WorldWideScience

Sample records for hypocrea jecorina trichoderma

  1. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei)

    NARCIS (Netherlands)

    Stricker, A.R.; Mach, R.L.; Graaff, de L.H.

    2008-01-01

    The filamentous fungi Aspergillus niger and Hypocrea jecorina (Trichoderma reesei) have been the subject of many studies investigating the mechanism of transcriptional regulation of hemicellulase- and cellulase-encoding genes. The transcriptional regulator XlnR that was initially identified in A.

  2. The role of pheromone receptors for communication and mating in Hypocrea jecorina (Trichoderma reesei)

    Science.gov (United States)

    Seibel, Christian; Tisch, Doris; Kubicek, Christian P.; Schmoll, Monika

    2012-01-01

    Discovery of sexual development in the ascomycete Trichoderma reesei (Hypocrea jecorina) as well as detection of a novel class of peptide pheromone precursors in this fungus indicates promising insights into its physiology and lifestyle. Here we investigated the role of the two pheromone receptors HPR1 and HPR2 in the H. jecorina pheromone-system. We found that these pheromone receptors show an unexpectedly high genetic variability among H. jecorina strains. HPR1 and HPR2 confer female fertility in their cognate mating types (MAT1-1 or MAT1-2, respectively) and mediate induction of fruiting body development. One compatible pheromone precursor–pheromone receptor pair (hpr1–hpp1 or hpr2–ppg1) in mating partners was sufficient for sexual development. Additionally, pheromone receptors were essential for ascospore development, hence indicating their involvement in post-fertilisation events. Neither pheromone precursor genes nor pheromone receptor genes of H. jecorina were transcribed in a strictly mating type dependent manner, but showed enhanced expression levels in the cognate mating type. In the presence of a mating partner under conditions favoring sexual development, transcript levels of pheromone precursors were significantly increased, while those of pheromone receptor genes do not show this trend. In the female sterile T. reesei strain QM6a, transcriptional responses of pheromone precursor and pheromone receptor genes to a mating partner were clearly altered compared to the female fertile wild-type strain CBS999.97. Consequently, a delayed and inappropriate response to the mating partner may be one aspect causing female sterility in QM6a. PMID:22884620

  3. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei and a new sympatric agamospecies related to it.

    Directory of Open Access Journals (Sweden)

    Irina S Druzhinina

    Full Text Available BACKGROUND: Trichoderma reesei, a mitosporic green mould, was recognized during the WW II based on a single isolate from the Solomon Islands and since then used in industry for production of cellulases. It is believed to be an anamorph (asexual stage of the common pantropical ascomycete Hypocrea jecorina. METHODOLOGY/PRINCIPAL FINDINGS: We combined molecular evolutionary analysis and multiple methods of phenotype profiling in order to reveal the genetic relationship of T. reesei to H. jecorina. The resulting data show that the isolates which were previously identified as H. jecorina by means of morphophysiology and ITS1 and 2 (rRNA gene cluster barcode in fact comprise several species: i H. jecorina/T. reesei sensu stricto which contains most of the teleomorphs (sexual stages found on dead wood and the wild-type strain of T. reesei QM 6a; ii T. parareesei nom. prov., which contains all strains isolated as anamorphs from soil; iii and two other hypothetical new species for which only one or two isolates are available. In silico tests for recombination and in vitro mating experiments revealed a history of sexual reproduction for H. jecorina and confirmed clonality for T. parareesei nom. prov. Isolates of both species were consistently found worldwide in pantropical climatic zone. Ecophysiological comparison of H. jecorina and T. parareesei nom. prov. revealed striking differences in carbon source utilization, conidiation intensity, photosensitivity and mycoparasitism, thus suggesting adaptation to different ecological niches with the high opportunistic potential for T. parareesei nom. prov. CONCLUSIONS: Our data prove that T. reesei belongs to a holomorph H. jecorina and displays a history of worldwide gene flow. We also show that its nearest genetic neighbour--T. parareesei nom. prov., is a cryptic phylogenetic agamospecies which inhabits the same biogeographic zone. These two species thus provide a so far rare example of sympatric speciation

  4. Light-dependent roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Kubicek Christian P

    2009-09-01

    Full Text Available Abstract Background The filamentous ascomycete Hypocrea jecorina (anamorph Trichoderma reesei is primarily known for its efficient enzymatic machinery that it utilizes to decompose cellulosic substrates. Nevertheless, the nature and transmission of the signals initiating and modulating this machinery are largely unknown. Heterotrimeric G-protein signaling represents one of the best studied signal transduction pathways in fungi. Results Analysis of the regulatory targets of the G-protein α subunit GNA1 in H. jecorina revealed a carbon source and light-dependent role in signal transduction. Deletion of gna1 led to significantly decreased biomass formation in darkness in submersed culture but had only minor effects on morphology and hyphal apical extension rates on solid medium. Cellulase gene transcription was abolished in Δgna1 on cellulose in light and enhanced in darkness. However, analysis of strains expressing a constitutively activated GNA1 revealed that GNA1 does not transmit the essential inducing signal. Instead, it relates a modulating signal with light-dependent significance, since induction still required the presence of an inducer. We show that regulation of transcription and activity of GNA1 involves a carbon source-dependent feedback cycle. Additionally we found a function of GNA1 in hydrophobin regulation as well as effects on conidiation and tolerance of osmotic and oxidative stress. Conclusion We conclude that GNA1 transmits a signal the physiological relevance of which is dependent on both the carbon source as well as the light status. The widespread consequences of mutations in GNA1 indicate a broad function of this Gα subunit in appropriation of intracellular resources to environmental (especially nutritional conditions.

  5. Dehydrogenase GRD1 Represents a Novel Component of the Cellulase Regulon in Trichoderma reesei (Hypocrea jecorina) ▿ † §

    Science.gov (United States)

    Schuster, André; Kubicek, Christian P.; Schmoll, Monika

    2011-01-01

    Trichoderma reesei (Hypocrea jecorina) is nowadays the most important industrial producer of cellulase and hemicellulase enzymes, which are used for pretreatment of cellulosic biomass for biofuel production. In this study, we introduce a novel component, GRD1 (glucose-ribitol dehydrogenase 1), which shows enzymatic activity on cellobiose and positively influences cellulase gene transcription, expression, and extracellular endo-1,4-β-d-glucanase activity. grd1 is differentially transcribed upon growth on cellulose and the induction of cellulase gene expression by sophorose. The transcription of grd1 is coregulated with that of cel7a (cbh1) under inducing conditions. GRD1 is further involved in carbon source utilization on several carbon sources, such as those involved in lactose and d-galactose catabolism, in several cases in a light-dependent manner. We conclude that GRD1 represents a novel enhancer of cellulase gene expression, which by coregulation with the major cellulase may act via optimization of inducing mechanisms. PMID:21602376

  6. A novel platform for heterologous gene expression in Trichoderma reesei (Teleomorph Hypocrea jecorina)

    DEFF Research Database (Denmark)

    Jørgensen, Mikael Skaanning; Skovlund, Dominique Aubert; Johannesen, Pia Francke

    2014-01-01

    ABSTRACT: BACKGROUND: The industrially applied filamentous fungus Trichoderma reesei has received substantial interest due to its highly efficient synthesis apparatus of cellulytic enzymes. However, the production of heterologous enzymes in T. reesei still remains low mainly due to lack of tools...

  7. The Hypocrea jecorina (syn. Trichoderma reesei) lxr1 gene encodes a D-mannitol dehydrogenase and is not involved in L-arabinose catabolism

    NARCIS (Netherlands)

    Metz, Benjamin; de Vries, Ronald P; Polak, Stefan; Seidl, Verena; Seiboth, Bernhard

    2009-01-01

    The Hypocrea jecorina LXR1 was described as the first fungal L-xylulose reductase responsible for NADPH dependent reduction of L-xylulose to xylitol in L-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal D-mannitol 2-dehydrogenases. Lxr1 and the orthologous

  8. Product inhibition of five Hypocrea jecorina cellulases

    DEFF Research Database (Denmark)

    Murphy, Leigh; Westh, Peter; Bohlin, Christina

    2013-01-01

    Product inhibition of cellulolytic enzymes has been deemed a critical factor in the industrial saccharification of cellulosic biomass. Several investigations have addressed this problem using crude enzyme preparations or commercial (mixed) cellulase products, but quantitative information...... on individual cellulases hydrolyzing insoluble cellulose remains insufficient. Such knowledge is necessary to pinpoint and quantify inhibitory weak-links in cellulose hydrolysis, but has proven challenging to come by. Here we show that product inhibition of mono-component cellulases hydrolyzing unmodified...... cellulose may be monitored by calorimetry. The key advantage of this approach is that it directly measures the rate of hydrolysis while being essentially blind to the background of added product. We investigated the five major cellulases from Hypocrea jecorina (anamorph: Tricoderma reesei), Cel7A (formerly...

  9. Crystallization and preliminary X-ray diffraction analysis of the glucuronoyl esterase catalytic domain from Hypocrea jecorina

    International Nuclear Information System (INIS)

    Wood, S. J.; Li, X.-L.; Cotta, M. A.; Biely, P.; Duke, N. E. C.; Schiffer, M.; Pokkuluri, P. R.

    2008-01-01

    The catalytic domain of the glucuronoyl esterase from H. jecorina was overexpresssed, purified and crystallized in space group P2 1 2 1 2 1 . X-ray diffraction data were collected to 1.9 Å resolution. The catalytic domain of the glucuronoyl esterase from Hypocrea jecorina (anamorph Trichoderma reesei) was overexpresssed, purified and crystallized by the sitting-drop vapor-diffusion method using 1.4 M sodium/potassium phosphate pH 6.9. The crystals belonged to space group P2 1 2 1 2 1 and X-ray diffraction data were collected to 1.9 Å resolution. This is the first enzyme with glucoronoyl esterase activity to be crystallized; its structure will be valuable in lignocellulose-degradation research

  10. Crystallization and preliminary X-ray diffraction analysis of the glucuronoyl esterase catalytic domain from Hypocrea jecorina

    Energy Technology Data Exchange (ETDEWEB)

    Wood, S. J. [Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Li, X.-L.; Cotta, M. A. [Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604 (United States); Biely, P. [Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava (Slovakia); Duke, N. E. C.; Schiffer, M.; Pokkuluri, P. R., E-mail: rajp@anl.gov [Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2008-04-01

    The catalytic domain of the glucuronoyl esterase from H. jecorina was overexpresssed, purified and crystallized in space group P2{sub 1}2{sub 1}2{sub 1}. X-ray diffraction data were collected to 1.9 Å resolution. The catalytic domain of the glucuronoyl esterase from Hypocrea jecorina (anamorph Trichoderma reesei) was overexpresssed, purified and crystallized by the sitting-drop vapor-diffusion method using 1.4 M sodium/potassium phosphate pH 6.9. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1} and X-ray diffraction data were collected to 1.9 Å resolution. This is the first enzyme with glucoronoyl esterase activity to be crystallized; its structure will be valuable in lignocellulose-degradation research.

  11. Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process

    Directory of Open Access Journals (Sweden)

    Druzhinina Irina S

    2007-12-01

    Full Text Available Abstract Background In fungi, light is primarily known to influence general morphogenesis and both sexual and asexual sporulation. In order to expand the knowledge on the effect of light in fungi and to determine the role of the light regulatory protein ENVOY in the implementation of this effect, we performed a global screen for genes, which are specifically effected by light in the fungus Hypocrea jecorina (anamorph Trichoderma reesei using Rapid Subtraction Hybridization (RaSH. Based on these data, we analyzed whether these genes are influenced by ENVOY and if overexpression of ENVOY in darkness would be sufficient to execute its function. Results The cellular functions of the detected light responsive genes comprised a variety of roles in transcription, translation, signal transduction, metabolism, and transport. Their response to light with respect to the involvement of ENVOY could be classified as follows: (i ENVOY-mediated upregulation by light; (ii ENVOY-independent upregulation by light; (iii ENVOY-antagonized upregulation by light; ENVOY-dependent repression by light; (iv ENVOY-independent repression by light; and (v both positive and negative regulation by ENVOY of genes not responsive to light in the wild-type. ENVOY was found to be crucial for normal growth in light on various carbon sources and is not able to execute its regulatory function if overexpressed in the darkness. Conclusion The different responses indicate that light impacts fungi like H. jecorina at several cellular processes, and that it has both positive and negative effects. The data also emphasize that ENVOY has an apparently more widespread cellular role in this process than only in modulating the response to light.

  12. Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina

    DEFF Research Database (Denmark)

    Badino, Silke Flindt; Kari, Jeppe; Christensen, Stefan Jarl

    2017-01-01

    Cellulose degrading fungi such as Hypocrea jecorina secrete several cellulases including the two cellobiohydrolases (CBHs) Cel6A and Cel7A. The two CBHs differ in catalytic mechanism, attack different ends, belong to different families, but are both processive multi-domain enzymes that are essent...

  13. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina

    DEFF Research Database (Denmark)

    Badino, Silke Flindt; Christensen, Stefan Jarl; Kari, Jeppe

    2017-01-01

    Synergy between cellulolytic enzymes is essential in both natural and industrial breakdown of biomass. In addition to synergy between endo- and exo-lytic enzymes, a lesser known but equally conspicuous synergy occurs among exo-acting, processive cellobiohydrolases (CBHs) such as Cel7A and Cel6A...... from Hypocrea jecorina. We studied this system using microcrystalline cellulose as substrate and found a degree of synergy between 1.3 and 2.2 depending on the experimental conditions. Synergy between enzyme variants without the carbohydrate binding module (CBM) and its linker was strongly reduced...... compared to the wild types. One plausible interpretation of this is that exo-exo synergy depends on the targeting role of the CBM. Many earlier works have proposed that exo-exo synergy was caused by an auxiliary endo-lytic activity of Cel6A. However, biochemical data from different assays suggested...

  14. Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution.

    Science.gov (United States)

    Goedegebuur, Frits; Dankmeyer, Lydia; Gualfetti, Peter; Karkehabadi, Saeid; Hansson, Henrik; Jana, Suvamay; Huynh, Vicky; Kelemen, Bradley R; Kruithof, Paulien; Larenas, Edmund A; Teunissen, Pauline J M; Ståhlberg, Jerry; Payne, Christina M; Mitchinson, Colin; Sandgren, Mats

    2017-10-20

    Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in T m and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Improved cellulolytic efficacy in Penicilium decumbens via heterologous expression of Hypocrea jecorina endoglucanase II

    Directory of Open Access Journals (Sweden)

    Qin Yuqi

    2013-01-01

    Full Text Available Hypocrea jecorina endoglucanase II (Hjegl2 was heterologously expressed in Penicillium decumbens (yielding strain Pd::Hjegl2. After induction in cellulose containing media, strain Pd::Hjeg2 displayed increased carboxymethylcellulase activity (CMCase, 5.77 IU/ml, representing a 21% increase and cellulose degradation determined with a filter paper assay (FPA, 0.40 IU/ml, 67% increase, as compared to the parent strain. In media supplemented with glucose (2%, Pd::Hjegl2, displayed 51.2-fold and 3-fold higher CMCase and FPA activities, respectively, as compared to the parent strain. No changes in the expression levels of the four main native cellulase genes of P. decumbens (Pdegl1, Pdegl2, Pdcbh1, and Pdcbh2 were noted between the transformant and wild-type strains. These data support the idea that Hjegl2 cleaves both internal and terminal glycosidic residues, in a relatively random and processive manner. In situ polyacrylamide gelactivity staining of extracts derived from wild-type and Pd::Hjegl2 revealed two additional active fractions in the latter strain; one with a molecular mass ~50-65 KDa and another ~80-116 kDa.

  16. Evaluation of a Hypocrea jecorina Enzyme Preparation for Hydrolysis of Tifton 85 Bermudagrass

    Science.gov (United States)

    Ximenes, E. A.; Brandon, S. K.; Doran-Peterson, J.

    Tifton 85 bermudagrass, developed at the ARS-USDA in Tifton, GA, is grown on over ten million acres in the USA for hay and forage. Of the bermudagrass cultivars, Tifton 85 exhibits improved digestibility because the ratio of ether- to ester-linked phenolic acids has been lowered using traditional plant breeding techniques. A previously developed pressurized batch hot water (PBHW) method was used to treat Tifton 85 bermudagrass for enzymatic hydrolysis. Native grass (untreated) and PBHW-pretreated material were compared as substrates for fungal cultivation to produce enzymes. Cellulase activity, measured via the filter paper assay, was higher for fungi cultivated on PBHW-pretreated grass, whereas the other nine enzyme assays produced higher activities for the untreated grass. Ferulic acid and vanillin levels increased significantly for the enzyme preparations produced using PBHW-pretreated grass and the release of these phenolic compounds may have contributed to the observed reduction in enzyme activities. Culture supernatant from Tifton 85 bermudagrass-grown fungi were combined with two commercial enzyme preparations and the enzyme activity profiles are reported. The amount of reducing sugar liberated by the enzyme mixture from Hypocrea jecorina (after 192 h incubation with untreated bermudagrass) individually or in combination with feruloyl esterase was 72.1 and 84.8%, respectively, of the commercial cellulase preparation analyzed under the same conditions.

  17. Differential Involvement of β-Glucosidases from Hypocrea jecorina in Rapid Induction of Cellulase Genes by Cellulose and Cellobiose

    Science.gov (United States)

    Zhou, Qingxin; Xu, Jintao; Kou, Yanbo; Lv, Xinxing; Zhang, Xi; Zhao, Guolei; Zhang, Weixin; Chen, Guanjun

    2012-01-01

    Appropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolytic Hypocrea jecorina. The major extracellular β-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple β-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist in H. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular β-glucosidase displaying in vitro transglycosylation activity. We then found evidence that these two major intracellular β-glucosidases were involved in the rapid induction of cellulase genes by insoluble cellulose. Deletion of cel1a and cel1b significantly compromised the efficient gene expression of the major cellulase gene, cbh1. Simultaneous absence of BglI, CEL1a, and CEL1b caused the induction of the cellulase gene by cellulose to further deteriorate. The induction defect, however, was not observed with cellobiose. The absence of the three β-glucosidases, rather, facilitated the induced synthesis of cellulase on cellobiose. Furthermore, addition of cellobiose restored the productive induction on cellulose in the deletion strains. The results indicate that the three β-glucosidases may not participate in transforming cellobiose beyond hydrolysis to provoke cellulase formation in H. jecorina. They may otherwise contribute to the accumulation of cellobiose from cellulose as inducing signals. PMID:23002106

  18. Lactosylamidine-based affinity purification for cellulolytic enzymes EG I and CBH I from Hypocrea jecorina and their properties.

    Science.gov (United States)

    Ogata, Makoto; Kameshima, Yumiko; Hattori, Takeshi; Michishita, Kousuke; Suzuki, Tomohiro; Kawagishi, Hirokazu; Totani, Kazuhide; Hiratake, Jun; Usui, Taichi

    2010-12-10

    Selective adsorption and separation of β-glucosidase, endo-acting endo-β-(1→4)-glucanase I (EG I), and exo-acting cellobiohydrolase I (CBH I) were achieved by affinity chromatography with β-lactosylamidine as ligand. A crude cellulase preparation from Hypocrea jecorina served as the source of enzyme. When crude cellulase was applied to the lactosylamidine-based affinity column, β-glucosidase appeared in the unbound fraction. By contrast, EG I and CBH I were retained on the column and then separated from each other by appropriately adjusting the elution conditions. The relative affinities of the enzymes, based on their column elution conditions, were strongly dependent on the ligand. The highly purified EG I and CBH I, obtained by affinity chromatography, were further purified by Mono P and DEAE chromatography, respectively. EG I and CBH I cleave only at the phenolic bond in p-nitrophenyl glycosides with lactose and N-acetyllactosamine (LacNAc). By contrast, both scissile bonds in p-nitrophenyl glycosides with cellobiose were subject to hydrolysis although with important differences in their kinetic parameters. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The crystal structure of the core domain of a cellulose induced protein (Cip1 from Hypocrea jecorina, at 1.5 Å resolution.

    Directory of Open Access Journals (Sweden)

    Frida Jacobson

    Full Text Available In an effort to characterise the whole transcriptome of the fungus Hypocrea jecorina, cDNA clones of this fungus were identified that encode for previously unknown proteins that are likely to function in biomass degradation. One of these newly identified proteins, found to be co-regulated with the major H. jecorina cellulases, is a protein that was denoted Cellulose induced protein 1 (Cip1. This protein consists of a glycoside hydrolase family 1 carbohydrate binding module connected via a linker region to a domain with yet unknown function. After cloning and expression of Cip1 in H. jecorina, the protein was purified and biochemically characterised with the aim of determining a potential enzymatic activity for the novel protein. No hydrolytic activity against any of the tested plant cell wall components was found. The proteolytic core domain of Cip1 was then crystallised, and the three-dimensional structure of this was determined to 1.5 Å resolution utilising sulphur single-wavelength anomalous dispersion phasing (sulphor-SAD. A calcium ion binding site was identified in a sequence conserved region of Cip1 and is also seen in other proteins with the same general fold as Cip1, such as many carbohydrate binding modules. The presence of this ion was found to have a structural role. The Cip1 structure was analysed and a structural homology search was performed to identify structurally related proteins. The two published structures with highest overall structural similarity to Cip1 found were two poly-lyases: CsGL, a glucuronan lyase from H. jecorina and vAL-1, an alginate lyase from the Chlorella virus. This indicates that Cip1 may be a lyase. However, initial trials did not detect significant lyase activity for Cip1. Cip1 is the first structure to be solved of the 23 currently known Cip1 sequential homologs (with a sequence identity cut-off of 25%, including both bacterial and fungal members.

  20. Trichoderma (Hypocrea) species with green ascospores from China

    NARCIS (Netherlands)

    Zhu, Z.X.; Zhuang, W.Y.

    2015-01-01

    Stromata of Trichoderma species having green ascospores were collected in various regions of China. Based on morphology of the sexual and asexual morph, culture characteristics, and sequence analyses of rpb2 and tef1 genes, 17 species with green ascospores were identified. Among them, Trichoderma

  1. Purifying Selection and Birth-and-Death Evolution in the Class II Hydrophobin Gene Families of the Ascomycete Trichoderma/Hypocrea

    Energy Technology Data Exchange (ETDEWEB)

    kubicek, Christian P.; Baker, Scott E.; Gamauf, Christian; Kenerley, Chuck; Druzhinina, Irina S.

    2008-01-10

    Hydrophobins are proteins containing eight conserved cysteine residues that occur uniquely in mycelial fungi, where their main function is to confer hydrophobicity to fungal surfaces in contact with air and during attachment of hyphae to hydrophobic surfaces of hosts, symbiotic partners or of themselves resulting in morphogenetic signals. Based on their hydropathy patterns and their solubility characteristics, they are classified in class I and class II hydrophobins, the latter being found only in ascomycetes. Here we have investigated the mechanisms driving the evolution of the class II hydrophobins in nine species of the mycoparasitic ascomycetous genus Trichoderma/Hypocrea, using three fully sequenced genomes (H. jecorina=T. reesei, H. atroviridis=T. atroviride; H. virens=T. virens) and a total of 14.000 ESTs of six others (T. asperellum, H. lixii=T. harzianum, T. aggressivum var. europeae, T. longibrachiatum, T. cf. viride). The former three contained six, ten and nine members, which is the highest number found in any other ascomycete so far. They all showed the conserved four beta-strands/one helix structure, which is stabilized by four disulfide bonds. In addition, a small number of these HFBs contained an extended N-terminus rich in either praline and aspartate, or glycine-asparagine. Phylogenetic analysis reveals a mosaic of terminal clades contain duplicated genes and shows only three reasonably supported clades. Calculation of the ratio of differences in synonymous vs. non-synonymous nucleotide substitutions provides evidence for strong purifying selection (KS/Ka >> 1). A genome database search for class II HFBs from other ascomycetes retrieved a much smaller number of hydrophobins (2-4) from each species, and most of them were from Pyrenomycetes. A combined phylogeny of these sequences with those of Trichoderma showed that the Trichoderma HFBs mostly formed their own clades, whereas those of other pyrenomycetes occured in shared clades. Our study shows

  2. Unraveling the Secondary Metabolism of the Biotechnological Important Filamentous Fungus Trichoderma reesei ( Teleomorph Hypocrea jecorina)

    DEFF Research Database (Denmark)

    Jørgensen, Mikael Skaanning

    that would enable pursuance of the primary objective. The developed molecular tools were assembled into an expression system for high-throughput construction of defined integrated T. reesei mutants and combined inactivation of the non-homologous end joining pathway that facilitates ectopic integration...... of exposed DNA fragments, and a color maker so that the mutants, in which the substrate had been integrated correct, could be identified by their phenotype. A new bidirectional selective marker system was developed based on the pyr2 gene, involved in the pyrimidine biosynthesis pathway, and was included...... essential for biosynthesis of the sorbicillinoids. Hence, genes involved in biosynthesis of this group of polyketides were identified for the first time. Comparative genomics was subsequently used to identify a highly similar polyketide synthase gene cluster in another well-known sorbicillinoid producer...

  3. Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia.

    Science.gov (United States)

    Jaklitsch, Walter M; Samuels, Gary J; Dodd, Sarah L; Lu, Bing-Sheng; Druzhinina, Irina S

    2006-01-01

    The type species of the genus Hypocrea (Hypocreaceae, Hypocreales, Ascomycota, Fungi), H. rufa, is re-defined and epitypified using a combination of phenotype (morphology of teleomorphs and anamorphs, and characteristics in culture) and phylogenetic analyses of the translation-elongation factor 1alpha gene. Its anamorph, T. viride, the type species of Trichoderma, is re-described and epitypified. Eidamia viridescens is combined as Trichoderma viridescens and is recognised as one of the most morphologically and phylogenetically similar relatives of T. viride. Its teleomorph is newly described as Hypocrea viridescens. Contrary to frequent citations of H. rufa and T. viride in the literature, this species is relatively rare. Although both T. viride and T. viridescens have a wide geographic distribution, their greatest genetic diversity appears to be in Europe and North America. Hypocrea vinosa is characterised and its anamorph, T. vinosum sp. nov., is described. Conidia of T. vinosum are subglobose and warted. The new species T. gamsii is proposed. It shares eidamia-like morphology of conidiophores with T. viridescens, but it has smooth, ellipsoidal conidia that have the longest L/W ratio that we have seen in Trichoderma. Trichoderma scalesiae, an endophyte of trunks of Scalesia pedunculata in the Galapagos Islands, is described as new. It only produces conidia on a low-nutrient agar to which filter paper has been added. Additional phylogenetically distinct clades are recognised and provisionally delimited from the species here described. Trichoderma neokoningii, a T. koningii-like species, is described from a collection made in Peru on a fruit of Theobroma cacao infected with Moniliophthora roreri.

  4. Production of cellulolytic enzymes by fungal cultures. [Aspergillus, Trichoderma, Chaetomium, Stachybotrys, and Hypocrea

    Energy Technology Data Exchange (ETDEWEB)

    Pyc, R; Fiechter, A. Galas, E.

    1977-01-01

    Twelve fungal cultures belonging to the genera of Aspergillus, Trichoderma, Chaetomium, Stachybotrys, and Hypocrea were screened for the production of cellulolytic activity. All twelve were found to degrade xylan, avicel, and carboxymethylcellulose. More cellulolytic activity was obtained with shaken cultures than with still cultures and the addition of citrate-phosphate buffer to the media greatly depressed the levels of cellulolytic activity. Varying the composition of the mineral salts in the medium had no effect on the cellulolytic activity. The growth of Aspergillus wentii under controlled conditions in a bioreactor showed that the cellulolytic activity was not affected by the aeration rate or the type of stirrer. The rate of stirring, however, did effect the cellulolytic activity, as at lower stirring speeds considerable wall growth occurred which resulted in low levels of cellulolytic activity. Culture supernatant from Aspergillus wentii was found to hydrolyze from 30-32% of Solka-Floc and from 2-10% of corn cobs, wheat straw, and newsprint. The extensive hydrolysis of Solka-Floc indicates that with suitable treated cellulosic wastes and appropriate enzymes, appreciable amounts of sugars could be obtained.

  5. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions.

    Science.gov (United States)

    Hoyos-Carvajal, Lilliana; Orduz, Sergio; Bissett, John

    2009-09-01

    The genus Trichoderma has been studied for production of enzymes and other metabolites, as well as for exploitation as effective biological control agents. The biodiversity of Trichoderma has seen relatively limited study over much of the neotropical region. In the current study we assess the biodiversity of 183 isolates from Mexico, Guatemala, Panama, Ecuador, Peru, Brazil and Colombia, using morphological, metabolic and genetic approaches. A comparatively high diversity of species was found, comprising 29 taxa: Trichoderma asperellum (60 isolates), Trichoderma atroviride (3), Trichoderma brevicompactum (5), Trichoderma crassum (3), Trichoderma erinaceum (3), Trichoderma gamsii (2), Trichoderma hamatum (2), Trichoderma harzianum (49), Trichoderma koningiopsis (6), Trichoderma longibrachiatum (3), Trichoderma ovalisporum (1), Trichoderma pubescens (2), Trichoderma rossicum (4), Trichoderma spirale (1), Trichoderma tomentosum (3), Trichoderma virens (8), Trichoderma viridescens (7) and Hypocrea jecorina (3) (anamorph: Trichoderma reesei), along with 11 currently undescribed species. T. asperellum was the prevalent species and was represented by two distinct genotypes with different metabolic profiles and habitat preferences. The second predominant species, T. harzianum, was represented by three distinct genotypes. The addition of 11 currently undescribed species is evidence of the considerable unresolved biodiversity of Trichoderma in neotropical regions. Sequencing of the internal transcribed spacer regions (ITS) of the ribosomal repeat could not differentiate some species, and taken alone gave several misidentifications in part due to the presence of nonorthologous copies of the ITS in some isolates.

  6. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma.

    Science.gov (United States)

    Kubicek, Christian P; Herrera-Estrella, Alfredo; Seidl-Seiboth, Verena; Martinez, Diego A; Druzhinina, Irina S; Thon, Michael; Zeilinger, Susanne; Casas-Flores, Sergio; Horwitz, Benjamin A; Mukherjee, Prasun K; Mukherjee, Mala; Kredics, László; Alcaraz, Luis D; Aerts, Andrea; Antal, Zsuzsanna; Atanasova, Lea; Cervantes-Badillo, Mayte G; Challacombe, Jean; Chertkov, Olga; McCluskey, Kevin; Coulpier, Fanny; Deshpande, Nandan; von Döhren, Hans; Ebbole, Daniel J; Esquivel-Naranjo, Edgardo U; Fekete, Erzsébet; Flipphi, Michel; Glaser, Fabian; Gómez-Rodríguez, Elida Y; Gruber, Sabine; Han, Cliff; Henrissat, Bernard; Hermosa, Rosa; Hernández-Oñate, Miguel; Karaffa, Levente; Kosti, Idit; Le Crom, Stéphane; Lindquist, Erika; Lucas, Susan; Lübeck, Mette; Lübeck, Peter S; Margeot, Antoine; Metz, Benjamin; Misra, Monica; Nevalainen, Helena; Omann, Markus; Packer, Nicolle; Perrone, Giancarlo; Uresti-Rivera, Edith E; Salamov, Asaf; Schmoll, Monika; Seiboth, Bernhard; Shapiro, Harris; Sukno, Serenella; Tamayo-Ramos, Juan Antonio; Tisch, Doris; Wiest, Aric; Wilkinson, Heather H; Zhang, Michael; Coutinho, Pedro M; Kenerley, Charles M; Monte, Enrique; Baker, Scott E; Grigoriev, Igor V

    2011-01-01

    Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei. The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants. © 2011 Kubicek et al.; licensee BioMed Central Ltd.

  7. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    Science.gov (United States)

    2011-01-01

    Background Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Results Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei. Conclusions The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants. PMID:21501500

  8. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes.

    Science.gov (United States)

    Badino, Silke F; Christensen, Stefan J; Kari, Jeppe; Windahl, Michael S; Hvidt, Søren; Borch, Kim; Westh, Peter

    2017-08-01

    Synergy between cellulolytic enzymes is essential in both natural and industrial breakdown of biomass. In addition to synergy between endo- and exo-lytic enzymes, a lesser known but equally conspicuous synergy occurs among exo-acting, processive cellobiohydrolases (CBHs) such as Cel7A and Cel6A from Hypocrea jecorina. We studied this system using microcrystalline cellulose as substrate and found a degree of synergy between 1.3 and 2.2 depending on the experimental conditions. Synergy between enzyme variants without the carbohydrate binding module (CBM) and its linker was strongly reduced compared to the wild types. One plausible interpretation of this is that exo-exo synergy depends on the targeting role of the CBM. Many earlier works have proposed that exo-exo synergy was caused by an auxiliary endo-lytic activity of Cel6A. However, biochemical data from different assays suggested that the endo-lytic activity of both Cel6A and Cel7A were 10 3 -10 4 times lower than the common endoglucanase, Cel7B, from the same organism. Moreover, the endo-lytic activity of Cel7A was 2-3-fold higher than for Cel6A, and we suggest that endo-like activity of Cel6A cannot be the main cause for the observed synergy. Rather, we suggest the exo-exo synergy found here depends on different specificities of the enzymes possibly governed by their CBMs. Biotechnol. Bioeng. 2017;114: 1639-1647. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Biology and biotechnology of Trichoderma.

    Science.gov (United States)

    Schuster, André; Schmoll, Monika

    2010-07-01

    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.

  10. Identifying Beneficial Qualities of Trichoderma parareesei for Plants

    Science.gov (United States)

    Rubio, M. Belén; Quijada, Narciso M.; Pérez, Esclaudys; Domínguez, Sara; Hermosa, Rosa

    2014-01-01

    Trichoderma parareesei and Trichoderma reesei (teleomorph Hypocrea jecorina) produce cellulases and xylanases of industrial interest. Here, the anamorphic strain T6 (formerly T. reesei) has been identified as T. parareesei, showing biocontrol potential against fungal and oomycete phytopathogens and enhanced hyphal growth in the presence of tomato exudates or plant cell wall polymers in in vitro assays. A Trichoderma microarray was used to examine the transcriptomic changes in T6 at 20 h of interaction with tomato plants. Out of a total 34,138 Trichoderma probe sets deposited on the microarray, 250 showed a significant change of at least 2-fold in expression in the presence of tomato plants, with most of them being downregulated. T. parareesei T6 exerted beneficial effects on tomato plants in terms of seedling lateral root development, and in adult plants it improved defense against Botrytis cinerea and growth promotion under salt stress. Time course expression patterns (0 to 6 days) observed for defense-related genes suggest that T6 was able to prime defense responses in the tomato plants against biotic and abiotic stresses. Such responses undulated, with a maximum upregulation of the jasmonic acid (JA)/ethylene (ET)-related LOX1 and EIN2 genes and the salt tolerance SOS1 gene at 24 h and that of the salicylic acid (SA)-related PR-1 gene at 48 h after T6 inoculation. Our study demonstrates that the T. parareesei T6-tomato interaction is beneficial to both partners. PMID:24413597

  11. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species

    DEFF Research Database (Denmark)

    Röhrich, Christian René; Jaklitsch, Walter Michael; Voglmayr, Hermann

    2014-01-01

    Approximately 950 individual sequences of nonribosomally biosynthesised peptides are produced by the genus Trichoderma/Hypocreathat belong to a perpetually growing class of mostly linear antibiotic oligopeptides, which are rich in the non-proteinogenic α-aminoisobutyric acid (Aib). Thus, they are......Approximately 950 individual sequences of nonribosomally biosynthesised peptides are produced by the genus Trichoderma/Hypocreathat belong to a perpetually growing class of mostly linear antibiotic oligopeptides, which are rich in the non-proteinogenic α-aminoisobutyric acid (Aib). Thus...

  12. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    OpenAIRE

    Kubicek, Christian P.; Herrera-Estrella, Alfredo; Seidl-Seiboth, Verena; Martinez, Diego A.; Druzhinina, Irina S.; Thon, Michael; Zeilinger, Susanne; Casas-Flores, Sergio; Horwitz, Benjamin A.; Mukherjee, Prasun K.; Mukherjee, Mala; Kredics, László; Alcaraz, Luis D.; Aerts, Andrea; Antal, Zsuzsanna

    2011-01-01

    Background Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Results Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocl...

  13. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Science.gov (United States)

    2011-01-01

    Background The filamentous fungus Trichoderma reesei (Hypocrea jecorina) is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species. PMID:22070776

  14. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Directory of Open Access Journals (Sweden)

    Denton Jai A

    2011-11-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei (Hypocrea jecorina is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species.

  15. Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei.

    Science.gov (United States)

    Tavagnacco, Letizia; Mason, Philip E; Schnupf, Udo; Pitici, Felicia; Zhong, Linghao; Himmel, Michael E; Crowley, Michael; Cesàro, Attilio; Brady, John W

    2011-05-01

    Molecular dynamics simulations were carried out for a system consisting of the carbohydrate-binding module (CBM) of the cellulase CBH I from Trichoderma reesei (Hypocrea jecorina) in a concentrated solution of β-D-glucopyranose, to determine whether there is any tendency for the sugar molecules to bind to the CBM. In spite of the general tendency of glucose to behave as an osmolyte, a marked tendency for the sugar molecules to bind to the protein was observed. However, the glucose molecules tended to bind only to specific sites on the protein. As expected, the hydrophobic face of the sugar molecules, comprising the axial H1, H3, and H5 aliphatic protons, tended to adhere to the flat faces of the three tyrosine side chains on the planar binding surface of the CBM. However, a significant tendency to bind to a groove-like feature on the upper surface of the CBM was also observed. These results would not be inconsistent with a model of the mechanism for this globular domain in which the cellodextrin chain being removed from the surface of crystalline cellulose passes over the upper surface of the CBM, presumably then available for hydrolysis in the active site tunnel of this processive cellulase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Improving taxonomic accuracy for fungi in public sequence databases: applying ‘one name one species’ in well-defined genera with Trichoderma/Hypocrea as a test case

    Science.gov (United States)

    Strope, Pooja K; Chaverri, Priscila; Gazis, Romina; Ciufo, Stacy; Domrachev, Michael; Schoch, Conrad L

    2017-01-01

    Abstract The ITS (nuclear ribosomal internal transcribed spacer) RefSeq database at the National Center for Biotechnology Information (NCBI) is dedicated to the clear association between name, specimen and sequence data. This database is focused on sequences obtained from type material stored in public collections. While the initial ITS sequence curation effort together with numerous fungal taxonomy experts attempted to cover as many orders as possible, we extended our latest focus to the family and genus ranks. We focused on Trichoderma for several reasons, mainly because the asexual and sexual synonyms were well documented, and a list of proposed names and type material were recently proposed and published. In this case study the recent taxonomic information was applied to do a complete taxonomic audit for the genus Trichoderma in the NCBI Taxonomy database. A name status report is available here: https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi. As a result, the ITS RefSeq Targeted Loci database at NCBI has been augmented with more sequences from type and verified material from Trichoderma species. Additionally, to aid in the cross referencing of data from single loci and genomes we have collected a list of quality records of the RPB2 gene obtained from type material in GenBank that could help validate future submissions. During the process of curation misidentified genomes were discovered, and sequence records from type material were found hidden under previous classifications. Source metadata curation, although more cumbersome, proved to be useful as confirmation of the type material designation. Database URL: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353 PMID:29220466

  17. Development of Specific Substrates for Hypocrea jecorina Cellulases

    DEFF Research Database (Denmark)

    Rasmussen, Tina Secher

      During the last decades a considerable amount of interest has focused on transformation of cellulosic biomass to renewable energy sources such as ethanol.1,2 Cellulases, secreted by different microorganisms, are key enzymes in this process. However, the degradation of cellulose is a difficult......, a commonly encountered problem during this process is the "dying off" of enzymes over time,4 possibly caused by one component in the mixture becoming rate-limiting. Currently, no methodologies exists that can accurately profile, identify and quantify active enzymes in a complex mixture and such a methodology...... of the three-dimensional (X-ray) structures of different cellulases indicated that modifications at other positions would occlude binding, while, typically some space is available around the 4' and 6' position. The substituents were chosen so that further modifications would be possible either by click...

  18. Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin

    Science.gov (United States)

    A new species of Trichoderma (teleomorph Hypocrea, Ascomycota, Sordariomycetes, Hypocreales, Hypocreaceae), T. amazonicum, endophytic on the living sapwood and leaves of Hevea spp. trees is described. Trichoderma amazonicum is distinguished from closely related species in the Harzianum clade (e.g. ...

  19. Roles of Protein Kinase A and Adenylate Cyclase in Light-Modulated Cellulase Regulation in Trichoderma reesei

    Science.gov (United States)

    Schuster, André; Tisch, Doris; Seidl-Seiboth, Verena; Kubicek, Christian P.

    2012-01-01

    The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process. PMID:22286997

  20. Respuesta fisiológica de miembros del género Trichoderma a hidrocarburos poliaromáticos.

    OpenAIRE

    Argumedo Delira, Rosalba

    2011-01-01

    Las especies del género Trichoderma representan un grupo de hongos filamentosos que pertenecen al Reino Mycetae (Fungi), División Eumycota, Subdivisión Ascomycotina, Clase Euascomycetes, Orden Hypocreales, Familia Hypocraceae y Género Trichoderma e Hypocrea. Estos hongos se caracterizan por predominar en los ecosistemas terrestres y acuáticos. Los miembros del género Trichoderma tienen el potencial de sintetizar y liberar diversas enzimas que se han aprovechado en procesos industriales. Adem...

  1. Integrated genomic and transcriptomic analysis reveals mycoparasitism as the ancestoral life style of Trichoderma

    Energy Technology Data Exchange (ETDEWEB)

    Kubicek, Christian P.; Herrera-Estrella, Alfredo; Seidl, Verena; Crom, St& #233; phane Le; Martinez, Diego A.; Druzhinina, Irina S.; Zeilinger, Susanne; Casas-Flores, Sergio; Horwitz, Benjamin A.; Mukherjee, Prasun K.; Mukherjee, Mala; Kredics, L& #225; szlo; Alcaraz, Luis David; Aerts, Andrea; Antal, Zsuzsanna; Atanasova, Lea; Cervantes-Badillo, Mayte Guadalupe; Challacombe, Jean; Chertkov, Olga; McCluskey, Kevin; Coulpier, Fanny; Deshpande, Nandan; D& #246; hren, Hans von; Ebbole, Daniel J.; Esquivel-Naranjo, Edgardo Ulises; Fekete, Erzs& #233; bet; Flipphi, Michel; Glaser, Fabian; Gomez-Rodriguez, Elida Yazmin; Gruber, Sabine; Han, Cliff; Henrissat, Bernard; Hermosa, Rosa; Hern& #225; ndez-O?ate, Miguel; Karaffa, Levente; Kosti, Idit; Lindquist, Erika; Lucas, Susan; L& #252; beck, Mette; L& #252; beck, Peter Stephensen; Margeot, Antoine; Metz, Benjamin; Misra, Monica; Nevalainen, Helena; Omann, Markus; Packer, Nicolle; Perrone, Giancarlo; Uresti-Rivera, Edith Elena; Salamov, Asaf; Schmoll, Monika; Seiboth, Bernhard; Shapiro, Harris; Sukno, Serenella; Tamayo-Ramos, Juan Antonio; Thon, Michael; Tisch, Doris; Wiest, Aric; Wilkinson, Heather H.; Zhang, Michael; Coutinho, Pedro M.; Kenerley, Charles M.; Monte, Enrique; Baker, Scott E.; Grigoriev, Igor V.

    2011-04-29

    Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.

  2. Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization.

    Science.gov (United States)

    Błaszczyk, Lidia; Strakowska, Judyta; Chełkowski, Jerzy; Gąbka-Buszek, Agnieszka; Kaczmarek, Joanna

    2016-08-01

    The aim of this study was to explore the species diversity of Trichoderma obtained from samples of wood collected in the forests of the Gorce Mountains (location A), Karkonosze Mountains (location B) and Tatra Mountains (location C) in Central Europe and to examine the cellulolytic and xylanolytic activity of these species as an expression of their probable role in wood decay processes. The present study has led to the identification of the following species and species complex: Trichoderma atroviride P. Karst., Trichoderma citrinoviride Bissett, Trichoderma cremeum P. Chaverri & Samuels, Trichoderma gamsii Samuels & Druzhin., Trichoderma harzianum complex, Trichoderma koningii Oudem., Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans, Trichoderma longibrachiatum Rifai, Trichoderma longipile Bissett, Trichoderma sp. (Hypocrea parapilulifera B.S. Lu, Druzhin. & Samuels), Trichoderma viride Schumach. and Trichoderma viridescens complex. Among them, T. viride was observed as the most abundant species (53 % of all isolates) in all the investigated locations. The Shannon's biodiversity index (H), evenness (E), and the Simpson's biodiversity index (D) calculations for each location showed that the highest species diversity and evenness were recorded for location A-Gorce Mountains (H' = 1.71, E = 0.82, D = 0.79). The preliminary screening of 119 Trichoderma strains for cellulolytic and xylanolytic activity showed the real potential of all Trichoderma species originating from wood with decay symptoms to produce cellulases and xylanases-the key enzymes in plant cell wall degradation.

  3. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei

    Science.gov (United States)

    Zhang, Jiwei; Zhang, Yanmei; Zhong, Yaohua; Qu, Yinbo; Wang, Tianhong

    2012-01-01

    Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the

  4. Phylogeny of the Clinically Relevant Species of the Emerging Fungus Trichoderma and Their Antifungal Susceptibilities

    Science.gov (United States)

    Sandoval-Denis, Marcelo; Sutton, Deanna A.; Cano-Lira, José F.; Fothergill, Annette W.; Wiederhold, Nathan P.; Guarro, Josep

    2014-01-01

    A set of 73 isolates of the emerging fungus Trichoderma isolated from human and animal clinical specimens were characterized morphologically and molecularly using a multilocus sequence analysis that included the internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA and fragments of the translation elongation factor 1 alpha (Tef1), endochitinase CHI18-5 (Chi18-5), and actin 1 (Act1) genes. The most frequent species was Trichoderma longibrachiatum (26%), followed by Trichoderma citrinoviride (18%), the Hypocrea lixii/Trichoderma harzianum species complex (15%), the newly described species Trichoderma bissettii (12%), and Trichoderma orientale (11%). The most common anatomical sites of isolation in human clinical specimens were the respiratory tract (40%), followed by deep tissue (30%) and superficial tissues (26%), while all the animal-associated isolates were obtained from superficial tissue samples. Susceptibilities of the isolates to eight antifungal drugs in vitro showed mostly high MICs, except for voriconazole and the echinocandins. PMID:24719448

  5. Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other’s development

    Science.gov (United States)

    Friedl, Martina A.

    2012-01-01

    In this paper, we report on the in situ diversity of the mycotrophic fungus Trichoderma (teleomorph Hypocrea, Ascomycota, Dikarya) revealed by a taxon-specific metagenomic approach. We designed a set of genus-specific internal transcribed spacer (ITS)1 and ITS2 rRNA primers and constructed a clone library containing 411 molecular operational taxonomic units (MOTUs). The overall species composition in the soil of the two distinct ecosystems in the Danube floodplain consisted of 15 known species and two potentially novel taxa. The latter taxa accounted for only 1.5 % of all MOTUs, suggesting that almost no hidden or uncultivable Hypocrea/Trichoderma species are present at least in these temperate forest soils. The species were unevenly distributed in vertical soil profiles although no universal factors controlling the distribution of all of them (chemical soil properties, vegetation type and affinity to rhizosphere) were revealed. In vitro experiments simulating infrageneric interactions between the pairs of species that were detected in the same soil horizon showed a broad spectrum of reactions from very strong competition over neutral coexistence to the pronounced synergism. Our data suggest that only a relatively small portion of Hypocrea/Trichoderma species is adapted to soil as a habitat and that the interaction between these species should be considered in a screening for Hypocrea/Trichoderma as an agent(s) of biological control of pests. PMID:22075025

  6. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei

    Directory of Open Access Journals (Sweden)

    Tisch Doris

    2011-12-01

    Full Text Available Abstract Background In the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression. Results As regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the T. reesei class I phosducin-like protein gene phlp1 and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in T. reesei. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency. Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δphlp1. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δphlp1. The lack of GNB1 drastically diminished ascospore discharge in T. reesei. Conclusions The heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of T. reesei, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light

  7. Screening the Biosphere: The Fungicolous Fungus Trichoderma phellinicola, a Prolific Source of Hypophellins, New 17-, 18-, 19-, and 20-Residue Peptaibiotics

    DEFF Research Database (Denmark)

    Röhrich, Christian René; Iversen, Anita; Jaklitsch, Walter Michael

    2013-01-01

    To investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened a specimen of the fungicolous fungus Trichoderma phellinicola (syn. Hypocrea phellinicola) growing on its natural host Phellinus ferruginosus. Results revealed that a particular group...

  8. Disentangling the Trichoderma viridescens complex.

    Science.gov (United States)

    Jaklitsch, W M; Samuels, G J; Ismaiel, A; Voglmayr, H

    2013-12-01

    Trichoderma viridescens is recognised as a species complex. Multigene analyses based on the translation elongation factor 1-alpha encoding gene (tef1), a part of the rpb2 gene, encoding the second largest RNA polymerase subunit and the larger subunit of ATP citrate lyase (acl1) reveals 13 phylogenetic species with little or no phenotypic differentiation. This is the first use of acl1 in Trichoderma phylogenetics. The typification of T. viridescens s.str. is clarified and Hypocrea viridescens is replaced by the new name T. paraviridescens. Besides these two species, eleven are phylogenetically recognised and T. olivascens, T. viridarium, T. virilente, T. trixiae, T. viridialbum, T. appalachiense, T. neosinense, T. composticola, T. nothescens and T. sempervirentis are formally described and illustrated. Several species produce yellow diffusing pigment on cornmeal dextrose agar, particularly after storage at 15 °C, while T. olivascens is characterised by the formation of an olivaceous pigment. The results are compared with earlier publications on this group of species.

  9. Contribución al estudio del sistema de lipasas de Trichoderma harzianum

    OpenAIRE

    Jorge, Maria de Lurdes Antunes

    2015-01-01

    [ES]Entre los hongos del género Trichoderma se han descrito algunas especies importantes como agentes de biocontrol, tales como las parejas anamorfo/teleomorfo T. harzianum/Hypocrea lixii, T. viride/H. rufa, T. atroviride/H. atroviridis y T. virens/H. virens. Trichoderma tiene una amplia distribución geográfica, está presente en casi todos los suelos y en hábitats diversos (creciendo en madera, corteza, sobre y dentro otros hongos y sustratos innumerables). Por su adaptación a distintos en...

  10. Development of a molecular approach to describe the composition of Trichoderma communities.

    Science.gov (United States)

    Meincke, Remo; Weinert, Nicole; Radl, Viviane; Schloter, Michael; Smalla, Kornelia; Berg, Gabriele

    2010-01-01

    Trichoderma and its teleomorphic stage Hypocrea play a key role for ecosystem functioning in terrestrial habitats. However, little is known about the ecology of the fungus. In this study we developed a novel Trichoderma-specific primer pair for diversity analysis. Based on a broad range master alignment, specific Trichoderma primers (ITSTrF/ITSTrR) were designed that comprise an approximate 650bp fragment of the internal transcribed spacer region from all taxonomic clades of the genus Trichoderma. This amplicon is suitable for identification with TrichoKey and TrichoBLAST. Moreover, this primer system was successfully applied to study the Trichoderma communities in the rhizosphere of different potato genotypes grown at two field sites in Germany. Cloning and sequencing confirmed the specificity of the primer and revealed a site-dependent Trichoderma composition. Based on the new primer system a semi-nested approach was used to generate amplicons suitable for denaturing gradient gel electrophoresis (DGGE) analysis and applied to analyse Trichoderma communities in the rhizosphere of potatoes. High field heterogeneity of Trichoderma communities was revealed by both DGGE. Furthermore, qPCR showed significantly different Trichoderma copy numbers between the sites. Copyright 2009 Elsevier B.V. All rights reserved.

  11. CBH1 homologs and varian CBH1 cellulase

    Energy Technology Data Exchange (ETDEWEB)

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  12. Variants of cellobiohydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Bott, Richard R.; Foukaraki, Maria; Hommes, Ronaldus Wilhelmus; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Nikolaev, Igor; Sandgren, Mats; Van Lieshout, Johannes Franciscus Thomas; Van Stigt Thans, Sander

    2018-04-10

    Disclosed are a number of homologs and variants of Hypocrea jecorina Ce17A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  13. Trichoderma genes

    Science.gov (United States)

    Foreman, Pamela [Los Altos, CA; Goedegebuur, Frits [Vlaardingen, NL; Van Solingen, Pieter [Naaldwijk, NL; Ward, Michael [San Francisco, CA

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  14. Hexavalent chromium reduction by a hypocrea tawa fungal strain

    International Nuclear Information System (INIS)

    Morales-Battera, L.; Guillen-Jimenez, F. M.; Cristiani-Urbina, E.

    2009-01-01

    Microbial transformation of the highly toxic, water-soluble and mobile hexavalent chromium [Cr(VI)], to the less toxic, insoluble and immobile trivalent chromium [Cr(III)], is an economically feasible alternative for the treatment of wastewaters contaminated with Cr(VI). The main purpose of this work was to isolate, identify and characterize a microbial strain water by batch enrichment culture techniques, and further identified as Hypocrea tawa by its D1/D2 domain sequence of the 26S rRNA gene with 99,44% similarity. (Author)

  15. isolated from Trichoderma harzianum

    African Journals Online (AJOL)

    SAM

    2014-05-21

    May 21, 2014 ... Chitinase gene from Trichoderma harzianum was cloned and hetrologously over expressed in ... used by Trichoderma to inhibit the growth of other fungi. ..... actinomycete isolates from niche habitats in Manipur for antibiotic.

  16. Microbial Influenced Corrosion (MIC) Study

    Science.gov (United States)

    2012-05-23

    fumigatus Fusarium oxysporum Fungal Consortium Penicillium oxalicum Rhodoturula sp . Trichoderma sp . Dosed with microbes known to influence Control...Hypocrea jecorina (FI-1) Penicillium oxalicum (FI-12) – Pleosporacea sp . (FI-17) Rhodoturala mucilaginosa (FI-7) – Ustilago maydis (FI-13) T t S t• es...and Dirt Accumulation • Fungal Consortium – Aspergillus sp (FI-19) Aureobasidium pullulans (FI-16) – Fusarium oxysporum (FI-6) Fusarium sp . (FI-18

  17. F-16 Microbially Influenced Corrosion (MIC) Characterization & Prevention Study

    Science.gov (United States)

    2011-05-12

    Staphylococcus epidermidis Fungal Consortium Aspergillus fumigatus Fusarium oxysporum Penicillium oxalicum Rhodoturula sp . Trichoderma sp . Control... sp . (FI-18) – Hypocrea jecorina (FI-1) Penicillium oxalicum (FI-12) – Pleosporacea sp . (FI-17) Rhodoturala mucilaginosa (FI-7) – Ustilago maydis (FI...Growth, or Soil and Dirt Accumulation • Fungal Consortium – Aspergillus sp (FI-19) Aureobasidium pullulans (FI-16) – Fusarium oxysporum (FI-6) Fusarium

  18. Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere.

    Science.gov (United States)

    Rai, Shalini; Kashyap, Prem Lal; Kumar, Sudheer; Srivastava, Alok Kumar; Ramteke, Pramod W

    2016-01-01

    The use of Trichoderma isolates with efficient antagonistic activity represents a potentially effective and alternative disease management strategy to replace health hazardous chemical control. In this context, twenty isolates were obtained from tomato rhizosphere and evaluated by their antagonistic activity against four fungal pathogens ( Fusarium oxysporum f. sp. lycopersici , Alternaria alternata , Colletotrichum gloeosporoides and Rhizoctonia solani ). The production of extracellular cell wall degrading enzymes of tested isolates was also measured. All the isolates significantly reduced the mycelial growth of tested pathogens but the amount of growth reduction varied significantly as well. There was a positive correlation between the antagonistic capacity of Trichoderma isolates towards fungal pathogens and their lytic enzyme production. The Trichoderma isolates were initially sorted according to morphology and based on the translation elongation factor 1-α gene sequence similarity, the isolates were designated as Trichoderma harzianum , T. koningii , T. asperellum , T. virens and T. viride . PCA analysis explained 31.53, 61.95, 62.22 and 60.25% genetic variation among Trichoderma isolates based on RAPD, REP-, ERIC- and BOX element analysis, respectively. ERG - 1 gene, encoding a squalene epoxidase has been used for the first time for diversity analysis of antagonistic Trichoderma from tomato rhizosphere. Phylogenetic analysis of ERG -1 gene sequences revealed close relatedness of ERG -1sequences with earlier reported sequences of Hypocrea lixii , T. arundinaceum and T. reesei. However, ERG -1 gene also showed heterogeneity among some antagonistic isolates and indicated the possibility of occurrence of squalene epoxidase driven triterpene biosynthesis as an alternative biocontrol mechanism in Trichoderma species.

  19. Biodiversity of Trichoderma Community in the Tidal Flats and Wetland of Southeastern China.

    Science.gov (United States)

    Saravanakumar, Kandasamy; Yu, Chuanjin; Dou, Kai; Wang, Meng; Li, Yaqian; Chen, Jie

    2016-01-01

    To investigate the biodiversity of Trichoderma (Hypocreaceae) and their relation to sediment physical and chemical properties, we collected a total of 491 sediment samples from coastal wetlands (tidal flat and wetland) in Southeast China. Further, we applied two types of molecular approaches such as culture dependent and independent methods for identification of Trichoderma spp. A total of 254 isolates were obtained and identified to 13 species such as T. aureoviride, T. asperellum, T. harzianum, T. atroviride, T. koningiopsis, T. longibrachiatum, T. koningii. T. tawa, T. viridescens, T. virens, T. hamatum, T. viride, and T. velutinum by the culture-dependent (CD) method of these, T. tawa was newly described in China. Subsequently, the culture indepented method of 454 pyrosequencing analysis revealed a total of six species such as T. citrinoviride, T. virens, T. polysporum, T. harzianum/Hypocrea lixii and two unknown species. Notably, T. citrinoviride and T. polysporum were not found by the CD method. Therefore, this work revealed that the combination of these two methods could show the higher biodiversity of Trichoderma spp., than either of this method alone. Among the sampling sites, Hangzhou, Zhejiang Province, exhibited rich biodiversity and low in Fengxian. Correlation and Redundancy discriminant analysis (RDA) revealed that sediment properties of temperature, redox potential (Eh) and pH significantly influenced the biodiversity of Trichoderma spp.

  20. Biodiversity of Trichoderma Community in the Tidal Flats and Wetland of Southeastern China

    Science.gov (United States)

    Saravanakumar, Kandasamy; Yu, Chuanjin; Dou, Kai; Wang, Meng; Li, Yaqian; Chen, Jie

    2016-01-01

    To investigate the biodiversity of Trichoderma (Hypocreaceae) and their relation to sediment physical and chemical properties, we collected a total of 491 sediment samples from coastal wetlands (tidal flat and wetland) in Southeast China. Further, we applied two types of molecular approaches such as culture dependent and independent methods for identification of Trichoderma spp. A total of 254 isolates were obtained and identified to 13 species such as T. aureoviride, T. asperellum, T. harzianum, T. atroviride, T. koningiopsis, T. longibrachiatum, T. koningii. T. tawa, T. viridescens, T. virens, T. hamatum, T. viride, and T. velutinum by the culture-dependent (CD) method of these, T. tawa was newly described in China. Subsequently, the culture indepented method of 454 pyrosequencing analysis revealed a total of six species such as T. citrinoviride, T. virens, T. polysporum, T. harzianum/Hypocrea lixii and two unknown species. Notably, T. citrinoviride and T. polysporum were not found by the CD method. Therefore, this work revealed that the combination of these two methods could show the higher biodiversity of Trichoderma spp., than either of this method alone. Among the sampling sites, Hangzhou, Zhejiang Province, exhibited rich biodiversity and low in Fengxian. Correlation and Redundancy discriminant analysis (RDA) revealed that sediment properties of temperature, redox potential (Eh) and pH significantly influenced the biodiversity of Trichoderma spp. PMID:28002436

  1. Biodiversity of Trichoderma Community in the Tidal Flats and Wetland of Southeastern China.

    Directory of Open Access Journals (Sweden)

    Kandasamy Saravanakumar

    Full Text Available To investigate the biodiversity of Trichoderma (Hypocreaceae and their relation to sediment physical and chemical properties, we collected a total of 491 sediment samples from coastal wetlands (tidal flat and wetland in Southeast China. Further, we applied two types of molecular approaches such as culture dependent and independent methods for identification of Trichoderma spp. A total of 254 isolates were obtained and identified to 13 species such as T. aureoviride, T. asperellum, T. harzianum, T. atroviride, T. koningiopsis, T. longibrachiatum, T. koningii. T. tawa, T. viridescens, T. virens, T. hamatum, T. viride, and T. velutinum by the culture-dependent (CD method of these, T. tawa was newly described in China. Subsequently, the culture indepented method of 454 pyrosequencing analysis revealed a total of six species such as T. citrinoviride, T. virens, T. polysporum, T. harzianum/Hypocrea lixii and two unknown species. Notably, T. citrinoviride and T. polysporum were not found by the CD method. Therefore, this work revealed that the combination of these two methods could show the higher biodiversity of Trichoderma spp., than either of this method alone. Among the sampling sites, Hangzhou, Zhejiang Province, exhibited rich biodiversity and low in Fengxian. Correlation and Redundancy discriminant analysis (RDA revealed that sediment properties of temperature, redox potential (Eh and pH significantly influenced the biodiversity of Trichoderma spp.

