) to provide molecular characterization of Trichoderma strains isolated from the Brazilian Cerrado; (2) to assess the metabolic profile of each strain by means of Biolog FF Microplates; and (3) to evaluate the ability of each strain to antagonize S. sclerotiorum via the production of cell wall-degrading enzymes (CWDEs), volatile antibiotics, and dual-culture tests. Among 21 isolates, we identified 42.86% as Trichoderma asperellum, 33.33% as Trichoderma harzianum, 14.29% as Trichoderma tomentosum, 4.76% as Trichoderma koningiopsis, and 4.76% as Trichoderma erinaceum. Trichoderma asperellum showed the highest CWDE activity. However, no species secreted a specific group of CWDEs. Trichoderma asperellum 364/01, T. asperellum 483/02, and T. asperellum 356/02 exhibited high and medium specific activities for key enzymes in the mycoparasitic process, but a low capacity for antagonism. We observed no significant correlation between CWDE and antagonism, or between metabolic profile and antagonism. The diversity of Trichoderma species, and in particular of T. harzianum, was clearly reflected in their metabolic profiles. Our findings indicate that the selection of Trichoderma candidates for biological control should be based primarily on the environmental fitness of competitive isolates and the target pathogen.

  4. Population dynamics of Trichoderma species in the rhizosphere of tobacco and four species form China

    Institute of Scientific and Technical Information of China (English)

    YU Ze-fen; ZHANG Ke-qin

    2004-01-01

    @@ To study the effect of tobacco growth on Trichoderma population, we investigated the occurrence of Trichoderma species in the rhizosphere of tobacco plant during the period from transplanting (June) to harvesting (October) and measured relative environmental factors. Eleven species of Trichoderma were isolated, among which T. harzianum, T. viride, T. hamatum, T. atroviride, T.longibrachiatum, T. virens, T. koningii were identified, other four species Ty1, Ty2, Ty3, Ty4are new species. Of the species which occurred at high frequencies, T. harzianum and T. hamatum were most abundant in the July and T. viride in the August. The occurrence of the above three abundant species correlates significantly with the developmental phase of tobacco and correlates apparently with the soil moisture content, but not with the temperature. For the other eight species,no obvious correlation was found between the above factors and them.

  5. [Endocarditis caused by Trichoderma longibrachiatumin a patient receiving home parenteral nutrition].

    Science.gov (United States)

    Rodríguez Peralta, Laura I; Mañas Vera, Ma Reyes; García Delgado, Manuel J; Pérez de la Cruz, Antonio J

    2013-01-01

    Home parenteral nutrition (HPN) improves the quality of life of the patients although it has complications. Catheter-related infections and mechanical complications are the most frequent ones. We report the case of endocarditis over catheter in a man suffering from short bowel and receiving HPN. The special features of the case are firstly the catheter was a remaining fragment on the right atrial and secondly the infection was caused by Trichoderma longibrachiatum, an isolated fact regarding this pathology so far. Conventional surgery was applied to take the catheter out. Staphylococcus epidermidis, Ochrobactrum anthropi and Trichoderma longibrachiatum were isolated from the surgical specimen. The extraction of the infected catheter along with antibiotic therapy led to the complete recovery of the subject. Ochrobactrum anthropi and Trichoderma longibrachiatum are unusual microorganisms but they are acquiring more relevance. Although there is no agreement about intravascular retained catheter management, the most recommended approach consists on monitoring them and removing the device in case of complications.

  6. Aktivitas Penghambatan Trichoderma spp. Formulasi terhadap Jamur Patogen Tular Tanah secara In vitro

    Directory of Open Access Journals (Sweden)

    S. M. Widyastuti

    2002-07-01

    Full Text Available The research was aimed to evaluate the growth of formulated conidia propagules of Trichoderma koningii, T. reesei and T. harzianum, which had been stored for 1 and 5 months and the inhibition activity against soil borne plant pathogenic fungi Rigidopous lignosus, Ganoderma sp., Fusarium sp., and Sclerotium rolfsii. The isolates were formulated in the forms of alginate bead, alginate-peat bead, and peat-lime powder. The results indicated that Trichoderma formulated stored at room temperature showed higher inhibition activity than that stored at 4oC. After 5 months in the storage, T. reesei in both bead and powder formula performed higher growth inhibition activity against soil borne pathogens than the other isolates tested. It was noted that all isolates performed temporary decreased growth inhibition activity against soil borne pathogens. Key words: Trichoderma formulation, soil borne pathogens

  7. Are mycoparasitism and chitinase production species or isolate dependent in Trichoderma ?

    Institute of Scientific and Technical Information of China (English)

    Szakacs G; Nagy V; Kovacs K

    2004-01-01

    @@ The relationship between taxonomic status of Trichoderma spp., chitinase production in solid substrate fermentation (SSF) on four media and mycoparasitism in dual culture (confrontation assay)against four plant pathogenic fungi was studied. Seventy five Trichoderma isolates belonging to 35species have been screened. The plant pathogenic fungi used in confrontation assay were Botrytis cinerea , Fusarium oxysporum f. sp. dianthi , Rhizoctonia solani and Sclerotinia sclerotiorum . The SSF media contained wheat bran, crude chitin (from crab shells, SIGMA) and salt solutions. The best performing isolates in mycoparasitism tests were Trichoderma flavofuscum, T. harzianum, T.inhamatum, T. koningii and T. strigosum. Some isolates exhibiting good mycoparasitism produced chitinase in SSF only at low or medium level. In contrary there were isolates with excellent extracellular chitinase production but their biocontrol potential did not belong to the leading group.Statistical methods have been used to evaluate the data.

  8. Genetic characterization of somatic recombination in Trichoderma pseudokoningii

    Directory of Open Access Journals (Sweden)

    Barcellos Fernando Gomes

    2003-01-01

    Full Text Available Crossing experiments via hyphal anastomosis between two strains contrasting for auxotrophic markers of Trichoderma pseudokoningii were conducted to characterize the somatic recombination process in this specie. Four crossings were made and a total of 1052 colonies obtained from conidial suspensions of the heterokaryotic colonies were analyzed. Sixty-eight recombinant colonies, from four growing generations, were analyzed for the auxotrophic markers. Of the 68 colonies analyzed, 58 were stable after four generations and the remainders were unstable, reverting to one of the parentals. Most of the recombinant colonies were unstable through subculture and after four growing generations they showed the leu ino met markers (auxotrophic for leucin, inositol and metionin respectively. The unstable recombinant colonies showed irregular growing borders, sparse sporulation and frequent sector formation. The results suggest the occurrence of recombination mechanisms in the heterokaryon (somatic recombination, different from those described for the parasexual cycle or parameiosis. Therefore, we proposed the ocurrence of nuclei degradation from one parental (non prevalent parental in the heterokaryon and that the resulting chromosomal fragments may be incorporated into whole nuclei of the another parental (prevalent parental. However the parameiosis as originally described cannot be excluded.

  9. Nutrient activation of Trichoderma fungal spores for improved biocontrol activity

    Institute of Scientific and Technical Information of China (English)

    Linda Gordon Hjeljord; Arne Tronsmo

    2004-01-01

    @@ The effect of preliminary nutrient activation on the ability of conidia of the antagonist Trichoderma harzianum P1 (ThP1) to suppress Botrytis cinerea was investigated in laboratory, greenhouse and field trials. Preliminary nutrient activation at 21 ℃ accelerated subsequent germination of the antagonist at temperatures from 9 ℃ to 21 ℃; at ≥ 18 ℃ the germination time of preactivated ThP1conidia did not differ significantly from that of B. cinerea. When coinoculated with B. cinerea,concentrated inocula of preactivated but ungerminated ThP1 conidia reduced in vitro germination of the pathogen by ≥ 87 % at 12 ℃ to 25 ℃; initially-quiescent conidia achieved this level of suppression only at 25 ℃. Application of quiescent ThP1 conidia to detached strawberry flowers in moist chambers reduced infection by B. cinerea by ≥85 % at 24 ℃ , but only by 35 % at 12 ℃. Preactivated conidia reduced infection by ≥60% at 12 ℃. Both quiescent and preactivated conidia significantly reduced latent infection in greenhouse-grown strawberries at a mean temperture of 19 ℃, while only preactivated conidia were effective in the field at a mean temperature of 14 ℃ on the day of treatment application.

  10. Reduction of aflatoxins by Rhizopus oryzae and Trichoderma reesei.

    Science.gov (United States)

    Hackbart, H C S; Machado, A R; Christ-Ribeiro, A; Prietto, L; Badiale-Furlong, E

    2014-08-01

    This study evaluated the ability of the microorganisms Rhizopus oryzae (CCT7560) and Trichoderma reesei (QM9414), producers of generally recognized as safe (GRAS) enzymes, to reduce the level of aflatoxins B1, B2, G1, G2, and M1. The variables considered to the screening were the initial number of spores in the inoculum and the culture time. The culture was conducted in contaminated 4 % potato dextrose agar (PDA) medium, and the residual mycotoxins were determined every 24 h by HPLC-FL. The fungus R. oryzae has reduced aflatoxins B1, B2, and G1 in the 96 h and aflatoxins M1 and G2 in the range of 120 h of culture by approximately 100 %. The fungus T. reesei has reduced aflatoxins B1, B2, and M1 in the 96 h and aflatoxin G1 in the range of 120 h of culture by approximately 100 %. The highest reduction occurred in the middle of R. oryzae culture.

  11. Enzymes of Trichoderma and other origin in biopreparation of cotton

    Institute of Scientific and Technical Information of China (English)

    Anita Losonczi; George Szakacs; Emilia Csiszar; Outi Kareela

    2004-01-01

    @@ Preparation and bleaching are among the most energy and chemical intensive steps of the traditional cotton finishing. About 75 % of the organic pollutants arising from textile finishing are derived from the preparation of cotton goods. Biopreparation may be a valuable and environmentally friendly alternative to harsh alkaline chemicals for preparing of cotton. Different enzymes i. e. cellulases,pectinases, lipases and proteases have been tested for biopreparation. Many papers have been published how enzymes effect on the properties of cotton fabrics in respect to their effectiveness to replace alkaline scouring and how enzymes modify the various cell wall components of cotton fibers. However,very few data have been reported on bleachability and dyeing behavior of the bioscoured fabrics. In this work an acidic cellulase (Celluclast 1.5 L, Trichoderma reesei origin), an acidic pectinasehemicellulase (Viscozyme 120 L , Aspergillus aculeatus ) and a cellulase-free xylanase (Pulpzyme HC,Bacillus sp. ) enzymes were used for bioscouring of greige cotton fabric. Selected properties of the pretreated samples, which are important for effective dyeing, are characterized in detail. Effect of hydrogen peroxide bleaching, applied subsequent to the biopretreatment on the bleachability and dyeing properties of the samples is also elucidated. A reactive dye was used at four different concentrations to compare the dyeing behavior of biopretreated as well as biopretreated and subsequently bleached cotton fabrics with that of the alkaline scoured as well as alkaline scoured and bleached fabrics, respectively. Color evenness and uniformity, and wash fastness properties of the dyed samples are also determined[1].

  12. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing

    Science.gov (United States)

    Mustafa, Ghulam; Arshad, Muhammad

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  13. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    Science.gov (United States)

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  14. Effect of Trichoderma on horticultural seedlings' growth promotion depending on inoculum and substrate type.

    Science.gov (United States)

    Marín-Guirao, J I; Rodríguez-Romera, P; Lupión-Rodríguez, B; Camacho-Ferre, F; Tello-Marquina, J C

    2016-10-01

    The biostimulant effect of Trichoderma spp. on horticultural crops are highly variable. Thus, practical use of Trichoderma sp. requires feasible formulated products and suitable substrates. This study evaluates the survival and the growth-promotion effect of a Trichoderma saturnisporum rice formulation compared with a nonformulated conidia suspension (seven treatments in total), on tomato, pepper and cucumber seedlings grown in two substrates: (i) rich in organic matter (OM) and (ii) mineral substrate without OM. The results showed beneficial effects on seedling growth in the OM-rich substrate when T. saturnisporum rice formulation (mainly at maximum concentration) was applied, but the effects were opposite when the mineral substrate without OM was used. The effects were closely linked to the level of inoculum in the substrate, which was greater upon application of the formulated inoculum as opposed to the nonformulated one. The use of rice to prepare the inoculum of T. saturnisporum seems to be promising for seedling growth in the nursery when it is applied in a substrate that is rich in organic matter, but it must be considered that under certain conditions of food shortage, Trichoderma sp. could show pathogenicity to seedlings. This study provides evidence of the complexity inherent in the use of micro-organisms in agriculture, while also confirming that the activity of the biofertilizers based on Trichoderma depends on the type of inoculum and its concentration, as well as the properties of the medium in which the fungi develop. Further studies assessing the effectiveness or possible pathogenicity of Trichoderma in different soils under greenhouse conditions must be addressed. © 2016 The Society for Applied Microbiology.

  15. The Trichoderma-plant interaction is mediated by avirulence proteins produced by this fungus

    Institute of Scientific and Technical Information of China (English)

    Ruocco M; Kip N; P J G M de Wit; Lorito M; Lanzuise S; Woo S L; Ambrosino P; Marra R; Turrà D; Gigante S; Formisno E; Scala F

    2004-01-01

    @@ The molecular basis of Trichoderma -plant interaction is very complex and still not completely understood. The colonization of the root system by rhizosphere competent strains of Trichoderma results in increased development of root/aerial systems, in improved yields and in plant disease control.Other beneficial effects, such as the induction of plant systemic resistance, have also been described.To understand the mechanisms involved we are using different approaches, including the making of transformants expressing genes that encode for compounds able to affect plant response to pathogens.Trichoderma transformants carrying the avirulence gene Avr4 from Cladosporium fulvum under the control of constitutive and inducible promoters were obtained and tested on tomato plants having the Cf4 resistance gene. Necrosis and suberification zones, similar to the symptoms appearing during Cladosporium-tomato interaction, were found when the roots of the Cf4 plants were treated with Avr4-Trichoderma. This demonstrates that selected Trichoderma strains are able to transfer to the plant molecules that may deeply affect metabolism, disease resistance etc. Therefore, these beneficial fungi can be regarded as biotechnological tools to provide a variety of crops with useful compounds.Moreover, in in vitro competition assays the transformants were found to be more effective as antagonists against Alternaria alternata than the wild type. Trichoderma sends a variety of biochemical signals to the plants including avirulence molecules; therefore the presence of avr-like proteins in the fungus proteome was investigated. Proteome analysis has permitted us to isolate and sequence many proteins potentially having this function. From the extraeellular protein extracts, we have purified and sequenced a protein with structural characteristics similar to Avr4 of C. fulvum.The protein, Hytra1, was found to be a hydrophobin with chitin binding activity, the typical 8cysteine residues, and 4

  16. Cell wall degrading isoenzyme profiles of Trichoderma biocontrol strains show correlation with rDNA species

    Institute of Scientific and Technical Information of China (English)

    Sanz L; Hermosa M R; González F J; Monte E

    2004-01-01

    @@ Species of the fungus Trichoderma, a genus of Hyphomycetes, are ubiquitous in the environment, but especially in soil. They have been used in a wide range of commercial applications including the production of hydrolases and in the biological control of plant diseases. A fundamental part of the Trichoderma antifungal system consists of a series of genes coding for a surprising variety of extracellular cell wall degrading enzymes (CWDE).Characterisation and identification of strains at the species level is the first step in utilizing the full potential of fungi in specific applications. One aim when isolating Trichoderma strains is to identify those which can be used in new agricultural and industrial applications. In the past it was not uncommon that biocontrol strains were defined as T. harzianum Rifai, due to the limited classification system of the genus Trichoderma. In recent years, several PCR-based molecular techniques have been used to detect and discriminate among microorganisms. Sequence analysis of the ITS regions of the ribosomal DNA and gene fragments as those corresponding to tef1 gene have been helpful in the neotypification, description and characterization of species in the genus Trichoderna.Another useful method for the identification of Trichoderma strains is the randomly amplified polymorphic DNA (RAPD) technique.Isozyme polymorphisms evaluation of five putative extracellular lytic enzymes loci (β-1,3-glucanase, β-1,6-glucanase, cellulase, chitinase and protease antivities) were carried out using representative strains of defined molecular groups. CWDE groupings obtained from biocontrol strains are discussed in relation to their phylogenetic location and antifungal activities.Compiling morphological, biochemical and sequence information data into a common database would provide a useful resource that could be used to accurately name new haplotypes identified in the future and correctly place them within the genus Trichoderma.

  17. Isolation, purification and identification of three peptaibols from Trichoderma koningii with antibiotic activity against Ralstonia solancearum

    Institute of Scientific and Technical Information of China (English)

    SHEN Qing-tao; CHEN Xiu-lan; SUN Cai-yun; ZHANG Yu-zhong

    2004-01-01

    @@ The use of microorganisms for biological purposes has become an effective alternative to control plant pathogens. Trichoderma koningii Smf2 was chosen from eight Trichoderma strains for its thermostatic metabolites with antibiotic activity against Ralstonia solancearum Smith. Exclusion chromatography (LH20) was used twice to partially purify targeted metabolites combined with biological test. LC/ESI-MS, a powerful tool for rapid identification and sequence determination of peptides, identified these metabolites as three peptaibols named Trichokonin Ⅵ, Ⅶ and Ⅷ, and their sequences were confirmed with NMR.

  18. Linking Hydrolysis Performance to Trichoderma reesei Cellulolytic Enzyme Profile

    DEFF Research Database (Denmark)

    Lehmann, Linda Olkjær; Petersen, Nanna; I. Jørgensen, Christian;

    2016-01-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, e.g. by spiking with single enzymes and monitoring hydrolysis performance. In this study a multivariate...... approach, partial least squares regression, was used to see if it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by Trichoderma reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed...

  19. Role of Bradyrhizobium japonicum and Trichoderma spp. in the control of root rot disease of soybean

    Directory of Open Access Journals (Sweden)

    Syed Ehteshamul-Haque

    2014-08-01

    Full Text Available Seed treatment of soybean with Bndyrhizobium japonicum, Trichoderma harzianum, T. viride, T. hamatum, T. koningii and T. pseudokoningii significantly controlled the infection of 30-day-old seedlingsby Maerophomina phaseolina, Rhizoctonia solani and Fusarium spp. In 60-day-old plants Trichoderma spp.. and B. japonicum inhibited the grouth of R. solani and Fusarium spp., whereas the use of B. japonicum (TAL-102 with T. harzianum. T. viride, T. koningii and T. pseudokoningii controlled the infection by M. phaseolina. Greater grain yield was recorded when B. japonium (TAI-102 was used with T. hamatum.

  20. Pemurnian dan Karakterisasi Enzim Endokitinase dari Agen Pengendali Hayati Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Harjono Harjono

    2001-12-01

    Full Text Available This experiment was aimed to purify and characterize the endochitinase of Trichoderma reesei. Extracellular endochitinase was produced by T. reesei strain T13, a fungal biocontrol agent in colloidal chitin medium as sole carbon source. The enzyme was purified by ammonium sulfate precipitation, followed by gel filtration chromatography and chromatofocusing. The results showed that T. reesei produced endochitinase with molecular weight of 32 kDa and the activity was optimum at pH of 5,5 and temperature of 30 to 35oC. Key words: endochitinase, Trichoderma reesei

  1. Antagonism of Trichoderma harzianum NF9 and Trichoderma virens TY against Three Plant Fungous Pathogens%木霉菌对植物病原真菌拮抗作用的研究

    Institute of Scientific and Technical Information of China (English)

    姚艳平; 李友莲; 王建明; 张作刚

    2013-01-01

    木霉菌是重要的植物病害生防菌.通过对峙培养法,测定了哈茨木霉(Trichoderma harzianum)菌株NF9和绿木霉(Tric hode rmavire ns)菌株TY对3种土传植物病原真菌的体外拮抗作用.结果表明,这2株木霉菌对黄瓜枯萎病菌、西瓜枯萎病菌及茄子白绢病菌均具有一定的拮抗作用,不同木霉菌株间拮抗效果存在差异,哈茨木霉菌株NF9优于绿木霉菌株TY.%The fungous Trichoderma is an important microorganism in the biological control of plant diseases. The antagonism of Trichoderma harzianum NF9 and Trichoderma virens TY against three soil-borne plant fungous pathogens, Fusarium oxysporum Schl. f. sp. cucumerin Owen, Sclerotium rolfsii and Fusarium oxysporum Schl. f. sp. niveum, were tested in vitro by dual—culture. The result showed that two Trichoderma isolates had antagonism effect on the tested pathogens, and Trichoderma harzianum NF9 was better than Trichoderma virens TY in antagonism effect.

  2. Relationship of microbial communities and suppressiveness of Trichoderma fortified composts for pepper seedlings infected by Phytophthora nicotianae.

    Science.gov (United States)

    Ros, Margarita; Raut, Iulia; Santisima-Trinidad, Ana Belén; Pascual, Jose Antonio

    2017-01-01

    The understanding of the dynamic of soil-borne diseases is related to the microbial composition of the rhizosphere which is the key to progress in the field of biological control. Trichoderma spp. is commonly used as a biological control agent. The use of next generation sequencing approaches and quantitative PCR are two successful approaches to assess the effect of using compost as substrate fortified with two Trichoderma strains (Trichoderma harzianum or Trichoderma asperellum) on bacterial and fungal communities in pepper rhizosphere infected with Phytophthora nicotianae. The results showed changes in the bacterial rhizosphere community not attributed to the Trichoderma strain, but to the pathogen infection, while, fungi were not affected by pathogen infection and depended on the type of substrate. The Trichoderma asperellum fortified compost was the most effective combination against the pathogen. This could indicate that the effect of fortified composts is greater than compost itself and the biocontrol effect should be attributed to the Trichoderma strains rather than the compost microbiota, although some microorganisms could help with the biocontrol effect.

  3. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    Science.gov (United States)

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  4. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Tohge, Takayuki; Takayuki, Tohge; Fernie, Alisdair R; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-03-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity.

  5. Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Takayuki, Tohge; Fernie, Alisdair R.; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-01-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity

  6. Xylanase production by Trichoderma strains in solid substrate fermentation

    Institute of Scientific and Technical Information of China (English)

    Krisztina Kovacs; George Szakacs; Lew Christopher

    2004-01-01

    @@ The importance of microbial enzymes in pulp and paper manufacturing has grown significantly in the last two decades. Solid substrate fermentation (SSF) holds tremendous potential for the production of microbial enzymes of commercial interest. SSF can be of special interest in those processes where the crude fermented product (whole SSF culture, in situ enzyme) may be used directly as the enzyme source. Xylanase preparations practically free of cellulase activity are especially useful for biobleaching of crude cellulose pulps. Thirty-nine Trichoderma isolates have been screened in SSF for xylanase production on hardwood oxygen-delignified soda-aq pulp as carbon source and enzyme inducer.Xylanase activities varied between 0 and 2200 IU/g dry matter (DM) of initial substrate. In most instances, the simultaneously produced cellulase levels were below 1.0 Filter Paper Unit (FPU) /g DM. The xylanase to cellulase activity ratio varied in the range of 5 to 3500. The three most promising isolates (TUB F-1647, TUB F-1658 and TUB F-1684) yielded xylanase activity of 2040,1300 and 1500 IU/g DM xylanase, respectively, and 0.64, 0.43 and 0.43 FPU/g DM cellulase with a xylanase to cellulase activity ratio of 3200, 3000 and 3500, respectively. Wild strains F-1647, F-1658 and F-1684 were isolated from tree bark of Maldives, soils of Peru (last two), respectively.Medium optimization experiments to enhance the xylanase yield and to increase the xylanase to cellulase ratio have also been performed.

  7. New advances in the science and use of Trichoderma spp.

    Institute of Scientific and Technical Information of China (English)

    Gary Harman

    2004-01-01

    @@ Trichoderna spp. have been known for their strong abilities to produce extracellular enzymes,especially cellulases and glucanases by T. reesei, and also for their abilities to control plant pathogens.Most notably, a number of lines of evidence indicate that the agriculturally relevant strains are synergistic plant symbionts. As plant symbionts they possess the following characteristics: (a) they infect plant roots but cause the plant to restrict their growth to outer layers of the plant cortex (an exception is the recent discoveries of plant endophytic strains of Trichoderma and Gliocladium), (b)they produce bioactive plant molecules in the zone of interaction that (c) induce localized systemic resistance to plant diseases and (d) systemic plant resistance to diseases that in some respects is similar to that induced by rhizobacteria, (e) they induce changes in plant proteomes, (f) increase plant growth and yield at least in part by enhancing root growth, and (g) they increase plant nutrient uptake. The increase in plant growth and yields is strongly interactive with plant genotype, at least in maize. There also are very significant increases in the knowledge of events that occur in mycoparasitism that in many respects have features in common with their interactions with plants.They are highly resistant to toxicants and have recently been shown to degrade cyanide and take up,and then degrade, metallocyanides. These discoveries allow new uses for the organisms in managed plant systems, including agriculture. For example, the induced systemic resistance system allows control of fungi, bacteria, Oomycetes and even one virus at sites temporally and spatially distant from the site of application. The abilities of the fungi to resist/degrade toxicants and increase plant growth indicate they will highly useful components in plant-microbe or microbe-only strategies for remediation of soil and water pollution. Finally, there are new uses of their enzyme systems for

  8. A Novel Cellulase Produced by a Newly Isolated Trichoderma virens

    Directory of Open Access Journals (Sweden)

    Rong Zeng

    2016-04-01

    Full Text Available Screening and obtaining a novel high activity cellulase and its producing microbe strain is the most important and essential way to improve the utilization of crop straw. In this paper, we devoted our efforts to isolating a novel microbe strain which could produce high activity cellulase. A novel strain Trichoderma virens ZY-01 was isolated from a cropland where straw is rich and decomposed, by using the soil dilution plate method with cellulose and Congo red. The strain has been licensed with a patent numbered ZL 201210295819.6. The cellulase activity in the cultivation broth could reach up to 7.4 IU/mL at a non-optimized fermentation condition with the newly isolated T. virens ZY-01. The cellulase was separated and purified from the T. virens culture broth through (NH42SO4 fractional precipitation, anion-exchange chromatography and gel filtration chromatography. With the separation process, the CMC specific activity increased from 0.88 IU/mg to 31.5 IU/mg with 35.8 purification fold and 47.04% yield. Furthermore, the enzymatic properties of the cellulase were investigated. The optimum temperature and pH is 50 °C and pH 5.0 and it has good thermal stability. Zn2+, Ca2+ and Mn2+ could remarkably promote the enzyme activity. Conversely, Cu2+ and Co2+ could inhibit the enzymatic activity. This work provides a new highly efficient T. virens strain for cellulase production and shows good prospects in practical application.

  9. Application of Trichoderma harzianum (T22) and Trichoderma atroviride (P1) as plant growth promoters, and their compatibility with copper oxychloride

    Institute of Scientific and Technical Information of China (English)

    Francesco Vinale; Gaetano D' Ambrosio; Khalid Abadi; Felice Scala; Roberta Marra; David Turrà; Sheridan L Woo; Matteo Lorito

    2004-01-01

    @@ Trichoderma strains are used in agriculture because they provide to the plants the following benefits:i) are rhizosphere competence and establish stable rhizosphere microbial communities; ii) control plant disease caused by pathogenic and competitive microflora, by using a variety of mechanisms; iii)improve vegetative growth, root development and yield; iv) make nutrients more available to the plant. In this work we have investigated the ability of T. harzianum T22 and T. atroviride P1 to improve plant growth of locally important horticultural crops: lettuce, tomatoes and peppers and to prevent disease in the greenhouse and field. The effect of the Trichoderma treatment was evaluated by determining the weight of fresh and dry roots and above ground plant biomass, measuring plants height, counting the number of emerged leaves (lettuce, tomatoes and peppers) and quantifying production (tomatoes and peppers). No disease symptoms were found during production, although Fusarium sp. strains pathogenic to tomato were detected in the soil. Compounds containing copper oxychloride are frequently used for fungal disease control in agriculture. In order to investigate the compatibility of T. harzianum T22 and T. atroviride P1 with copper oxychloride applications, the effect on mycelia growth was monitored in both liquid and solid medium. In general, the tests indicated a high level of tolerance of the Trichoderma strains to concentrations of copper oxychloride varying from 0.1 to 5 mmol/L.

  10. Efficacy of soil solarization, Trichoderma harzianum, and coffee pulp amendment against Armillaria sp

    NARCIS (Netherlands)

    Otieno, W.; Termorshuizen, A.J.; Jeger, M.J.

    2003-01-01

    Soil solarization was evaluated singly or in combination with Trichoderma harzianum infestation or coffee pulp amendment for its effect on wood-borne inoculum of an Armillaria sp. pathogenic on tea. Solarization increased maximum soil temperatures at 10 cm depth by 9-12degreesC and reduced viability

  11. A paralog of the proteinaceous elicitor sm1 affects colonization of maize roots by Trichoderma virens

    Science.gov (United States)

    The biocontrol agent, Trichoderma virens, has the ability to protect plants from pathogens by eliciting plant defense responses, involvement in mycoparasitism, or secreting antagonistic secondary metabolites. SM1, an elicitor of induced systemic resistance (ISR), was found to have three paralogs wi...

  12. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease.

    Science.gov (United States)

    Vos, Christine M F; De Cremer, Kaat; Cammue, Bruno P A; De Coninck, Barbara

    2015-05-01

    Botrytis cinerea is a necrotrophic fungal pathogen causing disease in many plant species, leading to economically important crop losses. So far, fungicides have been widely used to control this pathogen. However, in addition to their detrimental effects on the environment and potential risks for human health, increasing fungicide resistance has been observed in the B. cinerea population. Biological control, that is the application of microbial organisms to reduce disease, has gained importance as an alternative or complementary approach to fungicides. In this respect, the genus Trichoderma constitutes a promising pool of organisms with potential for B. cinerea control. In the first part of this article, we review the specific mechanisms involved in the direct interaction between the two fungi, including mycoparasitism, the production of antimicrobial compounds and enzymes (collectively called antagonism), and competition for nutrients and space. In addition, biocontrol has also been observed when Trichoderma is physically separated from the pathogen, thus implying an indirect systemic plant defence response. Therefore, in the second part, we describe the consecutive steps leading to induced systemic resistance (ISR), starting with the initial Trichoderma-plant interaction and followed by the activation of downstream signal transduction pathways and, ultimately, the defence response resulting in ISR (ISR-prime phase). Finally, we discuss the ISR-boost phase, representing the effect of ISR priming by Trichoderma spp. on plant responses after additional challenge with B. cinerea.

  13. Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum

    Science.gov (United States)

    Trichothecenes are sesquiterpenoid mycotoxins produced mainly by Fusarium species. Harzianum A (HA), a non-phytotoxic trichothecene produced by Trichoderma arundinaceum, has recently been found to have antagonistic activity against fungal plant pathogens and to induce plant genes involved in defense...

  14. Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L.

    Science.gov (United States)

    Saxena, Amrita; Raghuwanshi, Richa; Singh, Harikesh Bahadur

    2015-02-01

    Trichoderma spp. have been reported to aid in imparting biotic as well as abiotic tolerance to plants. However, there are only few reports unfolding the differential ability of separate species of Trichoderma genera generally exploited for their biocontrol potential in this framework. A study was undertaken to evaluate the biocontrol potential of different Trichoderma species namely T. harzianum, T. asperellum, T. koningiopsis, T. longibrachiatum, and T. aureoviride as identified in the group of indigenous isolates from the agricultural soils of Eastern Uttar Pradesh, India. Their biocontrol potential against three major soilborne phytopathogens, i.e., Sclerotium rolfsii, Sclerotinia sclerotiorum, and Colletotrichum capsici was confirmed by dual culture plate technique. Efficient mycoparasitic ability was further assessed in all the isolates in relation to chitinase, β-1,3 glucanase, pectinase, lipase, amylase, and cellulase production while equally consistent results were obtained for their probable phosphate solubilization and indole acetic acid (IAA) production abilities. The selected isolates were further subjected to test their ability to promote plant growth, to reduce disease incidence and to tolerate biotic stress in terms of lignification pattern against S. rolfsii in chickpea plants. Among the identified Trichoderma species, excellent results were observed for T. harzianum and T. koningiopsis indicating better biocontrol potential of these species in the group and thus exhibiting perspective for their commercial exploitation.

  15. Evaluation of Minimal Trichoderma reesei Cellulase Mixtures on Differently Pretreated Barley Straw Substrate

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Langston, J;

    2007-01-01

    The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsv ae rd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably...

  16. Light-mediated control of gene expression in filamentous fungus Trichoderma reesei.

    Science.gov (United States)

    Wang, Wei; Shi, Xiang-Yu; Wei, Dong-Zhi

    2014-08-01

    We developed a light-mediated system based on synthetic light-switchable transactivators. The transactivators bind promoter upon blue-light exposure and rapidly initiate transcription of target transgenes in filamentous fungus Trichoderma reesei. Light is inexpensive to apply, easily delivered, and instantly removed, and thus has significant advantages over chemical inducers.

  17. Study on the effect of different nutrients on the growth of a Trichoderma aureoviride mutant

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-ai; WANG Wei-ming

    2004-01-01

    @@ Trichoderma aureoviride mutant T1010 was cultured in media containing different nutrients.Statistics showed significant differences and the results described below: The C/N tested were 3:1,6:1, 12: 1, 24: 1,48: 1. The best C/N was 24: 1. The amount of spores was 4.0×109 cfu/plate. The best carbon source among glucose, sucrose, maltose, lactose, cellulose and starch was the last one.With a starch-containing medium, T1010 produced 5.3 × 109 cfu/plate. The asparagine was the best nitrogen source. T1010 absorbed it easily and produced 9.6 × 109 cfu/plate. K, Mg, P, S, Fe were important to support T1010 growth and sporulation. In the absence of K, P, and Fe, Trichoderma grew poorly, while Mg didn' t seem to help Trichoderma colony development. A little amount of vitamins allwed T1010 to grow better. This data allowed us to improve the cultivation of Trichoderma at industrial level.

  18. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Langston, Jim;

    2007-01-01

    The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsv ae rd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably...

  19. Trichoderma L-Lysine-α-Oxidase Producer Strain Culture Fluid Inhibits Impatiens Necrotic Spot Virus.

    Science.gov (United States)

    Smirnova, I P; Shneider, Yu A; Karimova, E V

    2016-01-01

    A method for PCR diagnosis of impatiens necrotic spot virus is developed. Concentrated culture fluid with active L-lysine-α-oxidase (0.54 U/ml) from Trichoderma harzianum Rifai fungus producer strain F-180 inhibits vitally hazardous impatiens necrotic spot phytovirus.

  20. Quantitative site-specific phosphoproteomics of Trichoderma reesei signaling pathways upon induction of hydrolytic enzyme production

    NARCIS (Netherlands)

    E.V. Nguyen; S.Y. Imanishi; P. Haapaniemi; A. Yadav; M. Saloheimo; G.L. Corthals; T.M. Pakula

    2016-01-01

    The filamentous fungus Trichoderma reesei is used for industrial production of secreted enzymes including carbohydrate active enzymes, such as cellulases and hemicellulases. The production of many of these enzymes by T. reesei is influenced by the carbon source it grows on, where the regulation syst

  1. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Metwaly eRamadan

    2015-09-01

    Full Text Available Trichoderma species are present in many ecosystems and some strains have the ability to reduce the severity of plant diseases by activating various defence pathways via specific biologically active signaling molecules. Hence we investigated the effects of low molecular weight volatile compounds of Trichoderma asperellum IsmT5 on Arabidopsis thaliana. During co-cultivation of T. asperellum IsmT5 without physical contact to A. thaliana we observed smaller but vital and robust plants. The exposed plants exhibit increased trichome numbers, accumulation of defence-related compounds such as H2O2, anthocyanin, camalexin, and increased expression of defence related genes. We conclude that A. thaliana perceives the Trichoderma volatiles as stress compounds and subsequently initiates multilayered adaptations including activation of signaling cascades to withstand this environmental influence.The prominent headspace volatile of T. asperellum IsmT5 was identified to be 6-pentyl-α-pyrone, which was solely applied to A. thaliana to verify the growth and defence reactions. Most noticeable is that A. thaliana preexposed to 6PP showed significantly reduced symptoms when challenged with Botrytis cinerea and Alternaria brassicicola, indicating that defence-activated plants subsequently became more resistant to pathogen attack. Together, these results support that products that are based on Trichoderma volatiles have the potential being a useful biocontrol agent in agriculture.

