WorldWideScience

Sample records for hypervelocity impact tests

  1. DebriSat Hypervelocity Impact Test

    Science.gov (United States)

    2015-08-01

    data would include fragment size, area-to-mass ratio, density, shape, material composition, optical properties, and radar cross-section...of a multi-shock shield (Fig. 2) which consisted of five separate bumpers. Four bumpers were fiberglass construction and one was steel mesh. Two...only the four fiberglass bumpers for an inflatable module project several years prior to the Debrisat Program. The previous test used a 1.4-cm-diam

  2. Hypervelocity Impact Test Facility: A gun for hire

    Science.gov (United States)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    1994-01-01

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  3. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    Science.gov (United States)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  4. FTIR Analyses of Hypervelocity Impact Deposits: DebriSat Tests

    Science.gov (United States)

    2015-03-27

    reststrahlen bands). • Diffuse reflectance ( biconical , hemispherical) spectra are also particle size dependent. • There is not a unique spectral signature...Qualitative Biconical Reflectance Unexposed stainless steel and uncoated underside of Whipple plate are featureless. Post test coating has two absorption...solar cell, Z-93 thermal control paint, aluminum. – Laboratory biconical and hemispherical reflectance: pre and post test. • SEM stub witness

  5. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Goel, A., E-mail: ashish09@stanford.edu; Tarantino, P. M.; Lauben, D. S.; Close, S. [Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305 (United States)

    2015-04-15

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  6. Hypervelocity impacts into graphite

    Science.gov (United States)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  7. Hypervelocity impact shield

    Science.gov (United States)

    Cour-Palais, Burton G. (Inventor); Crews, Jeanne Lee (Inventor)

    1991-01-01

    A hypervelocity impact shield and method for protecting a wall structure, such as a spacecraft wall, from impact with particles of debris having densities of about 2.7 g/cu cm and impact velocities up to 16 km/s are disclosed. The shield comprises a stack of ultra thin sheets of impactor disrupting material supported and arranged by support means in spaced relationship to one another and mounted to cover the wall in a position for intercepting the particles. The sheets are of a number and spacing such that the impacting particle and the resulting particulates of the impacting particle and sheet material are successively impact-shocked to a thermal state of total melt and/or vaporization to a degree as precludes perforation of the wall. The ratio of individual sheet thickness to the theoretical diameter of particles of debris which may be of spherical form is in the range of 0.03 to 0.05. The spacing between adjacent sheets is such that the debris cloud plume of liquid and vapor resulting from an impacting particle penetrating a sheet does not puncture the next adjacent sheet prior to the arrival thereat of fragment particulates of sheet material and the debris particle produced by a previous impact.

  8. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding

    Science.gov (United States)

    Ryan, Shannon; Christiansen, Eric L.

    2013-02-01

    A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.

  9. Hypervelocity impact technology and applications: 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, William Dodd; Chhabildas, Lalit C. (Air Force Research Laboratory, AFRL/RWMW, Eglin AFB, FL)

    2008-07-01

    The Hypervelocity Impact Society is devoted to the advancement of the science and technology of hypervelocity impact and related technical areas required to facilitate and understand hypervelocity impact phenomena. Topics of interest include experimental methods, theoretical techniques, analytical studies, phenomenological studies, dynamic material response as related to material properties (e.g., equation of state), penetration mechanics, and dynamic failure of materials, planetary physics and other related phenomena. The objectives of the Society are to foster the development and exchange of technical information in the discipline of hypervelocity impact phenomena, promote technical excellence, encourage peer review publications, and hold technical symposia on a regular basis. It was sometime in 1985, partly in response to the Strategic Defense Initiative (SDI), that a small group of visionaries decided that a conference or symposium on hypervelocity science would be useful and began the necessary planning. A major objective of the first Symposium was to bring the scientists and researchers up to date by reviewing the essential developments of hypervelocity science and technology between 1955 and 1985. This Symposia--HVIS 2007 is the tenth Symposium since that beginning. The papers presented at all the HVIS are peer reviewed and published as a special volume of the archival journal International Journal of Impact Engineering. HVIS 2007 followed the same high standards and its proceedings will add to this body of work.

  10. Hypervelocity Impact Testing of International Space Station Meteoroid/Orbital Debris Shielding Using an Inhibited Shaped Charge Launcher

    Science.gov (United States)

    Kerr, Justin H.; Grosch, Donald

    2001-01-01

    Engineers at the NASA Johnson Space Center have conducted hypervelocity impact (HVI) performance evaluations of spacecraft meteoroid and orbital debris (M/OD) shields at velocities in excess of 7 km/s. The inhibited shaped charge launcher (ISCL), developed by the Southwest Research Institute, launches hollow, circular, cylindrical jet tips to approximately 11 km/s. Since traditional M/OD shield ballistic limit performance is defined as the diameter of sphere required to just perforate or spall a spacecraft pressure wall, engineers must decide how to compare ISCL derived data with those of the spherical impactor data set. Knowing the mass of the ISCL impactor, an equivalent sphere diameter may be calculated. This approach is conservative since ISCL jet tips are more damaging than equal mass spheres. A total of 12 tests were recently conducted at the Southwest Research Institute (SWRI) on International Space Station M/OD shields. Results of these tests are presented and compared to existing ballistic limit equations. Modification of these equations is suggested based on the results.

  11. Hypervelocity impact experiments on tether materials

    Science.gov (United States)

    Sabath, D.; Paul, K. G.

    Tethered systems are new and exciting means for various applications, such as the re-entry of small payloads from the space station. Due to payload mass constraints of the launch vehicle, the mass of the tethered system should be minimised. Therefore, fibres are the choice for tether materials. The probability of a severe impact into the tether is very high due its large surface area despite its small diameter. Hence, the risk of an impact of a micrometeoroid or a space debris particle cutting the tether should be investigated prior to flight. This work reports first observations of hypervelocity impact experiments on three different braided materials used for tether applications. The tether samples -- Dyneema, Kevlar and Spectra -- were tested using the plasma drag accelerator (PDA) facility of the Fachgebiet Raumfahrttechnik (LRT), Technische Universität München (TUM). An overview of the morphology of such impacts is presented. The extent of damage is compared to other materials commonly found on spacecraft. A risk assessment of an impact cutting the tether with current meteoroid and debris models and data from LDEF, Eureca and HST solar arrays, is also given.

  12. Experimental hypervelocity impact effects on simulated planetesimal materials

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, W.J.; Schulze, J.F. [Sandia National Labs., Albuquerque, NM (United States); Remo, J.L. [Quantametrics, Inc., St. James, NY (United States); Young, R.P. Jr [Calspan Field Services, Inc., Arnold AFS, TN (United States). AEDC Div.

    1994-08-01

    Experimental results are presented from a series of hypervelocity impact tests on simulated comet and asteroid materials for the purpose of characterizing their response to hypervelocity kinetic energy impacts. Nine tests were conducted at the Air Force Arnold Engineering Development Center (AEDC) S1 Range Facility on ice, rock, and iron target samples using a spherical 2.39 mm diameter aluminum impactor (0.0192 gm) at impact velocities of from 7.6 to 8.4 km/sec. The test objectives were to collect target response phenomenology data on cratering, momentum deposition and enhancement, target fragmentation, and material response under hypervelocity impact loading conditions. A carefully designed ballistic pendulum was used to measure momentum deposition into the targets. Observations and measurements of the impacted samples provide important insights into the response of these materials to kinetic energy impacts, especially in regards to unexpectedly large measured values of momentum enhancement to some of the targets. Such information is required to allow us to successfully deflect or fragment comets or asteroids which might someday be detected on collision trajectories with Earth.