  2. Different Covalent Immobilizations Modulate Lipase Activities of Hypocrea pseudokoningii

    Directory of Open Access Journals (Sweden)

    Marita G. Pereira

    2017-09-01

    Full Text Available Enzyme immobilization can promote several advantages for their industrial application. In this work, a lipase from Hypocrea pseudokoningii was efficiently linked to four chemical supports: agarose activated with cyanogen bromide (CNBr, glyoxyl-agarose (GX, MANAE-agarose activated with glutaraldehyde (GA and GA-crosslinked with glutaraldehyde. Results showed a more stable lipase with both the GA-crosslinked and GA derivatives, compared to the control (CNBr, at 50 °C, 60 °C and 70 °C. Moreover, all derivatives were stabilized when incubated with organic solvents at 50%, such as ethanol, methanol, n-propanol and cyclohexane. Furthermore, lipase was highly activated (4-fold in the presence of cyclohexane. GA-crosslinked and GA derivatives were more stable than the CNBr one in the presence of organic solvents. All derivatives were able to hydrolyze sardine, açaí (Euterpe oleracea, cotton seed and grape seed oils. However, during the hydrolysis of sardine oil, GX derivative showed to be 2.3-fold more selectivity (eicosapentaenoic acid (EPA/docosahexaenoic acid (DHA ratio than the control. Additionally, the types of immobilization interfered with the lipase enantiomeric preference. Unlike the control, the other three derivatives preferably hydrolyzed the R-isomer of 2-hydroxy-4-phenylbutanoic acid ethyl ester and the S-isomer of 1-phenylethanol acetate racemic mixtures. On the other hand, GX and CNBr derivatives preferably hydrolyzed the S-isomer of butyryl-2-phenylacetic acid racemic mixture while the GA and GA-crosslink derivatives preferably hydrolyzed the R-isomer. However, all derivatives, including the control, preferably hydrolyzed the methyl mandelate S-isomer. Moreover, the derivatives could be used for eight consecutive cycles retaining more than 50% of their residual activity. This work shows the importance of immobilization as a tool to increase the lipase stability to temperature and organic solvents, thus enabling the possibility of

  3. Trichoderma as an endophyte

    Science.gov (United States)

    Trichoderma species have been studied for many years for their usefulness in plant disease management. For much of this time, studies focused on the attributes of Trichoderma as a soil saprophyte possessing abilities such as mycoparasitism and antibiosis that directly impact pathogens. The ability...

  4. Antipathy of Trichoderma against Sclerotium rolfsii Sacc.: Evaluation of Cell Wall-Degrading Enzymatic Activities and Molecular Diversity Analysis of Antagonists.

    Science.gov (United States)

    Hirpara, Darshna G; Gajera, Harsukh P; Hirpara, Hitesh Z; Golakiya, Balubhai A

    2017-01-01

    The fungus Trichoderma is a teleomorph of the Hypocrea genus and associated with biological control of plant diseases. The microscopic, biochemical, and molecular characterization of Trichoderma was carried out and evaluated for in vitro antagonistic activity against the fungal pathogen Sclerotium rolfsii causing stem rot disease in groundnut. In total, 11 isolates of Trichoderma were examined for antagonism at 6 and 12 days after inoculation (DAI). Out of 11, T. virens NBAII Tvs12 evidenced the highest (87.91%) growth inhibition of the test pathogen followed by T. koningii MTCC 796 (67.03%), T. viride NBAII Tv23 (63.74%), and T. harzianum NBAII Th1 (60.44%). Strong mycoparasitism was observed in the best antagonist Tvs12 strain during 6-12 DAI. The specific activity of cell wall-degrading enzymes - chitinase and β-1,3-glucanase - was positively correlated with growth inhibition of the test pathogen. In total, 18 simple sequence repeat (SSR) polymorphisms were reported to amplify 202 alleles across 11 Trichoderma isolates. The average polymorphism information content for SSR markers was found to be 0.80. The best antagonist Tvs 12 was identified with 7 unique SSR alleles amplified by 5 SSR markers. Clustering patterns of 11 Trichoderma strains showed the best antagonist T. virens NBAII Tvs 12 outgrouped with a minimum 3% similarity from the rest of Trichoderma. © 2017 S. Karger AG, Basel.

  5. 77 FR 4903 - Trichoderma

    Science.gov (United States)

    2012-02-01

    ...-0245- 0008;oldLink=false. 18. U.S. EPA. 2010a. Trichoderma asperellum strain ICC 012 Biopesticides... EPA consideration of voluntary consensus standards pursuant to section 12(d) of the National...

  6. Snuffelen aan Trichoderma

    NARCIS (Netherlands)

    Baars, J.J.P.

    2011-01-01

    Problemen met groene schimmel in champignon-compost blijven zich voor doen, ondanks alle genomen maatregelen. In een onderzoek van Plant Research International wordt nu getracht, via geurprofielen Trichoderma aggressivum al tijdens het doorgroeien aan te tonen.

  7. Marine Isolates of Trichoderma spp. as Potential Halotolerant Agents of Biological Control for Arid-Zone Agriculture ▿ †

    Science.gov (United States)

    Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S.; Viterbo, Ada; Yarden, Oded

    2011-01-01

    The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents. PMID:21666030

  8. Trichoderma stromaticum and its overseas relatives

    Science.gov (United States)

    Trichoderma stromaticum, T. rossicum and newly discovered species form a new lineage in Trichoderma. Phylogenetic and phenotypic diversity in Trichoderma stromaticum are examined in light of reported differences in ecological parameters and AFLP patterns. Multilocus phylogenetic analysis using 4 gen...

  9. Variabilidade genética na região its do rDNA de isolados de trichoderma spp. (Biocontrolador e Fusarium oxysporum f. sp. Chrysanthemi Genetic variability in rDNA ITS region of Trichoderma spp. (biocontrole agent and Fusarium oxysporum f. sp. chrysanthemi isolates

    Directory of Open Access Journals (Sweden)

    Josiane Pacheco Menezes

    2010-02-01

    Full Text Available A análise de características morfológicas e culturais podem não ser suficientes para uma caracterização precisa das espécies de Trichoderma e Fusarium. Objetivou-se, neste trabalho, caracterizar a região do Espaço Interno Transcrito (ITS do rDNA dos isolados UFSMT15.1, UFSMT16 e UFSMT17 de Trichoderma spp. utilizados no biocontrole de Fusarium oxysporum f. sp. chrysanthemi (isolado UFSMF6. A extração de DNA de cada isolado foi realizada a partir de micélio produzido em meio líquido Batata-Dextrose. As amostras de DNA genômico foram submetidas à Reação em Cadeia da Polimerase (PCR com os oligonucleotídeos iniciadores universais ITS1 e ITS4 e o produto gerado foi sequenciado. Os fragmentos gerados pela amplificação da PCR foram tratados com as enzimas de restrição HaeIII, HinfI e MboI. As regiões ITS1, ITS2 e 5.8S do rDNA desses isolados fúngicos foram amplificadas com sucesso. A região ITS dos isolados UFSMT15.1, UFSMT16 e UFSMT17 de Trichoderma e o isolado UFSMF6 de Fusarium apresentaram uma banda simples com um fragmento de aproximadamente 600 pares de base (pb. As enzimas de restrição HaeIII, HinfI e MboI geraram polimorfismo de bandas entre os isolados. Com base nas análises da sequência de DNA, os isolados UFSMT15.1, UFSMT16, UFSMT17 e UFSMF6 apresentaram maior similaridade com as espécies Trichoderma koningiopsis, Hypocrea virens, Hypocrea lixii e Fusarium oxysporum, respectivamente.The analysis of morphological and cultural characteristics may not enough for the characterization of the species of Trichoderma and Fusarium. The aim of this work was to characterize the Internal Transcribed Spacer (ITS region of the rDNA of UFSMT15.1, UFSMT16 and UFSMT17 isolates of Trichoderma spp. used in the biocontrol of Fusarium oxysporum f. sp. chrysanthemi UFSMF6. DNA extraction of each isolate was accomplished starting from hyphae produced in liquid medium Potato-Dextrose-Agar. The samples of genomic DNA were submitted to

  10. Hypopulvins, novel peptaibiotics from the polyporicolous fungus Hypocrea pulvinata, are produced during infection of its natural hosts

    DEFF Research Database (Denmark)

    Röhrich, Christian René; Iversen, Anita; Jaklitsch, Walter Michael

    2012-01-01

    In order to investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened specimens of the polyporicolous fungus Hypocrea pulvinata growing on its natural hosts Piptoporus betulinus and Fomitopsis pinicola. Results showed that a particular group...

  11. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  12. Identification of Trichoderma Species Using Partial Sequencing of nrRNA and tef1α Genes with Report of Trichoderma capillare in Iran Mycoflore

    Directory of Open Access Journals (Sweden)

    mehdi Mehrabi-Koushki

    2018-01-01

    Full Text Available Introduction: Trichoderma is monophyletic (16, with teleomorphs in the genus Hypocrea. Some cryptic Trichoderma species are hidden within morphological species complexes and can only be elucidated by in-depth molecular studies. The genealogical concordance phylogenetic species recognition (GCPSR using several non-linked genes are needed to give accurate identification of Trichoderma spp. (6. Although the ITS region has been successfully used for species delimitation of Trichoderma and Hypocrea (5, but, it is not sufficient for accurate identification of some species. Translation elongation factor 1α gene (tef1α is a reliable barcode for Fusarium (9, Trichoderma and Hypocrea (5. Here, ITS and tef1α genes were selected as candidate DNA barcodes to identify Trichoderma isolates. Material and methods: 40 Trichoderma isolates used in this study were from a fungal collection archived in the plant pathology laboratory in the Department of Plant Protection at the Shahid Chamran University of Ahvaz. Spore suspension (105/ml prepared from single spore cultures of each Trichoderma isolates was added into flasks containing PDB medium. The flasks were shaken at 180 rpm for 10-15 days at 28ºC and the biomass was harvested by passing through sterilized filter papers. The mycelia were freeze-dried (Freeze-Dryer, Alpha 1-2LD Plus, Christ and powdered in the mortar containing liquid nitrogen by pestle. The genomic DNA was isolated according to modified method established by Raeder and Broda (21. The universal primers (ITS1–F; 5'-TCCGTAGGTGAACCTGCGG-3' and ITS4-R; 5'-TCCTCCGCTTATTGATATGC-3' were employed for amplifying around 700bp from 18s, ITS1, 5.8s, ITS2 and 28s rDNA regions (27. The specific primers (tef1α71-f; 5'-CAAAATGGGTAAGGAGGASAAGAC-3' and tef1997-R; 5'-CAGTACCGGCRGCRATRATSAG-3' were employed for amplifying around 950bp from tef1α gene (24. PCR products were purified through ethanol-precipitation method and then sequenced using forward and

  13. Heat inactivation kinetics of Hypocrea orientalis β-glucosidase with enhanced thermal stability by glucose.

    Science.gov (United States)

    Xu, Xin-Qi; Shi, Yan; Wu, Xiao-Bing; Zhan, Xi-Lan; Zhou, Han-Tao; Chen, Qing-Xi

    2015-11-01

    Thermal inactivation kinetics of Hypocrea orientalis β-glucosidase and effect of glucose on thermostability of the enzyme have been determined in this paper. Kinetic studies showed that the thermal inactivation was irreversible and first-order reaction. The microscopic rate constants for inactivation of free enzyme and substrate-enzyme complex were both determined, which suggested that substrates can protect β-glucosidase against thermal deactivation effectively. On the other hand, glucose was found to protect β-glucosidase from heat inactivation to remain almost whole activity below 70°C at 20mM concentration, whereas the apparent inactivation rate of BG decreased to be 0.3×10(-3)s(-1) in the presence of 5mM glucose, smaller than that of sugar-free enzyme (1.91×10(-3)s(-1)). The intrinsic fluorescence spectra results showed that glucose also had stabilizing effect on the conformation of BG against thermal denaturation. Docking simulation depicted the interaction mode between glucose and active residues of the enzyme to produce stabilizing effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Trichoderma for climate resilient agriculture.

    Science.gov (United States)

    Kashyap, Prem Lal; Rai, Pallavi; Srivastava, Alok Kumar; Kumar, Sudheer

    2017-08-01

    Climate change is one of the biggest challenges of the twenty-first century for sustainable agricultural production. Several reports highlighted the need for better agricultural practices and use of eco-friendly methods for sustainable crop production under such situations. In this context, Trichoderma species could be a model fungus to sustain crop productivity. Currently, these are widely used as inoculants for biocontrol, biofertilization, and phytostimulation. They are reported to improve photosynthetic efficiency, enhance nutrient uptake and increase nitrogen use efficiency in crops. Moreover, they can be used to produce bio-energy, facilitate plants for adaptation and mitigate adverse effect of climate change. The technological advancement in high throughput DNA sequencing and biotechnology provided deep insight into the complex and diverse biotic interactions established in nature by Trichoderma spp. and efforts are being made to translate this knowledge to enhance crop growth, resistance to disease and tolerance to abiotic stresses under field conditions. The discovery of several traits and genes that are involved in the beneficial effects of Trichoderma spp. has resulted in better understanding of the performance of bioinoculants in the field, and will lead to more efficient use of these strains and possibly to their improvement by genetic modification. The present mini-review is an effort to elucidate the molecular basis of plant growth promotion and defence activation by Trichoderma spp. to garner broad perspectives regarding their functioning and applicability for climate resilient agriculture.

  15. BIOACTIVE METABOLITES FROM TRICHODERMA HARZIANUM ...

    African Journals Online (AJOL)

    a

    ABSTRACT. The tea plant, Camellia sinensis (L.) O. Kuntze is an important crop in the agriculturally based economy of Kenya. Many diseases affect the tea plant but the most prevalent is armillaria root rot caused by the fungus Armillaria mellea. Compounds from the fermentation of. Trichoderma species in different media ...

  16. Disentangling the Trichoderma viridescens complex

    NARCIS (Netherlands)

    Jaklitsch, W.M.; Samuels, G.J.; Ismaiel, A.; Voglmayr, H.

    2013-01-01

    Trichoderma viridescens is recognised as a species complex. Multigene analyses based on the translation elongation factor 1-alpha encoding gene (tef1), a part of the rpb2 gene, encoding the second largest RNA polymerase subunit and the larger subunit of ATP citrate lyase (acl1) reveals 13

  17. Trichoderma sp. dalam Pengendalian Penyakit Layu Fusarium pada Tanaman Tomat

    OpenAIRE

    Novita, Trias

    2013-01-01

    Penelitian ini bertujuan untuk mengetahui peran Trichoderma sp dalam pengendalianpenyakit layu fusarium pada tanaman tomat. Penelitian dilaksanakan di Rumah Kaca FakultasPertanian Universitas Jambi, perlakuannya terdiri dari : t0 = tanpa Trichoderma sp; t1 = 25 gTrichoderma sp/8 kg media; t2 = 50 g Trichoderma sp/8 kg media; t3 = 75 g Trichoderma sp/8 kgmedia; dan t4 = 100 g Trichoderma sp /8 kg media. Hasil penelitian menunjukkan bahwa Trichodermasp berperan dalam mengendalikan penyakit layu...

  18. Effect of Trichoderma isolates on tomato seedling growth response ...

    African Journals Online (AJOL)

    Trichoderma species are commonly used as biological control agents against phytopathogenic fungi and some isolates are able to improve plant growth. In this study, the effects of three Trichoderma isolates including Trichoderma harzianum isolate T969, T. harzianum isolate T447 and Trichoderma sp. isolate T in tomato ...

  19. Species diversity of Trichoderma in Poland

    Science.gov (United States)

    Fifteen species of Trichoderma were identified from among 118 strains originating from different regions and ecological niches in Poland. This low number indicates low species diversity of Trichoderma in this Central European region. Using the ITS1-ITS2 regions, 64 strains were positively identified...

  20. Extracellular proteases of Trichoderma species. A review.

    Science.gov (United States)

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.

  1. Increasing rice plant growth by Trichoderma sp.

    Science.gov (United States)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  2. Trichoderma: the genomics of opportunistic success

    Energy Technology Data Exchange (ETDEWEB)

    Druzhinina, Irina S.; Seiboth, Verena Seidl; Estrella, Alfredo Herrera; Horwitz, Benjamin A.; Kenerley, Charles M.; Monte, Enrique; Mukherjee, Prasun K.; Zeilinger, Susanne; Grigoriev, Igor V.; Kubicek, Christian P.

    2011-01-01

    Trichoderma is a genus of common filamentous fungi that display a remarkable range of lifestyles and interactions with other fungi, animals and plants. Because of their ability to antagonize plant-pathogenic fungi and to stimulate plant growth and defence responses, some Trichoderma strains are used for biological control of plant diseases. In this Review, we discuss recent advances in molecular ecology and genomics which indicate that the interactions of Trichoderma spp. with animals and plants may have evolved as a result of saprotrophy on fungal biomass (mycotrophy) and various forms of parasitism on other fungi (mycoparasitism), combined with broad environmental opportunism.

  3. Molecular Identification, Enzyme Assay, and Metabolic Profiling of Trichoderma spp.

    Science.gov (United States)

    Bae, Soo-Jung; Park, Young-Hwan; Bae, Hyeun-Jong; Jeon, Junhyun; Bae, Hanhong

    2017-06-28

    The goal of this study was to identify and characterize selected Trichoderma isolates by metabolic profiling and enzyme assay for evaluation of their potential as biocontrol agents against plant pathogens. Trichoderma isolates were obtained from the Rural Development Administration Genebank Information Center (Wanju, Republic of Korea). Eleven Trichoderma isolates were re-identified using ribosomal DNA internal transcribed spacer (ITS) regions. ITS sequence results showed new identification of Trichoderma isolates. In addition, metabolic profiling of the ethyl acetate extracts of the liquid cultures of five Trichoderma isolates that showed the best anti- Phytophthora activities was conducted using gas chromatography-mass spectrometry. Metabolic profiling revealed that Trichoderma isolates shared common metabolites with well-known antifungal activities. Enzyme assays indicated strong cell walldegrading enzyme activities of Trichoderma isolates. Overall, our results indicated that the selected Trichoderma isolates have great potential for use as biocontrol agents against plant pathogens.

  4. 77 FR 35331 - Trichoderma reesei; Proposed Significant New Use Rule

    Science.gov (United States)

    2012-06-13

    ... Trichoderma reesei; Proposed Significant New Use Rule AGENCY: Environmental Protection Agency (EPA). ACTION... Control Act (TSCA) for the genetically modified microorganism identified generically as Trichoderma reesei...: Trichoderma reesei (MCAN J-10-2) (generic). Chemical Abstracts Service (CAS) Registry Number: Not available...

  5. Uji Antagonisme Jamur Trichoderma koningii dan Trichoderma harzianum Terhadap Penyakit Bidang Sadap Tanaman Karet Mouldy rot (Ceratocystis fimbriata) di Laboratorium

    OpenAIRE

    Marbun, Harif Nepen

    2016-01-01

    The objective of the research wasto test antagonism ability of Trichoderma koningii andTrichoderma harzianumto control Ceratocystis fimbriatain laboratory. The research was conducted at Laboratory of Research Agency of Rubber, Sungei Putih from April to December 2015. It was done by using Completely Randomized Design (CRD) non factorial with three treatments and eight replications. The results showed Trichoderma koningii andTrichoderma harzianumpotential as biological agents to control Cerato...

  6. Suppressive Effect of Trichoderma spp. on toxigenic Fusarium species.

    Science.gov (United States)

    Błaszczyk, Lidia; Basińska-Barczak, Aneta; Ćwiek-Kupczyńska, Hanna; Gromadzka, Karolina; Popiel, Delfina; Stępień, Łukasz

    2017-03-30

    The aim of the present study was to examine the abilities of twenty-four isolates belonging to ten different Trichoderma species (i.e., Trichoderma atroviride, Trichoderma citrinoviride, Trichoderma cremeum, Trichoderma hamatum, Trichoderma harzianum, Trichoderma koningiopsis, Trichoderma longibrachiatum, Trichoderma longipile, Trichoderma viride and Trichoderma viridescens) to inhibit the mycelial growth and mycotoxin production by five Fusarium strains (i.e., Fusarium avenaceum, Fusarium cerealis, Fusarium culmorum, Fusarium graminearum and Fusarium temperatum). Dual-culture bioassay on potato dextrose agar (PDA) medium clearly documented that all of the Trichoderma strains used in the study were capable of influencing the mycelial growth of at least four of all five Fusarium species on the fourth day after co-inoculation, when there was the first apparent physical contact between antagonist and pathogen. The qualitative evaluation of the interaction between the colonies after 14 days of co-culturing on PDA medium showed that ten Trichoderma strains completely overgrew and sporulated on the colony at least one of the tested Fusarium species. Whereas, the microscopic assay provided evidence that only T. atroviride AN240 and T. viride AN255 formed dense coils around the hyphae of the pathogen from where penetration took place. Of all screened Trichoderma strains, T. atroviride AN240 was also found to be the most efficient (69-100% toxin reduction) suppressors of mycotoxins (deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, nivalenol, zearalenone, beauvericin, moniliformin) production by all five Fusarium species on solid substrates. This research suggests that T. atroviride AN240 can be a promising candidate for the biological control of toxigenic Fusarium species.

  7. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.

    Science.gov (United States)

    Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K

    2015-06-01

    Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.

  8. Optimization of mutanase production by Trichoderma harzianum ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... The highest enzyme activity (0.747 U/mL) was reached in shaken flask cultures ... increase in the production of mutanase compared with the culture before optimization. ... Keywords: Mutanase, Trichoderma harzianum, response surface methodology (RSM), bioreactors, ...

  9. Immobilization of Trichoderma reesei by radiation polymerization

    International Nuclear Information System (INIS)

    Zhou Ruimin; Ma Zueteh; Kaetus, Isao; Kumakura, Minoro

    1993-01-01

    Immobilization of Trichoderma reesei was carried out by radiation polymerization. It was found that the activity of fixed cells increased with increasing surface area of the carrier and was affected by the concentration of monomer tetraethylenglycol dimethacrylate and the shape of the substrate composition and structure of cotton textile fabrics. (author)

  10. Trichoderma asperellum reconsidered: two cryptic species

    Science.gov (United States)

    Analysis of a world-wide collection of strains of Trichoderma asperellum using multilocus genealogies of four genomic regions (tef1, rbp2, act, ITS1, 2, 5.8s), sequence polymorphism-derived (SPD) markers, matrix-assisted laser desorption/ionisation–time of flight mass spectrometry (MALDI-TOF MS) of ...

  11. Antagonist potential of Trichoderma indigenous isolates for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... the severity of insects and pathogens attacks especially .... After 30-days of incubation at 26°C, the isolation of Trichoderma ... Percentage inhibition (I) of colony growth of P. palmivora was ..... In fact, our success in isolating.

  12. Biological control of Meloidogyne incognita by Trichoderma ...

    African Journals Online (AJOL)

    Biological control against the root-knot nematode, Meloidogyne incognita was proven to occur in tomato, Solanum lycopersicom, soil-drenched with different isolates of Trichoderma harzianum and a commercial suspension of Serratia marcescens (Nemaless). The potential of such biocontrol agents to trigger plant defense ...

  13. Transpiration rates of rice plants treated with Trichoderma spp.

    Science.gov (United States)

    Doni, Febri; Anizan, I.; Che Radziah C. M., Z.; Yusoff, Wan Mohtar Wan

    2014-09-01

    Trichoderma spp. are considered as successful plant growth promoting fungi and have positive role in habitat engineering. In this study, the potential for Trichoderma spp. to regulate transpiration process in rice plant was assessed experimentally under greenhouse condition using a completely randomized design. The study revealed that Trichoderma spp. have potential to enhance growth of rice plant through transpirational processes. The results of the study add to the advancement of the understanding as to the role of Trichoderma spp. in improving rice physiological process.

  14. Space mutagenic effect of Trichoderma reesei

    International Nuclear Information System (INIS)

    Tian Xingshan; Zhou Fengzheng; Huang Xiaoguang; Kuang Zheshi; Pan Mushui; Li Guoli; Guo Yong

    2005-01-01

    The slant mycelia cultured with or without mutagenic agent diethyl sulfate (DS) and spores of Trichoderma reesei were loaded in the 18th returning satellite. Systematical screening showed that the life cycle and morphology of some strains had changed after space flight. After selection and domestication, 3 mutant strains with high cellulose enzyme activity were isolated. The cellulose enzyme productivities of the mutants were significantly increased more than 50%, and the mutant were generically stable. (authors)

  15. Cytostatic effect of L-lysine-α-oxidase from Trichoderma harzianum Rifai and Trichoderma viride

    International Nuclear Information System (INIS)

    Khaduev, S.Kh.; Zhukova, O.S.; Dobrynin, Ya.V.; Soda, K.; Berezov, T.T.

    1987-01-01

    Comparative data is given on the effect of the new antitumor enzyme LO, obtained from a Soviet strain of Trichoderma harzianum Rifai and from Trichoderma viride from Japan, on DNA and RNA synthesis in human ovarian carcinoma cells in culture and also the results of the action of LO from Tr. harzianum Rifai on protein synthesis. Specific precursors were added to the samples 1 hour before the end of incubation time: 3 H-thymidine, the precursor for DNA synthesis, 3 H-uridine for RNA synthesis, and 3 H-leucine for protein synthesis

  16. Cytostatic effect of L-lysine-. cap alpha. -oxidase from Trichoderma harzianum Rifai and Trichoderma viride

    Energy Technology Data Exchange (ETDEWEB)

    Khaduev, S.Kh.; Zhukova, O.S.; Dobrynin, Ya.V.; Soda, K.; Berezov, T.T.

    1987-09-01

    Comparative data is given on the effect of the new antitumor enzyme LO, obtained from a Soviet strain of Trichoderma harzianum Rifai and from Trichoderma viride from Japan, on DNA and RNA synthesis in human ovarian carcinoma cells in culture and also the results of the action of LO from Tr. harzianum Rifai on protein synthesis. Specific precursors were added to the samples 1 hour before the end of incubation time: /sup 3/H-thymidine, the precursor for DNA synthesis, /sup 3/H-uridine for RNA synthesis, and /sup 3/H-leucine for protein synthesis.

  17. Biocontrol evaluation of wheat take-all disease by Trichoderma ...

    African Journals Online (AJOL)

    Wheat take-all disease, caused by Gaeumannomyces graminis var tritici (Ggt), has been observed in different areas of Iran in recent years. Current biocontrol studies have confirmed the effectiveness of the. Trichoderma species against many fungal phytopathogens. In this study, biocontrol effects of Trichoderma isolates ...

  18. Effect of metabolites produced by Trichoderma species against ...

    African Journals Online (AJOL)

    Metabolites released from Trichoderma viride, T. polysporum, T. hamatum and T. aureoviride were tested in culture medium against Ceratocystis paradoxa, which causes black seed rot in oil palm sprouted seeds. The Trichoderma metabolites had similar fungistatic effects on the growth of C. paradoxa except those from T.

  19. Effect of Trichoderma spp. inoculation on the chemical composition ...

    African Journals Online (AJOL)

    in this study was complete randomized design (CRD) through factorial experiment with 2 factors (factor A = effects of sterilization, factor B = effects of Trichoderma spp.) in three replicates for each treatment. Effects of the Trichoderma isolates on the substrate neutral detergent fiber (NDF), acid detergent fiber (ADF) and pH as ...

  20. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.

    Science.gov (United States)

    Zhang, Xinjian; Harvey, Paul R; Stummer, Belinda E; Warren, Rosemary A; Zhang, Guangzhi; Guo, Kai; Li, Jishun; Yang, Hetong

    2015-09-01

    Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research

  1. Quantification and characterisation of Trichoderma spp. from different ecosystems.

    Science.gov (United States)

    Sariah, M; Choo, C W; Zakaria, H; Norihan, M S

    2005-01-01

    Basal stem rot of oil palm caused by Ganoderma boninense is of major economic importance. Observations of the low incidence of disease due to Ganoderma species in natural stands, suggest that the disease is kept under control by some biological means. Trichoderma spp. are saprophytic fungi with high antagonistic activities against soil-borne pathogens. However, their abundance and distribution are soil and crop specific. Trichoderma species have been found to be concentrated in the A1 (0-30 cm) and Be soil horizons (30-60 cm), although the abundance of Trichoderma was not significantly different between the oil palm and non-oil palm ecosystems. Characterisation of Trichoderma isolates based on cultural, morphological and DNA polymorphism showed that T. harzianum, T. virens, T. koningii and T. longibrachiatum made up 72, 14, 10 and 4% of the total Trichoderma isolates isolated. As Trichoderma species are present in the oil palm ecosystem, but at lower numbers and in locations different from those desired, soil augmentation with antagonistic Trichoderma spp. can be developed as a strategy towards integrated management of basal stem rot of oil palm.

  2. Influence of Environmental Parameters on Trichoderma Strains with Biocontrol Potential

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Antal

    2003-01-01

    Full Text Available Several mycoparasitic strains belonging to the filamentous fungal genus Trichoderma are promising candidates for the biological control of plant pathogenic fungi. When planning the application of antagonistic Trichoderma strains for the purposes of biological control, it is very important to consider the environmental parameters affecting the biocontrol agents in the soil. A series of abiotic and biotic environmental parameters has an influence on the biocontrol efficacy of Trichoderma. Some important parameters to be considered are the effects of temperature, water potential and pH, and the presence of pesticides, metal ions and antagonistic bacteria in the soil. Most of the Trichoderma strains are mesophilic. Low temperatures in winter may cause a problem during biological control by influencing the activity of the biocontrol agents. Another problem emerging during the application of Trichoderma strains as biocontrol agents is that they cannot tolerate dry conditions, however, we may need biocontrol agents against plant pathogenic fungi which are able to grow and cause disease even in dry soils. The pH characteristics of the soil also belong to the most important environmental parameters affecting the activities of mycoparasitic Trichoderma strains. Within the frames of a complex integrated plant protection strategy, we may have to combine Trichoderma strains with chemical pesticides or metal compounds, therefore it is important to collect information about the effects of pesticides and metal ions on the biocontrol strains. Antagonistic soil bacteria may also have negative effects on the biocontrol abilities of Trichoderma strains, therefore it may be advantageous if a biocontrol strain possesses bacterium- degrading abilities as well. This review will discuss the literature about the influence of temperature, water potential, pH, pesticides, metal ions and antagonistic bacteria on mycoparasitic Trichoderma strains including the results of our

  3. Biological potantial of some Iranian Trichoderma isolates in the ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... ... Iranian Trichoderma isolates in the control of soil borne plant pathogenic ... Although in many cases, these pesticides appear to be the most ... pathogens and nematodes by microorganisms has been considered a more ...

  4. Evaluation of Trichoderma harzanium treated cassava waste on the ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... Microbial Biotechnology and Dairy Science Laboratory, Department of Animal ... Trichoderma treated cassava waste was beneficial to lactating West African dwarf goats. .... Animals that did not show any signs of heat were.

  5. Biocontrol evaluation of wheat take-all disease by Trichoderma ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... Trichoderma species against many fungal phytopathogens. ... Microscopic studies revealed hyphal coiling (hyperparasitism) of isolates T65, T96 and T90 around Ggt ... rhizosphere competence, mycoparasitism, antibiotic and.

  6. Biocontrol genes from Trichoderma species: A review | Sharma ...

    African Journals Online (AJOL)

    ... pest, drought, decreased soil fertility due to use of hazardous chemical pesticides, ... Among them, fungal genus Trichoderma plays a major role in controlling the ... like cell wall degradation, biotic and abiotic stress tolerance, hyphal growth, ...

  7. The Antagonism Mechanism Of Trichoderma spp. Towards Fusarium solani Mold

    OpenAIRE

    Utami Sri Hastuti; Indriana Rahmawati

    2016-01-01

    The antagonism ability of seven Trichoderma isolates towards F.solani have been observed and tested by dual culture technique. The antagonism mechanism observed by microscopic observation with light microscope and Scanning Electron Microscopy (SEM). The research result showed seven species of Trichoderma molds have different antagonism ability towards F.solani each other. The antagonism mechanism observed by light microscope and Scanning Electron Microscopy were mycoparasitism, antibiosis, an...

  8. The Antagonism Mechanism Of Trichoderma spp. Towards Fusarium solani Mold

    Directory of Open Access Journals (Sweden)

    Utami Sri Hastuti

    2016-09-01

    Full Text Available The antagonism ability of seven Trichoderma isolates towards F.solani have been observed and tested by dual culture technique. The antagonism mechanism observed by microscopic observation with light microscope and Scanning Electron Microscopy (SEM. The research result showed seven species of Trichoderma molds have different antagonism ability towards F.solani each other. The antagonism mechanism observed by light microscope and Scanning Electron Microscopy were mycoparasitism, antibiosis, and competition.

  9. Trichoderma spp. decrease Fusarium root rot in common bean

    Directory of Open Access Journals (Sweden)

    Hudson Teixeira

    2012-12-01

    Full Text Available The effectiveness of six Trichoderma-based commercial products (TCP in controlling Fusarium root rot (FRR in common bean was assessed under field conditions. Three TCP, used for seed treatment or applied in the furrow, increased seedling emergence as much as the fungicide fludioxonil. FRR incidence was not affected, but all TCP and fludioxonil reduced the disease severity, compared to control. Application of Trichoderma-based products was as effective as that of fludioxonil in FRR management.

  10. Trichoharzianol, a new antifungal from Trichoderma harzianum F031.

    Science.gov (United States)

    Jeerapong, Chotika; Phupong, Worrapong; Bangrak, Phuwadol; Intana, Warin; Tuchinda, Patoomratana

    2015-04-15

    A new decalin derivative, trichoharzianol (1), together with three known compounds, eujavanicol A (2), 5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (3), and 4,6-dihydroxy-5-methylphthalide (4), were isolated from Trichoderma harzianum F031. For the first time, compounds 2-4 were reported from the Trichoderma species. Their structures were characterized by spectroscopic methods. Trichoharzianol (1) showed the highest antifungal activity against Colletotrichum gloeosporioides, with a minimum inhibitory concentration (MIC) of 128 μg/mL.

  11. In vitro antagonism of Thielaviopsis paradoxa by Trichoderma longibrachiatum.

    Science.gov (United States)

    Sánchez, Vladimir; Rebolledo, Oscar; Picaso, Rosa M; Cárdenas, Elizabeth; Córdova, Jesús; González, Orfil; Samuels, Gary J

    2007-01-01

    Seventy-nine Trichoderma strains were isolated from soil taken from 28 commercial plantations of Agave tequilana cv. 'Azul' in the State of Jalisco, Mexico. Nine of these isolates produced nonvolatile metabolites that completely inhibited the growth of Thielaviopsis paradoxa on potato dextrose agar plates. These isolates were identified as Trichoderma longibrachiatum on the basis of their morphology and DNA sequence analysis of two genes (ITS rDNA and translation elongation factor EF-1alpha). Mycoparasitism of Th. paradoxa by T. longibrachiatum strains in dual cultures was examined by scanning electron microscopy. The Trichoderma hyphae grew alongside the Th. paradoxa hyphae, but penetration of Thielaviopsis hyphae by Trichoderma was no apparent. Aleurioconidia of Th. paradoxa were parasitized by Trichoderma. Both hyphae and aleurioconidia of Th. paradoxa lost turgor pressure, wrinkled, collapsed and finally disintegrated. In liquid cultures, all nine Trichoderma isolates produced proteases, beta-1,3-glucanases and chitinases that would be responsible for the degradation of Thielaviopsis hyphae. These results demonstrate that the modes of action of T. longibrachiatum involved against Th. paradoxa in vitro experiments are mycoparasitism and the production of nonvolatile toxic metabolites.

  12. Xylanase production by Trichoderma harzianum E58

    Energy Technology Data Exchange (ETDEWEB)

    Senior, D.J.; Mayers, P.R.; Saddler, J.N. (Fortintek Canada Corp., Ottawa, ON (Canada). Dept. of Biotechnology and Chemistry)

    1989-12-01

    Growth of Trichoderma harzianum E58 on hemicellulose-rich media, both in batch and fermentor cultures, resulted in independent profiles of the production of xylanase and endoglucanase enzymes. Dramatic differences in the ratio of xylanase to endoglucanase activities were observed among cultures grown on cellulose-rich Solka Floc and xylan. These results indicated that the induction of xylanases and cellulases was likely to be under separate regulatory control. The specific activity and amount of xylanases produced were found to be dependent on the concentration of xylan in the growth media. Growth on oat spelts xylan or the hemicellulose-rich, watersoluble fraction from steam-treated aspenwood (SEA-WS) greatly enhanced the production of xylanases and xylosidase in the culture filtrates. Constitutive levels of xylanase and endoglucanase enzymes were detected during growth of the fungus on glucose. (orig.).

  13. 75 FR 9527 - Trichoderma asperellum strain ICC 012; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-03-03

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 180 [EPA-HQ-OPP-2008-0750; FRL-8800-9] Trichoderma... of a tolerance for residues of the Trichoderma asperellum strain ICC 012 on all food/feed commodities... residues of Trichoderma asperellum strain ICC 012. DATES: This regulation is effective March 3, 2010...

  14. 75 FR 8504 - Trichoderma gamsii strain ICC 080; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-02-25

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 180 [EPA-HQ-OPP-2008-0749; FRL-8799-4] Trichoderma... of a tolerance for residues of the Trichoderma gamsii strain ICC 080 on all food/feed commodities... residues of Trichoderma gamsii strain ICC 080. DATES: This regulation is effective February 25, 2010...

  15. 21 CFR 184.1250 - Cellulase enzyme preparation derived from Trichoderma longibrachiatum.

    Science.gov (United States)

    2010-04-01

    ... Trichoderma longibrachiatum. 184.1250 Section 184.1250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1250 Cellulase enzyme preparation derived from Trichoderma longibrachiatum. (a) Cellulase enzyme preparation is derived from a nonpathogenic, nontoxicogenic strain of Trichoderma longibrachiatum (formerly T...

  16. Effect of infesting soil with Trichoderma harzianum and amendment with coffee pulp on survival of Armillaria

    NARCIS (Netherlands)

    Otieno, W.; Jeger, M.J.; Termorshuizen, A.J.

    2003-01-01

    Six isolates of Trichoderma were screened for antagonism to Armillaria in tea stem sections buried in the soil. The inability of Armillaria to invade Trichoderma-colonized stem sections and the reduction of its viability in the plant materials following invasion of these by Trichoderma were used as

  17. Detection of Fusarium spp. and Trichoderma spp. and antagonism of Trichoderma sp. in soybean under no-tillage

    Directory of Open Access Journals (Sweden)

    Paola Mendes Milanesi

    2013-12-01

    Full Text Available This study aimed i to quantify the occurrence of Fusarium spp. and Trichoderma spp. in rhizospheric soil, with and without symptoms of Sudden Death Syndrome (SDS in eight soybean genotypes; ii morphologically identify isolates of Fusarium spp. from roots with SDS; iii evaluate the antagonism between Trichoderma spp. and Fusarium spp. isolates from rhizospheric soil and roots from with and without SDS, respectively; and iv characterize through the ITS1-5.8S-ITS2 region of rDNA the isolates of Trichoderma spp. with better performance in the direct confrontation. The sampling of soil and roots was performed in an experimental area located in Cruz Alta, RS, Brazil. In the laboratory, serial dilutions of soil samples, counting of the number of Colony Forming Units (UFCs/g-1 of rhizospheric soil were performed as well as isolation for identification of isolates of Fusarium spp. and Trichoderma spp. and testing of direct confrontation. There were significant differences between the population of Trichoderma spp. in the rhizosphere of plants with and without symptoms of SDS. For the population of Fusarium spp., significant difference was observed only in the rhizosphere of plants without symptoms of SDS. In diseased roots the following species were identified: F. solani, F. avenaceum, F. graminearum, F. oxysporum and F. verticillioides. In the test of direct confrontation, eight isolates of Trichoderma spp. achieved the best performance in the antagonism to Fusarium spp. and Trichoderma spp. from areas with symptoms of SDS had a higher control efficiency in vitro. These isolates showed high similarity to the species of T. koningii agregate.

  18. Three new species of Trichoderma with hyaline ascospores from China.

    Science.gov (United States)

    Zhu, Z X; Zhuang, W Y

    2015-01-01

    Collections of Trichoderma having hyaline ascospores from different areas of China were examined. Using combined analyses of morphological data, culture characters and phylogenetic information based on rDNA sequences of partial nuc translation elongation factor 1-α encoding gene (TEF1-α) and the gene encoding the second largest nuc RNA polymerase subunit (RPB2), three new species, Trichoderma applanatum, T. oligosporum and T. sinoluteum, were discovered and are described. Trichoderma applanatum produces continuous flat to pulvinate, white to cream stromata with dense orange or pale brown ostioles, and simple acremonium-like to verticillium-like conidiophores, belongs to the Hypocreanum clade and is closely related to T. decipiens. Trichoderma oligosporum forms reddish brown stromata with a downy surface, hyaline conidia and gliocladium-like conidiophores, and is closely related to but distinct from T. crystalligenum in the Psychrophila clade. Trichoderma sinoluteum, as a member of the Polysporum clade, is characterized by pale yellow stromata, white pustulate conidiomata, pachybasium-like conidiophores, and hyaline conidia. Differences between the new species and their close relatives are discussed. © 2015 by The Mycological Society of America.

  19. Characterization of Malaysian Trichoderma isolates using random amplified microsatellites (RAMS).

    Science.gov (United States)

    Siddiquee, Shafiquzzaman; Tan, Soon Guan; Yusuf, Umi Kalsom; Fatihah, Nur Hasan Nudin; Hasan, Md Mainul

    2012-01-01

    Trichoderma species are commercially applied as biocontrol agents against numerous plant pathogenic fungi due to their production of antifungal metabolites, competition for nutrients and space, and mycoparasitism. However, currently the identification of Trichoderma species from throughout the world based on micro-morphological descriptions is tedious and prone to error. The correct identification of Trichoderma species is important as several traits are species-specific. The Random Amplified Microsatellites (RAMS) analysis done using five primers in this study showed different degrees of the genetic similarity among 42 isolates of this genus. The genetic similarity values were found to be in the range of 12.50-85.11% based on a total of 76 bands scored in the Trichoderma isolates. Of these 76 bands, 96.05% were polymorphic, 3.95% were monomorphic and 16% were exclusive bands. Two bands (250 bp and 200 bp) produced by primer LR-5 and one band (250 bp) by primer P1A were present in all the Trichoderma isolates collected from healthy and infected oil palm plantation soils. Cluster analysis based on UPGMA of the RAMS marker data showed that T. harzianum, T. virens and T. longibrachiatum isolates were grouped into different clades and lineages. In this study we found that although T. aureoviride isolates were morphologically different when compared to T. harzianum isolates, the UPGMA cluster analysis showed that the majority isolates of T. aureoviride (seven from nine) were closely related to the isolates of T. harzianum.

  20. Unraveling Trichoderma species in the attine ant environment: description of three new taxa.

    Science.gov (United States)

    Montoya, Quimi Vidaurre; Meirelles, Lucas Andrade; Chaverri, Priscila; Rodrigues, Andre

    2016-05-01

    Fungus-growing "attine" ants forage diverse substrates to grow fungi for food. In addition to the mutualistic fungal partner, the colonies of these insects harbor a rich microbiome composed of bacteria, filamentous fungi and yeasts. Previous work reported some Trichoderma species in the fungus gardens of leafcutter ants. However, no studies systematically addressed the putative association of Trichoderma with attine ants, especially in non-leafcutter ants. Here, a total of 62 strains of Trichoderma were analyzed using three molecular markers (ITS, tef1 and rpb2). In addition, 30 out of 62 strains were also morphologically examined. The strains studied correspond to the largest sampling carried out so far for Trichoderma in the attine ant environment. Our results revealed the richness of Trichoderma in this environment, since we found 20 Trichoderma species, including three new taxa described in the present work (Trichoderma attinorum, Trichoderma texanum and Trichoderma longifialidicum spp. nov.) as well as a new phylogenetic taxon (LESF 545). Moreover, we show that all 62 strains grouped within different clades across the Trichoderma phylogeny, which are identical or closely related to strains derived from several other environments. This evidence supports the transient nature of the genus Trichoderma in the attine ant colonies. The discovery of three new species suggests that the dynamic foraging behavior of these insects might be responsible for accumulation of transient fungi into their colonies, which might hold additional fungal taxa still unknown to science.

  1. Biological control of banana black Sigatoka disease with Trichoderma

    Directory of Open Access Journals (Sweden)

    Poholl Adan Sagratzki Cavero

    2015-06-01

    Full Text Available Black Sigatoka disease caused by Mycosphaerella fijiensis is the most severe banana disease worldwide. The pathogen is in an invasive phase in Brazil and is already present in most States of the country. The potential of 29 isolates of Trichoderma spp. was studied for the control of black Sigatoka disease under field conditions. Four isolates were able to significantly reduce disease severity and were further tested in a second field experiment. Isolate 2.047 showed the best results in both field experiments and was selected for fungicide sensitivity tests and mass production. This isolate was identified as Trichoderma atroviride by sequencing fragments of the ITS region of the rDNA and tef-1α of the RNA polymerase. Trichoderma atroviride was as effective as the fungicide Azoxystrobin, which is recommended for controlling black Sigatoka. This biocontrol agent has potential to control the disease and may be scaled-up for field applications on rice-based solid fermentation

  2. Induction of conidiation by endogenous volatile compounds in Trichoderma spp.

    Science.gov (United States)

    Nemcovic, Marek; Jakubíková, Lucia; Víden, Ivan; Farkas, Vladimír

    2008-07-01

    Light and starvation are two principal environmental stimuli inducing conidiation in the soil micromycete Trichoderma spp. We observed that volatiles produced by conidiating colonies of Trichoderma spp. elicited conidiation in colonies that had not been induced previously by exposure to light. The inducing effect of volatiles was both intra- and interspecific. Chemical profiles of the volatile organic compounds (VOCs) produced by the nonconidiated colonies grown in the dark and by the conidiating colonies were compared using solid-phase microextraction of headspace samples followed by tandem GC-MS. The conidiation was accompanied by increased production of eight-carbon compounds 1-octen-3-ol and its analogs 3-octanol and 3-octanone. When vapors of these compounds were applied individually to dark-grown colonies, they elicited their conidiation already at submicromolar concentrations. It is concluded that the eight-carbon VOCs act as signaling molecules regulating development and mediating intercolony communication in Trichoderma.

  3. Trichoderma songyi sp. nov., a new species associated with the pine mushroom (Tricholoma matsutake).

    Science.gov (United States)

    Park, Myung Soo; Oh, Seung-Yoon; Cho, Hae Jin; Fong, Jonathan J; Cheon, Woo-Jae; Lim, Young Woon

    2014-10-01

    A new species, Trichoderma songyi, was found to be associated with the pine mushroom (Tricholoma matsutake) in Korea. This species was isolated from three different substrates: Tricholoma matsutake basidiomata, as well as roots of Pinus densiflora and soil in the fairy ring. Based on its molecular and phenotypic characteristics, we demonstrate that Trichoderma songyi is unique and distinguishable from closely related species. We performed phylogenetic analyses based on two molecular markers, the genes for both translation elongation factor 1-alpha and the second largest subunit of RNA polymerase II. Phylogenetic analyses showed that Trichoderma songyi is closely related to Trichoderma koningii aggregate and Trichoderma caerulescens. Morphologically, Trichoderma songyi can be distinguished from these closely related taxa by its growth rates, colony morphology on PDA in darkness, and coconut-like odour. Due to the economic importance of the pine mushroom, the relationship between Trichoderma songyi and Tricholoma matsutake should be studied further.

  4. Production of cellulase from immobilized Trichoderma reesei

    International Nuclear Information System (INIS)

    Kasai, Noboru; Tamada, Masao; Kumakura, Minoru

    1989-05-01

    This report completed the results that obtained on the study of the enzyme activity in the culture of immobilized Trichoderma reesei cells in flask scale (100ml) and bench scale (30l). In the flask scale culture, the batch and repeated batch culture were carried out, and in the bench scale culture, the batch, repeated batch and continuous culture were done by using a culture equipment that is an unit process of the bench scale test plant for saccharification of cellulosic wastes. The enzyme activity of the immobilized cells was higher than that of the intact cells in the flask scale culture and it was confirmed that the enzyme activity was not decreased on the repeated batch culture of six times even. In the bench scale culture, it was found that a optimum culture condition of the immobilized cells was not different from that of the free cells and the immobilized cells gave the enzyme solution with a high enzyme activity in the culture condition of 450rpm stirring speed and air supply of 0.1v/v/m above. The technique of the repeated batch and continuous culture for long times in bench scale without contamination was established. The enzyme activity of the immobilized cells in continuous culture became to be 85 % to that in batch culture and it was found that the enzyme solution with high enzyme activity was continuously obtained in the continuous culture for long times. (author)

  5. Study on growth condition of Trichoderma mutants

    International Nuclear Information System (INIS)

    Chen Jian'ai; Xiao Min; Wang Weiming; Chen Weijing; Sun Yongtang

    2002-01-01

    Some Trichoderma mutants were cultured under different conditions 4 strains, T5, T0803, T1010, T1003 were selected with different mediums and every medium was mixed with fungicide of 40 ppm. The fungicides were procymidone + chlorothalonil, maneb and phosethyl-Al. The pH of medium were 5, 6, 7 and 8, respectively. The growing temperatures were 15, 20, 25 and 30 degree C, respectively. After the hypha growing for some days under natural high temperature, they were put in low temperature for producing spores. The growing times for these hypha were 3,4,5 and 6 days, respectively. All dates were analyzed on statistics with the orthogonal array and ranges (R) were different with different factor and levels (R = 40.4, 42.4, 48.0, 62.8, 107.0). The results showed that the strain was the most influent condition (R = 107.0) and the changed temperature time from high to low was the least influent condition (R = 40.4). Each factor variance was significant and A 3 b 4 C 2 D 1 E 3 was the optimum combined condition, under which T1010 grew more quickly and produced the most spores

  6. Comparative study of impact of Azotobacter and Trichoderma with other fertilizers on maize growth

    Directory of Open Access Journals (Sweden)

    Sanjay Mahato

    2017-12-01

    Full Text Available Biofertilizers may be a better eco-friendly option to maintain soil fertility. The study was conducted to investigate the effect of Azotobacter and Trichoderma on the vegetative growth of maize (Zea mays L. plants. The experiment was carried out in medium sized pots, at IAAS, Lamjung (Feb 2017 - May 2017 in completely randomized design (CRD, consisting eight treatments and three replications. Treatments were namely T1 (control, T2 (Azotobacter, T3 (Trichoderma, T4 (Azotobacter + Trichoderma, T5 (NPK, T6 (Azotobacter + Trichoderma + FYM, T7 (Azotobacter + Trichoderma + FYM + NPK, T8 (FYM. Azotobacter showed a positive increase in plant height, stem girth, dry shoot weight, root length and width, and root weight while Trichoderma displayed either negative or minimal impact. Effect of FYM was lower than Azotobacter but considerably higher than Trichoderma. Trichoderma seriously inhibited the expression of Azotobacter when used together. Trichoderma even suppressed the outcome (except shoot weight of FYM when used together. Root length was the longest in Azotobacter inoculation. The highest number of leaves was in T7 followed by Azotobacter (T2 and NPK (T5. Unlike leaf width, Azotobacter showed a negligible increase in leaves length while Trichoderma wherever present showed the negative impact. Minimum chlorophyll content was found in Azotobacter or Trichoderma after 73 days. Azotobacter treatment showed early tasseling than Trichoderma. The association of Azotobacter and Trichoderma increased the biomass. Azotobacter has significant effects on growth parameters of maize and can supplement chemical fertilizer, while Trichoderma was found to inhibit most of the growth parameters.

  7. Pengendalian Hayati Penyakit Layu Fusarium Pisang (Fusarium oxysporum f.sp. cubense dengan Trichoderma sp.

    Directory of Open Access Journals (Sweden)

    Albertus Sudirman

    2011-07-01

    Full Text Available The aim of this research was to study the inhibiting ability of Trichoderma sp. to control fusarium wilt of banana in greenhouse condition. The experiments consisted of the antagonism test between Trichoderma sp. and Fusarium oxysporum f.sp. cubense (Foc in vitro using dual culture method and glass house experiment which was arranged in 3×3 Factorial Complete Randomized Design. First factor of the latter experiment was the dose of Trichoderma sp. culture (0, 25, and 50 g per polybag, second factor was time of Trichoderma culture application (2 weeks before Foc inoculation, at same time with Foc inoculation and 2 weeks after Foc inoculation. Trichoderma sp. was cultured in mixed rice brand and chaff medium. The disease intensity was observed with scoring system of wilting leaves (0–4. The results showed that Trichoderma sp. was antagonistic against Foc in vitro and inhibited 86% of Foc colony development. Mechanism of antagonism between Trichoderma sp. and Foc was hyperparasitism. Trichoderma hyphae coiled around Foc hyphae. Lysis of Foc hyphae was occurred at the attached site of Trichoderma hyphae on Foc hyphae. Added banana seedling with Trichoderma sp. Culture reduced disease intensity of Fusarium wilt. Suggested dose of Trichoderma culture application in glass house was 25 g/polybag, given at the same time with Foc inoculation. Penelitian ini bertujuan untuk mengetahui kemampuan Trichoderma sp. untuk pengendalian penyakit layu fusarium pisang di rumah kaca. Penelitian meliputi pengujian daya hambat Fusarium oxysporum f.sp. cubense (Foc in vitro dan kemampuan menekan intensitas penyakit di rumah kaca. Penelitian in vitro meliputi uji antagonisme dan mekanismenya yang dilakukan secara dual culture. Uji pengaruh Trichoderma sp. terhadap penyakit layu Fusarium dilakukan di rumah kaca dengan Rancangan Acak Lengkap Faktorial. Faktor pertama adalah dosis biakan Trichoderma sp., dengan tiga aras (0, 25, 50 g/per bibit dalam polibag. Faktor kedua

  8. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    International Nuclear Information System (INIS)

    Yao Risheng; Li Manman; Deng Shengsong; Hu Huajia; Wang Huai; Li Fenghe

    2012-01-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  9. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    Science.gov (United States)

    Yao, Risheng; Li, Manman; Deng, Shengsong; Hu, Huajia; Wang, Huai; Li, Fenghe

    2012-04-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  10. Detection of Fusarium spp. and Trichoderma spp. and antagonism of Trichoderma sp. in soybean under no-tillage

    OpenAIRE

    Paola Mendes Milanesi; Elena Blume; Marlove Fátima Brião Muniz; Lia Rejane Silveira Reiniger; Zaida Inês Antoniolli; Emanuele Junges; Manoeli Lupatini

    2013-01-01

    This study aimed i) to quantify the occurrence of Fusarium spp. and Trichoderma spp. in rhizospheric soil, with and without symptoms of Sudden Death Syndrome (SDS) in eight soybean genotypes; ii) morphologically identify isolates of Fusarium spp. from roots with SDS; iii) evaluate the antagonism between Trichoderma spp. and Fusarium spp. isolates from rhizospheric soil and roots from with and without SDS, respectively; and iv) characterize through the ITS1-5.8S-ITS2 region of rDNA the isolate...

  11. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review.

    Science.gov (United States)

    Zafra, German; Cortés-Espinosa, Diana V

    2015-12-01

    Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils.

  12. Fermentation of Foc TR4-infected bananas and Trichoderma spp.

    Science.gov (United States)

    Yang, J; Li, B; Liu, S W; Biswas, M K; Liu, S; Wei, Y R; Zuo, C W; Deng, G M; Kuang, R B; Hu, C H; Yi, G J; Li, C Y

    2016-10-17

    Fusarium wilt (also known as Panama disease) is one of the most destructive banana diseases, and greatly hampers the global production of bananas. Consequently, it has been very detrimental to the Chinese banana industry. An infected plant is one of the major causes of the spread of Fusarium wilt to nearby regions. It is essential to develop an efficient and environmentally sustainable disease control method to restrict the spread of Fusarium wilt. We isolated Trichoderma spp from the rhizosphere soil, roots, and pseudostems of banana plants that showed Fusarium wilt symptoms in the infected areas. Their cellulase activities were measured by endoglucanase activity, β-glucosidase activity, and filter paper activity assays. Safety analyses of the Trichoderma isolates were conducted by inoculating them into banana plantlets. The antagonistic effects of the Trichoderma spp on the Fusarium pathogen Foc tropical Race 4 (Foc TR4) were tested by the dual culture technique. Four isolates that had high cellulase activity, no observable pathogenicity to banana plants, and high antagonistic capability were identified. The isolates were used to biodegrade diseased banana plants infected with GFP-tagged Foc TR4, and the compost was tested for biological control of the infectious agent; the results showed that the fermentation suppressed the incidence of wilt and killed the pathogen. This study indicates that Trichoderma isolates have the potential to eliminate the transmission of Foc TR4, and may be developed into an environmentally sustainable treatment for controlling Fusarium wilt in banana plants.

  13. Chemical modification of β -endoglucanase from Trichoderma viridin ...

    African Journals Online (AJOL)

    β-Endoglucanase from Trichoderma viride was modified by methanol to explore the catalytic functional groups of cellulase. Crude cellulase was produced, and the conditions of saturation and pH by salting out with ammonium sulfate were optimized. Under optimal conditions, crude cellulase was isolated and purified.

  14. Effects of single and combined inoculations of selected Trichoderma ...

    African Journals Online (AJOL)

    Effects of single and combined inoculations of selected Trichoderma and Bacillus isolates on growth of dry bean and biological control of Rhizoctonia solani damping-off. ... Greenhouse trials showed that combined inoculations of T. atroviride strain 6 and B. subtilis B69 gave the highest growth promotion of bean in terms of ...

  15. Effect of physical treatment on Trichoderma reesei cells

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    The effect of physical treatment such as freezing and gamma-ray irradiation on Trichoderma reesei cells was studied. The decrease phenomena of cellulase production, which was observed in the culture of the cells using wheat bran extract, was improved by physical treatment. (author)

  16. Phylogenetic diversity analysis of Trichoderma species based on ...

    African Journals Online (AJOL)

    vi-4177/CSAU be assigned as the type strains of a species of genus Trichoderma based on phylogenetic tree analysis together with the 18S rRNA gene sequence search in Ribosomal Database Project, small subunit rRNA and large subunit ...

  17. Uranium biosorption by Trichoderma harzianum entrapped in polyester foam beads

    International Nuclear Information System (INIS)

    Khalid, A.M.; Shemsi, A.M.; Akhtar, K.; Anwar, M.A.

    1993-01-01

    Mechanism of uranium biosorption by resting cells of Trichoderma harzianum was studied at pH 4.5. Time-dependent uptake of uranium by Trichoderma harzianum was also determined. Various cations (Na, K, Ca and Fe, etc.) were found to affect the adsorption capability of these cells. Different theoretical thermodynamic models governing the adsorption behavior of uranium were also tested and it was found to follow the Langmuir and Freundlich adsorption isotherms. The constants of Freundlich adsorption isotherm A and 1/n were found to be 1.5 x 10 -6 mole/g and 0.31 respectively. Dubinin Radushkevich equation was tested and the maximum adsorption capacity (X m ) of Trichoderma harzianum and sorption energy (E s ) for the ion exchange process computed. Data of uranium sorption were also examined using Weber Morris's equation. The upscaling of uranium biosorption by Trichoderma harzianum entrapped in commercial foam (polyesters) was carried out in glass columns. It was found to recover more than 85% of the total uranium present in bacterial leachate

  18. Comparative genomics provide insights into evolution of trichoderma nutrition style.

    Science.gov (United States)

    Xie, Bin-Bin; Qin, Qi-Long; Shi, Mei; Chen, Lei-Lei; Shu, Yan-Li; Luo, Yan; Wang, Xiao-Wei; Rong, Jin-Cheng; Gong, Zhi-Ting; Li, Dan; Sun, Cai-Yun; Liu, Gui-Ming; Dong, Xiao-Wei; Pang, Xiu-Hua; Huang, Feng; Liu, Weifeng; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Song, Xiao-Yan

    2014-02-01

    Saprotrophy on plant biomass is a recently developed nutrition strategy for Trichoderma. However, the physiology and evolution of this new nutrition strategy is still elusive. We report the deep sequencing and analysis of the genome of Trichoderma longibrachiatum, an efficient cellulase producer. The 31.7-Mb genome, smallest among the sequenced Trichoderma species, encodes fewer nutrition-related genes than saprotrophic T. reesei (Tr), including glycoside hydrolases and nonribosomal peptide synthetase-polyketide synthase. Homology and phylogenetic analyses suggest that a large number of nutrition-related genes, including GH18 chitinases, β-1,3/1,6-glucanases, cellulolytic enzymes, and hemicellulolytic enzymes, were lost in the common ancestor of T. longibrachiatum (Tl) and Tr. dN/dS (ω) calculation indicates that all the nutrition-related genes analyzed are under purifying selection. Cellulolytic enzymes, the key enzymes for saprotrophy on plant biomass, are under stronger purifying selection pressure in Tl and Tr than in mycoparasitic species, suggesting that development of the nutrition strategy of saprotrophy on plant biomass has increased the selection pressure. In addition, aspartic proteases, serine proteases, and metalloproteases are subject to stronger purifying selection pressure in Tl and Tr, suggesting that these enzymes may also play important roles in the nutrition. This study provides insights into the physiology and evolution of the nutrition strategy of Trichoderma.

  19. Metabolites of Trichoderma species isolated from damp building materials.

    Science.gov (United States)

    McMullin, David R; Renaud, Justin B; Barasubiye, Tharcisse; Sumarah, Mark W; Miller, J David

    2017-07-01

    Buildings that have been flooded often have high concentrations of Trichoderma spores in the air while drying. Inhaled spores and spore and mycelial fragments contain large amounts of fungal glucan and natural products that contribute to the symptoms associated with indoor mould exposures. In this study, we considered both small molecules and peptaibol profiles of T. atroviride, T. koningiopsis, T. citrinoviride, and T. harzianum strains obtained from damp buildings in eastern Canada. Twenty-residue peptaibols and sorbicillin-derived metabolites (1-6) including a new structure, (R)-vertinolide (1), were characterized from T. citrinoviride. Trichoderma koningiopsis produced several koninginins (7-10), trikoningin KA V, and the 11-residue lipopeptaibols trikoningin KB I and trikoningin KB II. Trichoderma atroviride biosynthesized a mixture of 19-residue trichorzianine-like peptaibols, whereas T. harzianum produced 18-residue trichokindin-like peptaibols and the 11-residue harzianin HB I that was subsequently identified from the studied T. citrinoviride strain. Two α-pyrones, 6-pentyl-pyran-2-one (11) and an oxidized analog (12), were produced by both T. atroviride and T. harzianum. Aside from exposure to low molecular weight natural products, inhalation of Trichoderma spores and mycelial fragments may result in exposure to membrane-disrupting peptaibols. This investigation contributes to a more comprehensive understanding of the biologically active natural products produced by fungi commonly found in damp buildings.

  20. The Longibrachiatum Clade of Trichoderma: a revision with new species

    Science.gov (United States)

    The Longibrachiatum Clade of Trichoderma is revised. Eight new species are described (T. aethiopicum, T. capillare, T. flagellatum, T. gillesii, T. gracile, T. pinnatum, T. saturnisporopsis, T. solani). The twenty-one species known to belong to the Longibrachiatum Clade are included in a synoptic ke...