  2. 75 FR 9527 - Trichoderma asperellum strain ICC 012; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-03-03

    ... margin of safety does not apply. VII. Other Considerations A. Endocrine Disruptors The Agency has no information to suggest that Trichoderma asperellum strain ICC 012 has an effect on the endocrine system. No... reports of the organism affecting endocrine systems. Therefore, it is unlikely that this organism...

  3. 75 FR 8504 - Trichoderma gamsii strain ICC 080; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-02-25

    ... Considerations A. Endocrine Disruptors The Agency has no information to suggest that Trichoderma gamsii strain ICC 080 has an effect on the endocrine system. The submitted acute pulmonary toxicity/pathogenicity... organism in the environment and there have been no reports of the organism affecting endocrine...

  4. Trichoderma species from the cacao agroecosystem with biocontrol potential of Moniliophthora roreri

    National Research Council Canada - National Science Library

    Omar Reyes-Figueroa; Carlos F. Ortiz-García; Magdiel Torres-de la Cruz; Luz del C. Lagunes-Espinoza; Guadalupe Valdovinos-Ponce

    2016-01-01

    La moniliasis del cacao ( Moniliophthora roreri ) es la principal limitante parasítica de la producción de cacao ( Theobroma cacao ) en México. Una alternativa sostenible para el control de la enfermedad es el uso del hongo Trichoderma...

  5. Microencapsuling aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures

    Science.gov (United States)

    Trichoderma conidia are mostly produced by solid fermentation systems. Inoculum is produced by liquid culturing, and then transferred to solid substrate for aerial conidial production. Aerial conidia of T. harzianum are hydrophilic in nature, and it is difficult to separate them from the solid subst...

  6. Structural and Phylogenetic Analysis of Laccases from Trichoderma: A Bioinformatic Approach

    Science.gov (United States)

    Cázares-García, Saila Viridiana; Vázquez-Garcidueñas, Ma. Soledad; Vázquez-Marrufo, Gerardo

    2013-01-01

    The genus Trichoderma includes species of great biotechnological value, both for their mycoparasitic activities and for their ability to produce extracellular hydrolytic enzymes. Although activity of extracellular laccase has previously been reported in Trichoderma spp., the possible number of isoenzymes is still unknown, as are the structural and functional characteristics of both the genes and the putative proteins. In this study, the system of laccases sensu stricto in the Trichoderma species, the genomes of which are publicly available, were analyzed using bioinformatic tools. The intron/exon structure of the genes and the identification of specific motifs in the sequence of amino acids of the proteins generated in silico allow for clear differentiation between extracellular and intracellular enzymes. Phylogenetic analysis suggests that the common ancestor of the genus possessed a functional gene for each one of these enzymes, which is a characteristic preserved in T. atroviride and T. virens. This analysis also reveals that T. harzianum and T. reesei only retained the intracellular activity, whereas T. asperellum added an extracellular isoenzyme acquired through horizontal gene transfer during the mycoparasitic process. The evolutionary analysis shows that in general, extracellular laccases are subjected to purifying selection, and intracellular laccases show neutral evolution. The data provided by the present study will enable the generation of experimental approximations to better understand the physiological role of laccases in the genus Trichoderma and to increase their biotechnological potential. PMID:23383142

  7. Is an organic nitrogen source needed for cellulase production by Trichoderma reesei Rut-C30?

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Hobley, Timothy John

    2013-01-01

    The effect of organic and inorganic nitrogen sources on Trichoderma reesei Rut-C30 cellulase production was investigated in submerged cultivations. Stirred tank bioreactors and shake flasks, with and without pH control, respectively, were employed. The experimental design involved the addition...

  8. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato

    Science.gov (United States)

    Seventy-two isolates of Trichoderma were obtained from Hubei Province of China and identified to species based on the ITS-rDNA sequences. The isolates were initially tested for invasive growth on the colonies of Botrytis cinerea in the dual cultures with B. cinerea on potato dextrose agar at 20°C. T...

  9. Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity

    Science.gov (United States)

    A novel xylanase from Trichoderma reesei Rut C30, named XYN IV, was purified from the cellulolytic system of the fungus. The enzyme was discovered on its ability to attack aldotetraohexenuronic acid (HexA-2Xyl-4Xyl-4Xyl, HexA3Xyl3), releasing the reducing-end xylose residue. XYN IV exhibited catalyt...

  10. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis...

  11. Ability of secondary metabolites from trichoderma virens to mediate communication during mutualistic or pathogenic interactions

    Science.gov (United States)

    A bioinformatic study was conducted to identify the putative genes in the biocontrol agent Trichoderma virens that encode for non-ribosomal peptide synthetases (NRPS). Gene expression analysis of 22 putative NRPSs and 4 NRPS/PKS (polyketide synthase) hybrid enzymes was conducted in the presence and...

  12. Effect of mixture of Trichoderma isolates on biochemical parameters in leaf of Macrophomina phaseolina infected brinjal.

    Science.gov (United States)

    Singh, S P; Singh, H B

    2014-09-01

    A mixture of Trichoderma harzianum NBRI-1055 (Fx) and T. harzianum BHU-99 (Th) was evaluated for their efficiency to induce systemic resistance during three way interaction among brinjal-Trichoderma-Macrophomina phaseolina. Total phenol content (TPC), defence related enzymes Phenylalanine ammonia-lyase (PAL), Peroxidase (PO), Polyphenol oxidase (PPO) and PR proteins (PR-2 and PR-3) were recorded. Total phenolic content was recorded 12.82 times and 1.8 times higher in Trichoderma mixture treated-pathogen challenge (Fx-Th-Pth) treatment than in untreated healthy control and untreated pathogen challenged (Pth) plants respectively after 72 hr pathogen inoculation (hapi). Defence related enzymes PAL 4.54 times higher, 48hapi, PO, 3.96 times higher, 72hapi and PPO 8.1 times higher, 72hapi in Fx-Th-Pth treatment than untreated healthy control, and the PR- proteins such as PR-2, 2.15 times and PR-3, 2.16 times higher, 72hapi than untreated healthy control. The results showed that a mixture of Trichoderma (Fx+Th) performed better than single isolate.

  13. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis...

  14. Comparative production of cellulases by mutants of Trichoderma parceramosume PTCC5140

    Directory of Open Access Journals (Sweden)

    Hoda Nouri

    2017-06-01

    Discussion and conclusion: Evaluation of cellulase production in mutant strains of Trichoderma parceramosume PTCC 5140 showed that use of chemical mutagenesis with 2 to 11 fold increasing in enzyme activity is a potent method to improve cellulase complex activity. In the current study, obtained mutant strains could be introduced as a potent cellulase producer for further studies in bioconversion processes.

  15. Linking Hydrolysis Performance to Trichoderma reesei Cellulolytic Enzyme Profile

    DEFF Research Database (Denmark)

    Lehmann, Linda Olkjær; Petersen, Nanna; I. Jørgensen, Christian;

    2016-01-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, e.g. by spiking with single enzymes and monitoring hydrolysis performance. In this study a multivariate...

  16. Effect of some Trichoderma spp. isolates on promoting growth of cucumber seedlings under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    M. Taghinasab Darzi

    2012-12-01

    Full Text Available This experiment was performed to investigate the effect of some Trichoderma spp. isolates as growth promoters of cucumber (Cucumis sativus L. seedlings under greenhouse conditions. Inoculai of 19 Thrichoderma spp. isolates were prepared from disinfected wheat grain. The upper half of the soil in pots (containing field soil and sand was mixed with these inoculai at 3% ratio and the pots were irrigated with tap water for 28 days. After four weeks, the seedlings were sampled for growth comparison on stem length, root length and total fresh weight. The results showed that some isolates improved significantly the cucumber seedlings’ growth and others had inhibitory effect. Application of Trichoderma spp. 17 and T. longibraciatum increased stem length more than 74% as compared to control. Also, these isolates increased significantly P<0.05 the total fresh weight about 40% and 25%, respectively, as compared to control. Furthermore, Trichoderma sp. 19 decreased significantly the stem length, root length and total fresh weight as compared to control. These results show the ability of Persian Trichoderma spp. isolates in promoting cucumber growth and its potential for other plants.

  17. Potential of Trichoderma spp. strains for the bioremediation of soils contaminated with petroleum

    Directory of Open Access Journals (Sweden)

    Marcia Pesántez

    2016-10-01

    Full Text Available Fungi species can degrade xenobiotic compounds contaminating the soil, including hydrocarbons. The objective of this work was to determine the potential of three strains of Trichoderma, isolated from soil contaminated with petroleum, for bioremediation. Trichoderma harzianum CCECH-Te1, Trichoderma viride CCECH-Te2 and Trichoderma psedokoningii CCECH-Te3 were included in one assay with each independent strain. The inoculum was adjusted to a concentration of 1x1010 conidia ml-1 which was applied to soil contaminated by an oil spill. After 96 days of inoculation, soil samples were taken at 10 and 15 cm depth. The content of total hydrocarbons, polycyclic aromatic hydrocarbons and heavy metals such as cadmium, nickel and lead were determined. With the data, it was calculated the percentage of removal of the analyzed compounds by each strain. At 10 cm and 15 cm depth, it was observed the removal of the compounds in percentages that reached between 47 and 69.1% in the hydrocarbons and up to 53.72% in the heavy metals. It which denoted the potential of the three strains for bioremediation in contaminated soils.   Keywords: heavy metals, polycyclic aromatic hydrocarbons, xenobiotic compounds

  18. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot.

    Science.gov (United States)

    Saravanakumar, Kandasamy; Li, Yaqian; Yu, Chuanjin; Wang, Qiang-Qiang; Wang, Meng; Sun, Jianan; Gao, Jin-Xin; Chen, Jie

    2017-05-11

    Fusarium stalk rot (FSR) caused by Fusarium graminearum (FG) significantly affects the productivity of maize grain crops. Application of agrochemicals to control the disease is harmful to environment. In this regard, use of biocontrol agent (BCA) is an alternative to agrochemicals. Although Trichoderma species are known as BCA, the selection of host-pathogen specific Trichoderma is essential for the successful field application. Hence, we screened a total of 100 Trichoderma isolates against FG, selected Trichoderma harzianum (CCTCC-RW0024) for greenhouse experiments and studied its effect on changes of maize rhizosphere microbiome and biocontrol of FSR. The strain CCTCC-RW0024 displayed high antagonistic activity (96.30%), disease reduction (86.66%), biocontrol-related enzyme and gene expression. The root colonization of the strain was confirmed by eGFP tagging and qRT-PCR analysis. Pyrosequencing revealed that exogenous inoculation of the strain in maize rhizosphere increased the plant growth promoting acidobacteria (18.4%), decreased 66% of FG, and also increased the plant growth. In addition, metabolites of this strain could interact with pathogenicity related transcriptional cofactor FgSWi6, thereby contributing to its inhibition. It is concluded that T. harzianum strain CCTCC-RW0024 is a potential BCA against FSR.

  19. Efficacy of soil solarization, Trichoderma harzianum, and coffee pulp amendment against Armillaria sp

    NARCIS (Netherlands)

    Otieno, W.; Termorshuizen, A.J.; Jeger, M.J.

    2003-01-01

    Soil solarization was evaluated singly or in combination with Trichoderma harzianum infestation or coffee pulp amendment for its effect on wood-borne inoculum of an Armillaria sp. pathogenic on tea. Solarization increased maximum soil temperatures at 10 cm depth by 9-12degreesC and reduced viability

  20. Novel Endophytic Trichoderma spp. Isolated from Healthy Coffea arabica Roots are Capable of Controlling Coffee Tracheomycosis

    Directory of Open Access Journals (Sweden)

    Temesgen Belayneh Mulaw

    2013-10-01

    Full Text Available One of the biggest threats to coffee growers in East Africa are emerging vascular wilt diseases (tracheomycosis caused by Fusarium spp. Many Trichoderma species are known to be natural antagonists of these pathogens and are widely used in biological control of fungal plant diseases. More recently, several Trichoderma spp., which exhibited high antifungal activity have been isolated as endophytes. Consequently, we have investigated the presence and the antagonistic activity of endophytic Trichoderma isolated from roots of healthy coffee plants (Coffea arabica from the major coffee growing regions of Ethiopia. Our results showed that community of Trichoderma spp. in roots of C. arabica contains fungi from coffee rhizosphere, as well as putatively obligate endophytic fungi. The putatively “true” endophytic species, until now, isolated only from coffee plant ecosystems in Ethiopia and recently described as T. flagellatum and novel T. sp. C.P.K. 1812 were able to antagonize Fusarium spp., which cause coffee tracheomycosis. Moreover, we found that strains of these species are also highly antagonistic against other phytopathogenic fungi, such as Alternaria alternata, Botryotinia fuckeliana (anamorph: Botrytis cinerea, and Sclerotinia sclerotiorum.

  1. Promoção do crescimento do feijoeiro e controle da antracnose por Trichoderma spp

    Directory of Open Access Journals (Sweden)

    Erica Aparecida de Souza Pedro

    2012-11-01

    Full Text Available O objetivo deste trabalho foi avaliar a capacidade de Trichoderma spp. em promover o crescimento de plantas de feijão e reduzir a severidade da antracnose do feijoeiro (Colletotrichum lindemuthianum, bem como identificar os isolados mais eficientes. Sessenta isolados de Trichoderma spp. foram avaliados quanto à capacidade de promoção do crescimento nas plantas. Os sete isolados que mais se destacaram foram adicionados ao substrato de cultivo e avaliados quanto à redução na severidade da antracnose em plantas de feijão tratadas com conídios de C. lindemuthianum. Os mais eficientes no controle da doença foram identificados por sequenciamento de DNA. O isolado IB 28/07 foi avaliado nas concentrações 0,5, 1, 1,5 e 2% (peso:volume, que reduziram a severidade da doença em 41,51, 55,15, 81,82 e 96,06%, respectivamente. Os isolados mais eficientes de Trichoderma spp. podem proporcionar aumentos superiores a 30% na produção de matéria seca da parte aérea das plantas e reduzir a severidade da doença entre 63 e 98%. Esses isolados foram identificados como pertencentes às espécies Trichoderma harzianum, T. strigosum e T. theobromicola.

  2. Fungicidal compounds from a marine Ascidian-associated fungus Trichoderma harzianum

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Ciavatta, M.L.; Wahidullah, S.; Vuppala, S.; DeSouza, L.

    A marine Ascidian-associated fungus, Trichoderma harzianum, (NIO/BCC2000-51) was assessed for its in vitro antagonistic activity against ten fungal phytopathogens and three food-infesting fungi. Fractionation of the cell-free culture filtrate of T...

  3. MALDI-TOF MS of Trichoderma: A model system for the identification of microfungi

    Science.gov (United States)

    This investigation aimed to assess whether MALDI-TOF MS analysis of proteomics could be applied to the study of Trichoderma, a fungal genus selected because it includes many species and is phylogenetically well defined. We also investigated whether MALDI-TOF MS analysis of proteomics would reveal ap...

  4. Draft Genome Sequence of the Root-Colonizing Fungus Trichoderma harzianum B97

    Science.gov (United States)

    Compant, Stéphane; Gerbore, Jonathan; Antonielli, Livio; Brutel, Aline

    2017-01-01

    ABSTRACT Trichoderma harzianum is one of the most beneficial microorganisms applied on diverse crops against biotic and abiotic stresses and acts also as a plant growth-promoting fungus. Here, we report the genome of T. harzianum B97, originating from a French agricultural soil and used as a biofertilizer that can tolerate abiotic stresses. PMID:28360171

  5. Randomly Amplified Polymorphic DNA of Trichoderma isolates and antagonism against Rhizoctonia solani

    Directory of Open Access Journals (Sweden)

    Larissa Brandão Góes

    2002-06-01

    Full Text Available Random Amplified Polymorphic DNA (RAPD procedure was used to examine the genetic variability among fourteen isolates of Trichoderma and their ability to antagonize Rhizoctonia solani using a dual-culture assay for correlation among RAPD products and their hardness to R. solani. Seven oligodeoxynucleotide primers were selected for the RAPD assays which resulted in 197 bands for 14 isolates of Trichoderma. The data were entered into a binary matrix and a similarity matrix was constructed using DICE similarity (SD index. A UPGMA cluster based on SD values was generated using NTSYS (Numerical Taxonomy System, Applied Biostatistics computer program. A mean coefficient of similarity obtained for pairwise comparisons among the most antagonics isolates was around 40%. The results presented here showed that the variability among the isolates of Trichoderma was very high. No relationship was found between the polymorphism showed by the isolates and their hardness, origin and substrata.A técnica de RAPD (Random Amplified Polymorphic DNA foi utilizada para examinar a variabilidade genética em quatorze isolados de Trichoderma além de sua capacidade de antagonizar o fungo fitopatogênico Rhizoctonia solani usando pareamento in vitro, e a possível relação entre perfís de RAPD e agressividade dos isolados de Trichoderma a R. solani. Foram selecionados sete primers para os ensaios de RAPD, os quais produziram 197 bandas. Os dados foram introduzidos no programa de computador NTSYS (Numerical Taxonomy System, Applied Biostatisticsna forma de uma matrix binária, sendo construída uma matriz de similaridade utilizando-se o coeficiente de similaridade de DICE (SD e baseado nos valores SD, pelo método de agrupamento UPGMA um dendrograma. Observou-se que o grau de similaridade das amostras que apresentaram melhor desempenho antagônico foi bastante baixo, em torno de 40%. Os resultados demonstraram que a variabilidade entre os isolados de Trichoderma é muito

  6. Variabilidade entre isolados de Trichoderma harzianum: I - Aspectos citológicos Variability among Trichoderma harzianum isolates: I - Cytological aspects

    Directory of Open Access Journals (Sweden)

    E. Peres

    1995-04-01

    Full Text Available Objetivou-se neste trabalho estudar a variabilidade de isolados selvagens de Trichoderma harzianum baseado nas características culturais e citológicas. Observaram-se o tamanho dos fialosporos, número de núcleos por fialosporos e crescimento e esporulação em meio de malte-ágar. Pelos resultados aqui encontrados foi possível reconhecer que há variação entre os isolados selvagens da espécie T. harzianum. Com relação ao número de núcleos, verificou-se uma variação de 1 a 3 núcleos por fialosporos. Também observou-se padrões diferenciais de crescimento e morfologia da colônia. Mais de 50% dos isolados atingiram o máximo de crescimento em 48 horas.This study is based largely on morphological and cultural characters of Tríchoderma harzianum isolates. It were observed the size of phialospores, mycelial growth and sporulation on malt extract agar and nuclei number per phialospores, stained with Giemsa. A x 100 oil immersion len was used in examining and in measuring phialospores. Based on the size of phialospores, it was possible recognize that there is variaton among the wild isolates for the specie T. harzianum. Also, with relation to mycelial growth and sporulation can itself distinguish from one another different pattern. Up to 50% of isolates had maximum growth in 48 hours. The nuclei number of 1 to 3 per phialospore was observed.

  7. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species.

    Science.gov (United States)

    Schmoll, Monika; Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R; Hernández-Oñate, Miguel; Kruszewska, Joanna S; Lawry, Robert; Mora-Montes, Hector M; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio; Herrera-Estrella, Alfredo

    2016-03-01

    The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.

  8. Genome Sequencing and Comparative Analysis of the Biocontrol Agent Trichoderma harzianum sensu stricto TR274

    Energy Technology Data Exchange (ETDEWEB)

    Steindorff, Andrei S.; Noronha, Elilane F.; Ulhoa, Cirano J.; Kuo, Alan; Salamov, Asaf A.; Haridas, Sajeet; Riley, Robert W.; Druzhinina, Irina S.; Kubicek, Christian P.; Grigoriev, Igor V.

    2015-03-17

    Biological control is a complex process which requires many mechanisms and a high diversity of biochemical pathways. The species of Trichoderma harzianum are well known for their biocontrol activity against many plant pathogens. To gain new insights into the biocontrol mechanism used by T. harzianum, we sequenced the isolate TR274 genome using Illumina. The assembly was performed using AllPaths-LG with a maximum coverage of 100x. The assembly resulted in 2282 contigs with a N50 of 37033bp. The genome size generated was 40.8 Mb and the GC content was 47.7%, similar to other Trichoderma genomes. Using the JGI Annotation Pipeline we predicted 13,932 genes with a high transcriptome support. CEGMA tests suggested 100% genome completeness and 97.9% of RNA-SEQ reads were mapped to the genome. The phylogenetic comparison using orthologous proteins with all Trichoderma genomes sequenced at JGI, corroborates the Trichoderma (T. asperellum and T. atroviride), Longibrachiatum (T. reesei and T. longibrachiatum) and Pachibasium (T. harzianum and T. virens) section division described previously. The comparison between two Trichoderma harzianum species suggests a high genome similarity but some strain-specific expansions. Analyses of the secondary metabolites, CAZymes, transporters, proteases, transcription factors were performed. The Pachybasium section expanded virtually all categories analyzed compared with the other sections, specially Longibrachiatum section, that shows a clear contraction. These results suggests that these proteins families have an important role in their respective phenotypes. Future analysis will improve the understanding of this complex genus and give some insights about its lifestyle and the interactions with the environment.

  9. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species

    Science.gov (United States)

    Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E.; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R.; Hernández-Oñate, Miguel; Kruszewska, Joanna S.; Lawry, Robert; Mora-Montes, Hector M.; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R.; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J. Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio

    2016-01-01

    SUMMARY The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for “hot topic” research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway. PMID:26864432

  10. SELEKSI DAN UJI ANTAGONISME TRICHODERMA SPP. ISOLAT TAHAN FUNGISIDA NABATI TERHADAP PERTUMBUHAN PHYTOPHTHORA CAPSICI

    Directory of Open Access Journals (Sweden)

    Joko Prasetyo, Efri & Radix Suharjo .

    2011-11-01

    Full Text Available Screening and testing of isolate of Trichoderma spp. resistant to botanical fungicides on the growth of P. capsici. The research was conducted at the Plant Disease laboratory, Plant Protection Department, Faculty of Agriculture, Lampung University from March – November 2007. The aim of the research was to find isolate of Trichoderma spp. resistant to botanical fungicide  which still have its capability to inhibit the growth of P. capsici. Completely randomized design with three replicates was used in the research. Data collected in this research were isolates of Trichoderma spp. resistant to botanical fungicides and inhibition percentage of isolates of Trichoderma spp. resistant to botanical fungicide on the growth of P. capsici. The data were analysed with anova and continued with LSD test at 5% of significant level. As much as 9 isolates of Trichoderma spp. resistant to botanical fungicide were found. Three isolates of T. viride could survive in the 100% of tumeric powder (C, east indian galangale powder (A, and clove leaf powder (B. Two isolates of T. harzianum could survive in the 100% of tumeric powder (A and clove leaf powder (A. One isolate survived in the 90% of east indian galangale powder (D. Two isolates of T. koningii also could survive in the 100% of tumeric powder (A  and clove leaf powder (A. One isolate survived in the 90% of east indian galangale powder (C. All of the isolates  inhibited  P. capsici. All of the isolates found statistically had the same capability to inhibit the growth of P. capsici.

  11. Trichoderma sp Native from Chili Region of Poanas, Durango, Mexico Antagonist against Phytopathogen Fungi

    Directory of Open Access Journals (Sweden)

    Gabriela B. Valencia

    2011-01-01

    Full Text Available Problem statement: Presence of Trichoderma spp. in agricultural soils decrease incidence of diseases by phytopathogen fungi. Sanity diagnostic require to know if exist beneficial microorganism and what agricultural practices help to their propagation. Approach: Samples (30 were taken from soils and sick plants of ten sites in four localities of Valley of Poanas. Phytophthora capsici Leo, Rhizoctonia solani Kuhn and Trichoderma sp were isolated in agar V8 and were identified by microscopy. Results: In the 30 samples analyzed the presence of Phytophthora capsici Leo and Rhizoctonia solani Kuhn was determined. Two isolations of Trichoderma sp were obtained from soil, they had antagonist activity against to P. capsici and R. solani on agar-V8 medium and showed chitinase activity. Sugar production in chitinase (10 mg.mL-1 by crude extract of Trichoderma growth in basal medium more chitin was determined. The average of sugar production from strains were 0.1175 and 0.1125 mg.mL-1 and standard deviations were 0.0567 and 0.0567 in four repetition. Interviews were applied to fifty farmers about cultivars and cultivation practices. At least seven types of chili were cultivated in the region of the Valley of Poanas, inorganic fertilization, irrigation systems by channel, gates and pumps were used. One hundred percent of farmers reported diseases of Damping off and Phytophthora root. Biocides were not used to control these diseases. Conclusion: The natural presence of Trichoderma spp was detected in Valley of Poanas, but some practices as inorganic fertilization and irrigation system can be contributing to propagation of phytopathogen fungi.

  12. Biocontrol de la pudrición de raíz de nochebuena de interior con Trichoderma spp. Root rot biocontrol for indoor poinsettia with Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Felipe de Jesús Osuna-Canizalez

    2012-06-01

    Full Text Available En Morelos, la pudrición de la raíz causada por Fusarium spp., es una de las principales enfermedades de la nochebuena de interior. Por su efecto devastador, en su prevención o control se realizan aplicaciones frecuentes de productos químicos, con los riesgos inherentes a la salud humana y al ambiente. En la búsqueda de alternativas bioracionales al manejo de esta enfermedad, se realizó un ensayo en el que se evaluaron tres cepas comerciales de Trichoderma spp., en tres diferentes sustratos: S1= "tierra de hoja" (70% v/v+tezontle grueso (15% v/v+tezontle fino (10% v/v+agrolita (5% v/v; S2= turba (80% v/v+ fibra de coco (20% v/v; S3= "tierra de hoja" (70% + "tepojal" (30%, en las variedades comerciales más comunes, Freedom Red y Prestige Red. Se utilizó un diseño factorial de tratamientos 4 x 3 x 2 y los tratamientos resultantes se evaluaron en un diseño completamente al azar con seis repeticiones. Respecto a la incidencia de pudrición de la raíz, las cepas comerciales de Trichoderma spp., no mostraron diferencias entre sí ni con el testigo químico. La pudrición de la raíz estuvo asociada con S2, debido a una baja capacidad de aireación, y sólo se presentó en Prestige Red. La población (UFC g-¹ de Trichoderma spp., en el sustrato al término del ciclo, fue igual (pIn Morelos, root rot caused by Fusarium spp., is one of the main diseases of indoor poinsettia. In order to prevent or control its devastating effect, frequent applications of chemical products are performed, with inherent risks to human health and environment. In quest for alternative biorational options, an essay in which three commercial strains of Trichoderma spp., was done, in three different substrates: S1= "organic soil" (70% v/v+thick tezontle (15% v/v+thin tezontle (10% v/v+agrolita (5% v/v; S2= peat moss (80% v/v+ coconut fiber (20% v/v; S3= "organic soil" (70%+"tepojal" (30%, in most common commercial varieties, Freedom Red and Prestige Red. A factorial

  13. Antagonistic Activity of Trichoderma ISolates against Sclerotium rolfsii : Screening of Efficient Isolates from Morocco Soils for Biological Control

    Directory of Open Access Journals (Sweden)

    N. Khattabi

    2004-12-01

    Full Text Available Seventy Trichoderma spp. isolates collected from different regions of Morocco were tested for their capacity to inhibit in vitro mycelial growth of Sclerotium rolfsii, and for their effect on the viability of S. rolfsii sclerotia in the soil. The Trichoderma spp. isolates inhibited mycelial growth of S. rolfsii to various degrees, with 52% of isolates expressing an average inhibition, varying between 45 and 55%. The effect on the viability of sclerotia in the soil also varied between isolates of Trichoderma, with the majority (84% having a slight effect. A group of twenty isolates identified as Trichoderma harzianum when tested in sterilized soil, significantly reduced sclerotial viability though not in natural soil. Four of these isolates (Nz, Kb2, Kb3 and Kf1 showed good antagonistic activity against S. rolfsii and were also highly competitive in natural soil. These isolates would therefore be candidates for development in biological control program.

  14. Changes in hyphal morphology and activity of phenoloxidases during interactions between selected ectomycorrhizal fungi and two species of Trichoderma.

    Science.gov (United States)

    Mucha, Joanna

    2011-06-01

    Patterns of phenoloxidase activity can be used to characterize fungi of different life styles, and changes in phenoloxidase synthesis were suspected to play a role in the interaction between ectomycorrhizal and two species of Trichoderma. Confrontation between the ectomycorrhizal fungi Amanita muscaria and Laccaria laccata with species of Trichoderma resulted in induction of laccase synthesis, and the laccase enzyme was bound to mycelia of ectomycorrhizal fungi. Tyrosinase release was noted only during interaction of L. laccata strains with Trichoderma harzianum and T. virens. Ectomycorrhizal fungi, especially strains of Suillus bovinus and S. luteus, inhibited growth of Trichoderma species and caused morphological changes in its colonies in the zone of interaction. In contrast, hyphal changes occurred less often in the ectomycorrhizal fungi tested. Species of Suillus are suggested to present a different mechanism in their interaction with other fungi than A. muscaria and L. laccata.

  15. Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse

    OpenAIRE

    Fadel,Hoda Hanem Mohamed; Mahmoud,Manal Gomaa; Asker,Mohsen Mohamed Selim; Lotfy,Shereen Nazeh

    2015-01-01

    Background Sugarcane bagasse was shown to be an adequate substrate for the growth and aroma production by Trichoderma species. In the present work the ability of Trichoderma viride EMCC-107 to produce high yield of coconut aroma in solid state fermentation (SSF) by using sugarcane bagasse as solid substrate was evaluated. The produced aroma was characterized. Results Total carbohydrates comprised the highest content (43.9% w/w) compared with the other constituents in sugarcane bagasse. The se...

  16. Effet inhibiteur in vitro et in vivo du Trichoderma harzianum sur Fusarium oxysporum f. sp. Radicis-lycopersici

    OpenAIRE

    El Mahjoub M.; Khiareddine H.; Daami-Remadi M.; Hibar K.,

    2005-01-01

    In vitro and in vivo antagonistic effect of Trichoderma harzianum against Fusarium oxysporum f. sp. radicis-lycopersici. Tests of direct confrontation, on PDA medium or remote confrontation, between Fusarium oxysporum f. sp. radicislycopersici and Trichoderma harzianum, revealed that the latest has inhibited mycelial growth of the pathogen by more than 65% compared to the control and this after an incubation period of about four days at 25°C. Moreover, beyond this period and after six days, T...

  17. Characterization of a mitogen-activated protein kinase gene from cucumber required for trichoderma-conferred plant resistance.

    Science.gov (United States)

    Shoresh, Michal; Gal-On, Amit; Leibman, Diana; Chet, Ilan

    2006-11-01

    The fungal biocontrol agent Trichoderma asperellum has been recently shown to induce systemic resistance in plants through a mechanism that employs jasmonic acid and ethylene signal transduction pathways. Mitogen-activated protein kinase (MAPK) proteins have been implicated in the signal transduction of a wide variety of plant stress responses. Here we report the identification and characterization of a Trichoderma-induced MAPK (TIPK) gene function in cucumber (Cucumis sativus). Similar to its homologs, wound-induced protein kinase, MPK3, and MPK3a, TIPK is also induced by wounding. Normally, preinoculation of roots with Trichoderma activates plant defense mechanisms, which result in resistance to the leaf pathogen Pseudomonas syringae pv lachrymans. We used a unique attenuated virus vector, Zucchini yellow mosaic virus (ZYMV-AGII), to overexpress TIPK protein and antisense (AS) RNA. Plants overexpressing TIPK were more resistant to pathogenic bacterial attack than control plants, even in the absence of Trichoderma preinoculation. On the other hand, plants expressing TIPK-AS revealed increased sensitivity to pathogen attack. Moreover, Trichoderma preinoculation could not protect these AS plants against subsequent pathogen attack. We therefore demonstrate that Trichoderma exerts its protective effect on plants through activation of the TIPK gene, a MAPK that is involved in signal transduction pathways of defense responses.

  18. Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress.

    Science.gov (United States)

    Shukla, Nandani; Awasthi, R P; Rawat, Laxmi; Kumar, J

    2012-05-01

    Rice is one of the most important food crops drastically affected by drought in lowland rice ecosystems. In the present study, the impact of drought tolerant isolates of endophytic fungus Trichoderma harzianum on rice response to drought was investigated. Out of 43 Trichoderma isolates studied, only five isolates viz., Th 56, Th 69, Th 75, Th 82 and Th 89 were selected to be drought tolerant as these were able to colonize well on cow dung at low moisture content of 10-20 percent, though two isolates, Th 56 and Th 75, grew even at 5 percent moisture content. Trichoderma-colonized rice seedlings were slower to wilt in response to drought. Colonization delayed drought induced changes like stomatal conductance, net photosynthesis and leaf greenness. Drought conditions varying from 3 to 9 days of withholding water led to an increase in the concentration of many stress induced metabolites in rice leaves and decrease of MSI, while Trichoderma colonization caused a decrease in proline, MDA and H₂O₂ contents, and increase in phenolics concentration and MSI. Among test isolates, Th 56 induced maximum drought tolerance as treated plants recorded only 20-40 percent wilting even at 9 DDS. With or without exposure to drought, colonization by Trichoderma promoted seedling growth, with Th 56 giving the most consistent effect. The primary direct effect of Trichoderma colonization was promotion of root growth, regardless of water status, which caused delay in the drought responses of rice plants.

  19. Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma when Confronted with Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2016-11-01

    Full Text Available Deoxynivalenol (DON is a mycotoxin mainly produced by the Fusarium graminearum complex, which are important phytopathogens that can infect crops and lead to a serious disease called Fusarium head blight (FHB. As the most common B type trichothecene mycotoxin, DON has toxic effects on animals and humans, which poses a risk to food security. Thus, efforts have been devoted to control DON contamination in different ways. Management of DON production by Trichoderma strains as a biological control-based strategy has drawn great attention recently. In our study, eight selected Trichoderma strains were evaluated for their antagonistic activities on F. graminearum by dual culture on potato dextrose agar (PDA medium. As potential antagonists, Trichoderma strains showed prominent inhibitory effects on mycelial growth and mycotoxin production of F. graminearum. In addition, the modified mycotoxin deoxynivalenol-3-glucoside (D3G, which was once regarded as a detoxification product of DON in plant defense, was detected when Trichoderma were confronted with F. graminearum. The occurrence of D3G in F. graminearum and Trichoderma interaction was reported for the first time, and these findings provide evidence that Trichoderma strains possess a self-protection mechanism as plants to detoxify DON into D3G when competing with F. graminearum.