  13. Hypervelocity Impact Testing of Materials for Additive Construction: Applications on Earth, the Moon, and Mars

    Science.gov (United States)

    Ordonez, Erick; Edmunson, Jennifer; Fiske, Michael; Christiansen, Eric; Miller, Josh; Davis, Bruce Alan; Read, Jon; Johnston, Mallory; Fikes, John

    2017-01-01

    Additive Construction is the process of building infrastructure such as habitats, garages, roads, berms, etcetera layer by layer (3D printing). The National Aeronautics and Space Administration (NASA) and the United States Army Corps of Engineers (USACE) are pursuing additive construction to build structures using resources available in-situ. Using materials available in-situ reduces the cost of planetary missions and operations in theater. The NASA team is investigating multiple binders that can be produced on planetary surfaces, including the magnesium oxide-based Sorel cement; the components required to make Ordinary Portland Cement (OPC), the common cement used on Earth, have been found on Mars. The availability of OPC-based concrete on Earth drove the USACE to pursue additive construction for base housing and barriers for military operations. Planetary and military base structures must be capable of resisting micrometeoroid impacts with velocities ranging from 11 to 72km/s for particle sizes 200 micrometers or more (depending on protection requirements) as well as bullets and shrapnel with a velocity of 1.036km/s with projectiles 5.66mm diameter and 57.40mm in length, respectively.

  14. Improving Metallic Thermal Protection System Hypervelocity Impact Resistance Through Design of Experiments Approach

    Science.gov (United States)

    Poteet, Carl C.; Blosser, Max L.

    2001-01-01

    A design of experiments approach has been implemented using computational hypervelocity impact simulations to determine the most effective place to add mass to an existing metallic Thermal Protection System (TPS) to improve hypervelocity impact protection. Simulations were performed using axisymmetric models in CTH, a shock-physics code developed by Sandia National Laboratories, and validated by comparison with existing test data. The axisymmetric models were then used in a statistical sensitivity analysis to determine the influence of five design parameters on degree of hypervelocity particle dispersion. Several damage metrics were identified and evaluated. Damage metrics related to the extent of substructure damage were seen to produce misleading results, however damage metrics related to the degree of dispersion of the hypervelocity particle produced results that corresponded to physical intuition. Based on analysis of variance results it was concluded that the most effective way to increase hypervelocity impact resistance is to increase the thickness of the outer foil layer. Increasing the spacing between the outer surface and the substructure is also very effective at increasing dispersion.

  15. Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested.

    Science.gov (United States)

    Horneck, Gerda; Stöffler, Dieter; Ott, Sieglinde; Hornemann, Ulrich; Cockell, Charles S; Moeller, Ralf; Meyer, Cornelia; de Vera, Jean-Pierre; Fritz, Jörg; Schade, Sara; Artemieva, Natalia A

    2008-02-01

    The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (5-50 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 5-10 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms.

  16. Microbial Rock Inhabitants Survive Hypervelocity Impacts on Mars-Like Host Planets: First Phase of Lithopanspermia Experimentally Tested

    Science.gov (United States)

    Horneck, Gerda; Stöffler, Dieter; Ott, Sieglinde; Hornemann, Ulrich; Cockell, Charles S.; Moeller, Ralf; Meyer, Cornelia; de Vera, Jean-Pierre; Fritz, Jörg; Schade, Sara; Artemieva, Natalia A.

    2008-02-01

    The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (550 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 510 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms.

  17. Characterizing Hypervelocity Impact Plasma Through Experiments and Simulations

    Science.gov (United States)

    Close, Sigrid; Lee, Nicolas; Fletcher, Alex; Nuttall, Andrew; Hew, Monica; Tarantino, Paul

    2017-10-01

    Hypervelocity micro particles, including meteoroids and space debris with masses computational fluid dynamics (CFD) simulations that allow us to extend to regimes not currently possible with ground-based technology. We show that significant impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (>20 km/s) impacts that produced a fully ionized plasma.

  18. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    Science.gov (United States)

    2015-10-18

    Debris Program Office and the Air Force Space and Missile Systems Center. 8. REFERENCES 1. Osiander, R., and Ostdiek, P., “Introduction to Space ... Debris ,” Handbook of Space Engineering, Archaeology, and Heritage, CRC Press, Boca Raton, FL, 2009, pp. 363-379. 2. Englert, C., et al., “Optical...An Imaging System for Satellite Hypervelocity Impact Debris Characterization Matthew Moraguez, Dr. Kunal Patankar University of Florida Dr

  19. Induction Heating of Hypervelocity Impact Samples to 2500 Degrees Centigrade

    Science.gov (United States)

    Simmons, Joshua; Pardo, Art; Henderson, Don; Rodriguez, Karen

    2014-01-01

    The Remote Hypervelocity Test Laboratory (RHTL) at White Sands Test Facility (WSTF) was asked to heat samples up to 2500 degrees Centigrade (4532 degrees Fahrenheit) to simulate reentry scenarios of crafts where heated shields are impacted with single small particles ranging from 0.2 to 1.0 millimeters (.008 to.039 inches) of various materials. The team decided an electromagnetic induction (induction heater) was the best method to achieve and control the temperatures in a rapid manner. The samples consisted of three-dimensional carbon-carbon and two-dimensional carbon-phenolic, which are both electrically conductive. After several attempts the team was able to achieve over 2500 degrees Centigrade (4532 degrees Fahrenheit) in ambient atmosphere. When the system was moved to the target chamber and the vacuum system evacuated down to 250 millitorr, arcing occurred between the bus bars and tank, the feedthrough fittings that carried the coolant and current, and between the target sample and coil. To overcome this arcing, conformal coatings, room temperature vulcanization (RTV) silicone, and other non-conductive materials were used to isolate the electromagnetic fields.

  20. Hypervelocity impacts into porous graphite: experiments and simulations.

    Science.gov (United States)

    Hébert, D; Seisson, G; Rullier, J-L; Bertron, I; Hallo, L; Chevalier, J-M; Thessieux, C; Guillet, F; Boustie, M; Berthe, L

    2017-01-28

    We present experiments and numerical simulations of hypervelocity impacts of 0.5 mm steel spheres into graphite, for velocities ranging between 1100 and 4500 m s(-1) Experiments have evidenced that, after a particular striking velocity, depth of penetration no longer increases but decreases. Moreover, the projectile is observed to be trapped below the crater surface. Using numerical simulations, we show how this experimental result can be related to both materials, yield strength. A Johnson-Cook model is developed for the steel projectile, based on the literature data. A simple model is proposed for the graphite yield strength, including a piecewise pressure dependence of the Drucker-Prager form, which coefficients have been chosen to reproduce the projectile penetration depth. Comparisons between experiments and simulations are presented and discussed. The damage properties of both materials are also considered, by using a threshold on the first principal stress as a tensile failure criterion. An additional compressive failure model is also used for graphite when the equivalent strain reaches a maximum value. We show that the experimental crater diameter is directly related to the graphite spall strength. Uncertainties on the target yield stress and failure strength are estimated.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  1. Survey of the hypervelocity impact technology and applications.

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, Lalit Chandra; Orphal, Dennis L.

    2006-05-01

    HVIS 2005 was a clear success. The Symposium brought together nearly two hundred active researchers and students from thirteen countries around the world. The 84 papers presented at HVIS 2005 constitute an ''update'' on current research and the state-of-the-art of hypervelocity science. Combined with the over 7000 pages of technical papers from the eight previous Symposia, beginning in 1986, all published in the International Journal of Impact Engineering, the papers from HVIS 2005 add to the growing body of knowledge and the progressing state-of-the-art of hypervelocity science. It is encouraging to report that even with the limited funding resources compared to two decades ago, creativity and ingenuity in hypervelocity science are alive and well. There is considerable overlap in different disciplines that allows researchers to leverage. Experimentally, higher velocities are now available in the laboratory and are ideally suited for space applications that can be tied to both civilian (NASA) and DoD military applications. Computationally, there is considerable advancement both in computer and modeling technologies. Higher computing speeds and techniques such as parallel processing allow system level type applications to be addressed directly today, much in contrast to the situation only a few years ago. Needless to say, both experimentally and computationally, the ultimate utility will depend on the curiosity and the probing questions that will be incumbent upon the individual researcher. It is quite satisfying that over two dozen students attended the symposium. Hopefully this is indicative of a good pool of future researchers that will be needed both in the government and civilian industries. It is also gratifying to note that novel thrust areas exploring different and new material phenomenology relevant to hypervelocity impact, but a number of other applications as well, are being pursued. In conclusion, considerable progress is still being

  2. Axial focusing of energy from a hypervelocity impact on earth

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-12-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.