  1. Immobilization of Trichoderma reesei cells by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1983-01-01

    Trichoderma reesei cells were immobilized by radiation polymerization 2-hydroxyethyl acrylate monomer at low temperature. Cellulase production resulting from the growth of the cells in the porous polymer matrix of immobilized cell composites was confirmed by measuring the cellulase activity and pH during the culture. (orig.)

  2. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia

    Science.gov (United States)

    Jaklitsch, W.M.; Voglmayr, H.

    2015-01-01

    The first large-scale survey of sexual and asexual Trichoderma morphs collected from plant and fungal materials conducted in Southern Europe and Macaronesia including a few collections from French islands east of Africa yielded more than 650 specimens identified to the species level. Routine sequencing of tef1 revealed a genetic variation among these isolates that exceeds previous experience and ca. 90 species were recognized, of which 74 are named and 17 species newly described. Aphysiostroma stercorarium is combined in Trichoderma. For the first time a sexual morph is described for T. hamatum. The hitherto most complete phylogenetic tree is presented for the entire genus Trichoderma, based on rpb2 sequences. For the first time also a genus-wide phylogenetic tree based on acl1 sequences is shown. Detailed phylogenetic analyses using tef1 sequences are presented in four separate trees representing major clades of Trichoderma. Discussions involve species composition of clades and ecological and biogeographic considerations including distribution of species. PMID:26955191

  3. Biocontrol properties of indigenous Trichoderma isolates from North ...

    African Journals Online (AJOL)

    IBSD

    2012-04-26

    Apr 26, 2012 ... Based on their antifungal activity in dual plate assay, 25 isolates were selected for further analysis. The interaction between the Trichoderma and fungal pathogens were ... effective biocontrol agents based on their ability to overgrow and ... bean seeds were planted in the plastic pot, which was filled with 3.

  4. Application of Trichoderma harziunum T22 as a biofertilizer ...

    African Journals Online (AJOL)

    This study was conducted to investigate the effect of Trichoderma harzianum strain (T22) on the growth and development of maize (Zea mays) plants. T. harzianum was applied to the grains in two different treatments. The first one was performed by inoculating the soil with the air dried growth of the tested fungus in three ...

  5. Trichoderma viride infection in a liver transplant recipient

    NARCIS (Netherlands)

    Jacobs, F.; Byl, B.; Bourgeois, N.; Coremans-Pelseneer, J.; Florquin, S.; Depré, G.; van de Stadt, J.; Adler, M.; Gelin, M.; Thys, J. P.

    1992-01-01

    A liver transplant recipient developed infection of a perihepatic haematoma due to Trichoderma viride. Before the infection was diagnosed, the patient received intense immuno-suppressive and prolonged antibacterial and anti-fungal therapies. Although the death of the patient was not directly related

  6. Identification of Trichoderma strains by image analysis of HPLC chromatograms

    DEFF Research Database (Denmark)

    Thrane, Ulf; Poulsen, S.B.; Nirenberg, H.I.

    2001-01-01

    Forty-four Trichoderma strains from water-damaged building materials or indoor dust were classified with chromatographic image analysis on full chromatographic matrices obtained by high performance liquid chromatography with UV detection of culture extracts. The classes were compared with morphol...

  7. Effet du compost et de Trichoderma harzianum sur la suppression ...

    African Journals Online (AJOL)

    SARAH

    31 oct. 2013 ... induit des pourcentages de réduction qui n'ont pas dépassé 81% et 75% ... Effect of compost and trichoderma harzianum on verticillium wilt of greenhouse tomato crop ... telluriques comme Pythium, Phytophthora, Fusarium.

  8. Antagonistic effect of Trichoderma harzianum VSL291 on ...

    African Journals Online (AJOL)

    In this study we evaluated the antagonism in vitro of Trichoderma harzianum strain VSL291 against 18 pathogens of cocoa fruits in dual culture. T. harzianum VSL291 inhibited the growth of the phytopathogenic fungi tested between 10.54 and 85.43%. The mycoparasitism of Moniliophthora roreri by T. harzianum VSL291 ...

  9. Pengendalian Hayati Penyakit Akar Merah pada Akasia dengan Trichoderma

    Directory of Open Access Journals (Sweden)

    S. M. Widyastuti

    1998-12-01

    Full Text Available The experiment was aimed to measure the distribution and intensity of root rot disease of Acacia spp. in the urban forest at the campus of Gadjah Mada University, to isolate and identify the causal organism and to select Trichoderma sp. as biological agent for controlling the disease. The pathogenicity of the causal organism was tested using Crotalaria juncea L. and trunk of A. mangium Willd. (10 cm diameter, 8 cm length as indicator plant. The ability of Trichoderma sp. as antagonist was tested in vitro. It was concluded that the pathogen of the root rot disease was Ganoderma philippii. The pathogen attacked for species of Acacia spp. in the location namely A. auriculiformis, A. mangium, A. oraria, and A. crassicarpa. Of the total individual trees of those species in the campus, as much as 38.6%, 22.2%, and 66.7% were attacked by the root rot pathogen respectively. Of the 20 Trichoderma spp. isolate capable to inhibit the pathogen in vitro, three isolates were found as promising agents for biological control of the pathogen. The promising isolates were T. resei/T23, T. koningii/T1, and T. koningii/T16 with inhibition effectivity of 94.58%; 93.66%; and 91.76% respectively. Key words: biological control, red root-rot disease, Trichoderma, acacia

  10. Evaluation of xylanases from Aspergillus niger and Trichoderma sp ...

    African Journals Online (AJOL)

    Despite being present in relatively low amounts, pentosans and hemicelluloses play an important role in dough rheology and bread properties. The aim of this work is to understand how the xylanases from Aspergillus niger and Trichoderma sp. influence dough rheology, such as elasticity, extensibility, strength and stability.

  11. Antagonistic properties of Trichoderma viride on post harvest ...

    African Journals Online (AJOL)

    The effective in vitro screening tests of Trichoderma viride for antagonism against post harvest pathogens of cassava roots (Manihot esculenta Crantz) rot together with its competitive and mycoparasitic abilities informs its selection as the most promising candidate for the biocontrol of post harvest cassava root rot pathogens.

  12. Effect of Trichoderma isolates on tomato seedling growth response ...

    African Journals Online (AJOL)

    Jane

    2011-06-29

    Jun 29, 2011 ... Seed germination rate was not affected by Trichoderma application, but .... system architecture under sterile condition (Bjorkman et al. ... MATERIALS AND METHODS .... of application to tomato seed in seedling shoot and root elements content. .... with production of some organic acids in the rhizosphere.

  13. Comparison of humic acids production by Trichoderma viride and ...

    African Journals Online (AJOL)

    FEA

    2014-02-24

    Feb 24, 2014 ... fermentation of oil palm empty fruit bunch. Fernanda Lopes Motta* and ... Trichoderma is a genus of asexually reproducing fungi with a high level of ... the most active fractions of organic matter and affect a variety of chemical ...

  14. Effect of the edaphic factors and metal content in soil on the diversity of Trichoderma spp.

    Science.gov (United States)

    Racić, Gordana; Körmöczi, Péter; Kredics, László; Raičević, Vera; Mutavdžić, Beba; Vrvić, Miroslav M; Panković, Dejana

    2017-02-01

    Influence of edaphic factors and metal content on diversity of Trichoderma species at 14 different soil sampling locations, on two depths, was examined. Forty-one Trichoderma isolates from 14 sampling sites were determined as nine species based on their internal transcribed spacer (ITS) sequences. Our results indicate that weakly alkaline soils are rich sources of Trichoderma strains. Also, higher contents of available K and P are connected with higher Trichoderma diversity. Increased metal content in soil was not inhibiting factor for Trichoderma species occurrence. Relationship between these factors was confirmed by locally weighted sequential smoothing (LOESS) nonparametric smoothing analysis. Trichoderma strain (Szeged Microbiology Collection (SZMC) 22669) from soil with concentrations of Cr and Ni above remediation values should be tested for its potential for bioremediation of these metals in polluted soils.

  15. Pengendalian Hayati Penyakit Layu Fusarium Pisang (Fusarium Oxysporum F.sp. Cubense) dengan Trichoderma SP.

    OpenAIRE

    Sudirman, Albertus; Sumardiyono, Christanti; Widyastuti, Siti Muslimah

    2011-01-01

    The aim of this research was to study the inhibiting ability of Trichoderma sp. to control fusarium wilt of banana in greenhouse condition. The experiments consisted of the antagonism test between Trichoderma sp. and Fusarium oxysporum f.sp. cubense (Foc) in vitro using dual culture method and glass house experiment which was arranged in 3×3 Factorial Complete Randomized Design. First factor of the latter experiment was the dose of Trichoderma sp. culture (0, 25, and 50 g per polybag), second...

  16. Evaluation of biological control of fusarium wilt in gerbera with Trichoderma asperellum

    OpenAIRE

    Daiani Brandler; Luan Junior Divensi; Rodrigo José Tonin; Thalita Pedrozo Pilla; Ines Rezendes; Paola Mendes Milanesi

    2017-01-01

    The increase in flower cultivation in recent years has been reflecting the higher incidence of soil pathogens that can cause serious problems. This study aimed to evaluate the biological control of Fusarium wilt in gerbera with Trichoderma asperellum. The evaluated treatments were: T1) Control, only sterile substrate; T2) Substrate + Fusarium oxysporum; T3) Substrate + Fusarium oxysporum + Trichoderma asperellum; and T4) Substrate + Trichoderma asperellum. For this, the pathogen was isolated ...

  17. ASSESSMENT OF Trichoderma ISOLATES FOR VIRULENCE EFFICACY ON Fusarium oxysporum F. sp. Phaseoli

    Directory of Open Access Journals (Sweden)

    Jane Otadoh

    2010-10-01

    Full Text Available Trichoderma has been widely studied for their biocontrol ability, but their use as biocontrol agents in agriculture is limited due to the unpredictable efficiency which is affected by biotic and abiotic factors in soil. Isolates of Trichoderma from Embu soils were evaluated for their ability to control Fusarium oxysporum f. sp. phaseoli., in vitro and promote seedling growth in the greenhouse. Bioassays were run using dual cultures and diffusible compound production analysis. The Trichoderma isolates significantly (p

  18. Trichoderma-plant-pathogen interactions: advances in genetics of biological control.

    Science.gov (United States)

    Mukherjee, Mala; Mukherjee, Prasun K; Horwitz, Benjamin A; Zachow, Christin; Berg, Gabriele; Zeilinger, Susanne

    2012-12-01

    Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.

  19. Biodegradation of sulfosulphuron in agricultural soil by Trichoderma sp.

    Science.gov (United States)

    Yadav, U; Choudhury, P P

    2014-11-01

    Sulfosulphuron-degrading fungus was isolated by enrichment technique from the sulfosulphuron-contaminated soil of wheat rhizosphere. To assess the biodegradation potential of isolated Trichoderma sp., minimal potato dextrose agar broth with different levels of sulfosulphuron (up to 2 g l(-1) ) was evaluated in the growth and biotransformation experiments. ESI LC-MS/MS analysis revealed the presence of degradation products 2-amino-4,6-dimethoxypyrimidine (I) and 2-ethylsulfonyl imidazo{1,2-a} pyridine-3-sulfonamide-2-ethylsulfonyl imidazo{1,2-a} pyridine-3-sulfonamide (II) indicating the cleavage of the urea bridge and the presence of the by-product N-(4,6-dimethoxypyrimidin-2-yl)urea (III) indicating the degradation of sulfonylamide linkage. Two other metabolites, N-(4,6-dimethoxypyrimidin-2-yl)-N'-hydroxyurea (IV) and N, N'-bis(4,6-dimethoxypyrimidin-2-yl)urea (V), were also identified. From the previous reports, it was found that the degradation of sulfonyl urea herbicides took place through the chemical degradation of the sulfonylurea bridge followed by microbial degradation. During this investigation, Trichoderma sp. grew well with and degraded sulfosulphuron via both the decarboxylation on the sulphonyl urea bridge and the hydrolytic cleavage of the sulfonylamide linkage as demonstrated by the formation of metabolites. Trichoderma is nonphytopathogenic in nature, and some species of it restrict the growth of soil-dwelling phytopathogens. Therefore, it is a promising candidate for the decontamination of soil from sulfosulphuron residues. The degradation of sulfosulphuron by any individual fungus is being reported for the first time. Trichoderma sp. isolated from wheat-rhizospheric soil could survive in minimal broth rich in sulfosulphuron. Previous reports have described the complete degradation of any sulfonyl urea herbicides by micro-organisms only after the pH-dependent chemical hydrolysis of the sulfonyl urea bridge of the herbicide. This study

  20. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites.

    Science.gov (United States)

    Sun, Jingzu; Pei, Yunfei; Li, Erwei; Li, Wei; Hyde, Kevin D; Yin, Wen-Bing; Liu, Xingzhong

    2016-11-21

    Some species of Trichoderma are fungicolous on fungi and have been extensively studied and commercialized as biocontrol agents. Multigene analyses coupled with morphology, resulted in the discovery of T. hypoxylon sp. nov., which was isolated from surface of the stroma of Hypoxylon anthochroum. The new taxon produces Trichoderma- to Verticillium-like conidiophores and hyaline conidia. Phylogenetic analyses based on combined ITS, TEF1-α and RPB2 sequence data indicated that T. hypoxylon is a well-distinguished species with strong bootstrap support in the polysporum group. Chemical assessment of this species reveals a richness of secondary metabolites with trichothecenes and epipolythiodiketopiperazines as the major compounds. The fungicolous life style of T. hypoxylon and the production of abundant metabolites are indicative of the important ecological roles of this species in nature.

  1. Biological control of banana black Sigatoka disease with Trichoderma

    OpenAIRE

    Poholl Adan Sagratzki Cavero; Rogério Eiji Hanada; Luadir Gasparotto; Rosalee Albuquerque Coelho Neto; Jorge Teodoro de Souza

    2015-01-01

    Black Sigatoka disease caused by Mycosphaerella fijiensis is the most severe banana disease worldwide. The pathogen is in an invasive phase in Brazil and is already present in most States of the country. The potential of 29 isolates of Trichoderma spp. was studied for the control of black Sigatoka disease under field conditions. Four isolates were able to significantly reduce disease severity and were further tested in a second field experiment. Isolate 2.047 showed the best results in both f...

  2. Biological effect of 60Co γ irradiation on Trichoderma

    International Nuclear Information System (INIS)

    Chen Jian'ai; Wang Weiming

    2003-01-01

    The mutagenic effect of 60 Co γ-ray on Trichoderma spp (T 32 ) was studied. The germination capacity of spores apparently declined after irradiation. The mutagenic effect curve model is S=e -λD , and the mutagenic curve is Y=-0.940e 1.29x , r=0.9533(r 0.01 =0.765). 130 variant strain which grew rapidly and produced more spores were chosen

  3. 40 CFR 180.1201 - Trichoderma harzianum strain T-39; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma harzianum strain T-39... RESIDUES IN FOOD Exemptions From Tolerances § 180.1201 Trichoderma harzianum strain T-39; exemption from the requirement of a tolerance. Trichoderma harzianum strain T-39 is exempt from the requirement of a...

  4. 40 CFR 180.1294 - Trichoderma asperellum strain ICC 012; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma asperellum strain ICC 012... RESIDUES IN FOOD Exemptions From Tolerances § 180.1294 Trichoderma asperellum strain ICC 012; exemption from the requirement of a tolerance. Trichoderma asperellum strain ICC 012 is exempted from the...

  5. 40 CFR 180.1293 - Trichoderma gamsii strain ICC 080; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma gamsii strain ICC 080... RESIDUES IN FOOD Exemptions From Tolerances § 180.1293 Trichoderma gamsii strain ICC 080; exemption from the requirement of a tolerance. Trichoderma gamsii strain ICC 080 is exempted from the requirement of...

  6. Ecological plasticity of Trichoderma fungi in leached chernozem

    Science.gov (United States)

    Svistova, I. D.; Senchakova, T. Yu.

    2010-03-01

    The autecological properties of Trichoderma fungi ecotypes isolated from the leached chernozem of the forest-steppe zone of the European part of Russia have been studied. We were the first who carried out the complex study of the synecological relations of micromycetes of such kinds in a system including the soil, microbial community, and plants, i.e., their relations with soil saprotrophic fungi, bacteria, actinomycetes, plants, and pathogenic fungi. It was shown that the ecological plasticity of the Trichoderma genus in the soil of this zone is determined by its growth rate, the optimum pH and temperature, the biosynthesis of extracellular hydrolytic enzymes, the biological action of mycotoxins, and the ability for parasitism. The efficiency of the introduction of Trichoderma species typical and atypical for the leached chernozem into this soil and their influence on the structure of the microbial community were evaluated. The T. pseudokoningii ecotype, which produces cellulolytic enzymes, is very promising for industrial biotechnology, and the T. harzianum ecotype can be used in soil biotechnology for the biocontrol of chernozem. The addition of a commercial trichodermin preparation into the chernozem damages the structure of its microbial community.

  7. Molecular characteristics of fungus trichoderma viride irradiated gamma rays

    International Nuclear Information System (INIS)

    Dadang Sudrajat; Nana Mulyana; Tri Retno DL; Rika Heriyani; Almaida

    2016-01-01

    Information about the genetic changes due to irradiation on the fungus Trichoderma viride is indispensable in order to improve the ability of these isolates for the delignification of lignocellulose. This study aims to determine the molecular characteristics of isolates fungus Trichoderma viride after irradiation with gamma rays through an approach expression of protein profiles and molecular markers random amplified polymorphic DNA (RAPD). Irradiation doses used in this study are 6 levels i.e 0; 75; 125; 250; 375; 500 and 750 Gy with a dose rate of 0.21 kGy / hour. Protein and DNA extraction isolate is done using the method of extracting phosphate buffer pH 7 and CTAB- phenol-chloroform extraction. Protein in the supernatant was analyzed by electrophoresis (SDS-gel polyacrylamide) to produce a protein fingerprint profile. Randomly amplified polymorphic DNA (RAPD) markers were used to estimate the genetic variations between 7 isolates of irradiated Trichoderma viride which were RAPD reactions using 3 random primers. The results showed that protein profiles generated by irradiation isolates and the control (no irradiation) gave a different pattern, especially at doses of irradiation 250-750 Gy based dendrogram analysis. DNA-RAPD profile showed a high genetic variation between the isolates were irradiated at a dose of 250; 375; 500 and 750 Gy and isolates the control (0 Gy); 75; 125 Gy with 5 cluster formation. Dendrogram analysis showed the coefficient of similarity between 0.62 to 0.68. (author)

  8. Kemampuan Ganoderma dan Trichoderma Mendekomposisi Serasah Acacia mangium (The Ability of Ganoderma and Trichoderma to Decompose Acacia mangium Litter)

    OpenAIRE

    SAMINGAN, Samingan

    2015-01-01

    Litter decomposition ability of fungi has an important role in forest floor ecosystem. The abilities of Ganoderma sp and Trichoderma sp to decompose Acacia mangium leaf litters at laboratory scale were observed. Litters from L and F layers in the field ca. 100 g were used as substrates in plastic bags. Each fungus was inoculating onto substrates and incubates at room temperature, then observed each month during six months. Weight losses (WL) of litter, lignin and cellulose contents during dec...

  9. [Antagonism of Trichoderma spp. to fungi caused root rot of Sophora tonkinensis].

    Science.gov (United States)

    Qin, Liu-yan; Jiang, Ni; Tang, Mei-qiong; Miao, Jian-hua; Li, Lin-xuan

    2011-04-01

    To study the antagonism of Trichoderma spp. to fungi S9(Fusarium solani)which caused root rot of Sophora tonkinensis and discuss the further develop prospects of microbial biological control in soil-borne diseases on Chinese herbal medicines. Antagonism of H2 (Trichoderma harsianum), M6 (Trichoderma viride) and K1 (Trichoderma koningii) to Fusarium solani were researched by growth rate and confront culture. And their mechanisms were discussed. H2 and M6 had obvious competitive advantage, the growth rate of which were 1.43-2.72 times and 1.43-1.95 times as S9 respectively. The space competitive advantage of K1 was relatively weak; the growth rate was slower than S9. The antagonism of three species of Trichoderma spp. to S9 was in varying degrees. The antagonism to S9 of M6 and H2 was better,the inhibition rate were 100% and 82.35% respectively, even cultivated S9 for three days in advance. And their inhibition indexes were both reached class I. The inhibition index and inhibition rate of K1 was respectively 46.36% and class IV. The Trichoderma spp. could cause S9 mycelium to appear some phenomenon just like fracture, constriction reduced, digestion, etc. which were observed under the microscope. Trichoderma harsianum and Trichoderma viride showed the further develop prospects in the fight against soil-borne disease on Chinese herbal medicines.

  10. Methods for the Evaluation of the Bioactivity and Biocontrol Potential of Species of Trichoderma.

    Science.gov (United States)

    Steyaert, Johanna; Hicks, Emily; Kandula, Janaki; Kandula, Diwakar; Alizadeh, Hossein; Braithwaite, Mark; Yardley, Jessica; Mendoza-Mendoza, Artemio; Stewart, Alison

    2016-01-01

    Members of the genus Trichoderma comprise the majority of commercial fungal biocontrol agents of plant diseases. As such, there is a wealth of information available on the analysis of their biocontrol potential and the mechanisms behind their superior abilities. This chapter aims to summarize the most common methods utilized within a Trichoderma biocontrol program for assessing the biological properties of individual strains.

  11. Potensi Trichoderma Spp. Sebagai Agens Pengendali Fusarium Spp. Penyebab Penyakit Layu Pada Tanaman Stroberi

    OpenAIRE

    Dwiastuti, Mutia Erti; Fajri, Melisa N; Yunimar, Yunimar

    2015-01-01

    Layu yang disebabkan oleh Fusarium spp. merupakan salah satu penyakit penting tanaman stroberi (Fragaria x ananassa Dutch.) di daerah subtropika, yang dapat menggagalkan panen. Penelitian bertujuan untuk mempelajari potensi Trichoderma spp. dalam mengendalikan Fusarium spp. Isolat Trichoderma spp. diisolasi dari rizosfer tanaman stroberi dan Fusarium spp. diisolasi dari tanaman stroberi yang mengalami layu fusarium. Isolat cendawan dimurnikan, dikarakterisasi, dan dibandingkan dengan isolat c...

  12. New insights into the organization and regulation of trichothecene biosynthetic genes in Trichoderma

    Science.gov (United States)

    Collectively, species of the genus Trichoderma can produce numerous structurally diverse secondary metabolites (SM). This ability is conferred by the presence of SM biosynthetic gene clusters in their genomes. Species of Trichoderma in the Brevicompactum clade are able to produce trichothecenes, a f...

  13. Aplikasi Trichoderma Harzianum Terhadap Hasil Tiga Varietas Kentang Di Dataran Medium

    OpenAIRE

    Hermawan, Rifqi; Maghfoer, Mochammad Dawam; Wardiyati, Tatik

    2013-01-01

    Faktor kelestarian lingkungan menyebabkan ekstensifikasi lahan pertanian kentang di dataran tinggi tidak dapat dilakukan, sehingga dataran medium menjadi alternatif eksplorasi lahan budidaya kentang. Untuk meningkatkan produktivitas kentang di dataran medium disamping pemilihan bibit yang tepat adalah dengan menggunakan Trichoderma harzianum. Trichoderma harzianum selain berperan antagonis terhadap pathogen, juga berperan dalam meningkatkan pertumbuhan tanaman melalui produksi auksin dan pros...

  14. Combined inoculation of Pseudomonas fluorescens and Trichoderma harzianum for enhancing plant growth of vanilla (Vanilla planifolia).

    Science.gov (United States)

    Sandheep, A R; Asok, A K; Jisha, M S

    2013-06-15

    This study was conducted to evaluate the plant growth promoting efficiency of combined inoculation of rhizobacteria on Vanilla plants. Based on the in vitro performance of indigenous Trichoderma spp. and Pseudomonas spp., four effective antagonists were selected and screened under greenhouse experiment for their growth enhancement potential. The maximum percentage of growth enhancement were observed in the combination of Trichoderma harzianum with Pseudomonas fluorescens treatment followed by Pseudomonas fluorescens, Trichoderma harzianum, Pseudomonas putida and Trichoderma virens, respectively in decreasing order. Combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens registered the maximum length of vine (82.88 cm), highest number of leaves (26.67/plant), recorded the highest fresh weight of shoots (61.54 g plant(-1)), fresh weight of roots (4.46 g plant(-1)) and dry weight of shoot (4.56 g plant(-1)) where as the highest dry weight of roots (2.0806 g plant(-1)) were achieved with treatments of Pseudomonas fluorescens. Among the inoculated strains, combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens recorded the maximum nitrogen uptake (61.28 mg plant(-1)) followed by the combined inoculation of Trichoderma harzianum (std) and Pseudomonas fluorescens (std) (55.03 mg plant(-1)) and the highest phosphorus uptake (38.80 mg plant(-1)) was recorded in dual inoculation of Trichoderma harzianum and Pseudomonas fluorescens.

  15. Effectiveness of composts and Trichoderma strains for control of Fusarium wilt of tomato

    Directory of Open Access Journals (Sweden)

    Yousra TAGHDI

    2015-09-01

    Full Text Available Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL is a major limiting disease in tomato production in Morocco. Commercial and locally produced Moroccan composts and peat were found to reduce Fusarium wilt in tomato plants. We explored the presence of Trichoderma strains in these materials, and in six soils sampled in the North West of Morocco, where a low incidence of Fusarium wilt had been previously observed. The most abundant Trichoderma-like fungus was selected from each soil, compost or peat sample. Twelve Trichoderma strains were isolated and identified molecularly. Trichoderma asperellum CT9 and Trichoderma virens ST11 showed the greatest overall antagonistic activity against FOL, Rhizoctonia solani, Botrytis cinerea and Pythium ultimum. The three strains evaluated in in planta tests, CT9, ST11 and T. virens ST10, reduced tomato Fusarium wilt, and strain ST11  also promoted growth of tomato plants.

  16. Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases

    International Nuclear Information System (INIS)

    Naher, L.; Ismail, A.

    2014-01-01

    Trichoderma spp. are mainly asexual fungi that are present in all types of agricultural soils and also in decaying wood. The antagonistic activity of Trichoderma species showed that it is parasitic on many soil-borne and foliage pathogens. The fungus is also a decomposer of cellulosic waste materials. Recent discoveries show that the fungi not only act as biocontrol agents, but also stimulate plant resistance, and plant growth and development resulting in an increase in crop production. The biocontrol activity involving mycoparasitism, antibiotics and competition for nutrients, also induces defence responses or systemic resistance responses in plants. These responses are an important part of Trichoderma in biocontrol program. Currently, Trichoderma spp., is being used to control plant diseases in sustainable diseases management systems. This paper reviews the published information on Trichoderma spp., and its biocontrol activity in sustainable disease management programs. (author)

  17. Penggunaan Jamur Antagonis Trichoderma SP. Dan Gliocladium SP. Untuk Mengendalikan Penyakit Layu Fusarium Pada Tanaman Bawang Merah (Allium Ascalonicum L.)

    OpenAIRE

    Arie Ramadhina, Arie Ramadhina; Lisnawita, Lisnawita; Lubis, Lahmuddin

    2013-01-01

    The use of antagonism fungus of Trichoderma sp. and Gliocladium sp. for controlling wilt(Fusarium oxysporum) in red onion plants. The aim of the research was to know the effectiviness ofantagonism fungus of Trichoderma sp. and Gliocladium sp. in controlling wilt in red onion plants.The research used non-factorial RAK (random group design) with eight treatments: control, 10grams of F. oxysporum, 12 grams of Trichoderma sp., 18 grams of Trichoderma sp., 24 grams ofTrichoderma sp., and 12 grams ...

  18. Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens.

    Science.gov (United States)

    Zachow, Christin; Berg, Christian; Müller, Henry; Monk, Jana; Berg, Gabriele

    2016-10-10

    Trichoderma strains exhibit enormous potential for applications in biotechnology, in particular as biocontrol agents against pathogens. However, little is known about the diversity of plant-associated Trichoderma communities at a global scale and their antagonistic spectrum. In order to gather information about structure and function, we compared Trichoderma biomes of endemic (Aeonium, Diospyros, Hebe, Rhododendron) and cosmopolitan plants (Zea mays) in a global study encompassing the area Northwest Africa to New Zealand via the European Alps and Madagascar. At the quantitative level we found no differences between cosmopolitan and endemic plants. Statistically significant differences were detected at the qualitative level: Trichoderma populations of endemic plants were highly specific and diverse with hot spots appearing in Madagascar and New Zealand. By contrast, maize plants from all sites shared the majority of Trichoderma species (65.5%). Interestingly, the high above ground biodiversity in ecosystems containing endemic plants was confirmed by a high below ground Trichoderma diversity. Despite the differences, we found a global Trichoderma core community shared by all analysed plants, which was dominated by T. koningii and T. koningiopsis. Amplicon-based network analyses revealed a high similarity between maize Trichoderma grown world-wide and distinct populations of endemic plants. Furthermore, Trichoderma strains from endemic plants showed a higher antagonistic activity against fungal pathogens compared to maize-associated strains. Our results showed that endemic plants are associated with a specific Trichoderma microbiome which possesses a high antagonistic activity indicating that it has potential to be used for biocontrol purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Trichoderma Biocontrol: Signal Transduction Pathways Involved in Host Sensing and Mycoparasitism

    Directory of Open Access Journals (Sweden)

    Susanne Zeilinger

    2007-01-01

    Full Text Available Fungi of the genus Trichoderma are used as biocontrol agents against several plant pathogenic fungi like Rhizoctonia spp., Pythium spp., Botrytis cinerea and Fusarium spp. which cause both soil-borne and leaf- or flower-borne diseases of agricultural plants. Plant disease control by Trichoderma is based on complex interactions between Trichoderma, the plant pathogen and the plant. Until now, two main components of biocontrol have been identified: direct activity of Trichoderma against the plant pathogen by mycoparasitism and induced systemic resistance in plants. As the mycoparasitic interaction is host-specific and not merely a contact response, it is likely that signals from the host fungus are recognised by Trichoderma and provoke transcription of mycoparasitism-related genes.In the last few years examination of signalling pathways underlying Trichoderma biocontrol started and it was shown that heterotrimeric G-proteins and mitogen-activated protein (MAP kinases affected biocontrol-relevant processes such as the production of hydrolytic enzymes and antifungal metabolites and the formation of infection structures. MAPK signalling was also found to be involved in induction of plant systemic resistance in Trichoderma virens and in the hyperosmotic stress response in Trichoderma harzianum. Analyses of the function of components of the cAMP pathway during Trichoderma biocontrol revealed that mycoparasitism-associated coiling and chitinase production as well as secondary metabolism are affected by the internal cAMP level; in addition, a cross talk between regulation of light responses and the cAMP signalling pathway was found in Trichoderma atroviride.

  20. The potentiality of Trichoderma harzianum in alleviation the adverse effects of salinity in faba bean plants.

    Science.gov (United States)

    Abd El-Baki, G K; Mostafa, Doaa

    2014-12-01

    The interaction between sodium chloride and Trichoderma harzianum (T24) on growth parameters, ion contents, MDA content, proline, soluble proteins as well as SDS page protein profile were studied in Vicia faba Giza 429. A sharp reduction was found in fresh and dry mass of shoots and roots with increasing salinity. Trichoderma treatments promoted the growth criteria as compared with corresponding salinized plants. The water content and leaf area exhibited a marked decrease with increasing salinity. Trichoderma treatments induced a progressive increase in both parameters. Both proline and MDA contents were increased progressively as the salinity rose in the soil. Trichoderma treatments considerably retarded the accumulation of both parameters in shoots and roots. Both Na+ and K+ concentration increased in both organs by enhancing salinity levels. The treatment with Trichoderma harzianum enhanced the accumulation of both ions. Exposure of plants to different concentrations of salinity, or others treated with Trichoderma harzianum produced marked changes in their protein pattern. Three types of alterations were observed: the synthesis of certain proteins declined significantly, specific synthesis of certain other proteins were markedly observed and synthesis of a set specific protein was induced de novo in plant treated with Trichoderma harzianum.

  1. Antagonism of Trichoderma isolates against Leucoagaricus gongylophorus (Singer) Möller.

    Science.gov (United States)

    do Nascimento, Mariela Otoni; de Almeida Sarmento, Renato; Dos Santos, Gil Rodrigues; de Oliveira, Cléia Almeida; de Souza, Danival José

    2017-08-01

    Filamentous fungi from the genus Trichoderma are commonly found in soil. They are considered facultative mycoparasites, and are antagonists of other fungi such as the cultivar of leaf-cutting ants (Leucoagaricus gongylophorus). The aim of the present study was to bioprospect Trichoderma spp. from different soils collected from Gurupi, Tocantins, Brazil, for antagonistic effects against the mutualistic fungus of leaf-cutting ants. To isolate filamentous fungi, samples were collected from six locations. Preliminarily, isolates were identified by morphological analysis as belonging to Trichoderma. Trichoderma spp. had their internal transcribed spacer region (ITS) of ribosomal RNA genes (rRNA) sequenced to confirm species-level taxonomy. L. gongylophorus was isolated from a laboratory ant colony. Antagonistic properties of seven isolates of Trichoderma against L. gongylophorus were measured using paired disks in Petri dishes with potato dextrose agar medium (PDA). All Trichoderma isolates inhibited the growth of L. gongylophorus in Petri dishes. Isolate 2 of Trichoderma spirale group exhibited slow mycelial growth in the Petri dish, and a high rate of inhibition against L. gongylophorus. This isolate is a promising fungus for field tests of biological control methods for leaf-cutting ants. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An assessment of adaptive and antagonistic properties of Trichoderma sp. strains in vegetable waste composts

    Directory of Open Access Journals (Sweden)

    Wolna-Maruwka Agnieszka

    2017-12-01

    Full Text Available The experiment consisted in monitoring the count of moulds and three selected Trichoderma sp. isolates (T1 - Trichoderma atroviride, T2 - Trichoderma harzianum, T3 - Trichoderma harzianum in vegetable (onion and tomato waste composted with additives (straw, pig manure. Additionally, the aim of the study was to determine the type of interaction occurring between autochthonous fungi isolated from composts after the end of the thermophilic phase and Trichoderma sp. strains applied in the experiment. Number of microorganisms was determined by the plate method, next the identification was confirmed. The rating scale developed by Mańka was used to determine the type of interactions occurring between microorganisms. The greatest count of moulds in onion waste composts was noted in the object which had simultaneously been inoculated with two strains T1 - T. atroviride and T3 - T. harzianum. The greatest count of moulds was noted in the tomato waste composts inoculated with T2 - T. harzianum strain. Microscope identification revealed that Penicillum sp., Rhizopus sp., Alternaria sp. and Mucor sp. strains were predominant in onion waste composts. In tomato waste composts Penicillium was the predominant genus, followed by Rhizopus. The test of antagonism revealed the inhibitory effect of Trichoderma isolates on most autochthonous strains of moulds. Tomato waste composts proved to be better substrates for the growth and development of Trichoderma sp. isolates. The results of the study show that vegetable waste can be used in agriculture as carriers of antagonistic microorganisms.

  3. Trichoderma volatiles effecting Arabidopsis

    DEFF Research Database (Denmark)

    Ramadan, Metwaly; Gigolashvili, Tamara; Grosskinsky, Dominik Kilian

    2015-01-01

    , camalexin, and increased expression of defense-related genes. We conclude that A. thaliana perceives the Trichoderma volatiles as stress compounds and subsequently initiates multilayered adaptations including activation of signaling cascades to withstand this environmental influence. The prominent headspace...... volatile of T. asperellum IsmT5 was identified to be 6-pentyl-α-pyrone (6PP), which was solely applied to A. thaliana to verify the growth and defense reactions. Most noticeable is that A. thaliana preexposed to 6PP showed significantly reduced symptoms when challenged with Botrytis cinerea and Alternaria...

  4. Trichoderma strains- Silybum marianum hairy root cultures interactions

    Directory of Open Access Journals (Sweden)

    T. Hasanloo

    2015-03-01

    Full Text Available Background and objectives: Silymarin is a unique flavonoid complex with documented hepatoprotective properties. Silybum  marianum hairy root culture as a source for producing silymarin has been an important strategy for study the cell signaling pathway. In the present investigation Trichoderma strains- Silybum marianum hairy root cultures interactions have been studied. Methods: The effects of two Trichoderma Strains (KHB and G46-7 (0, 0.5, 1, 2 and 4 mg/ 50 mL culture in 6 different exposure times (0, 24, 48, 72, 96 and 120 h have been investigated on flavonolignans production. The flavonolignans were analyzed by High Performance Liquid Chromatography method. Cell signaling pathway was evaluated by determination of H2O2 content, peroxidase and ascorbate peroxidase activities. Results:The elicitation effects of two Trichoderma Strains (KHB and G46-7 were examined on flavonolignans accumulation and the activation of cell defense system in S. marianum hairy root cultures. The results indicated that the highest silymarin accumulation (0.45 and 0.33 mg/g DW was obtained in media elicited with 0.5 mg/50 mL cultures of T. harzianum Strains (KHB and G46-3, respectively after 120 h. Feeding time experiments indicated that a significant higher content of silymarin production was achieved after 120 and 72 h in media treated with 0.5 mg/50 mL cultures of KHB and G46-3, respectively. Our results showed that S. marianum treated by KHB strain, increased taxifolin, silychristin, isosilybin and silydianin productions significantly. The H2O2 content in the control hairy root cultures remained lower than the treated cultures. There was significant enhancement in both peroxidase and ascorbate peroxidase activities in treated hairy roots reaching a peak after 72 h. Conclusion: These findings suggested that some Trichoderma strains are positive elicitors for promoting silymarin accumulation in S. marianum hairy root cultures. The results also suggested the presence

  5. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass

    Directory of Open Access Journals (Sweden)

    Fengge Zhang

    2018-04-01

    Full Text Available In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly (p = 0.019 increased following amendment with 9,000 kg ha−1 of Trichoderma biofertilizer (composted cattle manure + inoculum compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha−1 biofertilizer. This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha−1 increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella. Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella. According to our structural equation modeling (SEM, Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  6. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass.

    Science.gov (United States)

    Zhang, Fengge; Huo, Yunqian; Cobb, Adam B; Luo, Gongwen; Zhou, Jiqiong; Yang, Gaowen; Wilson, Gail W T; Zhang, Yingjun

    2018-01-01

    In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly ( p = 0.019) increased following amendment with 9,000 kg ha -1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha -1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha -1 ) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella . Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella . According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  7. IDENTIFICAÇÃO E UTILIZAÇÃO DE Trichoderma spp. ARMAZENADOS E NATIVOS NO BIOCONTROLE DE Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    GERARDA BEATRIZ PINTO DA SILVA

    2015-01-01

    Full Text Available The fungus Sclerotinia sclerotiorum , handles significant losses in lettuce production. Being a soil borne fungus, its management is difficult, and an alternative is the use of biological control using species of the Trichoderma genus. Thus, the objectives of this study were to identify native species of Trichoderma spp. presents in the soil with (CP and without white mold (SP, evaluate the growth rate and in vitro antagonism of Trichoderma spp. against S. sclerotiorum and to verify the biocontrol potential of Trichoderma spp. microbi- olized lettuce seeds, growing in substrate infested with S. sclerotiorum . Trichoderma spp. isolates were obtained from areas with and without history of white mold or stored in water. Mycelial growth rate and sporu- lation of the Trichoderma spp. isolates and control of Trichoderma spp. versus S. sclerotiorum in the in vitro essays. For the in vivo essay, lettuce seeds were microbiolized with Trichoderma spp. and the substrate was infested with S. sclerotiorum . The native isolates of Trichoderma identified belong to T. koningiopsis and T. asperellum species. The CP isolates had higher mycelial growth rates when compared to the SP isolates and stored while the stored isolates showed better responses in confrontation. The application of Trichoderma spp. promoted higher seedlings quality compared to control, as well as good seedlings development in the presence of the pathogen.

  8. Parasitism of Rhizoctonia solani by strains of Trichoderma spp. Parasitismo de Rhizoctonia solani por linhagens de Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Itamar Soares de Melo

    2000-03-01

    Full Text Available Rhizoctonia solani causes serious diseases in a wide range of plant species. The fungus Trichoderma has been shown to be particularly effective in the control of the pathogen. Thus, this research was carried out to screen fourteen Trichoderma strains against R. solani in vitro. All strains tested inhibited the growth of R. solani. Three T. koningii strains produced toxic metabolites with strong activity against R. solani, inhibiting the mycelial growth by 79%. T. harzianum, Th-9 reduced the viability of sclerotia of R. solani by 81.8% and T. koningii, TK-5 reduced by 53%. Electron microscopic observations revealed that all T. harzianum strains interacted with R. solani. Th-9 grew toward and coiled around the host cells, penetrating and destroying the hyphae. Penetration of host cells was apparently accomplished by mechanical activity.Rhizoctonia solani é um dos mais destrutivos patógenos de plantas cultivadas. Métodos alternativos de controle têm sido empregados com sucesso, particularmente, utilizando-se o fungo Trichoderma. Este trabalho visou, portanto, selecionar linhagens efetivas desse micoparasita contra o patógeno. Onze linhagens de T. harzianum e três de T. koningii foram testadas in vitro com relação ao parasitismo de hifas e de escleródios e produção de metabólitos tóxicos. Todas as linhagens de Trichoderma spp. inibiram o crescimento miceliano de R. solani e as três linhagens de T. koningii produziram potentes antibióticos, que inibiram mais de 79% o crescimento do patógeno. Uma linhagem de T. harzianum, Th-9, reduziu a viabilidade dos escleródios em 81,8% e uma de T. koningii em 53%. Microscopia eletrônica de varredura revelou que todas as linhagens de T. harzianum parasitaram R. solani enquanto nenhuma linhagem de T. koningii interagiu com R. solani, possivelmente, devido à forte inibição causada pelos metabólitos que impediu o contato entre os dois fungos. T. harzianum, Th-9, cresceu ao redor, penetrou e

  9. Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil.

    Science.gov (United States)

    Al-Sadi, Abdullah M; Al-Oweisi, Fatma A; Edwards, Simon G; Al-Nadabi, Hamed; Al-Fahdi, Ahmed M

    2015-07-28

    Trichoderma is one of the most common fungi in soil. However, little information is available concerning the diversity of Trichoderma in soil with no previous history of cultivation. This study was conducted to investigate the most common species and the level of genetic relatedness of Trichoderma species from uncultivated soil in relation to cultivated soil and potting media. A total of 24, 15 and 13 Trichoderma isolates were recovered from 84 potting media samples, 45 cultivated soil samples and 65 uncultivated soil samples, respectively. Analysis based on the internal transcribed spacer region of the ribosomal RNA (rRNA) and the translation elongation factor gene (EF1) indicated the presence of 9 Trichoderma species: T. harzianum (16 isolates), T. asperellum (13), T. citrinoviride (9), T. orientalis (3), T. ghanense (3), T. hamatum (3), T. longibrachiatum (2), T. atroviride (2), and T. viride (1). All species were found to occur in potting media samples, while five Trichoderma species were recovered from the cultivated soils and four from the uncultivated soils. AFLP analysis of the 52 Trichoderma isolates produced 52 genotypes and 993 polymorphic loci. Low to moderate levels of genetic diversity were found within populations of Trichoderma species (H = 0.0780 to 0.2208). Analysis of Molecular Variance indicated the presence of very low levels of genetic differentiation (Fst = 0.0002 to 0.0139) among populations of the same Trichoderma species obtained from the potting media, cultivated soil and uncultivated soil. The study provides evidence for occurrence of Trichoderma isolates in soil with no previous history of cultivation. The lack of genetic differentiation among Trichoderma populations from potting media, cultivated soil and uncultivated soil suggests that some factors could have been responsible for moving Trichoderma propagules among the three substrates. The study reports for the first time the presence of 4 Trichoderma species in Oman: T

  10. Biodegradation of wheat straw by different isolates of Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    A.R. Astaraei

    2016-04-01

    Full Text Available Efficient use of agricultural wastes due to their recycling and possible production of cost effective materials, have economic and ecological advantages. A biological method used for degrading agricultural wastes is a new method for improving the digestibility of these materials and favoring the ease of degradation by other microorganisms. This research was carried out to study the possible biodegradation of wheat straw by different species and isolates of Trichoderma fungi. Two weeks after inoculation of wheat straw by different isolates, oven drying in 75◦C, the samples were weighted and (Acid Detergent Fiber ADF and NDF (Neutral Detergent Fiber reductions of each sample under influence of fungal growth were compared with their controls. The results showed that biodegradation of wheat straw were closely related to fungi species and also its isolates. The Reductions in NDF and ADF of wheat straw by T. reesei and T. longibrachiatum were more pronounced compared to others, although T. reesei was superior in ADF of wheat straw reduction. It is concluded that for improving in digestibility and also shortening the timing of composting process, it is recommended to treat the wheat straw with Trichoderma fungi and especially with T. reesei and T. longibrachiatum that performed well and had excellent efficiencies.

  11. Energetic efficiency of complex substrate utilization by Trichoderma viride

    Energy Technology Data Exchange (ETDEWEB)

    Leite, M; Apine, A; Zeltina, M; Shvinka, J [AN Latvijskoj SSR, Riga (USSR). August Kirchstein Inst. of Microbiology

    1989-01-01

    The efficiency of carbon substrate utilization is evaluated as the thermodynamic efficiency (eta{sub x}) of microbial growth. Three methods based on mass-energy balance are used for the efficiency studies of complex substrates (straw, plant juices, lye) utilization by microfungi Trichoderma viride. 1. According to substrate and biomass balance eta{sub x}=0.55, 0.37 and 0.36 for Trichoderma viride growth on alkali pretreated wheat straw during 23, 34 and 50 hours. Cellulose biodegradation increases with cultivation time. However, the efficiency of cellulose utilization for cell mass growth decreases at the same time. 2. In accordance with oxygen-balance calculations eta{sub x}=0.75 and 0.71 for the same processes. The discrepancy in results from the above two methods probably can be explained by the following: A. Substrate and biomass balance gives underestimated results. B. Oxygen balance method includes the part of energy for extracellular product formation and therefore eta{sub x} can be overestimated. C. The efficiency of complex soluble substrate utilization (lye, green juice, deproteinized brown plant juice) tested by means of pulse method gives the values of eta{sub x}=0.72-0.88. Similar high estimates of eta{sub x} in C-limited batch culture are observed for soluble carbohydrates (glucose, galactose, lactose, xylose) but not for acetate. The pulse method is advantageous for testing the 'true' efficiency of carbon substrate utilization in a definite physiological environment. (orig.).

  12. Trichoderma harzianum might impact phosphorus transport by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    De Jaeger, Nathalie; de la Providencia, Ivan E; de Boulois, Hervé Dupré; Declerck, Stéphane

    2011-09-01

    Trichoderma sp. is a biocontrol agent active against plant pathogens via mechanisms such as mycoparasitism. Recently, it was demonstrated that Trichoderma harzianum was able to parasitize the mycelium of an arbuscular mycorrhizal (AM) fungus, thus affecting its viability. Here, we question whether this mycoparasitism may reduce the capacity of Glomus sp. to transport phosphorus ((33)P) to its host plant in an in vitro culture system. (33)P was measured in the plant and in the fungal mycelium in the presence/absence of T. harzianum. The viability and metabolic activity of the extraradical mycelium was measured via succinate dehydrogenase and alkaline phosphatase staining. Our study demonstrated an increased uptake of (33)P by the AM fungus in the presence of T. harzianum, possibly related to a stress reaction caused by mycoparasitism. In addition, the disruption of AM extraradical hyphae in the presence of T. harzianum affected the (33)P translocation within the AM fungal mycelium and consequently the transfer of (33)P to the host plant. The effects of T. harzianum on Glomus sp. may thus impact the growth and function of AM fungi and also indirectly plant performance by influencing the source-sink relationship between the two partners of the symbiosis. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Trichoderma harzianum enhances tomato indirect defense against aphids.

    Science.gov (United States)

    Coppola, Mariangela; Cascone, Pasquale; Chiusano, Maria Luisa; Colantuono, Chiara; Lorito, Matteo; Pennacchio, Francesco; Rao, Rosa; Woo, Sheridan Lois; Guerrieri, Emilio; Digilio, Maria Cristina

    2017-12-01

    Many fungal root symbionts of the genus Trichoderma are well-known for their beneficial effects on agronomic performance and protection against plant pathogens; moreover, they may enhance protection from insect pests, by triggering plant resistance mechanisms. Defense barriers against insects are induced by the activation of metabolic pathways involved in the production of defense-related plant compounds, either directly active against herbivore insects, or exerting an indirect effect, by increasing the attraction of herbivore natural enemies. In a model system composed of the tomato plant, the aphid Macrosiphum euphorbiae and the parasitoid Aphidius ervi, plant metabolic changes induced by Trichoderma harzianum and their effects on higher trophic levels have been assessed. T. harzianum T22 treatments induce a primed state that upon aphid attacks leads to an increased attraction of aphid parasitoids, mediated by the enhanced production of volatile organic compounds (VOCs) that are known to induce Aphidius ervi flight. Transcriptome sequencing of T22-treated plants infested by aphids showed a remarkable upregulation of genes involved in terpenoids biosynthesis and salicylic acid pathway, which are consistent with the observed flight response of A. ervi and the VOC bouquet profile underlying this behavioral response. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  14. POTENCIAL FARMACOINDUSTRIAL DE Trichoderma harzianum PARA FINS FARMACOTERAPÊUTICOS

    Directory of Open Access Journals (Sweden)

    Luís Fernando Albarello Gellen

    2014-12-01

    Full Text Available Linhagens de Trichoderma estão bem difundidas nos processos de controle de fitopatógenos, além disto, para promoção do desenvolvimento e crescimento das culturas onde são inoculados, estes benefícios dão-se pela gama de processos desempenhados por este organismo, os processos são classificados em parasitismo, antibiose e competição, além de secretarem produtos enzimáticos com ações degradantes, compostos voláteis e antimicrobianos. Por meio de testes de produção enzimática, confronto em placa, metabólitos voláteis e sensibilização do agente, os isolados de Trichoderma harzianum mostraram-se como um potente produtor de substâncias antimicrobianas e antifúngicas perante Sthaphylococcus aureus, Streptococcus pyogenes, E. coli, Pseudomonas aeruginosa, E. faecalis e Rhodotorula sp., Candida albicans, Candida parapsilosis e Candida lusitaniae. Palavras-chave: antimicrobianos, antifúngicas, metabólitos, sensibilização. DOI: http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v4n4p91-96

  15. TRICHODERMA SPECIES ASSOCIATED WITH ACROMYRMEX ANT NESTS FROM ARGENTINA AND FIRST REPORT OF TRICHODERMA LENTIFORME FOR THE COUNTRY

    Directory of Open Access Journals (Sweden)

    Natalia G. Armando

    2017-01-01

    Full Text Available Este trabajo tiene como objetivo la identificación morfológica y molecular de cinco especies de Trichoderma asociadas con los nidos de hormigas cortadoras de hojas del género Acromyrmex presentes en Argentina. Las especies identificadas fueron: T. lentiforme, T. inhamatum, T. virens, T. koningiopsis y T. aff. neotropicale resultando éste el primer registro de T. lentiforme y T. inhamatum asociados a hormigas cortadoras de hojas Acromyrmex, en particular Acromyrmex lobicornis y Acromyrmex lundii para el primero y de A. lobicornis para el segundo. Además T. lentiforme representa el primer registro para la Argentina. En este trabajo se amplían medidas del conidióforo y conidios y se aportan datos adicionales sobre la distribución de las especies de Trichoderma en el país. Se ilustran con fotografías los conidióforos, células conidiógenas, conidios y el fenotipo de la colonia para cada especie.

  16. Truncation of a mannanase from Trichoderma harzianum improves its enzymatic properties and expression efficiency in Trichoderma reesei.

    Science.gov (United States)

    Wang, Juan; Zeng, Desheng; Liu, Gang; Wang, Shaowen; Yu, Shaowen

    2014-01-01

    To obtain high expression efficiency of a mannanase gene, ThMan5A, cloned from Trichoderma harzianum MGQ2, both the full-length gene and a truncated gene (ThMan5AΔCBM) that contains only the catalytic domain, were expressed in Trichoderma reesei QM9414 using the strong constitutive promoter of the gene encoding pyruvate decarboxylase (pdc), and purified to homogeneity, respectively. We found that truncation of the gene improved its expression efficiency as well as the enzymatic properties of the encoded protein. The recombinant strain expressing ThMan5AΔCBM produced 2,460 ± 45.1 U/ml of mannanase activity in the culture supernatant; 2.3-fold higher than when expressing the full-length ThMan5A gene. In addition, the truncated mannanase had superior thermostability compared with the full-length enzyme and retained 100 % of its activity after incubation at 60 °C for 48 h. Our results clearly show that the truncated ThMan5A enzyme exhibited improved characteristics both in expression efficiency and in its thermal stability. These characteristics suggest that ThMan5AΔCBM has potential applications in the food, feed, paper, and pulp industries.

  17. Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride.

    Science.gov (United States)

    Brunner, Kurt; Omann, Markus; Pucher, Marion E; Delic, Marizela; Lehner, Sylvia M; Domnanich, Patrick; Kratochwill, Klaus; Druzhinina, Irina; Denk, Dagmar; Zeilinger, Susanne

    2008-12-01

    Galpha subunits act to regulate vegetative growth, conidiation, and the mycoparasitic response in Trichoderma atroviride. To extend our knowledge on G protein signalling, we analysed G protein-coupled receptors (GPCRs). As the genome sequence of T. atroviride is not publicly available yet, we carried out an in silico exploration of the genome database of the close relative T. reesei. Twenty genes encoding putative GPCRs distributed over eight classes and additional 35 proteins similar to the Magnaporthe grisea PTH11 receptor were identified. Subsequently, four T. atroviride GPCR-encoding genes were isolated and affiliated to the cAMP receptor-like family by phylogenetic and topological analyses. All four genes showed lowest expression on glycerol and highest mRNA levels upon carbon starvation. Transcription of gpr3 and gpr4 responded to exogenously added cAMP and the shift from liquid to solid media. gpr3 mRNA levels also responded to the presence of fungal hyphae or cellulose membranes. Further characterisation of mutants bearing a gpr1-silencing construct revealed that Gpr1 is essential for vegetative growth, conidiation and conidial germination. Four genes encoding the first GPCRs described in Trichoderma were isolated and their expression characterized. At least one of these GPCRs is important for several cellular processes, supporting the fundamental role of G protein signalling in this fungus.

  18. Efficacité de l'agent antagoniste Trichoderma harzianum sur ...

    African Journals Online (AJOL)

    Efficacité de l'agent antagoniste Trichoderma harzianum sur Fusarium oxysporum f. sp. lycopersiciagent pathogène de la tomate. LS Gnancadja, DHE Tonon, EMO Faton, KO Douro Kpindou, E Dannon, A Akoegninou ...

  19. Trichoderma theobromicola and T. paucisporum: two new species isolated from cacao in South America.

    Science.gov (United States)

    Samuels, Gary J; Suarez, Carmen; Solis, Karina; Holmes, Keith A; Thomas, Sarah E; Ismaiel, Adnan; Evans, Harry C

    2006-04-01

    Trichoderma theobromicola and T. paucisporum spp. nov. are described. Trichoderma theobromicola was isolated as an endophyte from the trunk of a healthy cacao tree (Theobroma cacao, Malvaceae) in Amazonian Peru; it sporulates profusely on common mycological media. Trichoderma paucisporum is represented by two cultures that were obtained in Ecuador from cacao pods partially infected with frosty pod rot, Moniliophthora roreri; it sporulates sporadically and most cultures remain sterile on common media and autoclaved rice. It sporulates more reliably on synthetic low-nutrient agar (SNA) but produces few conidia. Trichoderma theobromicola was reintroduced into cacao seedlings through shoot inoculation and was recovered from stems but not from leaves, indicating that it is an endophytic species. Both produced a volatile/diffusable antibiotic that inhibited development of M. roreri in vitro and on-pod trials. Neither species demonstrated significant direct in vitro mycoparasitic activity against M. roreri.

  20. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production.

    Science.gov (United States)

    Qualhato, Thiago Fernandes; Lopes, Fabyano Alvares Cardoso; Steindorff, Andrei Stecca; Brandão, Renata Silva; Jesuino, Rosália Santos Amorim; Ulhoa, Cirano José

    2013-09-01

    Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase.

  1. Ligninolytic enzymes in the coal solubilizing deuteromycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Moenkemann, H.; Scheel, T.; Hoelker, U.; Ludwig, S.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst.

    1997-12-31

    Evidence is presented for the lignite induced expression of lignin peroxidases, manganese-dependent peroxidases, laccases and glyoxal oxidases in the coal solubilizing fungi Trichoderma atroviride and Fusarium oxysporum under different growth conditions. (orig.)

  2. The cellulases of Trichoderma viride : mode of action and application in biomass conversion

    NARCIS (Netherlands)

    Beldman, G.

    1986-01-01

    Beet pulp and potato fibre were liquefied and saccharified with a combination of cellulase from Trichodermaviride and pectinase from Aspergillusniger . Cell wall polysaccharides were hydrolysed extensively. The application

  3. Biocontrol efficacy of different isolates of Trichoderma against soil borne pathogen Rhizoctonia solani.

    Science.gov (United States)

    Asad, Saeed Ahmad; Ali, Naeem; Hameed, Abdul; Khan, Sabaz Ali; Ahmad, Rafiq; Bilal, Muhammad; Shahzad, Muhammad; Tabassum, Ayesha

    2014-01-01

    In this study, the biocontrol abilities of water-soluble and volatile metabolites of three different isolates of Trichoderma (T. asperellum, T. harzianum and Trichoderma spp.) against soil borne plant pathogen Rhizoctonia solani were investigated both in vitro and in vivo. The results showed for the first time that mycelial growth inhibition of the pathogen was 74.4-67.8% with water-soluble metabolites as compared to 15.3-10.6% with volatile metabolites in vitro. In vivo antagonistic activity of Trichoderma isolates against R. solani was evaluated on bean plants under laboratory and greenhouse conditions. We observed that T. asperellum was more effective and consistent, lowering disease incidence up to 19.3% in laboratory and 30.5% in green house conditions. These results showed that three isolates of Trichoderma could be used as effective biocontrol agents against R. solani.

  4. Comparative molecular evolution of Trichoderma chitinases in response to mycoparasitic interactions

    DEFF Research Database (Denmark)

    Ihrmark, Katarina; Asmail, Nashwan; Ubhayasekera, Wimal

    2010-01-01

    Certain species of the fungal genus Trichoderma are potent mycoparasites and are used for biological control of fungal diseases on agricultural crops. In Trichoderma, whole-genome sequencing reveal between 20 and 36 different genes encoding chitinases, hydrolytic enzymes that are involved...... in the mycoparasitic attack. Sequences of Trichoderma chitinase genes chi18-5, chi18-13, chi18-15 and chi18-17, which all exhibit specific expression during mycoparasitism-related conditions, were determined from up to 13 different taxa and studied with regard to their evolutionary patterns. Two of them, chi18......-usage and contains five codons that evolve under positive selection and three groups of co-evolving sites. Regions of high amino acid variability are preferentially localized to substrate- or product side of the catalytic clefts. Differences in amino acid diversity/conservation patterns between different Trichoderma...

  5. Trichoderma longibrachiatum acetyl xylan esterase 1 enhances hemicellulolytic preparations to degrade corn silage polysaccharides

    NARCIS (Netherlands)

    Neumüller, K.G.; Streekstra, H.; Gruppen, H.; Schols, H.A.

    2014-01-01

    Supplementation of a Trichoderma longibrachiatum preparation to an industrial Aspergillus niger/Talaromyces emersonii enzyme mixture demonstrated synergy for the saccharification of corn silage water-unextractable solids (WUS). Sub-fractions of the crude T. longibrachiatum preparation obtained after

  6. Trichoderma fassatiae, a new species from the section Pachybasium isolated from soil in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Nováková, Alena; Kubátová, A.; Valinová, Š.; Hubka, Vít; Kolařík, Miroslav

    2015-01-01

    Roč. 67, č. 2 (2015), s. 227-231 ISSN 1805-1421 R&D Projects: GA MŠk(CZ) LD13039 Institutional support: RVO:61388971 Keywords : Ascomycota * Hypocreales * Trichoderma Subject RIV: EE - Microbiology, Virology

  7. Pengaruh Penggunaan Fungisida Sintetis Dan Trichoderma SP. Secara Tunggal Atau Gabungan Terhadap Penyakit Hawar Pelepah Daun Padi Effect of Synthetic Fungicidal Application Alone or Mixed with Trichoderma SP. on Sheat Blight of Rice

    OpenAIRE

    Susilo, Pambudi; Soesanto, Loekas; Wachjadi, Muljo

    2005-01-01

    This research aimed at knowing the application effect of synthetic fungicide tebuconazole 25% alone or mixed with Trichoderma sp. on sheath blight disease and rice yield. The research was carried out at the Plant Disease Laboratory and the experimental field, the Faculty of Agriculture, the University of Jenderal Soedirman. Split Plot Design was used with Trichoderma sp. as main factor consisted of without and with antagonistic Trichoderma sp. applied on rice at 15, 30, and 45 and 55 days aft...

  8. Trichoderma spp. NA EMERGÊNCIA E CRESCIMENTO DE MUDAS DE CAMBARÁ (Gochnatia polymorpha (Less. Cabrera1

    Directory of Open Access Journals (Sweden)

    Daniele Franco Martins Machado

    2015-02-01

    Full Text Available Neste trabalho, o objetivo foi avaliar o efeito de isolados de Trichoderma spp. na emergência de plântulas e no crescimento de mudas de cambará (Gochnatia polymorpha. Utilizou-se, em casa de vegetação, substrato esterilizado e não esterilizado, sendo avaliados os efeitos de quatro isolados de trichoderma: TSM1 e TSM2 de Trichoderma viride, 2B2 e 2B22 de Trichoderma harzianum mais um mix preparado com a mistura desses quatro isolados, além de dois produtos comerciais à base de trichoderma. A análise dos dados permitiu concluir que os isolados de trichoderma testados não interferem na emergência das plântulas, mas os isolados 2B2 e 2B22 de T. harzianum apresentam potenciais como promotores de crescimento de mudas de cambará.