  20. Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma when Confronted with Fusarium graminearum

    Science.gov (United States)

    Tian, Ye; Tan, Yanglan; Liu, Na; Yan, Zheng; Liao, Yucai; Chen, Jie; de Saeger, Sarah; Yang, Hua; Zhang, Qiaoyan; Wu, Aibo

    2016-01-01

    Deoxynivalenol (DON) is a mycotoxin mainly produced by the Fusarium graminearum complex, which are important phytopathogens that can infect crops and lead to a serious disease called Fusarium head blight (FHB). As the most common B type trichothecene mycotoxin, DON has toxic effects on animals and humans, which poses a risk to food security. Thus, efforts have been devoted to control DON contamination in different ways. Management of DON production by Trichoderma strains as a biological control-based strategy has drawn great attention recently. In our study, eight selected Trichoderma strains were evaluated for their antagonistic activities on F. graminearum by dual culture on potato dextrose agar (PDA) medium. As potential antagonists, Trichoderma strains showed prominent inhibitory effects on mycelial growth and mycotoxin production of F. graminearum. In addition, the modified mycotoxin deoxynivalenol-3-glucoside (D3G), which was once regarded as a detoxification product of DON in plant defense, was detected when Trichoderma were confronted with F. graminearum. The occurrence of D3G in F. graminearum and Trichoderma interaction was reported for the first time, and these findings provide evidence that Trichoderma strains possess a self-protection mechanism as plants to detoxify DON into D3G when competing with F. graminearum. PMID:27854265

  1. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Science.gov (United States)

    Ribera, Javier; Fink, Siegfried; Bas, Maria Del Carmen; Schwarze, Francis W M R

    2017-01-01

    The production of new generation of wood preservatives (without addition of a co-biocide) in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720) was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium). T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%). Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens previously exposed to T

  2. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Miguel Angel eSalas-Marina

    2015-02-01

    Full Text Available Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growth in tomato (Solanum lycopersicum plants. T. virens was more effective than T. atroviride in promoting biomass gain, and both fungi were capable of inducing systemic protection in tomato against Alternaria solani, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst DC3000. Deletion (KO of epl1 in T. atroviride resulted in diminished systemic protection against A. solani and B. cinerea, whereas the T. virens sm1 KO strain was less effective in protecting tomato against Pst DC3000 and B. cinerea. Importantly, over-expression (OE of epl1 and sm1 led to an increase in disease resistance against all tested pathogens. Although the Trichoderma WT strains induced both systemic acquired resistance (SAR- and induced systemic resistance (ISR-related genes in tomato, inoculation of plants with OE and KO strains revealed that Epl1 and Sm1 play a minor role in the induction of these genes. However, we found that Epl1 and Sm1 induce the expression of a peroxidase and an α-dioxygenase encoding genes, respectively, which could be important for tomato protection by Trichoderma spp. Altogether, these observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought.

  3. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M.; Negro, M. J.; Saez, R.; Martin, C.

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  4. Inoculação de sementes de milho utilizando o Trichoderma harzianum como promotor de crescimento Corn seed inoculation using Trichoderma harzianum as a growth promoter

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Resende

    2004-08-01

    Full Text Available Conduziu-se este trabalho com o objetivo de estudar o efeito do fungo Trichoderma harzianum como promotor de crescimento de sementes de milho tratadas com diferentes fungicidas. O experimento foi realizado em vasos em casa-de-vegetação, adotando o delineamento experimental inteiramente casualizado em esquema fatorial (3x2, utilizando os tratamentos com fungicidas: Captan®, Maxim® e testemunha e inoculação (com e sem inóculo em quatro repetições. As características agronômicas avaliadas foram: altura de planta, peso da matéria seca da parte aérea e de raízes e também a técnica de isolamento do fungo nas raízes aos 45 dias após semeadura. Observou-se diferença significativa somente para o fator inóculo na característica peso de matéria seca de raízes. Pelos resultados obtidos, verificou-se que o fungo Trichoderma harzianum estimulou maior acúmulo de matéria seca nas raízes das plantas de milho e também estava presente nas raízes das plantas oriundas de sementes inoculadas, independentemente do tratamento fungicida das sementes.The objective of this work was to study the effect of the fungus Trichoderma harzianum as a growth promoter on the corn seeds treated with different fungicides. This experiment was carried out in pots in a greenhouse by adopting the experimental completely randomized design in (3 X 2 factorial scheme, by utilizing the treatments with fungicides: Captan®, Maximim® and control and inoculation (with and without an inoculum with four replicates. The agronomic characteristics evaluated were: plant height, shoot and root dry matter weight and also the inoculum isolation technique on the rots after sowing. Significant differences were found only for the factor inoculum in the characteristic root dry matter weight. The results obtained revealed that the fungus Trichoderma harzianum stimulated greatest dry matter accumulation in the roots of corn plants and also it was present in the roots of plants from

  5. Identification of Trichoderma Species on Mushrooms%食用菌木霉种类鉴定

    Institute of Scientific and Technical Information of China (English)

    贺字典; 孙焕顷; 高玉峰

    2008-01-01

    从不同食用菌上分离到57株木霉,按Rifai和Bissett的分类系统共鉴定出6种木霉:康氏木霉(Tri-choderma koningii)、拟康木霉(Trichoderma pseudokoningii)、哈茨木霉(Trichodema harzianum)、桔绿木霉(Tri-choderma citrinviride)、长枝木霉(Trichoderma longibrachiatum)和非钩木霉(Trichodema inhamatum).首次从白灵菇的培养基质上分离到了非钩木霉、康氏木霉和拟康木霉,后两种是食用菌上木霉的优势种,分别占总菌株数的50.87%和26.32%.

  6. Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity

    Science.gov (United States)

    Tripathi, R. M.; Gupta, Rohit Kumar; Shrivastav, Archana; Singh, M. P.; Shrivastav, B. R.; Singh, Priti

    2013-09-01

    The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV-Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8-24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity.

  7. Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media.

    Science.gov (United States)

    Vargas Gil, S; Pastor, S; March, G J

    2009-01-01

    Soil biodiversity plays a key role in the sustainability of agriculture systems and indicates the level of health of soil, especially when considering the richness of microorganisms that are involved in biological control of soilborne diseases. Cultural practices may produce changes in soil microflora, which can be quantified through the isolation of target microorganisms. Rhizosphere soil samples were taken from an assay with different crop rotations and tillage systems, and populations of Trichoderma spp., Gliocladium spp. and actinomycetes were quantified in order to select the general and selective culture media that better reflect the changes of these microbial populations in soil. The most efficient medium for the isolation of Trichoderma spp. and Gliocladium spp. was potato dextrose agar modified by the addition of chloramphenicol, streptomycin and rose bengal, and for actinomycetes was Küster medium, with cycloheximide and sodium propionate.

  8. Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods

    Directory of Open Access Journals (Sweden)

    Camila Florencio

    2016-09-01

    Full Text Available The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as inducer for enzyme production. The proteins were organized according to the families described in CAZy database as cellulases, hemicellulases, proteases/peptidases, cell-wall-protein, lipases, others (catalase, esterase, etc., glycoside hydrolases families, predicted and hypothetical proteins. Further detailed analysis of this data is provided in “Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation process: enzyme production for sugarcane bagasse hydrolysis” C. Florencio, F.M. Cunha, A.C Badino, C.S. Farinas, E. Ximenes, M.R. Ladisch (2016 [1].

  9. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei.

    Science.gov (United States)

    Bischof, Robert H; Ramoni, Jonas; Seiboth, Bernhard

    2016-06-10

    More than 70 years ago, the filamentous ascomycete Trichoderma reesei was isolated on the Solomon Islands due to its ability to degrade and thrive on cellulose containing fabrics. This trait that relies on its secreted cellulases is nowadays exploited by several industries. Most prominently in biorefineries which use T. reesei enzymes to saccharify lignocellulose from renewable plant biomass in order to produce biobased fuels and chemicals. In this review we summarize important milestones of the development of T. reesei as the leading production host for biorefinery enzymes, and discuss emerging trends in strain engineering. Trichoderma reesei has very recently also been proposed as a consolidated bioprocessing organism capable of direct conversion of biopolymeric substrates to desired products. We therefore cover this topic by reviewing novel approaches in metabolic engineering of T. reesei.

  10. Effect of microelement and chemical fungicides on biocontrol effect of Trichoderma T23

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Jing-hua; GAO Zeng-gui; YANG Chang-cheng; LIU Xian; CHEN Jie

    2004-01-01

    @@ Recently there have been many reports about soil diseases controlled by Trichoderma, but few could be applied on agriculture production in large areas. T23 isolated from soil around plant roots in the field by Biopesticide Engineering Center of Shenyang Agricultural University could control effectively Cucurbits Fusarium Wilt. The effects of 9 microelements which include copper, zinc, iron, boron,molybdenum, calcium, manganese, magnesium, potassium and frequently-used chemical fungicides,such as-carbendazim, thiram, thiophanate-methyl, chlorothalonil and hymexazol on the growth and the amounts of spores of Fusarium oxysporum FJ and Trichoderma T23 were studied. The effects of those factors on control effect of T23 to melon diseases were discussed and gave basis for the screening of synergistic agents and fungicides in controlling synergistically the pathogen.

  11. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran

    DEFF Research Database (Denmark)

    Bech, Lasse; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    Trichoderma asperellum is a filamentous fungus that is able to produce and secrete a wide range of extracellular hydrolytic enzymes used for plant cell wall degradation. The Trichoderma genus has attracted considerable attention from the biorefinery industry due to the production of cell wall...... degrading enzymes and strong secretion ability of this genus. Here we report extensive transcriptome analysis of plant cell wall degrading enzymes in T. asperellum. The production of cell wall degrading enzymes by T. asperellum was tested on a range of cellulosic materials under various conditions. When T...... the theory that the glycoside hydrolases have evolved from a common ancestor, followed by a specialization in which saprotrophic fungi such as T. reesei and T. longibrachiatum lost a significant number of genes including several glycoside hydrolases....

  12. Trichoderma harzianum as a biocontrol agent against Alternaria alternata on tobacco

    Directory of Open Access Journals (Sweden)

    Jugoslav Ziberoski

    2012-06-01

    Full Text Available Trichoderma fungi are the most popular agents used in a biological control. Therefore, our aim was to determine an impact of Trichoderma harzianum on the fungus Alternaria alternata - a causing agent of the brown spot disease on tobacco. In vitro analyses were made in several variants of double culture, in order to study the effect of difusible and volatile metabolites. There was strong reducing effect on the development of A.alternata with various mechanisms of antagonistic influence. The volatile metabolites have also shown reducing effect. Some abnormalities were observed in the pathogen's morphology both in difusible and volatile metabolites. The strong reducing effect of T.harzianum towards A. alternata can be applied in biological control of this pathogen.

  13. Primary Study on Biological Control Potential of Trichoderma harzianum TL-1

    Institute of Scientific and Technical Information of China (English)

    Su; Zhenyu; Xiao; Man; Gao; Xinzheng; Tang; Libo; Li; Li

    2014-01-01

    Trichoderma harzianum is a widely used biocontrol fungus. The growth promoting effect of strain Trichoderma harzianum TL-1 on tomato and pepper and its biological control effects against tomato seedling damping-off and pepper blight were investigated through pot experiments. The results showed that the stain TL-1 had significant promotion effect on growth of pepper and tomato in sterilized and natural soils. With the application dose of 3. 0 and 0. 5g/ pot,their dry weight were increased up to 46% and 150% compared with control,respectively. In addition,TL-1 had good control effects against tomato seedling damping-off and pepper blight. Compared with fungicide treatment,TL-1 treatment could control diseases for long term,without repeat occurrence of diseases.

  14. How a Mycoparasite Employs G-Protein Signaling: Using the Example of Trichoderma

    Directory of Open Access Journals (Sweden)

    Markus Omann

    2010-01-01

    Full Text Available Mycoparasitic Trichoderma spp. act as potent biocontrol agents against a number of plant pathogenic fungi, whereupon the mycoparasitic attack includes host recognition followed by infection structure formation and secretion of lytic enzymes and antifungal metabolites leading to the host's death. Host-derived signals are suggested to be recognized by receptors located on the mycoparasite's cell surface eliciting an internal signal transduction cascade which results in the transcription of mycoparasitism-relevant genes. Heterotrimeric G proteins of fungi transmit signals originating from G-protein-coupled receptors mainly to the cAMP and the MAP kinase pathways resulting in regulation of downstream effectors. Components of the G-protein signaling machinery such as G subunits and G-protein-coupled receptors were recently shown to play crucial roles in Trichoderma mycoparasitism as they govern processes such as the production of extracellular cell wall lytic enzymes, the secretion of antifungal metabolites, and the formation of infection structures.

  15. Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions

    Directory of Open Access Journals (Sweden)

    Goldman Maria Helena S.

    1998-01-01

    Full Text Available The mycoparasite Trichoderma harzianum produces an alkaline proteinase that may be specifically involved in mycoparasitism. We have constructed transformant strains of this fungus that overexpress this alkaline proteinase. Some of the transformants were assessed for alkaline proteinase activity, and those with higher activity than the wild type were selected for further studies. One of these transformant strains produced an elevated and constitutive pbr1 mRNA level during mycoparasitic interactions with Rhizoctonia solani.

  16. Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06.

    Science.gov (United States)

    Nor, Nurafifah Mohd; Hadibarata, Tony; Zubir, Meor Mohd Fikri Ahmad; Lazim, Zainab Mat; Adnan, Liyana Amalina; Fulazzaky, Mohamad Ali

    2015-11-01

    Cresol Red belongs to the triphenylmethane (TPM) class of dyes which are potentially carcinogenic or mutagenic. However, very few studies on biodegradation of Cresol Red were investigated as compared to other type dyes such as azo and anthraquinone dye. The aim of this work is to evaluate triphenylmethane dye Cresol Red degradation by fungal strain isolated from the decayed wood in Johor Bahru, Malaysia. Detailed taxonomic studies identified the organisms as Trichoderma species and designated as strain Trichoderma harzianum M06. In this study, Cresol Red was decolorized up to 88% within 30 days under agitation condition by Trichoderma harzianum M06. Data analysis revealed that a pH value of 3 yielded a highest degradation rate among pH concentrations (73%), salinity concentrations of 100 g/L (73%), and a volume of 0.1 mL of Tween 80 (79%). Induction in the enzyme activities of manganese peroxidase, lignin peroxidase, laccase, 1,2- and 2,3-dioxygenase indicates their involvement in Cresol Red removal. Various analytical studies such as Thin-Layer Chromatography (TLC), UV-Vis spectrophotometer, and Gas chromatography mass spectrometry (GC-MS) confirmed the biotransformation of Cresol Red by the fungus. Two metabolites were identified in the treated medium: 2,4-dihydroxybenzoic acid (t R 7.3 min and m/z 355) and 2-hydroxybenzoic acid (t R 8.6 min and m/z 267). Based on these products, a probable pathway has been proposed for the degradation of Cresol Red by Trichoderma harzianum M06.

  17. Effects of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride.

    Science.gov (United States)

    Daryaei, A; Jones, E E; Ghazalibiglar, H; Glare, T R; Falloon, R E

    2016-04-01

    The goal was to determine the effect of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride LU132 against Rhizoctonia solani. The incubation temperatures of 20, 25 or 30°C were assessed on the production of T. atroviride conidia under constant light over a 25 and 50 days periods. The resulting conidia were also studied for germination and bioactivity. Conidium production was maximum at 25°C after 20 days. The second peak of conidium production occurred at 45-50 days. Incubation at 25°C after 15 days showed optimum production of T. atroviride LU132. Conidia produced at 30°C gave the greatest germination and bioactivity in comparison with incubation at 20 or 25°C. This study indicates that the temperature at which conidia of T. atroviride are produced affects germination and bioactivity. Formulations based on production of the high conidia yield may not result in optimal bioactivity and there is a trade-off between quantity and quality of T. atroviride LU132 conidia. Conidium production was shown to be a continuous process, and increased under a dark/light regime. This is the first report of bimodal conidium production in a Trichoderma biological control agent (BCA), which is likely to be on 20 days cycle, and is dependent on colony age rather than abiotic factors. Conidia produced after 15 days are likely to be the most suitable for use in commercial production of this strain as a BCA. Most studies on Trichoderma-based BCA have only shown the effect of culture conditions on the high conidia yield regardless of conidium quality. This study is the first report on conidium quality affected by principal culture conditions for Trichoderma biological control formulations. © 2016 The Society for Applied Microbiology.

  18. Construction of new GFP-tagged fusants for Trichoderma harzianum with enhanced biocontrol activity

    Directory of Open Access Journals (Sweden)

    Kowsari Mojegan

    2014-07-01

    Full Text Available Trichoderma is one of the most exploited biocontrol agents for the management of plant diseases. In biocontrol ecology, the critical factors are detection, and the monitoring and recovery of specific biocontrol agents either naturally present or deliberately released into the environment. Protoplast fusion is an appropriate tool for the improvement of biocontrol Trichoderma strains. Protoplast isolation from Trichoderma harzianum was achieved using 24 h culture age, 6.6 mg/ml Novazym L 1412 at 30°C which resulted the maximum protoplast yield of 5 × 108/ml. The self-fused protoplasts were regenerated and 12 fusants were selected based on their growth rate on 2% colloidal chitin medium. Next, a comparison was done for chitinase and antagonistic activity. Transcriptomic analysis based on quantitative real-time RT-PCR, demonstrated that T8-05 fusant expressed 1.5 fold of chit42 transcript as compared with the parental line. This fusant with 7.02±0.15U chitinase activity showed a higher growth inhibition rate (100% than the parent strain, against Rhizoctonia solani. To obtain a genetically marked fusant that can be used as a biomonitor, the fusant was cotransformed with the gfp and amdS genes. The morphology and viability of selected cotransformant (FT8-7MK-05-2 was similar to the parent. Green fluorescing conidia were observed within the first 2 days of incubation in the soil, and this was followed by the formation of chlamydopores after 60 days. The colonisation of the gfp-tagged fusant was also monitored visually on R. solani sclerotia by scanning electron microscopy. Production of gfp-tagged fusant of Trichoderma spp. provides a potentially useful tool for monitoring hyphal growth patterns and the population of biocontrol agent isolates introduced into environmental systems.

  19. Cellulase Activity in Solid State Fermentation of Palm Kernel Cake with Trichoderma sp.

    Directory of Open Access Journals (Sweden)

    Massaud, M. B. N.

    2012-01-01

    Full Text Available Aims: The effect of different types of fungal inocula to the cellulase activity measured on palm kernel cake (PKC was studied. Methodology and Results: Isolate Pro-A1 which was identified as Trichoderma sp. was selected as a potential producer of cellulase via solid state fermentation technique (SSF. Two types of PKCs were used; raw PKC (containing residual oil and defatted PKC. The PKCs were inoculated with different concentrations of conidia and varying amounts (g of solid mycelia plugs (SMP for SSF. The effect of ultrafiltered crude fungal filtrate (CFF as inocula was also being tested. The highest cellulase activity of 2.454 FPU/mL was detected with 60% (wt/wt SMP applied to the raw PKC. Conversely, 2.059 FPU/mL of cellulase activity was measured when 80% (wt/wt of SMP was applied to the defatted PKC which is 62.3% higher than the untreated defatted PKC; and more than 100% increase in enzymatic activity compared to raw PKC. The cellulase activity in the SSF inoculated with 8 x 106 conidia /mL and 12 x 106 conidia /mL were 1.704 FPU/mL for raw PKC and 1.856 FPU/mL for defatted PKC, an enhancement of about 46% from uninoculated batch. Inoculation with CFF bears corresponding maximum improvement of the cellulase activity on both PKCs of 13.58% (raw and 2.86% (defatted. Conclusion, significance and impact of study: The current study proves that Trichoderma sp. in the form of SMP can enhance the cellulase activity on PKCs effectively with more than 100% increment. Fungal conidia are also a better choice in enhancing cellulase activity of Trichoderma sp. permitted that the PKC used is devoid of oil. From this study, Trichoderma sp. holds the potential of converting lignocellulosic materials into products of commercial and industrial values such as glucose and other biofuels.

  20. Efectos del Trichoderma sp. sobre el crecimiento y desarrollo de la arveja (Pisum sativum L.

    Directory of Open Access Journals (Sweden)

    David Fernando Camargo-Cepeda

    2015-04-01

    Full Text Available Se estima que el cultivo de arveja en Colombia genera alrededor de 2,3 millones de jornales y unos 15.000 empleos directos; de él dependen más de 26.000 productores (1. Ante la ausencia de alternativas de producción, el agricultor ha recurrido tradicionalmente a la aplicación de productos de síntesis química, práctica que cada vez se encuentra más restringida por razones económicas y ecológicas (2; por esto, se hace necesario encontrar nuevos modelos que contribuyan a mejorar la calidad de vida de los productores. El trabajo determinó los efectos de la aplicación de Trichoderma sp. sobre el crecimiento y desarrollo de la arveja. Se realizó el aislamiento de la cepa nativa de Trichoderma sp. a partir de suelo proveniente de cultivos de arveja; luego se procedió a hacer las diluciones tanto de Trichoderma sp. nativa como de la comercial; se inocularon las plantas y se realizó la medición de las variables de crecimiento y desarrollo. La aplicación de Trichoderma sp. comercial en el cultivo de arveja mejora notablemente su crecimiento y desarrollo, influyendo en variables fisiológicas como germinación, área foliar, peso seco y fresco de la raíz, peso seco y fresco de la parte aérea, y longitud de raíz.

  1. Molecular Identification Of Trichoderma Strains Collected To Develop Plant Growth-Promoting And Biocontrol Agents

    Directory of Open Access Journals (Sweden)

    Oskiera Michał

    2015-06-01

    Full Text Available Trichoderma strains that are beneficial to both the growth and health of plants can be used as plant growth-promoting fungi (PGPF or biological control agents (BCA in agricultural and horticultural practices. In order to select PGPF or BCA strains, their biological properties and taxonomy must be carefully studied. In this study, 104 strains of Trichoderma collected at geographically different locations in Poland for selection as PGPF or BCA were identified by DNA barcoding, based on the sequences of internal transcribed spacers 1 and 2 (ITS1 and 2 of the ribosomal RNA gene cluster and on the sequences of translation elongation factor 1 alpha (tef1, chitinase 18-5 (chi18-5, and RNA polymerase II subunit (rpb2 gene fragments. Most of the strains were classified as: T. atroviride (38%, T. harzianum (21%, T. lentiforme (9%, T. virens (9%, and T. simmonsii (6%. Single strains belonging to T. atrobrunneum, T. citrinoviride, T. crassum, T. gamsii, T. hamatum, T. spirale, T. tomentosum, and T. viridescens were identified. Three strains that are potentially pathogenic to cultivated mushrooms belonging to T. pleuroticola and T. aggressivum f. europaeum were also identified. Four strains: TRS4, TRS29, TRS33, and TRS73 were classified to Trichoderma spp. and molecular identification was inconclusive at the species level. Phylogeny analysis showed that three of these strains TRS4, TRS29, and TRS33 belong to Trichoderma species that is not yet taxonomically established and strain TRS73 belongs to the T. harzianum complex, however, the species could not be identified with certainty.

  2. Application of Statistical Design for the Production of Cellulase by Trichoderma reesei Using Mango Peel

    OpenAIRE

    Saravanan, P.; Muthuvelayudham, R.; Viruthagiri, T.

    2012-01-01

    Optimization of the culture medium for cellulase production using Trichoderma reesei was carried out. The optimization of cellulase production using mango peel as substrate was performed with statistical methodology based on experimental designs. The screening of nine nutrients for their influence on cellulase production is achieved using Plackett-Burman design. Avicel, soybean cake flour, KH2PO4, and CoCl2 ·6H2O were selected based on their positive influence on cellulase production. The com...

  3. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    Science.gov (United States)

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  4. Characterization of a protease produced by a Trichoderma harzianum isolate which controls cocoa plant witches' broom disease

    Directory of Open Access Journals (Sweden)

    Felix Carlos

    2002-01-01

    Full Text Available Abstract Background Several Trichoderma strains have been reported to be effective in controlling plant diseases, and the action of fungal hydrolytic enzymes has been considered as the main mechanism involved in the antagonistic process. However, although Trichoderma strains were found to impair development of Crinipellis perniciosa, the causal agent of cocoa plant witches' broom disease, no fungal strain is available for effective control of this disease. We have then undertaken a program of construction of hydrolytic enzyme-overproducing Trichoderma strains aiming improvement of the fungal antagonistic capacity. The protease of an indian Trichoderma isolate showing antagonistic activity against C. perniciosa was purified to homogeneity and characterized for its kinetic properties and action on the phytopathogen cell wall. Results A protease produced by the Trichoderma harzianum isolate 1051 was purified to homogeneity by precipitation with ammonium sulfate followed by hydrophobic chromatography. The molecular mass of this protease as determined by SDS-polyacrylamide gel electrophoresis was about 18.8 kDa. Its N-terminal amino acid sequence shares no homology with any other protease. The purified enzyme substantially affected the cell wall of the phytopathogen C. perniciosa. Western-blotting analysis showed that the enzyme was present in the culture supernatant 24 h after the Trichoderma started to grow in casein-containing liquid medium. Conclusions The capacity of the Trichoderma harzianum protease to hydrolyze the cell wall of C. perniciosa indicates that this enzyme may be actually involved in the antagonistic process between the two fungi. This fact strongly suggest that hydrolytic enzyme over-producing transgenic fungi may show superior biocontrol capacity.

  5. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains.

    Science.gov (United States)

    Chaverri, Priscila; Branco-Rocha, Fabiano; Jaklitsch, Walter; Gazis, Romina; Degenkolb, Thomas; Samuels, Gary J

    2015-01-01

    Trichoderma harzianum is known as a cosmopolitan, ubiquitous species associated with a wide variety of substrates. It is possibly the most commonly used name in agricultural applications involving Trichoderma, including biological control of plant diseases. While various studies have suggested that T. harzianum is a species complex, only a few cryptic species are named. In the present study the taxonomy of the T. harzianum species complex is revised to include at least 14 species. Previously named species included in the complex are T. guizhouense, T. harzianum, and T. inhamatum. Two new combinations are proposed, T. lentiforme and T. lixii. Nine species are described as new, T. afarasin, T. afroharzianum, T. atrobrunneum, T. camerunense, T. endophyticum, T. neotropicale, T. pyramidale, T. rifaii and T. simmonsii. We isolated Trichoderma cultures from four commercial biocontrol products reported to contain T. harzianum. None of the biocontrol strains were identified as T. harzianum s. str. In addition, the widely applied culture 'T. harzianum T22' was determined to be T. afroharzianum. Some species in the T. harzianum complex appear to be exclusively endophytic, while others were only isolated from soil. Sexual states are rare. Descriptions and illustrations are provided. A secondary barcode, nuc translation elongation factor 1-α (TEF1) is needed to identify species in this complex.

  6. Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe.

    Science.gov (United States)

    Błaszczyk, Lidia; Siwulski, Marek; Sobieralski, Krzysztof; Frużyńska-Jóźwiak, Dorota

    2013-07-01

    The present study includes the molecular characteristics of Trichoderma pleurotum and Trichoderma pleuroticola isolates collected from green moulded cereal straw substrates at 47 oyster mushroom farms in Poland. The screening of the 80 Trichoderma isolates was performed by morphological observation and by using the multiplex PCR assay. This approach enabled specific detection of 47 strains of T. pleurotum and 2 strains of T. pleuroticola. Initial identifications were confirmed by sequencing the fragment of internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) of the rRNA gene cluster and the fragment including the fourth and fifth introns and the last long exon of the translation-elongation factor 1-alpha (tef1) gene. ITS and tef1 sequence information was also used to establish the intra- and interspecies relationship of T. pleurotum and T. pleuroticola originating from the oyster mushroom farms in Poland and from other countries. Comparative analysis of the ITS sequences showed that all T. pleurotum isolates from Poland represent one haplotype, identical to that of T. pleurotum strains from Hungary and Romania. Sequence analysis of the tef1 locus revealed two haplotypes ("T" and "N") of Polish T. pleurotum isolates. The "T" type isolates of T. pleurotum were identical to those of strains from Hungary and Romania. The "N" type isolates possessed a unique tef1 allele. Detailed analysis of the ITS and tef1 sequences of two T. pleuroticola isolates showed their identicalness to Italian strain C.P.K. 1540.

  7. Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants.

    Science.gov (United States)

    Zhao, Lei; Wang, Fei; Zhang, Yaqing; Zhang, Jiaojiao

    2014-07-01

    Iron (Fe) deficiency is a major plant nutritional disorder in many parts of the world, particularly in areas with saline soils. Among the numerous root-associated microbes that are beneficial for plant nutrient uptake, Trichoderma spp. are the most effective rhizosphere fungi for enhancing plant growth and plant resistance to biotic and abiotic stresses. To investigate the potential mechanisms of action of Trichoderma on insoluble Fe in the soil, which is difficult for plants to absorb and utilize, a high siderophore-producing strain of Trichoderma T6, was isolated from the rhizosphere of cucumber plants. The strain was identified as T. asperellum based on the morphological features and molecular phylogenetic analyses. Applying strain T6 to sterile soil could increase soil levels of Fe(2+) and siderophores, as well as increase Fe(2+) and Fe(3+)-chelate reductase (FCR) activity in cucumber tissues. Purified siderophore eluent (PSE) increased plant growth, thus confirming its role in plant growth promotion. Moreover, extracellular Fe(3+) reducing activity and three kinds of organic acids were detected in the culture filtrate of strain T6. These results indicate that strain T6 influences plant Fe absorption in several ways. Siderophore-based Fe chelation is effective in providing Fe to plants, organic acids, and Fe(3+) reducing enzymes may participate in the solubilization and reduction of insoluble Fe(3+) to Fe(2+).

  8. Phosphogypsum biotransformation by aerobic bacterial flora and isolated Trichoderma asperellum from Tunisian storage piles

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Jihen [Research Unit “Coastal and Urban Environments” National Engineering School of Sfax, BP 1173, 3038 Sfax (Tunisia); Tunisian Chemical Group, M’Dhilla-Gafsa factory, B.P. 215, 2100 Gafsa (Tunisia); Magdich, Salwa; Jarboui, Raja [Research Unit “Coastal and Urban Environments” National Engineering School of Sfax, BP 1173, 3038 Sfax (Tunisia); Loungou, Mouna [Tunisian Chemical Group, M’Dhilla-Gafsa factory, B.P. 215, 2100 Gafsa (Tunisia); Ammar, Emna, E-mail: ammarenis@yahoo.fr [Research Unit “Coastal and Urban Environments” National Engineering School of Sfax, BP 1173, 3038 Sfax (Tunisia)

    2016-05-05

    Highlights: • The enrichment culture on PG enabled the development of microorganisms. • The isolated Trichoderma asperellum grew on PG concentration at 200 g L{sup −1}. • At 200 g L{sup −1} PG concentration, the experimented strain reduced COD by 52.32%. • Metals concentrations reduction reached a maximum of 73% for the zinc. • Trichoderma asperellum is an efficient microorganism for PG bioremediation. - Abstract: Aerobic microorganisms able to grow on phosphogypsum (PG), characterized by heavy metals accumulation and high acidity were investigated by enrichment cultures. The PG was used at different concentrations, varying from 20 to 200 g/L in the enrichment culture medium supplemented with compost and Tamarix roots. This treatment reduced COD and heavy metals PG concentration. An efficient isolated fungus, identified by molecular approach as Trichoderma asperellum, was able to grow on PG as the sole carbon and energy sources at the different experimented concentrations, and to increase the culture media pH of the different PG concentrations used to 8.13. This fact would be the result of alkaline compound released during the fungus PG solubilization. Besides, the heavy metals and COD removal exceeded 52% after 7 days culture. At 200 g/L PG concentration, the experimented strain was able to reduce COD by 52.32% and metals concentrations by 73% for zinc, 63.75% for iron and 50% for cadmium. This exhibited the T. asperellum efficiency for heavy metals accumulation and for phosphogypsum bioremediation.

  9. Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots.

    Science.gov (United States)

    Gupta, Kapuganti J; Mur, Luis A J; Brotman, Yariv

    2014-04-01

    Inoculations with saprophytic fungus Trichoderma spp. are now extensively used both to promote plant growth and to suppress disease development. The underlying mechanisms for both roles have yet to be fully described so that the use of Trichoderma spp. could be optimized. Here, we show that Trichoderma asperelloides effects include the manipulation of host nitric oxide (NO) production. NO was rapidly formed in Arabidopsis roots in response to the soil-borne necrotrophic pathogen Fusarium oxysporum and persisted for about 1 h but is only transiently produced (approximately 10 min) when roots interact with T. asperelloides (T203). However, inoculation of F. oxysporum-infected roots with T. asperelloides suppressed F. oxysporum-initiated NO production. A transcriptional study of 78 NO-modulated genes indicated most genes were suppressed by single and combinational challenge with F. oxysporum or T. asperelloides. Only two F. oxysporum-induced genes were suppressed by T. asperelloides inoculation undertaken either 10 min prior to or after pathogen infection: a concanavlin A-like lectin protein kinase (At4g28350) and the receptor-like protein RLP30. Thus, T. asperelloides can actively suppress NO production elicited by F. oxysporum and impacts on the expression of some genes reported to be NO-responsive. Of particular interest was the reduced expression of receptor-like genes that may be required for F. oxysporum-dependent necrotrophic disease development.

  10. Evaluation of indigenous Trichoderma isolates from Manipur as biocontrol agent against Pythium aphanidermatum on common beans.

    Science.gov (United States)

    Kamala, Th; Indira, S

    2011-12-01

    Pythium aphanidermatum is one of the common causal pathogen of damping-off disease of beans (Phaseolus vulgaris L.) grown in Manipur. A total of 110 indigenous Trichoderma isolates obtained from North east India were screened for their biocontrol activity which can inhibit the mycelial growth of P. aphanidermatum, the causal organism of damping-off in beans. Out of the total isolates, 32% of them showed strong antagonistic activity against P. aphanidermatum under in vitro condition and subsequently 20 best isolates were selected based on their mycelial inhibition capacity against P. aphanidermatum for further analysis. Different biocontrol mechanisms such as protease, chitinase, β-1,3-glucanase activity, cellulase and production of volatile and non-volatile compounds were also assayed. Based on their relative biocontrol potency, only three indigenous Trichoderma isolates (T73, T80 and T105) were selected for pot culture experiment against damping-off diseases in common beans. In greenhouse experiment, Trichoderma isolates T-105 significantly reduced the pre- and post-emergence damping-off disease incidence under artificial infection with P. aphanidermatum and showed highest disease control percentage.

  11. Partial purification and characterization of Xylanase from Trichoderma viride produced under SSF

    Directory of Open Access Journals (Sweden)

    M Irfan

    2012-03-01

    Full Text Available Summary: In the present study xylanase enzyme was produced from Trichoderma viride in solid state fermentation using sugarcane bagasse as a substrate. The whole fermentation process was carried out in 250ml Erlenmeyer flask at 30oC for seven days of fermentation period. The enzyme was partially purified by ammonium sulphate (60% fractionation followed by dialysis. The partially purified enzyme was further characterized showing optimum pH and temperature of 5.0 and 50oC respectively. Metal profile of the enzyme showed that it was stimulated by FeSO4 (134%, CaCl2 (129%, BaCl2 (105%, MgSO4 (113%, MnCl2 (102% or AgCl (107% and it was strongly inhibited by EDTA (26% or HgSO4 (32%. Industrial Relevance: In the present study, xylanase enzyme was produced and characterized from Trichoderma viride in solid state fermentation using cheap substrate. This enzyme is very helpful in industrial sector especially in pulp and paper industry, food industry and also in bioethanol production. Pilot scale production of this enzyme in industries can reduce the import cost of the enzyme and make the whole process cost effective. Keywords: Partial purification; Characterization; Xylanase; Trichoderma viride; SSF

  12. Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water.

    Science.gov (United States)

    Caporale, Antonio G; Sommella, Alessia; Lorito, Matteo; Lombardi, Nadia; Azam, Shah M G G; Pigna, Massimo; Ruocco, Michelina

    2014-09-15

    The influence of two strains of Trichoderma (T. harzianum strain T22 and T. atroviride strain P1) on the growth of lettuce plants (Lactuca sativa L.) irrigated with As-contaminated water, and their effect on the uptake and accumulation of the contaminant in the plant roots and leaves, were studied. Accumulation of this non-essential element occurred mainly into the root system and reduced both biomass development and net photosynthesis rate (while altering the plant P status). Plant growth-promoting fungi (PGPF) of both Trichoderma species alleviated, at least in part, the phytotoxicity of As, essentially by decreasing its accumulation in the tissues and enhancing plant growth, P status and net photosynthesis rate. Our results indicate that inoculation of lettuce with selected Trichoderma strains may be helpful, beside the classical biocontrol application, in alleviating abiotic stresses such as that caused by irrigation with As-contaminated water, and in reducing the concentration of this metalloid in the edible part of the plant.