  3. Discrete Particle Method for Simulating Hypervelocity Impact Phenomena

    Directory of Open Access Journals (Sweden)

    Erkai Watson

    2017-04-01

    Full Text Available In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI phenomena which is based on the Discrete Element Method (DEM. Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms-1. We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy–conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength.

  4. Discrete Particle Method for Simulating Hypervelocity Impact Phenomena.

    Science.gov (United States)

    Watson, Erkai; Steinhauser, Martin O

    2017-04-02

    In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI) phenomena which is based on the Discrete Element Method (DEM). Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms-1. We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy-conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength.

  5. Survival of fossils under extreme shocks induced by hypervelocity impacts.

    Science.gov (United States)

    Burchell, M J; McDermott, K H; Price, M C; Yolland, L J

    2014-08-28

    Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s(-1), corresponding to mean peak pressures of 0.2-19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon.

  6. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    Science.gov (United States)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Chris; Rodriquez, Karen; Miller, Joshua; Bohl, William

    2011-01-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  7. Design of orbital debris shields for oblique hypervelocity impact

    Science.gov (United States)

    Fahrenthold, Eric P.

    1994-01-01

    A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.

  8. Investigation on plasma generated during hypervelocity impact at different impact velocities and angles

    Energy Technology Data Exchange (ETDEWEB)

    Song, Weidong, E-mail: swdgh@bit.edu.cn; Lv, Yangtao; Wang, Cheng; Li, Jianqiao [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2015-12-15

    A 3D Smoothed Particle Hydrodynamics code was developed to investigate plasma generation by considering a chemical reaction process in hypervelocity impacts of an aluminum projectile on an aluminum target. The chemical reaction process was described by the reaction rate based on the Arrhenius equation and used to calculate the plasma generation during the impact simulation. The predicted result was verified by empirical formulas and a new empirical formula was proposed based on the comparisons and analyses. The influence of the impact angle was discussed for different impact velocities. Then, the application of both the new and original empirical formulas for protection design from plasma generated by hypervelocity impact was discussed, which demonstrated that the code and model were useful in the prediction of hypervelocity impacts on spacecraft.

  9. Theoretical Research Progress in High-Velocity/Hypervelocity Impact on Semi-Infinite Targets

    Directory of Open Access Journals (Sweden)

    Yunhou Sun

    2015-01-01

    Full Text Available With the hypervelocity kinetic weapon and hypersonic cruise missiles research projects being carried out, the damage mechanism for high-velocity/hypervelocity projectile impact on semi-infinite targets has become the research keystone in impact dynamics. Theoretical research progress in high-velocity/hypervelocity impact on semi-infinite targets was reviewed in this paper. The evaluation methods for critical velocity of high-velocity and hypervelocity impact were summarized. The crater shape, crater scaling laws and empirical formulae, and simplified analysis models of crater parameters for spherical projectiles impact on semi-infinite targets were reviewed, so were the long rod penetration state differentiation, penetration depth calculation models for the semifluid, and deformed long rod projectiles. Finally, some research proposals were given for further study.

  10. Hypervelocity impact properties of graphene armor via molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Wang W.

    2012-08-01

    Full Text Available Hypervelocity impact properties of two different graphene armor systems are investigated using molecular dynamics simulations. One system is the so-called spaced armor which consists of a number of graphene plates spaced certain distance apart. Its response under normal impact of a spherical projectile is studied, focusing on the effect of the number of graphene monolayers per plate (denoted by n on the penetration resistance of the armor. We find that under normal impact by a spherical projectile the penetration resistance increases with decreasing number of monolayers per plate (n, and the best penetration resistance is achieved in the system with one graphene layer for each plate. Note that the monolayers in all the simulated multilayer graphene plates were AB-stacked. The second system being studied is the laminated copper/graphene composites with the graphene layers inside copper, on impact or back surface, or on both the impact and back surfaces. The simulation results show that under normal impact by a spherical projectile the laminated copper/graphene composite has much higher penetration resistance than the monolithic copper plate. The best efficiency is achieved when the graphene layers are on both the impact and back surfaces.

  11. Extension and Validation of a Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 2

    Science.gov (United States)

    Fahrenthold, Eric P.; Shivarama, Ravishankar

    2004-01-01

    The hybrid particle-finite element method of Fahrenthold and Horban, developed for the simulation of hypervelocity impact problems, has been extended to include new formulations of the particle-element kinematics, additional constitutive models, and an improved numerical implementation. The extended formulation has been validated in three dimensional simulations of published impact experiments. The test cases demonstrate good agreement with experiment, good parallel speedup, and numerical convergence of the simulation results.

  12. The electromagnetic properties of plasma produced by hypervelocity impact

    Science.gov (United States)

    Zhang, Qingming; Gong, Liangfei; Ma, Yuefen; Long, Renrong; Gong, Zizheng

    2018-02-01

    The change of electron density in moving plasma in this paper is empirically determined according to multiple ground-based experimental results and the assumption of the Maxwell distribution. Moreover, the equation of the magnetic field intensity, dominated by the current due to the collective electron movement during the expansion, is presented on the basis of the Biot-Savart law, and its relationship with time and space is subsequently depicted. In addition, hypervelocity impact experiments on a 2AL12 target have been carried out using a two-stage light gas gun to accelerate a 2AL12 projectile of 6.4 mm to 6.2 km/s. Spiral coils are designed to measure the intensity of the electromagnetic field induced by this impact. The experimental results show that the magnetic field strength is an alternate pulse maintaining nearly 1 ms and its maximum is close to 15 μT, which is strong enough to interfere with the communication circuit and chip in spacecrafts. Lastly, numerical simulation of the magnetic field intensity using this experimental parameter reveals that the intensity in our estimation from our theory tends to be well consistent with the experimental data in the first peak of the pulse signal.

  13. Hypervelocity Impact Experiments on Epoxy/Ultra-High Molecular Weight Polyethylene Composite Panels Reinforced with Nanotubes

    Science.gov (United States)

    Khatiwada, Suman; Laughman, Jay W.; Armada, Carlos A.; Christiansen, Eric L.; Barrera, Enrique V.

    2012-01-01

    Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University

  14. Influence of impact conditions on plasma generation during hypervelocity impact by aluminum projectile

    Science.gov (United States)

    Song, Weidong; Lv, Yangtao; Li, Jianqiao; Wang, Cheng; Ning, Jianguo

    2016-07-01

    For describing hypervelocity impact (relative low-speed as related to space debris and much lower than travelling speed of meteoroids) phenomenon associated with plasma generation, a self-developed 3D code was advanced to numerically simulate projectiles impacting on a rigid wall. The numerical results were combined with a new ionization model which was developed in an early study to calculate the ionized materials during the impact. The calculated results of ionization were compared with the empirical formulas concluded by experiments in references and a good agreement was obtained. Then based on the reliable 3D numerical code, a series of impacts with different projectile configurations were simulated to investigate the influence of impact conditions on hypervelocity impact generated plasma. It was found that the form of empirical formula needed to be modified. A new empirical formula with a critical impact velocity was advanced to describe the velocity dependence of plasma generation and the parameters of the modified formula were ensured by the comparison between the numerical predictions and the empirical formulas. For different projectile configurations, the changes of plasma charges with time are different but the integrals of charges on time almost stayed in the same level.

  15. Panspermia Survival Scenarios for Organisms that Survive Typical Hypervelocity Solar System Impact Events.

    Science.gov (United States)

    Pasini, D.

    2014-04-01

    Previous experimental studies have demonstrated the survivability of living cells during hypervelocity impact events, testing the panspermia and litho-panspermia hypotheses [1]. It has been demonstrated by the authors that Nannochloropsis Oculata Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone' (sunlit surface layers of oceans [2]), survive impacts up to 6.93 km s-1 (approx. shock pressure 40 GPa) [3, 4]. Also shown to survive impacts up to 5.49 km s-1 is the tardigrade species Hypsibius dujardini (a complex micro-animal consisting of 40,000 cells) [5, 6]. It has also been shown that they can survive sustained pressures up to 600 MPa using a water filled pressure capsule [7]. Additionally bacteria can survive impacts up to 5.4 km s-1 (~30 GPa) - albeit with a low probability of survival [1], and the survivability of yeast spores in impacts up to 7.4 km s-1 (~30 GPa) has also recently been demonstrated [8]. Other groups have also reported that the lichen Xanthoria elegans is able to survive shocks in similar pressure ranges (~40 GPa) [9]. Here we present various simulated impact regimes to show which scenarios are condusive to the panspermia hypothesis of the natural transfer of life (via an icy body) through space to an extraterrestrial environment.