  9. Efficiency of treatments for controlling Trichoderma spp during spawning in cultivation of lignicolous mushrooms.

    Science.gov (United States)

    Colavolpe, María Belén; Mejía, Santiago Jaramillo; Albertó, Edgardo

    2014-01-01

    Trichoderma spp is the cause of the green mold disease in mushroom cultivation production. Many disinfection treatments are commonly applied to lignocellulose substrates to prevent contamination. Mushroom growers are usually worried about the contaminations that may occur after these treatments during handling or spawning. The aim of this paper is to estimate the growth of the green mold Trichoderma sp on lignocellulose substrates after different disinfection treatments to know which of them is more effective to avoid contamination during spawning phase. Three different treatments were assayed: sterilization (121 °C), immersion in hot water (60 and 80 °C), and immersion in alkalinized water. Wheat straw, wheat seeds and Eucalyptus or Populus sawdust were used separately as substrates. After the disinfection treatments, bagged substrates were sprayed with 3 mL of suspension of conidia of Trichoderma sp (10(5) conidia/mL) and then separately spawned with Pleurotus ostreatus or Gymnopilus pampeanus. The growth of Trichoderma sp was evaluated based on a qualitative scale. Trichoderma sp could not grow on non-sterilized substrates. Immersions in hot water treatments and immersion in alkalinized water were also unfavorable treatments for its growth. Co- cultivation with mushrooms favored Trichoderma sp growth. Mushroom cultivation disinfection treatments of lignocellulose substrates influence on the growth of Trichoderma sp when contaminations occur during spawning phase. The immersion in hot water at 60 °C for 30 min or in alkalinized water for 36 h, are treatments which better reduced the contaminations with Trichoderma sp during spawning phase for the cultivation of lignicolous species.

  10. Potency of Six Isolates of Biocontrol Agents Endophytic Trichoderma Against Fusarium Wilt on Banana

    OpenAIRE

    Taribuka, J; Wibowo, A; Widyastuti, S M; Sumardiyono, C

    2017-01-01

    Fusarium wilt caused by F. oxysporum f.sp. cubense is one of very damaging banana plant diseases which can cause plant death. Disease control using intensive chemical fungicides will have negative impacts on the environment and humans. Endophytic Trichoderma is one of the biological control agents which can reduce the amount of inoculum of pathogens, so it can reduce disease intensity. The objectives of this study was to assess the ability of endophytic Trichoderma in inducing plant resistanc...

  11. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum).

    Science.gov (United States)

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Srivastava, Suchi; Chauhan, Reshu; Awasthi, Surabhi; Mishra, Seema; Dwivedi, Sanjay; Tripathi, Preeti; Kalra, Alok; Tripathi, Rudra D; Nautiyal, Chandra S

    2017-04-01

    Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mekanisme Parasitisme Trichoderma Harzianum Terhadap Fusarium Oxysporum Pada Semai Acacia Mangium

    OpenAIRE

    Tasik, Susanti; Widyastuti, Siti Muslimah; Harjono

    2015-01-01

    Mechanism of parasitism of Trichoderma harzianum on Fusarium oxysporum on Acacia mangium seedlings. Fusarium oxysporum is one of the most important soil-borne fungi the causal agent of damping-off disease. Detailed information it needed to know how the pathogen can be inhibited by Trichoderma harzianum. The objective of this research was to investigate the inhibition mechanism of T. harzianum on F. oxysporum in vitro and in planta. Green Flourescent Protein (GFP) T. harzianum was used as bioc...

  13. Implications of cellobiohydrolase glycosylation for use in biomass conversion

    Directory of Open Access Journals (Sweden)

    Decker Stephen R

    2008-05-01

    Full Text Available Abstract The cellulase producing ascomycete, Trichoderma reesei (Hypocrea jecorina, is known to secrete a range of enzymes important for ethanol production from lignocellulosic biomass. It is also widely used for the commercial scale production of industrial enzymes because of its ability to produce high titers of heterologous proteins. During the secretion process, a number of post-translational events can occur, however, that impact protein function and stability. Another ascomycete, Aspergillus niger var. awamori, is also known to produce large quantities of heterologous proteins for industry. In this study, T. reesei Cel7A, a cellobiohydrolase, was expressed in A. niger var. awamori and subjected to detailed biophysical characterization. The purified recombinant enzyme contains six times the amount of N-linked glycan than the enzyme purified from a commercial T. reesei enzyme preparation. The activities of the two enzyme forms were compared using bacterial (microcrystalline and phosphoric acid swollen (amorphous cellulose as substrates. This comparison suggested that the increased level of N-glycosylation of the recombinant Cel7A (rCel7A resulted in reduced activity and increased non-productive binding on cellulose. When treated with the N-glycosidase PNGaseF, the molecular weight of the recombinant enzyme approached that of the commercial enzyme and the activity on cellulose was improved.

  14. Correlation of gene expression and protein production rate - a system wide study

    Directory of Open Access Journals (Sweden)

    Arvas Mikko

    2011-12-01

    Full Text Available Abstract Background Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. Results We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR. We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. Conclusions Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR.

  15. IDENTIFICAÇÃO E UTILIZAÇÃO DE Trichoderma spp. ARMAZENADOS E NATIVOS NO BIOCONTROLE DE Sclerotinia sclerotiorum

    OpenAIRE

    GERARDA BEATRIZ PINTO DA SILVA; LEISE INÊS HECKLER; RICARDO FELICIANO DOS SANTOS; MIRIA ROSA DURIGO; ELENA BLUME

    2015-01-01

    The fungus Sclerotinia sclerotiorum , handles significant losses in lettuce production. Being a soil borne fungus, its management is difficult, and an alternative is the use of biological control using species of the Trichoderma genus. Thus, the objectives of this study were to identify native species of Trichoderma spp. presents in the soil with (CP) and without white mold (SP), evaluate the growth rate and in vitro antagonism of Trichoderma spp. against S. sclerotiorum and to ver...

  16. Biocontrol Effectiveness of Indigenous Trichoderma Species against Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici on Tomato

    OpenAIRE

    Hajji Lobna; Chattaoui Mayssa; Regaieg Hajer; M'Hamdi-Boughalleb Naima; Rhouma Ali; Horrigue-Raouani Najet

    2016-01-01

    In this study, three local isolates of Trichoderma (Tr1: T. viride, Tr2: T. harzianum and Tr3: T. asperellum) were isolated and evaluated for their biocontrol effectiveness under in vitro conditions and in greenhouse. In vitro bioassay revealed a biopotential control against Fusarium oxysporum f. sp. radicis lycopersici and Meloidogyne javanica (RKN) separately. All species of Trichoderma exhibited biocontrol performance and (Tr1) Trichoderma viride was the most efficient. In fact, growth rat...

  17. Biotransformation of Trichoderma spp. and their tolerance to aromatic amines, a major class of pollutants.

    Science.gov (United States)

    Cocaign, Angélique; Bui, Linh-Chi; Silar, Philippe; Chan Ho Tong, Laetitia; Busi, Florent; Lamouri, Aazdine; Mougin, Christian; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Dairou, Julien

    2013-08-01

    Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil.

  18. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan.

    Science.gov (United States)

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz Ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.

  19. Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism.

    Science.gov (United States)

    Yao, Lin; Tan, Chong; Song, Jinzhu; Yang, Qian; Yu, Lijie; Li, Xinling

    2016-01-01

    Metabolites of mycoparasitic fungal species such as Trichoderma harzianum 88 have important biological roles. In this study, two new ketoacyl synthase (KS) fragments were isolated from cultured Trichoderma harzianum 88 mycelia using degenerate primers and analysed using a phylogenetic tree. The gene fragments were determined to be present as single copies in Trichoderma harzianum 88 through southern blot analysis using digoxigenin-labelled KS gene fragments as probes. The complete sequence analysis in formation of pksT-1 (5669bp) and pksT-2 (7901bp) suggests that pksT-1 exhibited features of a non-reducing type I fungal PKS, whereas pksT-2 exhibited features of a highly reducing type I fungal PKS. Reverse transcription polymerase chain reaction indicated that the isolated genes are differentially regulated in Trichoderma harzianum 88 during challenge with three fungal plant pathogens, which suggests that they participate in the response of Trichoderma harzianum 88 to fungal plant pathogens. Furthermore, disruption of the pksT-2 encoding ketosynthase-acyltransferase domains through Agrobacterium-mediated gene transformation indicated that pksT-2 is a key factor for conidial pigmentation in Trichoderma harzianum 88. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Tolerance to chitosan by Trichoderma species is associated with low membrane fluidity.

    Science.gov (United States)

    Zavala-González, Ernesto A; Lopez-Moya, Federico; Aranda-Martinez, Almudena; Cruz-Valerio, Mayra; Lopez-Llorca, Luis Vicente; Ramírez-Lepe, Mario

    2016-07-01

    The effect of chitosan on growth of Trichoderma spp., a cosmopolitan genus widely exploited for their biocontrol properties was evaluated. Based on genotypic (ITS of 18S rDNA) characters, four isolates of Trichoderma were identified as T. pseudokoningii FLM16, T. citrinoviride FLM17, T. harzianum EZG47, and T. koningiopsis VSL185. Chitosan reduces radial growth of Trichoderma isolates in concentration-wise manner. T. koningiopsis VSL185 was the most chitosan tolerant isolate in all culture media amended with chitosan (0.5-2.0 mg ml(-1) ). Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC) were determined showing that T. koningiopsis VSL185 displays higher chitosan tolerance with MIC value >2000 μg ml(-1) while for other Trichoderma isolates MIC values were around 10 μg ml(-1) . Finally, free fatty acid composition reveals that T. koningiopsis VSL185, chitosan tolerant isolate, displays lower linolenic acid (C18:3) content than chitosan sensitive Trichoderma isolates. Our findings suggest that low membrane fluidity is associated with chitosan tolerance in Trichoderma spp. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Biological control of rice brown spot with native isolates of three Trichoderma species

    Directory of Open Access Journals (Sweden)

    Elham Khalili

    2012-03-01

    Full Text Available Brown spot caused by Bipolaris oryzae is an important rice disease in Southern coast of Caspian Sea, the major rice growing region in Iran. A total of 45 Trichoderma isolates were obtained from rice paddy fields in Golestan and Mazandaran provinces which belonged to Trichoderma harzianum, T. virens and T. atroviride species. Initially, they were screened against B. oryzae by antagonism tests including dual culture, volatile and nonvolatile metabolites and hyperparasitism. Results showed that Trichoderma isolates can significantly inhibit mycelium growth of pathogen in vitro by producing volatile and nonvolatile metabolites Light microscopic observations showed no evidence of mycoparasitic behaviour of the tested isolates of Trichoderma spp. such as coiling around the B. oryzae. According to in vitro experiments, Trichoderma isolates were selected in order to evaluate their efficacy in controlling brown spot in glasshouse using seed treatment and foliar spray methods. Concerning the glasshouse tests, two strains of T. harzianum significantly controlled the disease and one strain of T. atroviride increased the seedling growth. It is the first time that the biological control of rice brown spot and increase of seedling growth with Trichoderma species have been studied in Iran.

  2. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan

    Science.gov (United States)

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463

  3. KADAR GLUKOSA DARI HIDROLISIS SELULOSA PADA ECENG GONDOK MENGGUNAKAN Trichoderma viride DENGAN VARIASI TEMPERATUR DAN WAKTU FERMENTASI

    Directory of Open Access Journals (Sweden)

    Purbowatiningrum R Sarjono

    2012-11-01

    Full Text Available Telah kita ketahui bahwa eceng gondok merupakan salah satu sumber selulosa yang melimpah di alam dan dapat dimanfaatkan sebagai sumber karbon bagi jamur Trichoderma viride. Eceng gondok memiliki bobot kering selulosa 21,5%, hemiselulosa 33,9% dan lignin 7,01%. Trichoderma viride adalah jamur saprofit yang berpotensi memproduksi selulase yang mampu mendegradasi ikatan β-1,4-glikosida pada rantai selulosa untuk menghasilkan glukosa. Glukosa dapat dimanfaatkan dalam produksi sirup gula, asam organik dan bioetanol. Penelitian ini bertujuan untuk mendapatkan Trichoderma viride yang mampu tumbuh pada media pertumbuhan hasil modifikasi eceng gondok serta memperoleh temperatur optimum aktivitas Trichoderma viride dalam menghidrolisis eceng gondok dan waktu fermentasi terbaik dalam menghasilkan glukosa. Proses pertama adalah persiapan sampel enceng gondok meliputi delignifikasi, kurva pertumbuhan Trichoderma viride dibuat dalam media modifikasi eceng gondok untuk mengetahui waktu optimum pertumbuhan Trichoderma viride. Penentuan temperatur optimum dan waktu fermentasi terbaik dari aktivitas Trichoderma viride didasarkan pada glukosa yang dihasilkan dari hidrolisis selulosa pada eceng gondok menggunakan metode Nelson Somogyi. Berdasarkan penelitian diperoleh hasil bahwa Trichoderma viride mampu tumbuh pada media modifikasi eceng gondok. Temperatur optimum aktivitas Trichoderma viride dalam menghidrolisis selulosa pada eceng gondok adalah 35oC dan waktu fermentasi terbaik dihasilkannya glukosa pada jam ke-96 yaitu sebesar 1,3864 mg/L.

  4. Estudio del antagonismo de algunas especies de Trichoderma sobre Fusarium Oxysporum y Rhizoctonia Solani Antagonism studies of Trichoderma sp.p.. with Fusarium oxysporum and Rhizoctonia solani

    OpenAIRE

    Elias Ricardo; Arcos Omar; Arbelaez Germán

    1989-01-01

    En este trabajo se estudió el antagonismo de algunos aislamientos del hongo Trichoderma obtenidos de suelos colornbianos en el control de Fusarium oxysporum y Rhizoctonia solani. En los ensayos "in vitre" se observó un marcado antagonismo entre las colonias de los aislamientos de Trichoderma sobre R. sotsni, con una reducción apreciable
    del tamaño de la colonia y un antaqonismo menor sobre F. oxysporum. En los ensayos de parasitismo a nivel microscópico, se observó una gran interac...

  5. Competition in artifical plant growth media by Trichoderma spp

    DEFF Research Database (Denmark)

    Sarocco, Sabrina; Lübeck, Mette; Vannacci, Giovanni

    of the reason why more biocontrol agents are reaching the market place. A comparative evaluation of life strategies of both the pathogen and its antagonists is required to predict the fate of a biopesticide in agricultural systems.The objectives of this work have been: 1) to screen a collection of Trichoderma......The key to achieve successful, reproducible biological control is the gradual appreciation that knowledge of the ecological interactions taking place in soil and root environments is required to predict the condition under which biological control can be achieved and, indeed, it may be part...... inoculation procedures were employed. Four potential biocontrol agents, all identified as T. harzianum according to the ITS sequences, were selected according to their ability of reducing radish damping off, and were employed in a Competitive Saprophytic Ability (CSA) test, in order to investigate the role...

  6. In vitro sensitivity of antagonistic Trichoderma atroviride to herbicides

    Directory of Open Access Journals (Sweden)

    Patricia Helena Santoro

    2014-04-01

    Full Text Available Trichoderma atroviride was tested in vitro for its sensitivity to different herbicides. The dosages tested were recommended dosage (RD, half dosage (½RD, and double dosage (2RD. Germination, colony-forming units (CFU, radial growth, and spore production were evaluated. Carfentrazone-ethyl and sulfentrazone inhibited the germination at RD and 2RD. A reduction in the CFU was observed for glufosinate-ammonium, atrazine, carfentrazone-ethyl, diuron + paraquat dichloride, imazapyr, oxyfluorfen, and sulfentrazone at each of the tested dosages. Radial growth was influenced by ametryn, atrazine, carfentrazone-ethyl, oxyfluorfen, and sulfentrazone herbicides, with an 80% reduction of the colonial area. Spore production was affected by carfentrazone-ethyl, oxyfluorfen, and sulfentrazone with colonial area reductions of over 70%. It was concluded that 2,4 D, clomazone, and imazapyr herbicides showed the least toxicity to T. atroviride and should be used in the crops where the fungus has been applied for phytopathogen control.

  7. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Fernandez, Ivan; Lok, Gerrit B; Pozo, María J; Pieterse, Corné M J|info:eu-repo/dai/nl/113115113; Van Wees, Saskia C M|info:eu-repo/dai/nl/185445373

    Beneficial root endophytes such as Trichoderma spp. can reduce infections by parasitic nematodes through triggering host defences. Little is currently known about the complex hormone signalling underlying the induction of resistance. In this study, we investigated whether Trichoderma modulates the

  8. Antioxidant properties of soybean seedlings inoculated with Trichoderma asperellum

    Directory of Open Access Journals (Sweden)

    Manojlović Ana S.

    2017-01-01

    Full Text Available This study was conducted in order to assess the effect of inoculation of soybean (Glycine max L. seeds with Trichoderma asperellum, followed by mites (Tetranychus urticae exposure on lipid peroxidation (LP process and the activity of antioxidant enzymes. T. urticae is an occasional pest of soybean that causes biotic stress. Biotic stress leads to overproduction of reactive oxygen species (ROS which may cause damage to vital biomolecules. Enzymatic antioxidant defense systems protect plants against oxidative stress. T. asperellum is commonly used as biocontrol agent against plant pathogens. It has been suggested that previous inoculation of seeds with T. asperellum may cause induced resistance against biotic stress. The aim of this study was to determine LP intensity and antioxidant enzymes activity in inoculated and non-inoculated soybean seedlings with and without exposure to mites. Noticeably higher LP intensity was detected in non-inoculated group treated with mites compared to control group. Inoculated soybean seedlings treated with mites had lower LP intensity compared to noninoculated group. Also, it has been noticed that inoculation with Trichoderma asperellum itself, produced mild stress in plants. In addition, positive correlation between enzymes activity and LP was noticed. The level of oxidative stress in plants was followed by the change of LP intensity. According to results obtained, it was concluded that the greatest oxidative stress occurred in non-inoculated group treated with mites and that inoculation successfully reduced oxidative stress. The results indicate that inoculation of soybean seeds with T. asperellum improves resistance of soybean seedlings against mites attack. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31022

  9. Effect of Paecilomyces lilacinus, Trichoderma harzianum and Trichoderma virens fungal extracts on the hatchability of Ancylostoma eggs.

    Science.gov (United States)

    Hofstätter, Bianca Delgado Menezes; Oliveira da Silva Fonseca, Anelise; de Souza Maia Filho, Fernando; de Souza Silveira, Julia; Persici, Beatriz Maroneze; Pötter, Luciana; Silveira, Andressa; Antoniolli, Zaida Inês; Brayer Pereira, Daniela Isabel

    Ancylostoma species have demanded attention due to their zoonotic potential. The use of anthelmintics is the usual method to prevent environmental contamination by Ancylostoma eggs and larvae. Nematophagous fungi have been widely used in their biological control due to the fungus ability to capture and digest free nematode forms. The aim of this study was to evaluate the effect of four different fungal extracts of Paecilomyces lilacinus (n=2), Trichoderma harzianum (n=1) and Trichoderma virens (n=1) isolates on the hatchability of Ancylostoma eggs. Fungal extracts consisted of fungal broth culture supernatant without filtration (crude extract) and filtered broth (filtered extract), macerated mycelium (crude macerate), and macerated mycelium submitted to filtration (filtered macerate). The Ancylostoma eggs were obtained from the feces of naturally infected dogs. In vitro assays were performed in five replicates and consisted of four treatments and one control group. The activity of the fungal extracts of each evaluated fungus differed (p<0.05) from those of the control group, showing significant ovicidal activity. The hatching of the eggs suffered reduction percentages of 68.43% and 47.05% with P. lilacinus, and 56.43% with T. harzianum, when crude macerate extract was used. The reduction with the macerate extract of T. virens was slightly lower (52.25%) than that for the filtered macerate (53.64%). The results showed that all extracts were effective in reducing the hatchability of Ancylostoma eggs. The ovicidal effect observed is likely to have been caused by the action of hydrolytic enzymes secreted by the fungi. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. 40 CFR 180.1102 - Trichoderma harzianum KRL-AG2 (ATCC #20847) strain T-22; exemption from requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Trichoderma harzianum KRL-AG2 (ATCC... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1102 Trichoderma harzianum KRL-AG2... of a tolerance is established for residues of the biofungicide Trichoderma harzianum KRL-AG2 (ATCC...

  11. Potency of six isolates of biocontrol agents endophytic Trichoderma against fusarium wilt on banana

    Directory of Open Access Journals (Sweden)

    J Taribuka

    2017-01-01

    Full Text Available Fusarium wilt caused by F. oxysporum f.sp. cubense is one of very damaging banana plant diseases which can cause plant death. Disease control using intensive chemical fungicides will have negative impacts on the environment and humans. Endophytic Trichoderma is one of the biological control agents which can reduce the amount of inoculum of pathogens, so it can reduce disease intensity. The objectives of this study was to assess the ability of endophytic Trichoderma in inducing plant resistance against fusarium wilt. Endophytic Trichoderma was obtained from healthy roots of banana from three regencies in Yogyakarta, namely Trichoderma harzianum.swn-1, T. harzianum.swn-2, T. harzianum.psr-1, T. asperrellum, T. gamsii, and T. koningiopsis. Research on induced resintance was conducted in the greenhouse with polybag using Completely Randomized Design with 14 treatments and 3 replications. The results showed that the ability of Trichoderma gamsii antagonism against F. oxysporum f.sp. cubense was 60.61%. T. asperellum and T. harzianum.swn-2 could suppress this disease resulted in disease intensity of 8.33% which categorize as resistant. Trichoderma harzianum.psr-1 was significantly different in stimulating plant vegetative growth. Induced resistance by using endophytic Trichoderma spp. against  F. oxysporum f.sp. cubense showed increase in total phenolic compounds on the third and fourth weeks as well as peroxidase activity on the third, fourth and fifth weeks.  Observation of lignification on  the fifth week  showed that lignification occurred in root xylem

  12. Cellulolytic and xylanolytic potential of high β-glucosidase-producing Trichoderma from decaying biomass.

    Science.gov (United States)

    Okeke, Benedict C

    2014-10-01

    Availability, cost, and efficiency of microbial enzymes for lignocellulose bioconversion are central to sustainable biomass ethanol technology. Fungi enriched from decaying biomass and surface soil mixture displayed an array of strong cellulolytic and xylanolytic activities. Strains SG2 and SG4 produced a promising array of cellulolytic and xylanolytic enzymes including β-glucosidase, usually low in cultures of Trichoderma species. Nucleotide sequence analysis of internal transcribed spacer 2 (ITS2) region of rRNA gene revealed that strains SG2 and SG4 are closely related to Trichoderma inhamatum, Trichoderma piluliferum, and Trichoderma aureoviride. Trichoderma sp. SG2 crude culture supernatant correspondingly displayed as much as 9.84 ± 1.12, 48.02 ± 2.53, and 30.10 ± 1.11 units mL(-1) of cellulase, xylanase, and β-glucosidase in 30 min assay. Ten times dilution of culture supernatant of strain SG2 revealed that total activities were about 5.34, 8.45, and 2.05 orders of magnitude higher than observed in crude culture filtrate for cellulase, xylanase, and β-glucosidase, respectively, indicating that more enzymes are present to contact with substrates in biomass saccharification. In parallel experiments, Trichoderma species SG2 and SG4 produced more β-glucosidase than the industrial strain Trichoderma reesei RUT-C30. Results indicate that strains SG2 and SG4 have potential for low cost in-house production of primary lignocellulose-hydrolyzing enzymes for production of biomass saccharides and biofuel in the field.

  13. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species.

    Science.gov (United States)

    Jiang, Yuan; Wang, Jin-Liang; Chen, Jing; Mao, Li-Juan; Feng, Xiao-Xiao; Zhang, Chu-Long; Lin, Fu-Cheng

    2016-01-01

    We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon-Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the

  14. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species

    Science.gov (United States)

    Chen, Jing; Mao, Li-Juan; Feng, Xiao-Xiao; Zhang, Chu-Long; Lin, Fu-Cheng

    2016-01-01

    We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon–Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the

  15. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species.

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    Full Text Available We surveyed the Trichoderma (Hypocreales, Ascomycota biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn, 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates, T. asperellum (425, T. hamatum (397, T. virens (340, T. koningiopsis (248, T. brevicompactum (73, T. atroviride (73, T. fertile (26, T. longibrachiatum (22, T. pleuroticola (16, T. erinaceum (16, T. oblongisporum (2, T. polysporum (2, T. spirale (2, T. capillare (2, T. velutinum (2, and T. saturnisporum (1. T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14 and the highest Shannon-Wiener diversity index of Trichoderma haplotypes (1.46. We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area had more T. hamatum than Shandong Province (the northernmost province, not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the

  16. DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species

    NARCIS (Netherlands)

    Lopez-Quintero, C.A.; Atanasova, L.; Franco-Molano, A.E.; Gams, W.; Komon-Zelazowska, M.; Theelen, B.; Muller, W.H.; Boekhout, T.; Druzhinina, I.

    2013-01-01

    The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2

  17. Estudio del antagonismo de algunas especies de Trichoderma sobre Fusarium Oxysporum y Rhizoctonia Solani Antagonism studies of Trichoderma sp.p.. with Fusarium oxysporum and Rhizoctonia solani

    Directory of Open Access Journals (Sweden)

    Elias Ricardo

    1989-12-01

    Full Text Available En este trabajo se estudió el antagonismo de algunos aislamientos del hongo Trichoderma obtenidos de suelos colornbianos en el control de Fusarium oxysporum y Rhizoctonia solani. En los ensayos "in vitre" se observó un marcado antagonismo entre las colonias de los aislamientos de Trichoderma sobre R. sotsni, con una reducción apreciable
    del tamaño de la colonia y un antaqonismo menor sobre F. oxysporum. En los ensayos de parasitismo a nivel microscópico, se observó una gran interacción entre alqunos
    de los aislamientos de T. harzianum y T. hamatum y el patógéno R. solani rnanifestado por el enrollamiento, penetración, fragmentación y lisis de las hifas del patoqeno.
    Los aislamientos de Trichoderma causaron un retraso en la aparición de los síntomas, una reducción en la severidad de la
    enfermedad. y un menor número de plantas enfermas ocasionadas por F. oxysporum f. sp, cucumerinum en pepino cohombro, y su efecto fue superior en todos los casos a la
    aplicación del fungicida benomil. Los aislamientos del antagonista aumentaron la qerminación de las semillas, la emergencia y el tamaño de las plántulas y redujeron la severidad de la enfermedad ocasionada por R. solani en fríjol.Several experiments were conducted to study the antagonism of 17 isolates of Trichoderma from Colombian soils with Fusarium oxysporum and Rhizoctonia solani. In "in vitro" tests, a high antagonism between colonies was found being greater the antagonism of Trichoderma with R. solani. At the microscopic level it was observed a great interaction between T. harzianum and T. hamatum with R. solani in such a way that the hyphae of the pathogen showed coiling, penetration, fragmentation and lysis. The Trichoderma isolates caused reduction in the disease severity, in the incubation period and a lower number of diseased cucumber plants when they were inoeulated with F. oxysporum f. sp, cucumerinum and these effects were better than Benomyl

  18. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A.; van Wees, Saskia C M|info:eu-repo/dai/nl/185445373

    2014-01-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the

  19. The influence of formulation on Trichoderma biological activity and frosty pod rot disease management in Theobroma cacao

    Science.gov (United States)

    Frosty pod rot (FPR), caused by Moniliophthora roreri is responsible for significant losses in Theobroma cacao. Due to the limited options for FPR management, biological control methods using Trichoderma are being studied. Combinations of three formulations and two Trichoderma isolates were studied ...

  20. Identification and characterization of Trichoderma species aggressive to Pleurotus in Italy

    Institute of Scientific and Technical Information of China (English)

    Woo S L; Di Benedetto P; Senatore M; Abadi K; Gigante S; Soriente I; Ferraioli S; Scala F; Lorito M

    2004-01-01

    @@ In the late 1980's the development of a severe epidemic of green mold caused by Trichoderma spp.was noted in the commercial production of Agaricus bisporus (champignon) in the United Kingdom,North America, Spain and Holland, which caused extensive economic losses. The parasitic fungi isolated from the edible mushroom belonged to four biotypes, Thl, Th2, Th3 and Th4 of T.harzianum. However, among these biotypes, only Th2 (since classified as T. aggressivum f.europaeum) and Th4 (T. aggressivum f. aggressivum) were identified as the fungi causing problems in Agaricus production. In general, mushroom compost hosts both aggressive and innocuous isolates of Trichoderma, which are not morphologically distinguishable. About four years ago, a problem with green mold became apparent in the production of Pleurotus ostreatus in Northern Italy,which eventually developed to a crisis situation in the South two years later and threatened to seriously compromise the Pleurotus market. This study was initiated to: isolate and identify the aggressive fungi, then morphologically, physiologically and genetically characterize the isolates, determine the source and phases of infection, and study methods of control. Samples were obtained from different phases of compost preparation at the locality of a major producer and supplier of compost to the mushroom industry in Southern Italy, and microbial counts were conducted. Although the presence of Trichoderma was detected in the initial stages of composting, this value was reduced to zero from the phase of pasteurization to seeding with Pleurotus. Trichoderma infestations were noted in the packaged Pleurotus bales at various times during the incubation phase (7-15 days after seeding) and after shipping to the mushroom greenhouses, where the pathogen infestations greatly reduced the quality and quantity of the mushroom yield, as well as the number of potential harvest cycles.Preliminary results from the morphological and genetic

  1. Potential of Trichoderma species on Helminthosporium causing leaf spot on cane palm, Chrysalidocarpus lutescens.

    Science.gov (United States)

    Jegathambigai, V; Karunaratne, M D S D; Svinningen, A; Mikunthan, G

    2008-01-01

    The cane palm, Chrysalidocarpus lutescens is one among the plant material of the export industries in Sri Lanka. The export quality of C. lutescens was declined due to the repeated occurrence of a leaf spot caused by Helminthosporium. Widespread occurrence of the leaf spot affected the cane palm production and succumb it to a huge setback in the floriculture industry in Sri Lanka. Being an export industry eco-friendly means of disease control was the prime focus for a better management of such vulnerable disease. Trichoderma is a potential bio agent, which has definite role in suppressing the inoculum of Helminthosporium sp. This study aims to evaluate the efficacy of Trichoderma species to control naturally established leaf spot in cane palm under field conditions. Three isolates of T. viride and two isolates of T. harzianum were evaluated. All the Trichoderma species performed significantly in reducing the disease incidence. T. viride + T. harzianum combination (1 x 10(10) cfu/ml) was the best compared to chemical in decreasing the mean disease severity index and improving the frequency of healthy plants. The colour of the leaves regained due to the application of Trichoderma sp. The results revealed that leaf spot incidence was lowered significantly in cane palms treated with Trichoderma species followed by treatment with combination of Trichoderma sp. and fungicides. The fungicide mixture (hexaconozole 50 g/l + Isoprothiolane 400 g/l) failed to lower the disease incidence and had no effect in suppressing the inocula of Helminthosporium, although recommended. Mixing of Trichoderma species with fungicide did not exhibit any additive effect. The combination of different species of Trichoderma would target species of Helminthosporium that exist as a complex group under field conditions. The results also proved that the existence of heterogeneity in Helminthosporium that could be tackled and effectively controlled by a combination of different species of the bio

  2. Diversity and effect of Trichoderma spp. associated with green mold disease on Lentinula edodes in China.

    Science.gov (United States)

    Wang, Gangzheng; Cao, Xiantao; Ma, Xiaolong; Guo, Mengpei; Liu, Changhao; Yan, Lianlian; Bian, Yinbing

    2016-08-01

    Lentinula edodes, one of the most important edible mushrooms in China, is affected heavily by the infection of green mold that overgrows mushroom mycelia. We collected the diseased samples from main L. edodes cultivation regions in China to characterize the pathogen and to study the effect of Trichoderma spp. on L. edodes species. We identified six Trichoderma species, that is, T. harzianum, T. atroviride, T. viride, T. pleuroticola, T. longibrachiatum, and T. oblongisporum based on the internal transcribed spacer or tef1-α sequences and morphology characteristics. In confrontation cultures on Petri plates or in tubes, and in L. edodes cultures in a medium containing Trichoderma metabolites, L. edodes mycelia were not only distorted and swollen, but also inhibited by Trichoderma isolates. It is not possible that adjusting pH value or temperature is used for controlling L. edodes green disease, because the growth of most of Trichoderma isolates and L. edodes shared similar pH and temperature conditions. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  3. Comparative analysis of microsatellites in five different antagonistic Trichoderma species for diversity assessment.

    Science.gov (United States)

    Rai, Shalini; Kashyap, Prem Lal; Kumar, Sudheer; Srivastava, Alok Kumar; Ramteke, Pramod W

    2016-01-01

    Microsatellites provide an ideal molecular markers system to screen, characterize and evaluate genetic diversity of several fungal species. Currently, there is very limited information on the genetic diversity of antagonistic Trichoderma species as determined using a range of molecular markers. In this study, expressed and whole genome sequences available in public database were used to investigate the occurrence, relative abundance and relative density of SSRs in five different antagonistic Trichoderma species: Trichoderma atroviride, T. harzianum, T. reesei, T. virens and T. asperellum. Fifteen SSRs loci were used to evaluate genetic diversity of twenty isolates of Trichoderma spp. from different geographical regions of India. Results indicated that relative abundance and relative density of SSRs were higher in T. asperellum followed by T. reesei and T. atroviride. Tri-nucleotide repeats (80.2%) were invariably the most abundant in all species. The abundance and relative density of SSRs were not influenced by the genome sizes and GC content. Out of eighteen primer sets, only 15 primer pairs showed successful amplification in all the test species. A total of 24 alleles were detected and five loci were highly informative with polymorphism information content values greater than 0.40, these markers provide useful information on genetic diversity and population genetic structure, which, in turn, can exploit for establishing conservation strategy for antagonistic Trichoderma isolates.

  4. Trichoderma harzianum T-78 supplementation of compost stimulates the antioxidant defence system in melon plants.

    Science.gov (United States)

    Bernal-Vicente, Agustina; Pascual, José A; Tittarelli, Fabio; Hernández, José A; Diaz-Vivancos, Pedro

    2015-08-30

    Compost is emerging as an alternative plant growing medium in efforts to achieve more sustainable agriculture. The addition of specific microorganisms such as Trichoderma harzianum to plant growth substrates increases yields and reduces plant diseases, but the mechanisms of such biostimulants and the biocontrol effects are not yet fully understood. In this work we investigated how the addition of citrus and vineyard composts, either alone or in combination with T. harzianum T-78, affects the antioxidant defence system in melon plants under nursery conditions. Compost application and/or Trichoderma inoculation modulated the antioxidant defence system in melon plants. The combination of citrus compost and Trichoderma showed a biostimulant effect that correlated with an increase in ascorbate recycling enzymes (monodehydroascorbate reductase, dehydroascorbate reductase) and peroxidase. Moreover, the inoculation of both composts with Trichoderma increased the activity of antioxidant enzymes, especially those involved in ascorbate recycling. Based on the long-established relationship between ascorbic acid and plant defence responses as well as plant growth and development, it can be suggested that ascorbate recycling activities play a major role in the protection provided by Trichoderma and its biostimulant effect and that these outcomes are linked to increases in antioxidant enzymes. We can conclude that the combination of citrus compost and T. harzianum T-78 constitutes a viable, environmentally friendly strategy for improving melon plant production. © 2014 Society of Chemical Industry.

  5. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus.

    Science.gov (United States)

    Strakowska, Judyta; Błaszczyk, Lidia; Chełkowski, Jerzy

    2014-07-01

    The degradation of native cellulose to glucose monomers is a complex process, which requires the synergistic action of the extracellular enzymes produced by cellulolytic microorganisms. Among fungi, the enzymatic systems that can degrade native cellulose have been extensively studied for species belonging to the genera of Trichoderma. The majority of the cellulolytic enzymes described so far have been examples of Trichoderma reesei, extremely specialized in the efficient degradation of plant cell wall cellulose. Other Trichoderma species, such as T. harzianum, T. koningii, T. longibrachiatum, and T. viride, known for their capacity to produce cellulolytic enzymes, have been isolated from various ecological niches, where they have proved successful in various heterotrophic interactions. As saprotrophs, these species are considered to make a contribution to the degradation of lignocellulosic plant material. Their cellulolytic potential is also used in interactions with plants, especially in plant root colonization. However, the role of cellulolytic enzymes in species forming endophytic associations with plants or in those existing in the substratum for mushroom cultivation remains unknown. The present review discusses the current state of knowledge about cellulolytic enzymes production by Trichoderma species and the encoding genes, as well as the involvement of these proteins in the lifestyle of Trichoderma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Two new hyaline-ascospored species of Trichoderma and their phylogenetic positions.

    Science.gov (United States)

    Qin, W T; Zhuang, W Y

    2016-01-01

    Collections of hypocrealean fungi found on decaying wood in subtropical regions of China were examined. Two new species, Trichoderma confluens and T. hubeiense, were discovered and are described. Trichoderma confluens is characterized by its widely effuse to rarely pulvinate, yellow stromata with densely disposed yellowish brown ostioles, simple acremonium- to verticillium-like conidiophores, hyaline conidia and multiform chlamydospores. Trichoderma hubeiense has pulvinate, grayish yellow stromata with brownish ostioles, trichoderma- to verticillium-like conidiophores and hyaline conidia. The phylogenetic positions of the two fungi were investigated based on sequence analyses of RNA polymerase II subunit b and translation elongation factor 1-α genes. The results indicate that T. confluens belongs to the Hypocreanum clade and is associated with but clearly separated from T. applanatum and T. decipiens. Trichoderma hubeiense belongs to the Polysporum clade and related to T. bavaricum but obviously differs from other members of the clade in sequence data. Morphological distinctions between the new species and their close relatives are noted and discussed. © 2016 by The Mycological Society of America.

  7. Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots.

    Science.gov (United States)

    Alonso-Ramírez, Ana; Poveda, Jorge; Martín, Ignacio; Hermosa, Rosa; Monte, Enrique; Nicolás, Carlos

    2014-10-01

    Trichoderma is a soil-borne fungal genus that includes species with a significant impact on agriculture and industrial processes. Some Trichoderma strains exert beneficial effects in plants through root colonization, although little is known about how this interaction takes place. To better understand this process, the root colonization of wild-type Arabidopsis and the salicylic acid (SA)-impaired mutant sid2 by a green fluorescent protein (GFP)-marked Trichoderma harzianum strain was followed under confocal microscopy. Trichoderma harzianum GFP22 was able to penetrate the vascular tissue of the sid2 mutant because of the absence of callose deposition in the cell wall of root cells. In addition, a higher colonization of sid2 roots by GFP22 compared with that in Arabidopsis wild-type roots was detected by real-time polymerase chain reaction. These results, together with differences in the expression levels of plant defence genes in the roots of both interactions, support a key role for SA in Trichoderma early root colonization stages. We observed that, without the support of SA, plants were unable to prevent the arrival of the fungus in the vascular system and its spread into aerial parts, leading to later collapse. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  8. Requalification of a Brazilian Trichoderma Collection and Screening of Its Capability to Decolourise Real Textile Effluent.

    Science.gov (United States)

    Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N; Magalhães, Oliane; Paiva, Laura M; Moreira, Keila A; Lima, Nelson; Souza-Motta, Cristina M

    2017-04-01

    Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma , have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view.

  9. Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1.

    Science.gov (United States)

    Mukherjee, Prasun K; Kenerley, Charles M

    2010-04-01

    Mycoparasitic strains of Trichoderma are applied as commercial biofungicides for control of soilborne plant pathogens. Although the majority of commercial biofungicides are Trichoderma based, chemical pesticides, which are ecological and environmental hazards, still dominate the market. This is because biofungicides are not as effective or consistent as chemical fungicides. Efforts to improve these products have been limited by a lack of understanding of the genetic regulation of biocontrol activities. In this study, using gene knockout and complementation, we identified the VELVET protein Vel1 as a key regulator of biocontrol, as well as morphogenetic traits, in Trichoderma virens, a commercial biocontrol agent. Mutants with mutations in vel1 were defective in secondary metabolism (antibiosis), mycoparasitism, and biocontrol efficacy. In nutrient-rich media they also lacked two types of spores important for survival and development of formulation products: conidia (on agar) and chlamydospores (in liquid shake cultures). These findings provide an opportunity for genetic enhancement of biocontrol and industrial strains of Trichoderma, since Vel1 is very highly conserved across three Trichoderma species.

  10. Sorghum bagasse as substrate for cellulase production by submerged and solid-state cultures of Trichoderma

    Directory of Open Access Journals (Sweden)

    Teodor Vintilă

    2014-05-01

    Full Text Available Sweet sorghum bagasse was used as cellulosic substrate in submerged and solid-state cultures of Trichoderma for cellulase production. Submerged liquid cultures (SLC were obtained by inoculation of Mandels media containing 1% cellulose with spores suspension of Trichoderma. Solid-state cultures (SSC were carried out in Erlenmayer flasks, where the substrate was distributed 1 cm layers. Comparing the yields of cellulases produced by Trichoderma strains in the systems applied in this study, using as substrate sorghum bagasse, we found the solid-state cultures as the system to produce the highest cellulase yields. The local strain of T. viride CMIT3.5. express high productivity in SSC system in laboratory conditions. The cellulolytic enzymes have maximum activity at 50oC, pH 4,8. The results recommend solid-state cultures of Trichoderma on sorghum bagasse as systems for producing cellulolytic products with higher activity than submerged cultures of Trichoderma on the same substrate.

  11. Biocontrol with Trichoderma species for the management of postharvest crown rot of banana

    Directory of Open Access Journals (Sweden)

    G. Sangeetha

    2009-09-01

    Full Text Available Lasiodiplodia theobromae and Colletotrichum musae cause the postharvest crown rot disease complex of banana. In vitro experiments evaluated the effect of twelve isolates of Trichoderma spp. from the soil of organic banana orchards (‘native isolates’ and eight isolates of Trichoderma spp. from culture collections (‘introduced isolates’ on the two pathogens. The native and introduced Trichoderma spp. had varied antagonistic effects against the two pathogens. Eight Trichoderma spp. isolates effective in the in vitro assays were evaluated singly on fruits both at room temperature and in cold storage. Single antagonists did not satisfactorily control crown rot on the fruits as compared with the fungicide carbendazim. However, two isolates of T. viride, one of T. harzianum and one of T. koningii performed well when applied singly, and these were selected for evaluation in isolate mixtures. There was very little antagonism between these isolates. Of 11 two-way, three-way and four-way mixtures of these isolates, the four-way and a three-way mixtures reduced crown rot incidence, both at room temperature and in cold storage, giving better control than carbendazim. The study identified consortia of compatible Trichoderma antagonists with superior biocontrol potential for the management of the postharvest crown rot complex of banana.

  12. Requalification of a Brazilian Trichoderma Collection and Screening of Its Capability to Decolourise Real Textile Effluent

    Science.gov (United States)

    Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N.; Magalhães, Oliane; Paiva, Laura M.; Moreira, Keila A.; Lima, Nelson; Souza-Motta, Cristina M.

    2017-01-01

    Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma, have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view. PMID:28368305

  13. PENGUJIAN TRICHODERMA SP. SEBAGAI PENGENDALI HAWAR DAUN BIBIT KAKAO YANG DISEBABKAN OLEH PHYTHOPTHORA PALMIVORA

    Directory of Open Access Journals (Sweden)

    Sutarman .

    2017-05-01

    Full Text Available Analysist for Trichoderma sp. as the controller of the cocoa seedlings leaf blight which caused by Phythopthora palmivora. This study aims to determine: survival and ability to live of Trichoderma sp. isolates TCN-Klp supported by predisposing wounding or without wounding the leaves as well as the ability to suppress P. palmivora inoculated on the leaves of cocoa seedlings with and without wounding the leaves before inoculation. The research conducted at the Microbiology Laboratory and Greenhouse of Agriculture Faculty, Universitas Muhammadiyah Sidoarjo on March-July 2015. There were two kinds of experiments: inoculation without wounding the leaves (1st experiment and inoculation with wounding leaves (2nd experiment. Both of them were done by inoculation treatment: pathogens, Trichoderma, pathogens and Trichoderma simultaneously, then pathogens and incubated for 2x24 hours then inoculated. Both kinds of experiments were arranged in a complete randomize design (CRD with 3 times of replication for 1st experiment and 4 times of replication for 2nd experiment. The data of result was analyzed by ANOVA followed by 5% test level of Duncan test. The results showed that the isolates TCN-Klp of Trichoderma sp: (i had own survival and ability to live well in the leaf surface without injury, and (ii was able to suppress pathogens by inoculation simultaneously, which was preceded and precede the pathogens with a gap of 24 hours on with and without wounding leaves at 10 days after inoculation.

  14. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  15. Comparative analysis of the repertoire of G protein-coupled receptors of three species of the fungal genus Trichoderma

    Science.gov (United States)

    2013-01-01

    Background Eukaryotic organisms employ cell surface receptors such as the seven-transmembrane G protein-coupled receptors (GPCRs) as sensors to connect to the environment. GPCRs react to a variety of extracellular cues and are considered to play central roles in the signal transduction in fungi. Several species of the filamentous ascomycete Trichoderma are potent mycoparasites, i.e. can attack and parasitize other fungi, which turns them into successful bio-fungicides for the protection of plants against fungal phytopathogens. The identification and characterization of GPCRs will provide insights into how Trichoderma communicates with its environment and senses the presence of host fungi. Results We mined the recently published genomes of the two mycoparasitic biocontrol agents Trichoderma atroviride and Trichoderma virens and compared the identified GPCR-like proteins to those of the saprophyte Trichoderma reesei. Phylogenetic analyses resulted in 14 classes and revealed differences not only among the three Trichoderma species but also between Trichoderma and other fungi. The class comprising proteins of the PAQR family was significantly expanded both in Trichoderma compared to other fungi as well as in the two mycoparasites compared to T. reesei. Expression analysis of the PAQR-encoding genes of the three Trichoderma species revealed that all except one were actually transcribed. Furthermore, the class of receptors with a DUF300 domain was expanded in T. atroviride, and T. virens showed an expansion of PTH11-like receptors compared to T. atroviride and T. reesei. Conclusions Comparative genome analyses of three Trichoderma species revealed a great diversity of putative GPCRs with genus- and species- specific differences. The expansion of certain classes in the mycoparasites T. atroviride and T. virens is likely to reflect the capability of these fungi to establish various ecological niches and interactions with other organisms such as fungi and plants. These

  16. Comparative analysis of the repertoire of G protein-coupled receptors of three species of the fungal genus Trichoderma.

    Science.gov (United States)

    Gruber, Sabine; Omann, Markus; Zeilinger, Susanne

    2013-05-16

    Eukaryotic organisms employ cell surface receptors such as the seven-transmembrane G protein-coupled receptors (GPCRs) as sensors to connect to the environment. GPCRs react to a variety of extracellular cues and are considered to play central roles in the signal transduction in fungi. Several species of the filamentous ascomycete Trichoderma are potent mycoparasites, i.e. can attack and parasitize other fungi, which turns them into successful bio-fungicides for the protection of plants against fungal phytopathogens. The identification and characterization of GPCRs will provide insights into how Trichoderma communicates with its environment and senses the presence of host fungi. We mined the recently published genomes of the two mycoparasitic biocontrol agents Trichoderma atroviride and Trichoderma virens and compared the identified GPCR-like proteins to those of the saprophyte Trichoderma reesei. Phylogenetic analyses resulted in 14 classes and revealed differences not only among the three Trichoderma species but also between Trichoderma and other fungi. The class comprising proteins of the PAQR family was significantly expanded both in Trichoderma compared to other fungi as well as in the two mycoparasites compared to T. reesei. Expression analysis of the PAQR-encoding genes of the three Trichoderma species revealed that all except one were actually transcribed. Furthermore, the class of receptors with a DUF300 domain was expanded in T. atroviride, and T. virens showed an expansion of PTH11-like receptors compared to T. atroviride and T. reesei. Comparative genome analyses of three Trichoderma species revealed a great diversity of putative GPCRs with genus- and species- specific differences. The expansion of certain classes in the mycoparasites T. atroviride and T. virens is likely to reflect the capability of these fungi to establish various ecological niches and interactions with other organisms such as fungi and plants. These GPCRs consequently represent

  17. Cellulase biosynthesis by trichoderma viride on soluble substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S B; Kitagawa, Y; Suga, K; Ichikawa, K

    1978-01-01

    Batch and continuous cultures of Trichoderma viride QM 6a were carried out using either glucose or cellobiose as the sole carbon source. From the data obtained in the continuous culture with glucose as substrate, growth parameters of this fungus ..mu../sub m/, K/sub s/, m and Y were identified. In the case of glucose as substrate, there were extremely low levels of cellobiase and no detectable cellulase activity in both batch and continuous cultures. The inducible cellobiase was an intracellular enzyme, produced in association with cell growth in batch culture on cellobiose as substrate. A kinetic model for cellobiose degradation and cell growth is proposed. A significant increase in the extracellular cellulase productivity was obtained in the range of low dilution rates from 0.025 h/sup -1/ to 0.2 h/sup -1/ in the continuous culture on cellobiose. From the results of these experiments, it was concluded that in continuous culture on cellobiose as substrate the cellulase activity was determined by the balance between induction and catabolite repression.

  18. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    Science.gov (United States)

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  19. Genetic engineering of Trichoderma reesei cellulases and their production.

    Science.gov (United States)

    Druzhinina, Irina S; Kubicek, Christian P

    2017-11-01

    Lignocellulosic biomass, which mainly consists of cellulose, hemicellulose and lignin, is the most abundant renewable source for production of biofuel and biorefinery products. The industrial use of plant biomass involves mechanical milling or chipping, followed by chemical or physicochemical pretreatment steps to make the material more susceptible to enzymatic hydrolysis. Thereby the cost of enzyme production still presents the major bottleneck, mostly because some of the produced enzymes have low catalytic activity under industrial conditions and/or because the rate of hydrolysis of some enzymes in the secreted enzyme mixture is limiting. Almost all of the lignocellulolytic enzyme cocktails needed for the hydrolysis step are produced by fermentation of the ascomycete Trichoderma reesei (Hypocreales). For this reason, the structure and mechanism of the enzymes involved, the regulation of their expression and the pathways of their formation and secretion have been investigated in T. reesei in considerable details. Several of the findings thereby obtained have been used to improve the formation of the T. reesei cellulases and their properties. In this article, we will review the achievements that have already been made and also show promising fields for further progress. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Genetic characterization of somatic recombination in Trichoderma pseudokoningii

    Directory of Open Access Journals (Sweden)

    Barcellos Fernando Gomes

    2003-01-01

    Full Text Available Crossing experiments via hyphal anastomosis between two strains contrasting for auxotrophic markers of Trichoderma pseudokoningii were conducted to characterize the somatic recombination process in this specie. Four crossings were made and a total of 1052 colonies obtained from conidial suspensions of the heterokaryotic colonies were analyzed. Sixty-eight recombinant colonies, from four growing generations, were analyzed for the auxotrophic markers. Of the 68 colonies analyzed, 58 were stable after four generations and the remainders were unstable, reverting to one of the parentals. Most of the recombinant colonies were unstable through subculture and after four growing generations they showed the leu ino met markers (auxotrophic for leucin, inositol and metionin respectively. The unstable recombinant colonies showed irregular growing borders, sparse sporulation and frequent sector formation. The results suggest the occurrence of recombination mechanisms in the heterokaryon (somatic recombination, different from those described for the parasexual cycle or parameiosis. Therefore, we proposed the ocurrence of nuclei degradation from one parental (non prevalent parental in the heterokaryon and that the resulting chromosomal fragments may be incorporated into whole nuclei of the another parental (prevalent parental. However the parameiosis as originally described cannot be excluded.

  1. Biosolubilization of raw and gamma irradiated lignite by trichoderma asperellum

    International Nuclear Information System (INIS)

    Sugoro, I.; Astuti, D.I.; Aditiawati, P.; Sasongko, D.

    2012-01-01

    Biosolubilization is a promising technology for converting solid coal to liquid oil by addition of microorganism. Aim of this research is to compare between gamma irradiated lignite (10 kGy) with raw lignite in biosolubilization by selected fungi Trichoderma asperellum. Treatments were A (MSS + gamma irradiated lignite 5% + T. asperellum) and B (MSS + raw lignite 5% + T. asperellum) with sub-merged culture. There were two parameters observed i.e. biosolubilization product based on absorbance value at λ 250nm and λ 450nm and metal analysis by neutron activation analysis (NAA). The highest biosolubilization will be analyzed by FTIR and GCMS. The results showed that biosolubilization of raw lignite (B) was higher than sterilized lignite (A) based on absorbance value at λ 250nm and λ 450nm . The metal of lignite was decreased after incubation. FTIR analysis showed that both of treatment had similar spectra on biosolubilization products. GCMS analysis showed that both of treatment had different number of hydrocarbon, i.e. C 6 - C 35 (A) and C 10 - C 35 (B) and dominated by aromatic acids, aliphatic and phenylethers. Both of treatment product had the potency as oil substituted but its recommended to deoxygenate for higher quality. (author)

  2. Biosolubilization gamma irradiate ion result coal by mould trichoderma sp

    International Nuclear Information System (INIS)

    Pingkan Aditiawati; Dea Indriani Astuti; Irawan Sugoro; Dwiwahju Sasongko

    2011-01-01

    Biosolubilization of coal is process of converting solid coal to liquid fuel/chemicals by mean of microorganism. The aim of this research was to study the effect of gamma rays irradiation with varian doses of irradiation into solubilization of subbituminous coal by Trichoderma sp. The dosage used was 5, 10, and 20 kGy and unirradiated coal as control. The method was submerged culture in MSS+ medium and incubated at room temperature and agitated at 150 rpm for 21 th days. The parameters observed were colonization, pH and biosolubilization product based on absorbance value at λ 250nm and λ 450nm and GC/MS analysis for the best treatment. The results showed that coal biosolubilization could be increased by gamma irradiation. The mould could growth well in medium containing irradiated coal and the medium of pH was decreased after incubation. The biosolubilization was increased but the irradiation dosage of coal didn't affect significantly. The best dose was 20 kGy with product biosolubilization similar to gasoline and solar. Based on the result, the pre-treatment of gamma irradiation on coal has potency to increased biosolubilization. (author)

  3. Effect of Trichoderma on horticultural seedlings' growth promotion depending on inoculum and substrate type.

    Science.gov (United States)

    Marín-Guirao, J I; Rodríguez-Romera, P; Lupión-Rodríguez, B; Camacho-Ferre, F; Tello-Marquina, J C

    2016-10-01

    The biostimulant effect of Trichoderma spp. on horticultural crops are highly variable. Thus, practical use of Trichoderma sp. requires feasible formulated products and suitable substrates. This study evaluates the survival and the growth-promotion effect of a Trichoderma saturnisporum rice formulation compared with a nonformulated conidia suspension (seven treatments in total), on tomato, pepper and cucumber seedlings grown in two substrates: (i) rich in organic matter (OM) and (ii) mineral substrate without OM. The results showed beneficial effects on seedling growth in the OM-rich substrate when T. saturnisporum rice formulation (mainly at maximum concentration) was applied, but the effects were opposite when the mineral substrate without OM was used. The effects were closely linked to the level of inoculum in the substrate, which was greater upon application of the formulated inoculum as opposed to the nonformulated one. The use of rice to prepare the inoculum of T. saturnisporum seems to be promising for seedling growth in the nursery when it is applied in a substrate that is rich in organic matter, but it must be considered that under certain conditions of food shortage, Trichoderma sp. could show pathogenicity to seedlings. This study provides evidence of the complexity inherent in the use of micro-organisms in agriculture, while also confirming that the activity of the biofertilizers based on Trichoderma depends on the type of inoculum and its concentration, as well as the properties of the medium in which the fungi develop. Further studies assessing the effectiveness or possible pathogenicity of Trichoderma in different soils under greenhouse conditions must be addressed. © 2016 The Society for Applied Microbiology.

  4. Estudio del antagonismo de algunas especies de trichoderma sobre fusarium oxysporum y rhizoctonia solani

    OpenAIRE

    Elias, Ricardo; Arcos, Omar; Arbelaez, Germán

    2011-01-01

    En este trabajo se estudió el antagonismo de algunos aislamientos del hongo Trichoderma obtenidos de suelos colornbianos en el control de Fusarium oxysporum y Rhizoctonia solani. En los ensayos "in vitre" se observó un marcado antagonismo entre las colonias de los aislamientos de Trichoderma sobre R. sotsni, con una reducción apreciabledel tamaño de la colonia y un antaqonismo menor sobre F. oxysporum. En los ensayos de parasitismo a nivel microscópico, se observó una gran interacción entre a...

  5. Role of Bradyrhizobium japonicum and Trichoderma spp. in the control of root rot disease of soybean

    Directory of Open Access Journals (Sweden)

    Syed Ehteshamul-Haque

    2014-08-01

    Full Text Available Seed treatment of soybean with Bndyrhizobium japonicum, Trichoderma harzianum, T. viride, T. hamatum, T. koningii and T. pseudokoningii significantly controlled the infection of 30-day-old seedlingsby Maerophomina phaseolina, Rhizoctonia solani and Fusarium spp. In 60-day-old plants Trichoderma spp.. and B. japonicum inhibited the grouth of R. solani and Fusarium spp., whereas the use of B. japonicum (TAL-102 with T. harzianum. T. viride, T. koningii and T. pseudokoningii controlled the infection by M. phaseolina. Greater grain yield was recorded when B. japonium (TAI-102 was used with T. hamatum.

  6. Enhanced root and shoot growth of wheat (Triticum aestivum L.) by Trichoderma harzianum from Turkey.

    Science.gov (United States)

    Kucuk, Cigdem

    2014-01-01

    It is well known that Trichoderma species can be used as biocontrol and plant growth promote agent. In this study, Trichoderma harzianum isolates were evaluated for their growth promotion effects on wheat in greenhouse experiments. Two isolates of T. harzianum were used. The experimental design was a randomized complete block with three replications. Seeds were inoculated with conidial suspensions of each isolate. Wheat plants grown in steriled soil in pots. T. harzianum T8 and T15 isolates increased wheat length, root dry weight and shoot dry weight according to untreated control. Turkish isolates T8 and T15 did not produce damage in seeds nor in plants.

  7. Linking Hydrolysis Performance to Trichoderma reesei Cellulolytic Enzyme Profile

    DEFF Research Database (Denmark)

    Lehmann, Linda Olkjær; Petersen, Nanna; I. Jørgensen, Christian

    2016-01-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, e.g. by spiking with single enzymes and monitoring hydrolysis performance. In this study a multivariate...... approach, partial least squares regression, was used to see if it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by Trichoderma reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed...

  8. The Effect of Trichoderma harzianum and Cadmium on Tolerance Index and Yield of Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    F. Taghavi Ghasemkheyli

    2015-01-01

    Full Text Available To investigate the effect of Trichoderma harzianum, as a bioabsorbant to ameliorate the harmful effects of cadmium (Cd on growth and yield of barley (Hordeum vulgare L. variety ‘Sahra’, a factorial pot experiment based on completely randomized design with three replicates was conducted. Trichoderma harzianum withtwo levels (with and without inoculation and cadmium nitrate with four levels (0, 50, 100 and 150 mg.L-1 were the treatments. Results of ANOVA revealed that there was a significant interaction between Trichoderma and cadmium nitrate in terms of biological yield, straw yield, harvest index, spike number per plant and seed number per spike. Mean comparisons showed that Trichoderma inoculation at all Cd levels significantly improved both biological and straw yields. Trichoderma at 50 and 100 mg.L-1 of Cd also increased the spike number per plant (up to 120 and 66%, respectively significantly. Increasing Cd levels decreased seed yield (19%, 1000 seed weight (18%, partitioning coefficient (57% and tolerance index (23% significantly. Inoculation of Trichoderma into growth medium had a significant effect on seed yield and tolerance index (up to 17 and 22%, respectively. In conclusion, Trichoderma harzianum inoculation at lower concentrations of Cd (50 and 100 mg.L-1 could be effective to improve growth parameters of barley plant.

  9. Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Takayuki, Tohge; Fernie, Alisdair R.; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-01-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity

  10. Evaluation of Trichoderma Isolates for Biological Control of Rhizoctonia Root Rot of Bean in Zanjan

    Directory of Open Access Journals (Sweden)

    M. Khodae

    2016-03-01

    Full Text Available Introduction: Rhizoctonia solani is one of the major pathogens causing root rot in the main bean-growing regions in Zanjan province. Under favorable conditions, yield losses in commercial bean fields due to Rhizoctonia root rot have exceeded 50 percent reduction in pod and seed numbers per plants. In 2012 most isolates of the pathogen from severely infected bean fields in Zanjan were assessed to AG-4. R. solani AG-4 can attack other commercial crops such as potato, alfalfa, barley, tomato, cabbage, etc. which are grown in rotation with bean in the area. Thus, the disease is unlikely to be controlled by crop rotation. Moreover, there is no registered resistant bean cultivar against the disease in Iran. Although soil treatment with fungicides is the only effective control method in the region, according to environmental and side effects of fungicides, alternative approaches such as biocontrol method using Trichoderma species is considered. Materials and Methods: The study was conducted using five isolates of Trichoderma (T12-0, T12-N, T19, T6, T95 received from the Department of Plant Pathology, Ferdowsi University of Mashhad (Dr. H. Rouhani and six isolates of Trichoderma (T36,T125, T131, T93, T89, T25 collected in 2011 from rhizosphere of bean plants in the commercial bean fields of Zanjan province (Table 1. Trichoderma isolates were evaluated for their potential to antagonize in vitro the plant pathogenic fungus R. solani using three different tests. In the first test, each isolate of Trichoderma was grown in a dual culture with R. solani AG-4 strain Rh7 on PDA and incubated at 25˚C. Radii of colony of R. solani were measured after 72 h. In the second test the ability of Trichoderma isolates to produce volatile inhibitors was measured. This experiment was conducted in two conditions involving the same time culturing of Trichoderma and Rhizoctonia and isolating 72 h early growing Trichoderma. For both tests the percentage of inhibition was

  11. Comparison of the effect of L-lysine-. cap alpha. -oxidase from Trichoderma harzianum Rifai and Trichoderma viride on nucleic acid synthesis in human tumor cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Khaduev, S.K.; Zhukova, O.S.; Dobrynin, Ya.V.; Soda, K.; Berezov, T.T.