  13. Biological Action of Plant Extracts on a Fungal Plant Biostimulant Strain of Trichoderma Viride

    Directory of Open Access Journals (Sweden)

    Şesan Tatiana Eugenia

    2015-11-01

    Full Text Available The antifungal activity of nine plant extracts manufactured by Hofigal Import Export S.A. Romania against the biocontrol fungal agent Trichoderma viride Pers. (isolate Tv 82 was assessed in vitro for the first time in Romania. In general, the development (mycelial growth and sporulation was not inhibited by the six plant extracts (Satureja hortensis, Achillea millefolium, Allium sativum, Mentha sp., Hyssopus officinalis, Artemisia dracunculus 'Sativa', with three exceptions (Rosmarinus officinalis, Valeriana officinalis, Tagetes patula, applied in a concentration of 20%. Among these, the extract of Tagetes patula has inhibited the Tv 82 development, applied as lower concentrations (10% and 5%, efficacy being 54.3% and 50%, respectively. In addition, the tested plant extracts of Satureja hortensis, Achillea millefolium, Mentha sp. proved stimulative effect on Tv 82 development. This approach add to the early studies on the selectivity of Trichoderma spp. to chemicals used in plant protection, new data referring to the use of antagonistic fungi, like Trichoderma spp., as a protective mean against phytopathogens. Also, these data sustain the possibility of applying plant extracts as an alternative in plant protection or to apply together chemical (pesticides and biological means (plant extracts especially to protect ecological crops, as vegetables, medicinal plants a.o.

  14. Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium.

    Science.gov (United States)

    Nongmaithem, Nabakishor; Roy, Ayon; Bhattacharya, Prateek Madhab

    2016-01-01

    Fourteen Trichoderma isolates were evaluated for their tolerance to two heavy metals, nickel and cadmium. Three isolates, MT-4, UBT-18, and IBT-I, showed high levels of nickel tolerance, whereas MT-4, UBT-18, and IBT-II showed better tolerance of cadmium than the other isolates. Under nickel stress, biomass production increased up to a Ni concentration of 60ppm in all strains but then decreased as the concentrations of nickel were further increased. Among the nickel-tolerant isolates, UBT-18 produced significantly higher biomass upon exposure to nickel (up to 150ppm); however, the minimum concentration of nickel required to inhibit 50% of growth (MIC50) was highest in IBT-I. Among the cadmium-tolerant isolates, IBT-II showed both maximum biomass production and a maximum MIC50 value in cadmium stress. As the biomass of the Trichoderma isolates increased, a higher percentage of nickel removal was observed up to a concentration of 40ppm, followed by an increase in residual nickel and a decrease in biomass production at higher nickel concentrations in the medium. The increase in cadmium concentrations resulted in a decrease in biomass production and positively correlated with an increase in residual cadmium in the culture broth. Nickel and cadmium stress also influenced the sensitivity of the Trichoderma isolates to soil fungistasis. Isolates IBT-I and UBT-18 were most tolerant to fungistasis under nickel and cadmium stress, respectively. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Identification and Characterization of Trichoderma Species Damaging Shiitake Mushroom Bed-Logs Infested by Camptomyia Pest.

    Science.gov (United States)

    Kim, Jun Young; Kwon, Hyuk Woo; Yun, Yeo Hong; Kim, Seong Hwan

    2016-05-28

    The shiitake mushroom industry has suffered from Camptomyia (gall midges) pest, which feeds on the mycelium of shiitake mushroom during its cultivation. It has been postulated that fungal damage of shiitake bed-logs is associated with infestation by the insect pest, but this is not well understood. To understand the fungal damage associated with Camptomyia pest, various Trichoderma species were isolated, identified, and characterized. In addition to two previously known Trichoderma species, T. citrinoviride and T. deliquescens, two other Trichoderma species, T. harzianum and T. atroviride, were newly identified from the pestinfested bed-log samples obtained at three mushroom farms in Cheonan, Korea. Among these four species, T. harzianum was the most evident. The results of a chromogenic media-based assay for extracellular enzymes showed that these four species have the ability to produce amylase, carboxyl-methyl cellulase, avicelase, pectinase, and β-glucosidase, thus indicating that they can degrade wood components. A dual culture assay on PDA indicated that T. harzianum, T. atroviride, and T. citrinoviride were antagonistic against the mycelial growth of a shiitake strain (Lentinula edodes). Inoculation tests on shiitake bed-logs revealed that all four species were able to damage the wood of bed-logs. Our results provide evidence that the four green mold species are the causal agents involved in fungal damage of shiitake bed-logs infested by Camptomyia pest.

  16. Biological control of Rhizoctonia solani on potato by using indigenous Trichoderma spp.

    Science.gov (United States)

    Durak, Emre Demirer

    2016-04-01

    At this study, it was aimed to determine the effect of Trichoderma isolates that was isolated from the soil samples taken from the different regions on black scurf and stem canker disease caused by Rhizoctonia solani Kühn that has been one of the biggest problems of the potato cultivation. At the end of the soil isolations, totally 81 Trichoderma isolates were obtained and their species were identified. Of these isolates, T. harzianum (42%), T. virens (31%), T. asperellum (15%) and T. viride (12%). All of the isolates were tested in vitro for their antagonistic activity against the R. solani isolate. The isolates that show high inhibition rate was selected and tested against R. solani in vitro. Potato plants were grown in a greenhouse for about 10 weeks. Then the plants were evaluated according to the scale, plant height, shoot fresh and dry weights, root fresh and dry weights were noted. The experiment was conducted two times in three replications. At the in vitro tests, generally, it was determined that Trichoderma isolates have inhibited to R. solani and in vivo, they were reduced the effects of the disease and they were raised the development of the plant. In particular, it was determined that some isolates of the T. harzianum and T. virens have reduced the severity of the disease. It was determined that both in vitro and in vivo isolates have shown different efficiency against R. solani.

  17. Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina

    Directory of Open Access Journals (Sweden)

    Khaledi Nima

    2016-01-01

    Full Text Available Throughout the world, charcoal rot, caused by Macrophomina phaseolina, is one of the most destructive and widespread diseases of crop plants such as soybean. In this study, the biological control capability of 11 Trichoderma spp. isolates against M. phaseolina was investigated using screening tests. Among all the tested Trichoderma spp. isolates, inhibition varied from 20.22 to 58.67% in dual culture tests. Dual culture, volatile and non-volatile tests revealed that two isolates of Trichoderma harzianum (including the isolates T7 and T14 best inhibited the growth of M. phaseolina in vitro. Therefore, these isolates were selected for biocontrol of M. phaseolina in vivo. The results of greenhouse experiments revealed that disease severity in the seed treatment with T. harzianum isolates was significantly lower than that of the soil treatment. In most of the cases, though, soil treatment with T. harzianum resulted in higher plant growth parameters, such as root and shoot weight. The effects of T. harzianum isolates on the activity of peroxidase enzyme and phenolic contents of the soybean root in the presence and absence of M. phaseolina were determined in greenhouse conditions. Our results suggested that a part of the inhibitory effect of T. harzianum isolates on soybean charcoal rot might be related to the indirect influence on M. phaseolina. Plant defense responses were activated as an elicitor in addition to the direct effect on the pathogen growth.

  18. Antibiosis of Trichoderma spp strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina.

    Science.gov (United States)

    Mendoza, José Luis Hernández; Pérez, María Isabel Sánchez; Prieto, Juan Manuel González; Velásquez, Jesús DiCarlo Quiroz; Olivares, Jesús Gerardo García; Langarica, Homar Rene Gill

    2015-01-01

    Sampling of agricultural soils from the Mexican northeastern region was performed to detect Trichoderma spp., genetically characterize it, and assess its potential use as a biologic control agent against Macrophomina phaseolina. M. phaseolina is a phytopathogen that attacks over 500 species of cultivated plants and causes heavy losses in the regional sorghum crop. Sampling was performed immediately after sorghum or corn harvest in an area that was approximately 170 km from the Mexico-USA border. Sixteen isolates were obtained in total. Using colony morphology and sequencing the internal transcribed spacers (ITS) 1 and 4 of 18S rDNA, 14 strains were identified as Trichoderma harzianum, T. koningiopsis and T. virens. Subsequently, their antagonistic activity against M. phaseolina was evaluated in vitro, and 11 isolates showed antagonism by competition and stopped M. phaseolina growth. In 4 of these isolates, the antibiosis phenomenon was observed through the formation of an intermediate band without growth between colonies. One strain, HTE808, was identified as Trichoderma koningiopsis and grew rapidly; when it came into contact with the M. phaseolina colony, it continued to grow and sporulated until it covered the entire petri dish. Microscopic examination confirmed that it has a high level of hyperparasitism and is thus considered to have high potential for use in the control of this phytopathogen.

  19. Antibiosis of Trichoderma spp strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina

    Science.gov (United States)

    Mendoza, José Luis Hernández; Pérez, María Isabel Sánchez; Prieto, Juan Manuel González; Velásquez, Jesús DiCarlo Quiroz; Olivares, Jesús Gerardo García; Langarica, Homar Rene Gill

    2015-01-01

    Abstract Sampling of agricultural soils from the Mexican northeastern region was performed to detect Trichoderma spp., genetically characterize it, and assess its potential use as a biologic control agent against Macrophomina phaseolina. M. phaseolina is a phytopathogen that attacks over 500 species of cultivated plants and causes heavy losses in the regional sorghum crop. Sampling was performed immediately after sorghum or corn harvest in an area that was approximately 170 km from the Mexico-USA border. Sixteen isolates were obtained in total. Using colony morphology and sequencing the internal transcribed spacers (ITS) 1 and 4 of 18S rDNA, 14 strains were identified as Trichoderma harzianum, T. koningiopsis and T. virens. Subsequently, their antagonistic activity against M. phaseolina was evaluated in vitro, and 11 isolates showed antagonism by competition and stopped M. phaseolina growth. In 4 of these isolates, the antibiosis phenomenon was observed through the formation of an intermediate band without growth between colonies. One strain, HTE808, was identified as Trichoderma koningiopsis and grew rapidly; when it came into contact with the M. phaseolina colony, it continued to grow and sporulated until it covered the entire petri dish. Microscopic examination confirmed that it has a high level of hyperparasitism and is thus considered to have high potential for use in the control of this phytopathogen. PMID:26691467

  20. The improvement of competitive saprophytic capabilities of Trichoderma species through the use of chemical mutagens

    Directory of Open Access Journals (Sweden)

    Rashmi Singh

    2016-03-01

    Full Text Available Abstract The antagonistic potential of Trichoderma strains was assayed by studying the effect of their culture filtrate on the radial growth of Sclerotium rolfsii, the causal agent of chickpea collar rot. Trichoderma harzianum-1432 (42.2% and Trichoderma atroviride (40.3% were found to be strong antagonists. To enhance their antagonistic potential, mutagenesis of these two selected strains was performed. Two mutants, Th-m1 and T. atroviride m1, were found to be more effective than their parent strains. The enzymatic activities of the selected parent and mutant strains were assayed, and although both mutants were found to have enhanced enzymatic activities compared to their respective parent strains, Th-m1 possessed the maximum cellulase (5.69 U/mL and β-1,3-glucanase activity (61.9 U/mL. Th-m1 also showed high competitive saprophytic ability (CSA among all of the selected parent and mutant strains, and during field experiments, Th-m1 was found to successfully possess enhanced disease control (82.9%.

  1. The improvement of competitive saprophytic capabilities of Trichoderma species through the use of chemical mutagens.

    Science.gov (United States)

    Rashmi, Singh; Maurya, Sudarshan; Upadhyay, Ram Sanmukh

    2016-01-01

    The antagonistic potential of Trichoderma strains was assayed by studying the effect of their culture filtrate on the radial growth of Sclerotium rolfsii, the causal agent of chickpea collar rot. Trichoderma harzianum-1432 (42.2%) and Trichoderma atroviride (40.3%) were found to be strong antagonists. To enhance their antagonistic potential, mutagenesis of these two selected strains was performed. Two mutants, Th-m1 and T. atroviride m1, were found to be more effective than their parent strains. The enzymatic activities of the selected parent and mutant strains were assayed, and although both mutants were found to have enhanced enzymatic activities compared to their respective parent strains, Th-m1 possessed the maximum cellulase (5.69U/mL) and β-1,3-glucanase activity (61.9U/mL). Th-m1 also showed high competitive saprophytic ability (CSA) among all of the selected parent and mutant strains, and during field experiments, Th-m1 was found to successfully possess enhanced disease control (82.9%).

  2. Endocarditis por Trichoderma longibrachiatum en paciente con nutrición parenteral domiciliaria

    Directory of Open Access Journals (Sweden)

    Laura I. Rodríguez Peralta

    2013-06-01

    Full Text Available La modalidad domiciliaria de la nutrición parenteral (NPD mejora la calidad de vida de los pacientes, pero tiene complicaciones como infecciones asociadas a catéter (IAC y complicaciones mecánicas. Presentamos el caso de un paciente con NPD por intestino corto que desarrolla una endocarditis sobre catéter con matices especiales: asentar sobre un catéter abandonado en aurícula derecha y tratarse de una infección con participación de un microorganismo no descrito hasta el momento en esta patología, Trichoderma longibrachiatum. El catéter se extrajo mediante cirugía convencional. En la pieza quirúrgica se aislaron Staphylococcus epidermidis, Ochrobactrum anthropi y Trichoderma longibrachiatum. Combinando el tratamiento antibiótico y la eliminación del foco infeccioso se consiguió la recuperación completa. Ochrobactrum anthropi y Trichoderma longibrachiatum son microorganismos poco habituales, pero que cada vez adquieren mayor relevancia. Aunque no existe acuerdo en el manejo de los catéteres intravasculares "abandonados", es recomendable el seguimiento y eliminarlos en caso de complicación.

  3. Fungicide sensitivity of Trichoderma spp. from Agaricus bisporus farms in Serbia.

    Science.gov (United States)

    Kosanović, Dejana; Potočnik, Ivana; Vukojević, Jelena; Stajić, Mirjana; Rekanović, Emil; Stepanović, Miloš; Todorović, Biljana

    2015-01-01

    Trichoderma species, the causal agents of green mould disease, induce great losses in Agaricus bisporus farms. Fungicides are widely used to control mushroom diseases although green mould control is encumbered with difficulties. The aims of this study were, therefore, to research in vitro toxicity of several commercial fungicides to Trichoderma isolates originating from Serbian and Bosnia-Herzegovina farms, and to evaluate the effects of pH and light on their growth. The majority of isolates demonstrated optimal growth at pH 5.0, and the rest at pH 6.0. A few isolates also grew well at pH 7. The weakest mycelial growth was noted at pH 8.0-9.0. Generally, light had an inhibitory effect on the growth of tested isolates. The isolates showed the highest susceptibility to chlorothalonil and carbendazim (ED50 less than 1 mg L(-1)), and were less sensitive to iprodione (ED50 ranged 0.84-6.72 mg L(-1)), weakly resistant to thiophanate-methyl (ED50 = 3.75-24.13 mg L(-1)), and resistant to trifloxystrobin (ED50 = 10.25-178.23 mg L(-1)). Considering the toxicity of fungicides to A. bisporus, carbendazim showed the best selective toxicity (0.02), iprodione and chlorothalonil moderate (0.16), and thiophanate-methyl the lowest (1.24), while trifloxystrobin toxicity to A. bisporus was not tested because of its inefficiency against Trichoderma isolates.

  4. Optimum Concentrations of Trichoderma longibrachiatum and Cadusafos for Controlling Meloidogyne javanica on Zucchini Plants.

    Science.gov (United States)

    Sokhandani, Zahra; Moosavi, Mohammad Reza; Basirnia, Tahereh

    2016-03-01

    A factorial experiment was established in a completely randomized design to verify the effect of different inoculum levels of an Iranian isolate of Trichoderma longibrachiatum separately and in combination with various concentrations of cadusafos against Meloidogyne javanica in the greenhouse. Zucchini seeds were soaked for 12 hr in five densities (0, 10(5), 10(6), 10(7), and 10(8) spores/ml suspension) of the fungus prior to planting in pots containing four concentrations of cadusafos (0, 0.5, 1, and 2 mg a.i./kg soil). The data were analyzed using a custom response surface regression model and the response surface curve and contour plots were drawn. Reliability of the model was examined by comparing the result of new experimental treatments with the predicted results. The optimal levels of these two variables also were calculated. The interactive effects of concentrations of Trichoderma and cadusafos were insignificant for several responses such as the total number of eggs per gram soil, the number of intact eggs per gram soil, nematode reproduction factor, and control percent. Closeness of experimental mean values with the expected values proved the validity of the model. The optimal levels of the cadusafos concentration and Trichoderma concentration that caused the best plant growth and lowest nematode reproduction were 1.7 mg a.i./kg soil and 10(8) conidia/ml suspension, respectively.

  5. INDEKS MITOSIS UJUNG AKAR KECAMBAH CABE BESAR (Capsicum annuum L. SETELAH PERLAKUAN SUSPENSI Trichoderma sp.

    Directory of Open Access Journals (Sweden)

    PetroneLa Deno Raja

    2016-06-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui indeks mitosis ujung akar kecambah cabe besar (Capsicum annuum L. setelah perlakuan suspensi Trichoderma sp. Penelitian ini dilakukan di laboratorium Struktur Perkembangan Tumbuhan Jurusan Biologi FMIPA, Universitas Udayana dari Oktober 2013-November 2013. Metode yang digunakan adalah metode squash, biji cabe untuk kontrol direndam dalam air ± 6 jam, untuk perlakuan biji setelah direndam air, direndam lagi dalam suspensi Trichoderma sp. 10-7 selama ± 6 jam, selanjutnya dikecambahkan. Ujung akar kecambah 2 mm dipotong, difiksasi dalam larutan farmer ± 2-24 jam, dihidrolisis dalam larutan 3N HCL ± 2-5 menit dan kemudian pewarnaan dengan aceto orcein ± 5 menit. Pengamatan dilakukan dengan mikroskop binokuler, data pembelahan tiap fase mitosis dihitung (%, dicatat dan difoto, dan dianalisis dengan menggunakan uji paired T tes.Hasil penelitian menunjukkan bahwa Trichoderma sp. berpengaruh terhadap indeks mitosis sel ujung akar Capsicum annuum L.,  pada fase metafase berbeda nyata antara kontrol dan perlakuan, sedangkan pada fase profase, anafase dan telofase berbeda tidak nyata.  Pada perlakuan persentase fase profase, metafase, anafase dan telofase (77,14%; 12,96 %; 5,88 % dan 5,23 % lebih tinggi dari kontrol (66,40 %; 5,44 %; 4,96 % dan 4,66 %.

  6. Antibiosis of Trichoderma spp strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina

    Directory of Open Access Journals (Sweden)

    José Luis Hernández Mendoza

    2015-12-01

    Full Text Available Abstract Sampling of agricultural soils from the Mexican northeastern region was performed to detect Trichoderma spp., genetically characterize it, and assess its potential use as a biologic control agent against Macrophomina phaseolina. M. phaseolina is a phytopathogen that attacks over 500 species of cultivated plants and causes heavy losses in the regional sorghum crop. Sampling was performed immediately after sorghum or corn harvest in an area that was approximately 170 km from the Mexico-USA border. Sixteen isolates were obtained in total. Using colony morphology and sequencing the internal transcribed spacers (ITS 1 and 4 of 18S rDNA, 14 strains were identified as Trichoderma harzianum, T. koningiopsis and T. virens. Subsequently, their antagonistic activity against M. phaseolina was evaluated in vitro, and 11 isolates showed antagonism by competition and stopped M. phaseolina growth. In 4 of these isolates, the antibiosis phenomenon was observed through the formation of an intermediate band without growth between colonies. One strain, HTE808, was identified as Trichoderma koningiopsis and grew rapidly; when it came into contact with the M. phaseolina colony, it continued to grow and sporulated until it covered the entire petri dish. Microscopic examination confirmed that it has a high level of hyperparasitism and is thus considered to have high potential for use in the control of this phytopathogen.

  7. Optimum Concentrations of Trichoderma longibrachiatum and Cadusafos for Controlling Meloidogyne javanica on Zucchini Plants

    Science.gov (United States)

    Sokhandani, Zahra; Moosavi, Mohammad Reza; Basirnia, Tahereh

    2016-01-01

    A factorial experiment was established in a completely randomized design to verify the effect of different inoculum levels of an Iranian isolate of Trichoderma longibrachiatum separately and in combination with various concentrations of cadusafos against Meloidogyne javanica in the greenhouse. Zucchini seeds were soaked for 12 hr in five densities (0, 105, 106, 107, and 108 spores/ml suspension) of the fungus prior to planting in pots containing four concentrations of cadusafos (0, 0.5, 1, and 2 mg a.i./kg soil). The data were analyzed using a custom response surface regression model and the response surface curve and contour plots were drawn. Reliability of the model was examined by comparing the result of new experimental treatments with the predicted results. The optimal levels of these two variables also were calculated. The interactive effects of concentrations of Trichoderma and cadusafos were insignificant for several responses such as the total number of eggs per gram soil, the number of intact eggs per gram soil, nematode reproduction factor, and control percent. Closeness of experimental mean values with the expected values proved the validity of the model. The optimal levels of the cadusafos concentration and Trichoderma concentration that caused the best plant growth and lowest nematode reproduction were 1.7 mg a.i./kg soil and 108 conidia/ml suspension, respectively. PMID:27168653

  8. Chinese new record Trichoderma capillare and its functional assessment%中国新记录种毛细木霉Trichoderma capillare及功能评价

    Institute of Scientific and Technical Information of China (English)

    陈凯; 李纪顺; 张广志; 王贻莲; 赵晓燕; 吴晓青; 扈进冬; 杨合同

    2016-01-01

    木霉菌株TW22166分离自湖南省洞庭湖滩涂湿地,该菌株分生孢子梗具有长而发达的主轴,二次分枝丰富,不规则,一般单生,分生孢子梗向顶方向着生单个瓶梗.利用ITS、tef1及rpb2序列分析,发现该菌株同Trichoderma capiUare同源性达到99%以上;在以rpb2构建的系统发育进化树中,TW22166与Trichoderma capillare strain GJS 06-66[JN175530.1]位于同一分支.该菌株在PDA平板上对9种植物病原真菌均有抑制作用,其中对Fusarium.oxysporum的抑制率为100.0%.菌株具有蛋白酶、几丁质酶及纤维素酶活性,其中蛋白酶活性较高,透明圈宽度达16.0 mm.该菌株鉴定为毛细木霉Trichoderma capiUare,是木霉属中国新记录种,也是一株较有潜力的生物防治菌株.

  9. Suppression Subtractive Hybridization analysis provides new insights into the tomato (Solanum lycopersicum L.) response to the plant probiotic microorganism Trichoderma longibrachiatum MK1

    NARCIS (Netherlands)

    De Palma, Monica; D'Agostino, Nunzio; Proietti, S.; Bertini, Laura; Lorito, Matteo; Ruocco, Michelina; Chiusano, Maria l; Tucci, Marina

    2015-01-01

    Trichoderma species include widespread rhizosphere-colonizing fungi that may establish an opportunistic interaction with the plant, resulting in growth promotion and/or increased tolerance to biotic and abiotic stresses. For this reason, Trichoderma-based formulations are largely used in agriculture

  10. Factors that contribute to the mycoparasitism stimulus in Trichoderma atroviride strain P1

    Institute of Scientific and Technical Information of China (English)

    Woo S L; Lorito M; Formisano E; Fogliano V; Cosenza C; Mauro A; Turrà D; Soriente I; Ferraioli S; Scala F

    2004-01-01

    @@ Trichoderma atroviride strain P1 has been used extensively to study the mycoparasitic mechanisms in the interaction between plant pathogenic host and beneficial antagonistic fungi. Mutants of P1 containing the green fluorescent protein (gfp) or glucose oxidase (gox) reporter systems and different inducible promoters (from the exochitinase nag1 gene, or the endochitinase ech42 gene of P1) were used to determine the factors that activate the biocontrol gene expression cascade in the antagonist. The following compounds were tested singly and in various combinations: purified Trichoderma P1 enzymes (endochitinase, exochitinase, chitobiosidase,glucanase); antagonist culture filtrates (T. atroviride P1 wild-type and relative knock-out mutants, T.harzianum, T. reesei); pathogen culture filtrates (Botrytis, Pythium, Rhizoctonia); purified fungal cell walls (CWs) from Trichoderma , Botrytis, Pythium, Rhizoctonia; colloidal crab shell chitin; and plant extracts from cucumber leaves, stems or roots. Strong induction of mycoparasitism was found with the various digestion products produced by treating fungal CWs and colloidal chitin with purified enzymes or fungal culture filtrates. Filtrates from chitinase knock-out mutants, as well as CWs from Oomycetes fungi, were less active in producing the stimulus for mycoparasitism. The host CW digestion products were separated by molecular weight (MW) to determine which compounds were able to activate Trichoderma. Micromolecules of MW less than 3 kDa were found to trigger mycoparasitism gene expression before physical contact with the host pathogen. These compounds stimulated mycelial growth and spore germination of the antagonist. Purification of these host-derived compounds was conducted by HPLC and in vivo assay. The obtained inducers were able to stimulate both the production of endochitinase and exochitinase enzymes, even under repressing conditions in the presence of glucose. Inducers stimulated the biocontrol effect of P1 in

  11. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species

    Energy Technology Data Exchange (ETDEWEB)

    Schmoll, Monika; Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E.; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R.; Hernández-Oñate, Miguel; Kruszewska, Joanna S.; Lawry, Robert; Mora-Montes, Hector M.; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R.; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J. Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio; Herrera-Estrella, Alfredo

    2016-02-10

    SUMMARY

    The genusTrichodermacontains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for “hot topic” research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism inT. reesei,T. atroviride, andT. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of eachTrichodermaspecies discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved inN-linked glycosylation was detected, as were indications for the ability ofTrichodermaspp. to generate hybrid galactose-containingN-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique toTrichoderma, and these warrant further

  12. Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum Potencial de biocontrole de mutantes sal-tolerantes de Trichoderma harzianum contra Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Hassan Abdel-Latif A. Mohamed

    2006-06-01

    Full Text Available Exposing a wild-type culture of Trichoderma harzianum to gamma irradiation induced two stable salt-tolerant mutants (Th50M6 and Th50M11. Under saline conditions, both mutants greatly surpassed their wild type strain in growth rate, sporulation and biological proficiency against Fusarium oxysporum, the causal agent of tomato wilt disease. Tolerant T. harzianum mutants detained a capability to grow and convinced sporulation in growth media containing up to 69 mM NaCl. In comparison with their parent strain, characterization of both mutants confirmed that they have reinforced contents of proline and hydroxyproline, relatively higher sodium content compared to potassium, calcium or magnesium contents, higher level of total phenols. Electrophoretic analysis of total soluble proteins in the salt tolerance mutant Th50M6 showed different bands accumulated in response to 69 mM NaCl. Data also showed that mutants produce certain active metabolites, such as chitinases, cellulases, beta-galactosidases, as well as, some antibiotics i.e., trichodermin, gliotoxin and gliovirin. Trichoderma mutants significantly reduced wilt disease incidence and improved yield and mineral contents of tomato plants under both saline and non-saline soil conditions, as well as, under infested and natural conditions. T. harzianum mutants were also more efficient in dropping the F. oxysporum growth in rhizosphere compared to the wild type strain. Population density of both mutants in rhizosphere far exceeded that of T. harzianum wild type strain.A exposição de uma cepa selvagem de Trichoderma harzianum à irradiação gama induziu dois mutantes tolerantes a sal (Th50M6 e Th50M11. Em condições salinas, os dois mutantes foram muito superiores à cepa selvagem em relação à velocidade de multiplicação, esporulação e eficiência contra Fusarium oxysporum, o agente causador da doença wilt do tomate. Os mutantes tolerantes foram capazes de multiplicação e esporulação em

  13. Overexpression of erg1 gene in Trichoderma harzianum CECT 2413: effect on the induction of tomato defence-related genes.

    Science.gov (United States)

    Cardoza, R E; Malmierca, M G; Gutiérrez, S

    2014-09-01

    To investigate the effect of the overexpression of erg1 gene of Trichoderma harzianum CECT 2413 (T34) on the Trichoderma-plant interactions and in the biocontrol ability of this fungus. Transformants of T34 strain overexpressing erg1 gene did not show effect on the ergosterol level, although a drastic decrease in the squalene level was observed in the transformants at 96 h of growth. During interaction with plants, the erg1 overexpression resulted in a reduction of the priming ability of several tomato defence-related genes belonging to the salicylate pathway, and also of the TomLoxA gene, which is related to the jasmonate pathway. Interestingly, other jasmonate-related genes, such as PINI and PINII, were slightly induced. The erg1 overexpressed transformants also showed a reduced ability to colonize tomato roots. The ergosterol biosynthetic pathway might play an important role in regulating Trichoderma-plant interactions, although this role does not seem to be restricted to the final product; instead, other intermediates such as squalene, whose role in the Trichoderma-plant interaction has not been characterized, would also play an important role. The functional analysis of genes involved in the synthesis of ergosterol could provide additional strategies to improve the ability of biocontrol of the Trichoderma strains and their interaction with plants. © 2014 The Society for Applied Microbiology.

  14. Adaptation of Trichoderma Species to Pesticide Confidor and Evaluation of their Growth Ability in the Media Containing Confidor

    Directory of Open Access Journals (Sweden)

    Farnaz Ershadfath

    2015-12-01

    Full Text Available Introduction: Contamination caused by pesticides is considered as one of the environmental problems. Bioremediation is exploiting the ability of microorganisms to remove pollutants. Trichoderma species are free-living fungi that exist naturally in the environment. These fungi have the ability to uptake some contaminants biologically. The aim of this study is to evaluate the effect of Confidor, as an environmental contaminant, on the growth ability of Trichoderma sp. as a contaminant absorber. Materials and methods: Five species of Trichoderma fungi were cultured in PDA media. Then the fungi were adapted with 3 different concentrations of Confidor gradually (5, 10 and 20 mg/l. The diameter of the fungal colonies growing in different concentrations of the toxin, were measured after 24 hr and were compared with the control samples (medium without toxin. Results: Results showed that in all species of fungi the colony diameters increased significantly with increasing toxin concentrations. The largest colony diameter was related to T.tomentosum, T.asperellum and T.harzianum (88.88, 87.5 and 86.95%, respectively at the concentration of 20 mg of toxic. Also, in all studied fungal species, in the medium containing 20 (mg/ l of toxic, the aerial hyphae expanded much thicker and faster than other concentrations. Discussion and conclusion: The results indicate a significant increase in the growth ability of Trichoderma strains with increasing Confidor concentration. Therefore it could be concluded that Trichoderma fungi have a high potentiality for biodegradation of Confidor.

  15. Structural and mechanistic analysis of engineered trichodiene synthase enzymes from Trichoderma harzianum: towards higher catalytic activities empowering sustainable agriculture.

    Science.gov (United States)

    Kumari, Indu; Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-06-01

    Trichoderma spp. are well-known bioagents for the plant growth promotion and pathogen suppression. The beneficial activities of the fungus Trichoderma spp. are attributed to their ability to produce and secrete certain secondary metabolites such as trichodermin that belongs to trichothecene family of molecules. The initial steps of trichodermin biosynthetic pathway in Trichoderma are similar to the trichothecenes from Fusarium sporotrichioides. Trichodiene synthase (TS) encoded by tri5 gene in Trichoderma catalyses the conversion of farnesyl pyrophosphate to trichodiene as reported earlier. In this study, we have carried out a comprehensive comparative sequence and structural analysis of the TS, which revealed the conserved residues involved in catalytic activity of the protein. In silico, modelled tertiary structure of TS protein showed stable structural behaviour during simulations. Two single-substitution mutants, i.e. D109E, D248Y and one double-substitution mutant (D109E and D248Y) of TS with potentially higher activities are screened out. The mutant proteins showed more stability than the wild type, an increased number of electrostatic interactions and better binding energies with the ligand, which further elucidates the amino acid residues involved in the reaction mechanism. These results will lead to devise strategies for higher TS activity to ultimately enhance the trichodermin production by Trichoderma spp. for its better exploitation in the sustainable agricultural practices.

  16. Potential antagonism of some Trichoderma strains isolated from Moroccan soil against three phytopathogenic fungi of great economic importance

    Directory of Open Access Journals (Sweden)

    Wafaa MOKHTARI

    2017-09-01

    Full Text Available In this study, 17 Trichoderma strains were isolated from different soils (crop fields and Argan forests in Morocco. Purified monospore cultures were identified using molecular methods and tested for their potential antagonism against three phytopathogenic fungi (Fusarium oxyxporum, verticillium dahlia and rhizoctonia solani. After DNA extraction, translation elongation factor (tef1 was amplified in extracts of 17 strains, sequenced and compared with their ex-types. As a result, three species were identified among the strains, which clustered in two different subclades of Trichoderma: the species T. afroharzianum, and T. guizhouense belong to the Harzianum clade, while T. longibrachiatum belongs to the Longibrachiatum clade. Investigation of potential antagonistic effects of these strains against the soil-borne phytopathogens F. oxysporum, R. solani and V. dahliae was conducted in a dual culture plate assay, using 17 promising Trichoderma strains that have been selected based on a polymerase chain reaction (PCR screening approach. In vitro, Trichoderma isolates showed effective antagonistic performance by decreasing soil borne pathogens mycelium radial growth. Trichoderma afroharzianum showed the highest Percentage of Radial Inhibition Growth (PRIG %. The highest PRIG% = 98% was for 8A2.3 isolate against R. solani and the lowest PRIG%= 67% for T9i10 against F. oxysporum. On the other hand, T9i12, which is T. reesei species, led to a high radial inhibition of pathogens’ mycelium.

  17. 平菇代料栽培中污染木霉菌的鉴定%Identification of Trichoderma Species from Contaminated Substrate During Cultivation of Pleurotus ostreatus

    Institute of Scientific and Technical Information of China (English)

    高苇; 李宝聚; 孙军德; 石延霞

    2007-01-01

    从北京平菇(Pleurotus ostreatus)产区收集的木霉病害样本,通过分离纯化及显微观察,确定了5种引起袋栽平菇发病的木霉菌,分别是绿色木霉(Trichoderma viride)、康氏木霉(Trichoderma koningii)、拟康氏木霉(Trichoderma pseudokoningii)、哈茨木霉(Trichoderma harzianum)和桔绿木霉(Trichoderma citrinoviride),并发现了平菇栽培中的优势污染种--绿色木霉和康氏木霉.

  18. EFEITO ANTAGÔNICO DE Trichoderma sp. NO DESENVOLVIMENTO DE Beauveria bassiana (Bals. Vuill. e Metarhizium anisopliae (Metsch. Sorok ANTAGONISTIC EFFECT OF Trichoderma sp. ON THE DEVELOPMENT OF Beauveria bassiana (Bals. Vuill. AND Metarhizium anisopliae (Metsch. SOROK

    Directory of Open Access Journals (Sweden)

    Alcides Moino Jr.