  16. Hypervelocity Capability of the HYPULSE Shock-Expansion Tunnel for Scramjet Testing

    Science.gov (United States)

    Foelsche, Robert O.; Rogers, R. Clayton; Tsai, Ching-Yi; Bakos, Robert J.; Shih, Ann T.

    2001-01-01

    New hypervelocity capabilities for scramjet testing have recently been demonstrated in the HYPULSE Shock-Expansion Tunnel (SET). With NASA's continuing interests in scramjet testing at hypervelocity conditions (Mach 12 and above), a SET nozzle was designed and added to the HYPULSE facility. Results of tests conducted to establish SET operational conditions and facility nozzle calibration are presented and discussed for a Mach 15 (M15) flight enthalpy. The measurements and detailed computational fluid dynamics calculations (CFD) show the nozzle delivers a test gas with sufficiently wide core size to be suitable for free-jet testing of scramjet engine models of similar scale as, those tested in conventional low Mach number blow-down test facilities.

  17. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    Science.gov (United States)

    Ryan, Shannon; Christiansen, Eric; Lear, Dana

    2009-01-01

    Metallic foams are a relatively new class of materials with low density and novel physical, mechanical, thermal, electrical and acoustic properties. Although incompletely characterized, they offer comparable mechanical performance to traditional spacecraft structural materials (i.e. honeycomb sandwich panels) without detrimental through-thickness channeling cells. There are two competing types of metallic foams: open cell and closed cell. Open cell foams are considered the more promising technology due to their lower weight and higher degree of homogeneity. Leading micrometeoroid and orbital debris shields (MMOD) incorporate thin plates separated by a void space (i.e. Whipple shield). Inclusion of intermediate fabric layers, or multiple bumper plates have led to significant performance enhancements, yet these shields require additional non-ballistic mass for installation (fasteners, supports, etc.) that can consume up to 35% of the total shield weight [1]. Structural panels, such as open cell foam core sandwich panels, that are also capable of providing sufficient MMOD protection, represent a significant potential for increased efficiency in hypervelocity impact shielding from a systems perspective through a reduction in required non-ballistic mass. In this paper, the results of an extensive impact test program on aluminum foam core sandwich panels are reported. The effect of pore density, and core thickness on shielding performance have been evaluated over impact velocities ranging from 2.2 - 9.3 km/s at various angles. A number of additional tests on alternate sandwich panel configurations of comparable-weight have also been performed, including aluminum honeycomb sandwich panels (see Figure 1), Nomex honeycomb core sandwich panels, and 3D aluminum honeycomb sandwich panels. A total of 70 hypervelocity impact tests are reported, from which an empirical ballistic limit equation (BLE) has been derived. The BLE is in the standard form suitable for implementation in

  18. Stochastic modeling of hypervelocity impacts in attitude propagation of space debris

    Science.gov (United States)

    Sagnières, Luc B. M.; Sharf, Inna

    2017-02-01

    Bombardment of orbital debris and micrometeoroids on active and inoperative satellites is becoming an increasing threat to space operations and has significant consequences on space missions. Concerns with orbital debris have led agencies to start developing debris removal missions and knowing a target's rotational parameters ahead of time is crucial to the eventual success of such a mission. A new method is proposed, enabling the inclusion of hypervelocity impacts into spacecraft attitude propagation models by considering the transfer of angular momentum from collisions as a stochastic jump process. Furthermore, the additional momentum transfer due to ejecta created during these hypervelocity impacts, an effect known as momentum enhancement, is considered. In order to assess the importance of collisions on attitude propagation, the developed model is applied to two pieces of space debris by using impact fluxes from ESA's Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) model.

  19. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    Science.gov (United States)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in

  20. The Physical Understanding of the Use of Coatings to Mitigate Hypervelocity Gouging Considering Real Test Sled Dimensions

    Science.gov (United States)

    2004-09-01

    F08635-97-C-0041, Albuquerque, NM: Applied Research Associates, Inc., February 1998. 109. Schoenfeld , William P. “Requirements for Upgrading the Holloman...Mullin. “Scale Modeling of Hypervelocity Impact,” International Journal of Impact Engineering , 5 :693–701 (1987). 136. Holian, Kathleen S. and Brad Lee

  1. An Ellipsoidal Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 1

    Science.gov (United States)

    Shivarama, Ravishankar; Fahrenthold, Eric P.

    2004-01-01

    A number of coupled particle-element and hybrid particle-element methods have been developed for the simulation of hypervelocity impact problems, to avoid certain disadvantages associated with the use of pure continuum based or pure particle based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particles entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models.

  2. A Kernel-Free Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 4

    Science.gov (United States)

    Park, Young-Keun; Fahrenthold, Eric P.

    2004-01-01

    An improved hybrid particle-finite element method has been developed for the simulation of hypervelocity impact problems. Unlike alternative methods, the revised formulation computes the density without reference to any kernel or interpolation functions, for either the density or the rate of dilatation. This simplifies the state space model and leads to a significant reduction in computational cost. The improved method introduces internal energy variables as generalized coordinates in a new formulation of the thermomechanical Lagrange equations. Example problems show good agreement with exact solutions in one dimension and good agreement with experimental data in a three dimensional simulation.

  3. Elastic-plastic effect study in hypervelocity impact by SPH method

    Directory of Open Access Journals (Sweden)

    Gong Xiangfei

    2015-01-01

    Full Text Available A new distributed parallel SPH programming scheme using AMR (adaptive mesh refinement background grid is proposed, in which the size of a grid is decided based on maximal smoothed length of local particles. In detonation simulation, computational complexity of the new scheme is better than O(NlgN which is the best order of magnitude in the previous methods. Several hypervelocity impact problems are simulated using the new SPH scheme with state equations or strength model. The simulation results are discussed comparison to experimental and computed results in other literature.

  4. Hypervelocity impact resistance of reinforced carbon carbon/carbon foam thermal protection systems

    Science.gov (United States)

    Grujicic, M.; Pandurangan, B.; Zhao, C. L.; Biggers, S. B.; Morgan, D. R.

    2006-05-01

    Common aero vehicles (CAVs) are aerodynamically designed, (from orbit) re-entry, un-powered military vehicles planned to be used for deployment of the desired munitions with increased accuracy and range. In one of the currently considered designs of the CAVs, their outer skin is planned to be constructed from two-ply panels. The outer play is made of a carbon-carbon composite while the inner ply is constructed from a carbon-based foam. In the present work a transient non-linear-dynamics-based analysis is carried out in order to predict the extent of damage and the probability for failure of the carbon-carbon/carbon-foam CAV panels during potential hypervelocity impact of space debris with the outer surface of the CAVs. The results obtained show that the extent of damage scales with the normal component of the momentum associated with the debris particles just before the impact. In addition, it is found that despite its relatively low strength, the carbon-foam can provide a major increase in the resistance of the CAV panels towards penetration of the hypervelocity debris particles. This finding has been linked with an attendant consolidation of the foam, the process that is capable of absorbing a substantial amount of kinetic energy carried by the debris particles.

  5. Novel deformation processes and microstructures involving ballistic penetrator formation and hypervelocity impact and penetration phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Murr, L.E.; Pappu, S.; Garcia, E.P. [Univ. of Texas, El Paso, TX (United States)] [and others

    1996-11-01

    Light metallography and transmission electron microscopy techniques affording unique observations of microstructural issues in connection with a related set of novel, high-strain-rate deformation processes provide some fundamental insight into the following areas: shock-wave induced twinning, explosive welding, shaped charge development, explosively-formed penetrator phenomena, hypervelocity impact cratering in metal targets, and long, dense rod penetration/perforation of thick metal targets. Although shock wave phenomena are precursors in all these processes, deformation twins are rarely observed in the residual, process microstructures. In the case of hypervelocity impact craters, no deformation twins are observed in the crater-related target microstructures. Microbands that appear to be related to twins are observed. Melt-related phenomena are observed only in the explosive weld-wave interfaces. Jetting phenomena related to shaped charges and crater rim formation are dominated by dynamic recrystallization, which provides a mechanism for extreme plastic flow in the solid state. Differences observed between rod penetration of rolled homogeneous armor and Ti-alloy thick targets manifest themselves in distinct microstructural differences that also do not include melt phenomena.