    1986-10-01

    This paper gives comparative data on the effect of the new antitumor enzyme LO from a Soviet strain Trichoderma harzianum Rifai and from Trichoderma viride from Japan, on DNA and RNA synthesis in human ovarian carcinoma cells (CaOv strain) in culture, and also the results of the action of LO from T. harzianum Rifai on protein synthesis. Specific precursors were added before the end of the incubation time to the samples; /sup 3/H-thymidine as precursor for DNA synthesis, /sup 3/H-uridine as RNA precursor, and /sup 3/H-leucine as protein precursor. The final values of inhibition of DNA and RNA synthesis in the presence of enzyme from both sources are shown to depend in a virtually linear manner on enzyme concentration.

  12. [Screening strains for Trichoderma spp. for strong antagonism against ginseng root pathogens and study on their biological characters].

    Science.gov (United States)

    Zhao, A-Na; Ding, Wan-Long; Zhu, Dian-Long

    2006-10-01

    To screen the Trichodenna spp. for strong antagonist against ginseng root pathogens. The biological characters of ten Trichoderma strains were compared by culturing on different media. And their antagonistic activity against Phytophthora cactorum, Cylindrocarpon destructans and Rhizoctonia solani were measured on PDA. Tv04-2 and Th3080 showed a good growth on soil solution medium and PDA, and also showed high inhibitory efficacy to the three pathogens. The two Trichoderma strains showed different growth rate under light conditions and pH. Trichoderma strains were sensitive to most fungicides used in ginseng root disease controlling, however Tv04-2 was not sensitive to the fungicide Junchong Jueba.

  13. Trichoderma harzianum: Inhibition of mycotoxin producing fungi and toxin biosynthesis.

    Science.gov (United States)

    Braun, H; Woitsch, L; Hetzer, B; Geisen, R; Zange, B; Schmidt-Heydt, M

    2018-04-19

    A quarter of the world-wide crop is spoiled by filamentous fungi and their mycotoxins and weather extremes associated with the climate change lead to further deterioration of the situation. The ingestion of mycotoxins causes several health issues leading in the worst case to cancer in humans and animals. Common intervention strategies against mycotoxin producing fungi, such as the application of fungicides, may result in undesirable residues and in some cases to a stress induction of mycotoxin biosynthesis. Moreover, development of fungicide resistances has greatly impacted pre- and postharvest fungal diseases. Hence there is the need to develop alternative strategies to reduce fungal infestation and thus mycotoxin contamination in the food chain. Such a strategy for natural competition of important plant-pathogenic and mycotoxin producing fungi could be Trichoderma harzianum, a mycoparasitic fungus. Especially in direct comparison to certain tested fungicides, the inhibition of different tested fungal species by T. harzianum was comparable, more sustainable and in some cases more effective, too. Besides substantially reduced growth rates, a transcriptional based inhibition of mycotoxin biosynthesis in the competed Aspergillus species could be shown. Furthermore it could be clearly observed by high-resolution Scanning Electron Microscopy (SEM) that T. harzianum actively attaches to the competitor species followed by subsequent enzymatic lysis of those mycelial filaments. The analyzed isolate of T. harzianum MRI349 is not known to produce mycotoxins. In this study it could be successfully proven that T. harzianum as a biological competitor is an effective complement to the use of fungicides. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The influence of fungicides on the growth of Trichoderma asperellum.

    Science.gov (United States)

    De Schutter, B; Aerts, R; Rombouts, L

    2002-01-01

    Numbers of strains of Trichoderma asperellum are known as biological control agents of certain root pathogens of tomato (Lycopersicon esculentum). The restricted use of fungicides is sometimes useful in combination with these biological control agents. Therefore some experiments were conducted to evaluate the growth of T. asperellum in the presence of fungicides as Previcur (active substance propamocarb) and Sumico (with the active substance carbendazim and diethofencarb). The influence of these fungicides was first examined in laboratory conditions. The fungus was brought on a potato dextrose agar where the fungicides Previcur, Sumico and carbendazim were added in a concentration of 0.1x, 1x and 10x the recommended dose. The growth of T. asperellum was totally inhibited by the three Sumico and carbendazim concentrations. T. asperellum knew a small but significant decrease of growth when the 10x dose of Previcur was added. Afterwards the influence of these fungicides on the fungus was tested in field conditions in the greenhouse. The fungus was applied to the roots of the tomato plant, which was grown on a rockwool medium. Previcur and Sumico were submitted to the plants using the normal procedure. The results of the tests showed that in field conditions there was no effect of the fungicide treatment on the presence of the fungus, although the laboratory tests showed the opposite for Sumico. To explain this contradiction two other experiments were conducted to follow the migration of the Sumico after treatment. A residue analysis showed that the highest concentration of Sumico was detected in the rockwool medium, and some residues were found in the drain water and the stems. Even with a 100x recommended dose of Sumico the fungus was still present the day after the treatment.

  15. Secretome analysis of the fungus Trichoderma harzianum grown on cellulose.

    Science.gov (United States)

    Do Vale, Luis H F; Gómez-Mendoza, Diana P; Kim, Min-Sik; Pandey, Akhilesh; Ricart, Carlos A O; Ximenes F Filho, Edivaldo; Sousa, Marcelo V

    2012-08-01

    Trichoderma harzianum is a mycoparasitic filamentous fungus that produces and secretes a wide range of extracellular hydrolytic enzymes used in cell wall degradation. Due to its potential in biomass conversion, T. harzianum draws great attention from biofuel and biocontrol industries and research. Here, we report an extensive secretome analysis of T. harzianum. The fungus was grown on cellulose medium, and its secretome was analyzed by a combination of enzymology, 2DE, MALDI-MS and -MS/MS (Autoflex II), and LC-MS/MS (LTQ-Orbitrap XL). A total of 56 proteins were identified using high-resolution MS. Interestingly, although cellulases were found, the major hydrolytic enzymes secreted in the cellulose medium were chitinases and endochitinases, which may reflect the biocontrol feature of T. harzianum. The glycoside hydrolase family, including chitinases (EC 3.2.1.14), endo-N-acetylglucosaminidases (EC 3.2.1.96), hexosaminidases (EC 3.2.1.52), galactosidases (EC 3.2.1.23), xylanases (EC 3.2.1.8), exo-1,3-glucanases (EC 3.2.1.58), endoglucanases (EC 3.2.1.4), xylosidases (EC 3.2.1.37), α-L-arabinofuranosidase (EC 3.2.1.55), N-acetylhexosaminidases (EC 3.2.1.52), and other enzymes represented 51.36% of the total secretome. Few representatives were classified in the protease family (8.90%). Others (17.60%) are mostly intracellular proteins. A considerable part of the secretome was composed of hypothetical proteins (22.14%), probably because of the absence of an annotated T. harzianum genome. The T. harzianum secretome composition highlights the importance of this fungus as a rich source of hydrolytic enzymes for bioconversion and biocontrol applications. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Van Wees, Saskia C M; Pieterse, Corné M J

    2017-11-01

    Root colonization by Trichoderma fungi can trigger induced systemic resistance (ISR). In Arabidopsis, Trichoderma-ISR relies on the transcription factor MYB72, which plays a dual role in the onset of ISR and the activation of Fe uptake responses. Volatile compounds (VCs) from rhizobacteria are important elicitors of MYB72 in Arabidopsis roots. Here, we investigated the mode of action of VCs from Trichoderma fungi in the onset of ISR and Fe uptake responses. VCs from Trichoderma asperellum and Trichoderma harzianum were applied in an in vitro split-plate system with Arabidopsis or tomato seedlings. Locally, Trichoderma-VCs triggered MYB72 expression and molecular, physiological and morphological Fe uptake mechanisms in Arabidopsis roots. In leaves, Trichoderma-VCs primed jasmonic acid-dependent defences, leading to an enhanced resistance against Botrytis cinerea. By using Arabidopsis micrografts of VCs-exposed rootstocks and non-exposed scions, we demonstrated that perception of Trichoderma-VCs by the roots leads to a systemic signal that primes shoots for enhanced defences. Trichoderma-VCs also elicited Fe deficiency responses and shoot immunity in tomato, suggesting that this phenomenon is expressed in different plant species. Our results indicate that Trichoderma-VCs trigger locally a readjustment of Fe homeostasis in roots, which links to systemic elicitation of ISR by priming of jasmonic acid-dependent defences. © 2017 John Wiley & Sons Ltd.

  17. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Metwaly eRamadan

    2015-09-01

    Full Text Available Trichoderma species are present in many ecosystems and some strains have the ability to reduce the severity of plant diseases by activating various defence pathways via specific biologically active signaling molecules. Hence we investigated the effects of low molecular weight volatile compounds of Trichoderma asperellum IsmT5 on Arabidopsis thaliana. During co-cultivation of T. asperellum IsmT5 without physical contact to A. thaliana we observed smaller but vital and robust plants. The exposed plants exhibit increased trichome numbers, accumulation of defence-related compounds such as H2O2, anthocyanin, camalexin, and increased expression of defence related genes. We conclude that A. thaliana perceives the Trichoderma volatiles as stress compounds and subsequently initiates multilayered adaptations including activation of signaling cascades to withstand this environmental influence.The prominent headspace volatile of T. asperellum IsmT5 was identified to be 6-pentyl-α-pyrone, which was solely applied to A. thaliana to verify the growth and defence reactions. Most noticeable is that A. thaliana preexposed to 6PP showed significantly reduced symptoms when challenged with Botrytis cinerea and Alternaria brassicicola, indicating that defence-activated plants subsequently became more resistant to pathogen attack. Together, these results support that products that are based on Trichoderma volatiles have the potential being a useful biocontrol agent in agriculture.

  18. Potential of Trichoderma spp. strains for the bioremediation of soils contaminated with petroleum

    Directory of Open Access Journals (Sweden)

    Marcia Pesántez

    2016-10-01

    Full Text Available Fungi species can degrade xenobiotic compounds contaminating the soil, including hydrocarbons. The objective of this work was to determine the potential of three strains of Trichoderma, isolated from soil contaminated with petroleum, for bioremediation. Trichoderma harzianum CCECH-Te1, Trichoderma viride CCECH-Te2 and Trichoderma psedokoningii CCECH-Te3 were included in one assay with each independent strain. The inoculum was adjusted to a concentration of 1x1010 conidia ml-1 which was applied to soil contaminated by an oil spill. After 96 days of inoculation, soil samples were taken at 10 and 15 cm depth. The content of total hydrocarbons, polycyclic aromatic hydrocarbons and heavy metals such as cadmium, nickel and lead were determined. With the data, it was calculated the percentage of removal of the analyzed compounds by each strain. At 10 cm and 15 cm depth, it was observed the removal of the compounds in percentages that reached between 47 and 69.1% in the hydrocarbons and up to 53.72% in the heavy metals. It which denoted the potential of the three strains for bioremediation in contaminated soils.   Keywords: heavy metals, polycyclic aromatic hydrocarbons, xenobiotic compounds

  19. A paralog of the proteinaceous elicitor sm1 affects colonization of maize roots by Trichoderma virens

    Science.gov (United States)

    The biocontrol agent, Trichoderma virens, has the ability to protect plants from pathogens by eliciting plant defense responses, involvement in mycoparasitism, or secreting antagonistic secondary metabolites. SM1, an elicitor of induced systemic resistance (ISR), was found to have three paralogs wi...

  20. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato

    Science.gov (United States)

    Seventy-two isolates of Trichoderma were obtained from Hubei Province of China and identified to species based on the ITS-rDNA sequences. The isolates were initially tested for invasive growth on the colonies of Botrytis cinerea in the dual cultures with B. cinerea on potato dextrose agar at 20°C. T...

  1. Interaction of Trichoderma asperellum with Phytophthora ramorum inoculum soil populations and enzyme secretion

    Science.gov (United States)

    Supriya Sharma; Wolfgang Schweigkofler; Karen Suslow; Timothy L. Widmer

    2017-01-01

    There is a continuing desire to investigate the potential of biological control to manage the spread of Phytophthora ramorum. A specific isolate of Trichoderma asperellum has been demonstrated to be effective in reducing P. ramorum soil populations to non-detectable levels. This study was conducted...

  2. Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity

    Science.gov (United States)

    A novel xylanase from Trichoderma reesei Rut C30, named XYN IV, was purified from the cellulolytic system of the fungus. The enzyme was discovered on its ability to attack aldotetraohexenuronic acid (HexA-2Xyl-4Xyl-4Xyl, HexA3Xyl3), releasing the reducing-end xylose residue. XYN IV exhibited catalyt...

  3. Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L.

    Science.gov (United States)

    Saxena, Amrita; Raghuwanshi, Richa; Singh, Harikesh Bahadur

    2015-02-01

    Trichoderma spp. have been reported to aid in imparting biotic as well as abiotic tolerance to plants. However, there are only few reports unfolding the differential ability of separate species of Trichoderma genera generally exploited for their biocontrol potential in this framework. A study was undertaken to evaluate the biocontrol potential of different Trichoderma species namely T. harzianum, T. asperellum, T. koningiopsis, T. longibrachiatum, and T. aureoviride as identified in the group of indigenous isolates from the agricultural soils of Eastern Uttar Pradesh, India. Their biocontrol potential against three major soilborne phytopathogens, i.e., Sclerotium rolfsii, Sclerotinia sclerotiorum, and Colletotrichum capsici was confirmed by dual culture plate technique. Efficient mycoparasitic ability was further assessed in all the isolates in relation to chitinase, β-1,3 glucanase, pectinase, lipase, amylase, and cellulase production while equally consistent results were obtained for their probable phosphate solubilization and indole acetic acid (IAA) production abilities. The selected isolates were further subjected to test their ability to promote plant growth, to reduce disease incidence and to tolerate biotic stress in terms of lignification pattern against S. rolfsii in chickpea plants. Among the identified Trichoderma species, excellent results were observed for T. harzianum and T. koningiopsis indicating better biocontrol potential of these species in the group and thus exhibiting perspective for their commercial exploitation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ability of secondary metabolites from trichoderma virens to mediate communication during mutualistic or pathogenic interactions

    Science.gov (United States)

    A bioinformatic study was conducted to identify the putative genes in the biocontrol agent Trichoderma virens that encode for non-ribosomal peptide synthetases (NRPS). Gene expression analysis of 22 putative NRPSs and 4 NRPS/PKS (polyketide synthase) hybrid enzymes was conducted in the presence and...

  5. Structural and Phylogenetic Analysis of Laccases from Trichoderma: A Bioinformatic Approach

    Science.gov (United States)

    Cázares-García, Saila Viridiana; Vázquez-Garcidueñas, Ma. Soledad; Vázquez-Marrufo, Gerardo

    2013-01-01

    The genus Trichoderma includes species of great biotechnological value, both for their mycoparasitic activities and for their ability to produce extracellular hydrolytic enzymes. Although activity of extracellular laccase has previously been reported in Trichoderma spp., the possible number of isoenzymes is still unknown, as are the structural and functional characteristics of both the genes and the putative proteins. In this study, the system of laccases sensu stricto in the Trichoderma species, the genomes of which are publicly available, were analyzed using bioinformatic tools. The intron/exon structure of the genes and the identification of specific motifs in the sequence of amino acids of the proteins generated in silico allow for clear differentiation between extracellular and intracellular enzymes. Phylogenetic analysis suggests that the common ancestor of the genus possessed a functional gene for each one of these enzymes, which is a characteristic preserved in T. atroviride and T. virens. This analysis also reveals that T. harzianum and T. reesei only retained the intracellular activity, whereas T. asperellum added an extracellular isoenzyme acquired through horizontal gene transfer during the mycoparasitic process. The evolutionary analysis shows that in general, extracellular laccases are subjected to purifying selection, and intracellular laccases show neutral evolution. The data provided by the present study will enable the generation of experimental approximations to better understand the physiological role of laccases in the genus Trichoderma and to increase their biotechnological potential. PMID:23383142

  6. Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum

    Science.gov (United States)

    Trichothecenes are sesquiterpenoid mycotoxins produced mainly by Fusarium species. Harzianum A (HA), a non-phytotoxic trichothecene produced by Trichoderma arundinaceum, has recently been found to have antagonistic activity against fungal plant pathogens and to induce plant genes involved in defense...

  7. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease.

    Science.gov (United States)

    Vos, Christine M F; De Cremer, Kaat; Cammue, Bruno P A; De Coninck, Barbara

    2015-05-01

    Botrytis cinerea is a necrotrophic fungal pathogen causing disease in many plant species, leading to economically important crop losses. So far, fungicides have been widely used to control this pathogen. However, in addition to their detrimental effects on the environment and potential risks for human health, increasing fungicide resistance has been observed in the B. cinerea population. Biological control, that is the application of microbial organisms to reduce disease, has gained importance as an alternative or complementary approach to fungicides. In this respect, the genus Trichoderma constitutes a promising pool of organisms with potential for B. cinerea control. In the first part of this article, we review the specific mechanisms involved in the direct interaction between the two fungi, including mycoparasitism, the production of antimicrobial compounds and enzymes (collectively called antagonism), and competition for nutrients and space. In addition, biocontrol has also been observed when Trichoderma is physically separated from the pathogen, thus implying an indirect systemic plant defence response. Therefore, in the second part, we describe the consecutive steps leading to induced systemic resistance (ISR), starting with the initial Trichoderma-plant interaction and followed by the activation of downstream signal transduction pathways and, ultimately, the defence response resulting in ISR (ISR-prime phase). Finally, we discuss the ISR-boost phase, representing the effect of ISR priming by Trichoderma spp. on plant responses after additional challenge with B. cinerea. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  8. Comparative production of cellulases by mutants of Trichoderma parceramosume PTCC5140

    Directory of Open Access Journals (Sweden)

    Hoda Nouri

    2017-06-01

    Discussion and conclusion: Evaluation of cellulase production in mutant strains of Trichoderma parceramosume PTCC 5140 showed that use of chemical mutagenesis with 2 to 11 fold increasing in enzyme activity is a potent method to improve cellulase complex activity. In the current study, obtained mutant strains could be introduced as a potent cellulase producer for further studies in bioconversion processes.

  9. Quantitative site-specific phosphoproteomics of Trichoderma reesei signaling pathways upon induction of hydrolytic enzyme production

    NARCIS (Netherlands)

    Nguyen, E.V.; Imanishi, S.Y.; Haapaniemi, P.; Yadav, A.; Saloheimo, M.; Corthals, G.L.; Pakula, T.M.

    2016-01-01

    The filamentous fungus Trichoderma reesei is used for industrial production of secreted enzymes including carbohydrate active enzymes, such as cellulases and hemicellulases. The production of many of these enzymes by T. reesei is influenced by the carbon source it grows on, where the regulation

  10. Efficacy of soil solarization, Trichoderma harzianum, and coffee pulp amendment against Armillaria sp

    NARCIS (Netherlands)

    Otieno, W.; Termorshuizen, A.J.; Jeger, M.J.

    2003-01-01

    Soil solarization was evaluated singly or in combination with Trichoderma harzianum infestation or coffee pulp amendment for its effect on wood-borne inoculum of an Armillaria sp. pathogenic on tea. Solarization increased maximum soil temperatures at 10 cm depth by 9-12degreesC and reduced viability

  11. Study on the Biocontrol Activities of Trichoderma species in Greengram with Infected Fungal Pathogens

    International Nuclear Information System (INIS)

    May Waine Wityi Htun; Myat Thu; Saw Sandar Maw

    2011-12-01

    Seven species of Trichoderma were isolated from rhizospheric soil sources and studied by cultural morphology and microscopic examinations. In dual plate assay, antifungal effects of seven Trichoderma strains were screened against three plant pathogenic fungi (Fusarium oxysporum, Rhizoctonia solani and Pythium sp.) on PDA medium and T-5 isolate showed a wide percentage of inhibitory effects on target pathogens with PIRG value. All Trichoderma strains exhibited a clear zone formation on minimal synthetic medium supplemented with 1% colloidal chitin. T-2 and T-5 were the best chitinase producer strains. In vitro screening for protease activity, the highest protease producing activity of Trichoderma isolate (T-2) were observed in pH indicator medium after 7 days incubation. In pot trial experiment, only T-5 strain exhibited more fungal suppression efficiency on green gram plant than commercial fungicide, Trisan and the other strains. So, it can be said that the effective strain was T-5 strain only which have been more antifungal producing power on three fungal pathogens than Trisan and the resting strains.

  12. Optimization of Chromium Biosorption by Fungal Adsorbent, Trichoderma sp. BSCR02 and its Desorption Studies

    Directory of Open Access Journals (Sweden)

    John Rose Mercy Benila Smily

    2017-04-01

    Full Text Available Heavy metal pollution in water because of the discharge of industrial effluent imposes serious environmental concern. Chromium is one of such pollutants which is considered as toxic, non-biodegradable and persistent in nature. In the present study, the fungal strains isolated from the water samples of Manjakkudi lake were screened for their resistance towards the heavy metal, chromium. The Trichoderma sp. BSCR02 showing resistance towards increased chromium concentration (4 mg/mL was selected for the biosorption studies. The chromium biosorption ability of the untreated and alkali-treated mycelium of Trichoderma sp. BSCR02 was compared and found the alkali treatment as better biosorbent. The process parameters governing chromium biosorption by the dead biomass of Trichoderma sp. were optimized and maximum chromium removal was observed at pH 5 with 200 mg/L initial metal concentration at 35°C when supplemented 1.6 mg/mL of biosorbent for the contact time of 120 min. The biosorbent was found to be active for five cycles of biosorption. The results revealed the applicability of the Trichoderma sp. BSCR2 for the effective removal of chromium from the contaminated water bodies.

  13. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Langston, Jim

    2007-01-01

    The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsv ae rd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably...

  14. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis...

  15. Evaluation of Minimal Trichoderma reesei Cellulase Mixtures on Differently Pretreated Barley Straw Substrate

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Langston, J

    2007-01-01

    The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsv ae rd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably...

  16. Microencapsuling aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures

    Science.gov (United States)

    Trichoderma conidia are mostly produced by solid fermentation systems. Inoculum is produced by liquid culturing, and then transferred to solid substrate for aerial conidial production. Aerial conidia of T. harzianum are hydrophilic in nature, and it is difficult to separate them from the solid subst...

  17. Safety evaluation of β-glucanase derived from Trichoderma reesei: Summary of toxicological data

    NARCIS (Netherlands)

    Coenen, T.M.M.; Schoenmakers, A.C.M.; Verhagen, H.

    1995-01-01

    Barlican, a β-glucanase enzyme obtained from Trichoderma reesei, was produced by a fermentation process and subjected to a series of toxicological tests to document its safety for use as a feed additive. The enzyme product was examined for general oral toxicity, inhalation toxicity, irritation to

  18. The antagonistic activity of Trichoderma virens strain TvSUT10 ...

    African Journals Online (AJOL)

    In this current study, the beneficial filamentous fungi, Trichoderma virens, isolated from cassava field were investigated for antagonistic mode of action against Lasiodiplodia theobromae, the causal agent of cassava stem rot in Thailand. In vitro screening using the dual culture technique was undertaken to assess the ...

  19. Promoção do crescimento do feijoeiro e controle da antracnose por Trichoderma spp

    Directory of Open Access Journals (Sweden)

    Erica Aparecida de Souza Pedro

    2012-11-01

    Full Text Available O objetivo deste trabalho foi avaliar a capacidade de Trichoderma spp. em promover o crescimento de plantas de feijão e reduzir a severidade da antracnose do feijoeiro (Colletotrichum lindemuthianum, bem como identificar os isolados mais eficientes. Sessenta isolados de Trichoderma spp. foram avaliados quanto à capacidade de promoção do crescimento nas plantas. Os sete isolados que mais se destacaram foram adicionados ao substrato de cultivo e avaliados quanto à redução na severidade da antracnose em plantas de feijão tratadas com conídios de C. lindemuthianum. Os mais eficientes no controle da doença foram identificados por sequenciamento de DNA. O isolado IB 28/07 foi avaliado nas concentrações 0,5, 1, 1,5 e 2% (peso:volume, que reduziram a severidade da doença em 41,51, 55,15, 81,82 e 96,06%, respectivamente. Os isolados mais eficientes de Trichoderma spp. podem proporcionar aumentos superiores a 30% na produção de matéria seca da parte aérea das plantas e reduzir a severidade da doença entre 63 e 98%. Esses isolados foram identificados como pertencentes às espécies Trichoderma harzianum, T. strigosum e T. theobromicola.

  20. A mini-bag technique for evaluation of fungicide effects on Trichoderma spp in mushroom compost.

    Science.gov (United States)

    Abosriwil, Salem O; Clancy, Kevin J

    2004-04-01

    An in vivo technique was developed to observe colonisation of mushroom compost by Trichoderma spp. Isolates of T. harzianum (Th2), T. harzianum (Th1), T. koningii (Tk) and T. viride (Tv) were artificially introduced into compost using a mini-bag system. Wheat grains, colonised by Trichoderma spp, were placed centrally on a layer of compost at the bottom of 1-litre polythene bags which were then filled with 350 g of spawned or un-spawned compost, and partially sealed. After 14 and 21 days incubation at 27 degrees C, the bags were assessed for recovery of Trichoderma from middle and top zones using a needle stab re-isolation technique and a visual colonisation scoring system. Visible green mould contamination, similar to that observed in practice, developed within 21 days. The visual colonisation scoring was reliably related to the re-isolation success. In this evaluation, Trichoderma spp showed considerable differences in their relative abilities to colonise spawned and un-spawned compost, with Th2 isolates being consistently superior to the other isolates of Th1, Tk and Tv in colonising spawned compost. This technique was employed to evaluate the effects of fungicides on the colonisation of mushroom compost by three Trichoderma spp: Th2, Th1 and Tk, using 1-litre and 5-litre mini-bag systems. Aqueous suspensions of benomyl, carbendazim, thiabendazole, prochloraz and prochloraz+carbendazim incorporated into the compost at 50 mg litre(-1), or applied to spawn at 50 mg kg(-1), reduced the colonisation by Trichoderma spp. Prochloraz and prochloraz+carbendazim were superior to benomyl, carbendazim or thiabendazole in reducing compost colonisation by Th2, Th1 and Tk, with Th2 being the most persistent type, capable of colonising treated compost in the presence of all five fungicides. The prochloraz+carbendazim mixture, not normally used in mushroom production, was equal to or better than prochloraz alone. The incidence of green mould colonisation by Th2 was as extensive

  1. Variabilidade entre isolados de Trichoderma harzianum: I - Aspectos citológicos Variability among Trichoderma harzianum isolates: I - Cytological aspects

    Directory of Open Access Journals (Sweden)

    E. Peres

    1995-04-01

    Full Text Available Objetivou-se neste trabalho estudar a variabilidade de isolados selvagens de Trichoderma harzianum baseado nas características culturais e citológicas. Observaram-se o tamanho dos fialosporos, número de núcleos por fialosporos e crescimento e esporulação em meio de malte-ágar. Pelos resultados aqui encontrados foi possível reconhecer que há variação entre os isolados selvagens da espécie T. harzianum. Com relação ao número de núcleos, verificou-se uma variação de 1 a 3 núcleos por fialosporos. Também observou-se padrões diferenciais de crescimento e morfologia da colônia. Mais de 50% dos isolados atingiram o máximo de crescimento em 48 horas.This study is based largely on morphological and cultural characters of Tríchoderma harzianum isolates. It were observed the size of phialospores, mycelial growth and sporulation on malt extract agar and nuclei number per phialospores, stained with Giemsa. A x 100 oil immersion len was used in examining and in measuring phialospores. Based on the size of phialospores, it was possible recognize that there is variaton among the wild isolates for the specie T. harzianum. Also, with relation to mycelial growth and sporulation can itself distinguish from one another different pattern. Up to 50% of isolates had maximum growth in 48 hours. The nuclei number of 1 to 3 per phialospore was observed.

  2. Arabidopsis thaliana polyamine content is modified by the interaction with different Trichoderma species.

    Science.gov (United States)

    Salazar-Badillo, Fatima Berenice; Sánchez-Rangel, Diana; Becerra-Flora, Alicia; López-Gómez, Miguel; Nieto-Jacobo, Fernanda; Mendoza-Mendoza, Artemio; Jiménez-Bremont, Juan Francisco

    2015-10-01

    Plants are associated with a wide range of microorganisms throughout their life cycle, and some interactions result on plant benefits. Trichoderma species are plant beneficial fungi that enhance plant growth and development, contribute to plant nutrition and induce defense responses. Nevertheless, the molecules involved in these beneficial effects still need to be identify. Polyamines are ubiquitous molecules implicated in plant growth and development, and in the establishment of plant microbe interactions. In this study, we assessed the polyamine profile in Arabidopsis plants during the interaction with Trichoderma virens and Trichoderma atroviride, using a system that allows direct plant-fungal contact or avoids their physical interaction (split system). The plantlets that grew in the split system exhibited higher biomass than the ones in direct contact with Trichoderma species. After 3 days of interaction, a significant decrease in Arabidopsis polyamine levels was observed in both systems (direct contact and split). After 5 days of interaction polyamine levels were increased. The highest levels were observed with T. atroviride (split system), and with T. virens (direct contact). The expression levels of Arabidopsis ADC1 and ADC2 genes during the interaction with the fungi were also assessed. We observed a time dependent regulation of ADC1 and ADC2 genes, which correlates with polyamine levels. Our data show an evident change in polyamine profile during Arabidopsis - Trichoderma interaction, accompanied by evident alterations in plant root architecture. Polyamines could be involved in the changes undergone by plant during the interaction with this beneficial fungus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species.

    Science.gov (United States)

    Schmoll, Monika; Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R; Hernández-Oñate, Miguel; Kruszewska, Joanna S; Lawry, Robert; Mora-Montes, Hector M; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio; Herrera-Estrella, Alfredo

    2016-03-01

    The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. SELEKSI DAN UJI ANTAGONISME TRICHODERMA SPP. ISOLAT TAHAN FUNGISIDA NABATI TERHADAP PERTUMBUHAN PHYTOPHTHORA CAPSICI

    Directory of Open Access Journals (Sweden)

    Joko Prasetyo, Efri & Radix Suharjo .

    2011-11-01

    Full Text Available Screening and testing of isolate of Trichoderma spp. resistant to botanical fungicides on the growth of P. capsici. The research was conducted at the Plant Disease laboratory, Plant Protection Department, Faculty of Agriculture, Lampung University from March – November 2007. The aim of the research was to find isolate of Trichoderma spp. resistant to botanical fungicide  which still have its capability to inhibit the growth of P. capsici. Completely randomized design with three replicates was used in the research. Data collected in this research were isolates of Trichoderma spp. resistant to botanical fungicides and inhibition percentage of isolates of Trichoderma spp. resistant to botanical fungicide on the growth of P. capsici. The data were analysed with anova and continued with LSD test at 5% of significant level. As much as 9 isolates of Trichoderma spp. resistant to botanical fungicide were found. Three isolates of T. viride could survive in the 100% of tumeric powder (C, east indian galangale powder (A, and clove leaf powder (B. Two isolates of T. harzianum could survive in the 100% of tumeric powder (A and clove leaf powder (A. One isolate survived in the 90% of east indian galangale powder (D. Two isolates of T. koningii also could survive in the 100% of tumeric powder (A  and clove leaf powder (A. One isolate survived in the 90% of east indian galangale powder (C. All of the isolates  inhibited  P. capsici. All of the isolates found statistically had the same capability to inhibit the growth of P. capsici.

  5. Genome Sequencing and Comparative Analysis of the Biocontrol Agent Trichoderma harzianum sensu stricto TR274

    Energy Technology Data Exchange (ETDEWEB)

    Steindorff, Andrei S.; Noronha, Elilane F.; Ulhoa, Cirano J.; Kuo, Alan; Salamov, Asaf A.; Haridas, Sajeet; Riley, Robert W.; Druzhinina, Irina S.; Kubicek, Christian P.; Grigoriev, Igor V.

    2015-03-17

    Biological control is a complex process which requires many mechanisms and a high diversity of biochemical pathways. The species of Trichoderma harzianum are well known for their biocontrol activity against many plant pathogens. To gain new insights into the biocontrol mechanism used by T. harzianum, we sequenced the isolate TR274 genome using Illumina. The assembly was performed using AllPaths-LG with a maximum coverage of 100x. The assembly resulted in 2282 contigs with a N50 of 37033bp. The genome size generated was 40.8 Mb and the GC content was 47.7%, similar to other Trichoderma genomes. Using the JGI Annotation Pipeline we predicted 13,932 genes with a high transcriptome support. CEGMA tests suggested 100% genome completeness and 97.9% of RNA-SEQ reads were mapped to the genome. The phylogenetic comparison using orthologous proteins with all Trichoderma genomes sequenced at JGI, corroborates the Trichoderma (T. asperellum and T. atroviride), Longibrachiatum (T. reesei and T. longibrachiatum) and Pachibasium (T. harzianum and T. virens) section division described previously. The comparison between two Trichoderma harzianum species suggests a high genome similarity but some strain-specific expansions. Analyses of the secondary metabolites, CAZymes, transporters, proteases, transcription factors were performed. The Pachybasium section expanded virtually all categories analyzed compared with the other sections, specially Longibrachiatum section, that shows a clear contraction. These results suggests that these proteins families have an important role in their respective phenotypes. Future analysis will improve the understanding of this complex genus and give some insights about its lifestyle and the interactions with the environment.

  6. Changes in hyphal morphology and activity of phenoloxidases during interactions between selected ectomycorrhizal fungi and two species of Trichoderma.

    Science.gov (United States)

    Mucha, Joanna

    2011-06-01

    Patterns of phenoloxidase activity can be used to characterize fungi of different life styles, and changes in phenoloxidase synthesis were suspected to play a role in the interaction between ectomycorrhizal and two species of Trichoderma. Confrontation between the ectomycorrhizal fungi Amanita muscaria and Laccaria laccata with species of Trichoderma resulted in induction of laccase synthesis, and the laccase enzyme was bound to mycelia of ectomycorrhizal fungi. Tyrosinase release was noted only during interaction of L. laccata strains with Trichoderma harzianum and T. virens. Ectomycorrhizal fungi, especially strains of Suillus bovinus and S. luteus, inhibited growth of Trichoderma species and caused morphological changes in its colonies in the zone of interaction. In contrast, hyphal changes occurred less often in the ectomycorrhizal fungi tested. Species of Suillus are suggested to present a different mechanism in their interaction with other fungi than A. muscaria and L. laccata.

  7. Three New Soil-inhabiting Species of Trichoderma in the Stromaticum Clade with Test of Their Antagonism to Pathogens.

    Science.gov (United States)

    Chen, Kai; Zhuang, Wen-Ying

    2017-09-01

    Trichoderma is a dominant component of the soil mycoflora. During the field investigations of northern, central, and southwestern China, three new species in the Stromaticum clade were encountered from soil, and named as T. hebeiense, T. sichuanense, and T. verticillatum. Their phylogenetic positions were determined by analyses of the combined two genes: partial sequences of translation elongation factor 1-alpha and the second largest RNA polymerase subunit-encoding genes. Distinctions between the new species and their close relatives were discussed. Trichoderma hebeiense appeared as a separate terminal branch. The species is distinctive by its oblong conidia and aggregated pustules in culture. Trichoderma sichuanense features in concentric colony and produces numerous clean exudates on aerial mycelium in culture. Trichoderma verticillatum is characterized by its verticillium-like synanamorph and production of abundant chlamydospores. In vitro antagonism towards the new species was tested by dual culture technique.

  8. Antagonistic Activity of Trichoderma ISolates against Sclerotium rolfsii : Screening of Efficient Isolates from Morocco Soils for Biological Control

    Directory of Open Access Journals (Sweden)

    N. Khattabi

    2004-12-01

    Full Text Available Seventy Trichoderma spp. isolates collected from different regions of Morocco were tested for their capacity to inhibit in vitro mycelial growth of Sclerotium rolfsii, and for their effect on the viability of S. rolfsii sclerotia in the soil. The Trichoderma spp. isolates inhibited mycelial growth of S. rolfsii to various degrees, with 52% of isolates expressing an average inhibition, varying between 45 and 55%. The effect on the viability of sclerotia in the soil also varied between isolates of Trichoderma, with the majority (84% having a slight effect. A group of twenty isolates identified as Trichoderma harzianum when tested in sterilized soil, significantly reduced sclerotial viability though not in natural soil. Four of these isolates (Nz, Kb2, Kb3 and Kf1 showed good antagonistic activity against S. rolfsii and were also highly competitive in natural soil. These isolates would therefore be candidates for development in biological control program.

  9. Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species.

    Science.gov (United States)

    Bailey, B A; Bae, H; Strem, M D; Roberts, D P; Thomas, S E; Crozier, J; Samuels, G J; Choi, Ik-Young; Holmes, K A

    2006-11-01

    Endophytic isolates of Trichoderma species are being considered as biocontrol agents for diseases of Theobroma cacao (cacao). Gene expression was studied during the interaction between cacao seedlings and four endophytic Trichoderma isolates, T. ovalisporum-DIS 70a, T. hamatum-DIS 219b, T. harzianum-DIS 219f, and Trichoderma sp.-DIS 172ai. Isolates DIS 70a, DIS 219b, and DIS 219f were mycoparasitic on the pathogen Moniliophthora roreri, and DIS 172ai produced metabolites that inhibited growth of M. roreri in culture. ESTs (116) responsive to endophytic colonization of cacao were identified using differential display and their expression analyzed using macroarrays. Nineteen cacao ESTs and 17 Trichoderma ESTs were chosen for real-time quantitative PCR analysis. Seven cacao ESTs were induced during colonization by the Trichoderma isolates. These included putative genes for ornithine decarboxylase (P1), GST-like proteins (P4), zinc finger protein (P13), wound-induced protein (P26), EF-calcium-binding protein (P29), carbohydrate oxidase (P59), and an unknown protein (U4). Two plant ESTs, extensin-like protein (P12) and major intrinsic protein (P31), were repressed due to colonization. The plant gene expression profile was dependent on the Trichoderma isolate colonizing the cacao seedling. The fungal ESTs induced in colonized cacao seedlings also varied with the Trichoderma isolate used. The most highly induced fungal ESTs were putative glucosyl hydrolase family 2 (F3), glucosyl hydrolase family 7 (F7), serine protease (F11), and alcohol oxidase (F19). The pattern of altered gene expression suggests a complex system of genetic cross talk occurs between the cacao tree and Trichoderma isolates during the establishment of the endophytic association.

  10. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes

    OpenAIRE

    Gomes, Eriston V.; Ulhoa, Cirano J.; Cardoza, Rosa E.; Silva, Roberto N.; Guti?rrez, Santiago

    2017-01-01

    Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum stra...

  11. [The isolation and characterization of beta-glucosidase gene and beta-glucosidase of Trichoderma viride]: Progress report

    International Nuclear Information System (INIS)

    Stafford, D.W.

    1983-01-01

    Our project was to isolate and characterize the enzyme β-glucosidase and to clone and characterize the β-glucosidase gene; our goal is to clone and characterize each of the cellulase genes from Trichoderma. The induction of the Trichoderma reesei cellulase complex by cellulose and by the soluble inducer, sophorose, has been demonstrated. Although the induction of the cellulase complex has previously been well documented, the induction of β-glucosidase had been questioned. 49 refs., 6 figs., 2 tabs

  12. The Use of Trichoderma spp. for Controlling the Growth and Aflatoxin Production of Aspergillus parasiticus in Agricultural Products

    International Nuclear Information System (INIS)

    Thanaboripat, Dusanee; Piadiang, Nattaya; Qian, Yang

    2006-09-01

    Various strains of Trichoderma spp. were screened from soils and irradiated by gamma ray. After the irradiation all strains were tested for an ability to inhibit the growth of aflatoxin producing fungi (A. parasiticus IMI 105266 and A. flavus IMI 24268). The results indicate that Trichoderma virde S84-1 480526 I08(1) was the most effective strain in controlling the growth of these two fungi on PDA.

  13. REKLAMASI LAHAN BEKAS TAMBANG DENGAN PENANAMAN LCC DAN AGEN HAYATI TRICHODERMA

    Directory of Open Access Journals (Sweden)

    Nur Hidayat

    2017-10-01

    Full Text Available With this reclamation  is expected that the land will be well and restore its function, so that the productivity of the soil can increase, resulting in added value for the environment and create thins are better.  The purpose of this research is to utilize  Centrosoma pubescens (Cp (LCC and Trichoderma as media to improve physical and chemical properties of soil by way of reclamation in former coal mine area. This research has been done on reclaimed damaged and poor nutrient land in 2015, with LCC planting and the Tricoderma biological agents to improve soil physical and chemical properties. Planting of  LCC and giving of trichoderma biological agent with duration of 6 months observation (deadly LCC plant after composting is done analysis of physical and chemical properties of soil after treatment to see the change then compared with data of laboratory result before being treated in the field the result obtained is analyzed with using the complete randomized and Least Significance Different test. Based on the results of the study, LCC and Trichoderma have a very significant effect on the variables of Ca, Mg, Na, K, Al, C Organic, H +, P2O5, K2O, Total N, C/N ratio, CEC and significantly unaffected pH soil, physical properties of soil such as Bulk Density, Porosity, Water content, texture, consistency and soil stabilization.  Giving LCC and Trichoderma improves soil chemical properties such as; Ca, Mg, Na, K2O, C / N Ratio. Giving LCC improves chemical properties such as total N and C / N ratio while Trichoderma improves soil chemical properties of Al, C Organic, H +, C / N Ratio and CEC. Reklamasi dilakukan untuk menjaga lahan agar tidak labil dan lebih produktif. Dengan reklamasi ini diharapkan tanah menjadi baik dan mengembalikan fungsinya sehingga produktifitas tanah dapat meningkat,  menghasilkan nilai tambah bagi lingkungan dan menciptakan keadaan yang jauh lebih baik. Tujuan penelitian ini adalah memanfaatkan tanaman LCC dan

  14. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Directory of Open Access Journals (Sweden)

    Javier Ribera

    Full Text Available The production of new generation of wood preservatives (without addition of a co-biocide in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720 was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium. T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%. Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens

  15. EFISIENSI PENGGUNAAN Trichoderma sp UNTUK MENGENDALIKAN PENYAKIT LAYU FUSARIUM (Fusarium oxysporium DAN PERTUMBUHAN BIBIT TANAMAN PISANG

    Directory of Open Access Journals (Sweden)

    Bukhari Bukhari

    2018-02-01

    Full Text Available             Penelitian ini dilakukan di Pante Cermin  Kecamatan Padang Tiji Kabupaten Pidie.  pada bulan Maret  sampai dengan bulan Agustus 2015, dengan tujuan untuk mengetahui efisiensi penggunaan Trichoderma sp terhadap pertumbuhan beberapa jenis bibit Pisang (Musa Paracica L.  Penelitian ini mengunakan Rancangan Acak Kelompok (RAK pola faktorial dengan faktor yang diteliti  adalah Jenis pisang  dan dosis trichoderma.  Kedua faktor terdiri dari 4 taraf yaitu: Pisang Barangan (J1,pisang Ambon (J2, pisang Raja (G3 dan pisang Geupok (J4.  Sedangkan dosis  Tricoderma sp  yaitu :TO = 0 g/ bibit T1 = 15 g/ bibit  T2 = 30 g/ bibit  dan T3 = 45 g/ bibit.  Sehingga terdapat 16 kombinasi perlakuan dan diulang 3 kali,  yang menghasilkan 48 satuan percobaan.            Untuk mengetahui pengaruh masing-masing perlakuan serta interaksinya terhadap pertumbuhan bibit pisang, dilakukan analisis ragam (Uji F dan dilanjutkan dengan uji Beda Nyata Jujur (BNJ pada taraf 5%.            Hasil penelitian menunjukkan bahwa secara fisul pertumbuhan bibit pisang yang baik diantara 4 jenis yang diteliti ditunjukkkan oleh pisang Barangan namun secara statistika tidak berbeda dengan pisang 3 jenis pisang lainnya.  Namun pemberian trichoderma sampai umur 4 bulan belum memeperlihatkan pertumbuhan dan intensitas serangan yang berbeda nyata, sehingga harus diperpanjang masa penelitian menjadi 6 Bulan.   Setelah 6 bulan  penelitian ternyata telah ada perbedaan pertumbuhan dan    intensitas serangan,  dimana intensitas serangan yang paling besar diperlihatkan oleh T0 (tanpa pemberian trichoderma . Sedang intensitas serangan terkecil diperlihatkan oleh T3 (Dosis trichoderma sp 45 gr/bibit pisang. Jenis pisang tidak berpengaruh terhadap pertumbuhan dan Intensitas serangan layu fusarium. serta  interaksi   kedua faktor tersebut berpengaruh tidak nyata terhadap pertumbuhan bibit pisang dan intensitas serangan penyakit layu

  16. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.

    Science.gov (United States)

    Ribera, Javier; Fink, Siegfried; Bas, Maria Del Carmen; Schwarze, Francis W M R

    2017-01-01

    The production of new generation of wood preservatives (without addition of a co-biocide) in combination with an exchange of wood poles on identical sites with high fungal inoculum, has resulted in an increase of premature failures of wood utility poles in the last decades. Wood destroying basidiomycetes inhabiting sites where poles have been installed, have developed resistance against wood preservatives. The objective of the in vitro studies was to identify a Trichoderma spp. with a highly antagonistic potential against wood destroying basidiomycetes that is capable of colonizing Cu-rich environments. For this purpose, the activity of five Trichoderma spp. on Cu-rich medium was evaluated according to its growth and sporulation rates. The influence of the selected Trichoderma spp. on wood colonization and degradation by five wood destroying basidiomycetes was quantitatively analyzed by means of dry weight loss of wood specimens. Furthermore, the preventative effect of the selected Trichoderma spp. in combination with four Cu-based preservatives was also examined by mass loss and histological changes in the wood specimens. Trichoderma harzianum (T-720) was considered the biocontrol agent with higher antagonistic potential to colonize Cu-rich environments (up to 0.1% CuSO4 amended medium). T. harzianum demonstrated significant preventative effect on wood specimens against four wood destroying basidiomycetes. The combined effect of T. harzianum and Cu-based wood preservatives demonstrated that after 9 months incubation with two wood destroying basidiomycetes, wood specimens treated with 3.8 kg m-3 copper-chromium had weight losses between 55-65%, whereas containers previously treated with T. harzianum had significantly lower weight losses (0-25%). Histological studies on one of the wood destroying basidiomycetes revealed typical decomposition of wood cells by brown-rot fungi in Cu-impregnated samples, that were notably absent in wood specimens previously exposed to T

  17. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Miguel Angel eSalas-Marina

    2015-02-01

    Full Text Available Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growth in tomato (Solanum lycopersicum plants. T. virens was more effective than T. atroviride in promoting biomass gain, and both fungi were capable of inducing systemic protection in tomato against Alternaria solani, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst DC3000. Deletion (KO of epl1 in T. atroviride resulted in diminished systemic protection against A. solani and B. cinerea, whereas the T. virens sm1 KO strain was less effective in protecting tomato against Pst DC3000 and B. cinerea. Importantly, over-expression (OE of epl1 and sm1 led to an increase in disease resistance against all tested pathogens. Although the Trichoderma WT strains induced both systemic acquired resistance (SAR- and induced systemic resistance (ISR-related genes in tomato, inoculation of plants with OE and KO strains revealed that Epl1 and Sm1 play a minor role in the induction of these genes. However, we found that Epl1 and Sm1 induce the expression of a peroxidase and an α-dioxygenase encoding genes, respectively, which could be important for tomato protection by Trichoderma spp. Altogether, these observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought.

  18. Secretômica de Trichoderma atroviride e Trichoderma harzianum frente a Guignardia e citricarpa, agente etiológico da Pinta Preta dos Citros

    OpenAIRE

    Lima, Fernanda Blauth de

    2016-01-01

    Os agentes de controle biológico têm recebido grande reconhecimento, e o seu uso tem contribuído como um complemento ou substituição de agroquímicos. No entanto, existem poucos estudos sobre o controle biológico da Pinta Preta dos Citros, causada pelo fungo Guignardia citricarpa, o que impede o seu mercado in natura, além de prejudicar a sua exportação pelo uso intensivo de insumos químicos para controlar este patógeno. Os fungos do gênero Trichoderma são agentes de controle utilizados em tod...

  19. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M; Negro, M J; Saez, R; Martin, C

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  20. EVALUACIÓN DE Trichoderma asperellum COMO BIORREGULADOR DE Spongospora subterranea f. sp. subterranea EVALUATION OF Trichoderma asperellum AS BIOREGULATOR OF Spongospora subterranea f. sp. subterranea

    OpenAIRE

    Liliana María Hoyos Carvajal; Sonia Jaramillo Villegas; Sergio Orduz Peralta

    2008-01-01

    La roña de la papa causada por Spongospora subterranea, una de las principales enfermedades de la papa, es un protozoo para el cual existen limitadas estrategias de control debido a que cuenta con diversos tipos de inóculo, estructuras de resistencia y hospederos alternos. El objetivo de este trabajo fue evaluar Trichoderma asperellum T-84 y T-109 sobre S. subterranea bajo condiciones de invernadero en dos experimentos, probando en plantas hasta la novena y doceava semana, variables de peso f...

  1. EVALUACIÓN DE Trichoderma asperellum COMO BIORREGULADOR DE Spongospora subterranea f. sp. subterranea EVALUATION OF Trichoderma asperellum AS BIOREGULATOR OF Spongospora subterranea f. sp. subterranea

    Directory of Open Access Journals (Sweden)

    Liliana María Hoyos Carvajal

    2008-12-01

    Full Text Available La roña de la papa causada por Spongospora subterranea, una de las principales enfermedades de la papa, es un protozoo para el cual existen limitadas estrategias de control debido a que cuenta con diversos tipos de inóculo, estructuras de resistencia y hospederos alternos. El objetivo de este trabajo fue evaluar Trichoderma asperellum T-84 y T-109 sobre S. subterranea bajo condiciones de invernadero en dos experimentos, probando en plantas hasta la novena y doceava semana, variables de peso fresco, seco y número de nódulos producidos por el patógeno. Consistentemente, las plantas tratadas con T. asperellum aumentaron el peso fresco (Experimento 1 y peso seco (Experimento 2 y redujeron el número de nódulos de S. subterranea en raíces de papa, actuando mejor en aplicaciones solos que en mezcla. Este es un estudio preliminar que sugiere que T. asperellum puede llegar a ser a futuro un potencial agente de regulación biológica para la roña de la papa, pero que requiere estudios de la interacción papa/S. subterranea/Trichoderma para su implementación.Powdery scab caused by Spongospora subterranea, is one of the main diseases on potato crops, is a protozoo for which exist limited control strategies because it counts with diverse types of inoculum, resistance structures and alternative hosts. The objective of this work was to test Trichoderma asperellum T-84 and T-109 against S. subterranea under controlled conditions in two experiments, evaluating in plants until nine and twelve week, variables of fresh and dry weight and number of galls produced by the pathogen. Consistently the plants with T. asperellum increased fresh weight (Experiment 1 and dry weight (Experiment 2 and reduced the number of nodules of S. subterranea in potato root, better in single applications than in mixture. This is a preliminary study that suggests T. asperellum could be a potential agent of biological regulation in the future for powdery scab, but it will be

  2. Exposing of Trichoderma spp. to gamma radiation for stimulating its pesticide biodegradation activity

    International Nuclear Information System (INIS)

    Afify, A.E.M.R.; Ibrahim, G.M.; Abo El Seoud, M.A.; Helal, I.M.M.; Kassem, B.W.

    2012-01-01

    This work has been conducted to study the possibility of making use of fungi for degrading insecticide-carbofuran. Trichoderma spp. were showed highly potentiality to metabolize carbofuran (200 mg/ kg) to 3-ketocarbofuran in soil as a sole carbon and energy source within 14 days. Carbofuran and its main metabolite were analyzed by high performance liquid chromatography (HPLC). Studies on biodegradation in the soil showed that 81.5 % and 86 % of carbofuran degraded within 14 days of incubation by T. harzianum and T. viride strains, respectively. The lowest dose of gamma irradiation 0.25 KGy enhanced the mycelial dry weight by 22.8 % and 16.2 % for T. harzianum and T. viride strains, respectively. This indicated that the isolates of Trichoderma spp. were potentially useful for carbofuran bioremediation.

  3. Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods

    Directory of Open Access Journals (Sweden)

    Camila Florencio

    2016-09-01

    Full Text Available The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as inducer for enzyme production. The proteins were organized according to the families described in CAZy database as cellulases, hemicellulases, proteases/peptidases, cell-wall-protein, lipases, others (catalase, esterase, etc., glycoside hydrolases families, predicted and hypothetical proteins. Further detailed analysis of this data is provided in “Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation process: enzyme production for sugarcane bagasse hydrolysis” C. Florencio, F.M. Cunha, A.C Badino, C.S. Farinas, E. Ximenes, M.R. Ladisch (2016 [1]. Keywords: Tricoderma reesei, Aspergillus Niger, Enzyme Production, Secretome

  4. Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity

    Science.gov (United States)

    Tripathi, R. M.; Gupta, Rohit Kumar; Shrivastav, Archana; Singh, M. P.; Shrivastav, B. R.; Singh, Priti

    2013-09-01

    The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV-Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8-24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity.

  5. Biotransformation of Geniposide into Genipin by Immobilized Trichoderma reesei and Conformational Study of Genipin

    Directory of Open Access Journals (Sweden)

    Yishun Yang

    2018-01-01

    Full Text Available Trichoderma reesei QM9414, Trichoderma viride 3.316, Aspergillus niger M85, and Aspergillus niger M92 were screened for hydrolyzing geniposide into genipin. T. reesei was selected according to the β-glucosidase activity of the fermentation broths using geniposide as a substrate. T. reesei was immobilized by embedding method using sodium alginate as the carrier. Geniposide was hydrolyzed by immobilized T. reesei at 28°C (200 rpm for 34 h, and the yield of genipin was 89%. The product was purified and identified by UV, IR, EIMS, and 1H-NMR. Since there were two sets of signals in 1H-NMR spectra, a series of experiments were performed and verified that the existence of two conformations was the main reason. Generally, biotransformation of geniposide into genipin by immobilized T. reesei provides a promising solution to the genipin production.

  6. How a mycoparasite employs g-protein signaling: using the example of trichoderma.

    Science.gov (United States)

    Omann, Markus; Zeilinger, Susanne

    2010-01-01

    Mycoparasitic Trichoderma spp. act as potent biocontrol agents against a number of plant pathogenic fungi, whereupon the mycoparasitic attack includes host recognition followed by infection structure formation and secretion of lytic enzymes and antifungal metabolites leading to the host's death. Host-derived signals are suggested to be recognized by receptors located on the mycoparasite's cell surface eliciting an internal signal transduction cascade which results in the transcription of mycoparasitism-relevant genes. Heterotrimeric G proteins of fungi transmit signals originating from G-protein-coupled receptors mainly to the cAMP and the MAP kinase pathways resulting in regulation of downstream effectors. Components of the G-protein signaling machinery such as Gα subunits and G-protein-coupled receptors were recently shown to play crucial roles in Trichoderma mycoparasitism as they govern processes such as the production of extracellular cell wall lytic enzymes, the secretion of antifungal metabolites, and the formation of infection structures.

  7. Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity

    International Nuclear Information System (INIS)

    Tripathi, R M; Shrivastav, Archana; Gupta, Rohit Kumar; Singh, M P; Shrivastav, B R; Singh, Priti

    2013-01-01

    The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV–Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV–Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8–24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity. (paper)

  8. Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei

    OpenAIRE

    Wang, Min; Lu, Xuefeng

    2016-01-01

    Recent demands for the production of lignocellulose biofuels boosted research on cellulase. Hydrolysis efficiency and production cost of cellulase are two bottlenecks in biomass to biofuels process. The Trichoderma cellulase mixture is one of the most commonly used enzymes for cellulosic hydrolysis. During hydrolytic process cellobiose accumulation causes feedback inhibition against most cellobiohydrolases and endoglucanases. In this study, we demonstrated the synergism effects between cellob...

  9. EFIKASI TRICHODERMA HARZIANUM DENGAN BERBAGAI BAHAN ORGANIK DALAM PENGENDALIAN PENYAKIT BUSUK PANGKAL BATANG PADA LADA

    Directory of Open Access Journals (Sweden)

    Cipta Ginting

    2011-11-01

    Full Text Available The objective of this research was to determine the influence of the kinds of organic matter on the efficacy of Trichoderma harzianum Rifai to control foot rot of black pepper caused by Phytophthora capsici Leonian.  Trichoderma spp. were isolated from suppressive and non-suppressive soils taken from black pepper fields with high disease incidence.  Screening of Trichoderma spp. isolates was conducted through antagonistic test with dual culture technique.  Treatments were arranged in a completely randomized design with six replications.  Treatments were rice husk, rice straw, wood dust, Arachis pintoi, mixture of the four organic matters, the mixture without T. harzianum, and without organic matter.  The test was conducted in greenhouse with media consisted of soil, organic matter, and sand (2 : 2 : 1, v/v.  After being otoclaved, the medium was infested with T. harzianum and P. capsici each with five mycelium plugs of 1-cm diameter.  Black pepper seedlings were planted 5 days after fungal infestation.  After planting the seedlings, five leaf cuts were partly inserted into the soil on each pot.  The variables observed were disease incidence on the leaf cuts inserted into the soil and disease severity on the stems and roots.  The results show that all 16 Trichoderma isolates inhibited P. capsici colonies and some isolates showed stronger inhibition than the others.  T. harzianum reduced disease severity, but there was no effect of the kinds of organic matter on the ability of T. harzianum to control foot rot.

  10. Hydrolysis of cellulose-containing materials by cellulase of the Trichoderma lignorum OM 534 fungus

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, S L; Lobanok, A G

    1977-01-01

    Of the cellulose containing materials, hydrocellulose was most easily degraded while lignocellulose was hardest to break down with cellulase from T. lignorum grown on lactose or cellulose. Grinding and heat treatment (at 200/sup 0/) of lignocellulose enhanced its enzymic degradability. Hydrolysis was highest by cellulase from lactose-cultured Trichoderma. The hydrolysis products contained glucose, galactose, xylose, and mannose. Filtrates from T. lignorum grown on a lignocellulose were enzymically active after purification.

  11. Enzyme production in immobilized Trichoderma reesei cells with hydrophobic polymers prepared by radiation polymerization method

    International Nuclear Information System (INIS)

    Luzhao Xin; Kumakura, Minoru; Kaetsu, Isao

    1993-01-01

    Trichoderma reesei cells were immobilized on paper covered with hydrophobic monomer, trimethylpropane triacrylate by radiation polymerization. The effect of immobilization condition on enzyme productivity was studied by measuring filter paper and cellobiose activity. The cells were adhered and grew on the surface of the carrier with the polymer giving high enzyme productivity in the immobilized cells in comparison with the free cells. Optimum concentration and volume of the coating monomer for the preparation of the immobilized cells were obtained. (author)

  12. Effects of gamma-ray irradiation on cellulase secretion of Trichoderma reesei

    International Nuclear Information System (INIS)

    Tamada, M.; Kasai, N.; Kaetsu, I.

    1987-01-01

    Trichoderma reesei was irradiated with gamma rays to investigate the effects of different dosages on cellulase production. Doses above 0.7 kGy induced cell lysis. Cell growth began to be obstructed at 2.0 kGy. As a result, the cells irradiated at 2.0 kGy secreted 1.8 times as much cellulase as the untreated cells

  13. Effects of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride.

    Science.gov (United States)

    Daryaei, A; Jones, E E; Ghazalibiglar, H; Glare, T R; Falloon, R E

    2016-04-01

    The goal was to determine the effect of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride LU132 against Rhizoctonia solani. The incubation temperatures of 20, 25 or 30°C were assessed on the production of T. atroviride conidia under constant light over a 25 and 50 days periods. The resulting conidia were also studied for germination and bioactivity. Conidium production was maximum at 25°C after 20 days. The second peak of conidium production occurred at 45-50 days. Incubation at 25°C after 15 days showed optimum production of T. atroviride LU132. Conidia produced at 30°C gave the greatest germination and bioactivity in comparison with incubation at 20 or 25°C. This study indicates that the temperature at which conidia of T. atroviride are produced affects germination and bioactivity. Formulations based on production of the high conidia yield may not result in optimal bioactivity and there is a trade-off between quantity and quality of T. atroviride LU132 conidia. Conidium production was shown to be a continuous process, and increased under a dark/light regime. This is the first report of bimodal conidium production in a Trichoderma biological control agent (BCA), which is likely to be on 20 days cycle, and is dependent on colony age rather than abiotic factors. Conidia produced after 15 days are likely to be the most suitable for use in commercial production of this strain as a BCA. Most studies on Trichoderma-based BCA have only shown the effect of culture conditions on the high conidia yield regardless of conidium quality. This study is the first report on conidium quality affected by principal culture conditions for Trichoderma biological control formulations. © 2016 The Society for Applied Microbiology.

  14. Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06.

    Science.gov (United States)

    Nor, Nurafifah Mohd; Hadibarata, Tony; Zubir, Meor Mohd Fikri Ahmad; Lazim, Zainab Mat; Adnan, Liyana Amalina; Fulazzaky, Mohamad Ali

    2015-11-01

    Cresol Red belongs to the triphenylmethane (TPM) class of dyes which are potentially carcinogenic or mutagenic. However, very few studies on biodegradation of Cresol Red were investigated as compared to other type dyes such as azo and anthraquinone dye. The aim of this work is to evaluate triphenylmethane dye Cresol Red degradation by fungal strain isolated from the decayed wood in Johor Bahru, Malaysia. Detailed taxonomic studies identified the organisms as Trichoderma species and designated as strain Trichoderma harzianum M06. In this study, Cresol Red was decolorized up to 88% within 30 days under agitation condition by Trichoderma harzianum M06. Data analysis revealed that a pH value of 3 yielded a highest degradation rate among pH concentrations (73%), salinity concentrations of 100 g/L (73%), and a volume of 0.1 mL of Tween 80 (79%). Induction in the enzyme activities of manganese peroxidase, lignin peroxidase, laccase, 1,2- and 2,3-dioxygenase indicates their involvement in Cresol Red removal. Various analytical studies such as Thin-Layer Chromatography (TLC), UV-Vis spectrophotometer, and Gas chromatography mass spectrometry (GC-MS) confirmed the biotransformation of Cresol Red by the fungus. Two metabolites were identified in the treated medium: 2,4-dihydroxybenzoic acid (t R 7.3 min and m/z 355) and 2-hydroxybenzoic acid (t R 8.6 min and m/z 267). Based on these products, a probable pathway has been proposed for the degradation of Cresol Red by Trichoderma harzianum M06.