    1999-01-01

    Full Text Available Este trabalho teve por objetivo avaliar o efeito de Trichoderma sp. no desenvolvimento de Beauveria bassiana e Metarhizium anisopliae. Trichoderma sp., B. bassiana (isolado 634 e M. anisopliae (isolado E-9 foram inoculados em meio BDA, com intervalos de 0, 48, 120 e 168 horas entre a inoculação de Trichoderma sp. e dos entomopatógenos. Avaliou-se o crescimento radial das colônias nos períodos de 48 e 120 horas após a inoculação de Trichoderma sp., sendo que este afetou o desenvolvimento dos entomopatógenos quando inoculado simultaneamente ou após 48 horas. B. bassiana e M. anisopliae desenvolveram-se normalmente quando inoculados 168 horas antes de Trichoderma sp.. Também foi avaliado o efeito de um extrato de Trichoderma sp. sobre os entomopatógenos, com a adição de 0,1; 0,5; 1,0 e 5,0 ml de extrato/100,0 ml de meio, onde foram inoculados os entomopatógenos. Foram medidos os diâmetros de colônias e o número de conídios produzidos por B. bassiana e M. anisopliae na presença do extrato. A concentração de 5,0 ml de extrato/100,0 ml de meio alterou o crescimento e a conidiogênese de B. bassiana. O fungo M. anisopliae foi afetado a partir da adição de 1,0 ml de extrato/100,0 ml de meio.The objective of this work was to evaluate the effect of Trichoderma sp. on the development of Beauveria bassiana and Metarhizium anisopliae. The fungus Trichoderma sp. was inoculated on PDA culture medium, 0, 48, 120 and 168 hours after inoculation of the same plates with either B. bassiana (isolate 634 or M. anisopliae (isolate E-9. The radial growth of fungal colonies was measured 48 and 120 hours after Trichoderma sp. inoculation. Trichoderma sp. affected the development of both entomopathogenic fungi when inoculated simultaneously or 48 hours later. B. bassiana and M. anisopliae had normal development when inoculated 168 hours before Trichoderma sp. The effect of a toxic extract from Trichoderma sp. on the entomopathogenic fungi was also

  19. Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize.

    Science.gov (United States)

    Gaderer, Romana; Lamdan, Netta L; Frischmann, Alexa; Sulyok, Michael; Krska, Rudolf; Horwitz, Benjamin A; Seidl-Seiboth, Verena

    2015-01-16

    The proteins Sm1 and Sm2 from the biocontrol fungus Trichoderma virens belong to the cerato-platanin protein family. Members of this family are small, secreted proteins that are abundantly produced by filamentous fungi with all types of life-styles. Some species of the fungal genus Trichoderma are considered as biocontrol fungi because they are mycoparasites and are also able to directly interact with plants, thereby stimulating plant defense responses. It was previously shown that the cerato-platanin protein Sm1 from T. virens - and to a lesser extent its homologue Epl1 from Trichoderma atroviride - induce plant defense responses. The plant protection potential of other members of the cerato-platanin protein family in Trichoderma, however, has not yet been investigated. In order to analyze the function of the cerato-platanin protein Sm2, sm1 and sm2 knockout strains were generated and characterized. The effect of the lack of Sm1 and Sm2 in T. virens on inducing systemic resistance in maize seedlings, challenged with the plant pathogen Cochliobolus heterostrophus, was tested. These plant experiments were also performed with T. atroviride epl1 and epl2 knockout strains. In our plant-pathogen system T. virens was a more effective plant protectant than T. atroviride and the results with both Trichoderma species showed concordantly that the level of plant protection was more strongly reduced in plants treated with the sm2/epl2 knockout strains than with sm1/epl1 knockout strains. Although the cerato-platanin genes sm1/epl1 are more abundantly expressed than sm2/epl2 during fungal growth, Sm2/Epl2 are, interestingly, more important than Sm1/Epl1 for the promotion of plant protection conferred by Trichoderma in the maize-C. heterostrophus pathosystem.

  20. Peptaibol, Secondary‐Metabolite, and Hydrophobin Pattern of Commercial Biocontrol Agents Formulated with Species of the Trichoderma harzianum Complex

    DEFF Research Database (Denmark)

    Degenkolb, Thomas; Nielsen, Kristian Fog; Dieckmann, Ralf

    2015-01-01

    The production of bioactive polypeptides (peptaibiotics) in vivo is a sophisticated adaptation strategy of both mycoparasitic and saprotrophic Trichoderma species for colonizing and defending their natural habitats. This feature is of major practical importance, as the detection of peptaibiotics...... in plant‐protective Trichoderma species, which are successfully used against economically relevant bacterial and fungal plant pathogens, certainly contributes to a better understanding of these complex antagonistic interactions. We analyzed five commercial biocontrol agents (BCAs), namely Canna®, Trichosan......®, Vitalin®, Promot® WP, and TrichoMax®, formulated with recently described species of the Trichoderma harzianum complex, viz. T. afroharzianum, T. simmonsii, and T. guizhouense. By using the well‐established, HPLC/MS‐based peptaibiomics approach, it could unequivocally be demonstrated that all...

  1. Antagonistic in vitro activity of Trichoderma spp. isolates to the fungi Phytophthora citrophthora / Atividade antagônica in vitro de isolados de Trichoderma spp. ao fungo Phytophthora citrophthora

    Directory of Open Access Journals (Sweden)

    Cleiton Gredson Sabin Benett

    2008-07-01

    Full Text Available Gummosis is among the main fungal diseases of the citrus. It is caused by Phytophthora sp. and usually shows up in the lap of the plant, provoking rottenness and gum exudation, and expands causing the plant death for constrictions in the cambium or phloem which interrupts the descending fow of sap. The objective of this work was to evaluate the antagonistic in vitro activity of Trichoderma spp. to the fungi Phytophthora citrophthora. Phytophthora citrophthora was exposed to fve environments of antagonism (without antagonist and with four strains of Trichoderma viride, T. virens, T. harzianu and T. stromaticum. The in vitro essay was accomplished through the method of paired cultures. A completely randomized desing was used with fve treatments and three replications, and each plot was represented by three petri dishes. The isolates of Trichoderma demonstrated signifcant effect in the inhibition of the mycelial growth of the fungi Phytophthora citrophthora, and the fungi Trichoderma stromaticum presented larger antagonism to the fungi P. citrophthora while the T. harzianum presented antagonism smaller.A citricultura nacional apresenta inúmeras pragas e doenças que limitam sua produção dentre as principais doenças fúngicas da cultura dos citros pode se destacar a gomose. A gomose causada por Phytophthora sp. geralmente se manifesta no colo da planta, provocando podridão e exsudação de goma, podendo expandir-se ocasionando a morte da planta por estrangulamento devido ao ataque do cambio ou foema, o que interrompe o fuxo descendente de seiva. Este trabalho foi realizado com o objetivo de se avaliar a atividade antagônica in vitro, de isolados de Trichoderma spp. ao fungo Phytophthora citrophthora. O fator em estudo foi um patógeno (Phytophthora citrophthora em cinco ambientes de antagonismo (sem antagonista e com os isolados de Trichoderma viride, T. virens, T. harzianu e T. stromaticum. O ensaio in vitro foi realizado por meio do m

  2. Limitations in controlling white mold on common beans with Trichoderma spp. at the fall-winter season

    Directory of Open Access Journals (Sweden)

    Trazilbo José de Paula Júnior

    2012-12-01

    Full Text Available We studied the effectiveness of application of Trichoderma spp. in controlling white mold on common beans at the fall-winter crop in the Zona da Mata region of the State of Minas Gerais, Brazil. There was no effect of the antagonist in reducing the disease severity, which could be explained by the low temperatures and the high inoculum pressure in the field. We concluded that Trichoderma applications are not recommended for control of white mold on common beans at the fall-winter season in regions with average temperature bellow 20 °C, since this condition favor more the pathogen than the antagonist.

  3. KINETICS AND EQUILIBRIUM PARAMETERS OF BIOSORPTION AND BIOACCUMULATION OF LEAD IONS FROM AQUEOUS SOLUTIONS BY TRICHODERMA LONGIBRACHIATUM

    Directory of Open Access Journals (Sweden)

    Enitan S. Balogun

    2012-04-01

    Full Text Available Biosorption and bioaccumulation of Lead ions (Pb(II by Trichoderma longibrachiatum were investigated in a batch system. The effects of some important parameters such as pH, initial metal concentration, temperature and inoculum concerntration on biosorption capacity were also studied. The maximum biosorption capacity of Trichoderma longibrachiatum was at 25 ppm of lead, showed 100 % removal at pH 7 and 25 oC after fifteen days. Biosorption equilibrium was established in 150 minutes. The process fitted well into pseudo second order kinetic model and was best explained by Langmuir isotherm.

  4. Purificación y caracterización de hidrolasas implicadas en el microparasitismo de Trichoderma harzianum

    OpenAIRE

    Cruz Díaz, Jesús de la

    1994-01-01

    Los hongos del genero Trichoderma son buenos agentes de control biológico. Entre los mecanismos que estos utilizan para combatir las enfermedades de plantas producidas por hongos se encuentra el fenómeno denominado micoparasitismo. Se sugiere que este proceso requiere la producción de hidrolasas de pared celular. En este trabajo se ha estudiado la producción de quitinasas y BETA-1,3 y BETA-1-6-GLUCANASAS en la estirpe micoparasitaria Trichoderma harzianum CECT 2413. Se ha analizado la regulac...

  5. Características de Trichoderma harzianum, como agente limitante en el cultivo de hongos comestibles

    Directory of Open Access Journals (Sweden)

    Omar Romero Arenas

    2009-10-01

    Full Text Available El incremento dramático de incidencia y severidad de los “mohos verdes” en la producción de hongos comestibles se refleja en la aparición de formas altamente agresivas de éstos patógenos, como es el caso de los biotipos de Trichoderma harzianum (Th1, Th2., Th3 y Th4, que han sido encontrados en Europa y Norte América, donde la importancia de la patogenicidad de dicho “moho” se comprobó en 1995 con las pérdidas del 30-100% en las plantas de hongos comestibles en Chester, Pennsylvania. En México se han identificado diversos “mohos contaminantes”, entre los cuales Trichoderma spp., se encuentra frecuentemente en la producción de hongos comestibles (Agaricus bisporus, Pleurotus ostreatus y Lentinula edodes, en el 2004, un grupo de investigación detectó la presencia de cepas altamente agresivas de T. aggressivum f. aggressivum, identificadas con técnicas clásicas y moleculares, en muestras de substrato (compost contaminado, proporcionado por la principal planta de hongos de México. Actualmente se desconoce la situación sobre la distribución de Trichoderma harzianum y los problemas de contaminación en la producción de hongos comestibles, tanto de zonas rurales, como de zonas industrializadas en México, puede causar serias disminuciones en la producción de hongos comestibles y presentar pérdidas económicas para los productores de la región. Palabras Claves: T. harzianum; T. aggressivum; patogenicidad; producción de hongos comestibles. Abstract The dramatic increase of green mould incidence and severity in edible mushroom production has been reflected in the emergence of highly aggressive forms of these pathogens, such as Trichoderma harzianum biotypes (Th1, Th2, Th3 and Th4. These have been found in Europe and North America where the importance of the mould’s pathogenicity was discovered in 1995 leading to 30%-100% losses from Th4 in edible mushrooms from farms in Chester, Pennsylvania. Several contaminating

  6. G protein signalling involved in host recognition and mycoparasitismrelated chitinase expression in Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    Susanne Zeilinger; Barbara Reithner; Kurt Brunner; Valeria Scala; Isabel Peiβl; Matteo Lorito; Robert L Mach

    2004-01-01

    @@ Mycoparasitic species of Trichoderma are commercially applied as biological control agents against various fungal pathogens. The mycoparasitic interaction is host specific and includes recognition,attack and subsequent penetration and killing of the host. Investigations on the underlying events revealed that Trichoderma responds to multiple signals from the host (e. g. lectins or other ligands such as low molecular weight components released from the host's cell wall) and host attack is accompanied by morphological changes and the secretion of hydrolytic enzymes and antibiotics.Degradation of the cell wall of the host fungus is-besides glucanases and proteases-mainly achieved by chitinases. In vivo studies showed that the ech42 gene (encoding endochitinase 42) is expressed before physical contact of Trichoderma with its host, probably representing one of the earliest events in mycoparasitism, whereas Nag1 (N-acetylglucosaminidase) plays a key role in the general induction of the chitinolytic enzyme system of T. atroviride . Investigations on the responsible signal transduction pathways of T. atroviride led to the isolation of several genes encoding key components of the cAMP and MAP kinase signaling pathways, as alpha and β subunits of heterotrimeric G proteins, the regulatory subunit of cAMP-dependent protein kinase,adenylate cyclase, and three MAP kinases. Analysis of knockout mutants, generated by Agrobacterium-mediated transformation, revealed that at least two alpha-subunits of heterotrimeric G proteins are participating in mycoparasitism-related signal transduction. The Tga1 G alpha subunit was shown to be involved in mycoparasitism-related processes such as chitinase expression and overproduction of toxic secondary metabolites, whereas Tga3 was found to be completely avirulent showing defects in chitinase formation and host recognition.

  7. Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance.

    Science.gov (United States)

    Lamdan, Netta-Li; Shalaby, Samer; Ziv, Tamar; Kenerley, Charles M; Horwitz, Benjamin A

    2015-04-01

    Trichoderma virens is a biocontrol agent used in agriculture to antagonize pathogens of crop plants. In addition to direct mycoparasitism of soil-borne fungal pathogens, T. virens interacts with roots. This interaction induces systemic resistance (ISR), which reduces disease in above-ground parts of the plant. In the molecular dialog between fungus and plant leading to ISR, proteins secreted by T. virens provide signals. Only a few such proteins have been characterized previously. To study the secretome, proteins were characterized from hydroponic culture systems with T. virens alone or with maize seedlings, and combined with a bioassay for ISR in maize leaves infected by the pathogen Cochliobolus heterostrophus. The secreted protein fraction from coculture of maize roots and T. virens (Tv+M) was found to have a higher ISR activity than from T. virens grown alone (Tv). A total of 280 fungal proteins were identified, 66 showing significant differences in abundance between the two conditions: 32 were higher in Tv+M and 34 were higher in Tv. Among the 34 found in higher abundance in Tv and negatively regulated by roots were 13 SSCPs (small, secreted, cysteine rich proteins), known to be important in the molecular dialog between plants and fungi. The role of four SSCPs in ISR was studied by gene knockout. All four knockout lines showed better ISR activity than WT without affecting colonization of maize roots. Furthermore, the secreted protein fraction from each of the mutant lines showed improved ISR activity compared with WT. These SSCPs, apparently, act as negative effectors reducing the defense levels in the plant and may be important for the fine tuning of ISR by Trichoderma. The down-regulation of SSCPs in interaction with plant roots implies a revision of the current model for the Trichoderma-plant symbiosis and its induction of resistance to pathogens.

  8. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J; Jung, Sabine C; Pascual, Jose A; Pozo, María J

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development.

  9. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum.

    Science.gov (United States)

    Cai, Feng; Yu, Guanghui; Wang, Ping; Wei, Zhong; Fu, Lin; Shen, Qirong; Chen, Wei

    2013-12-01

    A detailed understanding of the effect of natural products on plant growth and protection will underpin new product development for plant production. The isolation and characterization of a known secondary metabolite named harzianolide from Trichoderma harzianum strain SQR-T037 were described, and the bioactivity of the purified compound as well as the crude metabolite extract in plant growth promotion and systemic resistance induction was investigated in this study. The results showed that harzianolide significantly promoted tomato seedling growth by up to 2.5-fold (dry weight) at a concentration of 0.1 ppm compared with the control. The result of root scan suggested that Trichoderma secondary metabolites may influence the early stages of plant growth through better root development for the enhancement of root length and tips. Both of the purified harzianolide and crude metabolite extract increased the activity of some defense-related enzymes to response to oxidative stress. Examination of six defense-related gene expression by real-time reverse transcription-PCR analysis revealed that harzianolide induces the expression of genes involved in the salicylic acid (PR1 and GLU) and jasmonate/ethylene (JERF3) signaling pathways while crude metabolite extract inhibited some gene expression (CHI-II and PGIP) related to basal defense in tomato plants. Further experiment showed that a subsequent challenge of harzianolide-pretreated plants with the pathogen Sclerotinia sclerotiorum resulted in higher systemic resistance by the reduction of lesion size. These results indicate that secondary metabolites of Trichoderma spp., like harzianolide, may play a novel role in both plant growth regulation and plant defense responses.

  10. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    Directory of Open Access Journals (Sweden)

    Ainhoa eMartinez-Medina

    2013-06-01

    Full Text Available Root colonization by selected Trichoderma isolates can activate in the plant a systemic defence response that is effective against a broad spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defence signalling network that leads to the induction of systemic resistance triggered by beneficial organisms (ISR. Among them, jasmonic acid (JA and ethylene (ET signalling pathways are generally essential for ISR. However, Trichoderma ISR (TISR is believed to involve a wider variety of signalling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defence related hormones JA, ET, salicylic acid (SA and abscisic acid (ABA and the peptide prosystemin (PS evidenced the requirement of intact JA, SA and ABA signalling pathways for a functional TISR. Expression analysis of several hormone related marker genes point to the role of priming for enhanced JA-dependent defence responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against the necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development

  11. PRODUCCIÓN MASIVA DE Trichoderma harzianum Rifai EN DIFERENTES SUSTRATOS ORGÁNICOS

    OpenAIRE

    A. C. Michel-Aceves; M. A. Otero-Sánchez; R. D. Martínez-Rojero; N. L. Rodríguez-Morán; R. Ariza-Flores; A. Barrios-Ayala

    2008-01-01

    Uno de los sustratos utilizados para reproducir a Trichoderma spp., es el grano entero de arroz, el cual tiene costo relativamente alto. Con el propósito de encontrar un sustrato orgánico, económico y de fácil adquisición en la región, en el cual este hongo tenga un buen desarrollo y una alta producción de esporas viables, se estableció esta investigación que tuvo como objetivos evaluar 15 sustratos orgánicos en la reproducción masiva y viabilidad de esporas de T. harzianum y asociarlo con la...

  12. Suspected Pulmonary Infection with Trichoderma longibrachiatum after Allogeneic Stem Cell Transplantation

    Science.gov (United States)

    Akagi, Tomoaki; Kawamura, Chizuko; Terasawa, Norio; Yamaguchi, Kohei; Kubo, Kohmei

    2017-01-01

    Aspergillus and Candida species are the main causative agents of invasive fungal infections in immunocompromised human hosts. However, saprophytic fungi are now increasingly being recognized as serious pathogens. Trichoderma longibrachiatum has recently been described as an emerging pathogen in immunocompromised patients. We herein report a case of isolated suspected invasive pulmonary infection with T. longibrachiatum in a 29-year-old man with severe aplastic anemia who underwent allogeneic stem cell transplantation. A direct microscopic examination of sputum, bronchoaspiration, and bronchoalveolar lavage fluid samples revealed the presence of fungal septate hyphae. The infection was successfully treated with 1 mg/kg/day liposomal amphotericin B. PMID:28090056

  13. Características de Trichoderma harzianum, como agente limitante en el cultivo de hongos comestibles

    OpenAIRE

    Omar Romero-Arenas; Manuel Huerta Lara; Miguel Angel Damián Huato; Francisco Domínguez Hernández; Daniel Alfonso Arellano Victoria

    2009-01-01

    El incremento dramático de incidencia y severidad de los mohos verdes en la producción de hongos comestibles se refleja en la aparición de formas altamente agresivas de éstos patógenos, como es el caso de los biotipos de Trichoderma harzianum (Th1, Th2., Th3 y Th4), que han sido encontrados en Europa y Norte América, donde la importancia de la patogenicidad de dicho moho se comprobó en 1995 con las pérdidas del 30-100% en las plantas de hongos comestibles en Chester, Pennsylvania. En Méxi...

  14. A safe potential juice clarifying pectinase from Trichoderma viride EF-8 utilizing Egyptian onion skins

    OpenAIRE

    Abdel-Mohsen S. Ismail; Heba I. Abo-Elmagd; Manal M. Housseiny

    2016-01-01

    The production of a notable, safe and highly active pectinase by the local fungal strain Trichoderma viride EF-8 utilizing the abundant pigmented Egyptian onion (Allium cepa L.) skins (6.5%, w/v) was achieved in 4 days submerged fermentation (SMF) cultures, at temperature and pH of 30 °C and 4.0, respectively. The indigenously produced pectinase was partially purified by 50% batch ethanol precipitation and its general properties were studied following the standard procedures. The lyophilized ...

  15. Selection of Trichoderma mutants with enhanced cellulase production and resistant to catabolite repression

    Institute of Scientific and Technical Information of China (English)

    Szakacs G; Megyeri L; Kovacs K; Zacchi G

    2004-01-01

    @@ Due to high cost and relatively low efficiency of cellulase enzymes used for the saccharification of pretreated lignocelluloses, the improvement of cellulase secreting microorganisms is of vital importance. Trichoderma reesei QM 6a, an excellent source of cellulase was selected in the late 1960's at Natick Laboratories by its performance on pure cellulose (Solka Floc, Avicel) . QM 6a is the wild parent strain of best existing hypercellulolytic mutants such as Rut C30, VTT-D-80133,L27, CL-847 and others. Utilization of cheaper carbon sources (e. g. , pretreated wood or straw) both in enzyme production and in hydrolysis necessitates to investigate fungal species other than T. reesei.

  16. Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106.

    Science.gov (United States)

    Wu, Bin; Oesker, Vanessa; Wiese, Jutta; Schmaljohann, Rolf; Imhoff, Johannes F

    2014-03-06

    Two unusual pyridones, trichodin A (1) and trichodin B (2), together with the known compound, pyridoxatin (3), were extracted from mycelia and culture broth of the marine fungus, Trichoderma sp. strain MF106 isolated from the Greenland Seas. The structures of the new compounds were characterized as an intramolecular cyclization of a pyridine basic backbone with a phenyl group. The structure and relative configuration of the new compounds were established by spectroscopic means. The new compound 1 and the known compound 3 showed antibiotic activities against the clinically relevant microorganism, Staphylococcus epidermidis, with IC₅₀ values of 24 μM and 4 μM, respectively.

  17. Two New Antibiotic Pyridones Produced by a Marine Fungus, Trichoderma sp. Strain MF106

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2014-03-01

    Full Text Available Two unusual pyridones, trichodin A (1 and trichodin B (2, together with the known compound, pyridoxatin (3, were extracted from mycelia and culture broth of the marine fungus, Trichoderma sp. strain MF106 isolated from the Greenland Seas. The structures of the new compounds were characterized as an intramolecular cyclization of a pyridine basic backbone with a phenyl group. The structure and relative configuration of the new compounds were established by spectroscopic means. The new compound 1 and the known compound 3 showed antibiotic activities against the clinically relevant microorganism, Staphylococcus epidermidis, with IC50 values of 24 μM and 4 μM, respectively.

  18. Production in food of 1,3-pentadiene and styrene by Trichoderma species

    CSIR Research Space (South Africa)

    Pinches, SE

    2007-05-01

    Full Text Available Published by Elsevier B.V. doi:10.1016/j.ijfoodmicro.2006.12.001 ication d styrene by Trichoderma species � , P. Apps h (CSIR), PO Box 395, Pretoria 0001, South Africa 0 November 2006; accepted 6 December 2006 e the Volatile Organic Compounds 1... °C for 72 h. Subcultures on the fungal growth were performed to confirm purity. Fig. 1. Degradation of sorbic acid in foods (Saxby, 1996). 183S.E. Pinches, P. Apps / International Journal of Food Microbiology 116 (2007) 182–185 presence...

  19. Produção de quitinases por fermentação por trichoderma sp

    OpenAIRE

    Ana Paula dos Santos Ribeiro

    2000-01-01

    Resumo: Enzimas quitinolíticas, como as quitinases, presentes nos reinos animal, vegetal e fúngico, constituem um importante grupo de enzimas associadas com o metabolismo e degradação de substratos insolúveis como a quitina. Neste trabalho foi realizado um estudo para a verificação da influência da fonte de carbono livre (glicose e lactose) e das condições de cultivo (agitação e pH) na produção de quitinase da linhagem de Trichoderma sp. T 6. As fermentações foram realizadas a 27°C, retirando...

  20. Xylanase Production from Trichoderma harzianum 1073 D3 with Alternative Carbon and Nitrogen Sources

    OpenAIRE

    Seyis,Isil; Aksoz, Nilufer

    2005-01-01

    The effect of some natural wastes (orange pomace, orange peel, lemon pomace, lemon peel, apple pomace, pear peel, banana peel, melon peel and hazelnut shell) on the production of xylanase from Trichoderma harzianum 1073 D3 has been studied and maximum activity has been observed on melon peel (26.5 U/mg of protein) followed by apple pomace and hazelnut shell. Also, molasses could be used as an additional carbon source as it decreased the production time approximately by 50 %. Finally, potentia...

  1. Phylogeny and Taxonomical Investigation of Trichoderma spp. from Indian Region of Indo-Burma Biodiversity Hot Spot Region with Special Reference to Manipur

    Directory of Open Access Journals (Sweden)

    Th. Kamala

    2015-01-01

    Full Text Available Towards assessing the genetic diversity and occurrence of Trichoderma species from the Indian region of Indo-Burma Biodiversity hotspot, a total of 193 Trichoderma strains were isolated from cultivated soils of nine different districts of Manipur comprising 4 different agroclimatic zones. The isolates were grouped based on the morphological characteristics. ITS-RFLP of the rDNA region using three restriction digestion enzymes: Mob1, Taq1, and Hinf1, showed interspecific variations among 65 isolates of Trichoderma. Based on ITS sequence data, a total of 22 different types of representative Trichoderma species were reported and phylogenetic analysis showed 4 well-separated main clades in which T. harzianum was found to be the most prevalent spp. among all the Trichoderma spp. Combined molecular and phenotypic data leads to the development of a taxonomy of all the 22 different Trichoderma spp., which was reported for the first time from this unique region. All these species were found to produce different extrolites and enzymes responsible for the biocontrol activities against the harmful fungal phytopathogens that hamper in food production. This potential indigenous Trichoderma spp. can be targeted for the development of suitable bioformulation against soil and seedborne pathogens in sustainable agricultural practice.

  2. Phylogeny and taxonomical investigation of Trichoderma spp. from Indian region of Indo-Burma Biodiversity hot spot region with special reference to Manipur.

    Science.gov (United States)

    Kamala, Th; Devi, S Indira; Sharma, K Chandradev; Kennedy, K

    2015-01-01

    Towards assessing the genetic diversity and occurrence of Trichoderma species from the Indian region of Indo-Burma Biodiversity hotspot, a total of 193 Trichoderma strains were isolated from cultivated soils of nine different districts of Manipur comprising 4 different agroclimatic zones. The isolates were grouped based on the morphological characteristics. ITS-RFLP of the rDNA region using three restriction digestion enzymes: Mob1, Taq1, and Hinf1, showed interspecific variations among 65 isolates of Trichoderma. Based on ITS sequence data, a total of 22 different types of representative Trichoderma species were reported and phylogenetic analysis showed 4 well-separated main clades in which T. harzianum was found to be the most prevalent spp. among all the Trichoderma spp. Combined molecular and phenotypic data leads to the development of a taxonomy of all the 22 different Trichoderma spp., which was reported for the first time from this unique region. All these species were found to produce different extrolites and enzymes responsible for the biocontrol activities against the harmful fungal phytopathogens that hamper in food production. This potential indigenous Trichoderma spp. can be targeted for the development of suitable bioformulation against soil and seedborne pathogens in sustainable agricultural practice.

  3. Effect of Trichoderma spp. On Three Pathogens Causing Vegetable Diseases in Greenhouse%木霉(Trichoderma spp.)对三种引起大棚蔬菜病害病原菌的影响

    Institute of Scientific and Technical Information of China (English)

    宋瑞清; 周秀华; Sirajul HASAH

    2004-01-01

    通过木霉属(Trichoderma)3菌株与双鸭山蔬菜大棚中的黄瓜枯萎病菌(Fusarium oxysporum Schlecht.f.cucumerinum)、黄瓜果腐病菌(Phytophthora capsici Leonian)、菜豆叶枯病菌(Cladosporium sp.)的对峙培养试验,结果表明:绿色木霉1(Trichoderma viride Pers.ex Gray 1)可作为双鸭山蔬菜大棚中的黄瓜枯萎病、黄瓜果腐病、菜豆叶枯病3种病害的生物防治拮抗菌加以利用,该拮抗菌对菜豆叶枯病菌抑制效果最好;绿色木霉2(Trichoderma viride 2)对黄瓜果腐病菌抑制效果最好;而哈茨木霉(Trichoderma harzianum Rifai)对以上3种病原菌都有抑制效果,对菜豆叶枯病菌抑制效果最好.从试验结果还可看出,绿色木霉2对黄瓜枯萎病菌和菜豆叶枯病菌的生长有促进作用.

  4. Caracterización molecular y agronómica de aislados de Trichoderma spp nativos del noreste de México

    OpenAIRE

    José Luis Hernández Mendoza; María Isabel Sánchez Pérez; Jesús Gerardo García Olivares; Netzahualcoyotl Mayek Pérez; Juan Manuel González Prieto; Jesús Di Carlo Quiroz Velásquez

    2011-01-01

    Título en ingles: Molecular and agronomic characterization of Trichoderma spp natives of northeastern Mexico  Resumen Trichoderma sp es un hongo frecuentemente usado en actividades agrícolas, pues actúa como antagonista de diversas especies de hongos fitopatógenos. En este estudio se realizó el aislamiento de cuatro cepas de Trichoderma sp nativas del noreste de México, las cuales fueron identificadas a nivel molecular mediante la secuenciación del ITS 1. Además se evaluó su capacidad antag...

  5. Cepas de trichoderma útiles para el tratamiento y/o prevención de infecciones provocadas por microorganismos fitopatógenos

    OpenAIRE

    Barroso-Albarracín, Juan Bautista; Chaki, Mounira; Mercado-Blanco, Jesús; Pérez-Artés, Encarnación; Valverde-Corredor, Antonio; López García, Antonio Alejandro

    2011-01-01

    [ES] La invención se refiere al uso de cepas de hongos Trichoderma para la prevención y/o tratamiento de infecciones de plantas y/o suelos provocadas por hongos fitopatógenos pertenecientes al género Verticillium. Además, la invención se refiere a nuevas cepas de hongos perteneciente a las especies Trichoderma harzianum y Trichoderma atroviride que son también resistentes a cobre capaces de inhibir el crecimiento de otros microorganismos, preferiblemente hongos, fitopatógenos. Por el...

  6. Cepas de trichoderma útiles para el tratamiento y/o prevención de infecciones provocadas por microorganismos fitopatógenos

    OpenAIRE

    Barroso-Albarracín, Juan Bautista; Chaki, Mounira; Mercado-Blanco, Jesús; Pérez-Artés, Encarnación; Valverde-Corredor, Antonio; López García, Antonio Alejandro

    2011-01-01

    [ES] La invención se refiere al uso de cepas de hongos Trichoderma para la prevención y/o tratamiento de infecciones de plantas y/o suelos provocadas por hongos fitopatógenos pertenecientes al género Verticillium. Además, la invención se refiere a nuevas cepas de hongos perteneciente a las especies Trichoderma harzianum y Trichoderma atroviride que son también resistentes a cobre capaces de inhibir el crecimiento de otros microorganismos, preferiblemente hongos, fitopatógenos. Por el...

  7. Antagonism of Trichoderma species on Cladosporium herbarum and their enzimatic characterization Antagonismo de espécies de Trichoderma sobre Cladosporium herbarum e suas caracterização enzimática

    Directory of Open Access Journals (Sweden)

    Maria Angélica G. Barbosa

    2001-06-01

    Full Text Available The verrucose caused by Cladosporium herbarum reduces production and quality of Passion fruit (Passiflora edulis Sims., a largely consumed tropical fruit. This work aimed to investigate the antagonism of Trichoderma species (T. polysporum, T. koningii, T. viride and T. harzianum against Cladosporium herbarum, and to study the production of extracellular hydrolytic enzymes by the pathogen and the antagonists. The results showed considerable antagonistic potential for the biocontrol of C. herbarum isolates by all Trichoderma species, except T. koningii. The most distinguished effect was observed for T. polysporum. In relation to the pattern of esterase obtained by electrophoresis in poliacrylamyde gel, the major activity presented by the isolates was observed after five days of incubation. The C. herbarum isolates produced extracellular enzymes, lipase, pectinase, cellulase, and protease, all possibly related to the infection process. Amylase excretion, not known to be associated with phytopathogens, was detected in Trichoderma species, but not in C. herbarum. In addition to amylase, all Trichoderma species tested produced also extracellular cellulase and pectinase, except T. koningii in relation to the latter enzyme. The demonstration of various esterase isoenzymes in zymograms of the Trichoderma species and C. herbarum isolates was markedly improved by washing the mycelia with detergents or EDTA. This fact suggested that a major fraction of extracelular enzymes may remain attached to outside fungal cell wall after being excreted.O maracujá (Passiflora edulis Sims., um fruto tropical amplamente consumido, tem sua produção e a qualidade dos seus frutos reduzidos pela verrugose causada por Cladosporium herbarum. Este trabalho objetivou investigar o antagonismo de espécies de Trichoderma (T. polysporum, T.koningii, T. viride e T. harzianum contra C. herbarum, e estudar a produção de enzimas hidrolíticas extracelulares pelo fitopatógeno e

  8. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp.

    NARCIS (Netherlands)

    Alizadeh, H.; Behboudi, K.; Amadzadeh, M.; Javan-Nikkhah, M.; Zamioudis, C; Pieterse, C.M.J.; Bakker, P.A.H.M.

    2013-01-01

    Trichoderma species and fluorescent Pseudomonas spp. have been reported to induce systemic resistance in plants. In this study the effectiveness of a combination of these biological control agents on the efficacy of induced resistance was investigated in cucumber and the model plant Arabidopsis thal

  9. Trichothecenes and aspinolides produced by Trichoderma arundinaceum regulate expression of Botrytis cinerea genes involved in virulence and growth

    Science.gov (United States)

    Trichoderma arundinaceum (Ta37) and Botrytis cinerea (B05.10) produce the sesquiterpenoid compounds harzianum A (HA) and botrydial (BOT), respectively. T. arundinaceum Ta(delta)Tri5, a mutant that does not produce HA, produces high levels of the polyketide compounds aspinolide (Asp) B and C. We anal...

  10. Botrydial and botcinins produced by Botrytis cinerea regulate expression of Trichoderma arundinaceum genes involved in trichothecene biosynthesis

    Science.gov (United States)

    Trichoderma arundinaceum (Ta37) and Botrytis cinerea produce the sesquiterpenes harzianum A (HA) and botrydial (BOT), respectively, and also the polyketides aspinolides (Asp) and botcinines (Botc), respectively. In the present work, we analyzed the role of BOT and Botcs in the T. arundinaceum-B. cin...

  11. Regulation of Botrytis cinerea virulence genes in interaction with Trichoderma arundinaceum is mediated by the sesquiterpene harzianum A

    Science.gov (United States)

    Trichoderma includes a great diversity of species, some of them with the ability to control the growth of fungal phytopathogens. Many of these strains produce secondary metabolites that are able to inhibit the growth of their fungal preys. However, pathogens can also produce metabolites that in some...

  12. Elucidating the Diversity of Aquatic Microdochium and Trichoderma Species and Their Activity against the Fish Pathogen Saprolegnia diclina.

    Science.gov (United States)

    Liu, Yiying; Zachow, Christin; Raaijmakers, Jos M; de Bruijn, Irene

    2016-01-21

    Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture.

  13. Gate crashing arbuscular mycorrhizas: in vivo imaging shows the extensive colonization of both symbionts by Trichoderma atroviride.