  6. Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts

    Science.gov (United States)

    Posada-Roman, Julio E.; Jackson, David A.; Cole, Mike J.; Garcia-Souto, Jose A.

    2017-12-01

    A multichannel optical fiber laser Doppler vibrometer was demonstrated with the capability of making simultaneous non-contact measurements of impacts at 3 different locations. Two sets of measurements were performed, firstly using small ball bearings (1 mm-5.5 mm) falling under gravity and secondly using small projectiles (1 mm) fired from an extremely high velocity light gas gun (LGG) with speeds in the range 1 km/s-8 km/s. Determination of impact damage is important for industries such as aerospace, military and rail, where the effect of an impact on the structure can result in a major structural damage. To our knowledge the research reported here demonstrates the first trials of a multichannel fiber laser Doppler vibrometer being used to detect hypervelocity impacts.

  7. Hypervelocity impacts and the evolution of planetary surfaces and interiors

    Science.gov (United States)

    Watters, Wesley Andres

    2009-06-01

    The thesis consists of five studies relating impact processes to the evolution of planetary interiors as well as impact structures on planetary surfaces. Chapter 2 is concerned with developing methods for estimating the amount of heat deposited deep in terrestrial mantles by large impacts. Chapter 3 makes use of these results to compute the consequences of impact-related thermal buoyancy perturbations in numerical models of subsolidus convection. Among the important results of this work is a relation for the time-scale on which a buoyancy anomaly flattens and spreads before it is halted by convective downflows, as well as a condition that indicates for what perturbation magnitudes and Rayleigh numbers the flow is significantly slowed at a global scale. Chapter 4 describes a structural model of Endurance Crater in Meridiani Planum on Mars, which is constrained by observations gathered by the MER- B Opportunity rover. These results reveal new insights about the planform shape of the crater excavation flow, as well as the connection between crater shape and pre-existing structures in target materials. The study presented in chapter 5 relates the planimetric shape of simple impact craters on Mars ( D Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  8. Impact features tracing hypervelocity airbursts on earth from the atmosphere to the ground

    Science.gov (United States)

    Courty, M. M.

    2012-12-01

    In the absence of deep craters, impact features have been debated to possibly tracing proximal ejecta from yet undetected structure or airburst debris from a meteorite collision with the terrestrial atmosphere or lithosphere. We examine the possibility for impact features to have originated from the shock layer formed ahead of a hypervelocity collider in the earth atmosphere. This hypothesis is approached by comparing impact features from controlled materials to puzzling geological ones: (1) debris collected at the ground from a high altitude meteor airburst recorded on 2011 August 2nd in Southern France; (2) laboratory experiments performed for defense purposes at the CEA Gramat Center (France) with the Persephone hypervelocity light gas gun; (3) the Zhamanshin impact breccia, the Lybian glass, the Egyptian Dakhleh glass, the Tasmanian Darwin glass, the Australasian tektite strewnfield and the Australian Henbury crater field. The Persephone experiments include collisions from 4.1 to 7.9 km/s by a steel projectile embedded into a polycarbonate holder with a polystyrene separator on to a 40 mm thick aluminum target. The impact features been characterized by coupling Environmental SEM with EDS, Raman micro-spectrometry, XRD, TEM, Tof-SIMS, ICP-MS and isotope analyses. Similar carbonaceous polymorphs that are closely imbricated at meso to nano-scales to the crystallized components (including the metal blebs) and to the glass phases (spherules or matrix) are present in all the impact features studied. They dominantly consist of aliphatic polymers, rare aromatic compounds, with graphite-lonsdaleite inclusions. The Persephone experiments help relating the graphite-lonsdaleite couple to transformed organic residues by the transient high pressure shock (a few tens MPa) and the transient heating (ca 100°C) and the aliphatic polymers to new hydrocarbons that formed from the pulverized polycarbonate and polystyrene. The Persephone experiments provide the controlled situation

  9. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hereil Pierre-Louis

    2015-01-01

    Full Text Available Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  10. Interpolation/extrapolation technique with application to hypervelocity impact of space debris

    Science.gov (United States)

    Rule, William K.

    1992-01-01

    A new technique for the interpolation/extrapolation of engineering data is described. The technique easily allows for the incorporation of additional independent variables, and the most suitable data in the data base is automatically used for each prediction. The technique provides diagnostics for assessing the reliability of the prediction. Two sets of predictions made for known 5-degree-of-freedom, 15-parameter functions using the new technique produced an average coefficient of determination of 0.949. Here, the technique is applied to the prediction of damage to the Space Station from hypervelocity impact of space debris. A new set of impact data is presented for this purpose. Reasonable predictions for bumper damage were obtained, but predictions of pressure wall and multilayer insulation damage were poor.

  11. Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel

    Directory of Open Access Journals (Sweden)

    Phadnis Vaibhav A.

    2015-01-01

    Full Text Available The mechanical response of CFRP-Al/HC (carbon fibre-reinforced/epoxy composite face sheets with Al honeycomb core sandwich panels to hyper-velocity impact (up to 1 km/s is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by mean of a user-defined material model (VUMAT employing a combination of Hashin and Puck criteria, delamination modelled using cohesive-zone elements. The damaged Al/HC core is assessed on the basis of a Johnson Cook dynamic failure model while its hydrodynamic response is captured using the Mie-Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing HC core.

  12. Numerical Simulation for Predicting Hypervelocity Impact Damage in Laminated Composite Plate

    Science.gov (United States)

    Ito, Ryo; Nagao, Yosuke; Fukunaga, Hisao

    In this study, we conduct the numerical simulations of hypervelocity impacts (HVIs) of a projectile on CFRP laminated plate targets by means of two-dimensional axisymmetric SPH method. To simulate the delamination of the laminated composite plate due to the HVIs, an interface modelling technique for mixed-mode delamination is adopted. Additionally, a treatment method for the anisotropy of CFRP composites in the axisymmetric coordinate system is described. Numerical simulation results show good agreement with experimental results in respect of the ballistic limits and the damaged area. Consequently, it is shown that the interface particle technique for modelling the delamination of a laminated composite plate is effective, and we can predict the ballistic limits and the damaged area of laminated composite plate with this technique.

  13. Hypervelocity nanoparticle impacts on free-standing graphene: A sui generis mode of sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Michael J.; Della-Negra, Serge [Institut de Physique Nucléaire d’Orsay, UMR8608, CNRS/IN2P3, Université Paris-Sud 11, Orsay F-91406 (France); Liang, Chao-Kai; Clubb, Aaron B.; Schweikert, Emile A., E-mail: schweikert@chem.tamu.edu [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3144 (United States); Kim, Hansoo [Microscopy and Imaging Center, Texas A and M University, College Station, Texas 77843-2257 (United States); Young, Amanda E. [Materials Characterization Facility, Texas A and M University, College Station, Texas 77843-3122 (United States)

    2015-01-28

    The study of the interaction of hypervelocity nano-particles with a 2D material and ultra-thin targets (single layer graphene, multi-layer graphene, and amorphous carbon foils) has been performed using mass selected gold nano-particles produced from a liquid metal ion source. During these impacts, a large number of atoms are ejected from the graphene, corresponding to a hole of ∼60 nm{sup 2}. Additionally, for the first time, secondary ions have been observed simultaneously in both the transmission and reflection direction (with respect to the path of the projectile) from a 2D target. The ejected area is much larger than that predicted by molecular dynamic simulations and a large ionization rate is observed. The mass distribution and characteristics of the emitted secondary ions are presented and offer an insight into the process to produce the large hole observed in the graphene.