  15. Benomyl-resistant mutant strain of Trichoderma sp. with increased mycoparasitic activity.

    Science.gov (United States)

    Olejníková, P; Ondrusová, Z; Krystofová, S; Hudecová, D

    2010-01-01

    Application of UV radiation to the strain Trichoderma sp. T-bt (isolated from lignite) resulted in the T-brm mutant which was resistant to the systemic fungicide benomyl. The tub2 gene sequence in the T-brm mutant differed from the parent as well as the collection strain (replacing tyrosine with histidine in the TUB2 protein). Under in vitro conditions this mutant exhibited a higher mycoparasitic activity toward phytopathogenic fungi.

  16. Trichoderma species from the cacao agroecosystem with biocontrol potential of Moniliophthora roreri

    Directory of Open Access Journals (Sweden)

    Omar Reyes-Figueroa

    2016-01-01

    Full Text Available La moniliasis del cacao ( Moniliophthora roreri es la principal limitante parasítica de la producción de cacao ( Theobroma cacao en México. Una alternativa sostenible para el control de la enfermedad es el uso del hongo Trichoderma . El objetivo del presente estudio fue seleccionar aislamientos nativos de Trichoderma con las mejores características antagónicas y fisiológicas in vitro, para el control de M. roreri . Para ello, se caracterizaron 50 aislamientos de Trichoderma , obtenidos del agroecosistema cacao. El crecimiento micelial y la producción de conidios a 25, 30 y 35 °C se consideraron variables fisiológicas. El micoparasitismo, antibiosis y antagonismo potencial fueron las variables antagónicas. Se encontraron diferencias significativas ( P = 0.0001 en todas las variables evaluadas . El intervalo de temperatura óptima para el crecimiento micelial y producción de conidios fue de 25 a 30 °C. El micoparasitismo varió de 0 a 100 % y solo los aislamientos de seis especies mostraron esta característica. La antibiosis osciló entre 6.8 y 55.5 %, y el antagonismo potencial varió de 3.4 a 69 %. Trichoderma virens (TTC017 y T. harzianum (TTC090, TTC039, TTC073 mostraron el mejor biocontrol potencial in vitro , por lo que son cepas prometedoras para futuras investigaciones sobre control biológico de la moniliasis del cacao.

  17. Molecular Identification Of Trichoderma Strains Collected To Develop Plant Growth-Promoting And Biocontrol Agents

    Directory of Open Access Journals (Sweden)

    Oskiera Michał

    2015-06-01

    Full Text Available Trichoderma strains that are beneficial to both the growth and health of plants can be used as plant growth-promoting fungi (PGPF or biological control agents (BCA in agricultural and horticultural practices. In order to select PGPF or BCA strains, their biological properties and taxonomy must be carefully studied. In this study, 104 strains of Trichoderma collected at geographically different locations in Poland for selection as PGPF or BCA were identified by DNA barcoding, based on the sequences of internal transcribed spacers 1 and 2 (ITS1 and 2 of the ribosomal RNA gene cluster and on the sequences of translation elongation factor 1 alpha (tef1, chitinase 18-5 (chi18-5, and RNA polymerase II subunit (rpb2 gene fragments. Most of the strains were classified as: T. atroviride (38%, T. harzianum (21%, T. lentiforme (9%, T. virens (9%, and T. simmonsii (6%. Single strains belonging to T. atrobrunneum, T. citrinoviride, T. crassum, T. gamsii, T. hamatum, T. spirale, T. tomentosum, and T. viridescens were identified. Three strains that are potentially pathogenic to cultivated mushrooms belonging to T. pleuroticola and T. aggressivum f. europaeum were also identified. Four strains: TRS4, TRS29, TRS33, and TRS73 were classified to Trichoderma spp. and molecular identification was inconclusive at the species level. Phylogeny analysis showed that three of these strains TRS4, TRS29, and TRS33 belong to Trichoderma species that is not yet taxonomically established and strain TRS73 belongs to the T. harzianum complex, however, the species could not be identified with certainty.

  18. Cellulase Activity in Solid State Fermentation of Palm Kernel Cake with Trichoderma sp.

    Directory of Open Access Journals (Sweden)

    Massaud, M. B. N.

    2012-01-01

    Full Text Available Aims: The effect of different types of fungal inocula to the cellulase activity measured on palm kernel cake (PKC was studied. Methodology and Results: Isolate Pro-A1 which was identified as Trichoderma sp. was selected as a potential producer of cellulase via solid state fermentation technique (SSF. Two types of PKCs were used; raw PKC (containing residual oil and defatted PKC. The PKCs were inoculated with different concentrations of conidia and varying amounts (g of solid mycelia plugs (SMP for SSF. The effect of ultrafiltered crude fungal filtrate (CFF as inocula was also being tested. The highest cellulase activity of 2.454 FPU/mL was detected with 60% (wt/wt SMP applied to the raw PKC. Conversely, 2.059 FPU/mL of cellulase activity was measured when 80% (wt/wt of SMP was applied to the defatted PKC which is 62.3% higher than the untreated defatted PKC; and more than 100% increase in enzymatic activity compared to raw PKC. The cellulase activity in the SSF inoculated with 8 x 106 conidia /mL and 12 x 106 conidia /mL were 1.704 FPU/mL for raw PKC and 1.856 FPU/mL for defatted PKC, an enhancement of about 46% from uninoculated batch. Inoculation with CFF bears corresponding maximum improvement of the cellulase activity on both PKCs of 13.58% (raw and 2.86% (defatted. Conclusion, significance and impact of study: The current study proves that Trichoderma sp. in the form of SMP can enhance the cellulase activity on PKCs effectively with more than 100% increment. Fungal conidia are also a better choice in enhancing cellulase activity of Trichoderma sp. permitted that the PKC used is devoid of oil. From this study, Trichoderma sp. holds the potential of converting lignocellulosic materials into products of commercial and industrial values such as glucose and other biofuels.

  19. Origin of initial burst in activity for Trichoderma reesei endo-glucanases hydrolyzing insoluble cellulose

    DEFF Research Database (Denmark)

    Murphy, Leigh; Cruys-Bagger, Nicolaj; Baumann, Martin J.

    2012-01-01

    by the three main EGs from Trichoderma reesei (Tr): TrCel7B (formerly EG I), TrCel5A (EG II), and TrCel12A (EG III). These endo-glucanases show a distinctive initial burst with a maximal rate that is about 5-fold higher than the rate after 5 min of hydrolysis. The burst is particularly conspicuous for TrCel7B...

  20. Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions

    Directory of Open Access Journals (Sweden)

    Goldman Maria Helena S.

    1998-01-01

    Full Text Available The mycoparasite Trichoderma harzianum produces an alkaline proteinase that may be specifically involved in mycoparasitism. We have constructed transformant strains of this fungus that overexpress this alkaline proteinase. Some of the transformants were assessed for alkaline proteinase activity, and those with higher activity than the wild type were selected for further studies. One of these transformant strains produced an elevated and constitutive pbr1 mRNA level during mycoparasitic interactions with Rhizoctonia solani.

  1. Production in food of 1,3-pentadiene and styrene by Trichoderma species

    CSIR Research Space (South Africa)

    Pinches, SE

    2007-05-01

    Full Text Available against other fungi (Dennis and Webster, 1971) although the antimicrobial properties of 1,3-pentadiene and styrene are not established. In foods, the presence of either or both of the compounds imparts repellent smells and highly disagreeable off... tainting compounds are indeed produced in the presence of sorbic acid and cinnamic acid, but not if the corresponding precursors are absent. Trichoderma moulds are known to produce a wide range of volatile organic compounds, (VOCs) (McAfee and Taylor...

  2. Trichoderma ROLE IN AGROFORESTRY-CACAOTAL SYSTEMS AS AN ANTAGONAL AGENT

    Directory of Open Access Journals (Sweden)

    Úrsula del Carmen López-Ferrer

    2017-05-01

    Full Text Available Agricultural and cocoa agroforestry systems are important for food production and biodiversity conservation. Among this diversity there is a group of fungi of the genus Trichoderma that present antagonistic effects against phytopathogens and this action can be used as a form of biological control of plant pathogens. In the agroforestry-cacao system the diseases with the highest frequency and with the greatest impact on cocoa production (Theobroma cacao are black rot (Phytophthora spp., Broom broom (Moniliophthora perniciosa and moniliasis (Moniliophthora roreri. The objective of this work was to perform an analysis of the main theoretical and practical aspects about the genus Trichoderma and its role in agriculture as an antagonistic agent. One of the microscopic features in the delimitation of the genus, especially by the presence of structures called phalid. The antagonistic mechanisms used by Trichoderma spp. Are described as competition, antibiosis and mycoparasitism. Mycoparasitism is having a relevance on the implications of extracellular enzymes such as chitinases, cellulases, β-1-3-glucanases and proteases that lyse or digest the walls of fungi, Moniliophthora roreri disease. This fungus can inhibit the growth of other fungi and bacteria by producing several volatile and non-volatile secondary metabolites. On the other hand, it participates in the production of regulators of growth and stimulation of the division, differentiation and cellular growth in the plant by the elicitor agent. Trichoderma species that are commercialized for biological control, growth promoter and biofertilizer are T. viride, T. polysporum and T. harzianum. The T. virens and T. harzianum species are most used for the antagonistic control of M. roreri, Phytophthora spp., and M. perniciosa in agroforestry-cacao systems (Theobroma cacao L. with optimal results to the inhibitory effect for these diseases.

  3. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    Science.gov (United States)

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  4. Characterization of a protease produced by a Trichoderma harzianum isolate which controls cocoa plant witches' broom disease

    Directory of Open Access Journals (Sweden)

    Felix Carlos

    2002-01-01

    Full Text Available Abstract Background Several Trichoderma strains have been reported to be effective in controlling plant diseases, and the action of fungal hydrolytic enzymes has been considered as the main mechanism involved in the antagonistic process. However, although Trichoderma strains were found to impair development of Crinipellis perniciosa, the causal agent of cocoa plant witches' broom disease, no fungal strain is available for effective control of this disease. We have then undertaken a program of construction of hydrolytic enzyme-overproducing Trichoderma strains aiming improvement of the fungal antagonistic capacity. The protease of an indian Trichoderma isolate showing antagonistic activity against C. perniciosa was purified to homogeneity and characterized for its kinetic properties and action on the phytopathogen cell wall. Results A protease produced by the Trichoderma harzianum isolate 1051 was purified to homogeneity by precipitation with ammonium sulfate followed by hydrophobic chromatography. The molecular mass of this protease as determined by SDS-polyacrylamide gel electrophoresis was about 18.8 kDa. Its N-terminal amino acid sequence shares no homology with any other protease. The purified enzyme substantially affected the cell wall of the phytopathogen C. perniciosa. Western-blotting analysis showed that the enzyme was present in the culture supernatant 24 h after the Trichoderma started to grow in casein-containing liquid medium. Conclusions The capacity of the Trichoderma harzianum protease to hydrolyze the cell wall of C. perniciosa indicates that this enzyme may be actually involved in the antagonistic process between the two fungi. This fact strongly suggest that hydrolytic enzyme over-producing transgenic fungi may show superior biocontrol capacity.

  5. Identification and Characterization of Trichoderma Species Damaging Shiitake Mushroom Bed-Logs Infested by Camptomyia Pest.

    Science.gov (United States)

    Kim, Jun Young; Kwon, Hyuk Woo; Yun, Yeo Hong; Kim, Seong Hwan

    2016-05-28

    The shiitake mushroom industry has suffered from Camptomyia (gall midges) pest, which feeds on the mycelium of shiitake mushroom during its cultivation. It has been postulated that fungal damage of shiitake bed-logs is associated with infestation by the insect pest, but this is not well understood. To understand the fungal damage associated with Camptomyia pest, various Trichoderma species were isolated, identified, and characterized. In addition to two previously known Trichoderma species, T. citrinoviride and T. deliquescens, two other Trichoderma species, T. harzianum and T. atroviride, were newly identified from the pestinfested bed-log samples obtained at three mushroom farms in Cheonan, Korea. Among these four species, T. harzianum was the most evident. The results of a chromogenic media-based assay for extracellular enzymes showed that these four species have the ability to produce amylase, carboxyl-methyl cellulase, avicelase, pectinase, and β-glucosidase, thus indicating that they can degrade wood components. A dual culture assay on PDA indicated that T. harzianum, T. atroviride, and T. citrinoviride were antagonistic against the mycelial growth of a shiitake strain (Lentinula edodes). Inoculation tests on shiitake bed-logs revealed that all four species were able to damage the wood of bed-logs. Our results provide evidence that the four green mold species are the causal agents involved in fungal damage of shiitake bed-logs infested by Camptomyia pest.

  6. Efecto bioestimulante de Trichoderma harzianum Rifai en posturas de Leucaena, Cedro y Samán

    Directory of Open Access Journals (Sweden)

    Leonides Castellanos González

    2018-01-01

    Full Text Available El presente artículo evaluó el efecto bioestimulante de Trichoderma harzianum Rifai en la producción de postura de Leucaena leucocephala (Lam de Wit., Cedrela odorata L. y Albizia saman (Jacq. Merr. Se desarrollaron tres experimentos en condiciones de vivero, uno para cada especie. Se empleó un diseño completamente aleatorio con cuatro parcelas por tratamiento. En cada experimento los tratamientos fueron: Trichoderma harzianum a razón de 20 g.L-1, 40 g.L-1 y un testigo. Se evaluó el porcentaje de germinación y las variables morfométricas diámetro y altura del tallo, así como biomasa seca en raíz y parte aérea de la planta. Los tratamientos con Trichoderma no incrementaron el porcentaje de germinación en cedro, samán y leucaena. T. harzianum incrementó la altura, el número de hojas y la biomasa seca del área foliar en las plántulas de cedro, mientras que en leucaena y samán solo provocó incrementos del diámetro basal de las plántulas.

  7. Trichoderma evansii and T. lieckfeldtiae: two new T. hamatum-like species.

    Science.gov (United States)

    Samuels, Gary J; Ismaiel, Adnan

    2009-01-01

    The new species, Trichoderma evansii and T. lieckfeldtiae, resemble the closely related T. hamatum and T. pubescens in forming discrete, setose conidial pustules within which arise smooth, green conidia from pachybasium-like conidiophores. The phylogenetic position of these species was determined with combined partial sequences of ITS, translationelongation factor 1-alpha, RNA polymerase II subunit and actin genes. All are members of the Viride clade. Trichoderma evansii forms a sister group relationship with a clade that includes T. hamatum and T. pubescens. It differs from the latter two species in having subglobose conidia; it was isolated as an endophyte from sapwood of Lophira alata (Ochnaceae) and Cola verticillata (Malvaceae) in Cameroon and Theobroma gileri (Malvaceae) in Peru. Trichoderma lieckfeldtiae occupies an unresolved position in the Viride clade despite being virtually morphologically indistinguishable from T. hamatum; it was isolated from fruit of cacao infected with Moniliophthora roreri in Colombia, pseudostroma of Moniliophthora roreri on pods of Theobroma cacao in Peru and from soil in a cacao farm in Cameroon (central Africa).

  8. Phosphogypsum biotransformation by aerobic bacterial flora and isolated Trichoderma asperellum from Tunisian storage piles

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Jihen [Research Unit “Coastal and Urban Environments” National Engineering School of Sfax, BP 1173, 3038 Sfax (Tunisia); Tunisian Chemical Group, M’Dhilla-Gafsa factory, B.P. 215, 2100 Gafsa (Tunisia); Magdich, Salwa; Jarboui, Raja [Research Unit “Coastal and Urban Environments” National Engineering School of Sfax, BP 1173, 3038 Sfax (Tunisia); Loungou, Mouna [Tunisian Chemical Group, M’Dhilla-Gafsa factory, B.P. 215, 2100 Gafsa (Tunisia); Ammar, Emna, E-mail: ammarenis@yahoo.fr [Research Unit “Coastal and Urban Environments” National Engineering School of Sfax, BP 1173, 3038 Sfax (Tunisia)

    2016-05-05

    Highlights: • The enrichment culture on PG enabled the development of microorganisms. • The isolated Trichoderma asperellum grew on PG concentration at 200 g L{sup −1}. • At 200 g L{sup −1} PG concentration, the experimented strain reduced COD by 52.32%. • Metals concentrations reduction reached a maximum of 73% for the zinc. • Trichoderma asperellum is an efficient microorganism for PG bioremediation. - Abstract: Aerobic microorganisms able to grow on phosphogypsum (PG), characterized by heavy metals accumulation and high acidity were investigated by enrichment cultures. The PG was used at different concentrations, varying from 20 to 200 g/L in the enrichment culture medium supplemented with compost and Tamarix roots. This treatment reduced COD and heavy metals PG concentration. An efficient isolated fungus, identified by molecular approach as Trichoderma asperellum, was able to grow on PG as the sole carbon and energy sources at the different experimented concentrations, and to increase the culture media pH of the different PG concentrations used to 8.13. This fact would be the result of alkaline compound released during the fungus PG solubilization. Besides, the heavy metals and COD removal exceeded 52% after 7 days culture. At 200 g/L PG concentration, the experimented strain was able to reduce COD by 52.32% and metals concentrations by 73% for zinc, 63.75% for iron and 50% for cadmium. This exhibited the T. asperellum efficiency for heavy metals accumulation and for phosphogypsum bioremediation.

  9. Pemanfaatan Urea sebagai Sumber Nitrogen pada Biosolubisasi Batubara oleh Trichoderma sp.

    Directory of Open Access Journals (Sweden)

    Novi Mulyawati

    2016-03-01

    Full Text Available Lignite coal was found abundant in Indonesia, but usage for this type of coal was still relatively low. Economic value of coal increases when it is solubilized. Biosolubilization of coal by utilize of microbes produces compounds equivalent to petroleum. In this research, effect of urea on lignite biosolubilization by Trichoderma sp. was examined. Method of this research consisted of spore inoculum preparation, biosolubilization lignite coal with a variety of treatment that consists of treatment A (MSS + sucrose  1% + coal 5% + urea, and treatment B (MSS + sucrose  1% + coal 5%. Results showed that the addition of urea supported lignit coal biosolubilization by Trichoderma sp. based on increase in medium pH, concentration of phenolic and conjugated aromatic compounds, and activity of extracellular enzyme. In addition, result of product characterization using GCMS revealed compounds equivalent to 13,60%, 26,20% and 90,8% respectively for gasoline, kerosene and diesel components. Those confirmed that urea can be used as an alternative nitrogen source to support Trichoderma sp. in lignit biosolubilization producing petroleum compounds.

  10. INDEKS MITOSIS UJUNG AKAR KECAMBAH CABE BESAR (Capsicum annuum L. SETELAH PERLAKUAN SUSPENSI Trichoderma sp.

    Directory of Open Access Journals (Sweden)

    PetroneLa Deno Raja

    2016-06-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui indeks mitosis ujung akar kecambah cabe besar (Capsicum annuum L. setelah perlakuan suspensi Trichoderma sp. Penelitian ini dilakukan di laboratorium Struktur Perkembangan Tumbuhan Jurusan Biologi FMIPA, Universitas Udayana dari Oktober 2013-November 2013. Metode yang digunakan adalah metode squash, biji cabe untuk kontrol direndam dalam air ± 6 jam, untuk perlakuan biji setelah direndam air, direndam lagi dalam suspensi Trichoderma sp. 10-7 selama ± 6 jam, selanjutnya dikecambahkan. Ujung akar kecambah 2 mm dipotong, difiksasi dalam larutan farmer ± 2-24 jam, dihidrolisis dalam larutan 3N HCL ± 2-5 menit dan kemudian pewarnaan dengan aceto orcein ± 5 menit. Pengamatan dilakukan dengan mikroskop binokuler, data pembelahan tiap fase mitosis dihitung (%, dicatat dan difoto, dan dianalisis dengan menggunakan uji paired T tes.Hasil penelitian menunjukkan bahwa Trichoderma sp. berpengaruh terhadap indeks mitosis sel ujung akar Capsicum annuum L.,  pada fase metafase berbeda nyata antara kontrol dan perlakuan, sedangkan pada fase profase, anafase dan telofase berbeda tidak nyata.  Pada perlakuan persentase fase profase, metafase, anafase dan telofase (77,14%; 12,96 %; 5,88 % dan 5,23 % lebih tinggi dari kontrol (66,40 %; 5,44 %; 4,96 % dan 4,66 %.

  11. Evaluation of biological control of fusarium wilt in gerbera with Trichoderma asperellum

    Directory of Open Access Journals (Sweden)

    Daiani Brandler

    2017-09-01

    Full Text Available The increase in flower cultivation in recent years has been reflecting the higher incidence of soil pathogens that can cause serious problems. This study aimed to evaluate the biological control of Fusarium wilt in gerbera with Trichoderma asperellum. The evaluated treatments were: T1 Control, only sterile substrate; T2 Substrate + Fusarium oxysporum; T3 Substrate + Fusarium oxysporum + Trichoderma asperellum; and T4 Substrate + Trichoderma asperellum. For this, the pathogen was isolated from gerbera with disease symptoms and, subsequently, it was identified according to morphological characters. Furthermore, the degree of antagonism of T. asperellum against F. oxysporum was evaluated through the culture pairing test. For greenhouse evaluations, commercial autoclaved substrate was used and infested with corn grains infected by the pathogen. Morphological identification confirmed the pathogen species as Fusarium oxysporum. In the culture pairing test, it was found that T. asperellum did not present a high degree of antagonism. The plants cultivated on substrate infested by the pathogen had no visible symptoms of wilt, but the substrate infestation with the pathogen provided lower values of fresh and dry mass of shoots and roots. The treatment with T. asperellum obtained higher values of fresh and dry mass of both shoots and roots, and also more vigorous inflorescences in relation to the plants treated with the pathogen

  12. The improvement of competitive saprophytic capabilities of Trichoderma species through the use of chemical mutagens.

    Science.gov (United States)

    Rashmi, Singh; Maurya, Sudarshan; Upadhyay, Ram Sanmukh

    2016-01-01

    The antagonistic potential of Trichoderma strains was assayed by studying the effect of their culture filtrate on the radial growth of Sclerotium rolfsii, the causal agent of chickpea collar rot. Trichoderma harzianum-1432 (42.2%) and Trichoderma atroviride (40.3%) were found to be strong antagonists. To enhance their antagonistic potential, mutagenesis of these two selected strains was performed. Two mutants, Th-m1 and T. atroviride m1, were found to be more effective than their parent strains. The enzymatic activities of the selected parent and mutant strains were assayed, and although both mutants were found to have enhanced enzymatic activities compared to their respective parent strains, Th-m1 possessed the maximum cellulase (5.69U/mL) and β-1,3-glucanase activity (61.9U/mL). Th-m1 also showed high competitive saprophytic ability (CSA) among all of the selected parent and mutant strains, and during field experiments, Th-m1 was found to successfully possess enhanced disease control (82.9%). Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium.

    Science.gov (United States)

    Nongmaithem, Nabakishor; Roy, Ayon; Bhattacharya, Prateek Madhab

    2016-01-01

    Fourteen Trichoderma isolates were evaluated for their tolerance to two heavy metals, nickel and cadmium. Three isolates, MT-4, UBT-18, and IBT-I, showed high levels of nickel tolerance, whereas MT-4, UBT-18, and IBT-II showed better tolerance of cadmium than the other isolates. Under nickel stress, biomass production increased up to a Ni concentration of 60ppm in all strains but then decreased as the concentrations of nickel were further increased. Among the nickel-tolerant isolates, UBT-18 produced significantly higher biomass upon exposure to nickel (up to 150ppm); however, the minimum concentration of nickel required to inhibit 50% of growth (MIC50) was highest in IBT-I. Among the cadmium-tolerant isolates, IBT-II showed both maximum biomass production and a maximum MIC50 value in cadmium stress. As the biomass of the Trichoderma isolates increased, a higher percentage of nickel removal was observed up to a concentration of 40ppm, followed by an increase in residual nickel and a decrease in biomass production at higher nickel concentrations in the medium. The increase in cadmium concentrations resulted in a decrease in biomass production and positively correlated with an increase in residual cadmium in the culture broth. Nickel and cadmium stress also influenced the sensitivity of the Trichoderma isolates to soil fungistasis. Isolates IBT-I and UBT-18 were most tolerant to fungistasis under nickel and cadmium stress, respectively. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains

    Science.gov (United States)

    Jaklitsch, Walter; Gazis, Romina; Degenkolb, Thomas; Samuels, Gary J.

    2016-01-01

    Trichoderma harzianum is known as a cosmopolitan, ubiquitous species associated with a wide variety of substrates. It is possibly the most commonly used name in agricultural applications involving Trichoderma, including biological control of plant diseases. While various studies have suggested that T. harzianum is a species complex, only a few cryptic species are named. In the present study the taxonomy of the T. harzianum species complex is revised to include at least 14 species. Previously named species included in the complex are T. guizhouense, T. harzianum, and T. inhamatum. Two new combinations are proposed, T. lentiforme and T. lixii. Nine species are described as new, T. afarasin, T. afroharzianum, T. atrobrunneum, T. camerunense, T. endophyticum, T. neotropicale, T. pyramidale, T. rifaii and T. simmonsii. We isolated Trichoderma cultures from four commercial biocontrol products reported to contain T. harzianum. None of the biocontrol strains were identified as T. harzianum s. str. In addition, the widely applied culture ‘T. harzianum T22’ was determined to be T. afroharzianum. Some species in the T. harzianum complex appear to be exclusively endophytic, while others were only isolated from soil. Sexual states are rare. Descriptions and illustrations are provided. A secondary barcode, nuc translation elongation factor 1-α (TEF1) is needed to identify species in this complex. PMID:25661720

  15. Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants.

    Science.gov (United States)

    Zhao, Lei; Wang, Fei; Zhang, Yaqing; Zhang, Jiaojiao

    2014-07-01

    Iron (Fe) deficiency is a major plant nutritional disorder in many parts of the world, particularly in areas with saline soils. Among the numerous root-associated microbes that are beneficial for plant nutrient uptake, Trichoderma spp. are the most effective rhizosphere fungi for enhancing plant growth and plant resistance to biotic and abiotic stresses. To investigate the potential mechanisms of action of Trichoderma on insoluble Fe in the soil, which is difficult for plants to absorb and utilize, a high siderophore-producing strain of Trichoderma T6, was isolated from the rhizosphere of cucumber plants. The strain was identified as T. asperellum based on the morphological features and molecular phylogenetic analyses. Applying strain T6 to sterile soil could increase soil levels of Fe(2+) and siderophores, as well as increase Fe(2+) and Fe(3+)-chelate reductase (FCR) activity in cucumber tissues. Purified siderophore eluent (PSE) increased plant growth, thus confirming its role in plant growth promotion. Moreover, extracellular Fe(3+) reducing activity and three kinds of organic acids were detected in the culture filtrate of strain T6. These results indicate that strain T6 influences plant Fe absorption in several ways. Siderophore-based Fe chelation is effective in providing Fe to plants, organic acids, and Fe(3+) reducing enzymes may participate in the solubilization and reduction of insoluble Fe(3+) to Fe(2+). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Biological control of Rhizoctonia solani on potato by using indigenous Trichoderma spp.

    Science.gov (United States)

    Durak, Emre Demirer

    2016-04-01

    At this study, it was aimed to determine the effect of Trichoderma isolates that was isolated from the soil samples taken from the different regions on black scurf and stem canker disease caused by Rhizoctonia solani Kühn that has been one of the biggest problems of the potato cultivation. At the end of the soil isolations, totally 81 Trichoderma isolates were obtained and their species were identified. Of these isolates, T. harzianum (42%), T. virens (31%), T. asperellum (15%) and T. viride (12%). All of the isolates were tested in vitro for their antagonistic activity against the R. solani isolate. The isolates that show high inhibition rate was selected and tested against R. solani in vitro. Potato plants were grown in a greenhouse for about 10 weeks. Then the plants were evaluated according to the scale, plant height, shoot fresh and dry weights, root fresh and dry weights were noted. The experiment was conducted two times in three replications. At the in vitro tests, generally, it was determined that Trichoderma isolates have inhibited to R. solani and in vivo, they were reduced the effects of the disease and they were raised the development of the plant. In particular, it was determined that some isolates of the T. harzianum and T. virens have reduced the severity of the disease. It was determined that both in vitro and in vivo isolates have shown different efficiency against R. solani.

  17. Phosphogypsum biotransformation by aerobic bacterial flora and isolated Trichoderma asperellum from Tunisian storage piles

    International Nuclear Information System (INIS)

    Jalali, Jihen; Magdich, Salwa; Jarboui, Raja; Loungou, Mouna; Ammar, Emna

    2016-01-01

    Highlights: • The enrichment culture on PG enabled the development of microorganisms. • The isolated Trichoderma asperellum grew on PG concentration at 200 g L"−"1. • At 200 g L"−"1 PG concentration, the experimented strain reduced COD by 52.32%. • Metals concentrations reduction reached a maximum of 73% for the zinc. • Trichoderma asperellum is an efficient microorganism for PG bioremediation. - Abstract: Aerobic microorganisms able to grow on phosphogypsum (PG), characterized by heavy metals accumulation and high acidity were investigated by enrichment cultures. The PG was used at different concentrations, varying from 20 to 200 g/L in the enrichment culture medium supplemented with compost and Tamarix roots. This treatment reduced COD and heavy metals PG concentration. An efficient isolated fungus, identified by molecular approach as Trichoderma asperellum, was able to grow on PG as the sole carbon and energy sources at the different experimented concentrations, and to increase the culture media pH of the different PG concentrations used to 8.13. This fact would be the result of alkaline compound released during the fungus PG solubilization. Besides, the heavy metals and COD removal exceeded 52% after 7 days culture. At 200 g/L PG concentration, the experimented strain was able to reduce COD by 52.32% and metals concentrations by 73% for zinc, 63.75% for iron and 50% for cadmium. This exhibited the T. asperellum efficiency for heavy metals accumulation and for phosphogypsum bioremediation.

  18. Catalytic diversity and homotropic allostery of two Cytochrome P450 monooxygenase like proteins from Trichoderma brevicompactum.

    Science.gov (United States)

    Hussain, Razak; Kumari, Indu; Sharma, Shikha; Ahmed, Mushtaq; Khan, Tabreiz Ahmad; Akhter, Yusuf

    2017-12-01

    Trichothecenes are the secondary metabolites produced by Trichoderma spp. Some of these molecules have been reported for their ability to stimulate plant growth by suppressing plant diseases and hence enabling Trichoderma spp. to be efficiently used as biocontrol agents in modern agriculture. Many of the proteins involved in the trichothecenes biosynthetic pathway in Trichoderma spp. are encoded by the genes present in the tri cluster. Tri4 protein catalyzes three consecutive oxygenation reaction steps during biosynthesis of isotrichodiol in the trichothecenes biosynthetic pathway, while tri11 protein catalyzes the C4 hydroxylation of 12, 13-epoxytrichothec-9-ene to produce trichodermol. In the present study, we have homology modelled the three-dimensional structures of tri4 and tri11 proteins. Furthermore, molecular dynamics simulations were carried out to elucidate the mechanism of their action. Both tri4 and tri11 encode for cytochrome P450 monooxygenase like proteins. These data also revealed effector-induced allosteric changes on substrate binding at an alternative binding site and showed potential homotropic negative cooperativity. These analyses also showed that their catalytic mechanism relies on protein-ligand and protein-heme interactions controlled by hydrophobic and hydrogen-bonding interactions which orient the complex in optimal conformation within the active sites.

  19. Antibiosis of Trichoderma spp strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina

    Science.gov (United States)

    Mendoza, José Luis Hernández; Pérez, María Isabel Sánchez; Prieto, Juan Manuel González; Velásquez, Jesús DiCarlo Quiroz; Olivares, Jesús Gerardo García; Langarica, Homar Rene Gill

    2015-01-01

    Abstract Sampling of agricultural soils from the Mexican northeastern region was performed to detect Trichoderma spp., genetically characterize it, and assess its potential use as a biologic control agent against Macrophomina phaseolina. M. phaseolina is a phytopathogen that attacks over 500 species of cultivated plants and causes heavy losses in the regional sorghum crop. Sampling was performed immediately after sorghum or corn harvest in an area that was approximately 170 km from the Mexico-USA border. Sixteen isolates were obtained in total. Using colony morphology and sequencing the internal transcribed spacers (ITS) 1 and 4 of 18S rDNA, 14 strains were identified as Trichoderma harzianum, T. koningiopsis and T. virens. Subsequently, their antagonistic activity against M. phaseolina was evaluated in vitro, and 11 isolates showed antagonism by competition and stopped M. phaseolina growth. In 4 of these isolates, the antibiosis phenomenon was observed through the formation of an intermediate band without growth between colonies. One strain, HTE808, was identified as Trichoderma koningiopsis and grew rapidly; when it came into contact with the M. phaseolina colony, it continued to grow and sporulated until it covered the entire petri dish. Microscopic examination confirmed that it has a high level of hyperparasitism and is thus considered to have high potential for use in the control of this phytopathogen. PMID:26691467

  20. Fungicide sensitivity of Trichoderma spp. from Agaricus bisporus farms in Serbia.

    Science.gov (United States)

    Kosanović, Dejana; Potočnik, Ivana; Vukojević, Jelena; Stajić, Mirjana; Rekanović, Emil; Stepanović, Miloš; Todorović, Biljana

    2015-01-01

    Trichoderma species, the causal agents of green mould disease, induce great losses in Agaricus bisporus farms. Fungicides are widely used to control mushroom diseases although green mould control is encumbered with difficulties. The aims of this study were, therefore, to research in vitro toxicity of several commercial fungicides to Trichoderma isolates originating from Serbian and Bosnia-Herzegovina farms, and to evaluate the effects of pH and light on their growth. The majority of isolates demonstrated optimal growth at pH 5.0, and the rest at pH 6.0. A few isolates also grew well at pH 7. The weakest mycelial growth was noted at pH 8.0-9.0. Generally, light had an inhibitory effect on the growth of tested isolates. The isolates showed the highest susceptibility to chlorothalonil and carbendazim (ED50 less than 1 mg L(-1)), and were less sensitive to iprodione (ED50 ranged 0.84-6.72 mg L(-1)), weakly resistant to thiophanate-methyl (ED50 = 3.75-24.13 mg L(-1)), and resistant to trifloxystrobin (ED50 = 10.25-178.23 mg L(-1)). Considering the toxicity of fungicides to A. bisporus, carbendazim showed the best selective toxicity (0.02), iprodione and chlorothalonil moderate (0.16), and thiophanate-methyl the lowest (1.24), while trifloxystrobin toxicity to A. bisporus was not tested because of its inefficiency against Trichoderma isolates.

  1. Isolation and identification of Trichoderma harzianum from groundwater: An effective biosorbent for defluoridation of groundwater.

    Science.gov (United States)

    Koshle, Shalini; Mahesh, S; Swamy, S Nanjunda

    2016-01-01

    The ability of non-viable form of Trichoderma harzianum, isolated from fluoride rich groundwater, was investigated as biosorbent for defluoridation of groundwater. Biosorption experiments were carried out at laboratory scale for removal of fluoride from groundwater. Significant effect of operational parameters on fluoride biosorption using Trichoderma harzianum as biosorbent was evaluated by varying operational parameters such as: initial fluoride concentration (2-8 mgl(-1)), biosorbent dose (0.4-1.6g/100ml), groundwater pH (6-10), temperature (30-50 degrees C) and biosorption time (30-120 min). The fluoride adsorption isotherms were modeled by Langmuir and Freundlich isotherms. Our result showed that fluoride biosorption, significantly increased with increase in groundwater pH, biosorbent dose, temperature and biosorption time, whereas increase in initial fluoride concentration reduced fluoride removal. The fluoride biosorption was rapid and maximum fluoride uptake was attained with 1.6g 100ml(-1) biosorbent within 60 min. Optimal pH 10 and temperature 50 degrees C gave maximum defluoridation efficiency. Freundlich isotherm fits well for defluoridation of groundwater using Trichoderma harzianum as biosorbent which indicated that biosorbent surface sites were heterogeneous in nature and fitted into heterogeneous site binding model.

  2. Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling.

    Science.gov (United States)

    Lin, Yi-Ruu; Lo, Chaur-Tsuen; Liu, Shu-Ying; Peng, Kou-Cheng

    2012-03-07

    Our aim was to determine the effects of two secondary metabolites secreted by Trichoderma harzianum, pachybasin and emodin, on the mycoparasitic coiling behavior and cAMP content of T. harzianum. The number of T. harzianum coils around Nylon 66 fiber was increased in the presence of R. solani. The number of T. harzianum coils around R. solani hyphae and Nylon 66 fiber were significantly increased in the presence of pachybasin and emodin. The cAMP level in T. harzianum was significantly increased by close contact with R. solani and much higer cAMP level in the presence of exogenous pachybasin and emodin. A cAMP inhibitor diminished the effect of pachybasin and emodin on T. harzianum coiling around Nylon 66 fiber. The results suggest that pachybasin and emodin mediate the increase in the number of Trichoderma mycoparasitic coils via cAMP signaling. This is the first report to suggest that pachybasin and emodin play roles in the biocontrol mechanism of Trichoderma.

  3. The improvement of competitive saprophytic capabilities of Trichoderma species through the use of chemical mutagens

    Directory of Open Access Journals (Sweden)

    Rashmi Singh

    2016-03-01

    Full Text Available Abstract The antagonistic potential of Trichoderma strains was assayed by studying the effect of their culture filtrate on the radial growth of Sclerotium rolfsii, the causal agent of chickpea collar rot. Trichoderma harzianum-1432 (42.2% and Trichoderma atroviride (40.3% were found to be strong antagonists. To enhance their antagonistic potential, mutagenesis of these two selected strains was performed. Two mutants, Th-m1 and T. atroviride m1, were found to be more effective than their parent strains. The enzymatic activities of the selected parent and mutant strains were assayed, and although both mutants were found to have enhanced enzymatic activities compared to their respective parent strains, Th-m1 possessed the maximum cellulase (5.69 U/mL and β-1,3-glucanase activity (61.9 U/mL. Th-m1 also showed high competitive saprophytic ability (CSA among all of the selected parent and mutant strains, and during field experiments, Th-m1 was found to successfully possess enhanced disease control (82.9%.

  4. Heavy Metal Tolerance and Removal Capacity of Trichoderma species Isolated from Mine Tailings in Itogon, Benguet

    Directory of Open Access Journals (Sweden)

    Myra Tansengco

    2017-11-01

    Full Text Available Waste from mining industries contains various heavy metals that can pollute the environment. Bioremediation using efficient fungi can help in eliminating these heavy metal contaminants. This study focused on the isolation, identification, and characterization of heavy metal-resistant fungi from mine tailings in Itogon, Benguet. Isolation of fungi was done by serial dilution and spread plate techniques on potato dextrose agar (PDA with an individual heavy metal, i.e. chromium (Cr, copper (Cu, lead (Pb, zinc (Zn, and nickel (Ni. Of the 29 fungal isolates, four species were selected and molecularly identified as Trichoderma virens, T. harzianum, T. saturnisporum, and T. gamsii. Growth tolerance on PDA with increasing concentrations (200-1000 ppm of an individual heavy metal indicated the following trend: T. virens > T. harzianum > T. gamsii > T. saturnisporum. Growth test indicates that all Trichoderma isolates can tolerate high levels of Cr and Pb, however tolerance to Cu, Zn, and Ni was species specific. Shakeflask culture using T. virens showed high lead removal (91-96% over broad pH range while and at neutral pH, T. virens had 70% and 63% reductions for Cu and Cr, respectively. Results of this study highlights the potential of Trichoderma isolates for biological wastewater treatment in mining industries.

  5. Isolate-specific conidiation in Trichoderma in response to different nitrogen sources.

    Science.gov (United States)

    Steyaert, Johanna M; Weld, Richard J; Stewart, Alison

    2010-01-01

    A characteristic feature of Trichoderma is the production of concentric rings of conidia in response to alternating light/dark conditions and a single ring of conidia in response to a single burst of light. In this study, conidiation was investigated in four biocontrol isolates (T. hamatum, T. atroviride, T. asperellum, T. virens) and one isolate from the mushroom pathogen species, T. pleuroticola. All five isolates produced concentric conidial rings under alternating light/dark conditions on potato-dextrose agar (PDA), however, in response to a 15min burst of blue light, only T. asperellum and T. virens produced a clearly defined conidial ring. Both T. pleuroticola and T. hamatum photoconidiated in a disk-like fashion and T. atroviride produced a broken ring with a partially filled in appearance. In the presence of primary nitrogen, T. asperellum and T. pleuroticola conidiated in a disk, whereas, when grown in the presence of secondary nitrogen, a ring of conidia was produced. Primary nitrogen promoted photoconidiation and competency to conidiate in response to light appeared dependent on the nitrogen catabolite repression state of the cell. Mycelial injury was also investigated in the same five isolates of Trichoderma on PDA and under different nitrogen statuses. For the first time, we report that conidiation in response to injury is differentially regulated in different isolates/species of Trichoderma. Copyright © 2009 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains.

    Science.gov (United States)

    Chaverri, Priscila; Branco-Rocha, Fabiano; Jaklitsch, Walter; Gazis, Romina; Degenkolb, Thomas; Samuels, Gary J

    2015-01-01

    Trichoderma harzianum is known as a cosmopolitan, ubiquitous species associated with a wide variety of substrates. It is possibly the most commonly used name in agricultural applications involving Trichoderma, including biological control of plant diseases. While various studies have suggested that T. harzianum is a species complex, only a few cryptic species are named. In the present study the taxonomy of the T. harzianum species complex is revised to include at least 14 species. Previously named species included in the complex are T. guizhouense, T. harzianum, and T. inhamatum. Two new combinations are proposed, T. lentiforme and T. lixii. Nine species are described as new, T. afarasin, T. afroharzianum, T. atrobrunneum, T. camerunense, T. endophyticum, T. neotropicale, T. pyramidale, T. rifaii and T. simmonsii. We isolated Trichoderma cultures from four commercial biocontrol products reported to contain T. harzianum. None of the biocontrol strains were identified as T. harzianum s. str. In addition, the widely applied culture 'T. harzianum T22' was determined to be T. afroharzianum. Some species in the T. harzianum complex appear to be exclusively endophytic, while others were only isolated from soil. Sexual states are rare. Descriptions and illustrations are provided. A secondary barcode, nuc translation elongation factor 1-α (TEF1) is needed to identify species in this complex. © 2015 by The Mycological Society of America.

  7. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Fernandez, Ivan; Lok, Gerrit B; Pozo, María J; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Beneficial root endophytes such as Trichoderma spp. can reduce infections by parasitic nematodes through triggering host defences. Little is currently known about the complex hormone signalling underlying the induction of resistance. In this study, we investigated whether Trichoderma modulates the hormone signalling network in the host to induce resistance to nematodes. We investigated the role and the timing of the jasmonic acid (JA)- and salicylic acid (SA)-regulated defensive pathways in Trichoderma-induced resistance to the root knot nematode Meloidogyne incognita. A split-root system of tomato (Solanum lycopersicum) was used to study local and systemic induced defences by analysing nematode performance, defence gene expression, responsiveness to exogenous hormone application, and dependence on SA and JA signalling of Trichoderma-induced resistance. Root colonization by Trichoderma impeded nematode performance both locally and systemically at multiple stages of the parasitism, that is, invasion, galling and reproduction. First, Trichoderma primed SA-regulated defences, which limited nematode root invasion. Then, Trichoderma enhanced JA-regulated defences, thereby antagonizing the deregulation of JA-dependent immunity by the nematodes, which compromised galling and fecundity. Our results show that Trichoderma primes SA- and JA-dependent defences in roots, and that the priming of responsiveness to these hormones upon nematode attack is plastic and adaptive to the parasitism stage. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Airborne signals by Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Van Wees, Saskia C M; Pieterse, Corné M J

    2017-01-01

    Root colonization by Trichoderma fungi can trigger induced systemic resistance (ISR). In Arabidopsis, Trichoderma-ISR relies on the transcription factor MYB72, which plays a dual role in the onset of ISR and the activation of Fe uptake responses. Volatile compounds (VCs) from rhizobacteria are

  9. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species

    Energy Technology Data Exchange (ETDEWEB)

    Schmoll, Monika; Dattenböck, Christoph; Carreras-Villaseñor, Nohemí; Mendoza-Mendoza, Artemio; Tisch, Doris; Alemán, Mario Ivan; Baker, Scott E.; Brown, Christopher; Cervantes-Badillo, Mayte Guadalupe; Cetz-Chel, José; Cristobal-Mondragon, Gema Rosa; Delaye, Luis; Esquivel-Naranjo, Edgardo Ulises; Frischmann, Alexa; Gallardo-Negrete, Jose de Jesus; García-Esquivel, Monica; Gomez-Rodriguez, Elida Yazmin; Greenwood, David R.; Hernández-Oñate, Miguel; Kruszewska, Joanna S.; Lawry, Robert; Mora-Montes, Hector M.; Muñoz-Centeno, Tania; Nieto-Jacobo, Maria Fernanda; Nogueira Lopez, Guillermo; Olmedo-Monfil, Vianey; Osorio-Concepcion, Macario; Piłsyk, Sebastian; Pomraning, Kyle R.; Rodriguez-Iglesias, Aroa; Rosales-Saavedra, Maria Teresa; Sánchez-Arreguín, J. Alejandro; Seidl-Seiboth, Verena; Stewart, Alison; Uresti-Rivera, Edith Elena; Wang, Chih-Li; Wang, Ting-Fang; Zeilinger, Susanne; Casas-Flores, Sergio; Herrera-Estrella, Alfredo

    2016-02-10

    SUMMARY

    The genusTrichodermacontains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for “hot topic” research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism inT. reesei,T. atroviride, andT. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of eachTrichodermaspecies discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved inN-linked glycosylation was detected, as were indications for the ability ofTrichodermaspp. to generate hybrid galactose-containingN-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique toTrichoderma, and these warrant further

  10. Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum Potencial de biocontrole de mutantes sal-tolerantes de Trichoderma harzianum contra Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Hassan Abdel-Latif A. Mohamed

    2006-06-01

    Full Text Available Exposing a wild-type culture of Trichoderma harzianum to gamma irradiation induced two stable salt-tolerant mutants (Th50M6 and Th50M11. Under saline conditions, both mutants greatly surpassed their wild type strain in growth rate, sporulation and biological proficiency against Fusarium oxysporum, the causal agent of tomato wilt disease. Tolerant T. harzianum mutants detained a capability to grow and convinced sporulation in growth media containing up to 69 mM NaCl. In comparison with their parent strain, characterization of both mutants confirmed that they have reinforced contents of proline and hydroxyproline, relatively higher sodium content compared to potassium, calcium or magnesium contents, higher level of total phenols. Electrophoretic analysis of total soluble proteins in the salt tolerance mutant Th50M6 showed different bands accumulated in response to 69 mM NaCl. Data also showed that mutants produce certain active metabolites, such as chitinases, cellulases, beta-galactosidases, as well as, some antibiotics i.e., trichodermin, gliotoxin and gliovirin. Trichoderma mutants significantly reduced wilt disease incidence and improved yield and mineral contents of tomato plants under both saline and non-saline soil conditions, as well as, under infested and natural conditions. T. harzianum mutants were also more efficient in dropping the F. oxysporum growth in rhizosphere compared to the wild type strain. Population density of both mutants in rhizosphere far exceeded that of T. harzianum wild type strain.A exposição de uma cepa selvagem de Trichoderma harzianum à irradiação gama induziu dois mutantes tolerantes a sal (Th50M6 e Th50M11. Em condições salinas, os dois mutantes foram muito superiores à cepa selvagem em relação à velocidade de multiplicação, esporulação e eficiência contra Fusarium oxysporum, o agente causador da doença wilt do tomate. Os mutantes tolerantes foram capazes de multiplicação e esporulação em

  11. AISLAMIENTO DE CEPAS NATIVAS DE TRICHODERMA SPP DE SUELOS HORTICOLAS DEL VALLE DE TOLUCA, COMO BIOCONTROL POTENCIAL DE SCLEROTINIA

    Directory of Open Access Journals (Sweden)

    Hilda G. García-Nuñez

    2012-08-01

    Full Text Available Se evaluó la presencia de Trichoderma en siete localidades en la zona sur del Valle de Toluca, Estado de México. Esta es un área con un alto potencial en la producción de hortalizas. El estudio se dirigió al aislamiento de cepas nativas de Trichoderma a partir de muestras de suelo, identificación de factores fisiográficos, así como las propiedades físicas y químicas del suelo que determinan la ocurrencia de Trichoderma. Se evaluó el potencial de las cepas de Trichoderma para el control de Sclerotinia spp., hongo patógeno causante de la pudrición blanda en lechuga. Se aislaron once cepas, el mayor número de ellas asociadas al tipo de suelo se encontró en las localidades de San Francisco Putla y San Francisco Tetetla. El análisis de regresión logística mostró que no hay una relación entre las propiedades del suelo (materia orgánica y pH y la presencia de Trichoderma. La prueba de Tukey (p

  12. Adaptation of Trichoderma Species to Pesticide Confidor and Evaluation of their Growth Ability in the Media Containing Confidor

    Directory of Open Access Journals (Sweden)

    Farnaz Ershadfath

    2015-12-01

    Full Text Available Introduction: Contamination caused by pesticides is considered as one of the environmental problems. Bioremediation is exploiting the ability of microorganisms to remove pollutants. Trichoderma species are free-living fungi that exist naturally in the environment. These fungi have the ability to uptake some contaminants biologically. The aim of this study is to evaluate the effect of Confidor, as an environmental contaminant, on the growth ability of Trichoderma sp. as a contaminant absorber. Materials and methods: Five species of Trichoderma fungi were cultured in PDA media. Then the fungi were adapted with 3 different concentrations of Confidor gradually (5, 10 and 20 mg/l. The diameter of the fungal colonies growing in different concentrations of the toxin, were measured after 24 hr and were compared with the control samples (medium without toxin. Results: Results showed that in all species of fungi the colony diameters increased significantly with increasing toxin concentrations. The largest colony diameter was related to T.tomentosum, T.asperellum and T.harzianum (88.88, 87.5 and 86.95%, respectively at the concentration of 20 mg of toxic. Also, in all studied fungal species, in the medium containing 20 (mg/ l of toxic, the aerial hyphae expanded much thicker and faster than other concentrations. Discussion and conclusion: The results indicate a significant increase in the growth ability of Trichoderma strains with increasing Confidor concentration. Therefore it could be concluded that Trichoderma fungi have a high potentiality for biodegradation of Confidor.

  13. Overexpression of erg1 gene in Trichoderma harzianum CECT 2413: effect on the induction of tomato defence-related genes.

    Science.gov (United States)

    Cardoza, R E; Malmierca, M G; Gutiérrez, S

    2014-09-01

    To investigate the effect of the overexpression of erg1 gene of Trichoderma harzianum CECT 2413 (T34) on the Trichoderma-plant interactions and in the biocontrol ability of this fungus. Transformants of T34 strain overexpressing erg1 gene did not show effect on the ergosterol level, although a drastic decrease in the squalene level was observed in the transformants at 96 h of growth. During interaction with plants, the erg1 overexpression resulted in a reduction of the priming ability of several tomato defence-related genes belonging to the salicylate pathway, and also of the TomLoxA gene, which is related to the jasmonate pathway. Interestingly, other jasmonate-related genes, such as PINI and PINII, were slightly induced. The erg1 overexpressed transformants also showed a reduced ability to colonize tomato roots. The ergosterol biosynthetic pathway might play an important role in regulating Trichoderma-plant interactions, although this role does not seem to be restricted to the final product; instead, other intermediates such as squalene, whose role in the Trichoderma-plant interaction has not been characterized, would also play an important role. The functional analysis of genes involved in the synthesis of ergosterol could provide additional strategies to improve the ability of biocontrol of the Trichoderma strains and their interaction with plants. © 2014 The Society for Applied Microbiology.

  14. Structural and mechanistic analysis of engineered trichodiene synthase enzymes from Trichoderma harzianum: towards higher catalytic activities empowering sustainable agriculture.

    Science.gov (United States)

    Kumari, Indu; Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2016-06-01

    Trichoderma spp. are well-known bioagents for the plant growth promotion and pathogen suppression. The beneficial activities of the fungus Trichoderma spp. are attributed to their ability to produce and secrete certain secondary metabolites such as trichodermin that belongs to trichothecene family of molecules. The initial steps of trichodermin biosynthetic pathway in Trichoderma are similar to the trichothecenes from Fusarium sporotrichioides. Trichodiene synthase (TS) encoded by tri5 gene in Trichoderma catalyses the conversion of farnesyl pyrophosphate to trichodiene as reported earlier. In this study, we have carried out a comprehensive comparative sequence and structural analysis of the TS, which revealed the conserved residues involved in catalytic activity of the protein. In silico, modelled tertiary structure of TS protein showed stable structural behaviour during simulations. Two single-substitution mutants, i.e. D109E, D248Y and one double-substitution mutant (D109E and D248Y) of TS with potentially higher activities are screened out. The mutant proteins showed more stability than the wild type, an increased number of electrostatic interactions and better binding energies with the ligand, which further elucidates the amino acid residues involved in the reaction mechanism. These results will lead to devise strategies for higher TS activity to ultimately enhance the trichodermin production by Trichoderma spp. for its better exploitation in the sustainable agricultural practices.

  15. Regulation of Morphogenesis and Biocontrol Properties in Trichoderma virens by a VELVET Protein, Vel1▿ †

    Science.gov (United States)

    Mukherjee, Prasun K.; Kenerley, Charles M.

    2010-01-01

    Mycoparasitic strains of Trichoderma are applied as commercial biofungicides for control of soilborne plant pathogens. Although the majority of commercial biofungicides are Trichoderma based, chemical pesticides, which are ecological and environmental hazards, still dominate the market. This is because biofungicides are not as effective or consistent as chemical fungicides. Efforts to improve these products have been limited by a lack of understanding of the genetic regulation of biocontrol activities. In this study, using gene knockout and complementation, we identified the VELVET protein Vel1 as a key regulator of biocontrol, as well as morphogenetic traits, in Trichoderma virens, a commercial biocontrol agent. Mutants with mutations in vel1 were defective in secondary metabolism (antibiosis), mycoparasitism, and biocontrol efficacy. In nutrient-rich media they also lacked two types of spores important for survival and development of formulation products: conidia (on agar) and chlamydospores (in liquid shake cultures). These findings provide an opportunity for genetic enhancement of biocontrol and industrial strains of Trichoderma, since Vel1 is very highly conserved across three Trichoderma species. PMID:20154111

  16. Effect of Trichoderma harzianum on Wheat (Triticum aestivum L. Grain Yield under Different Levels of Cadmium Nitrate

    Directory of Open Access Journals (Sweden)

    F. Taghavi Ghasemkheyli

    2014-12-01

    Full Text Available A pot experiment was designed to evaluate the effect of Trichoderma spp. on yield and yield components of wheat (cv. N81 under different levels of cadmium nitrate. Experiment was arranged in factorial based on completely randomized design with three replicates. Trichoderma harzianum at two levels (with and without inoculation and four levels of cadmium nitrate (0, 50, 100, 150 mg l-1 were the treatment. Results of ANOVA and mean comparisons showed that inoculation of Trichoderma increased biological yield (46% and straw yield (30% as compared to control. Cadmium pollution has led to significant decrease in harvest index, grain number per spike and partitioning coefficient up to 5, 20, 24 and 38 percent compared to control, respectively. Furthermore, cadmium and fungus interaction were significant in terms of spike number, grain weight per spike, grain yield and tolerance index. Maximum grain yield and tolerance index were recorded in Trichoderma inoculation under cadmium-free plots which nearly increased 65 and 53 percent, respectively. In conclusion, using Trichoderma under cadmium pollution could improve wheat growth, yield and tolerance index

  17. Potential antagonism of some Trichoderma strains isolated from Moroccan soil against three phytopathogenic fungi of great economic importance

    Directory of Open Access Journals (Sweden)

    Wafaa MOKHTARI

    2017-09-01

    Full Text Available In this study, 17 Trichoderma strains were isolated from different soils (crop fields and Argan forests in Morocco. Purified monospore cultures were identified using molecular methods and tested for their potential antagonism against three phytopathogenic fungi (Fusarium oxyxporum, verticillium dahlia and rhizoctonia solani. After DNA extraction, translation elongation factor (tef1 was amplified in extracts of 17 strains, sequenced and compared with their ex-types. As a result, three species were identified among the strains, which clustered in two different subclades of Trichoderma: the species T. afroharzianum, and T. guizhouense belong to the Harzianum clade, while T. longibrachiatum belongs to the Longibrachiatum clade. Investigation of potential antagonistic effects of these strains against the soil-borne phytopathogens F. oxysporum, R. solani and V. dahliae was conducted in a dual culture plate assay, using 17 promising Trichoderma strains that have been selected based on a polymerase chain reaction (PCR screening approach. In vitro, Trichoderma isolates showed effective antagonistic performance by decreasing soil borne pathogens mycelium radial growth. Trichoderma afroharzianum showed the highest Percentage of Radial Inhibition Growth (PRIG %. The highest PRIG% = 98% was for 8A2.3 isolate against R. solani and the lowest PRIG%= 67% for T9i10 against F. oxysporum. On the other hand, T9i12, which is T. reesei species, led to a high radial inhibition of pathogens’ mycelium.

  18. Control biológico del Tizón Tardío Phytophthora infestans en papa Solanum tuberosum a través de consorcios microbianos formados por hongos nativos del género Trichoderma sp.

    OpenAIRE

    Bustamante Gavilanes, Adriana Elizabeth

    2015-01-01

    Esta investigación evalúo la eficiencia de consorcios microbianos formados por hongos nativos del género Trichoderma sp. como biocontroladores del tizón tardío Phytophthora infestans en papa Solanum tuberosum. En las pruebas de antagonismo las cepas del género Trichoderma sp. inhibieron en promedio entre 83% y 87% al patógeno. En base a los resultados obtenidos en el ensayo de campo mostró que el tratamiento T3: Trichoderma harzianum+ Trichoderma sp. + Trichoderma atroviride es más efectivo ...

  19. EFEITO ANTAGÔNICO DE Trichoderma sp. NO DESENVOLVIMENTO DE Beauveria bassiana (Bals. Vuill. e Metarhizium anisopliae (Metsch. Sorok ANTAGONISTIC EFFECT OF Trichoderma sp. ON THE DEVELOPMENT OF Beauveria bassiana (Bals. Vuill. AND Metarhizium anisopliae (Metsch. SOROK

    Directory of Open Access Journals (Sweden)

    Alcides Moino Jr.

    1999-01-01

    Full Text Available Este trabalho teve por objetivo avaliar o efeito de Trichoderma sp. no desenvolvimento de Beauveria bassiana e Metarhizium anisopliae. Trichoderma sp., B. bassiana (isolado 634 e M. anisopliae (isolado E-9 foram inoculados em meio BDA, com intervalos de 0, 48, 120 e 168 horas entre a inoculação de Trichoderma sp. e dos entomopatógenos. Avaliou-se o crescimento radial das colônias nos períodos de 48 e 120 horas após a inoculação de Trichoderma sp., sendo que este afetou o desenvolvimento dos entomopatógenos quando inoculado simultaneamente ou após 48 horas. B. bassiana e M. anisopliae desenvolveram-se normalmente quando inoculados 168 horas antes de Trichoderma sp.. Também foi avaliado o efeito de um extrato de Trichoderma sp. sobre os entomopatógenos, com a adição de 0,1; 0,5; 1,0 e 5,0 ml de extrato/100,0 ml de meio, onde foram inoculados os entomopatógenos. Foram medidos os diâmetros de colônias e o número de conídios produzidos por B. bassiana e M. anisopliae na presença do extrato. A concentração de 5,0 ml de extrato/100,0 ml de meio alterou o crescimento e a conidiogênese de B. bassiana. O fungo M. anisopliae foi afetado a partir da adição de 1,0 ml de extrato/100,0 ml de meio.The objective of this work was to evaluate the effect of Trichoderma sp. on the development of Beauveria bassiana and Metarhizium anisopliae. The fungus Trichoderma sp. was inoculated on PDA culture medium, 0, 48, 120 and 168 hours after inoculation of the same plates with either B. bassiana (isolate 634 or M. anisopliae (isolate E-9. The radial growth of fungal colonies was measured 48 and 120 hours after Trichoderma sp. inoculation. Trichoderma sp. affected the development of both entomopathogenic fungi when inoculated simultaneously or 48 hours later. B. bassiana and M. anisopliae had normal development when inoculated 168 hours before Trichoderma sp. The effect of a toxic extract from Trichoderma sp. on the entomopathogenic fungi was also

  20. Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize.

    Science.gov (United States)

    Gaderer, Romana; Lamdan, Netta L; Frischmann, Alexa; Sulyok, Michael; Krska, Rudolf; Horwitz, Benjamin A; Seidl-Seiboth, Verena

    2015-01-16

    The proteins Sm1 and Sm2 from the biocontrol fungus Trichoderma virens belong to the cerato-platanin protein family. Members of this family are small, secreted proteins that are abundantly produced by filamentous fungi with all types of life-styles. Some species of the fungal genus Trichoderma are considered as biocontrol fungi because they are mycoparasites and are also able to directly interact with plants, thereby stimulating plant defense responses. It was previously shown that the cerato-platanin protein Sm1 from T. virens - and to a lesser extent its homologue Epl1 from Trichoderma atroviride - induce plant defense responses. The plant protection potential of other members of the cerato-platanin protein family in Trichoderma, however, has not yet been investigated. In order to analyze the function of the cerato-platanin protein Sm2, sm1 and sm2 knockout strains were generated and characterized. The effect of the lack of Sm1 and Sm2 in T. virens on inducing systemic resistance in maize seedlings, challenged with the plant pathogen Cochliobolus heterostrophus, was tested. These plant experiments were also performed with T. atroviride epl1 and epl2 knockout strains. In our plant-pathogen system T. virens was a more effective plant protectant than T. atroviride and the results with both Trichoderma species showed concordantly that the level of plant protection was more strongly reduced in plants treated with the sm2/epl2 knockout strains than with sm1/epl1 knockout strains. Although the cerato-platanin genes sm1/epl1 are more abundantly expressed than sm2/epl2 during fungal growth, Sm2/Epl2 are, interestingly, more important than Sm1/Epl1 for the promotion of plant protection conferred by Trichoderma in the maize-C. heterostrophus pathosystem.