    Science.gov (United States)

    Lace, Beatrice; Genre, Andrea; Woo, Sheridan; Faccio, Antonella; Lorito, Matteo; Bonfante, Paola

    2015-02-01

    Plant growth-promoting fungi include strains of Trichoderma species that are used in biocontrol, and arbuscular mycorrhizal (AM) fungi, that enhance plant nutrition and stress resistance. The concurrent interaction of plants with these two groups of fungi affects crop performance but has only been occasionally studied so far. Using in vivo imaging of green fluorescent protein-tagged lines, we investigated the cellular interactions occurring between Trichoderma atroviride PKI1, Medicago truncatula and two Gigaspora species under in vitro culture conditions. Trichoderma atroviride did not activate symbiotic-like responses in the plant cells, such as nuclear calcium spiking or cytoplasmic aggregations at hyphal contact sites. Furthermore, T. atroviride parasitized G. gigantea and G. margarita hyphae through localized wall breaking and degradation - although this was not associated with significant chitin lysis nor the upregulation of two major chitinase genes. Trichoderma atroviride colonized broad areas of the root epidermis, in association with localized cell death. The infection of both symbionts was also observed when T. atroviride was applied to a pre-established AM symbiosis. We conclude that - although this triple interaction is known to improve plant growth in agricultural environments - in vitro culture demonstrate a particularly aggressive mycoparasitic and plant-colonizing behaviour of a biocontrol strain of Trichoderma.

  14. Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30

    DEFF Research Database (Denmark)

    Olsson, Lisbeth; Christensen, T.M.I.E.; Hansen, K.P.

    2003-01-01

    The growth and enzyme production by Trichoderma reesei Rut C-30 using different lignocellulosic materials as carbon source were investigated. Cellulose, sugar beet pulp and alkaline extracted sugar beet pulp (resulting in partial removal of hemicellulose, lignin and pectin) or mixtures thereof were...

  15. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger

    NARCIS (Netherlands)

    Jiang, Yanping; Duarte, Alexandra Vivas; van den Brink, Joost; Wiebenga, Ad; Zou, Gen; Wang, Chengshu; de Vries, Ronald P; Zhou, Zhihua; Benoit, Isabelle

    OBJECTIVES: To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. RESULTS: By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-D-glucosidase

  16. Identification of loci and functional characterization of trichothecene biosynthesis genes in the filamentous fungus of the genus Trichoderma

    Science.gov (United States)

    Trichothecenes are mycotoxins produced by Trichoderma, Fusarium and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for formation of the mycotoxin...

  17. Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi

    Science.gov (United States)

    Trichothecenes are phytotoxic sesquiterpenoid compounds of fungal origin which can act as virulence factors in plant diseases. Harzianum A (HA) is a non-phytotoxic trichothecene produced by Trichoderma arundinaceum. The first step in the biosynthesis of HA is the conversion of farnesyl diphosphate t...

  18. Involvement of Trichoderma trichothecenes in the biocontrol activity and in the induction of plant defense related genes

    Science.gov (United States)

    Trichoderma species produce trichothecenes, most notably trichodermin and harzianum A (HA), by a biosynthetic pathway in which several of the involved proteins have significant differences in functionality, compared to their Fusarium orthologues. In addition, the genes encoding these proteins show a...

  19. KECEPATAN PERTUMBUHAN KAPANG (Trichoderma harzianum Rifai A1300-F006 DAN AKTIVITAS SELULASE DALAM PENANGANANAN SAMPAH SELULOSA

    Directory of Open Access Journals (Sweden)

    Pebriana Nasution

    2017-04-01

    Full Text Available Production of waste in urban areas reached 0.5 kg/person /day and 80% consisted of organic waste, one of many types of waste mostly generated is household waste. Generally, this household organic waste containing structural compoundsuch us long chains of cellulose.Therefore, the use of microorganism that can produce cellulase is very important to reduce the weight of garbage. Trichoderma harzianumis known as the most potential mold compared to other molds in converting cellulose. Sawdust and bran contain cellulose and hemicellulose that can be used as the main component in the mediafor its growth. The objectives of this study was: To find an effective ratio between sawdust and bran as growth mediafor Trichoderma harzianum, To know the cellulase activity of Trichoderma harzianum. This study has been conducted from April 2015 to Juli 2015 in the Laboratory of Microbiology, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Andalas. The results of this study concluded that an effective ratio between sawdust and bran as a growth media for Trichoderma harzianumwhich degraded organic waste was 50:50. The highest activity of cellulase in degrading organic waste is 100%.

  20. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Pierce, Brian; Wittrup Agger, Jane; Wichmann, Jesper

    2017-01-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety...

  1. EFIKASI ISOLAT TRICHODERMA TERPILIH DENGAN BAHAN ORGANIK UNTUK MENGENDALIKAN PENYAKIT BUSUK PANGKAL BATANG PADA LADA DI LAPANGAN

    Directory of Open Access Journals (Sweden)

    Cipta Ginting

    2017-05-01

    Full Text Available Efficacy of selected Trichoderma isolate and organic matter to control foot rot of black pepper in the field. The objective of this experiment was to determine the efficacy of selected Trichoderma isolatand organic matter to control the disease. Dual culture method was used to select a Trichoderma isolate. The experiment to evaluate the efficacy of selected isolate consisted of control (no application of T. harzianum or organic matter, T. harzianum and rice straw, and T. harzianum and coffee husk. As starter, T. harzianum was grown in broken rice. Two liters of organic matter was infested with suspension of 10 g starter in 100 ml steril water and incubated for 2 weeks. The mixture was applied around the base of black pepper stem. The results showed that all plants treated with T. harzianum and organic matter did not show disease symptom. Ten percent of the control plants showed symptoms. However, statistical analysis showed that the occurrence of the disease was not significantly different between treatments. Applications ofT. harzianum and rice straw increased the density of Trichoderma for 1 and 2 months after application. T. harzianum and coffee husk increased the density of the fungus 1 month after application.

  2. INFLUENCE OF FUNGI OF THE GENUS TRICHODERMA ON PHYTOAVAILABILITY CADMIUM AND PHYSIOLOGICAL CONDITION OF MAIZE (ZEA MAYS

    Directory of Open Access Journals (Sweden)

    Magdalena Marchel

    2015-02-01

    Full Text Available The aim of conducted research was to determine in what degree inoculation of soil by fungi Trichoderma modifies process of phytoavailability of cadmium through roots and above ground parts of maize (Zea mays and how it affects cadmium activity as damaging factor of photosynthetic apparatus of plants. Outline of vase experiment covered 5 objects (control without addition of cadmium and 4 objects with increasing amount of cadmium in amount from 10 to 80 mg.kg-1 d.m. soil, and within each object two variants: soil without (-T and with (+T addition of fungi of Trichoderma (+T in shape of granulated preparation of Trianum–G in amount of 750 g.m-3 soil. Increasing amount of cadmium in surface caused decrease of harvest size of roots and above ground parts of maize, but inoculation of surface by Trichoderma fungi softened those changes. Amount of cadmium in plants was increasing promotionally to increasing amount of that metal in soil, but the presence of fungi of Trichoderma type caused decrease of phytoavailability cadmium by above ground parts of maize. Decrease parameters of chlorophyll fluorescence F0, FM, Fv, Fv/FM Fv/F0 showed lack of disturbances in photosynthetic apparatus of maize despite decrease the amount of chlorophyll in leaves under the influence of inserted cadmium doses to soil.

  3. Histo-pathology study of the growth of Trichoderma harzianum, Phaeomoniella chlamydospora and Eutypa lata on grapevine pruning wounds

    Directory of Open Access Journals (Sweden)

    Cheusi MUTAWILA

    2011-12-01

    Full Text Available Protecting grapevine pruning wounds by inoculating them with Trichoderma spp. can preventinfection from trunk disease pathogens. The growth and interactions of both, the biological control agent Trichoderma spp. and the vine pathogens, are not well understood. Green fluorescent protein (GFP-labelled Trichoderma harzianum and red fluorescent protein (DsRed-labelled T. harzianum, were dual-inoculatedwith Phaeomoniella chlamydospora (DsRed or Eutypa lata (GFP on fresh pruning wounds of one-year-oldCabernet Sauvignon and Sauvignon blanc shoots. The inoculated fungi were recovered from varying depthswithin the shoots at 30-day-intervals for 90 days. Trichoderma harzianum suppressed the pathogens and grew deeper in the presence of the pathogens than when it was singly inoculated; possibly an indication of pathogen recognition and competitive response. Eutypa lata was completely eliminated from Sauvignon blancin dual-inoculated canes after 90 days. The mycelium of P. chlamydospora (DsRed grew extensively in thexylem vessels and possibly contributed to vessel occlusion. Phaeomoniella chlamydospora and E. lata caused blockage of the vessels and thickening of the vessel walls. Grapevine wood produced both tyloses and gums (gels that blocked xylem vessels as a result of infection. A thickening of the cell walls of xylem fibres occurredonly in E. lata-inoculated shoots, indicative of a different mode of pathogenesis from P. chlamydospora.

  4. Novel aspinolide production by Trichoderma arundinaceum with a potential role in Botrytis cinerea antagonistic activity and plant defense priming

    Science.gov (United States)

    Harzianum A (HA), a trichothecene produced by Trichoderma arundinaceum, has recently been described to have antagonistic activity against fungal plant pathogens and to induce plant defence genes. In the present work, we have shown that a tri5 genedisrupted mutant that lacks HA production overproduce...

  5. Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis.

    Science.gov (United States)

    Salvadori, Marcia R; Ando, Rômulo A; Oller Do Nascimento, Cláudio A; Corrêa, Benedito

    2014-09-19

    This is the first study describing the rapid extracellular production of copper nanoparticles by dead biomass of Trichoderma koningiopsis. The production and uptake of copper nanoparticles by dead biomass of Trichoderma koningiopsis were characterized by investigating physicochemical factors, equilibrium concentrations and biosorption kinetics, combined with scanning electron microscopy (SEM), energy dispersive X-ray (EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). A successful route for the metallic copper nanoparticles synthesis was achieved, and followed a Langmuir isotherm where a high biosorption capacity was observed, 21.1 mg g(-1). The kinetic analysis showed that copper biosorption followed a pseudo-second-order model. The nanoparticles mainly exhibited a spherical shape, with an average size of 87.5 nm, and were synthesized extracellularly. The presence of proteins as stabilizing agents of the nanoparticles was demonstrated. The extracellular biosynthesis and uptake of copper nanoparticles using dead fungal biomass is a low-cost green processes, and bioremediation of impacted local.

  6. Functions of thga1 Gene in Trichoderma harzianum Based on Transcriptome Analysis

    Science.gov (United States)

    Sun, Qing; Pang, Li; Wang, Lirong

    2016-01-01

    Trichoderma spp. are important biocontrol filamentous fungi, which are widely used for their adaptability, broad antimicrobial spectrum, and various antagonistic mechanisms. In our previous studies, we cloned thga1 gene encoding GαI protein from Trichoderma harzianum Th-33. Its knockout mutant showed that the growth rate, conidial yield, cAMP level, antagonistic action, and hydrophobicity decreased. Therefore, Illumina RNA-seq technology (RNA-seq) was used to determine transcriptomic differences between the wild-type strain and thga1 mutant. A total of 888 genes were identified as differentially expressed genes (DEGs), including 427 upregulated and 461 downregulated genes. All DEGs were assigned to KEGG pathway databases, and 318 genes were annotated in 184 individual pathways. KEGG analysis revealed that these unigenes were significantly enriched in metabolism and degradation pathways. GO analysis suggested that the majority of DEGs were associated with catalytic activities and metabolism processes that encode carbohydrate-active enzymes, secondary metabolites, secreted proteins, or transcription factors. According to the functional annotation of these DEGs by KOG, the most abundant group was “secondary metabolite biosynthesis, transport, and catabolism.” Further studies for functional characterization of candidate genes and pathways reported in this paper are necessary to further define the G protein signaling system in T. harzianum. PMID:27672660

  7. Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt.

    Science.gov (United States)

    Blaya, Josefa; López-Mondéjar, Rubén; Lloret, Eva; Pascual, Jose Antonio; Ros, Margarita

    2013-09-01

    The addition of species of Trichoderma to compost is a widespread technique used to control different plant diseases. The biological control activity of these species is mainly attributable to a combination of several mechanisms of action, which may affect the microbiota involved in the suppressiveness of compost. This study was therefore performed to determine the effect of inoculation of Trichoderma harzianum (T. harzianum) on compost, focusing on bacterial community structure (16S rRNA) and chitinase gene diversity. In addition, the ability of vineyard pruning waste compost, amended (GCTh) or not (GC) with T. harzianum, to suppress Fusarium wilt was evaluated. The addition of T. harzianum resulted in a high relative abundance of certain chitinolytic bacteria as well as in remarkable protection against Fusarium oxysporum comparable to that induced by compost GC. Moreover, variations in the abiotic characteristics of the media, such as pH, C, N and iron levels, were observed. Despite the lower diversity of chitinolytic bacteria found in GCTh, the high relative abundance of Streptomyces spp. may be involved in the suppressiveness of this growing media. The higher degree of compost suppressiveness achieved after the addition of T. harzianum may be due not only to its biocontrol ability, but also to changes promoted in both abiotic and biotic characteristics of the growing media.

  8. Morphological changes of Ganoderma boninense mycelia after challenged by Trichoderma and Bacillus

    Science.gov (United States)

    Alexander, Arnnyitte; Dayou, Jedol; Chong, Khim-Phin

    2015-07-01

    Ganoderma boninense is a fungal pathogen that causes Basal Stem Rot (BSR) disease in oil palm. This deadly disease has caused major losses in the oil palm industry and no remedy is reported to date. The more promising control on G. boninense is the use of biological control agents (BCAs). Despite many attempts in using BCAs as a control agent but evidence on the colonization of BCAs and morphological changes of the pathogen is not well documented. We have investigated the effect of antagonist activity on the combination of Trichoderma spp. and Bacillus spp. on the morphology of G. boninense. The antagonist activity was evaluated using agar well diffusion assay. BCAs suppressed the mycelia growth of G. boninense up to 70%. Observation under Scanning Electron Microscopy (SEM) shows these BCAs induced stripping of G. boninense hyphal structure by destroying the cellular structure. Highly disrupted, disaggerated, shrivelled and lysis of G. boninense hyphal were also observed. The antifungal activity of Trichoderma spp. and Bacillus spp. observed could be associated with the production of Cell Wall Degrading Enzymes (CWDE).

  9. Functions of thga1 Gene in Trichoderma harzianum Based on Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2016-01-01

    Full Text Available Trichoderma spp. are important biocontrol filamentous fungi, which are widely used for their adaptability, broad antimicrobial spectrum, and various antagonistic mechanisms. In our previous studies, we cloned thga1 gene encoding GαI protein from Trichoderma harzianum Th-33. Its knockout mutant showed that the growth rate, conidial yield, cAMP level, antagonistic action, and hydrophobicity decreased. Therefore, Illumina RNA-seq technology (RNA-seq was used to determine transcriptomic differences between the wild-type strain and thga1 mutant. A total of 888 genes were identified as differentially expressed genes (DEGs, including 427 upregulated and 461 downregulated genes. All DEGs were assigned to KEGG pathway databases, and 318 genes were annotated in 184 individual pathways. KEGG analysis revealed that these unigenes were significantly enriched in metabolism and degradation pathways. GO analysis suggested that the majority of DEGs were associated with catalytic activities and metabolism processes that encode carbohydrate-active enzymes, secondary metabolites, secreted proteins, or transcription factors. According to the functional annotation of these DEGs by KOG, the most abundant group was “secondary metabolite biosynthesis, transport, and catabolism.” Further studies for functional characterization of candidate genes and pathways reported in this paper are necessary to further define the G protein signaling system in T. harzianum.

  10. Comparative Secretome Analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum During Solid-State Fermentation.

    Science.gov (United States)

    Gong, Weili; Zhang, Huaiqiang; Liu, Shijia; Zhang, Lili; Gao, Peiji; Chen, Guanjun; Wang, Lushan

    2015-11-01

    Filamentous fungi such as Aspergillus spp., Trichoderma spp., and Penicillium spp. are frequently used to produce high concentrations of lignocellulosic enzymes. This study examined the discrepancies in the compositions and dynamic changes in the extracellular enzyme systems secreted by Aspergillus niger ATCC1015, Trichoderma reesei QM9414, and Penicillium oxalicum 114-2 cultured on corn stover and wheat bran. The results revealed different types and an abundance of monosaccharides and oligosaccharides were released during incubation, which induced the secretion of diverse glycoside hydrolases. Both the enzyme activities and isozyme numbers of the three fungal strains increased with time. A total of 279, 161, and 183 secretory proteins were detected in A. niger, T. reesei, and P. oxalicum secretomes, respectively. In the A. niger secretomes, more enzymes involved in the degradation of (galacto)mannan, xyloglucan, and the backbone of pectin distributed mostly in dicots were detected. In comparison, although P. oxalicum 114-2 hardly secreted any xyloglucanases, the diversities of enzymes involved in the degradation of xylan and β-(1,3;1,4)-D-glucan commonly found in monocots were higher. The cellulase system of P. oxalicum 114-2 was more balanced. The degradation preference provided a new perspective regarding the recomposition of lignocellulosic enzymes based on substrate types.

  11. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride.

    Directory of Open Access Journals (Sweden)

    Edgar Balcázar-López

    Full Text Available Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc. To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation.

  12. Structural basis of transport function in major facilitator superfamily protein from Trichoderma harzianum.

    Science.gov (United States)

    Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2017-02-01

    Trichothecenes are the sesquiterpenes secreted by Trichoderma spp. residing in the rhizosphere. These compounds have been reported to act as plant growth promoters and bio-control agents. The structural knowledge for the transporter proteins of their efflux remained limited. In this study, three-dimensional structure of Thmfs1 protein, a trichothecene transporter from Trichoderma harzianum, was homology modelled and further Molecular Dynamics (MD) simulations were used to decipher its mechanism. Fourteen transmembrane helices of Thmfs1 protein are observed contributing to an inward-open conformation. The transport channel and ligand binding sites in Thmfs1 are identified based on heuristic, iterative algorithm and structural alignment with homologous proteins. MD simulations were performed to reveal the differential structural behaviour occurring in the ligand free and ligand bound forms. We found that two discrete trichothecene binding sites are located on either side of the central transport tunnel running from the cytoplasmic side to the extracellular side across the Thmfs1 protein. Detailed analysis of the MD trajectories showed an alternative access mechanism between N and C-terminal domains contributing to its function. These results also demonstrate that the transport of trichodermin occurs via hopping mechanism in which the substrate molecule jumps from one binding site to another lining the transport tunnel. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The relation between xyr1 overexpression in Trichoderma harzianum and sugarcane bagasse saccharification performance.

    Science.gov (United States)

    da Silva Delabona, Priscila; Rodrigues, Gisele Nunes; Zubieta, Mariane Paludetti; Ramoni, Jonas; Codima, Carla Aloia; Lima, Deise Juliana; Farinas, Cristiane Sanchez; da Cruz Pradella, José Geraldo; Seiboth, Bernhard

    2017-03-20

    This work investigates the influence of the positive regulator XYR1 of Trichoderma harzianum on the production of cellulolytic enzymes, using sugarcane bagasse as carbon source. Constitutive expression of xyr1 was achieved under the control of the strong Trichoderma reesei pki1 promoter. Five clones with xyr1 overexpression achieved higher xyr1 expression and greater enzymatic productivity when cultivated under submerged fermentation, hence validating the genetic construction for T. harzianum. Clone 5 presented a relative expression of xyr1 26-fold higher than the parent strain and exhibited 66, 37, and 36% higher values for filter paper activity, xylanase activity, and β-glucosidase activity, respectively, during cultivation in a stirred-tank bioreactor. The overexpression of xyr1 in T. harzianum resulted in an enzymatic complex with significantly improved performance in sugarcane bagasse saccharification, with an enhancement of 25% in the first 24h. Our results also show that constitutive overexpression of xyr1 leads to the induction of several important players in biomass degradation at early (24h) and also late (48h) timepoints of inoculation. However, we also observed that the carbon catabolite repressor CRE1 was upregulated in xyr1 overexpression mutants. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression and suggest an attractive approach for increasing total cellulase productivity in T. harzianum. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Morphological changes of Ganoderma boninense mycelia after challenged by Trichoderma and Bacillus

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Arnnyitte; Chong, Khim-Phin, E-mail: chongkp@ums.edu.my [Sustainable Palm Oil Research Unit (SPOR), Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah (Malaysia); Dayou, Jedol [Vibration and Sound Research Group (eVIBS), Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah (Malaysia)

    2015-07-22

    Ganoderma boninense is a fungal pathogen that causes Basal Stem Rot (BSR) disease in oil palm. This deadly disease has caused major losses in the oil palm industry and no remedy is reported to date. The more promising control on G. boninense is the use of biological control agents (BCAs). Despite many attempts in using BCAs as a control agent but evidence on the colonization of BCAs and morphological changes of the pathogen is not well documented. We have investigated the effect of antagonist activity on the combination of Trichoderma spp. and Bacillus spp. on the morphology of G. boninense. The antagonist activity was evaluated using agar well diffusion assay. BCAs suppressed the mycelia growth of G. boninense up to 70%. Observation under Scanning Electron Microscopy (SEM) shows these BCAs induced stripping of G. boninense hyphal structure by destroying the cellular structure. Highly disrupted, disaggerated, shrivelled and lysis of G. boninense hyphal were also observed. The antifungal activity of Trichoderma spp. and Bacillus spp. observed could be associated with the production of Cell Wall Degrading Enzymes (CWDE)

  15. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy.

    Science.gov (United States)

    Wu, Qiong; Sun, Ruiyan; Ni, Mi; Yu, Jia; Li, Yaqian; Yu, Chuanjin; Dou, Kai; Ren, Jianhong; Chen, Jie

    2017-01-01

    Due to its efficient broad-spectrum antimicrobial activity, Trichoderma has been established as an internationally recognized biocontrol fungus. In this study, we found and identified a novel strain of Trichoderma asperellum, named GDFS1009. The mycelium of T. asperellum GDFS1009 exhibits a high growth rate, high sporulation capacity, and strong inhibitory effects against pathogens that cause cucumber fusarium wilt and corn stalk rot. T. asperellum GDFS1009 secretes chitinase, glucanase, and protease, which can degrade the cell walls of fungi and contribute to mycoparasitism. The secreted xylanases are good candidates for inducing plant resistance and enhancing plant immunity against pathogens. RNA sequencing (RNA-seq) and gas chromatography-mass spectrometry (GC-MS) showed that T. asperellum GDFS1009 produces primary metabolites that are precursors of antimicrobial compounds; it also produces a variety of antimicrobial secondary metabolites, including polyketides and alkanes. In addition, this study speculated the presence of six antimicrobial peptides via ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS/MS). Future studies should focus on these antimicrobial metabolites for facilitating widespread application in the field of agricultural bio-control.

  16. Optimization of nonribosomal peptides production by a psychrotrophic fungus: Trichoderma velutinum ACR-P1.

    Science.gov (United States)

    Sharma, Richa; Singh, Varun P; Singh, Deepika; Yusuf, Farnaz; Kumar, Anil; Vishwakarma, Ram A; Chaubey, Asha

    2016-11-01

    Trichoderma is an anamorphic filamentous fungal genus with immense potential for production of small valuable secondary metabolites with indispensable biological activities. Microbial dynamics of a psychrotrophic strain Trichoderma velutinum ACR-P1, isolated from unexplored niches of the Shiwalik region, bestowed with rich biodiversity of microflora, was investigated for production of nonribosomal peptides (NRPs) by metabolite profiling by intact-cell mass spectrometry (ICMS) employing matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometer. Being the first report on NRPs production by T. velutinum, studies on optimization of growth conditions by Response Surface Methodology (RSM) for production of NRPs by ACR-P1 was carried out strategically. Multifold enhancement in the yield of NRPs belonging to subfamily SF4 with medium chain of amino acid residues having m/z 1437.9, 1453.9, and 1452.0 at pH 5.9 at 20 °C and of subfamily SF1 with long-chain amino acid residues having m/z 1770.2, 1784.2, 1800.1, 1802.1, and 1815.1 was achieved at pH 7.0 at 25 °C. Complexities of natural mixtures were thus considerably reduced under respective optimized culture conditions accelerating the production of novel microbial natural products by saving time and resources.

  17. PURIFICATION AND PROPERTIES OF A FUNGAL L-ASPARAGINASE FROM TRICHODERMA VIRIDE PERS: SF GREY

    Directory of Open Access Journals (Sweden)

    Lynette Lincoln

    2015-02-01

    Full Text Available A potent L-asparaginase-producing Trichoderma viride Pers: SF Grey was screened from the marine soil with the objective of studying the enzyme properties. The maximum enzyme production occurred on the third day at pH 6.5 and 37 °C when 0.5% L-asparagine supplemented with 0.5% peptone and 0.6% maltose. The enzyme was purified to homogeneity with a specific activity of 78.2 U.mg-1 and a molecular weight of 99 ± 1 kDa. It exhibited maximum activity at pH 7.0 and 37 °C. It was inhibited by Fe2+, Fe3+, Co2+ and Mn2+ but induced by Mg2+ and Na+. N-ethylemaleimide and phenylmethylsulphonylfluoride did not alter the enzyme activity, but strongly inhibited by ethylenediaminetetraacetate. L-asparaginase showed high affinity for L-asparagine with a Km of 2.56 μM. Thin layer chromatography confirmed the hydrolysis of L-asparagine. As the purified and characterized L-asparaginase of Trichoderma viride showed a good scavenging activity and reduced acrylamide level in potato products, it can further serve as an antileukemic protein and an acrylamide mitigation agent in heat-treated food stuffs rich in carbohydrates, respectively.

  18. Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase

    Science.gov (United States)

    Mendoza-Mendoza, Artemio; Pozo, María J.; Grzegorski, Darlene; Martínez, Pedro; García, Juan M.; Olmedo-Monfil, Vianey; Cortés, Carlos; Kenerley, Charles; Herrera-Estrella, Alfredo

    2003-01-01

    The production of lytic enzymes in Trichoderma is considered determinant in its parasitic response against fungal species. A mitogen-activated protein kinase encoding gene, tvk1, from Trichoderma virens was cloned, and its role during the mycoparasitism, conidiation, and biocontrol was examined in tvk1 null mutants. These mutants showed a clear increase in the level of the expression of mycoparasitism-related genes under simulated mycoparasitism and during direct confrontation with the plant pathogen Rhizoctonia solani. The null mutants displayed an increased protein secretion phenotype as measured by the production of lytic enzymes in culture supernatant compared to the wild type. Consistently, biocontrol assays demonstrated that the null mutants were considerably more effective in disease control than the wild-type strain or a chemical fungicide. In addition, tvk1 gene disruptant strains sporulated abundantly in submerged cultures, a condition that is not conducive to sporulation in the wild type. These data suggest that Tvk1 acts as a negative modulator during host sensing and sporulation in T. virens. PMID:14673101

  19. In vitro antagonism of Trichoderma harzianum Rifai against Mycosphaerella fijiensis Morelet

    Directory of Open Access Journals (Sweden)

    Mayra Acosta-Suárez

    2013-10-01

    Full Text Available The in vitro antagonism of Trichoderma harzianum against Mycosphaerella fijiensis, foliar pathogen of banana and plantain, was evaluated. The assays were performed using the dual culture method. Competition for space and nutrients, the antagonistic capacity and forms and intensity of antagonism were determined considering the invasion of the surface of the colony, colonization and sporulation of T. harzianum on M. fijiensis after seven days of inoculation. Finally, the effect of volatile metabolites of T. harzianum was evaluated. The results showed in vitro antagonism of T. harzianum against M. fijiensis by competition for space and nutrients of the culture medium. Trichoderma grew over the pathogen colony with hyperparasitism and high intensity. Also, it completely covered the surface of the culture medium. T. harzianum not inhibited the growth of M. fijiensis by volatile metabolites. Damage was observed in the integrity of the cell wall of M. fijiensis hyphae and the cell content exit. The use of antagonistic fungi, could contribute to the design of strategies for integrated management of this disease. Key words: banana and plantain, biocontrol, mechanisms of action

  20. PRODUKSI SELULASE KASAR DARI KAPANG TRICHODERMA VIRIDE DENGAN PERLAKUAN KONSENTRASI SUBSTRAT AMPAS TEBU DAN LAMA FERMENTASI

    Directory of Open Access Journals (Sweden)

    IDA BAGUS WAYAN GUNAM

    2011-12-01

    Full Text Available This research was done in order to utilize bagasse as substrates to produce crude cellulase from Trichoderma viride. This research used a randomized block design with factorial pattern which consisted of two factors. The first factor was the concentration of substrate which consisted of three levels namely, substrate concentration of 1%, 2%, and 3%. The second factor was the fermentation time which consisted of three levels namely, 5, 7, and 9 days. Each treatment classified into two groups based on time of production. The results showed that the concentration of bagasse and fermentation time significantly influenced the parameters observation of crude cellulase production from Trichoderma viride. The optimal treatment combination to produce crude cellulase with maximum activity was the treatment of 3% substrate concentration and fermentation time of 7 days with an average value of cellulase activity (filter paperase, soluble protein, and cellulase specific activity were 0.771 Unit/mL, 0.262 mg/mL, and 2.940 Unit/mg, respectively.

  1. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride

    Science.gov (United States)

    Balcázar-López, Edgar; Méndez-Lorenzo, Luz Helena; Batista-García, Ramón Alberto; Esquivel-Naranjo, Ulises; Ayala, Marcela; Kumar, Vaidyanathan Vinoth; Savary, Olivier; Cabana, Hubert; Herrera-Estrella, Alfredo; Folch-Mallol, Jorge Luis

    2016-01-01

    Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus) sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc). To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor) from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation. PMID:26849129

  2. Identification of New Lactone Derivatives Isolated from Trichoderma sp., An Endophytic Fungus of Brotowali (Tinaspora crispa

    Directory of Open Access Journals (Sweden)

    Elfita

    2014-03-01

    Full Text Available Endophytic fungi is a rich source of novel organic compounds with interesting biological activities and a high level of structural diversity. As a part of our systematic search for new bioactive lead structures and specific profiles from endophytic fungi, an endophytic fungus was isolated from roots of brotowali (Tinaspora crispa, an important medicinal plant. Colonial morphological trait and microscopic observation revealed that the endophytic fungus was Trichoderma sp. The pure fungal strain was cultivated on 7 L Potatos Dextose Broth (PDB medium under room temperature (no shaking for 8 weeks. The ethyl acetate were added to cultur medium and left overnight to stop cell growth. The culture filtrates were collected and extracted with EtOAc and then taken to evaporation. Two new lactone derivatives, 5-hydroxy-4-hydroxymethyl-2H-pyran-2-one (1 and (5-hydroxy-2-oxo-2H pyran-4-yl methyl acetate (2 were obtained from the EtOAc extracts of Trichoderma sp. Their structures were determined on the basic of spectroscopic methods including UV, IR, 1H-NMR, 13C-NMR, HMQC, and HMBC.

  3. Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture – insights from genomics.

    Directory of Open Access Journals (Sweden)

    David J Studholme

    2013-07-01

    Full Text Available Trichoderma hamatum strain GD12 is unique in that it can promote plant growth, activate biocontrol against pre- and post-emergence soil pathogens and can induce systemic resistance to foliar pathogens. This study extends previous work in lettuce to demonstrate that GD12 can confer beneficial agronomic traits to other plants, providing examples of plant growth promotion in the model dicot, Arabidopsis thaliana and induced foliar resistance to Magnaporthe oryzae in the model monocot rice. We further characterize the lettuce-T. hamatum interaction to show that bran extracts from GD12 and a N-acetyl-β-D-glucosamindase-deficient mutant differentially promote growth in a concentration dependent manner, and these differences correlate with differences in the small molecule secretome. We show that GD12 mycoparasitises a range of isolates of the pre-emergent soil pathogen Sclerotinia sclerotiorum and that this interaction induces a further increase in plant growth promotion above that conferred by GD12. To understand the genetic potential encoded by T. hamatum GD12 and to facilitate its use as a model beneficial to study plant growth promotion, induced systemic resistance and mycoparasitism we present de novo genome sequence data. We compare GD12 with other published Trichoderma genomes and show that T. hamatum GD12 contains unique genomic regions with the potential to encode novel bioactive metabolites that may contribute to GD12’s agrochemically important traits.

  4. Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture-insights from genomics.

    Science.gov (United States)

    Studholme, David J; Harris, Beverley; Le Cocq, Kate; Winsbury, Rebecca; Perera, Venura; Ryder, Lauren; Ward, Jane L; Beale, Michael H; Thornton, Chris R; Grant, Murray

    2013-01-01

    Trichoderma hamatum strain GD12 is unique in that it can promote plant growth, activate biocontrol against pre- and post-emergence soil pathogens and can induce systemic resistance to foliar pathogens. This study extends previous work in lettuce to demonstrate that GD12 can confer beneficial agronomic traits to other plants, providing examples of plant growth promotion in the model dicot, Arabidopsis thaliana and induced foliar resistance to Magnaporthe oryzae in the model monocot rice. We further characterize the lettuce-T. hamatum interaction to show that bran extracts from GD12 and an N-acetyl-β-D-glucosamindase-deficient mutant differentially promote growth in a concentration dependent manner, and these differences correlate with differences in the small molecule secretome. We show that GD12 mycoparasitises a range of isolates of the pre-emergence soil pathogen Sclerotinia sclerotiorum and that this interaction induces a further increase in plant growth promotion above that conferred by GD12. To understand the genetic potential encoded by T. hamatum GD12 and to facilitate its use as a model beneficial organism to study plant growth promotion, induced systemic resistance and mycoparasitism we present de novo genome sequence data. We compare GD12 with other published Trichoderma genomes and show that T. hamatum GD12 contains unique genomic regions with the potential to encode novel bioactive metabolites that may contribute to GD12's agrochemically important traits.

  5. Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions.

    Science.gov (United States)

    Cheng, Chi-Hua; Yang, Chia-Ann; Peng, Kou-Cheng

    2012-11-01

    ABSTRACT Previous studies have shown that the extracellular proteins of Trichoderma harzianum ETS 323 grown in the presence of deactivated Botrytis cinerea in culture include a putative l-amino acid oxidase and have suggested the involvement of this enzyme in the antagonistic mechanism. Here, we hypothesized that the mycoparasitic process of Trichoderma spp. against B. cinerea involves two steps; that is, an initial hyphal coiling stage and a subsequent hyphal coiling stage, with different coiling rates. The two-step antagonism of T. harzianum ETS 323 against B. cinerea during the mycoparasitic process in culture was evaluated using a biexponential equation. In addition, an l-amino acid oxidase (Th-l-AAO) was identified from T. harzianum ETS 323. The secretion of Th-l-AAO was increased when T. harzianum ETS 323 was grown with deactivated hyphae of B. cinerea. Moreover, in vitro assays indicated that Th-l-AAO effectively inhibited B. cinerea hyphal growth, caused cytosolic vacuolization in the hyphae, and led to hyphal lysis. Th-l-AAO also showed disease control against the development of B. cinerea on postharvest apple fruit and tobacco leaves. Furthermore, an apoptosis-like response, including the generation of reactive oxygen species, was observed in B. cinerea after treatment with Th-l-AAO, suggesting that Th-l-AAO triggers programmed cell death in B. cinerea. This may be associated with the two-step antagonism of T. harzianum ETS 323 against B. cinerea.

  6. Inhibition coefficient and molecular diversity of multi stress tolerant Trichoderma as potential biocontrol agent against Sclerotium rolfsii Sacc.