  14. Orthotropic node-separation finite element method for composite laminate in hypervelocity impact simulation

    Science.gov (United States)

    Zhang, Xiaotian; Liu, Tao; Qiu, Xinming

    2017-11-01

    This paper reports a finite element modeling approach to simulate the hypervelocity impact (HVI) response of composite laminate. Node-separation finite element (NSFE) method based on scalar-element-fracture technique for isotropic material in HVI simulation has been presented in the previous study. To extend NSFE to composite materials, an orthotropic node-separation finite element (ONSFE) method is developed. This approach employs an orthotropic continuum material model and a corresponding orthotropic-element-fracture technique to represent the HVI behavior/damage of composite laminate. A series of HVI simulations are conducted and the developed ONSFE method is validated by comparing with the experimental data. The simulation results show that ONSFE can successfully capture the HVI phenomena of composite laminate, such as the orthotropic property, nonlinear shock response, perforation, fiber breakage and delamination. Finally, a HVI event of Whipple shield is simulated and the computational capability of ONSFE for predicting the damage state of the composite bumper is further evaluated.

  15. Survival of Nannochloropsis Phytoplankton in Hypervelocity Impact Events up to Velocities of 6.07 km/s

    Science.gov (United States)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypothesis [1], [2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1] whilst larger more complex objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. We demonstrate here the survivability of Nannochloropsis Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone'(sunlit surface layers of oceans) [4] at impact velocities up to 6.07 km s-1. Phytoplankton from a culture sample was frozen and then fired into water (to simulate oceanic impacts, as described in [5]) using a light gas gun (LGG) [6]. The water was then retrieved and placed into a sealed culture vessel and left under a constant light source to check the viability of any remnant organisms.

  16. Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon

    Science.gov (United States)

    Hermalyn, B.; Schultz, P. H.

    2011-12-01

    Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging

  17. Plasma and collision processes of hypervelocity meteorite impact in the prehistory of life

    Science.gov (United States)

    Managadze, G.

    2010-07-01

    A new concept is proposed, according to which the plasma and collision processes accompanying hypervelocity impacts of meteorites can contribute to the arising of the conditions on early Earth, which are necessary for the appearance of primary forms of living matter. It was shown that the processes necessary for the emergence of living matter could have started in a plasma torch of meteorite impact and have continued in an impact crater in the case of the arising of the simplest life form. It is generally accepted that planets are the optimal place for the origin and evolution of life. In the process of forming the planetary systems the meteorites, space bodies feeding planet growth, appear around stars. In the process of Earth's formation, meteorite sizes ranged from hundreds and thousands of kilometres. These space bodies consisted mostly of the planetesimals and comet nucleus. During acceleration in Earth's gravitational field they reached hypervelocity and, hitting the surface of planet, generated powerful blowouts of hot plasma in the form of a torch. They also created giant-size craters and dense dust clouds. These bodies were composed of all elements needed for the synthesis of organic compounds, with the content of carbon being up to 5%-15%. A new idea of possible synthesis of the complex organic compounds in the hypervelocity impact-generated plasma torch was proposed and experimentally confirmed. A previously unknown and experimentally corroborated feature of the impact-generated plasma torch allowed a new concept of the prehistory of life to be developed. According to this concept the intensive synthesis of complex organic compounds arose during meteoritic bombardment in the first 0.5 billion years at the stage of the planet's formation. This most powerful and destructive action in Earth's history could have played a key role and prepared conditions for the origin of life. In the interstellar gas-dust clouds, the synthesis of simple organic matter could

  18. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, W. Casey; Heine, Andreas, E-mail: andreas.heine@emi.fraunhofer.de [Fraunhofer EMI, Eckerstr. 4, 79104 Freiburg (Germany)

    2015-11-14

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signal to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.

  19. Momentum Enhancement due to Crater Ejecta during Hypervelocity Impact of Highly Porous and Consolidated Rock

    Science.gov (United States)

    Walker, James; Chocron, Sidney; Grosch, Donald; Durda, Daniel; Housen, Kevin

    2017-06-01

    Experiments were performed with impacts of 2.54- to 4.45-cm-diameter aluminum spheres at 2.1 km/s into both consolidated rock (granite) and highly porous rock (pumice). Measured in these experiments was the momentum enhancement -- that is, how much momentum is transferred to the rock by the impactor. The transferred momentum is greater than the impactor due to the crater ejecta. The momentum enhancement is characterized by β , which is the ratio of the momentum transferred to the target and the momentum of the impactor. High speed video recorded the impact event, the ejecta from the target, and the motion of the target (hung in a ballistic pendulum arrangement). Constitutive models of rock that include porosity and crush-up behavior when incorporated into impact physics codes (specifically CTH and EPIC) show good agreement with crater depth, but they do not show good agreement with momentum enhancement. This paper will review the data and place it in the context of other momentum enhancement data, including the nonlinear effect of scale size. It will also explore the difficulties in large-scale numerical modeling of the momentum enhancement. An application of this data is determining the effectiveness of deflecting asteroids and comet nuclei by hypervelocity impacts.

  20. Survival of the Tardigrade Hypsibius Dujardini during Hypervelocity Impact Events up to 5.49 km s-1

    Science.gov (United States)

    Pasini, D.

    2014-04-01

    Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypotheses [1, 2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1], whilst larger, more complex, objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. Previous work by the authors demonstrated the survivability of Nannochloropsis Oculata Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone' (sunlit surface layers of oceans [4]), at impact velocities up to 6.07 km s-1 [5]. Other groups have also reported that lichens are able to survive shocks in similar pressure ranges [6]. However, whilst many simple single celled organisms have now been shown to survive such impacts (and the associated pressures) as those encountered during the migration of material from one planet to another [1, 3, 5], complex multicellular organisms have either largely not been tested or, those that have been, have not survived the process [2]. Hypsibius dujardini, like most species of tardigrade, are complex organisms composed of approximately 40,000 cells [7]. When humidity decreases they enter a highly dehydrated state known as a 'tun' and can survive extreme temperatures (as low as - 253°C or as high as 151°C), as well as exposure to Xrays and the vacuum of space [7]. Here we test the shock survivability of Hypsibius dujardini by firing a nylon projectile onto a frozen sample of water containing frozen tardigrades using a light gas gun (LGG) [8]. The recovered ice and water were then analysed under an optical microscope to check the viability of any remnant organisms that may have survived impact, and the pressures generated.

  1. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    Science.gov (United States)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  2. First-Order Simulation of Strewn Debris Fields Accompanying Exoatmospheric Re-entry Vehicle Fragmentation by Hypervelocity Impact

    Science.gov (United States)

    1994-09-01

    available information from satellite on- orbit and laboratory collisions. Atmospheric fragment re-entry is modelled using an exponentially dense...interceptions se caracterisent par des etendues de debris mesurant des centaines de kilometres. Si I’ on suppose une distribution uniforme des fragments, on...tests and on- orbit collisions. Much of this work is necessarily speculative: the dynamics of hypervelocity collisions and material behaviour under

  3. Development of a Numerical Model of Hypervelocity Impact into a Pressurized Composite Overwrapped Pressure Vessel

    Science.gov (United States)

    Garcia, M. A.; Davis, B. A.; Miller, J. E.

    2017-01-01

    considered a catastrophic failure. This assumption is conservative and made due to lack of knowledge on the level of allow-able damage to the composite overwrap that can be sustained and still allow successful completion of the mission. To quantify the allowable damage level to the composite overwrap involves assessing stress redistribution following damage as well as evaluating possible time-dependent mechanisms involved in the COPV response to an impact event. Limited published work in this subject has shown that COPV can withstand at least some level of damage due to high energy impacts. These observations have been confirmed and expanded upon in recent experimental research performed by NASA. This research has demonstrated that there is not only robustness in a COPV to compensate for CFRP damage, but has also identified two significant failure modes for pressurized COPV. The lowest threshold failure mode involves the perforation of the vessel, and the highest threshold failure mode is the catastrophic rupture. While both of these failure modes mean a loss of the COPV, system robustness affords some tolerance to the venting as opposed to the more catastrophic rupture. As a consequence, it is necessary to understand the conditions that result in the transition between these failure modes. The aforementioned experimental research has been performed in both the unpressurized and pressurized condition to identify the damage level that triggered the failure thresh-old. This COPV test program was sponsored by the NASA Engineering and Safety Center (NESC), and tests were performed at NASA White Sands Test Facility (WSTF). Planning and coordination were provided by NASA JSC Hypervelocity Impact Technology (HVIT) group, and the COPVs were provided by the ISS Program. Unpressurized testing has been conducted at the pressure of the vacuum test chamber, while, the pressurized testing has been conducted at 290 +/- 10 bar (4,200 ? 100 psi) using nitrogen as the pressurizing gas, which

  4. Cassini Ring Plane Crossings: Hypervelocity Impact Risks to Sun Sensor Assemblies

    Science.gov (United States)

    Lee, Allan Y.