  1. THE EFFECT OF FORMULATION HUMIC SUBSTANCE AND Trichoderma sp TO INCREASE PRODUCTION AND GROWTH OF CORN (Zea Mays,L

    Directory of Open Access Journals (Sweden)

    Ruly Eko Kusuma Kurniawan

    2017-06-01

    Full Text Available Research to determine of formulation humic subtance and Trichoderma sp to increase the production and growth of corn (zea mays,L. This research was conducted by extracting humic substance with fractionation organic matter method from cattle manure organic material. Trichoderma sp grow on corn medium and harvested after reaching a density of 1015 cfu. Created this compound formulation with mixing humic substance and Trichoderma sp. Indicator plant with F1 sweet corn Jago varieties. Aplication used humic substance in range 8%, 16%, and 32% on the recommended use NPK fertilizer for corn, as well as control without humic substance. The result showed application use 8% humic substance most good for plant growth and harvest. Additionally, nutrient uptake NPK fertilizer efficiency is increased and more effective than control and use of the formulation 16% and 32% humic substance.

  2. Peptaibol, Secondary‐Metabolite, and Hydrophobin Pattern of Commercial Biocontrol Agents Formulated with Species of the Trichoderma harzianum Complex

    DEFF Research Database (Denmark)

    Degenkolb, Thomas; Nielsen, Kristian Fog; Dieckmann, Ralf

    2015-01-01

    The production of bioactive polypeptides (peptaibiotics) in vivo is a sophisticated adaptation strategy of both mycoparasitic and saprotrophic Trichoderma species for colonizing and defending their natural habitats. This feature is of major practical importance, as the detection of peptaibiotics...... in plant‐protective Trichoderma species, which are successfully used against economically relevant bacterial and fungal plant pathogens, certainly contributes to a better understanding of these complex antagonistic interactions. We analyzed five commercial biocontrol agents (BCAs), namely Canna®, Trichosan......®, Vitalin®, Promot® WP, and TrichoMax®, formulated with recently described species of the Trichoderma harzianum complex, viz. T. afroharzianum, T. simmonsii, and T. guizhouense. By using the well‐established, HPLC/MS‐based peptaibiomics approach, it could unequivocally be demonstrated that all...

  3. Unravelling the molecular basis for light modulated cellulase gene expression - the role of photoreceptors in Neurospora crassa

    Science.gov (United States)

    2012-01-01

    Background Light represents an important environmental cue, which exerts considerable influence on the metabolism of fungi. Studies with the biotechnological fungal workhorse Trichoderma reesei (Hypocrea jecorina) have revealed an interconnection between transcriptional regulation of cellulolytic enzymes and the light response. Neurospora crassa has been used as a model organism to study light and circadian rhythm biology. We therefore investigated whether light also regulates transcriptional regulation of cellulolytic enzymes in N. crassa. Results We show that the N. crassa photoreceptor genes wc-1, wc-2 and vvd are involved in regulation of cellulase gene expression, indicating that this phenomenon is conserved among filamentous fungi. The negative effect of VVD on production of cellulolytic enzymes is thereby accomplished by its role in photoadaptation and hence its function in White collar complex (WCC) formation. In contrast, the induction of vvd expression by the WCC does not seem to be crucial in this process. Additionally, we found that WC-1 and WC-2 not only act as a complex, but also have individual functions upon growth on cellulose. Conclusions Genome wide transcriptome analysis of photoreceptor mutants and evaluation of results by analysis of mutant strains identified several candidate genes likely to play a role in light modulated cellulase gene expression. Genes with functions in amino acid metabolism, glycogen metabolism, energy supply and protein folding are enriched among genes with decreased expression levels in the wc-1 and wc-2 mutants. The ability to properly respond to amino acid starvation, i. e. up-regulation of the cross pathway control protein cpc-1, was found to be beneficial for cellulase gene expression. Our results further suggest a contribution of oxidative depolymerization of cellulose to plant cell wall degradation in N. crassa. PMID:22462823

  4. Xylan oligosaccharides and cellobiohydrolase I (TrCel7A interaction and effect on activity

    Directory of Open Access Journals (Sweden)

    Baumann Martin J

    2011-10-01

    Full Text Available Abstract Background The well-studied cellulase mixture secreted by Trichoderma reesei (anamorph to Hypocrea jecorina contains two cellobiohydolases (CBHs, cellobiohydrolase I (TrCel7A and cellobiohydrolase II (TrCeI6A, that are core enzymes for the solubilisation of cellulose. This has attracted significant research interest because of the role of the CBHs in the conversion of biomass to fermentable sugars. However, the CHBs are notoriously slow and susceptible to inhibition, which presents a challenge for the commercial utilisation of biomass. The xylans and xylan fragments that are also present in the biomass have been suggested repeatedly as one cause of the reduced activity of CHBs. Yet, the extent and mechanisms of this inhibition remain poorly elucidated. Therefore, we studied xylan oligosaccharides (XOSs of variable lengths with respect to their binding and inhibition of both TrCel7A and an enzyme variant without the cellulose-binding domain (CBM. Results We studied the binding of XOSs to TrCel7A by isothermal titration calorimetry. We found that XOSs bind to TrCel7A and that the affinity increases commensurate with XOS length. The CBM, on the other hand, did not affect the affinity significantly, which suggests that XOSs may bind to the active site. Activity assays of TrCel7A clearly demonstrated the negative effect of the presence of XOSs on the turnover number. Conclusions On the basis of these binding data and a comparison of XOS inhibition of the activity of the two enzyme variants towards, respectively, soluble and insoluble substrates, we propose a competitive mechanism for XOS inhibition of TrCel7A with phosphoric swollen cellulose as a substrate.

  5. Limitations in controlling white mold on common beans with Trichoderma spp. at the fall-winter season

    Directory of Open Access Journals (Sweden)

    Trazilbo José de Paula Júnior

    2012-12-01

    Full Text Available We studied the effectiveness of application of Trichoderma spp. in controlling white mold on common beans at the fall-winter crop in the Zona da Mata region of the State of Minas Gerais, Brazil. There was no effect of the antagonist in reducing the disease severity, which could be explained by the low temperatures and the high inoculum pressure in the field. We concluded that Trichoderma applications are not recommended for control of white mold on common beans at the fall-winter season in regions with average temperature bellow 20 °C, since this condition favor more the pathogen than the antagonist.

  6. UTILIZAÇÃO DE Trichoderma spp. NO CONTROLE DE Sclerotinia sclerotiorum (Lib.) de Bary E NO CRESCIMENTO DE ALFACE

    OpenAIRE

    Gerarda Beatriz Pinto da Silva

    2013-01-01

    O fungo Sclerotinia sclerotiorum é responsável por perdas significativas na produção de alface. Por se tratar de um fungo de solo, seu manejo é dificultado, sendo uma alternativa, o uso do controle biológico utilizando espécies do gênero Trichoderma. Dentre os muitos fatores que podem interferir no desempenho desse antagonista, a origem dos isolados e o armazenamento são ainda pouco estudados. Pouco se sabe também a respeito de como isolados de Trichoderma spp. obtidos de áreas com e sem hist...

  7. IDENTIFICAÇÃO E UTILIZAÇÃO DE Trichoderma spp. ARMAZENADOS E NATIVOS NO BIOCONTROLE DE Sclerotinia sclerotiorum

    OpenAIRE

    SILVA, GERARDA BEATRIZ PINTO DA; HECKLER, LEISE INÊS; SANTOS, RICARDO FELICIANO DOS; DURIGON, MIRIA ROSA; BLUME, ELENA

    2015-01-01

    RESUMO: O fungo Sclerotinia sclerotiorum é responsável por perdas significativas na produção de alface. Por se tratar de um fungo habitante do solo seu manejo é dificultado, sendo uma alternativa o uso do controle biológico utilizando espécies do gênero Trichoderma. Dessa forma, os objetivos deste trabalho foram identificar as espécies Trichoderma spp. nativas presentes em solo com (CP) e sem mofo-branco (SP), avaliar a velocidade de crescimento e o antagonismo in vitro dos isolados de Tricho...

  8. Trichoderma-Based Biostimulants Modulate Rhizosphere Microbial Populations and Improve N Uptake Efficiency, Yield, and Nutritional Quality of Leafy Vegetables

    Directory of Open Access Journals (Sweden)

    Nunzio Fiorentino

    2018-06-01

    Full Text Available Microbial inoculants such as Trichoderma-based products are receiving great interest among researchers and agricultural producers for their potential to improve crop productivity, nutritional quality as well as resistance to plant pathogens/pests and numerous environmental stresses. Two greenhouse experiments were conducted to assess the effects of Trichoderma-based biostimulants under suboptimal, optimal and supraoptimal levels of nitrogen (N fertilization in two leafy vegetables: Iceberg lettuce (Lactuca sativa L. and rocket (Eruca sativa Mill.. The yield, nutritional characteristics, N uptake and mineral composition were analyzed for each vegetable crop after inoculation with Trichoderma strains T. virens (GV41 or T. harzianum (T22, and results were compared to non-inoculated plants. In addition, the effect of the Trichoderma-based biostimulants on microbes associated with the rhizosphere in terms of prokaryotic and eukaryotic composition and concentration using DGGE was also evaluated. Trichoderma-based biostimulants, in particular GV41, positively increased lettuce and rocket yield in the unfertilized plots. The highest marketable lettuce fresh yield was recorded with either of the biostimulant inoculations when plants were supplied with optimal levels of N. The inoculation of rocket with GV41, and to a lesser degree with T22, elicited an increase in total ascorbic acid under both optimal and high N conditions. T. virens GV41 increased N-use efficiency of lettuce, and favored the uptake of native N present in the soil of both lettuce and rocket. The positive effect of biostimulants on nutrient uptake and crop growth was species-dependent, being more marked with lettuce. The best biostimulation effects from the Trichoderma treatments were observed in both crops when grown under low N availability. The Trichoderma inoculation strongly influenced the composition of eukaryotic populations in the rhizosphere, in particularly exerting different

  9. Antagonismo in vitro de cepas de Trichoderma spp. frente a Sarocladium oryzae (Sawada) W. Gams & D. Hawksworth

    OpenAIRE

    Martínez, Benedicto; Obret, Yalainne; Pérez, Simón; Reyes, Yusimy

    2014-01-01

    Se evaluaron 27 aislamientos de Trichoderma spp. frente a dos de Sarocladium oryzae (Sawada) W. Gams & D. Hawksworth (S. o-2 y S. o-4) utilizando la técnica de cultivo dual, comparando el crecimiento de las colonias de Sarocladium para determinar los modos de acción, en diferentes fases de la interacción. El análisis estadístico de los datos se realizó mediante la prueba T- Student. El 81,48% de los aislamientos de Trichoderma presentó competencia por el sustrato, el 25,93% antibiosis y el 11...

  10. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    Directory of Open Access Journals (Sweden)

    Ainhoa eMartinez-Medina

    2013-06-01

    Full Text Available Root colonization by selected Trichoderma isolates can activate in the plant a systemic defence response that is effective against a broad spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defence signalling network that leads to the induction of systemic resistance triggered by beneficial organisms (ISR. Among them, jasmonic acid (JA and ethylene (ET signalling pathways are generally essential for ISR. However, Trichoderma ISR (TISR is believed to involve a wider variety of signalling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defence related hormones JA, ET, salicylic acid (SA and abscisic acid (ABA and the peptide prosystemin (PS evidenced the requirement of intact JA, SA and ABA signalling pathways for a functional TISR. Expression analysis of several hormone related marker genes point to the role of priming for enhanced JA-dependent defence responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against the necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development

  11. Species specific substrates and products choices of 4-O-acetyltransferase from Trichoderma brevicompactum.

    Science.gov (United States)

    Sharma, Shikha; Kumari, Indu; Hussain, Razak; Ahmed, Mushtaq; Akhter, Yusuf

    2017-09-01

    Antagonistic species of Trichoderma such as T. harzianum, T. viride, T. virens and T. koningii are well-known biocontrol agents that have been reported to suppress pathogenic soil microbes and enhance the growth of crop plants. Secondary metabolites (SMs) including trichothecenes are responsible for its biocontrol activities. The trichothecenes, trichodermin and harzianum A (HA) are produced in species dependent manner respectively, by Trichoderma brevicompactum (TB) and Trichoderma arundinaceum (TA). The last step in the pathway involves the conversion of trichodermol into trichodermin or HA alternatively, which is catalyzed by 4-O-acetyltransferase (encoded by tri3 gene). Comparative sequence analysis of acetyltransferase enzyme of TB with other chloramphenicol acetyltransferase (CAT) family proteins revealed the conserved motif involved in the catalysis. Multiple substrate binding studies were carried out to explore the mechanism behind the two different outcomes. His188 was found to have a role in initial substrate binding. In the case of trichodermin synthesis, represented by ternary complex 1, the trichodermol and acetic anhydride (AAn), the two substrates come very close to each other during molecular simulation analysis so that interactions become possible between them and acetyl group may get transferred from AAn to trichodermol, and Tyr476 residue mediates this phenomenon resulting in the formation of trichodermin. However, in case of the HA biosynthesis using the TB version of enzyme, represented by ternary complex 2, the two substrates, trichodermol and octa-2Z,4E,6E-trienedioic acid (OCTA) did not show any such interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Influence of protoplast fusion between two Trichoderma spp. on extracellular enzymes production and antagonistic activity.

    Science.gov (United States)

    Hassan, Mohamed M

    2014-11-02

    Biological control plays a crucial role in grapevine pathogens disease management. The cell-wall degrading enzymes chitinase, cellulase and β-glucanase have been suggested to be essential for the mycoparasitism activity of Trichoderma species against grapevine fungal pathogens. In order to develop a useful strain as a single source of these vital enzymes, it was intended to incorporate the characteristics of two parental fungicides tolerant mutants of Trichoderma belonging to the high chitinase producing species T. harzianum and the high cellulase producing species T. viride , by fusing their protoplasts. The phylogeny of the parental strains was carried out using a sequence of the 5.8S-ITS region. The BLAST of the obtained sequence identified these isolates as T. harzianum and T. viride . Protoplasts were isolated using lysing enzymes and were fused using polyethylene glycol. The fused protoplasts have been regenerated on protoplast regeneration minimal medium supplemented with two selective fungicides. Among the 40 fast growing fusants, 17 fusants were selected based on their enhanced growth on selective media for further studies. The fusant strains were growing 60%-70% faster than the parents up to third generation. All the 17 selected fusants exhibited morphological variations. Some fusant strains displayed threefold increased chitinase enzyme activity and twofold increase in β-glucanase enzyme activity compared to the parent strains. Most fusants showed powerful antagonistic activity against Macrophomin aphaseolina , Pythium ultimum and Sclerotium rolfsii pathogens. Fusant number 15 showed the highest inhibition percentage (92.8%) against M. phaseolina and P. ultimum, while fusant number 9 showed the highest inhibition percentage (98.2%) against the growth of S. rolfsii. A hyphal intertwining and degradation phenomenon was observed by scanning electron microscope. The Trichoderma antagonistic effect against pathogenic fungal mycelia was due to the

  13. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J.; Jung, Sabine C.; Pascual, Jose A.; Pozo, María J.

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development. PMID:23805146

  14. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum.

    Science.gov (United States)

    Cai, Feng; Yu, Guanghui; Wang, Ping; Wei, Zhong; Fu, Lin; Shen, Qirong; Chen, Wei

    2013-12-01

    A detailed understanding of the effect of natural products on plant growth and protection will underpin new product development for plant production. The isolation and characterization of a known secondary metabolite named harzianolide from Trichoderma harzianum strain SQR-T037 were described, and the bioactivity of the purified compound as well as the crude metabolite extract in plant growth promotion and systemic resistance induction was investigated in this study. The results showed that harzianolide significantly promoted tomato seedling growth by up to 2.5-fold (dry weight) at a concentration of 0.1 ppm compared with the control. The result of root scan suggested that Trichoderma secondary metabolites may influence the early stages of plant growth through better root development for the enhancement of root length and tips. Both of the purified harzianolide and crude metabolite extract increased the activity of some defense-related enzymes to response to oxidative stress. Examination of six defense-related gene expression by real-time reverse transcription-PCR analysis revealed that harzianolide induces the expression of genes involved in the salicylic acid (PR1 and GLU) and jasmonate/ethylene (JERF3) signaling pathways while crude metabolite extract inhibited some gene expression (CHI-II and PGIP) related to basal defense in tomato plants. Further experiment showed that a subsequent challenge of harzianolide-pretreated plants with the pathogen Sclerotinia sclerotiorum resulted in higher systemic resistance by the reduction of lesion size. These results indicate that secondary metabolites of Trichoderma spp., like harzianolide, may play a novel role in both plant growth regulation and plant defense responses. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Características de Trichoderma harzianum, como agente limitante en el cultivo de hongos comestibles

    Directory of Open Access Journals (Sweden)

    Omar Romero Arenas

    2009-07-01

    Full Text Available El incremento dramático de incidencia y severidad de los “mohos verdes” en la producción de hongos comestibles se refleja en la aparición de formas altamente agresivas de éstos patógenos, como es el caso de los biotipos de Trichoderma harzianum (Th1, Th2., Th3 y Th4, que han sido encontrados en Europa y Norte América, donde la importancia de la patogenicidad de dicho “moho” se comprobó en 1995 con las pérdidas del 30-100% en las plantas de hongos comestibles en Chester, Pennsylvania. En México se han identificado diversos “mohos contaminantes”, entre los cuales Trichoderma spp., se encuentra frecuentemente en la producción de hongos comestibles (Agaricus bisporus, Pleurotus ostreatus y Lentinula edodes, en el 2004, un grupo de investigación detectó la presencia de cepas altamente agresivas de T. aggressivum f. aggressivum, identificadas con técnicas clásicas y moleculares, en muestras de substrato (compost contaminado, proporcionado por la principal planta de hongos de México. Actualmente se desconoce la situación sobre la distribución de Trichoderma harzianum y los problemas de contaminación en la producción de hongos comestibles, tanto de zonas rurales, como de zonas industrializadas en México, puede causar serias disminuciones en la producción de hongos comestibles y presentar pérdidas económicas para los productores de la región.

  16. Phylogeny and taxonomical investigation of Trichoderma spp. from Indian region of Indo-Burma Biodiversity hot spot region with special reference to Manipur.

    Science.gov (United States)

    Kamala, Th; Devi, S Indira; Sharma, K Chandradev; Kennedy, K

    2015-01-01

    Towards assessing the genetic diversity and occurrence of Trichoderma species from the Indian region of Indo-Burma Biodiversity hotspot, a total of 193 Trichoderma strains were isolated from cultivated soils of nine different districts of Manipur comprising 4 different agroclimatic zones. The isolates were grouped based on the morphological characteristics. ITS-RFLP of the rDNA region using three restriction digestion enzymes: Mob1, Taq1, and Hinf1, showed interspecific variations among 65 isolates of Trichoderma. Based on ITS sequence data, a total of 22 different types of representative Trichoderma species were reported and phylogenetic analysis showed 4 well-separated main clades in which T. harzianum was found to be the most prevalent spp. among all the Trichoderma spp. Combined molecular and phenotypic data leads to the development of a taxonomy of all the 22 different Trichoderma spp., which was reported for the first time from this unique region. All these species were found to produce different extrolites and enzymes responsible for the biocontrol activities against the harmful fungal phytopathogens that hamper in food production. This potential indigenous Trichoderma spp. can be targeted for the development of suitable bioformulation against soil and seedborne pathogens in sustainable agricultural practice.

  17. Phylogeny and Taxonomical Investigation of Trichoderma spp. from Indian Region of Indo-Burma Biodiversity Hot Spot Region with Special Reference to Manipur

    Science.gov (United States)

    Kamala, Th.; Devi, S. Indira; Sharma, K. Chandradev; Kennedy, K.

    2015-01-01

    Towards assessing the genetic diversity and occurrence of Trichoderma species from the Indian region of Indo-Burma Biodiversity hotspot, a total of 193 Trichoderma strains were isolated from cultivated soils of nine different districts of Manipur comprising 4 different agroclimatic zones. The isolates were grouped based on the morphological characteristics. ITS-RFLP of the rDNA region using three restriction digestion enzymes: Mob1, Taq1, and Hinf1, showed interspecific variations among 65 isolates of Trichoderma. Based on ITS sequence data, a total of 22 different types of representative Trichoderma species were reported and phylogenetic analysis showed 4 well-separated main clades in which T. harzianum was found to be the most prevalent spp. among all the Trichoderma spp. Combined molecular and phenotypic data leads to the development of a taxonomy of all the 22 different Trichoderma spp., which was reported for the first time from this unique region. All these species were found to produce different extrolites and enzymes responsible for the biocontrol activities against the harmful fungal phytopathogens that hamper in food production. This potential indigenous Trichoderma spp. can be targeted for the development of suitable bioformulation against soil and seedborne pathogens in sustainable agricultural practice. PMID:25699268

  18. Bioconversions of Palm Kernel Cake and Rice Bran Mixtures by Trichoderma viride Toward Nutritional Contents

    OpenAIRE

    Yana Sukaryana; Umi Atmomarsono; Vitus D. Yunianto; Ejeng Supriyatna

    2010-01-01

    The objective of the research is to examine the mixtures of palm kernel cake and rice bran of fermented by Trichoderma viride. Completely randomized design in factorial pattern 4 x 4 was used in this experiment. factor I is the doses of inoculums; D1 = 0%, D2 =  0,1% , D3 =  0,2%, D4 =  0,3%, and  complement factor II is mixtures of palm kernel cake and rice bran : T1=20:80% ; T2=40:60% ; T3=60:40% ; T4=80:20%. The treatment each of three replicate. Fermentation was conduc...

  19. Mathematical model for enzymatic hydrolysis and fermentation of cellulose by Trichoderma

    Energy Technology Data Exchange (ETDEWEB)

    Peitersen, N; Ross, Jr, E W

    1979-06-01

    This paper describes a mathematical model for the enzymatic hydrolysis and fermentation of cellulose by Trichoderma reesei. The principal features of the model are the assumption of two forms of cellulose (crystalline and amorphous), two sugars (cellobiose and glucose), and two enzymes (cellulase and ..beta..-glucosidase). An inducer-repressor-messenger RNA mechanism is used to predict enzyme formation, and pH effects are included. The model consists of 12 ordinary differential equations for 12 state variables and contains 38 parameters. The parameters were estimated from four sets of experimental data by optimization. The results appear satisfactory, and the computer programs permit simulation of a variety of system changes.

  20. Examining the Potential of Plasma-Assisted Pretreated Wheat Straw for Enzyme Production by Trichoderma reesei

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Lehmann, Linda Olkjær; Schultz-Jensen, Nadja

    2012-01-01

    Plasma-assisted pretreated wheat straw was investigated for cellulase and xylanase production by Trichoderma reesei fermentation. Fermentations were conducted with media containing washed and unwashed plasma-assisted pretreated wheat straw as carbon source which was sterilized by autoclavation....... To account for any effects of autoclavation, a comparison was made with unsterilized media containing antibiotics. It was found that unsterilized washed plasma-assisted pretreated wheat straw (which contained antibiotics) was best suited for the production of xylanases (110 IU ml(-1)) and cellulases (0...... other nonrefined feedstocks suggests that plasma pretreated wheat straw is a promising and suitable substrate for cellulase and hemicellulase production....

  1. Production and characterization of cellulolytic enzymes from Trichoderma reesei grown on various carbon sources

    Energy Technology Data Exchange (ETDEWEB)

    Warzywoda, Michel; Labre, Elisabeth; Pourquie, Jacques [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    1992-01-01

    Ethanol production from lignocellulosics is considered, using a process in which biomass is first pretreated by steam explosion, yielding freely water-extractible pentoses and a cellulose-rich residue which can be further hydrolyzed by cellulases into glucose to be fermented into ethanol. Results that are reported show that both the pentose extracts and the glucose-rich hydrolyzates can be used as carbon sources for cellulase production by Trichoderma reesei. When compared with lactose as the main carbon source, pentose extracts support lower but satisfactory protein productions which are characterized by an increase in hemicellulolytic activities, which significantly improves the saccharifying potential of these enzyme preparations. (author).

  2. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Negro, M.J.; Saez, R.; Martin Moreno, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  3. Components of the ligninolytic system of Fusarium oxysporum and Trichoderma atroviride

    Energy Technology Data Exchange (ETDEWEB)

    Moenkemann, H.; Hoelker, U.; Hoefer, M. [Universitaet Bonn, Bonn (Germany). Botanisches Institut

    1997-11-01

    The ligninolytic system in the two deuteromycetous fungi Fusarium oxysporum and Trichoderma atroviride, which are able to solubilize low-rank coal, has been proved to have several components. Analysis of the chromosomal DNA of these fungi revealed distinct bands with probes coding for three ligninase isoenzymes, glyoxal oxidase and arylalcohol dehydrogenase of the basidiomycete Phanerochaete chrysosporium. These data constitute a strong indication for the existence in F. oxysporum and T. atroviride of a ligninolytic system comparable to that in P. chrysosporium that may be involved in the process of coal solubilization. 11 refs., 3 figs.

  4. Production of xylan-degrading enzymes by a Trichoderma harzianum strain

    Directory of Open Access Journals (Sweden)

    Cacais André O.Guerreiro

    2001-01-01

    Full Text Available Trichoderma harzianum strain 4 produced extracellular xylan-degrading enzymes, namely beta-xylanase, beta-xylosidase and alpha-arabinofuranosidase, when grown in liquid medium cultures containing oat spelt xylan as inducer. Cellulase activity was not detected. The pattern of xylan-degrading enzymes induction was influenced by the form of xylan present in the medium. They were detected in different incubation periods. Electrophoretic separation of the proteins from liquid culture filtrates by SDS-PAGE showed a variety of bands with high and low molecular weights.

  5. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism.

    Science.gov (United States)

    Gómez-Rodríguez, Elida Yazmín; Uresti-Rivera, Edith Elena; Patrón-Soberano, Olga Araceli; Islas-Osuna, María Auxiliadora; Flores-Martínez, Alberto; Riego-Ruiz, Lina; Rosales-Saavedra, María Teresa; Casas-Flores, Sergio

    2018-01-01

    Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1), a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA), a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF) to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression of mycoparasitism

  6. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism.

    Directory of Open Access Journals (Sweden)

    Elida Yazmín Gómez-Rodríguez

    Full Text Available Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1, a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA, a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression

  7. Biological Control of Meloidogyne javanica on Tomato by Trichoderma harzianum BI and Salicylic Acid

    OpenAIRE

    , F. Naserinasab; , N. Sahebani; , H.R. Etebarian

    2016-01-01

    In this study, Trichoderma harzianum BI was evaluated for its capacity to reduce the incidence and pathogenicity of the root-knot nematode Meloidogyne javanica on tomato. Culture Şltrates of T. harzianum BI at different concentrations, (standard, 1:1, 1:10, and 1:100) were studied. In vitro studies revealed that hatching of M. javanica eggs was inhibited by the culture Şltrates and this inhibition was positively correlated with increase in the concentration of culture Şltrates. Parasitism of ...

  8. Cellulase production by two mutant strain of Trichoderma longibrachiatum Qm9414 and Rut C30

    International Nuclear Information System (INIS)

    Blanco, M.J.

    1991-01-01

    Native or pretreated biomass from Onopordum nervosum boiss, has been examined as candidate feedstock for cellulase production by two mutant strain of trichoderma longibrachiatum QM9414 and Rut C30. Batch cultivation methods were evaluated and compared with previous experiments using ball-milled, crystalline cellulose (Solka floc). Batch cultivation of T. longibrachiatum Rut C30 on 55% (W/V) acid pretreated O. nervosum biomass yielded enzyme productivities and activities comparable to those obtained on Solka floc. However, the overall enzyme production performance was lower than on Solka floc at comparable cellulose concentrations. This fact may be due to the accumulation of pretreated by products and lignin in the fermentor.(author)

  9. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel J, M.; Negro A, M. J.; Saez A, R.; Martin M, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  10. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts

    Science.gov (United States)

    Chenthamara, Komal; Zhang, Jian; Atanasova, Lea; Yang, Dongqing; Miao, Youzhi; Grujic, Marica; Pourmehdi, Shadi; Pretzer, Carina; Kopchinskiy, Alexey G.; Hundley, Hope; Wang, Mei; Aerts, Andrea; Salamov, Asaf; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V.; Shen, Qirong; Kubicek, Christian P.

    2018-01-01

    Unlike most other fungi, molds of the genus Trichoderma (Hypocreales, Ascomycota) are aggressive parasites of other fungi and efficient decomposers of plant biomass. Although nutritional shifts are common among hypocrealean fungi, there are no examples of such broad substrate versatility as that observed in Trichoderma. A phylogenomic analysis of 23 hypocrealean fungi (including nine Trichoderma spp. and the related Escovopsis weberi) revealed that the genus Trichoderma has evolved from an ancestor with limited cellulolytic capability that fed on either fungi or arthropods. The evolutionary analysis of Trichoderma genes encoding plant cell wall-degrading carbohydrate-active enzymes and auxiliary proteins (pcwdCAZome, 122 gene families) based on a gene tree / species tree reconciliation demonstrated that the formation of the genus was accompanied by an unprecedented extent of lateral gene transfer (LGT). Nearly one-half of the genes in Trichoderma pcwdCAZome (41%) were obtained via LGT from plant-associated filamentous fungi belonging to different classes of Ascomycota, while no LGT was observed from other potential donors. In addition to the ability to feed on unrelated fungi (such as Basidiomycota), we also showed that Trichoderma is capable of endoparasitism on a broad range of Ascomycota, including extant LGT donors. This phenomenon was not observed in E. weberi and rarely in other mycoparasitic hypocrealean fungi. Thus, our study suggests that LGT is linked to the ability of Trichoderma to parasitize taxonomically related fungi (up to adelphoparasitism in strict sense). This may have allowed primarily mycotrophic Trichoderma fungi to evolve into decomposers of plant biomass. PMID:29630596

  11. Antagonism of Trichoderma species on Cladosporium herbarum and their enzimatic characterization Antagonismo de espécies de Trichoderma sobre Cladosporium herbarum e suas caracterização enzimática

    Directory of Open Access Journals (Sweden)

    Maria Angélica G. Barbosa

    2001-06-01

    Full Text Available The verrucose caused by Cladosporium herbarum reduces production and quality of Passion fruit (Passiflora edulis Sims., a largely consumed tropical fruit. This work aimed to investigate the antagonism of Trichoderma species (T. polysporum, T. koningii, T. viride and T. harzianum against Cladosporium herbarum, and to study the production of extracellular hydrolytic enzymes by the pathogen and the antagonists. The results showed considerable antagonistic potential for the biocontrol of C. herbarum isolates by all Trichoderma species, except T. koningii. The most distinguished effect was observed for T. polysporum. In relation to the pattern of esterase obtained by electrophoresis in poliacrylamyde gel, the major activity presented by the isolates was observed after five days of incubation. The C. herbarum isolates produced extracellular enzymes, lipase, pectinase, cellulase, and protease, all possibly related to the infection process. Amylase excretion, not known to be associated with phytopathogens, was detected in Trichoderma species, but not in C. herbarum. In addition to amylase, all Trichoderma species tested produced also extracellular cellulase and pectinase, except T. koningii in relation to the latter enzyme. The demonstration of various esterase isoenzymes in zymograms of the Trichoderma species and C. herbarum isolates was markedly improved by washing the mycelia with detergents or EDTA. This fact suggested that a major fraction of extracelular enzymes may remain attached to outside fungal cell wall after being excreted.O maracujá (Passiflora edulis Sims., um fruto tropical amplamente consumido, tem sua produção e a qualidade dos seus frutos reduzidos pela verrugose causada por Cladosporium herbarum. Este trabalho objetivou investigar o antagonismo de espécies de Trichoderma (T. polysporum, T.koningii, T. viride e T. harzianum contra C. herbarum, e estudar a produção de enzimas hidrolíticas extracelulares pelo fitopatógeno e

  12. EFIKASI ISOLAT TRICHODERMA TERPILIH DENGAN BAHAN ORGANIK UNTUK MENGENDALIKAN PENYAKIT BUSUK PANGKAL BATANG PADA LADA DI LAPANGAN

    Directory of Open Access Journals (Sweden)

    Cipta Ginting

    2017-05-01

    Full Text Available Efficacy of selected Trichoderma isolate and organic matter to control foot rot of black pepper in the field. The objective of this experiment was to determine the efficacy of selected Trichoderma isolatand organic matter to control the disease. Dual culture method was used to select a Trichoderma isolate. The experiment to evaluate the efficacy of selected isolate consisted of control (no application of T. harzianum or organic matter, T. harzianum and rice straw, and T. harzianum and coffee husk. As starter, T. harzianum was grown in broken rice. Two liters of organic matter was infested with suspension of 10 g starter in 100 ml steril water and incubated for 2 weeks. The mixture was applied around the base of black pepper stem. The results showed that all plants treated with T. harzianum and organic matter did not show disease symptom. Ten percent of the control plants showed symptoms. However, statistical analysis showed that the occurrence of the disease was not significantly different between treatments. Applications ofT. harzianum and rice straw increased the density of Trichoderma for 1 and 2 months after application. T. harzianum and coffee husk increased the density of the fungus 1 month after application.

  13. Regulation of the cellulolytic system in Trichoderma reesei by sophorose: induction of cellulase and repression of beta-glucosidase.

    OpenAIRE

    Sternberg, D; Mandels, G R

    1980-01-01

    Sophorose has two regulatory roles in the production of cellulase enzymes in Trichoderma reesei: beta-glucosidase repression and cellulase induction. Sophorose also is hydrolyzed by the mycelial-associated beta-glucosidase. Repression of beta-glucosidase reduces sophorose hydrolysis and thus may increase cellulase induction.

  14. Regulation of Botrytis cinerea virulence genes in interaction with Trichoderma arundinaceum is mediated by the sesquiterpene harzianum A

    Science.gov (United States)

    Trichoderma includes a great diversity of species, some of them with the ability to control the growth of fungal phytopathogens. Many of these strains produce secondary metabolites that are able to inhibit the growth of their fungal preys. However, pathogens can also produce metabolites that in some...

  15. Novel aspinolide production by Trichoderma arundinaceum with a potential role in Botrytis cinerea antagonistic activity and plant defense priming

    Science.gov (United States)

    Harzianum A (HA), a trichothecene produced by Trichoderma arundinaceum, has recently been described to have antagonistic activity against fungal plant pathogens and to induce plant defence genes. In the present work, we have shown that a tri5 genedisrupted mutant that lacks HA production overproduce...

  16. Identification of loci and functional characterization of trichothecene biosynthesis genes in the filamentous fungus of the genus Trichoderma

    Science.gov (United States)

    Trichothecenes are mycotoxins produced by Trichoderma, Fusarium and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for formation of the mycotoxin...

  17. Gate crashing arbuscular mycorrhizas: in vivo imaging shows the extensive colonization of both symbionts by Trichoderma atroviride.

    Science.gov (United States)

    Lace, Beatrice; Genre, Andrea; Woo, Sheridan; Faccio, Antonella; Lorito, Matteo; Bonfante, Paola

    2015-02-01

    Plant growth-promoting fungi include strains of Trichoderma species that are used in biocontrol, and arbuscular mycorrhizal (AM) fungi, that enhance plant nutrition and stress resistance. The concurrent interaction of plants with these two groups of fungi affects crop performance but has only been occasionally studied so far. Using in vivo imaging of green fluorescent protein-tagged lines, we investigated the cellular interactions occurring between Trichoderma atroviride PKI1, Medicago truncatula and two Gigaspora species under in vitro culture conditions. Trichoderma atroviride did not activate symbiotic-like responses in the plant cells, such as nuclear calcium spiking or cytoplasmic aggregations at hyphal contact sites. Furthermore, T. atroviride parasitized G. gigantea and G. margarita hyphae through localized wall breaking and degradation - although this was not associated with significant chitin lysis nor the upregulation of two major chitinase genes. Trichoderma atroviride colonized broad areas of the root epidermis, in association with localized cell death. The infection of both symbionts was also observed when T. atroviride was applied to a pre-established AM symbiosis. We conclude that - although this triple interaction is known to improve plant growth in agricultural environments - in vitro culture demonstrate a particularly aggressive mycoparasitic and plant-colonizing behaviour of a biocontrol strain of Trichoderma. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Effect of cobalt on the growth of Trichoderma viride and determination of its distribution using 60Co

    International Nuclear Information System (INIS)

    Frank, V.; Lesny, J.; Babej, L.

    1993-01-01

    The growth and morphology of filamentous fungus Trichoderma viride grown in the presence of various Co concentrations were studied. Using 60 Co, the cobalt content in mycelium and conidia was determined. No influence of 60 Co-radiation on growth and morphology was observed. (author) 5 refs.; 4 figs

  19. Trichothecenes and aspinolides produced by Trichoderma arundinaceum regulate expression of Botrytis cinerea genes involved in virulence and growth

    Science.gov (United States)

    Trichoderma arundinaceum (Ta37) and Botrytis cinerea (B05.10) produce the sesquiterpenoids harzianum A (HA) and botrydial (BOT), respectively. Ta'Tri5, an HA non-producer mutant, produces high levels of the polyketide compounds aspinolides (Asp) B and C. We analyzed the role of HA and Asp in the B. ...

  20. Involvement of Trichoderma trichothecenes in the biocontrol activity and in the induction of plant defense related genes

    Science.gov (United States)

    Trichoderma species produce trichothecenes, most notably trichodermin and harzianum A (HA), by a biosynthetic pathway in which several of the involved proteins have significant differences in functionality, compared to their Fusarium orthologues. In addition, the genes encoding these proteins show a...

  1. Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi

    Science.gov (United States)

    Trichothecenes are phytotoxic sesquiterpenoid compounds of fungal origin which can act as virulence factors in plant diseases. Harzianum A (HA) is a non-phytotoxic trichothecene produced by Trichoderma arundinaceum. The first step in the biosynthesis of HA is the conversion of farnesyl diphosphate t...

  2. Botrydial and botcinins produced by Botrytis cinerea regulate expression of Trichoderma arundinaceum genes involved in trichothecene biosynthesis

    Science.gov (United States)

    Trichoderma arundinaceum (Ta37) and Botrytis cinerea produce the sesquiterpenes harzianum A (HA) and botrydial (BOT), respectively, and also the polyketides aspinolides (Asp) and botcinines (Botc), respectively. In the present work, we analyzed the role of BOT and Botcs in the T. arundinaceum-B. cin...

  3. Elucidating the Diversity of Aquatic Microdochium and Trichoderma Species and Their Activity against the Fish Pathogen Saprolegnia diclina.

    Science.gov (United States)

    Liu, Yiying; Zachow, Christin; Raaijmakers, Jos M; de Bruijn, Irene

    2016-01-21

    Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture.

  4. KECEPATAN PERTUMBUHAN KAPANG (Trichoderma harzianum Rifai A1300-F006 DAN AKTIVITAS SELULASE DALAM PENANGANANAN SAMPAH SELULOSA

    Directory of Open Access Journals (Sweden)

    Pebriana Nasution

    2017-04-01

    Full Text Available Production of waste in urban areas reached 0.5 kg/person /day and 80% consisted of organic waste, one of many types of waste mostly generated is household waste. Generally, this household organic waste containing structural compoundsuch us long chains of cellulose.Therefore, the use of microorganism that can produce cellulase is very important to reduce the weight of garbage. Trichoderma harzianumis known as the most potential mold compared to other molds in converting cellulose. Sawdust and bran contain cellulose and hemicellulose that can be used as the main component in the mediafor its growth. The objectives of this study was: To find an effective ratio between sawdust and bran as growth mediafor Trichoderma harzianum, To know the cellulase activity of Trichoderma harzianum. This study has been conducted from April 2015 to Juli 2015 in the Laboratory of Microbiology, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Andalas. The results of this study concluded that an effective ratio between sawdust and bran as a growth media for Trichoderma harzianumwhich degraded organic waste was 50:50. The highest activity of cellulase in degrading organic waste is 100%.

  5. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp.

    NARCIS (Netherlands)

    Alizadeh, H.; Behboudi, K.; Amadzadeh, M.; Javan-Nikkhah, M.; Zamioudis, C; Pieterse, C.M.J.; Bakker, P.A.H.M.

    2013-01-01

    Trichoderma species and fluorescent Pseudomonas spp. have been reported to induce systemic resistance in plants. In this study the effectiveness of a combination of these biological control agents on the efficacy of induced resistance was investigated in cucumber and the model plant Arabidopsis

  6. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger

    NARCIS (Netherlands)

    Jiang, Yanping; Duarte, Alexandra Vivas; van Den Brink, Joost; Wiebenga, Ad; Zou, Gen; Wang, Chengshu; de Vries, Ronald P.; Zhou, Zhihua; Benoit, Isabelle

    2015-01-01

    Objectives: To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. Results: By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-d-glucosidase

  7. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger

    NARCIS (Netherlands)

    Jiang, Yanping; Duarte, Alexandra Vivas; van den Brink, Joost; Wiebenga, Ad; Zou, Gen; Wang, Chengshu; de Vries, Ronald P; Zhou, Zhihua; Benoit, Isabelle

    OBJECTIVES: To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. RESULTS: By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-D-glucosidase

  8. Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30

    DEFF Research Database (Denmark)

    Olsson, Lisbeth; Christensen, T.M.I.E.; Hansen, K.P.

    2003-01-01

    The growth and enzyme production by Trichoderma reesei Rut C-30 using different lignocellulosic materials as carbon source were investigated. Cellulose, sugar beet pulp and alkaline extracted sugar beet pulp (resulting in partial removal of hemicellulose, lignin and pectin) or mixtures thereof were...

  9. Solid substrate fermentation of lignite by the coal-solubilizing mould, Trichoderma atroviride, in a new type of bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Holker, U.; Hofer, M. [University of Bonn, Bonn (Germany)

    2002-07-01

    Trichoderma atroviride CBS 349 is able to solubilize lignite. The mould was cultured under non-sterile conditions in a new type of bioreactor for solid substrate fermentation. German lignite (lithotype A, Bergheim) was used as complex solid substrate. Over 40 days 140 g of 1.5 kg lignite held in a 25 1-bioreactor was solubilized by the fungus.

  10. ARA1 regulates not only l-arabinose but also d-galactose catabolism in Trichoderma reesei

    NARCIS (Netherlands)

    Benocci, Tiziano; Aguilar-Pontes, Maria Victoria; Kun, Roland Sándor; Seiboth, Bernhard; de Vries, Ronald P; Daly, Paul

    2017-01-01

    Trichoderma reesei is used to produce saccharifying enzyme cocktails for biofuels. There is limited understanding of the transcription factors (TFs) that regulate genes involved in release and catabolism of l-arabinose and d-galactose, as the main TF XYR1 is only partially involved. Here, the T.

  11. Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Pierce, Brian; Wittrup Agger, Jane; Wichmann, Jesper

    2017-01-01

    The auxiliary activity family 9 (AA9) copper-dependent lytic polysaccharide monooxygenase (LPMO) from Trichoderma reesei (EG4; TrCel61A) was investigated for its ability to oxidize the complex polysaccharides from soybean. The substrate specificity of the enzyme was assessed against a variety of ...

  12. The Potential of Lignolytic Trichoderma Isolates in LDPE (Low Density Polyethylene) Plastic Biodegradation

    Science.gov (United States)

    Hikmah, M.; Setyaningsih, R.; Pangastuti, A.

    2018-03-01

    Plastic is experiencing buildup in the environment. Biodegradation process can be used as an alternative for LDPE plastic degradation because the process is environmentally friendly. Some fungi of the genus Trichoderma are known to have a role in plastic biodegradation. This study aims to find out how the potential of that lignolytic Trichoderma spp. isolates in LDPE biodegradation. Five isolates were screened by growing on MSMB (mineral salt medium broth) emulsified LDPE powder, with 35 days incubation at 30°C and shaking at 80 rpm. TL1, TL4, and TL5 are the three most potential isolates, indicated by the growth marked by increasing colony size on screening media. They were then tested for biodegradability by growing the isolates in MSMA (mineral salt medium agar) which then inoculated by 4 sheets of sterile LDPE 1x3 cm2 above the colony surface, incubated for 5, 15, 25 and 35 days. The degredability assessment is done by measuring the weight loss of LDPE sheets after biodegradation treatment. The obtained degradability percentage of TL1, TL4, and TL5 are 4.87%, 7.12%, and 7,51% respectively. The visual micrograph of LDPE film by SEM showed the appearance of damage and unevenness on the surface of the post-degradation film.

  13. Perbaikan Kualitas Pakan Ayam Broiler melalui Fermentasi Dua Tahap Menggunakan Trichoderma reseei dan Saccaromyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ibnu Hari Sulistyawan

    2015-04-01

    Full Text Available (Feedstuff Quality Improvement of Broiler Chicken with Two-Steps Fermentation by Trichoderma reseei and Saccaromyces cerevisiae ABSTRAK. The aim of this study was to improve the quality of animal feedstuff from agriculture waste product i.e. corn cob, tapioca solid waste and soy bean pulp by two-steps fermentation using Trichoderma reseei as cellulotlytic microorganisms and yeast Saccaromyces cerevisiae as protein source. This fermented product the was used in broiler chicken in vivo test. A Completely Randomized Design with four treatments: R0(100% basal feed/BF; R1(100% BF+10% fermented corn cob; R2 (100% BF+10% fermented tapioca solid waste; R3(100% BF+10% fermented soy bean pulp. Each treatments were replicated for 5 times. The variables response tested were quality of feedstuffs before and after fermentation of protein, NDF and ADF digestibilities on broiler chicken in vivo test. The result indicated that the protein content after fermentation has increased but reduced in NDF and ADF fiber. Two steps fermentation had not improved significantly to protein digestibility (P>0.05, but basic ration with fermented soybean pulp significantly improved (P<0.01 on protein digestibility.

  14. In vitro antagonism of Trichoderma harzianum Rifai against Mycosphaerella fijiensis Morelet

    Directory of Open Access Journals (Sweden)

    Mayra Acosta-Suárez

    2013-10-01

    Full Text Available The in vitro antagonism of Trichoderma harzianum against Mycosphaerella fijiensis, foliar pathogen of banana and plantain, was evaluated. The assays were performed using the dual culture method. Competition for space and nutrients, the antagonistic capacity and forms and intensity of antagonism were determined considering the invasion of the surface of the colony, colonization and sporulation of T. harzianum on M. fijiensis after seven days of inoculation. Finally, the effect of volatile metabolites of T. harzianum was evaluated. The results showed in vitro antagonism of T. harzianum against M. fijiensis by competition for space and nutrients of the culture medium. Trichoderma grew over the pathogen colony with hyperparasitism and high intensity. Also, it completely covered the surface of the culture medium. T. harzianum not inhibited the growth of M. fijiensis by volatile metabolites. Damage was observed in the integrity of the cell wall of M. fijiensis hyphae and the cell content exit. The use of antagonistic fungi, could contribute to the design of strategies for integrated management of this disease. Key words: banana and plantain, biocontrol, mechanisms of action

  15. Production of 6-pentyl-α-pyrone by trichoderma harzianum in solid-state fermentation.

    Science.gov (United States)

    de Souza Ramos, Aline; Fiaux, Sorele Batista; Leite, Selma Gomes Ferreira

    2008-10-01

    Many Trichoderma species are able to produce 6-pentyl-α-pyrone (6-PP), a lactone with coconut-like aroma. In the present work, several culture parameters were studied to enhance the production of 6-PP by Trichoderma harzianum 4040 in solid-state fermentation. Green coir powder added to a nutrient solution was used as support material for fermentation. A Plackett-Burman screening technique was applied, followed by a fractionary factorial design. The best culture conditions within the experimental domain studied were (100 g support)(-1): sucrose, 3 g; NaNO3, 0.24 g; (NH4)2SO4, 0.18 g; KH2PO4, 0.1 g; inoculum concentration, 2.2 × 10(6) spores; moisture level, 55%. The temperature established was 28°C. The fermentation under the selected conditions led to a 6-PP production six times higher (5.0 mg/g dry matter) than the initial one (0.8 mg/g dry matter) after seven days of cultivation.

  16. PURIFICATION AND PROPERTIES OF A FUNGAL L-ASPARAGINASE FROM TRICHODERMA VIRIDE PERS: SF GREY

    Directory of Open Access Journals (Sweden)

    Lynette Lincoln

    2015-02-01

    Full Text Available A potent L-asparaginase-producing Trichoderma viride Pers: SF Grey was screened from the marine soil with the objective of studying the enzyme properties. The maximum enzyme production occurred on the third day at pH 6.5 and 37 °C when 0.5% L-asparagine supplemented with 0.5% peptone and 0.6% maltose. The enzyme was purified to homogeneity with a specific activity of 78.2 U.mg-1 and a molecular weight of 99 ± 1 kDa. It exhibited maximum activity at pH 7.0 and 37 °C. It was inhibited by Fe2+, Fe3+, Co2+ and Mn2+ but induced by Mg2+ and Na+. N-ethylemaleimide and phenylmethylsulphonylfluoride did not alter the enzyme activity, but strongly inhibited by ethylenediaminetetraacetate. L-asparaginase showed high affinity for L-asparagine with a Km of 2.56 μM. Thin layer chromatography confirmed the hydrolysis of L-asparagine. As the purified and characterized L-asparaginase of Trichoderma viride showed a good scavenging activity and reduced acrylamide level in potato products, it can further serve as an antileukemic protein and an acrylamide mitigation agent in heat-treated food stuffs rich in carbohydrates, respectively.

  17. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India.

    Science.gov (United States)

    Naglot, A; Goswami, S; Rahman, I; Shrimali, D D; Yadav, Kamlesh K; Gupta, Vikas K; Rabha, Aprana Jyoti; Gogoi, H K; Veer, Vijay

    2015-09-01

    Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity.

  18. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India

    Directory of Open Access Journals (Sweden)

    A. Naglot

    2015-09-01

    Full Text Available Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s in the inhibitory activity.

  19. Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade.

    Science.gov (United States)

    Qin, Wen-Tao; Zhuang, Wen-Ying

    2016-06-01

    More than 200 recent collections of Trichoderma from China were examined and 16 species belonging to the Viride clade were identified based on integrated studies of phenotypic and molecular data. Among them, seven wood-inhabiting new species, T. albofulvopsis, T. densum, T. laevisporum, T. sinokoningii, T. sparsum, T. sphaerosporum and T. subviride, are found. They form trichoderma- to verticillium-like conidiophores, lageniform to subulate phialides and globose to ellipsoidal conidia, but vary greatly in colony features, growth rates, and sizes of phialides and conidia. To explore their taxonomic positions, the phylogenetic tree including all the known species of the Viride clade is constructed based on sequence analyses of the combined RNA polymerase II subunit b and translation elongation factor 1 alpha exon genes. Our results indicated that the seven new species were well-located in the Koningii, Rogersonii and Neorufum subclades as well as a few independent terminal branches. They are clearly distinguishable from any existing species. Morphological distinctions and sequence divergences between the new species and their close relatives were discussed.

  20. Structural basis of transport function in major facilitator superfamily protein from Trichoderma harzianum.

    Science.gov (United States)

    Chaudhary, Nitika; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2017-02-01

    Trichothecenes are the sesquiterpenes secreted by Trichoderma spp. residing in the rhizosphere. These compounds have been reported to act as plant growth promoters and bio-control agents. The structural knowledge for the transporter proteins of their efflux remained limited. In this study, three-dimensional structure of Thmfs1 protein, a trichothecene transporter from Trichoderma harzianum, was homology modelled and further Molecular Dynamics (MD) simulations were used to decipher its mechanism. Fourteen transmembrane helices of Thmfs1 protein are observed contributing to an inward-open conformation. The transport channel and ligand binding sites in Thmfs1 are identified based on heuristic, iterative algorithm and structural alignment with homologous proteins. MD simulations were performed to reveal the differential structural behaviour occurring in the ligand free and ligand bound forms. We found that two discrete trichothecene binding sites are located on either side of the central transport tunnel running from the cytoplasmic side to the extracellular side across the Thmfs1 protein. Detailed analysis of the MD trajectories showed an alternative access mechanism between N and C-terminal domains contributing to its function. These results also demonstrate that the transport of trichodermin occurs via hopping mechanism in which the substrate molecule jumps from one binding site to another lining the transport tunnel. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy.

    Science.gov (United States)

    Wu, Qiong; Sun, Ruiyan; Ni, Mi; Yu, Jia; Li, Yaqian; Yu, Chuanjin; Dou, Kai; Ren, Jianhong; Chen, Jie

    2017-01-01

    Due to its efficient broad-spectrum antimicrobial activity, Trichoderma has been established as an internationally recognized biocontrol fungus. In this study, we found and identified a novel strain of Trichoderma asperellum, named GDFS1009. The mycelium of T. asperellum GDFS1009 exhibits a high growth rate, high sporulation capacity, and strong inhibitory effects against pathogens that cause cucumber fusarium wilt and corn stalk rot. T. asperellum GDFS1009 secretes chitinase, glucanase, and protease, which can degrade the cell walls of fungi and contribute to mycoparasitism. The secreted xylanases are good candidates for inducing plant resistance and enhancing plant immunity against pathogens. RNA sequencing (RNA-seq) and gas chromatography-mass spectrometry (GC-MS) showed that T. asperellum GDFS1009 produces primary metabolites that are precursors of antimicrobial compounds; it also produces a variety of antimicrobial secondary metabolites, including polyketides and alkanes. In addition, this study speculated the presence of six antimicrobial peptides via ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS/MS). Future studies should focus on these antimicrobial metabolites for facilitating widespread application in the field of agricultural bio-control.

  2. Optimization of nonribosomal peptides production by a psychrotrophic fungus: Trichoderma velutinum ACR-P1.

    Science.gov (United States)

    Sharma, Richa; Singh, Varun P; Singh, Deepika; Yusuf, Farnaz; Kumar, Anil; Vishwakarma, Ram A; Chaubey, Asha

    2016-11-01

    Trichoderma is an anamorphic filamentous fungal genus with immense potential for production of small valuable secondary metabolites with indispensable biological activities. Microbial dynamics of a psychrotrophic strain Trichoderma velutinum ACR-P1, isolated from unexplored niches of the Shiwalik region, bestowed with rich biodiversity of microflora, was investigated for production of nonribosomal peptides (NRPs) by metabolite profiling by intact-cell mass spectrometry (ICMS) employing matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometer. Being the first report on NRPs production by T. velutinum, studies on optimization of growth conditions by Response Surface Methodology (RSM) for production of NRPs by ACR-P1 was carried out strategically. Multifold enhancement in the yield of NRPs belonging to subfamily SF4 with medium chain of amino acid residues having m/z 1437.9, 1453.9, and 1452.0 at pH 5.9 at 20 °C and of subfamily SF1 with long-chain amino acid residues having m/z 1770.2, 1784.2, 1800.1, 1802.1, and 1815.1 was achieved at pH 7.0 at 25 °C. Complexities of natural mixtures were thus considerably reduced under respective optimized culture conditions accelerating the production of novel microbial natural products by saving time and resources.

  3. The relation between xyr1 overexpression in Trichoderma harzianum and sugarcane bagasse saccharification performance.

    Science.gov (United States)

    da Silva Delabona, Priscila; Rodrigues, Gisele Nunes; Zubieta, Mariane Paludetti; Ramoni, Jonas; Codima, Carla Aloia; Lima, Deise Juliana; Farinas, Cristiane Sanchez; da Cruz Pradella, José Geraldo; Seiboth, Bernhard

    2017-03-20

    This work investigates the influence of the positive regulator XYR1 of Trichoderma harzianum on the production of cellulolytic enzymes, using sugarcane bagasse as carbon source. Constitutive expression of xyr1 was achieved under the control of the strong Trichoderma reesei pki1 promoter. Five clones with xyr1 overexpression achieved higher xyr1 expression and greater enzymatic productivity when cultivated under submerged fermentation, hence validating the genetic construction for T. harzianum. Clone 5 presented a relative expression of xyr1 26-fold higher than the parent strain and exhibited 66, 37, and 36% higher values for filter paper activity, xylanase activity, and β-glucosidase activity, respectively, during cultivation in a stirred-tank bioreactor. The overexpression of xyr1 in T. harzianum resulted in an enzymatic complex with significantly improved performance in sugarcane bagasse saccharification, with an enhancement of 25% in the first 24h. Our results also show that constitutive overexpression of xyr1 leads to the induction of several important players in biomass degradation at early (24h) and also late (48h) timepoints of inoculation. However, we also observed that the carbon catabolite repressor CRE1 was upregulated in xyr1 overexpression mutants. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression and suggest an attractive approach for increasing total cellulase productivity in T. harzianum. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A novel method to prepare concentrated conidial biomass formulation of Trichoderma harzianum for seed application.

    Science.gov (United States)

    Singh, P C; Nautiyal, C S

    2012-12-01

    To prepare concentrated formulation of Trichoderma harzianum MTCC-3841 (NBRI-1055) with high colony forming units (CFU), long shelf life and efficient in root colonization by a simple scrapping method. NBRI-1055 spores scrapped from potato dextrose agar plates were used to prepare a concentrated formulation after optimizing carrier material, moisture content and spore harvest time. The process provides an advantage of maintaining optimum moisture level by the addition of water rather than dehydration. The formulation had an initial 11-12 log(10) CFU g(-1). Its concentrated form reduces its application amount by 100 times (10 g 100 kg(-1) seed) and provides 3-4 log(10) CFU seed(-1). Shelf life of the product was experimentally determined at 30 and 40 °C and predicted at other temperatures following Arrhenius equation. The concentrated formulation as compared to similar products provides an extra advantage of smaller packaging for storage and transportation, cutting down product cost. Seed application of the formulation recorded significant increase in plant growth promotion. Stable and effective formulation of Trichoderma harzianum NBRI-1055 was obtained by a simple scrapping method. A new method for the production of concentrated, stable, effective and cost efficient formulation of T. harzianum has been validated for seed application. © 2012 The Society for Applied Microbiology.

  5. Induction of mutation in Trichoderma viride for conversion of natural cellulose into glucose

    Energy Technology Data Exchange (ETDEWEB)

    Tahoun, M.K.; Khalil, A.I.; Helmi, S.; Khairy, A.H. [Univ. of Alexandria Research Centre, Alexandria (Egypt)

    1991-12-31

    The production of cellulolytic enzymes from fungi has been extensively studied. Several mutants of Trichoderma reesei were selected. Most of the studies were carried out on T. reesei, T. viride, T. harzianum, Penicillium funiculosum, Altemaria alternata. Aspergillus phoenicis, A. ustus, A. tamarii, A. japonicus, and A. niger. T. koningii is one of the most active producers of the so-called C, factor, which is indispensable for the rapid and extensive attack on crystal-line cellulose. However, Trichodenna is known to excrete only small amounts of {beta}-glucosidase. Therefore, Trichoderma is supplemented with {beta}-glucosidase from Aspergillus to increase the saccharification rate of cellulose to glucose as the main sugar. Induction of mutations in Trichodenna spp. rather than T. viride as a tool for the enhancement of {beta}-glucosidase activity was reported. Unfortunately, T. reesei is a poor producer of {beta}-glucosidase. On the other hand, T. harzianum M{sub 5}, a mutant that was induced by gamma radiation, produced high yields, not only of Avicelase and carboxy methyl cellulose, but also of {beta}-glucosidase, than its respective wild type.

  6. Scanning electron microscopy observations of the interaction between Trichoderma harzianum and perithecia of Gibberella zeae.

    Science.gov (United States)

    Inch, S; Gilbert, J

    2011-01-01

    Chronological events associated with the interaction between a strain of Trichoderma harzianum, T472, with known biological control activity against perithecial production of G. zeae, were studied with scanning electron microscopy to investigate the mechanisms of control. Large clusters of perithecia consisting of 5-15 perithecia formed on the autoclaved, mulched wheat straw inoculated with G. zeae alone (control) with an average of 157 perithecia per plate. Small clusters consisting of 3-6 and an average of 15 perithecia per plate perithecia formed on straw that was treated with T. harzianum. The mature perithecia from straw treated with T. harzianum produced less pigment and were lighter in color than those from the control plates. Furthermore the cells of the outer wall of these perithecia were abnormal in appearance and unevenly distributed across the surface. Immature perithecia were colonized by T. harzianum approximately 15 d after inoculation (dai) with the biocontrol agent and pathogen. Few perithecia were colonized at later stages. The affected perithecia collapsed 21 dai, compared to the perithecia in the control samples that began to collapse 28 dai. Abundant mycelium of T. harzianum was seen on the perithecia of treated samples. Perithecial structures may be resistant to penetration by the mycelium because direct penetration was not observed. Trichoderma harzianum colonized the substrate quickly and out-competed the pathogen, G. zeae.

  7. Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt.

    Science.gov (United States)

    Blaya, Josefa; López-Mondéjar, Rubén; Lloret, Eva; Pascual, Jose Antonio; Ros, Margarita

    2013-09-01

    The addition of species of Trichoderma to compost is a widespread technique used to control different plant diseases. The biological control activity of these species is mainly attributable to a combination of several mechanisms of action, which may affect the microbiota involved in the suppressiveness of compost. This study was therefore performed to determine the effect of inoculation of Trichoderma harzianum (T. harzianum) on compost, focusing on bacterial community structure (16S rRNA) and chitinase gene diversity. In addition, the ability of vineyard pruning waste compost, amended (GCTh) or not (GC) with T. harzianum, to suppress Fusarium wilt was evaluated. The addition of T. harzianum resulted in a high relative abundance of certain chitinolytic bacteria as well as in remarkable protection against Fusarium oxysporum comparable to that induced by compost GC. Moreover, variations in the abiotic characteristics of the media, such as pH, C, N and iron levels, were observed. Despite the lower diversity of chitinolytic bacteria found in GCTh, the high relative abundance of Streptomyces spp. may be involved in the suppressiveness of this growing media. The higher degree of compost suppressiveness achieved after the addition of T. harzianum may be due not only to its biocontrol ability, but also to changes promoted in both abiotic and biotic characteristics of the growing media. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions.

    Science.gov (United States)

    Cheng, Chi-Hua; Yang, Chia-Ann; Peng, Kou-Cheng

    2012-11-01

    ABSTRACT Previous studies have shown that the extracellular proteins of Trichoderma harzianum ETS 323 grown in the presence of deactivated Botrytis cinerea in culture include a putative l-amino acid oxidase and have suggested the involvement of this enzyme in the antagonistic mechanism. Here, we hypothesized that the mycoparasitic process of Trichoderma spp. against B. cinerea involves two steps; that is, an initial hyphal coiling stage and a subsequent hyphal coiling stage, with different coiling rates. The two-step antagonism of T. harzianum ETS 323 against B. cinerea during the mycoparasitic process in culture was evaluated using a biexponential equation. In addition, an l-amino acid oxidase (Th-l-AAO) was identified from T. harzianum ETS 323. The secretion of Th-l-AAO was increased when T. harzianum ETS 323 was grown with deactivated hyphae of B. cinerea. Moreover, in vitro assays indicated that Th-l-AAO effectively inhibited B. cinerea hyphal growth, caused cytosolic vacuolization in the hyphae, and led to hyphal lysis. Th-l-AAO also showed disease control against the development of B. cinerea on postharvest apple fruit and tobacco leaves. Furthermore, an apoptosis-like response, including the generation of reactive oxygen species, was observed in B. cinerea after treatment with Th-l-AAO, suggesting that Th-l-AAO triggers programmed cell death in B. cinerea. This may be associated with the two-step antagonism of T. harzianum ETS 323 against B. cinerea.