    Science.gov (United States)

    Hirpara, Darshna G; Gajera, H P; Hirapara, Jaydeep G; Golakiya, B A

    2017-08-31

    Trichoderma is one of the most exploited biocontrol agent for the management of plant diseases. Twenty strains of Trichoderma (six of T. harzianum, four of T. viride, three of T. virens, three of T. koningii, each one of T. hamatum, T. reesei, T. parceramosum and Trichoderma spp.) subjected to in vitro antagonism up to 12days after inoculation against Sclerotium rolfsii Sacc. causing stem rot in groundnut. A new concept was developed to determine inhibition coefficient representing pathogen biology and biocontrol related biophysical variables. Results explained differential inhibition coefficient of test pathogen by Trichoderma antagonists. The inhibition coefficient of test pathogen was examined highest (91.13%) by T. virens NBAII Tvs12 followed by T. virens MTCC 794 (89.33%) and T. koningii MTCC 796 (62.39%). Microscopic study confirmed biocontrol mechanism as mycoparasitism for Tvs12 and antibiosis for T. koningii MTCC 796. The sclerotial biogenesis of test pathogen was elevated during weak antagonism and diminished in interactions with strong antagonists. The inhibition coefficient of S. rolfsii was significantly negatively correlated with sclerotia formation and lipid peroxidation during the antagonism. Trichoderma strains were screened for fungicides (carbendazim and tebuconazole, thiram and mancozeb) and abiotic stress (drought and salt) tolerance. Results indicated that T. koningii MTCC 796 efficiently grew better than the other strains with maximum radial growth under adverse conditions. The genetic variability among the Trichoderma was determined using 34 gene specific markers which amplified 146 alleles. The SSR similarities explained substantial diversity (15 to 87%) across Trichoderma strains and pathogen S. rolfsii. Principal coordinates analysis (PCA) were comparable to the cluster analysis and first three most informative PC components explained 64.45% of the total variation. In PCA, potent antagonists appear to be distinct from other strains. Five

  7. Evaluation of the enzymatic activity of Trichoderma inhamatum (BOL-12QD as possible biocontroller

    Directory of Open Access Journals (Sweden)

    García-Espejo Cielo Noemí

    2016-02-01

    Full Text Available It is known that Trichoderma spp. acts as a natural biocontroller of pathogen fungi, is for this reason, that this research studies the potential of its hydrolytic enzyme activity. In this article, first we determined that the speed of growth of Trichoderma inhamatum cepa BOL-12QD is 9 hours. Later, we proposed a simple and sensitive method based in the use of basal media (BM with coloidal chitin as the only carbon resource and supplemented with bromocresol purple for the qualitative determination of chitinase activi-ty. On the other hand, it was determined the celullolytic and proteolytic activities of Trichoderma in-hamatum cepa BOL-12QD and it was observed that agitation, type and concentration of sustrate are determinant factors in enzymatic production. Then, we evaluated the cellulolytic activity of Trichoderma inhamatum cepa BOL-12QD in agitation and stationary using carboxymethylcellulose (CMC as sustrate, finding that using a 2% of sustrate the highest activity is registered at 8 days of incubation in agitation with a value of 99.23 IU/L. In relation to the results at stationary the optimal value is at the fourth day with a value of 92.76 IU/L. The protease activity it was determined taking in consideration variables of agitation and stationary, using different types and concentration of sustrate at 2%, 4% y 6% (w/v of meat extract, 1%, 3%, 5% (w/v of jelly and 1%, 2%, 4% (w/v of casein. The highest protease activity was obtained at the end of the sev-enth day with an enzymatic activity of 3075.45 IU/L at stationary using a concentration of 6% (w/v of meat extract, and using jelly at 3% (w/v at stationary it was found an activity of 568.36 IU/L on the tenth day and in agitation a value of 547.27 IU/L was reached on the twelveth day, while using casein at 1% (w/v at stationary an activity of 407.06 IU/L is reached in the fifth day, and in agitation at 4% (w/v of casein a value of 547.27 IU/L is obtained on the twelfth day, while using

  8. Differential display of abundantly expressed genes of Trichoderma harzianum during colonization of tomato-germinating seeds and roots.

    Science.gov (United States)

    Mehrabi-Koushki, Mehdi; Rouhani, Hamid; Mahdikhani-Moghaddam, Esmat

    2012-11-01

    The identification of Trichoderma genes whose expression is altered during early stages of interaction with developing roots of germinated seeds is an important step toward understanding the rhizosphere competency of Trichoderma spp. The potential of 13 Trichoderma strains to colonize tomato root and promote plant growth has been evaluated. All used strains successfully propagated in spermosphere and continued their growth in rhizoplane simultaneously root enlargement while the strains T6 and T7 were the most abundant in the apical segment of roots. Root colonization in most strains associated with promoting the roots and shoots growth while they significantly increased up to 43 and 40 % roots and shoots dry weights, respectively. Differential display reverse transcriptase-PCR (DDRT-PCR) has been developed to detect differentially expressed genes in the previously selected strain, Trichoderma harzianum T7, during colonization stages of tomato-germinating seeds and roots. Amplified DDRT-PCR products were analyzed on gel agarose and 62 differential bands excised, purified, cloned, and sequenced. Obtained ESTs were submit-queried to NCBI database by BLASTx search and gene ontology hierarchy. Most of transcripts (29 EST) corresponds to known and hypothetical proteins such as secretion-related small GTPase, 40S ribosomal protein S3a, 3-hydroxybutyryl-CoA dehydrogenase, DNA repair protein rad50, lipid phosphate phosphatase-related protein type 3, nuclear essential protein, phospholipase A2, fatty acid desaturase, nuclear pore complex subunit Nup133, ubiquitin-activating enzyme, and 60S ribosomal protein L40. Also, 13 of these sequences showed no homology (E > 0.05) with public databases and considered as novel genes. Some of these ESTs corresponded to genes encodes enzymes potentially involved in nutritional support of microorganisms which have obvious importance in the establishment of Trichoderma in spermosphere and rhizosphere, via potentially functioning in

  9. Understanding Trichoderma in the root system of Pinus radiata: associations between rhizosphere colonisation and growth promotion for commercially grown seedlings.

    Science.gov (United States)

    Hohmann, Pierre; Jones, E Eirian; Hill, Robert A; Stewart, Alison

    2011-08-01

    Two Trichoderma isolates (T. hamatum LU592 and T. atroviride LU132) were tested for their ability to promote the growth and health of commercially grown Pinus radiata seedlings. The colonisation behaviour of the two isolates was investigated to relate rhizosphere competence and root penetration to subsequent effects on plant performance. Trichoderma hamatum LU592 was shown to enhance several plant health and growth parameters. The isolate significantly reduced seedling mortality by up to 29%, and promoted the growth of shoots (e.g. height by up to 16%) and roots (e.g. dry weight by up to 31%). The introduction of LU592 as either seed coat or spray application equally improved seedling health and growth demonstrating the suitability of both application methods for pine nursery situations. However, clear differences in rhizosphere colonisation and root penetration between the two application methods highlighted the need for more research on the impact of inoculum densities. When spray-applied, LU592 was found to be the predominant Trichoderma strain in the plant root system, including bulk potting mix, rhizosphere and endorhizosphere. In contrast, T. atroviride LU132 was shown to colonise the root system poorly, and no biological impact on P. radiata seedlings was detected. This is the first report to demonstrate rhizosphere competence as a useful indicator for determining Trichoderma bio-inoculants for P. radiata. High indigenous Trichoderma populations with similar population dynamics to the introduced strains revealed the limitations of the dilution plating technique, but this constraint was alleviated to some extent by the use of techniques for morphological and molecular identification of the introduced isolates.

  10. Recognition of endophytic Trichoderma species by leaf-cutting ants and their potential in a Trojan-horse management strategy

    Science.gov (United States)

    Rocha, Silma L.; Evans, Harry C.; Jorge, Vanessa L.; Cardoso, Lucimar A. O.; Pereira, Fernanda S. T.; Rocha, Fabiano B.; Barreto, Robert W.; Hart, Adam G.

    2017-01-01

    Interactions between leaf-cutting ants, their fungal symbiont (Leucoagaricus) and the endophytic fungi within the vegetation they carry into their colonies are still poorly understood. If endophytes antagonistic to Leucoagaricus were found in plant material being carried by these ants, then this might indicate a potential mechanism for plants to defend themselves from leaf-cutter attack. In addition, it could offer possibilities for the management of these important Neotropical pests. Here, we show that, for Atta sexdens rubropilosa, there was a significantly greater incidence of Trichoderma species in the vegetation removed from the nests—and deposited around the entrances—than in that being transported into the nests. In a no-choice test, Trichoderma-infested rice was taken into the nest, with deleterious effects on both the fungal gardens and ant survival. The endophytic ability of selected strains of Trichoderma was also confirmed, following their inoculation and subsequent reisolation from seedlings of eucalyptus. These results indicate that endophytic fungi which pose a threat to ant fungal gardens through their antagonistic traits, such as Trichoderma, have the potential to act as bodyguards of their plant hosts and thus might be employed in a Trojan-horse strategy to mitigate the negative impact of leaf-cutting ants in both agriculture and silviculture in the Neotropics. We posit that the ants would detect and evict such ‘malign’ endophytes—artificially inoculated into vulnerable crops—during the quality-control process within the nest, and, moreover, that the foraging ants may then be deterred from further harvesting of ‘Trichoderma-enriched’ plants. PMID:28484603

  11. Cloning of first abc transporter encoding gene from Trichoderma spp.and its expression during stress and mycoparasitism

    Institute of Scientific and Technical Information of China (English)

    Lanzuise S; Scala F; Del Sorbo G; Ruocco M; Scala V; Catapano L; Woo S; Ciliento R; Ferraioli S; Soriente I; Vinale F

    2004-01-01

    @@ Trichoderma in its natural environment competes for nutrient uptake and is required to protect itself from adverse natural toxic compounds, such as those produced by plants and other microbes in the soil community, or synthetic toxic compounds released human activity. One of the most important metabolic pathways for drug resistance and substrate uptake, both in prokaryotes and eukaryotes, is ATP dependent. The role of ABC transporter proteins in the biology of Trichoderma is still not known. We present the cloning of the first four ABC transporter genes (TABC1 , TABC2, TABC3,TABC4) in Trichoderma, and in particular T. atroviride P1, and the characterization of TABC2The complete sequence of this gene is 6535 bp, which includes a promoter of 1624 bp, a terminator of 642 bp and a coding region of 4264 bp. The promoter contains many of the potential transcription factor binding sites found in the 5' upstream region of the ech42 gene of T. atroviride P1. These included: heat shock factors (HSF), a nitrogen-regulating factor (Nit-2), a stress-response element (STRE), a GCR1 elements, and a Cre BP1 motif. Northern analysis and RT-PCR demonstrated that TABC2 is highly expressed when Trichoderma is subjected to nitrogen starvation, grown in the presence of culture filtrates of Botrytis cinerea, Rhizoctonia solani, and Pythium ultimum, or when N-acetylglucosamine is added to the substrate. TABC2 appears to be co-regulated with some CWDEencoding genes, suggesting that this is the first ABC transporter encoding gene involved in mycoparasitic events. It's role in the interaction of Trichoderma with fungal hosts or plants is being investigated by targeted gene disruption and overexpression.

  12. Selection and characterization of Argentine isolates of Trichoderma harzianum for effective biocontrol of Septoria leaf blotch of wheat.

    Science.gov (United States)

    Stocco, Marina C; Mónaco, Cecilia I; Abramoff, Cecilia; Lampugnani, Gladys; Salerno, Graciela; Kripelz, Natalia; Cordo, Cristina A; Consolo, Verónica F

    2016-03-01

    Species of the genus Trichoderma are economically important as biocontrol agents, serving as a potential alternative to chemical control. The applicability of Trichoderma isolates to different ecozones will depend on the behavior of the strains selected from each zone. The present study was undertaken to isolate biocontrol populations of Trichoderma spp. from the Argentine wheat regions and to select and characterize the best strains of Trichoderma harzianum by means of molecular techniques. A total of 84 out of the 240 strains of Trichoderma were able to reduce the disease severity of the leaf blotch of wheat. Thirty-seven strains were selected for the reduction equal to or greater than 50% of the severity, compared with the control. The percentage values of reduction of the pycnidial coverage ranged between 45 and 80%. The same last strains were confirmed as T. harzianum by polymerase chain reaction amplification of internal transcribed spacers, followed by sequencing. Inter-simple sequence repeat was used to examine the genetic variability among isolates. This resulted in a total of 132 bands. Further numerical analysis revealed 19 haplotypes, grouped in three clusters (I, II, III). Shared strains, with different geographical origins and isolated in different years, were observed within each cluster. The origin of the isolates and the genetic group were partially related. All isolates from Paraná were in cluster I, all isolates from Lobería were in cluster II, and all isolates from Pergamino and Santa Fe were in cluster III. Our results suggest that the 37 native strains of T. harzianum are important in biocontrol programs and could be advantageous for the preparation of biopesticides adapted to the agroecological conditions of wheat culture.

  13. Proteomic analysis of a mutant of Trichoderma arundinaceum impaired in the trichothecene biosynthesis reveals a systemic function of these compounds in the fungal physiology

    Science.gov (United States)

    Trichothecenes are sesquiterpene mycotoxins produced by several fungal genera including Fusarium, Trichothecium, Myrothecium, Stachybotrys, and Trichoderma. These toxins have attracted great attention because they are frequent contaminants of food and animal feed, and can be easily absorbed by anim...

  14. Effect of trichothecene production on the plant defense response and fungal physiology: overexpression of Trichoderma arundinaceum tri4 gene in T. harzianum

    Science.gov (United States)

    Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively,...

  15.   The fungus Trichoderma spp. on vegetables

    DEFF Research Database (Denmark)

    Winding, Anne

      The fungus Trichoderma spp. on vegetables   Anne Winding, National Environmental Research Institute, Roskilde, AU   Trichoderma spp. is a naturally occurring fungus in soil and T. harzianum is an active ingredient in microbial pest control agents (MPCA) active against root pathogenic fungi....... The MPCA is administered to the plants by watering. The fungus establishes in the root zone and exerts its beneficial effect by general increase of resistance against pathogenic fungi. The natural occurrence of Trichoderma spp. and the fate and survival of the introduced T. harzianum on vegetables...... are important for risk assessment of MPCA and are the objectives of this project. Trichoderma spp. on tomatoes and cucumbers grown in greenhouses and on broccoli and celery leaf grown outdoors were quantified during a growth season. A MPCA with T. harzianum was applied in a greenhouse growing tomatoes...

  16. Free Energy Diagram for the Heterogeneous Enzymatic Hydrolysis of Glycosidic Bonds in Cellulose.

    Science.gov (United States)

    Sørensen, Trine Holst; Cruys-Bagger, Nicolaj; Borch, Kim; Westh, Peter

    2015-09-04

    Kinetic and thermodynamic data have been analyzed according to transition state theory and a simplified reaction scheme for the enzymatic hydrolysis of insoluble cellulose. For the cellobiohydrolase Cel7A from Hypocrea jecorina (Trichoderma reesei), we were able to measure or collect relevant values for all stable and activated complexes defined by the reaction scheme and hence propose a free energy diagram for the full heterogeneous process. For other Cel7A enzymes, including variants with and without carbohydrate binding module (CBM), we obtained activation parameters for the association and dissociation of the enzyme-substrate complex. The results showed that the kinetics of enzyme-substrate association (i.e. formation of the Michaelis complex) was almost entirely entropy-controlled and that the activation entropy corresponded approximately to the loss of translational and rotational degrees of freedom of the dissolved enzyme. This implied that the transition state occurred early in the path where the enzyme has lost these degrees of freedom but not yet established extensive contact interactions in the binding tunnel. For dissociation, a similar analysis suggested that the transition state was late in the path where most enzyme-substrate contacts were broken. Activation enthalpies revealed that the rate of dissociation was far more temperature-sensitive than the rates of both association and the inner catalytic cycle. Comparisons of one- and two-domain variants showed that the CBM had no influence on the transition state for association but increased the free energy barrier for dissociation. Hence, the CBM appeared to promote the stability of the complex by delaying dissociation rather than accelerating association. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Xylan oligosaccharides and cellobiohydrolase I (TrCel7A interaction and effect on activity

    Directory of Open Access Journals (Sweden)

    Baumann Martin J

    2011-10-01

    Full Text Available Abstract Background The well-studied cellulase mixture secreted by Trichoderma reesei (anamorph to Hypocrea jecorina contains two cellobiohydolases (CBHs, cellobiohydrolase I (TrCel7A and cellobiohydrolase II (TrCeI6A, that are core enzymes for the solubilisation of cellulose. This has attracted significant research interest because of the role of the CBHs in the conversion of biomass to fermentable sugars. However, the CHBs are notoriously slow and susceptible to inhibition, which presents a challenge for the commercial utilisation of biomass. The xylans and xylan fragments that are also present in the biomass have been suggested repeatedly as one cause of the reduced activity of CHBs. Yet, the extent and mechanisms of this inhibition remain poorly elucidated. Therefore, we studied xylan oligosaccharides (XOSs of variable lengths with respect to their binding and inhibition of both TrCel7A and an enzyme variant without the cellulose-binding domain (CBM. Results We studied the binding of XOSs to TrCel7A by isothermal titration calorimetry. We found that XOSs bind to TrCel7A and that the affinity increases commensurate with XOS length. The CBM, on the other hand, did not affect the affinity significantly, which suggests that XOSs may bind to the active site. Activity assays of TrCel7A clearly demonstrated the negative effect of the presence of XOSs on the turnover number. Conclusions On the basis of these binding data and a comparison of XOS inhibition of the activity of the two enzyme variants towards, respectively, soluble and insoluble substrates, we propose a competitive mechanism for XOS inhibition of TrCel7A with phosphoric swollen cellulose as a substrate.

  18. Biorefining of wood: combined production of ethanol and xylanase from waste fiber sludge.

    Science.gov (United States)

    Cavka, Adnan; Alriksson, Björn; Rose, Shaunita H; van Zyl, Willem H; Jönsson, Leif J

    2011-08-01

    The possibility to utilize fiber sludge, waste fibers from pulp mills and lignocellulose-based biorefineries, for combined production of liquid biofuel and biocatalysts was investigated. Without pretreatment, fiber sludge was hydrolyzed enzymatically to monosaccharides, mainly glucose and xylose. In the first of two sequential fermentation steps, the fiber sludge hydrolysate was fermented to cellulosic ethanol with the yeast Saccharomyces cerevisiae. Although the final ethanol yields were similar, the ethanol productivity after 9.5 h was 3.3 g/l/h for the fiber sludge hydrolysate compared with only 2.2 g/l/h for a reference fermentation with similar sugar content. In the second fermentation step, the spent fiber sludge hydrolysate (the stillage obtained after distillation) was used as growth medium for recombinant Aspergillus niger expressing the xylanase-encoding Trichoderma reesei (Hypocrea jecorina) xyn2 gene. The xylanase activity obtained with the spent fiber sludge hydrolysate (8,500 nkat/ml) was higher than that obtained in a standard medium with similar monosaccharide content (1,400 nkat/ml). Analyses based on deglycosylation with N-glycosidase F suggest that the main part of the recombinant xylanase was unglycosylated and had molecular mass of 20.7 kDa, while a minor part had N-linked glycosylation and molecular mass of 23.6 kDa. Chemical analyses of the growth medium showed that important carbon sources in the spent fiber sludge hydrolysate included xylose, small aliphatic acids, and oligosaccharides. The results show the potential of converting waste fiber sludge to liquid biofuel and enzymes as coproducts in lignocellulose-based biorefineries.

  19. Unravelling the molecular basis for light modulated cellulase gene expression - the role of photoreceptors in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Schmoll Monika

    2012-03-01

    Full Text Available Abstract Background Light represents an important environmental cue, which exerts considerable influence on the metabolism of fungi. Studies with the biotechnological fungal workhorse Trichoderma reesei (Hypocrea jecorina have revealed an interconnection between transcriptional regulation of cellulolytic enzymes and the light response. Neurospora crassa has been used as a model organism to study light and circadian rhythm biology. We therefore investigated whether light also regulates transcriptional regulation of cellulolytic enzymes in N. crassa. Results We show that the N. crassa photoreceptor genes wc-1, wc-2 and vvd are involved in regulation of cellulase gene expression, indicating that this phenomenon is conserved among filamentous fungi. The negative effect of VVD on production of cellulolytic enzymes is thereby accomplished by its role in photoadaptation and hence its function in White collar complex (WCC formation. In contrast, the induction of vvd expression by the WCC does not seem to be crucial in this process. Additionally, we found that WC-1 and WC-2 not only act as a complex, but also have individual functions upon growth on cellulose. Conclusions Genome wide transcriptome analysis of photoreceptor mutants and evaluation of results by analysis of mutant strains identified several candidate genes likely to play a role in light modulated cellulase gene expression. Genes with functions in amino acid metabolism, glycogen metabolism, energy supply and protein folding are enriched among genes with decreased expression levels in the wc-1 and wc-2 mutants. The ability to properly respond to amino acid starvation, i. e. up-regulation of the cross pathway control protein cpc-1, was found to be beneficial for cellulase gene expression. Our results further suggest a contribution of oxidative depolymerization of cellulose to plant cell wall degradation in N. crassa.

  20. Inhibition of Trichoderma spp .on Cenangium f erruginosum%木霉菌对松枯枝病的抑制作用

    Institute of Scientific and Technical Information of China (English)

    栗生枝; 刘立国; 柴晓东

    2014-01-01

    为探明绿色木霉和哈茨木霉的提取物对松枯枝病的抑制作用机制,通过绿色木霉(Trichoderma viride)和哈茨木霉(Trichoderma harzianum)提取物对松枯枝病病原菌(Cenangium ferruginosum Fr .)进行平板表面涂抹法和混合培养基法抑制生长试验,观察松枯枝病病原菌生长情况,结果表明,2种木霉菌的提取物对松枯枝病病原菌均有抑制作用,且效果比较明显,抑制效果最佳的为绿色木霉,病原菌的被抑制率达53.54%,混合培养基法中哈茨木霉菌20%提取物对枯枝病原菌的抑制率高达31.67%。%In order to ascertain the inhibitory mechanism of extract from Trichoderma viride & Trichoderma harzi-anum ,the experiments to inhibit the growth for the extract of Trichoderma viride & Trichoderma harzianum on Cenangium ferruginosum by using method of plate & mix-cultivation media were conducted .Result shows that :the extracts of two kinds of Trichoderma spp .all have inhibition on Cenangium ferruginosum and have significant re-sult .T .v iride has the optimal inhibition result ,the inhibition rate of pathogens is 53 .54% ;the inhibition rate of 20%extract of Trichoderma harzianum on Cenangium ferruginosum are 31 .67% .

  1. 木霉重寄生过程分子机制的研究进展%Research Progress on Molecular Mechanism of Trichoderma Mycoparasitism

    Institute of Scientific and Technical Information of China (English)

    杨萍; 杨谦

    2012-01-01

    木霉(Trichoderma spp.)是一种广谱性拮抗菌,能够拮抗多种病原真菌,重寄生作用是木霉生物防治的主要机制,掌握其分子机制有利于对木霉进行合理应用和改造.为此,综述了木霉重寄生过程的分子机制研究进展,包括木霉重寄生过程的信号转导途径和产生水解病原菌细胞壁的水解酶的研究概况.木霉重寄生过程中的信号转导途径主要是异源三聚体G蛋白信号和MAPK基序,分泌的细胞壁水解酶主要有几丁质酶,葡聚糖酶和蛋白酶.%Trichoderma spp.was a broad spectrum antagonistic fungus which could antagonized a variety of pathogenic fungi,mycoparasitism was main mechanism of Trichoderma biological control. To master the molecular mechanisms was in favor of reasonable application and transformation of Trichoderma,therefore,this article reviewed the molecular mechanism research progress of Trichoderma mycoparasitism,including the signal transduction of Trichoderma mycoparasitism and the hydrolytic enzymes producing in the process of mycoparasitism which hydrolysis of pathogenic fungi cell wall. Trichoderma signal transduction pathways in the process of mycoparasitism was heterotrimeric G-proteins and mitogen-activated protein kinase (MAPK) cascades,the cell wall-degrading enzymes of Trichoderma included chitinase,glucanase and protease.

  2. Comparative growth of trichoderma strains in different nutritional sources, using bioscreen c automated system Crescimento de linhagens de Trichoderma em diferentes fontes nutricionais, empregando o sistema automatizado Bioscreen C.

    Directory of Open Access Journals (Sweden)

    Bianca Caroline Rossi-Rodrigues

    2009-06-01

    Full Text Available Trichoderma is one of the fungi genera that produce important metabolites for industry. The growth of these organisms is a consequence of the nutritional sources used as also of the physical conditions employed to cultivate them. In this work, the automated Bioscreen C system was used to evaluate the influence of different nutritional sources on the growth of Trichoderma strains (T. hamatum, T. harzianum, T. viride, and T. longibrachiatum isolated from the soil in the Juréia-Itatins Ecological Station (JIES, São Paulo State - Brazil.The cultures were grown in liquid culture media containing different carbon- (2%; w/v and nitrogen (1%; w/v sources at 28ºC, pH 6.5, and agitated at 150 rpm for 72 h. The results showed, as expected, that glucose is superior to sucrose as a growth-stimulating carbon source in the Trichoderma strains studied, while yeast extract and tryptone were good growth-stimulating nitrogen sources in the cultivation of T. hamatum and T. harzianum.Trichoderma é um dos gêneros de fungos produtores de metabólitos de interesse industrial. O crescimento destes organismos é conseqüência das fontes nutricionais utilizadas, juntamente com as condições físicas de cultivo. Neste trabalho, o sistema automatizado Bioscreen C foi utilizado para avaliar a influência de diferentes fontes nutricionais sobre o crescimento de linhagens de Trichoderma (T. hamatum, T. harzianum, T. viride e T. longibrachiatum isoladas do solo da Estação Ecológica da Juréia-Itatins (JIES, São Paulo - Brasil. Os cultivos foram feitos em meios líquidos de cultura contendo diferentes fontes de carbono (2%; w / v e nitrogênio (1%; w / v a 28ºC, pH 6,5 e agitados a 150 rpm durante 72 h. Os resultados mostraram, conforme esperado, que a glicose é melhor do que a sacarose como fonte de carbono indutora de crescimento das linhagens de Trichoderma testadas, enquanto que, o extrato de leveduras e a triptona foram boas fontes de nitrogênio indutoras de

  3. Proteins Related to the Biocontrol of Pythium Damping-off in Maize with Trichoderma harzianum Rifai

    Institute of Scientific and Technical Information of China (English)

    Jie CHEN; Gary E HARMAN; Afio COMIS; Gen-Wu CHENG

    2005-01-01

    Induced resistance has been evidenced as one of mechanisms of Trichoderma to control plantdiseases, however, no study showed the change of host proteomics in Trichoderma-induced resistance ofmaize against damping-off caused by Pythium ultimum Trow. The mechanism of Trichoderma harzianumRifai for controlling maize seedling disease caused by Pythium ultimum Trow was investigated firstly byproteome technique and the result suggested that T. harzianum strain T22 was not only able to promoteseedling growth but also protein accumulation. One-dimensional electrophoresis assay showed that morebands appeared on the gel with T22 or T22 combined with P. ultimum (T22 + P. ultimum) treatment than withother treatments. Enzyme assay showed that two chitinases of the root sample were more activated in thetreatments with T22 than in the other treatments without T22. Proteins in the seedling roots from the varioustreatments were separated through protein extraction and 2-D electrophoresis technique. In the seedlingsproduced from the T22-treated seeds, there were 104 up-regulated proteins and 164 down-regulated pro-teins relative to the control, and 97 and 150, respectively, after treatment with T22 + P. ultimum; however,with P. ultimum alone the values were much lower than with the other two treatments. The correlationcoefficient values were 0.72, 0.51 and 0.49 for the comparison of protein spot distribution on gel amongcontrol with T22, P. ultimum and T22 + P. ultimum, respectively. So it seemed that P. ultimum infection wasmore effective than T22 in interfering with the host proteome profile. Furthermore, analysis with MALDI-TOF-MAS showed that some important proteins associated with defensive reactions were identified in T22or T22 + P. ultimum treatments, including endochitinase, pathogenesis-related protein PRMS (pathogenesis-related maize seed), GTP-binding protein, isoflavone reductase and other proteins related to respiration. Allthose proteins are probably part of the

  4. Peningkatan Kadar Protein Putak melalui Fermentasi oleh Kapang Trichoderma reesei (THE INCREASE OF PROTEIN LEVEL FROM PUTAK THROUGH FERMENTATION OF FUNGI TRICHODERMA REESEI

    Directory of Open Access Journals (Sweden)

    Maritje Aleonor Hilakore

    2013-09-01

    Full Text Available A study was conducted was to increasing the protein level in putak by fermentation using fungiTrichoderma reesei. A laboratoryum experimental study was conducted using  factorial CompletelyRandomized Design 3 x 4 x 3. The main factor is were  inoculant levels of fungi T. reesei (T: 5,0; 7,5 and 10,0% (w/w,the level  and the second factor were of incubation time (W:  2; 3; and 4 days. Variables tested werecrude protein (CP, true protein (TP and crude fiber (CF. The result showed that  treatment with 7.5% ofT.reesei  and incubation time for 4 days gawe the highest of crude and true protein level (20,60%  from14,17% and 13,25% from 3,25%, and  lowest crude fiber 9,08% from 9,70%. Through fermentation of  fungiT.reesei can be increase the protein and decrease the fiber level of putak.

  5. Use of Trichoderma fungi in spray solutions to reduce Moniliophthora roreri infection of Theobroma cacao fruits in Northeastern Costa Rica.

    Science.gov (United States)

    Seng, John; Herrera, Geovanny; Vaughan, Christopher S; McCoy, Michael B

    2014-09-01

    Cacao (Theobroma cacao) is an important cash crop in tropical climates such as that of Latin America. Over the past several decades, the infection of cultivated cacao by Moniliophthllora roreri, known commonly as "monilia", has significantly hindered cacao production in Latin America. Studies have proposed the use of Trichoderma sp. fungi in biocontrol treatments to prevent and reduce monilia infection, yet tests of Trichoderma-containing spray treatments on cacao agroforests have produced mixed results. Researchers and agricultural workers have suggested that addition of soil, fly ash, or other carbon sources to a Trichoderma spray may improve its efficacy in fighting monilia. To test these suggestions, we designed a series of spray mixtures including Thichoderma cultures, soil, and all necessary controls. We applied the spray mixtures to 80 cacao trees (20 trees for each of four resistant-selected clones to monilia) at the FINMAC organic cacao plantation in Pueblo Nuevo de Guacimo, Limón Province, in northeastern Costa Rica in March-April 2013. Five treatments were applied (control, water, water plus sterilized soil, water plus Trichoderma, and water plus sterilized soil plus Trichoderma). Each treatment was applied to four trees of each clone. We monitored the incidence of monilia infection under each spray treatment over the course of 35d. We found that spraying entire cacao trees two times with a mixture containing Trichoderma and sterilized soil significantly reduced the incidence of monilia infection by 11% (p ≤ 0.05) in only 35d, as compared to the control. This reduction in loss of cacao pods translates into an increase of plantation mean productivity of 1,500 kg dried beans/ha by 198 kg/ha up to 1,698 kg/ha or by a total increase over the whole 110 ha plantation by 21,780 kg. We propose that using such an antifungal spray over the whole course of a crop cycle (120 days) would decrease infection incidence even more. Application of this fungal control

  6. Antifungal activity of six plant essential oils from Serbia against Trichoderma aggressivum f. europaeum

    Directory of Open Access Journals (Sweden)

    Rada Đurović-Pejčev

    2014-12-01

    Full Text Available Six essential oils (EOs extracted from plants originating in Serbia were assayed for inhibitory and fungicidal activity against a major fungal pathogen of button mushroom causing green mould disease, Trichoderma agressivum f. europaeum. The strongest activity was demonstrated by the oils of basil (Ocimum basilicum L. and peppermint (Mentha piperita L.. Medium antifungal activity of St. John's wort (Hypericum perforatum L. and walnut [Juglans regia (F] oils was also recorded. Oils extracted from yarrow (Achillea millepholium L. and juniper (Juniperus communis L. exhibited the lowest activity. Peppermint oil showed fungicidal effect on the pathogen, having a minimum fungicidal concentration of 0.64 μl ml-1. The main components of peppermint essential oil were menthone (37.02%, menthol (29.57% and isomenthone (9.06%.

  7. Improved heterologous gene expression in Trichoderma reesei by cellobiohydrolase I gene (cbh1) promoter optimization

    Institute of Scientific and Technical Information of China (English)

    Ti Liu; Tianhong Wang; Xian Li; Xuan Liu

    2008-01-01

    To improve heterologous gene expression in Trichoderma reesei, a set of optimal artificial cellobiohydrolase I gene (cbh1) promoters was obtained. The region from-677 to -724 with three potential glucose repressor binding sites was deleted. Then the region from-620 to-820 of the modified cbh1 promoter, including the CCAAT box and the Ace2 binding site, was repeatedly inserted into the modified cbh1 promoter, obtaining promoters with copy numbers 2, 4,and 6. The results showed that the glucose repression effects were abolished and the expression level of the glucuronidase (gus) reporter gene regulated by these multi-copy promoters was markedly enhanced as the copy number increased simultaneously. The data showed the great promise of using the promoter artificial modification strategy to increase heterologous gene expression in filamentous fungi and provided a set of optional high-expression vectors for gene function investigation and strain modification.

  8. Trichoderma harzianum como promotor del crecimiento vegetal del maracuyá (passiflora edulis var. flavicarpa degener)

    OpenAIRE

    2009-01-01

    Se realizó un experimento en condiciones de laboratorio e invernadero, con el propósito de evaluar el efecto de la cepa nativa TCN-014 y la cepa comercial TCC-005 de Trichoderma harzianum sobre la germinación y el crecimiento temprano del maracuyá. Se adecuaron inóculos de 104, 106 y 108 conidias/mL para cada cepa y se aplicaron a semillas de maracuyá; se evaluó el número de semillas germinadas durante 15 días; se calculó el porcentaje de germinación, el índice de velocidad de germina...

  9. Structure investigation of Cellobiohydrolase I from Trichoderma pseudokoningii S38 with a scanning tunneling microscope

    Science.gov (United States)

    Zhang, Y. Z.; Liu, J.; Gao, P. J.; Ma, L. P.; Shi, D. X.; Pang, S. J.

    Cellobiohydrolase I (CBH I) was isolated from a cellulolytic fungal strain Trichoderma pseudokoningii S38, and its ultrastructure was investigated with a scanning tunneling microscope (STM). The STM images showed that the shape of intact CBH I was tadpole-like, consisting of a big head and a long tail. It could be deduced that the head domain was the core protein for the catalytic function, and the long tail was the cellulose binding domain for substrate binding. Thus, for this enzyme molecule, functional differentiation is reflected in the structure peculiarities. This is the first direct observation of the three-dimensional structure of intact CBH I from real space at nanometer scale. The functional mechanism is also discussed.

  10. Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30.

    Science.gov (United States)

    Callow, Nicholas V; Ray, Christopher S; Kelbly, Matthew A; Ju, Lu-Kwang

    2016-01-01

    This work describes the use of nutrient limitations with Trichoderma reesei Rut C-30 to obtain a prolonged stationary phase cellulase production. This period of non-growth may allow for dependable cellulase production, extended fermentation periods, and the possibility to use pellet morphology for easy product separation. Phosphorus limitation was successful in halting growth and had a corresponding specific cellulase production of 5±2 FPU/g-h. Combined with the addition of Triton X-100 for fungal pellet formation and low shear conditions, a stationary phase cellulase production period in excess of 300 h was achieved, with a constant enzyme production rate of 7±1 FPU/g-h. While nitrogen limitation was also effective as a growth limiter, it, however, also prevented cellulase production.