    2016-01-01

    For both F/G and D-ring crossings: Probability of a penetration damage of the SSH (Sun Sensor Head) window glass is very low; Optical attenuation due to craters on the surface of the window glass caused by direct HVI (Hyper-Velocity Impact) by dust particle is estimated to be less than 1 percent; Optical attenuation due to secondary debris cloud generated by the disintegrated ring dust particles is estimated to be less than 1 percent. To better manage the Sun sensor damage risk during selected proximal orbit crossings, it is highly desirable to follow the contingency procedures mentioned in Section VII of the paper: Details of this contingency procedure are given in the paper entitled "Cassini Operational Sun Sensor Risk Management During Proximal Orbit Saturn Ring Plane Crossings" authored by David M. Bates. Based on results of risk analyses documented in this work and contingency planning work described in the paper mentioned above, we judge that the proximal orbit campaign will be safe from the viewpoint of dust HVI hazard.

  5. Detection of hypervelocity dust impacts on the Earth orbiting Cluster and MMS spacecraft and problems with signal interpretation

    Science.gov (United States)

    Vaverka, Jakub; Pellinen-Wannberg, Asta; Kero, Johan; Mann, Ingrid; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkänen, Timo

    2017-04-01

    Detection of hypervelocity dust impacts on a spacecraft body by electric field instruments have been reported by several missions such as Voyager, WIND, Cassini, STEREO. The mechanism of this detection is still not completely understood and is under intensive laboratory investigation. A commonly accepted theory is based on re-collection of plasma cloud particles generated by a hypervelocity dust impact by a spacecraft surface and an electric field antenna resulting in a fast change in the potential of the spacecraft body and antenna. These changes can be detected as a short pulse measured by the electric field instrument. We present the first detection of dust impacts on the Earth-orbiting MMS and Cluster satellites. Each of the four MMS spacecraft provide probe-to-spacecraft potential measurements for their respective the six electric field antennas. This gives a unique view on signals generated by dust impacts and allow their reliable identification which is not possible for example on the Cluster spacecraft. We discuss various instrumental effects and solitary waves, commonly present in the Earth's magnetosphere, which can be easily misinterpreted as dust impacts. We show the influence of local plasma environment on dust impact detection for satellites crossing various regions of the Earth's magnetosphere where the concentration and the temperature of plasma particles change significantly.

  6. Hypervelocity impact effect of molecules from Enceladus' plume and Titan's upper atmosphere on NASA's Cassini spectrometer from reactive dynamics simulation.

    Science.gov (United States)

    Jaramillo-Botero, Andres; An, Qi; Cheng, Mu-Jeng; Goddard, William A; Beegle, Luther W; Hodyss, Robert

    2012-11-21

    The NASA/ESA Cassini probe of Saturn analyzed the molecular composition of plumes emanating from one of its moons, Enceladus, and the upper atmosphere of another, Titan. However, interpretation of this data is complicated by the hypervelocity (HV) flybys of up to ~18 km/sec that cause substantial molecular fragmentation. To interpret this data we use quantum mechanical based reactive force fields to simulate the HV impact of various molecular species and ice clathrates on oxidized titanium surfaces mimicking those in Cassini's neutral and ion mass spectrometer (INMS). The predicted velocity dependent fragmentation patterns and composition mixing ratios agree with INMS data providing the means for identifying the molecules in the plume. We used our simulations to predict the surface damage from the HV impacts on the INMS interior walls, which we suggest acts as a titanium sublimation pump that could alter the instrument's readings. These results show how the theory can identify chemical events from hypervelocity impacts in space plumes and atmospheres, providing in turn clues to the internal structure of the corresponding sources (e.g., Enceladus). This may be valuable in steering modifications in future missions.

  7. Hypervelocity microparticle characterization

    Energy Technology Data Exchange (ETDEWEB)

    Idzorek, G.C.

    1996-11-01

    To protect spacecraft from orbital debris requires a basic understanding of the processes involved in hypervelocity impacts and characterization of detectors to measure the space environment. Both require a source of well characterized hypervelocity particles. Electrostatic acceleration of charged microspheres provides such a source. Techniques refined at the Los Alamos National Laboratory provided information on hypervelocity impacts of particles of known mass and velocity ranging from 20-1000 nm diameter and 1-100 km/s. A Van De Graaff generator operating at 6 million volts was used to accelerate individual carbonyl iron microspheres produced by a specially designed particle source. Standard electrostatic lenses and steering were used to control the particles flight path. Charge sensitive pickoff tubes measured the particle charge and velocity in- flight without disturbing the particle. This information coupled with the measured Van De Graaff terminal voltage allowed calculation of the particle energy, mass, momenta and (using an assumed density) the size. Particles with the desired parameters were then electrostatically directed to a target chamber. Targets used in our experiments included cratering and foil puncture targets, microphone momentum enhancement detectors, triboluminescent detectors, and ``splash`` charge detectors. In addition the system has been used to rapidly characterize size distributions of conductive plastic particles and potentially provide a method of easily sorting microscopic particles by size.

  8. Identification of minerals and meteoritic materials via Raman techniques after capture in hypervelocity impacts on aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, M J; Mann, J; Creighton, J A; Kearsley, A; Graham, G A; Esposito, A P; Franchi, I A; Westphal, A J; Snead, C

    2004-10-04

    For this study, an extensive suite of mineral particles analogous to components of cosmic dust were tested to determine if their Raman signatures can be recognized after hypervelocity capture in aerogel. The mineral particles were mainly of greater than 20 micrometers in size and were accelerated onto the silica aerogel by light gas gun shots. It was found that all the individual minerals captured in aerogel could be subsequently identified using Raman (or fluorescent) spectra. The beam spot size used for the laser illumination was of the order of 5 micrometers, and in some cases the captured particles were of a similar small size. In some samples fired into aerogel there was observed a shift in the wavenumbers of some of the Raman bands, a result of the trapped particles being at quite high temperatures due to heating by the laser. Temperatures of samples under laser illumination were estimated from the relative intensities of Stokes and anti-Stokes Raman bands, or, in the case of ruby particles, from the wavenumber of fluorescence bands excited by the laser. It was found that the temperature of particles in aerogel varied greatly, dependent upon laser power and the nature of the particle. In the worst case, some particles were shown to have temperatures in the 500-700 C range at a laser power of about 3 mW at the sample. However most of the mineral particles examined at this laser power had temperatures below 200 C. This is sufficiently low a temperature not to damage most materials expected to be found captured in aerogel in space. In addition, selected meteorite samples were examined to obtain Raman signatures of their constituent minerals and were then shot into aerogel. It was possible to find several Raman signatures after capture in aerogel and obtain a Raman map of a whole grain in situ in the aerogel. Finally, a Raman analysis was carried out of a particle captured in aerogel in space and carbonaceous material identified. In general therefore it is

  9. Impact of Flight Enthalpy, Fuel Simulant, and Chemical Reactions on the Mixing Characteristics of Several Injectors at Hypervelocity Flow Conditions

    Science.gov (United States)

    Drozda, Tomasz G.; Baurle, Robert A.; Drummond, J. Philip

    2016-01-01

    conditions. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared to the values obtained from RAS under the true enthalpy conditions and using helium and hydrogen. Finally, the impact of combustion on mixing, often deemed small enough to neglect at hypervelocity conditions, is assessed by comparing the results obtained from the hydrogen-fueled reacting and non-reacting RAS. For reacting flows, in addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also considered. In all of the simulations, the incoming air Mach number and the fuel-to-air ratio are the same, while the total pressure, total enthalpy, and the fuel simulant vary depending on the case considered. It is found that under some conditions the "cold" flow experiments are a good approximation of the flight.