  9. Identification of New Lactone Derivatives Isolated from Trichoderma sp., An Endophytic Fungus of Brotowali (Tinaspora crispa

    Directory of Open Access Journals (Sweden)

    ELFITA

    2014-03-01

    Full Text Available Endophytic fungi is a rich source of novel organic compounds with interesting biological activities and a high level of structural diversity. As a part of our systematic search for new bioactive lead structures and specific profiles from endophytic fungi, an endophytic fungus was isolated from roots of brotowali (Tinaspora crispa, an important medicinal plant. Colonial morphological trait and microscopic observation revealed that the endophytic fungus was Trichoderma sp. The pure fungal strain was cultivated on 7 L Potatos Dextose Broth (PDB medium under room temperature (no shaking for 8 weeks. The ethyl acetate were added to cultur medium and left overnight to stop cell growth. The culture filtrates were collected and extracted with EtOAc and then taken to evaporation. Two new lactone derivatives, 5-hydroxy-4-hydroxymethyl-2H-pyran-2-one (1 and (5-hydroxy-2-oxo-2H pyran-4-yl methyl acetate (2 were obtained from the EtOAc extracts of Trichoderma sp. Their structures were determined on the basic of spectroscopic methods including UV, IR, 1H-NMR, 13C-NMR, HMQC, and HMBC.

  10. Effect of Trichoderma-enriched organic charcoal in the integrated wood protection strategy.

    Directory of Open Access Journals (Sweden)

    Javier Ribera

    Full Text Available The gradual elimination of chromium from wood preservative formulations results in higher Cu leaching and increased susceptibility to wood decay fungi. Finding a sustainable strategy in wood protection has become of great interest among researchers. The objective of these in vitro studies was to demonstrate the effect of T-720-enriched organic charcoal (biochar against five wood decay basidiomycetes isolated from strongly damaged poles. For this purpose, the antagonistic potential of Trichoderma harzianum (strain T-720 was confirmed among other four Trichoderma spp. against five brown-rot basidiomycetes in dual culture tests. T-720 was genetically transformed and tagged with the green fluorescent protein (GFP in order to study its antagonistic mechanism against wood decay basidiomycetes. It was also demonstrated that T-720 inhibits the oxalic acid production by basidiomycetes, a well-known mechanism used by brown-rot fungi to detoxify Cu from impregnated wood. Additionally, this study evaluated the effect of biochar, alone or in combination with T-720, on Cu leaching by different preservatives, pH stabilization and prevention of wood decay caused by five basidiomycetes. Addition of biochar resulted in a significant Cu binding released from impregnated wood specimens. T-720-enriched biochar showed a significant reduction of wood decay caused by four basidiomycetes. The addition of T-720-enriched biochar to the soil into which utility poles are placed may improve the efficiency of Cr-free wood preservatives.

  11. β-Glucosidases from the Fungus Trichoderma: An Efficient Cellulase Machinery in Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Pragya Tiwari

    2013-01-01

    Full Text Available β-glucosidases catalyze the selective cleavage of glucosidic linkages and are an important class of enzymes having significant prospects in industrial biotechnology. These are classified in family 1 and family 3 of glycosyl hydrolase family. β-glucosidases, particularly from the fungus Trichoderma, are widely recognized and used for the saccharification of cellulosic biomass for biofuel production. With the rising trends in energy crisis and depletion of fossil fuels, alternative strategies for renewable energy sources need to be developed. However, the major limitation accounts for low production of β-glucosidases by the hyper secretory strains of Trichoderma. In accordance with the increasing significance of β-glucosidases in commercial applications, the present review provides a detailed insight of the enzyme family, their classification, structural parameters, properties, and studies at the genomics and proteomics levels. Furthermore, the paper discusses the enhancement strategies employed for their utilization in biofuel generation. Therefore, β-glucosidases are prospective toolbox in bioethanol production, and in the near future, it might be successful in meeting the requirements of alternative renewable sources of energy.

  12. Morphological changes of Ganoderma boninense mycelia after challenged by Trichoderma and Bacillus

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Arnnyitte; Chong, Khim-Phin, E-mail: chongkp@ums.edu.my [Sustainable Palm Oil Research Unit (SPOR), Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah (Malaysia); Dayou, Jedol [Vibration and Sound Research Group (eVIBS), Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah (Malaysia)

    2015-07-22

    Ganoderma boninense is a fungal pathogen that causes Basal Stem Rot (BSR) disease in oil palm. This deadly disease has caused major losses in the oil palm industry and no remedy is reported to date. The more promising control on G. boninense is the use of biological control agents (BCAs). Despite many attempts in using BCAs as a control agent but evidence on the colonization of BCAs and morphological changes of the pathogen is not well documented. We have investigated the effect of antagonist activity on the combination of Trichoderma spp. and Bacillus spp. on the morphology of G. boninense. The antagonist activity was evaluated using agar well diffusion assay. BCAs suppressed the mycelia growth of G. boninense up to 70%. Observation under Scanning Electron Microscopy (SEM) shows these BCAs induced stripping of G. boninense hyphal structure by destroying the cellular structure. Highly disrupted, disaggerated, shrivelled and lysis of G. boninense hyphal were also observed. The antifungal activity of Trichoderma spp. and Bacillus spp. observed could be associated with the production of Cell Wall Degrading Enzymes (CWDE)

  13. Morphological changes of Ganoderma boninense mycelia after challenged by Trichoderma and Bacillus

    International Nuclear Information System (INIS)

    Alexander, Arnnyitte; Chong, Khim-Phin; Dayou, Jedol

    2015-01-01

    Ganoderma boninense is a fungal pathogen that causes Basal Stem Rot (BSR) disease in oil palm. This deadly disease has caused major losses in the oil palm industry and no remedy is reported to date. The more promising control on G. boninense is the use of biological control agents (BCAs). Despite many attempts in using BCAs as a control agent but evidence on the colonization of BCAs and morphological changes of the pathogen is not well documented. We have investigated the effect of antagonist activity on the combination of Trichoderma spp. and Bacillus spp. on the morphology of G. boninense. The antagonist activity was evaluated using agar well diffusion assay. BCAs suppressed the mycelia growth of G. boninense up to 70%. Observation under Scanning Electron Microscopy (SEM) shows these BCAs induced stripping of G. boninense hyphal structure by destroying the cellular structure. Highly disrupted, disaggerated, shrivelled and lysis of G. boninense hyphal were also observed. The antifungal activity of Trichoderma spp. and Bacillus spp. observed could be associated with the production of Cell Wall Degrading Enzymes (CWDE)

  14. Morphological changes of Ganoderma boninense mycelia after challenged by Trichoderma and Bacillus

    Science.gov (United States)

    Alexander, Arnnyitte; Dayou, Jedol; Chong, Khim-Phin

    2015-07-01

    Ganoderma boninense is a fungal pathogen that causes Basal Stem Rot (BSR) disease in oil palm. This deadly disease has caused major losses in the oil palm industry and no remedy is reported to date. The more promising control on G. boninense is the use of biological control agents (BCAs). Despite many attempts in using BCAs as a control agent but evidence on the colonization of BCAs and morphological changes of the pathogen is not well documented. We have investigated the effect of antagonist activity on the combination of Trichoderma spp. and Bacillus spp. on the morphology of G. boninense. The antagonist activity was evaluated using agar well diffusion assay. BCAs suppressed the mycelia growth of G. boninense up to 70%. Observation under Scanning Electron Microscopy (SEM) shows these BCAs induced stripping of G. boninense hyphal structure by destroying the cellular structure. Highly disrupted, disaggerated, shrivelled and lysis of G. boninense hyphal were also observed. The antifungal activity of Trichoderma spp. and Bacillus spp. observed could be associated with the production of Cell Wall Degrading Enzymes (CWDE).

  15. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride.

    Directory of Open Access Journals (Sweden)

    Edgar Balcázar-López

    Full Text Available Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc. To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation.

  16. Use of Trichoderma fungi in spray solutions to reduce Moniliophthora roreri infection of Theobroma cacao fruits in Northeastern Costa Rica

    Directory of Open Access Journals (Sweden)

    John Seng

    2014-09-01

    Full Text Available Cacao (Theobroma cacao is an important cash crop in tropical climates such as that of Latin America. Over the past several decades, the infection of cultivated cacao by Moniliophthora roreri, known commonly as “monilia”, has significantly hindered cacao production in Latin America. Studies have proposed the use of Trichoderma sp. Fungi in biocontrol treatments to prevent and reduce monilia infection, yet tests of Trichoderma-containing spray treatments on cacao agroforests have produced mixed results. Researchers and agricultural workers have suggested that addition of soil, fly ash, or other carbon sources to a Trichoderma spray may improve its efficacy in fighting monilia. To test these suggestions, we designed a series of spray mixtures including Trichoderma cultures, soil, and all necessary controls. We applied the spray mixtures to 80 cacao trees (20 trees for each of four resistant-selected clones to monilia at the FINMAC organic cacao plantation in Pueblo Nuevo de Guacimo, Limón Province, in northeastern Costa Rica in March-April 2013. Five treatments were applied (control, water, water plus sterilized soil, water plus Trichoderma, and water plus sterilized soil plus Trichoderma. Each treatment was applied to four trees of each clone. We monitored the incidence of moniliainfection under each spray treatment over the course of 35d. We found that spraying entire cacao trees two times with a mixture containing Trichoderma and sterilized soil significantly reduced the incidence of monilia infection by 11% (p<0.05 in only 35d, ascompared to the control. This reduction in loss of cacao pods translates into an increase of plantation mean productivity of 1 500kg dried beans/ha by 198kg/ha up to 1 698kg/ha or by a total increase over the whole 110ha plantation by 21 780kg. We propose that using such an antifungal spray over the whole course of a crop cycle (120 days would decrease infection incidence even more. Application of this fungal

  17. Inhibition coefficient and molecular diversity of multi stress tolerant Trichoderma as potential biocontrol agent against Sclerotium rolfsii Sacc.

    Science.gov (United States)

    Hirpara, Darshna G; Gajera, H P; Hirapara, Jaydeep G; Golakiya, B A

    2017-11-01

    Trichoderma is one of the most exploited biocontrol agent for the management of plant diseases. Twenty strains of Trichoderma (six of T. harzianum, four of T. viride, three of T. virens, three of T. koningii, each one of T. hamatum, T. reesei, T. parceramosum and Trichoderma spp.) subjected to in vitro antagonism up to 12days after inoculation against Sclerotium rolfsii Sacc. causing stem rot in groundnut. A new concept was developed to determine inhibition coefficient representing pathogen biology and biocontrol related biophysical variables. Results explained differential inhibition coefficient of test pathogen by Trichoderma antagonists. The inhibition coefficient of test pathogen was examined highest (91.13%) by T. virens NBAII Tvs12 followed by T. virens MTCC 794 (89.33%) and T. koningii MTCC 796 (62.39%). Microscopic study confirmed biocontrol mechanism as mycoparasitism for Tvs12 and antibiosis for T. koningii MTCC 796. The sclerotial biogenesis of test pathogen was elevated during weak antagonism and diminished in interactions with strong antagonists. The inhibition coefficient of S. rolfsii was significantly negatively correlated with sclerotia formation and lipid peroxidation during the antagonism. Trichoderma strains were screened for fungicides (carbendazim and tebuconazole, thiram and mancozeb) and abiotic stress (drought and salt) tolerance. Results indicated that T. koningii MTCC 796 efficiently grew better than the other strains with maximum radial growth under adverse conditions. The genetic variability among the Trichoderma was determined using 34 gene specific markers which amplified 146 alleles. The SSR similarities explained substantial diversity (15 to 87%) across Trichoderma strains and pathogen S. rolfsii. Principal coordinates analysis (PCA) were comparable to the cluster analysis and first three most informative PC components explained 64.45% of the total variation. In PCA, potent antagonists appear to be distinct from other strains. Five

  18. Selection and characterization of Argentine isolates of Trichoderma harzianum for effective biocontrol of Septoria leaf blotch of wheat.

    Science.gov (United States)

    Stocco, Marina C; Mónaco, Cecilia I; Abramoff, Cecilia; Lampugnani, Gladys; Salerno, Graciela; Kripelz, Natalia; Cordo, Cristina A; Consolo, Verónica F

    2016-03-01

    Species of the genus Trichoderma are economically important as biocontrol agents, serving as a potential alternative to chemical control. The applicability of Trichoderma isolates to different ecozones will depend on the behavior of the strains selected from each zone. The present study was undertaken to isolate biocontrol populations of Trichoderma spp. from the Argentine wheat regions and to select and characterize the best strains of Trichoderma harzianum by means of molecular techniques. A total of 84 out of the 240 strains of Trichoderma were able to reduce the disease severity of the leaf blotch of wheat. Thirty-seven strains were selected for the reduction equal to or greater than 50% of the severity, compared with the control. The percentage values of reduction of the pycnidial coverage ranged between 45 and 80%. The same last strains were confirmed as T. harzianum by polymerase chain reaction amplification of internal transcribed spacers, followed by sequencing. Inter-simple sequence repeat was used to examine the genetic variability among isolates. This resulted in a total of 132 bands. Further numerical analysis revealed 19 haplotypes, grouped in three clusters (I, II, III). Shared strains, with different geographical origins and isolated in different years, were observed within each cluster. The origin of the isolates and the genetic group were partially related. All isolates from Paraná were in cluster I, all isolates from Lobería were in cluster II, and all isolates from Pergamino and Santa Fe were in cluster III. Our results suggest that the 37 native strains of T. harzianum are important in biocontrol programs and could be advantageous for the preparation of biopesticides adapted to the agroecological conditions of wheat culture.

  19. Recognition of endophytic Trichoderma species by leaf-cutting ants and their potential in a Trojan-horse management strategy

    Science.gov (United States)

    Rocha, Silma L.; Evans, Harry C.; Jorge, Vanessa L.; Cardoso, Lucimar A. O.; Pereira, Fernanda S. T.; Rocha, Fabiano B.; Barreto, Robert W.; Hart, Adam G.

    2017-01-01

    Interactions between leaf-cutting ants, their fungal symbiont (Leucoagaricus) and the endophytic fungi within the vegetation they carry into their colonies are still poorly understood. If endophytes antagonistic to Leucoagaricus were found in plant material being carried by these ants, then this might indicate a potential mechanism for plants to defend themselves from leaf-cutter attack. In addition, it could offer possibilities for the management of these important Neotropical pests. Here, we show that, for Atta sexdens rubropilosa, there was a significantly greater incidence of Trichoderma species in the vegetation removed from the nests—and deposited around the entrances—than in that being transported into the nests. In a no-choice test, Trichoderma-infested rice was taken into the nest, with deleterious effects on both the fungal gardens and ant survival. The endophytic ability of selected strains of Trichoderma was also confirmed, following their inoculation and subsequent reisolation from seedlings of eucalyptus. These results indicate that endophytic fungi which pose a threat to ant fungal gardens through their antagonistic traits, such as Trichoderma, have the potential to act as bodyguards of their plant hosts and thus might be employed in a Trojan-horse strategy to mitigate the negative impact of leaf-cutting ants in both agriculture and silviculture in the Neotropics. We posit that the ants would detect and evict such ‘malign’ endophytes—artificially inoculated into vulnerable crops—during the quality-control process within the nest, and, moreover, that the foraging ants may then be deterred from further harvesting of ‘Trichoderma-enriched’ plants. PMID:28484603

  20. Differential display of abundantly expressed genes of Trichoderma harzianum during colonization of tomato-germinating seeds and roots.

    Science.gov (United States)

    Mehrabi-Koushki, Mehdi; Rouhani, Hamid; Mahdikhani-Moghaddam, Esmat

    2012-11-01

    The identification of Trichoderma genes whose expression is altered during early stages of interaction with developing roots of germinated seeds is an important step toward understanding the rhizosphere competency of Trichoderma spp. The potential of 13 Trichoderma strains to colonize tomato root and promote plant growth has been evaluated. All used strains successfully propagated in spermosphere and continued their growth in rhizoplane simultaneously root enlargement while the strains T6 and T7 were the most abundant in the apical segment of roots. Root colonization in most strains associated with promoting the roots and shoots growth while they significantly increased up to 43 and 40 % roots and shoots dry weights, respectively. Differential display reverse transcriptase-PCR (DDRT-PCR) has been developed to detect differentially expressed genes in the previously selected strain, Trichoderma harzianum T7, during colonization stages of tomato-germinating seeds and roots. Amplified DDRT-PCR products were analyzed on gel agarose and 62 differential bands excised, purified, cloned, and sequenced. Obtained ESTs were submit-queried to NCBI database by BLASTx search and gene ontology hierarchy. Most of transcripts (29 EST) corresponds to known and hypothetical proteins such as secretion-related small GTPase, 40S ribosomal protein S3a, 3-hydroxybutyryl-CoA dehydrogenase, DNA repair protein rad50, lipid phosphate phosphatase-related protein type 3, nuclear essential protein, phospholipase A2, fatty acid desaturase, nuclear pore complex subunit Nup133, ubiquitin-activating enzyme, and 60S ribosomal protein L40. Also, 13 of these sequences showed no homology (E > 0.05) with public databases and considered as novel genes. Some of these ESTs corresponded to genes encodes enzymes potentially involved in nutritional support of microorganisms which have obvious importance in the establishment of Trichoderma in spermosphere and rhizosphere, via potentially functioning in

  1. Generation of Trichoderma atroviride mutants with constitutively activated G protein signaling by using geneticin resistance as selection marker

    Directory of Open Access Journals (Sweden)

    Gruber Sabine

    2012-11-01

    Full Text Available Abstract Background Species of the fungal genus Trichoderma are important industrial producers of cellulases and hemicellulases, but also widely used as biocontrol agents (BCAs in agriculture. In the latter function Trichoderma species stimulate plant growth, induce plant defense and directly antagonize plant pathogenic fungi through their mycoparasitic capabilities. The recent release of the genome sequences of four mycoparasitic Trichoderma species now forms the basis for large-scale genetic manipulations of these important BCAs. Thus far, only a limited number of dominant selection markers, including Hygromycin B resistance (hph and the acetamidase-encoding amdS gene, have been available for transformation of Trichoderma spp. For more extensive functional genomics studies the utilization of additional dominant markers will be essential. Results We established the Escherichia coli neomycin phosphotransferase II-encoding nptII gene as a novel selectable marker for the transformation of Trichoderma atroviride conferring geneticin resistance. The nptII marker cassette was stably integrated into the fungal genome and transformants exhibited unaltered phenotypes compared to the wild-type. Co-transformation of T. atroviride with nptII and a constitutively activated version of the Gα subunit-encoding tga3 gene (tga3Q207L resulted in a high number of mitotically stable, geneticin-resistant transformants. Further analyses revealed a co-transformation frequency of 68% with 15 transformants having additionally integrated tga3Q207L into their genome. Constitutive activation of the Tga3-mediated signaling pathway resulted in increased vegetative growth and an enhanced ability to antagonize plant pathogenic host fungi. Conclusion The neomycin phosphotransferase II-encoding nptII gene from Escherichia coli proved to be a valuable tool for conferring geneticin resistance to the filamentous fungus T. atroviride thereby contributing to an enhanced genetic

  2. Trichoderma spp. dan Penicillium spp. dari Tanah Rizosfer Lahan Rawa Lebak dalam Menginduksi Ketahanan Tanaman Cabai Terhadap Serangan Penyakit Rebah Kecambah

    Directory of Open Access Journals (Sweden)

    Ahmad Muslim

    2014-08-01

    Full Text Available Soil microbes associated with rhizosphere are important for promoting plant growth and inducing resistance to diseases. The research was conducted to study the ability of Trichoderma spp. and Penicillium spp. isolated from rhizosphere in lowland swampy area for controlling damping-off disease caused by Rhizoctonia solani Khun. Trichoderma spp. and Penicillium spp. were cultured in bran, corn meal, and rice straw containing media and applied as inoculum to 2-weeks old seedlings. Application of two fungi isolates effectively induced resistance of chili plants to damping-off disease. Trichoderma spp. and Penicillium spp. were significantly reduced disease incidence by 61.5–100% to 46.2–100%, respectively and disease severity by 50–100% and 30–95.9%, respectively. This experiment showed the potential of Trichoderma spp. and Penicillium spp. as biocontrol agents to control damping-off disease on chili.  

  3. Proteomic analysis of a mutant of Trichoderma arundinaceum impaired in the trichothecene biosynthesis reveals a systemic function of these compounds in the fungal physiology

    Science.gov (United States)

    Trichothecenes are sesquiterpene mycotoxins produced by several fungal genera including Fusarium, Trichothecium, Myrothecium, Stachybotrys, and Trichoderma. These toxins have attracted great attention because they are frequent contaminants of food and animal feed, and can be easily absorbed by anim...

  4. Effect of trichothecene production on the plant defense response and fungal physiology: overexpression of Trichoderma arundinaceum tri4 gene in T. harzianum

    Science.gov (United States)

    Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively,...

  5. Penggunaan Jamur Antagonis Trichoderma sp. dan Gliocladium sp. untuk Mengendalikan Penyakit Layu (Fusarium oxysporum) pada Tanaman Bawang Merah (Allium ascalonicum L.)

    OpenAIRE

    Ramadhina, Arie

    2015-01-01

    Arie Ramadhina, 2012. The Use of Antagonism Fungus of Trichoderma sp and Gliocladium sp. for Controlling Wilt (Fusarium oxysporum) in Red Onion Plants (Allium ascolanicum). Supervised by Lisnawita and Lahmuddin Lubis. The aim of the research was to know the effectiveness of antagonism fungus of Trichoderma sp. and Gliocladium sp. in controlling wilt in red onion plants. The research was performed in the green-house at the faculty of Agriculture, USU, from February until May, 2012. The researc...

  6. Comparative growth of trichoderma strains in different nutritional sources, using bioscreen c automated system Crescimento de linhagens de Trichoderma em diferentes fontes nutricionais, empregando o sistema automatizado Bioscreen C.

    Directory of Open Access Journals (Sweden)

    Bianca Caroline Rossi-Rodrigues

    2009-06-01

    Full Text Available Trichoderma is one of the fungi genera that produce important metabolites for industry. The growth of these organisms is a consequence of the nutritional sources used as also of the physical conditions employed to cultivate them. In this work, the automated Bioscreen C system was used to evaluate the influence of different nutritional sources on the growth of Trichoderma strains (T. hamatum, T. harzianum, T. viride, and T. longibrachiatum isolated from the soil in the Juréia-Itatins Ecological Station (JIES, São Paulo State - Brazil.The cultures were grown in liquid culture media containing different carbon- (2%; w/v and nitrogen (1%; w/v sources at 28ºC, pH 6.5, and agitated at 150 rpm for 72 h. The results showed, as expected, that glucose is superior to sucrose as a growth-stimulating carbon source in the Trichoderma strains studied, while yeast extract and tryptone were good growth-stimulating nitrogen sources in the cultivation of T. hamatum and T. harzianum.Trichoderma é um dos gêneros de fungos produtores de metabólitos de interesse industrial. O crescimento destes organismos é conseqüência das fontes nutricionais utilizadas, juntamente com as condições físicas de cultivo. Neste trabalho, o sistema automatizado Bioscreen C foi utilizado para avaliar a influência de diferentes fontes nutricionais sobre o crescimento de linhagens de Trichoderma (T. hamatum, T. harzianum, T. viride e T. longibrachiatum isoladas do solo da Estação Ecológica da Juréia-Itatins (JIES, São Paulo - Brasil. Os cultivos foram feitos em meios líquidos de cultura contendo diferentes fontes de carbono (2%; w / v e nitrogênio (1%; w / v a 28ºC, pH 6,5 e agitados a 150 rpm durante 72 h. Os resultados mostraram, conforme esperado, que a glicose é melhor do que a sacarose como fonte de carbono indutora de crescimento das linhagens de Trichoderma testadas, enquanto que, o extrato de leveduras e a triptona foram boas fontes de nitrogênio indutoras de

  7. Combinatorial efficacy of Trichoderma spp. and Pseudomonas fluorescens to enhance suppression of cell wall degrading enzymes produced by Fusarium wilt of Arachis hypogaea.L

    Directory of Open Access Journals (Sweden)

    P Rajeswari

    2017-12-01

    Full Text Available Fusarium oxysporum, the soil borne pathogen causes vascular wilt, on majority of crop plants. It has been demonstrated that two different species of Trichoderma and Pseudomonas fluorescens suppress disease by different mechanisms. Therefore, application of a mixture of these biocontrol agents, and thus of several suppressive mechanisms, may represent a viable control strategy. A necessity for biocontrol by combinations of biocontrol agents can be the compatibility of the co-inoculated micro-organisms. Hence, compatibility between Trichoderma spp. and Pseudomonas fluorescens that have the ability to suppress Fusarium oxysporum in vitro on the activity of pectinolytic enzymes of Fusarium oxysporum. The activity of pectinolytic enzymes, i.e. pectin methyl esterase, endo and exo polymethylgalacturonases and exo and endo pectin trans eliminases produced by Fusarium oxysporum (Control was higher. Maximum inhibition of pectin methylesterase, exo and endo polymethylgalacturonase and exo and endopectin trans eliminase was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf (1+2%, followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf (1.5+2% and Trichoderma viride + Trichoderma harzianum (Tv+Th (1+1.5%. However, pathogenecity suppression of Fusarium oxysporum, a causative of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2% was significantly better as compared to the single bio-agent. This indicates that specific interactions between biocontrol agents influence suppression of pathogenicity factors directly by combinations of these compatible bio-agents.

  8. Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains.

    Science.gov (United States)

    Cheng, Peng; Liu, Bo; Su, Yi; Hu, Yao; Hong, Yahui; Yi, Xinxin; Chen, Lei; Su, Shengying; Chu, Jeffrey S C; Chen, Nansheng; Xiong, Xingyao

    2017-04-19

    Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases. We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies. This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass

  9. Use of Trichoderma fungi in spray solutions to reduce Moniliophthora roreri infection of Theobroma cacao fruits in Northeastern Costa Rica.

    Science.gov (United States)

    Seng, John; Herrera, Geovanny; Vaughan, Christopher S; McCoy, Michael B

    2014-09-01

    Cacao (Theobroma cacao) is an important cash crop in tropical climates such as that of Latin America. Over the past several decades, the infection of cultivated cacao by Moniliophthllora roreri, known commonly as "monilia", has significantly hindered cacao production in Latin America. Studies have proposed the use of Trichoderma sp. fungi in biocontrol treatments to prevent and reduce monilia infection, yet tests of Trichoderma-containing spray treatments on cacao agroforests have produced mixed results. Researchers and agricultural workers have suggested that addition of soil, fly ash, or other carbon sources to a Trichoderma spray may improve its efficacy in fighting monilia. To test these suggestions, we designed a series of spray mixtures including Thichoderma cultures, soil, and all necessary controls. We applied the spray mixtures to 80 cacao trees (20 trees for each of four resistant-selected clones to monilia) at the FINMAC organic cacao plantation in Pueblo Nuevo de Guacimo, Limón Province, in northeastern Costa Rica in March-April 2013. Five treatments were applied (control, water, water plus sterilized soil, water plus Trichoderma, and water plus sterilized soil plus Trichoderma). Each treatment was applied to four trees of each clone. We monitored the incidence of monilia infection under each spray treatment over the course of 35d. We found that spraying entire cacao trees two times with a mixture containing Trichoderma and sterilized soil significantly reduced the incidence of monilia infection by 11% (p ≤ 0.05) in only 35d, as compared to the control. This reduction in loss of cacao pods translates into an increase of plantation mean productivity of 1,500 kg dried beans/ha by 198 kg/ha up to 1,698 kg/ha or by a total increase over the whole 110 ha plantation by 21,780 kg. We propose that using such an antifungal spray over the whole course of a crop cycle (120 days) would decrease infection incidence even more. Application of this fungal control

  10. Kinetics of cellobiose hydrolysis using cellobiase composites from Trichoderma reesei and Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Grous, W.; Converse, A.; Grethlein, H.; Lynd, L.

    1985-01-01

    The enzymatic hydrolysis of cellulose to glucose involves the formation of cellobiose as an intermediate. It has been found necessary to add cellobiase from Aspergillus niger (NOVO) to the cellobiase component of Trichoderma reesei mutant Rut C-30 (Natick) cellulase enzymes in order to obtain after 48 h complete conversion of the cellobiose formed in the enzymatic hydrolysis of biomass. This study of the cellobiase activity of these two enzyme sources was undertaken as a first step in the formation of a kinetic model for cellulose hydrolysis that can be used in process design. In order to cover the full range of cellobiose concentrations, it was necessary to develop separate kinetic parameters for high- and low-concentration ranges of cellobiose for the enzymes from each organism. Competitive glucose inhibition was observed with the enzymes from both organisms. Substrate inhibition was observed only with the A. niger enzymes.

  11. Bioactive steroids and sorbicillinoids isolated from the endophytic fungus Trichoderma sp. Xy24.

    Science.gov (United States)

    Zhao, Jin-Lian; Zhang, Min; Liu, Ji-Mei; Tan, Zhen; Chen, Ri-Dao; Xie, Ke-Bo; Dai, Jun-Gui

    2017-10-01

    A new steroid glucoside (1), along with nine known steroids (2-10) and four known sorbicillinoids (11-14), were isolated from the endophytic fungus Trichoderma sp. Xy24. Their structures were elucidated on the basis of spectroscopic data analyses and by comparison with reported data. Compounds 3, 5-7, 9, 10, and 13 exhibited significant inhibitory effects on HIV-1 virus with IC 50 values ranging 1.9-9.3 μM; compounds 10, 13, and 14 showed potent inhibitory activity on LPS-induced NO production in BV2 microglia cells with inhibitory rates of 108.2, 100, and 75.1% at 10 μM, respectively. In addition, compound 10 displayed moderate cytotoxicity against BCG823 and HePG2 cell lines with IC 50 values of 11.1 and 17.7 μM, respectively.

  12. Biological control of white mold by Trichoderma harzianum in common bean under field conditions

    Directory of Open Access Journals (Sweden)

    Daniel Diego Costa Carvalho

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate Trichoderma harzianum isolates for biological control of white mold in common bean (Phaseolus vulgaris. Five isolates were evaluated for biocontrol of white mold in 'Perola' common bean under field conditions, in the 2009 and 2010 crop seasons. A commercial isolate (1306 and a control treatment were included. Foliar applications at 2x109 conidia mL-1 were performed at 42 and 52 days after sowing (DAS, in 2009, and at 52 DAS in 2010. The CEN287, CEN316, and 1306 isolates decreased the number of Sclerotinia sclerotiorum apothecia per square meter in comparison to the control, in both crop seasons. CEN287, CEN316, and 1306 decreased white mold severity during the experimental period, when compared to the control.

  13. Solid state fermentation of Trichoderma viride for enhancement phenolic content, antioxidant and antimicrobial activities in ginger.

    Science.gov (United States)

    Saleh, Rashad M; Kabli, Saleh A; Al-Garni, Saleh M; Al-Ghamdi, Maryam A; Abdel-Aty, Azza M; Mohamed, Saleh A

    2018-05-04

    The phenolic content of methanolic and water extracts of ginger fermented by Trichoderma spp. during solid state fermentation (SSF) was detected as compared with unfermented ginger. The total phenolic content of fermented ginger increased several times. The highest phenolic content of ginger was detected after SSF by T. viride. The optimal physiological conditions for the maximum production of the phenolic content and β-glucosidase activity of fermented ginger by T. viride were detected at day 7 incubation, pH 6.0, 30°C and 30% moisture. There are consistent between the maximum production of β-glucosidase and phenolic content. The SSF of ginger by T. viride greatly enhanced the antioxidant potency of phenolic compounds by using DPPH and ABTS assays. Potent antibacterial activity was appeared by phenolic compounds of fermented ginger against all the tested human-pathogenic bacteria. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30.

    Science.gov (United States)

    Callow, Nicholas V; Ray, Christopher S; Kelbly, Matthew A; Ju, Lu-Kwang

    2016-01-01

    This work describes the use of nutrient limitations with Trichoderma reesei Rut C-30 to obtain a prolonged stationary phase cellulase production. This period of non-growth may allow for dependable cellulase production, extended fermentation periods, and the possibility to use pellet morphology for easy product separation. Phosphorus limitation was successful in halting growth and had a corresponding specific cellulase production of 5±2 FPU/g-h. Combined with the addition of Triton X-100 for fungal pellet formation and low shear conditions, a stationary phase cellulase production period in excess of 300 h was achieved, with a constant enzyme production rate of 7±1 FPU/g-h. While nitrogen limitation was also effective as a growth limiter, it, however, also prevented cellulase production. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Genetic relatedness of Trichoderma isolates antagonistic against Fusarium oxysporum f.sp. dianthi inflicting carnation wilt.

    Science.gov (United States)

    Shanmugam, V; Sharma, Vivek; Ananthapadmanaban

    2008-01-01

    Twenty-eight isolates of Trichoderma belonging to four different species were screened in vitro for their antagonistic ability against Fusarium oxysporum f.sp. dianthi causing carnation wilt. Three different levels of antagonism observed in dual plate assay were further confirmed by cell-free culture filtrate experiments. Isolates showing class I level of antagonism produced maximum lytic enzymes, chitinases and beta-1,3-glucanases. Genetic variability of 25 selected isolates was assessed by random amplified polymorphic DNA technique and the amplified products were correlated for their level of antagonism. Unweighed pair-group method with arithmetical averages cluster analysis revealed prominent inter-and intraspecific genetic variation among the isolates. Based on their genetic relationship, the isolates were mainly distributed into 3 major groups representing T. atroviride, T. pseudokoningii and T. harzianum, with 20-35% interspecific dissimilarity. However, the polymorphism shown by the isolates did not correlate to their level of antagonism.

  16. Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity

    Science.gov (United States)

    Guilger, Mariana; Pasquoto-Stigliani, Tatiane; Bilesky-Jose, Natália; Grillo, Renato; Abhilash, P. C.; Fraceto, Leonardo Fernandes; Lima, Renata De

    2017-03-01

    White mold is an agricultural disease caused by the fungus Sclerotinia sclerotiorum, which affects important crops. There are different ways of controlling this organism, but none provides inhibition of its resistance structures (sclerotia). Nanotechnology offers promising applications in agricultural area. Here, silver nanoparticles were biogenically synthesized using the fungus Trichoderma harzianum and characterized. Cytotoxicity and genotoxicity were evaluated, and the nanoparticles were initially tested against white mold sclerotia. Their effects on soybean were also investigated with no effects observed. The nanoparticles showed potential against S. sclerotiorum, inhibiting sclerotia germination and mycelial growth. Nanoparticle characterization data indicated spherical morphology, satisfactory polydispersity and size distribution. Cytotoxicity and genotoxicity assays showed that the nanoparticles caused both the effects, although, the most toxic concentrations were above those applied for white mold control. Given the potential of the nanoparticles against S. sclerotiorum, we conclude that this study presents a first step for a new alternative in white mold control.

  17. Biocontrol of Rhizoctonia solani and Pythium ultimum on Capsicum by Trichoderma koningii in potting medium.

    Science.gov (United States)

    Harris, A R

    1999-09-01

    Two isolates of Trichoderma koningii were evaluated for efficacy in control of damping-off diseases in seedlings of Capsicum annuum grown in pasteurized potting medium in a glasshouse. A selected isolate of binucleate Rhizoctonia and two fungicides were also included as standards for control of Rhizoctonia solani and Pythium ultimum var. sporangiiferum. Both isolates of T. koningii reduced seedling death caused by R. solani in one of two experiments, and by P. u. sporangii-ferum in two of three experiments. Neither isolate of T. koningii suppressed damping-off caused by either pathogen as consistently as the binucleate Rhizoctonia or fungicides. The implications of these results for commercial disease management are discussed.

  18. [Microfungicid--a preparation based on trichoderma viride for plant diseases control].

    Science.gov (United States)

    Kolombet, L V; Zhigletsova, S K; Derbyshev, V V; Ezhov, D V; Kosareva, N I; Bystrova, E V

    2001-01-01

    A technology was designed for manufacturing a preparation based on Trichoderma viride Pers ex S.F. Gray that strongly suppresses the development of causative agents of certain plant diseases and displays a growth-stimulating activity. Cultivation of the strain in a liquid medium for 18-24 h produced up to 60 g dry biomass per liter nutrient medium. A marketable form created in this work conserves the activity of the mycelial preparation for six months. The preparation is compatible with insecticides (carbofos, vismetrin, talstar, and applaud) and certain fungicides (such as baitan). Tests performed with the liquid form of Mycofungicid (seeds were treated with this preparation at a dose of 20-30 g per metric ton before sowing) showed its high efficiency in protecting cereal crops from plant pathogens. The incidence of plant diseases decreased by 65%, and crop yields increased by 15-20%.

  19. Mechanisms of coal solubilization by the deuteromycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Hoelker, U.; Ludwig, S.; Scheel, T.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst. und Botanischer Garten

    1999-07-01

    Three different mechanisms can be envisaged that are used by fungi to solubilize coal: the production of alkaline substances, the extrusion of chelators and, of special interest in the scope of biotechnology, the action of enzymes. Whether these mechanisms are operating separately or in various combinations has not yet been finally assessed. The two deuteromycetes Fusarium oxysporum and Trichoderma atroviride solubilize coal by synergistic effects of various different mechanisms depending on the cell metabolism. F. oxysporum seems to solubilize coal by increasing the pH of the mycelial surroundings and by the action of chelators induced during growth in glutamate-containing media (without involvement of enzymes). T. atroviride, on the other hand, appears to use, in addition to an alkaline pH and a high chelator activity, at least two classes of enzyme activity to attack coal: hydrolytic activity for coal solubilization and ligninolytic activity for degradation of humic acids. (orig.)

  20. ETHANOL PRECIPITATION OF GLYCOSYL HYDROLASES PRODUCED BY Trichoderma harzianum P49P11

    Directory of Open Access Journals (Sweden)

    M. A. Mariño

    2015-06-01

    Full Text Available AbstractThis study aimed to concentrate glycosyl hydrolases produced by Trichoderma harzianum P49P11 by ethanol precipitation. The variables tested besides ethanol concentration were temperature and pH. The precipitation with 90% (v/v ethanol at pH 5.0 recovered more than 98% of the xylanase activity, regard less of the temperature (5.0, 15.0, or 25.0 °C. The maximum recovery of cellulase activity as FPase was 77% by precipitation carried out at this same pH and ethanol concentration but at 5.0 °C. Therefore, ethanol precipitation can be considered to be an efficient technique for xylanase concentration and, to a certain extent, also for the cellulase complex.

  1. Cloning, annotation and expression analysis of mycoparasitism-related genes in Trichoderma harzianum 88.

    Science.gov (United States)

    Yao, Lin; Yang, Qian; Song, Jinzhu; Tan, Chong; Guo, Changhong; Wang, Li; Qu, Lianhai; Wang, Yun

    2013-04-01

    Trichoderma harzianum 88, a filamentous soil fungus, is an effective biocontrol agent against several plant pathogens. High-throughput sequencing was used here to study the mycoparasitism mechanisms of T. harzianum 88. Plate confrontation tests of T. harzianum 88 against plant pathogens were conducted, and a cDNA library was constructed from T. harzianum 88 mycelia in the presence of plant pathogen cell walls. Randomly selected transcripts from the cDNA library were compared with eukaryotic plant and fungal genomes. Of the 1,386 transcripts sequenced, the most abundant Gene Ontology (GO) classification group was "physiological process". Differential expression of 19 genes was confirmed by real-time RT-PCR at different mycoparasitism stages against plant pathogens. Gene expression analysis revealed the transcription of various genes involved in mycoparasitism of T. harzianum 88. Our study provides helpful insights into the mechanisms of T. harzianum 88-plant pathogen interactions.

  2. Combined enzymatic hydrolysis and fermentation of aspenwood using enzymes derived from Trichoderma harzianum E58

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    Energy, Mines and Resources Canada supported a project with Forintek Canada Corp. directed toward the conversion of aspenwood to ethanol. This conversion is carried out through three sequential steps, steam explosion/extraction, hydrolysis and fermentation. This investigation involved study of the factors which governed the rate and extent of cellulose hydrolysis. The physical and chemical state of the material to be hydrolysed, enzyme concentation and adsorption onto residue, end-product characterization and inhibition, recycling of enzymes and cellulose, and growth media for the fungus were among the variables examined. The research demonstrated the interdependency between pretreatment, cellulose hydrolysis, hemicellulose fermentation and enzyme production. It was also determined that because of the amount of cellulose required for enzyme production and the difficulties encountered in recovering/recycling the celluloses, further work is required in order to commercialize an enzymatic hydrolysis process based on Trichoderma harzianum E58.

  3. Cellulose hydrolysis by fungi. 2. Cellulase production by Trichoderma harzianum in liquid medium fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roussos, S.; Raimbault, M. (Laboratoire de Microbiologie ORSTOM, Centre de Recherche IRCHA, 91 - Vert-le-Petit (France))

    Microcrystalline cellulose (cellulose Avicel, Merck) supported growth of Trichoderma harzianum and induced production of cellulases in liquid cultures. After 50 h growth, the total cellulasic activities present in both the supernatant and the mycelium were 3,000 IU/l of carboxymethyl cellulose, 400 IU/l of filter paper activity, and 4 IU/l of cotton activity corresponding to 1.7 g/l of proteins. Cellulase production could be increased by a preliminary treatment of cellulose, and pH regulation during growth. The influence of inoculum concentration was studied and an optimum of 3 X 10/sup 7/ conidia/g dry weight of substrate was demonstrated. Using a synthetic culture medium, a soluble factor of germination was demonstrated which could be leached out by 3 successive washings of conidia.

  4. Transcriptome profile of Trichoderma harzianum IOC-3844 induced by sugarcane bagasse.

    Science.gov (United States)

    Horta, Maria Augusta Crivelente; Vicentini, Renato; Delabona, Priscila da Silva; Laborda, Prianda; Crucello, Aline; Freitas, Sindélia; Kuroshu, Reginaldo Massanobu; Polikarpov, Igor; Pradella, José Geraldo da Cruz; Souza, Anete Pereira

    2014-01-01

    Profiling the transcriptome that underlies biomass degradation by the fungus Trichoderma harzianum allows the identification of gene sequences with potential application in enzymatic hydrolysis processing. In the present study, the transcriptome of T. harzianum IOC-3844 was analyzed using RNA-seq technology. The sequencing generated 14.7 Gbp for downstream analyses. De novo assembly resulted in 32,396 contigs, which were submitted for identification and classified according to their identities. This analysis allowed us to define a principal set of T. harzianum genes that are involved in the degradation of cellulose and hemicellulose and the accessory genes that are involved in the depolymerization of biomass. An additional analysis of expression levels identified a set of carbohydrate-active enzymes that are upregulated under different conditions. The present study provides valuable information for future studies on biomass degradation and contributes to a better understanding of the role of the genes that are involved in this process.

  5. Is an organic nitrogen source needed for cellulase production by Trichoderma reesei Rut-C30?

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Hobley, Timothy John

    2013-01-01

    The effect of organic and inorganic nitrogen sources on Trichoderma reesei Rut-C30 cellulase production was investigated in submerged cultivations. Stirred tank bioreactors and shake flasks, with and without pH control, respectively, were employed. The experimental design involved the addition...... of individual organic nitrogen sources (soy peptone, glutamate, glycine and alanine) within a basal medium containing Avicel (i.e. micro crystalline cellulose) and ammonium sulphate. It was found that in the shake flask experiments, the highest cellulase activities (~0.1 ± 0.02 FPU ml−1) were obtained...... with media containing soy peptone (3–6 g l−1) and glutamate (3.6 g l−1). However, these improvements in the cellulase titers in the presence of the organic nitrogen sources appeared to be related to smaller changes in the pH of the medium. This was confirmed using stirred tank bioreactors with pH control...

  6. Bioconversion potential of Trichoderma viride HN1 cellulase for a lignocellulosic biomass Saccharum spontaneum.

    Science.gov (United States)

    Iqtedar, Mehwish; Nadeem, Mohammad; Naeem, Hira; Abdullah, Roheena; Naz, Shagufta; Qurat ul Ain Syed; Kaleem, Afshan

    2015-01-01

    The industrialisation of lignocellulose conversion is impeded by expensive cellulase enzymes required for saccharification in bioethanol production. Current research undertakes cellulase production from pretreated Saccharum spontaneum through Trichoderma viride HN1 under submerged fermentation conditions. Pretreatment of substrate with 2% NaOH resulted in 88% delignification. Maximum cellulase production (2603 ± 16.39 U/mL/min carboxymethyl cellulase and 1393 ± 25.55 U/mL/min FPase) was achieved at 6% substrate at pH 5.0, with 5% inoculum, incubated at 35°C for 120 h of fermentation period. Addition of surfactant, Tween 80 and metal ion Mn(+2), significantly enhanced cellulase yield. This study accounts proficient cellulase yield through process optimisation by exploiting cheaper substrate to escalate their commercial endeavour.

  7. A New Biocontrol Fungus Trichoderma Kongii in the Kingdom of Saudi Arabia Isolation and Identification

    International Nuclear Information System (INIS)

    AlYahya, F.A; ElHussieni, S.M; Ibrahim, A.A; Ibrahim, Y.E

    2007-01-01

    A total of 164 soil and root samples of different plant groups were collected from Abu-Arish governorate , Jazan province South West Saudi Arabia during the period of 2004-2005. Each sample contained feeder roots and approximately 250 g soil, taken from a depth of 20 cm of the soil surface. Samples were analyzed by two different media. Culture fungi on Malt Extract Agar identified by Biolog Systems and culture fungi on Potato Dextrose Agar medium containing chloramphenicol were identified by microscopic characterization. Results showed that, 11 different types of fungi isolated from tested samples, Fusarium spp (40%), Rhizoctonia solani,(12%) Trichoderma spp (12%), Macrophomina phaseoina. (7 %), Aspergillus spp (18 %) were the predominant fungal species. Helminthosporium spp (3%), Alternaria alternate (2%), Pythium spp (2%), Curviularia spp (2%), Cladsporium spp. (1%) and Mucor spp. (1%) were less frequent. (author)

  8. Exploring Trichoderma and Aspergillus secretomes: Proteomics approaches for the identification of enzymes of biotechnological interest.

    Science.gov (United States)

    Cologna, Nicholas de Mojana di; Gómez-Mendoza, Diana Paola; Zanoelo, Fabiana Fonseca; Giannesi, Giovana Cristina; Guimarães, Nelciele Cavalieri de Alencar; Moreira, Leonora Rios de Souza; Filho, Edivaldo Ximenes Ferreira; Ricart, Carlos André Ornelas

    2018-02-01

    Filamentous fungal secretomes comprise highly dynamic sets of proteins, including multiple carbohydrate active enzymes (CAZymes) which are able to hydrolyze plant biomass polysaccharides into products of biotechnological interest such as fermentable sugars. In recent years, proteomics has been used to identify and quantify enzymatic and non-enzymatic polypeptides present in secretomes of several fungi species. The resulting data have widened the scientific understanding of the way filamentous fungi perform biomass degradation and offered novel perspectives for biotechnological applications. The present review discusses proteomics approaches that have been applied to the study of fungal secretomes, focusing on two of the most studied filamentous fungi genera: Trichoderma and Aspergillus. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cellulase production by two mutant strain of Trichoderma longibranchiatum QM 9414 and Rut C30

    International Nuclear Information System (INIS)

    Blanco, M. J.

    1991-01-01

    Native or pretreated biomass from Onopordum nervosum Boiss, has been examined as candidate feedstock for cellulase production by two mutant strain of Trichoderma Ionqibrachiatum QM9414 and Rut C30. Batch cultivation methods were evaluated and compared with previous experiments using ball-milled, crystalline cellulose (Solka floc). Batch cultivation of T. Ionqibrachiatum Rut C30 on 5% (w/v) acid pretreated O. nervosum biomass yielded enzyme productivities and activities comparable to those obtained on Solka floc. However, the overall enzyme production performance was lower than on Solka floc at comparable cellulose concentrations. This fact may be due to the accumulation of pretreated by products and lignin in the ferment. (Author) 40 refs

  10. Xylanase Production from Trichoderma harzianum 1073 D3 with Alternative Carbon and Nitrogen Sources

    Directory of Open Access Journals (Sweden)

    Isil Seyis

    2005-01-01

    Full Text Available The effect of some natural wastes (orange pomace, orange peel, lemon pomace, lemon peel, apple pomace, pear peel, banana peel, melon peel and hazelnut shell on the production of xylanase from Trichoderma harzianum 1073 D3 has been studied and maximum activity has been observed on melon peel (26.5 U/mg of protein followed by apple pomace and hazelnut shell. Also, molasses could be used as an additional carbon source as it decreased the production time approximately by 50 %. Finally, potential alternatives of organic nitrogen source (cotton leaf and soybean residue wastes were analyzed and it was concluded that peptone could be replaced with these residues especially when economics of the process is the major objective.

  11. Laser mutagenesis and producing cellulase condition optimization of Trichoderma virid protoplast

    International Nuclear Information System (INIS)

    Chen Shuli; Zhang Qin; Han Jingjing; Lv Jiangtao; Wang Shilong; Yao Side

    2009-01-01

    The protoplast of Trichoderma virid CICC13038 was mutated using Nd:YAG laser of 266 nm light. And a high-cellulase producing strain JG13 was bred by screening with cellulose microcrystalline. Under the condition of 28 degree C, 180 rpm and 72 h of fermentation time, optimal conditions for the celluase ferment by orthogonal experiment were: 2% bran as the carbon source, 1% (NH 4 ) 2 SO 4 as the nitrogen source, 0.5% Tween-80 as a enzyme-promoting agent,and 25 mL of medium volume in a 250 mL bottle. The cellulase activity of the mutant reached 35.68 U/mL, 25.76% higher than that of the original strain under the same conditions. The mutant JG13 has a great potential in industrial production. And it also can be used as the original strain for further mutagenesis to get the strain of higher cellulase activity. (authors)

  12. Immobilization of trichoderma REESEI (QM 9414) cells with paper covered with ionic copolymer by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin

    1992-01-01

    Cationic-hydrophobic copolymer and anionic-hydrophobic copolymer was covered onto surface of paper by radiation polymerization. The paper covered with ionic copolymer was used as carrier of immobilizing Trichoderma reesei cells. Results showed that the cells were immobilized firmly on the carriers and not dislocated from the carriers by shaking. All of FPA of the cells immobilized with the carriers covered with cationic copolymer were higher than that of un-immobilized free cells. The carriers covered with anionic copolymer showed good effect on immobilization of the cells. The weight of immobilized cells increase as increasing the component of DEAEMA in poly (DEAEMA-ATMPT) or decreasing the component of AA in poly (AA-ATMPT). It also increase with the increase of water absorption in poly (DEAEMA-ATMPT) or decrease of water absorption in poly (AA-ATMPT). It shows the static interaction play an important role in the immobilization of cells with ionic copolymer materials

  13. Dose-dependency of radiation on enzyme production in Trichoderma reesei

    International Nuclear Information System (INIS)

    Kumakura, Minoru

    1993-01-01

    Effect of irradiation dose on the production of cellulase and amylase related enzymes in Trichoderma reesei was studied in which post-irradiation time response pattern was measured. The damage of the cells irradiated with certain irradiation doses (1.40±0.20x10 5 , 2.20±0.10x10 5 , 3.00±0.50x10 5 and 3.50±0.20x10 5 rad) was rapidly recovered. The increased enzyme production in the culture of the irradiated cells resulted from the recovery of radiation damage after irradiation. The function of cell growth was not affected by irradiation below dose of 5x10 5 rad, though the function of enzyme synthesis was drastically affected. (orig.)

  14. Biocontrol potential of Trichoderma harzianum in controlling wilt disease of pistachio caused by Verticillium dahliae

    Directory of Open Access Journals (Sweden)

    Fotoohiyan Zeinab

    2017-06-01

    Full Text Available Verticillium wilt caused by Verticillium dahliae, is one of the most devastating diseases in pistachio orchards in the world including Iran. In search for an effective non-chemical strategy for the management of this disease, we evaluated the biocontrol potential of Trichoderma harzianum isolates obtained from the rhizosphere of healthy pistachio trees in different locations of the Kerman province of Iran against V. dahliae under laboratory and greenhouse conditions. Dual culture tests in the laboratory were conducted in a completely randomized design using 72 T. harzianum isolates. Twenty isolates showed the highest in vitro antagonistic activity. The results indicated that all 20 isolates were capable of inhibiting the mycelial growth of V. dahliae significantly. Among them, isolates Tr8 and Tr19 were the most effective by 88.89% and 85.12% inhibition, respectively. Extracted cell free metabolites of all effective isolates also inhibited the growth of V. dahliae in the culture medium significantly. According to the results, isolates Tr4 and Tr6 inhibited fungal pathogen growth by 94.94% and 88.15% respectively, through production of non-volatile metabolites. In the evaluation of volatile metabolites, isolates Tr5 and Tr4 were the most effective by 26.27% and 24.49% growth inhibition, respectively. Based on the results of the in vitro experiments, the five most effective isolates were selected for evaluation under greenhouse conditions for their biocontrol potential in controlling Verticillium wilt of pistachio. Results of the greenhouse, (in vivo experiments were positive and indicated that the occurrence of wilt disease in plants treated with the antagonists alone or in combination with pathogenic fungus was lower than in plants inoculated with pathogen alone. The overall results of this study suggest that Trichoderma fungal antagonist may be an effective biocontrol agent for the control of Verticillium wilt of pistachio.

  15. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Verena; Song, Lifu; Lindquist, Erika; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Martinez, Pedro; Sun, Jibin; Grigoriev, Igor V.; Herrera-Estrella, Alfredo; Baker, Scott E.; Kubicek, Christian P.

    2009-11-30

    Background: Fungi of the genus Trichoderma are effective mycoparasites an for this reason used as biocontrol agents agents plant pathogenic fungi. The ability to recognize, combat and finally besiege and kill the prey are essential skills for this process. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. This study aims at uncovering transcriptional responses occurring in the mycoparasite Trichoderma atroviride when being confronted with a potential prey. Results: T. atroviride was confronted with two fungal preys, Botrytis cinerea and Rhizoctonia solani, and cDNAs prepared from mycelia immediately before getting into physical contact with them (“onset of mycoparasitism”), and compared with such prepared from mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes each, were obtained from each of these three conditions. 65 genes, represented by 439 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof verified by expression analysis. They comprised 18 KOG groups, but were most abundant from those including posttranslational processing (159 from 183 ESTs), and amino acid metabolism (70 of 84 ESTs), respectively. Several heat shock factors and tRNA synthases were particularly abundant. Metabolic network analysis confirmed the upregulation of the amino acid biosynthesic and the lipid catabolic capacity. Conclusion: Analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions including strong stress response, sensing of nitrogen shortage and lipid catabolism. The data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for breeding of biocontrol strains by recombinant techniques.

  16. Antagonismo de Trichoderma SPP. E Bacillus subtilis (UFV3918 a Fusarium sambucinum em Pinus elliottii engelm

    Directory of Open Access Journals (Sweden)

    Caciara Gonzatto Maciel

    2014-06-01

    Full Text Available Pinus elliottii é uma espécie de importância no setor florestal e apresenta vulnerabilidade na qualidade sanitária de suas sementes, especialmente pela associação de Fusarium spp., responsável por perdas de plântulas no viveiro. Este trabalho teve como objetivo avaliar a ação antagonista in vitro e in vivo dos agentes Trichoderma spp. e Bacillus subtilis (UFV3918 no controle de Fusarium sambucinum, responsável por danos em plântulas de Pinus elliottii. O controle in vitro foi avaliado através da inibição do crescimento micelial (confronto pareado de culturas, após a incubação a 25±2 ºC e fotoperíodo de 12 h. Para os testes in vivo (desenvolvidos em condições de viveiro, as sementes inicialmente foram inoculadas com o patógeno e, na sequência, microbiolizadas com os agentes antagônicos, para posterior semeadura. Utilizaram-se as técnicas de contato com o biocontrolador em meio BDA por 48 h e peliculização, como formas de microbiolização. Tanto Trichoderma spp. quanto Bacillus subtilis (UFV3918 foram eficientes no controle in vitro de F. sambucinum, e no teste de biocontrole in vivo o produto Bacillus subtilis (UFV3918 destacou-se, reduzindo as perdas de plântulas causadas pelo patógeno, assim como potencializando as variáveis de comprimento de plântula, massa verde e massa seca.

  17. Evaluation of Trichoderma spp. strains for control yellowing pea caused by Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Christian Eraso Insuasty

    2014-07-01

    Full Text Available The yellowing of pea caused by the fungus Fusarium oxysporum f. sp. pisi is considered the most damaging disease of this crop. This study took place at the plant health laboratory and greenhouse of the Universidad de Nariño, and the experimental stage was conducted at the Granja experimental Botana. Its purpose was to evaluate the antagonistic ability of the fungi Trichoderma spp. to F. oxysporum. Isolation of F. oxysporum was made from diseased tissue; Trichoderma strains were obtained from the rhizosphere of healthy plants (collected in the towns of Potosi, Córdoba, Gualmatán, Ipiales and Puerres in the state of Nariño, Colombia, and a commercial strain from laboratory Perkins Ltda. In laboratory, unrestrictedly randomized design with 21 treatments (strains was used. Mycelial growth and inhibition zone were evaluated in dual plantings, which served as selection criteria for greenhouse test where plant height, root length, root dry matter and percentage of incidence were evaluated. In the field, a randomized block design was used to evaluate yield components, plant height and root length with the best strains. In the laboratory, C2 (Córdoba 2, C7 (Gualmatán 3, C14 (Puerres 2, C20 (Potosi 4 and C21 (Perkins Lab. showed antagonistic activity in the greenhouse, C7, C14 and C21 were the best; in field, significant differences between C14 and C21, compared to C7 and the control, were obtained. Strains C14 and C21 have consistent antagonistic capacity and can be used to control F. oxysporum in pea.

  18. Properties of uracil transport by the submerged mycelium of Trichoderma viride

    International Nuclear Information System (INIS)

    Lakatos, B.; Betina, V.; Simkovic, M.; Varecka, L.

    1998-01-01

    The aim of the study is to describe the transport of uracil by the submerged mycelium of important mycoparasitic fungus Trichoderma viride. transport of radioactively labelled uracil into the submerged mycelium of Trichoderma viride was measured by means of membrane filtration technique. The high-affinity transport was temperature depend with the optimum temperature at 35 grad C. From the Arrhenius plot of the temperature dependence its activation energy could be calculated (54 kJ/mol uracil). The measurement of pH dependence showed the optimum pH at pH 6.5. High-affinity transport was inhibited with 5-fluorouracil. 5-Br-uracil, adenine, xanthine, cytosine, 5-Br-cytosine, adenosine, uridine but not with CMP, thymidine. 14 C-5-fluorouracil was taken up by T. viride mycelium in a similar way but the influx was less by about 20%. Inhibitors of RNA synthesis, rifamycin and rifampicin 9(up to 10 μg/ml) did not inhibit the uracil uptake even after 2 h preincubation wit mycelium. The results suggest that the uptake of uracil is mediated by a carrier. The uptake at sub-millimolar uracil concentrations is almost exclusively driven by the electrochemical potential of protons. The inhibitory effects of other substances presumably taken up by the mycelium may be explained by the competition for the driving force rather than for the binding site of the transporter molecule. In presence of millimolar concentrations of uracil, its osmotic gradient could itself represent the driving force for the transport. (authors)

  19. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey.

    Science.gov (United States)

    Seidl, Verena; Song, Lifu; Lindquist, Erika; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Martínez, Pedro; Sun, Jibin; Grigoriev, Igor; Herrera-Estrella, Alfredo; Baker, Scott E; Kubicek, Christian P

    2009-11-30

    Combating the action of plant pathogenic microorganisms by mycoparasitic fungi has been announced as an attractive biological alternative to the use of chemical fungicides since two decades. The fungal genus Trichoderma includes a high number of taxa which are able to recognize, combat and finally besiege and kill their prey. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. We analyzed genome-wide gene expression changes during the begin of physical contact between Trichoderma atroviride and two plant pathogens Botrytis cinerea and Rhizoctonia solani, and compared with gene expression patterns of mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes, were obtained from each of these three growth conditions. 66 genes, represented by 442 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof was verified by expression analysis. The upregulated genes comprised 18 KOG groups, but were most abundant from the groups representing posttranslational processing, and amino acid metabolism, and included components of the stress response, reaction to nitrogen shortage, signal transduction and lipid catabolism. Metabolic network analysis confirmed the upregulation of the genes for amino acid biosynthesis and of those involved in the catabolism of lipids and aminosugars. The analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions. These data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for improvement of biocontrol strains by recombinant techniques.

  20. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Verena; Song, Lifu; Lindquist, Erika; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Martinez, Pedro; Sun, Jibin; Grigoriev, Igor; Herrera-Estrella, Alfredo; Baker, Scott E; Kubicek, Christian P.

    2010-07-23

    BACKGROUND: Combating the action of plant pathogenic microorganisms by mycoparasitic fungi has been announced as an attractive biological alternative to the use of chemical fungicides since two decades. The fungal genus Trichoderma includes a high number of taxa which are able to recognize, combat and finally besiege and kill their prey. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. RESULTS: We analyzed genome-wide gene expression changes during the begin of physical contact between Trichoderma atroviride and two plant pathogens Botrytis cinerea and Rhizoctonia solani, and compared with gene expression patterns of mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes, were obtained from each of these three growth conditions. 66 genes, represented by 442 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof was verified by expression analysis. The upregulated genes comprised 18 KOG groups, but were most abundant from the groups representing posttranslational processing, and amino acid metabolism, and included components of the stress response, reaction to nitrogen shortage, signal transduction and lipid catabolism. Metabolic network analysis confirmed the upregulation of the genes for amino acid biosynthesis and of those involved in the catabolism of lipids and aminosugars. CONCLUSION: The analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions. These data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for improvement of biocontrol strains by recombinant techniques.