  11. Thermoascus aurantiacus CBHI/Cel7A Production in Trichoderma reesei on Alternative Carbon Sources

    Science.gov (United States)

    Benkő, Zsuzsa; Drahos, Eszter; Szengyel, Zsolt; Puranen, Terhi; Vehmaanperä, Jari; Réczey, Kati

    To develop functional enzymes in cellulose hydrolysis at or above 70°C the cellobiohydrolase (CBHI/Cel7A) of Thermoascus aurantiacus was cloned and expressed in Trichoderma reesei Rut-C30 under the strong cbh1 promoter. Cellulase production of the parental strain and the novel strain (RF6026) was examined in submerged fermentation experiments using various carbon sources, which were lactose, Solka Floc 200 cellulose powder, and steam pretreated corn stover. An industrially feasible production medium was used containing only distiller's spent grain, KH2PO4, and (NH4)2SO4. Enzyme production was followed by measurements of protein concentration, total cellulase enzyme activity (filter paper activity), β-glucosidase activity, CBHI activity, and endogenase I (EGI) activity. The Thermoascus CBHI/Cel7A activity was taken as an indication of the heterologous gene expression under the cbh1 promoter.

  12. Filter Paper Degrading Ability of a Trichoderma Strain With Multinucleate Conidia

    Science.gov (United States)

    Toyama, Hideo; Yano, Makiko; Hotta, Takeshi; Toyama, Nobuo

    The multinucleate conidia were produced from the green mature conidia of Trichoderma reesei Rut C-30 strain by colchicine treatment. The strain with higher Filter paper degrading ability was selected among those conidia using a double layer selection medium. The selected strain, JS-2 was able to collapse the filter paper within 15 min but the original strain took 25 min to collapse it completely. Moreover, the amount of reducing sugar in the L-type glass tube of the strain, JS-2, was greater than that of the original strain. The Avicel, CMC-Na, and Salicin hydrolyzing activity of the strain, JS-2, increased 2.1 times, 1.2 times, and 3.6 times higher than that of the original strain.

  13. Molecular simulation evidence for processive motion of Trichoderma reesei Cel7A during cellulose depolymerization

    Science.gov (United States)

    Zhao, Xiongce; Rignall, Tauna R.; McCabe, Clare; Adney, William S.; Himmel, Michael E.

    2008-07-01

    We present free energy calculations for the Trichoderma reesei Cel7A (cellobiohydrolase I) linker peptide from molecular dynamics simulations directed towards understanding the linker role in cellulose hydrolysis. The calculations predict an energy storage mechanism of the linker under stretching/compression that is consistent with processive depolymerization. The linker exhibits two stable states at lengths of 2.5 nm and 5.5 nm during extension/compression, with a free energy difference of 10.5 kcal/mol between the two states separated by an energy barrier. The switching between stable states supports the hypothesis that the linker peptide has the capacity to store energy in a manner similar to a spring.

  14. Changes in metabolome and in enzyme activities during germination of Trichoderma atroviride conidia.

    Science.gov (United States)

    Kaliňák, Michal; Simkovič, Martin; Zemla, Peter; Matata, Matej; Molnár, Tomáš; Liptaj, Tibor; Varečka, L'udovít; Hudecová, Daniela

    2014-08-01

    The aim of this work was to study the metabolic changes during germination of Trichoderma atroviride conidia along with selected marker enzyme activities. The increase in proteinogenic amino acid concentrations together with the increase in glutamate dehydrogenase activity suggests a requirement for nitrogen metabolism. Even though the activities of tricarboxylic acid cycle enzymes also increased, detected organic acid pools did not change, which predisposes this pathway to energy production and supply of intermediates for further metabolism. The concentrations of many metabolites, including the main osmolytes mannitol and betaine, also increased during the formation of germ tubes. The activities of H(+)-ATPase and GDPase, the only marker enzymes that did not have detectable activity in non-germinated conidia, were shown with germ tubes.

  15. Xylanase Production from Trichoderma harzianum 1073 D3 with Alternative Carbon and Nitrogen Sources

    Directory of Open Access Journals (Sweden)

    Isil Seyis

    2005-01-01

    Full Text Available The effect of some natural wastes (orange pomace, orange peel, lemon pomace, lemon peel, apple pomace, pear peel, banana peel, melon peel and hazelnut shell on the production of xylanase from Trichoderma harzianum 1073 D3 has been studied and maximum activity has been observed on melon peel (26.5 U/mg of protein followed by apple pomace and hazelnut shell. Also, molasses could be used as an additional carbon source as it decreased the production time approximately by 50 %. Finally, potential alternatives of organic nitrogen source (cotton leaf and soybean residue wastes were analyzed and it was concluded that peptone could be replaced with these residues especially when economics of the process is the major objective.

  16. Overexpression of a Chitinase Gene from Trichoderma asperellum Increases Disease Resistance in Transgenic Soybean.

    Science.gov (United States)

    Zhang, Fuli; Ruan, Xianle; Wang, Xian; Liu, Zhihua; Hu, Lizong; Li, Chengwei

    2016-12-01

    In the present study, a chi gene from Trichoderma asperellum, designated Tachi, was cloned and functionally characterized in soybean. Firstly, the effects of sodium thiosulfate on soybean Agrobacterium-mediated genetic transformation with embryonic tip regeneration system were investigated. The transformation frequency was improved by adding sodium thiosulfate in co-culture medium for three soybean genotypes. Transgenic soybean plants with constitutive expression of Tachi showed increased resistance to Sclerotinia sclerotiorum compared to WT plants. Meanwhile, overexpression of Tachi in soybean exhibited increased reactive oxygen species (ROS) level as well as peroxidase (POD) and catalase (SOD) activities, decreased malondialdehyde (MDA) content, along with diminished electrolytic leakage rate after S. sclerotiorum inoculation. These results suggest that Tachi can improve disease resistance in plants by enhancing ROS accumulation and activities of ROS scavenging enzymes and then diminishing cell death. Therefore, Tachi represents a candidate gene with potential application for increasing disease resistance in plants.

  17. Production of cellulase using a mutant strain of trichoderma reesei growing on lactose in batch culture

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, B.K. (Indian Inst. of Tech., New Delhi (India). Biochemical Engineering Research Centre); Sahai, V. (Indian Inst. of Tech., New Delhi (India). Biochemical Engineering Research Centre)

    1993-05-01

    The production of cellulases in batch culture was studied using a mutant strain of Trichoderma reesei C-5 growing on lactose. Growth kinetic parameters on 2% lactose were studied and the comparative results for growth and enzyme productivities at two different lactose levels are discussed. The cellulase synthesis rate depended on the lactose concentration in the medium. Although growth was favoured at a higher lactose level, the volumetric enzyme productivity did not increase in proportion and the specific enzyme productivity decreased to a certain extent, indicating that partial catabolic inhibition at higher lactose concentrations may be possible. However, it was noted that the mutant strain was highly derepressed and capable of synthesising active cellulases on lactose. (orig.)

  18. New effective method for analysis of the component composition of enzyme complexes from Trichoderma reesei.

    Science.gov (United States)

    Markov, A V; Gusakov, A V; Kondratyeva, E G; Okunev, O N; Bekkarevich, A O; Sinitsyn, A P

    2005-06-01

    A method for analysis of the component composition of multienzyme complexes secreted by the filamentous fungus Trichoderma reesei was developed. The method is based on chromatofocusing followed by further identification of protein fractions according to their substrate specificity and molecular characteristics of the proteins. The method allows identifying practically all known cellulases and hemicellulases of T. reesei: endoglucanase I (EG I), EG II, EG III, cellobiohydrolase I (CBH I), CBH II, xylanase I (XYL I), XYL II, beta-xylosidase, alpha-L-arabinofuranosidase, acetyl xylan esterase, mannanase, alpha-galactosidase, xyloglucanase, polygalacturonase, and exo-beta-1,3-glucosidase. The component composition of several laboratory and commercial T. reesei preparations was studied and the content of the individual enzymes in these preparations was quantified. The influence of fermentation conditions on the component composition of secreted enzyme complexes was revealed. The characteristic features of enzyme preparations obtained in "cellulase" and "xylanase" fermentation conditions are shown.

  19. Biological control of white mold by Trichoderma harzianum in common bean under field conditions

    Directory of Open Access Journals (Sweden)

    Daniel Diego Costa Carvalho

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate Trichoderma harzianum isolates for biological control of white mold in common bean (Phaseolus vulgaris. Five isolates were evaluated for biocontrol of white mold in 'Perola' common bean under field conditions, in the 2009 and 2010 crop seasons. A commercial isolate (1306 and a control treatment were included. Foliar applications at 2x109 conidia mL-1 were performed at 42 and 52 days after sowing (DAS, in 2009, and at 52 DAS in 2010. The CEN287, CEN316, and 1306 isolates decreased the number of Sclerotinia sclerotiorum apothecia per square meter in comparison to the control, in both crop seasons. CEN287, CEN316, and 1306 decreased white mold severity during the experimental period, when compared to the control.

  20. Transcriptional Profiling of the Trichoderma reesei Recombinant Strain HJ48 by RNA-Seq.

    Science.gov (United States)

    Huang, Jun; Wu, Renzhi; Chen, Dong; Wang, Qingyan; Huang, Ribo

    2016-07-28

    The ethanol production of Trichoderma reesei was improved by genome shuffling in our previous work. Using RNA-Seq, the transcriptomes of T. reesei wild-type CICC40360 and recombinant strain HJ48 were compared under fermentation conditions. Based on this analysis, we defined a set of T. reesei genes involved in ethanol production. Further expression analysis identified a series of glycolysis enzymes, which are upregulated in the recombinant strain HJ48 under fermentation conditions. The differentially expressed genes were further validated by qPCR. The present study will be helpful for future studies on ethanol fermentation as well as the roles of the involved genes. This research reveals several major differences in metabolic pathways between recombinant strain HJ48 and wild-type CICC40360, which relates to the higher ethanol production on the former, and their further research could promote the development of techniques for increasing ethanol production.

  1. Evaluation of Minimal Trichoderma reesei Cellulase Mixtures on Differently Pretreated Barley Straw Substrate

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Langston, J

    2007-01-01

    of the four main activities of Celluclast 1.5, CBHI, CBHII, EGI, and EGII, to identify the optimal glucose-releasing combination of these four enzymes to degrade barley straw substrates subjected to three different pretreatments. The data signified that EGII activity is not required for efficient...... and CBHII activities required in the enzyme mixture for optimal hydrolysis of the acid-impregnated, steam-exploded barley straw substrate were somewhat different from those required for the other two substrates. The optimal ratios of the cellulolytic activities in all cases differed from......The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsv ae rd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably...

  2. Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation

    Institute of Scientific and Technical Information of China (English)

    BAI Zhihui; JIN Bo; LI Yuejie; CHEN Jian; LI Zuming

    2008-01-01

    Biocontrol agents are safe and environmental friendly alternatives for pesticides in agriculture application.Trichoderma v/ride WEBL0703 performed a high level of antagonistic activity toward a broad spectrum of phytopathogens and was determined as a biocontrol agent,which was produced by solid state fermentation using grape marc and wine lees.The maximum yield of T.viride conidia was up to 6.65×109 CFU/g initial dry substrate (IDS) after 10 d fermentation.As important enzymes for protecting plants from disease,ehitinase,β-glucanase,and pectinase yields were 47.8 U/g IDS,8.32 U/g IDS and 9.83 U/g IDS,respectively.These results show that it is feasible to convert winery wastes to a value-added and environmental friendly biocontrol agent.

  3. Bisorbicillinoids produced by the fungus Trichoderma citrinoviride affect feeding preference of the aphid Schizaphis graminum.

    Science.gov (United States)

    Evidente, Antonio; Andolfi, Anna; Cimmino, Alessio; Ganassi, Sonia; Altomare, Claudio; Favilla, Mara; De Cristofaro, Antonio; Vitagliano, Silvia; Agnese Sabatini, Maria

    2009-05-01

    We report the effects of some bisorbicillinoids isolated from biomass of the fungus Trichoderma citrinoviride on settling and feeding preference of the aphid Schizaphis graminum. Purification of the fungal metabolites was carried out by a combination of column chromatography and thin-layer chromatography using direct and reverse phases. Chemical identification was performed by spectroscopic methods including nuclear magnetic resonance and mass spectrometry. The identified bisorbicillinoids appeared to be bislongiquinolide, its 16,17-dihydro derivative, trichodimerol, and dihydrotrichodimerol. A feeding preference test with alate morphs of S. graminum was used to identify the active fractions. Among the four bisorbicillinoids, dihydrotrichodimerol and bislongiquinolide influenced aphid feeding preference, restraining specimens from settling on leaves treated with metabolites. Taste neurons sensitive to these compounds, particularly to bislongiquinolide, were located on tarsi of the S. graminum alate morphs.

  4. Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity

    Science.gov (United States)

    Guilger, Mariana; Pasquoto-Stigliani, Tatiane; Bilesky-Jose, Natália; Grillo, Renato; Abhilash, P. C.; Fraceto, Leonardo Fernandes; Lima, Renata De

    2017-03-01

    White mold is an agricultural disease caused by the fungus Sclerotinia sclerotiorum, which affects important crops. There are different ways of controlling this organism, but none provides inhibition of its resistance structures (sclerotia). Nanotechnology offers promising applications in agricultural area. Here, silver nanoparticles were biogenically synthesized using the fungus Trichoderma harzianum and characterized. Cytotoxicity and genotoxicity were evaluated, and the nanoparticles were initially tested against white mold sclerotia. Their effects on soybean were also investigated with no effects observed. The nanoparticles showed potential against S. sclerotiorum, inhibiting sclerotia germination and mycelial growth. Nanoparticle characterization data indicated spherical morphology, satisfactory polydispersity and size distribution. Cytotoxicity and genotoxicity assays showed that the nanoparticles caused both the effects, although, the most toxic concentrations were above those applied for white mold control. Given the potential of the nanoparticles against S. sclerotiorum, we conclude that this study presents a first step for a new alternative in white mold control.

  5. Agrobacterium tumefaciens-mediated transformation of CryⅠA(b) gene to Trichoderma harzianum

    Institute of Scientific and Technical Information of China (English)

    GAO Xingxi; YANG Qian

    2004-01-01

    In this study, CryⅠA(b) gene was successfully transferred into the biocontrol fungus Trichoderma harzianum with an efficiency of 60-180 transformants per 106 spores by using Agrobacterium tumefaciens-mediated trans- formation. Putative transformants were analyzed to test the presence of CryⅠA(b) gene by Southern blot. Most transformants contained a single T-DNA copy. RT-PCR analysis showed that the CryⅠA(b) gene was transcribed. Antifungal activities and insecticidal activities of the transformants were examined. There was no obvious difference in antifungal activities between the transformants and their wild strains. The modified mortalities of the transformants T1 and T2 were 69.57% and 91.30%, respectively. The tranformation system mediated by A. tumefaciens proved to be a powerful tool for the filamentous fungi transformation and functional genomic study with its high transformation frequency, simplicity of T-DNA integration, and genetic stability of transformants.

  6. Mechanisms of coal solubilization by the deuteromycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Hoelker, U.; Ludwig, S.; Scheel, T.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst. und Botanischer Garten

    1999-07-01

    Three different mechanisms can be envisaged that are used by fungi to solubilize coal: the production of alkaline substances, the extrusion of chelators and, of special interest in the scope of biotechnology, the action of enzymes. Whether these mechanisms are operating separately or in various combinations has not yet been finally assessed. The two deuteromycetes Fusarium oxysporum and Trichoderma atroviride solubilize coal by synergistic effects of various different mechanisms depending on the cell metabolism. F. oxysporum seems to solubilize coal by increasing the pH of the mycelial surroundings and by the action of chelators induced during growth in glutamate-containing media (without involvement of enzymes). T. atroviride, on the other hand, appears to use, in addition to an alkaline pH and a high chelator activity, at least two classes of enzyme activity to attack coal: hydrolytic activity for coal solubilization and ligninolytic activity for degradation of humic acids. (orig.)

  7. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum.

    Directory of Open Access Journals (Sweden)

    Prachy Dixit

    Full Text Available BACKGROUND: Cadmium (Cd is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. RESULTS: Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. CONCLUSION: The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for

  8. Designing a SCAR molecular marker for monitoring Trichoderma cf. harzianum in experimental communities.

    Science.gov (United States)

    Pérez, Gabriel; Verdejo, Valentina; Gondim-Porto, Clarissa; Orlando, Julieta; Carú, Margarita

    2014-11-01

    Several species of the fungal genus Trichoderma establish biological interactions with various micro- and macro-organisms. Some of these interactions are relevant in ecological terms and in biotechnological applications, such as biocontrol, where Trichoderma could be considered as an invasive species that colonizes a recipient community. The success of this invasion depends on multiple factors, which can be assayed using experimental communities as study models. Therefore, the aim of this work is to develop a species-specific sequence-characterized amplified region (SCAR) marker to monitor the colonization and growth of T. cf. harzianum when it invades experimental communities. For this study, 16 randomly amplified polymorphic DNA (RAPD) primers of 10-mer were used to generate polymorphic patterns, one of which generated a band present only in strains of T. cf. harzianum. This band was cloned, sequenced, and five primers of 20-23 mer were designed. Primer pairs 2F2/2R2 and 2F2/2R3 successfully and specifically amplified fragments of 278 and 448 bp from the T. cf. harzianum BpT10a strain DNA, respectively. Both primer pairs were also tested against the DNA from 14 strains of T. cf. harzianum and several strains of different fungal genera as specificity controls. Only the DNA from the strains of T. cf. harzianum was successfully amplified. Moreover, primer pair 2F2/2R2 was assessed by quantitative real-time polymerase chain reaction (PCR) using fungal DNA mixtures and DNA extracted from fungal experimental communities as templates. T. cf. harzianum was detectable even when as few as 100 copies of the SCAR marker were available or even when its population represented only 0.1% of the whole community.

  9. Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions.

    Science.gov (United States)

    Kumar, Krishna; Manigundan, K; Amaresan, Natarajan

    2017-02-01

    In the present study, a total of 70 Trichoderma spp. were isolated from the rhizosphere soils of vegetable and spice crops that were grown in Andaman and Nicobar Islands, India. Initial screening of Trichoderma spp. for salt tolerant properties showed 32 isolates were able to tolerate 10% NaCl. Furthermore, these isolates were screened for their potential plant growth-promoting characteristics such as IAA production, phosphate solubilization, and siderophore production. Among 32 isolates, nine isolates were able to produce IAA, siderophore, and solubilize phosphate. Jar trial was carried out on maize under axenic conditions at 1.67, 6.25, 11.25, 17.2, and 22.9 dS m(-1) salt stress using the best nine isolates. Three isolates (TRC3, NRT2, and THB3) were effective in improving germination percentage, reducing reduction percentage of germination (RPG) and also in increasing the shoot and root length under axenic conditions. These three isolates were further tested under pot trial at 52 (sea water), 27, 15, 7, and 1.67 dS m(-1) . TRC3 was found to be the most effective isolate compared to the other isolates and significantly increased the physiological parameters like shoot, root length, leaf area, total biomass, and stem and leaf fresh weight at all stress levels. Similarly, total chlorophyll content also increased by TRC3 over control. All three isolates, NRT2, TRC3, and THB3 showed lower accumulation of malondialdehyde (MDA) content whereas, proline and phenol content were higher than the uninoculated control plants under both normal and saline conditions. The results suggest that these isolates could be utilized for the alleviation of salinity stress in maize.

  10. Trichoderma spp no biocontrole de cylindrocladium candelabrum em mudas de eucalyptus saligna

    Directory of Open Access Journals (Sweden)

    Caciara Gonzatto Maciel

    2012-10-01

    Full Text Available Este trabalho teve como objetivo testar os efeitos in vitro e in vivo de bioprotetores à base de Trichoderma spp. no controle do fungo Cylindrocladium candelabrum Viegas. Os testes in vitro (confronto direto e inoculação em folhas destacadas foram compostos pelos seguintes tratamentos: T1 - somente C. candelabrum; T2 - isolado 06006S x C. candelabrum; T3 - isolado 53RR x C. candelabrum; T4 - isolado 5D x C. candelabrum; T5 - Agrotrich® x C. candelabrum; e T6 - Trichodel® x C. candelabrum. Todos os tratamentos foram eficientes inibindo o crescimento do fungo C. candelabrum em confrontação direta, e os isolados de Trichoderma spp. 53RR e 06006S, bem como o produto comercial Trichodel®, controlaram a mancha-foliar em folhas destacadas. Para complementar os testes in vitro, os produtos comerciais Agrotrich® e Trichodel® foram testados em mudas de E. saligna cultivadas em casa de vegetação, com os seguintes tratamentos: T1 - Testemunha: sem inoculação; T2 - inoculação de C. candelabrum; T3 - inoculação de C. candelabrum x Agrotrich®; T4 - inoculação de C. candelabrum x Trichodel®; T5 - somente Agrotrich®; e T6 - somente Trichodel®. Este produto apresentou os melhores resultados na redução dos danos causados pelo patógeno em mudas de E. saligna.

  11. Spore germination of Trichoderma atroviride is inhibited by its LysM protein TAL6.

    Science.gov (United States)

    Seidl-Seiboth, Verena; Zach, Simone; Frischmann, Alexa; Spadiut, Oliver; Dietzsch, Christian; Herwig, Christoph; Ruth, Claudia; Rodler, Agnes; Jungbauer, Alois; Kubicek, Christian P

    2013-03-01

    LysM motifs are carbohydrate-binding modules found in prokaryotes and eukaryotes. They have general N-acetylglucosamine binding properties and therefore bind to chitin and related carbohydrates. In plants, plasma-membrane-bound proteins containing LysM motifs are involved in plant defence responses, but also in symbiotic interactions between plants and microorganisms. Filamentous fungi secrete LysM proteins that contain several LysM motifs but no enzymatic modules. In plant pathogenic fungi, for LysM proteins roles in dampening of plant defence responses and protection from plant chitinases were shown. In this study, the carbohydrate-binding specificities and biological function of the LysM protein TAL6 from the plant-beneficial fungus Trichoderma atroviride were investigated. TAL6 contains seven LysM motifs and the sequences of its LysM motifs are very different from other fungal LysM proteins investigated so far. The results showed that TAL6 bound to some forms of polymeric chitin, but not to chito-oligosaccharides. Further, no binding to fungal cell wall preparations was detected. Despite these rather weak carbohydrate-binding properties, a strong inhibitory effect of TAL6 on spore germination was found. TAL6 was shown to specifically inhibit germination of Trichoderma spp., but interestingly not of other fungi. Thus, this protein is involved in self-signalling processes during fungal growth rather than fungal-plant interactions. These data expand the functional repertoire of fungal LysM proteins beyond effectors in plant defence responses and show that fungal LysM proteins are also involved in the self-regulation of fungal growth and development. © 2013 The Authors Journal compilation © 2013 FEBS.

  12. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Verena; Song, Lifu; Lindquist, Erika; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Martinez, Pedro; Sun, Jibin; Grigoriev, Igor V.; Herrera-Estrella, Alfredo; Baker, Scott E.; Kubicek, Christian P.

    2009-11-30

    Background: Fungi of the genus Trichoderma are effective mycoparasites an for this reason used as biocontrol agents agents plant pathogenic fungi. The ability to recognize, combat and finally besiege and kill the prey are essential skills for this process. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. This study aims at uncovering transcriptional responses occurring in the mycoparasite Trichoderma atroviride when being confronted with a potential prey. Results: T. atroviride was confronted with two fungal preys, Botrytis cinerea and Rhizoctonia solani, and cDNAs prepared from mycelia immediately before getting into physical contact with them (“onset of mycoparasitism”), and compared with such prepared from mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes each, were obtained from each of these three conditions. 65 genes, represented by 439 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof verified by expression analysis. They comprised 18 KOG groups, but were most abundant from those including posttranslational processing (159 from 183 ESTs), and amino acid metabolism (70 of 84 ESTs), respectively. Several heat shock factors and tRNA synthases were particularly abundant. Metabolic network analysis confirmed the upregulation of the amino acid biosynthesic and the lipid catabolic capacity. Conclusion: Analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions including strong stress response, sensing of nitrogen shortage and lipid catabolism. The data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for breeding of biocontrol strains by recombinant techniques.

  13. Native isolate of Trichoderma: a biocontrol agent with unique stress tolerance properties.

    Science.gov (United States)

    Mishra, N; Khan, S S; Sundari, S Krishna

    2016-08-01

    Species of Trichoderma are widely recognized for their biocontrol abilities, but seldom studied collectively, for their plant growth promotion, abiotic stress tolerance and bioremediation properties. Our study is a concentrated effort to establish the potential of native isolate Trichoderma harzianum KSNM (T103) to tolerate biotic (root pathogens) and abiotic stresses [high salt (100-1000 mM); heavy metal (chromium, nickel and zinc: 1-10 mM); pesticides: malathion (100-600 ppm), carbofuran (100-600 ppb)], along with its ability to support plant growth. In vitro growth promotion assays with T103 treated Vigna radiata, Vigna mungo and Hordeum vulgare confirmed 'non-species specific' growth promotion effects of T103. At lower metal concentration, T103 treatment was found to completely negate the impact of metal stress [60 % increase in radicle length (RL) with no significant decrease in %germination (%G)]. Even at 10 mM metal, T103 inoculation gave 80 % increase in %G and >50 % increase in RL. In vitro experiments confirmed high metal reduction capacity (47 %-Cr, 35 %-Ni and 42 %-Zn) of T103 at concentrations as high as 4 mM. At maximum residual concentrations of malathion (440 ppm) and carbofuran (100 ppb) reported in agricultural soils, T103 maintained 80 and 100 % survivability, respectively. T103 treatment has improved %G and RL in all three hosts challenged with pesticide. Isolate T103 was found to effectively suppress growth of three major root pathogens: Macrophomina phaseolina (65.83 %) followed by Sclerotium rolfsii (19.33 %) and Fusarium oxysporum (19.18 %). In the light of these observations, native T. harzianum (T103) seems to be a competent biocontrol agent for tropical agricultural soils contaminated with residual pesticides and heavy metals.

  14. Antagonismo de Trichoderma SPP. E Bacillus subtilis (UFV3918 a Fusarium sambucinum em Pinus elliottii engelm

    Directory of Open Access Journals (Sweden)

    Caciara Gonzatto Maciel

    2014-06-01

    Full Text Available Pinus elliottii é uma espécie de importância no setor florestal e apresenta vulnerabilidade na qualidade sanitária de suas sementes, especialmente pela associação de Fusarium spp., responsável por perdas de plântulas no viveiro. Este trabalho teve como objetivo avaliar a ação antagonista in vitro e in vivo dos agentes Trichoderma spp. e Bacillus subtilis (UFV3918 no controle de Fusarium sambucinum, responsável por danos em plântulas de Pinus elliottii. O controle in vitro foi avaliado através da inibição do crescimento micelial (confronto pareado de culturas, após a incubação a 25±2 ºC e fotoperíodo de 12 h. Para os testes in vivo (desenvolvidos em condições de viveiro, as sementes inicialmente foram inoculadas com o patógeno e, na sequência, microbiolizadas com os agentes antagônicos, para posterior semeadura. Utilizaram-se as técnicas de contato com o biocontrolador em meio BDA por 48 h e peliculização, como formas de microbiolização. Tanto Trichoderma spp. quanto Bacillus subtilis (UFV3918 foram eficientes no controle in vitro de F. sambucinum, e no teste de biocontrole in vivo o produto Bacillus subtilis (UFV3918 destacou-se, reduzindo as perdas de plântulas causadas pelo patógeno, assim como potencializando as variáveis de comprimento de plântula, massa verde e massa seca.

  15. Designing a SCAR molecular marker for monitoring Trichoderma cf. harzianum in experimental communities* #

    Science.gov (United States)

    Pérez, Gabriel; Verdejo, Valentina; Gondim-Porto, Clarissa; Orlando, Julieta; Carú, Margarita

    2014-01-01

    Several species of the fungal genus Trichoderma establish biological interactions with various micro- and macro-organisms. Some of these interactions are relevant in ecological terms and in biotechnological applications, such as biocontrol, where Trichoderma could be considered as an invasive species that colonizes a recipient community. The success of this invasion depends on multiple factors, which can be assayed using experimental communities as study models. Therefore, the aim of this work is to develop a species-specific sequence-characterized amplified region (SCAR) marker to monitor the colonization and growth of T. cf. harzianum when it invades experimental communities. For this study, 16 randomly amplified polymorphic DNA (RAPD) primers of 10-mer were used to generate polymorphic patterns, one of which generated a band present only in strains of T. cf. harzianum. This band was cloned, sequenced, and five primers of 20–23 mer were designed. Primer pairs 2F2/2R2 and 2F2/2R3 successfully and specifically amplified fragments of 278 and 448 bp from the T. cf. harzianum BpT10a strain DNA, respectively. Both primer pairs were also tested against the DNA from 14 strains of T. cf. harzianum and several strains of different fungal genera as specificity controls. Only the DNA from the strains of T. cf. harzianum was successfully amplified. Moreover, primer pair 2F2/2R2 was assessed by quantitative real-time polymerase chain reaction (PCR) using fungal DNA mixtures and DNA extracted from fungal experimental communities as templates. T. cf. harzianum was detectable even when as few as 100 copies of the SCAR marker were available or even when its population represented only 0.1% of the whole community. PMID:25367789

  16. Study of signal transduction factors involved in mycoparasitic response of Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    Lorito M; Zeilinger S; Ambrosino P; Brunner K; Reithner B; Mach R L; Woo S L; Cristilli M; Scala F

    2004-01-01

    @@ Numerous Trichoderma spp. are mycoparasites and commercially applied as biological control agents against a large number of plant pathogenic fungi. The mycoparasitic interaction is host-specific and several research strategies have been applied to identify the main genes and compounds involved in the antagonist-plant-pathogen three-way interaction. During mycoparasitism, signals from the host fungus are recognised by Trichoderma, stimulating antifungal activities that are accompanied by morphological changes and the secretion of hydrolytic enzymes and antibiotics. Interestingly some morphological changes appeared highly conserved in the strategy of pathogenicity within the fungal world, i.e. the formation of appressoria as well as the secretion of hydrolytic enzymes seem to be general mechanisms of attack both for plant pathogens and mycoparasitic antagonists. This knowledge is being used to identify receptors and key components of signalling pathways involved in fungus-fungus interaction. For this purpose we have cloned the first genes (tmk1 , tga1 , tga3) from T. atroviride showing a high similarity to MAP kinase and G protein subunits (see abstract by Zeilinger et al.),which have been found to have an important role in pathogenicity by Magnaporthe grisea. To identify the function and involvement of these factors in mycoparasitism by T. atroviride, tmk1, tga1, tga3disruptant strains were produced. The knock-out mutants were tested by in vivo biocontrol assays for their ability to inhibit soil and foliar plant pathogens such as Rhizoctonia solani, Pythium ultimum and Botrytis cinerea . Disruption of these genes corresponded to a complete loss of biocontrol ability,suggesting a significant role in mycoparasitism. In particular, it has been suggested that tga3 regulates the expression of chitinase-encoding genes, the secretion of the corresponding enzymes and the process of conidiation. Comparative proteome analysis of wild type and disruptants supported this

  17. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Verena; Song, Lifu; Lindquist, Erika; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Martinez, Pedro; Sun, Jibin; Grigoriev, Igor; Herrera-Estrella, Alfredo; Baker, Scott E; Kubicek, Christian P.

    2010-07-23

    BACKGROUND: Combating the action of plant pathogenic microorganisms by mycoparasitic fungi has been announced as an attractive biological alternative to the use of chemical fungicides since two decades. The fungal genus Trichoderma includes a high number of taxa which are able to recognize, combat and finally besiege and kill their prey. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. RESULTS: We analyzed genome-wide gene expression changes during the begin of physical contact between Trichoderma atroviride and two plant pathogens Botrytis cinerea and Rhizoctonia solani, and compared with gene expression patterns of mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes, were obtained from each of these three growth conditions. 66 genes, represented by 442 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof was verified by expression analysis. The upregulated genes comprised 18 KOG groups, but were most abundant from the groups representing posttranslational processing, and amino acid metabolism, and included components of the stress response, reaction to nitrogen shortage, signal transduction and lipid catabolism. Metabolic network analysis confirmed the upregulation of the genes for amino acid biosynthesis and of those involved in the catabolism of lipids and aminosugars. CONCLUSION: The analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions. These data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for improvement of biocontrol strains by recombinant techniques.

  18. Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT 2413

    Directory of Open Access Journals (Sweden)

    Gutiérrez Santiago

    2006-07-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma harzianum is used as biological control agent of several plant-pathogenic fungi. In order to study the genome of this fungus, a functional genomics project called "TrichoEST" was developed to give insights into genes involved in biological control activities using an approach based on the generation of expressed sequence tags (ESTs. Results Eight different cDNA libraries from T. harzianum strain CECT 2413 were constructed. Different growth conditions involving mainly different nutrient conditions and/or stresses were used. We here present the analysis of the 8,710 ESTs generated. A total of 3,478 unique sequences were identified of which 81.4% had sequence similarity with GenBank entries, using the BLASTX algorithm. Using the Gene Ontology hierarchy, we performed the annotation of 51.1% of the unique sequences and compared its distribution among the gene libraries. Additionally, the InterProScan algorithm was used in order to further characterize the sequences. The identification of the putatively secreted proteins was also carried out. Later, based on the EST abundance, we examined the highly expressed genes and a hydrophobin was identified as the gene expressed at the highest level. We compared our collection of ESTs with the previous collections obtained from Trichoderma species and we also compared our sequence set with different complete eukaryotic genomes from several animals, plants and fungi. Accordingly, the presence of similar sequences in different kingdoms was also studied. Conclusion This EST collection and its annotation provide a significant resource for basic and applied research on T. harzianum, a fungus with a high biotechnological interest.

  19. Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase.

    Science.gov (United States)

    Cázares-García, Saila Viridiana; Arredondo-Santoyo, Marina; Vázquez-Marrufo, Gerardo; Soledad Vázquez-Garcidueñas, Ma; Robinson-Fuentes, Virginia A; Gómez-Reyes, Víctor Manuel

    2016-05-01

    Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU-1 (T. harzianum), CMU-8 (T. atroviride), CMU-218 (T. viride), and CMU-221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU-8 showed no basal laccase activity, while strains CMU-1, CMU-218, and CMU-221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU-1 by 34%, relative to the basal culture, while strains CMU-8, CMU-21, and CMU-221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787-798, 2016.

  20. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean.

    Science.gov (United States)

    Zhang, Fuli; Ge, Honglian; Zhang, Fan; Guo, Ning; Wang, Yucheng; Chen, Long; Ji, Xiue; Li, Chengwei

    2016-03-01

    Sclerotinia stem rot, caused by Sclerotinia sclerotiorum (Lib.) de Bary is a major disease of soybean (Glycine max (L.) Merr.). At present, we revealed the three-way interaction between Trichoderma harzianum T-aloe, pathogen S. sclerotiorum and soybean plants in order to demonstrate biocontrol mechanism and evaluate biocontrol potential of T-aloe against S. sclerotiorum in soybean. In our experiments, T-aloe inhibited the growth of S. sclerotiorum with an efficiency of 56.3% in dual culture tests. T-aloe hyphae grew in parallel or intertwined with S. sclerotiorum hyphae and produced hooked contact branches, indicating mycoparasitism. Plate tests showed that T-aloe culture filtrate inhibited S. sclerotiorum growth with an inhibition efficiency of 51.2% and sclerotia production. T-aloe pretreatment showed growth-promoting effect on soybean plants. The activities of peroxidase, superoxide dismutase, and catalase increased, and the hydrogen peroxide (H2O2) as well as the superoxide radical (O2(-)) content in soybean leaves decreased after T-aloe pretreatment in response to S. sclerotiorum pathogen challenge. T-aloe treatment diminished damage caused by pathogen stress on soybean leaf cell membrane, and increased chlorophyll as well as total phenol contents. The defense-related genes PR1, PR2, and PR3 were expressed in the leaves of T-aloe-treated plants. In summary, T-aloe displayed biocontrol potential against S. sclerotiorum. This is the first report of unraveling biocontrol potential of Trichoderma Spp. to soybean sclerotinia stem rot from the three-way interaction between the biocontrol agent, pathogen S. sclerotiorum and soybean plants.