  10. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    Science.gov (United States)

    Rose, M. F.; Best, S.; Chaloupka, T.; Stephens, B.; Crawford, G.

    1993-01-01

    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry.

  11. Experimental Hypervelocity Dust Impact in Olivine: FIB/TEM Characterization of Micron-Scale Craters with Comparison to Natural and Laser-Simulated Small-Scale Impact Effects

    Science.gov (United States)

    Christoffersen, R.; Loeffler, M. J.; Rahman, Z.; Dukes, C.; IMPACT Team

    2017-01-01

    The space weathering of regoliths on airless bodies and the formation of their exospheres is driven to a large extent by hypervelocity impacts from the high relative flux of micron to sub-micron meteoroids that comprise approximately 90 percent of the solar system meteoroid population. Laboratory hypervelocity impact experiments are crucial for quantifying how these small impact events drive space weathering through target shock, melting and vaporization. Simulating these small scale impacts experimentally is challenging because the natural impactors are both very small and many have velocities above the approximately 8 kilometers-per-second limit attainable by conventional chemical/light gas accelerator technology. Electrostatic "dust" accelerators, such as the one recently developed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS), allow the experimental velocity regime to be extended up to tens of kilometers-per-second. Even at these velocities the region of latent target damage created by each impact, in the form of microcraters or pits, is still only about 0.1 to 10 micrometers in size. Both field-emission analytical scanning electron microscopy (FE-SEM) and advanced field-emission scanning transmission electron microscopy (FE-STEM) are uniquely suited for characterizing the individual dust impact sites in these experiments. In this study, we have used both techniques, along with focused ion beam (FIB) sample preparation, to characterize the micrometer to nanometer scale effects created by accelerated dust impacts into olivine single crystals. To our knowledge this work presents the first TEM-scale characterization of dust impacts into a key solar system silicate mineral using the CCLDAS facility. Our overarching goal for this work is to establish a basis to compare with our previous results on natural dust-impacted lunar olivine and laser-irradiated olivine.

  12. First Principles Based Reactive Atomistic Simulations to Understand the Effects of Molecular Hypervelocity Impact on Cassini's Ion and Neutral Mass Spectrometer

    Science.gov (United States)

    Jaramillo-Botero, A.; Cheng, M-J; Cvicek, V.; Beegle, Luther W.; Hodyss, R.; Goddard, W. A., III

    2011-01-01

    We report here on the predicted impact of species such as ice-water, CO2, CH4, and NH3, on oxidized titanium, as well as HC species on diamond surfaces. These simulations provide the dynamics of product distributions during and after a hypervelocity impact event, ionization fractions, and dissociation probabilities for the various species of interest as a function of impact velocity (energy). We are using these results to determine the relevance of the fragmentation process to Cassini INMS results, and to quantify its effects on the observed spectra.

  13. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures

    Science.gov (United States)

    Ryan, S.; Schaefer, F.; Destefanis, R.; Lambert, M.

    During a recent experimental test campaign performed in the framework of ESA Contract 16721, the ballistic performance of multiple satellite-representative Carbon Fibre Reinforced Plastic (CFRP)/Aluminium honeycomb sandwich panel structural configurations (GOCE, Radarsat-2, Herschel/Planck, BeppoSax) was investigated using the two-stage light-gas guns at EMI. The experimental results were used to develop and validate a new empirical Ballistic Limit Equation (BLE), which was derived from an existing Whipple-shield BLE. This new BLE provided a good level of accuracy in predicting the ballistic performance of stand-alone sandwich panel structures. Additionally, the equation is capable of predicting the ballistic limit of a thin Al plate located at a standoff behind the sandwich panel structure. This thin plate is the representative of internal satellite systems, e.g. an Al electronic box cover, a wall of a metallic vessel, etc. Good agreement was achieved with both the experimental test campaign results and additional test data from the literature for the vast majority of set-ups investigated. For some experiments, the ballistic limit was conservatively predicted, a result attributed to shortcomings in correctly accounting for the presence of high surface density multi-layer insulation on the outer facesheet. Four existing BLEs commonly applied for application with stand-alone sandwich panels were reviewed using the new impact test data. It was found that a number of these common approaches provided non-conservative predictions for sandwich panels with CFRP facesheets.

  14. Characterizing Hypervelocity Impact (HVI-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear

    Directory of Open Access Journals (Sweden)

    Menglong Liu

    2017-05-01

    Full Text Available Hypervelocity impact (HVI, ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region, a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation, which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence.

  15. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B. C.; Melosh, H. J. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Thebault, P. [LESIA, Observatoire de Paris, F-92195 Meudon Principal Cedex (France); Henning, W. G. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Gaidos, E. [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Elkins-Tanton, L. T. [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Bridges, J. C. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Morlok, A., E-mail: johns477@purdue.edu [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2012-12-10

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10{sup 19} kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at {approx}6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that {approx}10{sup 47} molecules of SiO vapor are needed to explain an emission feature at {approx}8 {mu}m in the Spitzer IRS spectrum of HD 172555. We find that unless there are {approx}10{sup 48} atoms or 0.05 M{sub Circled-Plus} of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the {approx}8 {mu}m feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  16. Excess of L-alanine in amino acids synthesized in a plasma torch generated by a hypervelocity meteorite impact reproduced in the laboratory

    Science.gov (United States)

    Managadze, George G.; Engel, Michael H.; Getty, Stephanie; Wurz, Peter; Brinckerhoff, William B.; Shokolov, Anatoly G.; Sholin, Gennady V.; Terent'ev, Sergey A.; Chumikov, Alexander E.; Skalkin, Alexander S.; Blank, Vladimir D.; Prokhorov, Vyacheslav M.; Managadze, Nina G.; Luchnikov, Konstantin A.

    2016-10-01

    We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

  17. Excess of L-Alanine in Amino Acids Synthesized in a Plasma Torch Generated by a Hypervelocity Meteorite Impact Reproduced in the Laboratory

    Science.gov (United States)

    Managadze, George G.; Engle, Michael H.; Getty, Stephanie A.; Wurz, Peter; Brinckerhoff, William B.; Shokolov, Anatoly; Sholin, Gennady; Terent'ev, Sergey A.; Chumikov, Alexander E.; Skalkin, Alexander S

    2016-01-01

    We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

  18. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2015 Geminid Meteor Shower

    Science.gov (United States)

    Moser, D. E.; Suggs, R. M.; Ehlert, S. R.

    2017-01-01

    Meteoroids cannot be observed directly because of their small size. In-situ measurements of the meteoroid environment are rare and have very small collecting areas. The Moon, in contrast, has a large collecting area and therefore can be used as a large meteoroid detector for gram-kilogram sized particles. Meteoroids striking the Moon create an impact flash observable by Earth-based telescopes. Their kinetic energy is converted to luminous energy with some unknown luminous efficiency ?(v), which is likely a function of meteoroid velocity (among other factors). This luminous efficiency is imperative to calculating the kinetic energy and mass of the meteoroid, as well as meteoroid fluxes, and it cannot be determined in the laboratory at meteoroid speeds and sizes due to mechanical constraints. Since laboratory simulations fail to resolve the luminous efficiency problem, observations of the impact flash itself must be utilized. Meteoroids associated with specific meteor showers have known speed and direction, which simplifies the determination of the luminous efficiency. NASA has routinely monitored the Moon for impact flashes since early 2006 [1]. During this time, several meteor showers have produced multiple impact flashes on the Moon, yielding a sufficient sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. [2, 3] and further described by Moser et al. [4], utilizing Earth-based measurements of the shower flux and mass index. The Geminid meteor shower has produced the most impact flashes in the NASA dataset to date with over 80 detections. More than half of these Geminids were recorded in 2015 (locations pictured in Fig. 1), and may represent the largest single-shower impact flash sample known. This work analyzes the 2015 Geminid lunar impacts and calculates their luminous efficiency. The luminous efficiency is then applied to calculate the kinetic energies and mass-es of these shower

  19. Experimental hypervelocity impact into quartz sand. II - Effects of gravitational acceleration

    Science.gov (United States)

    Gault, D. E.; Wedekind, J. A.

    1977-01-01

    Experimental results for craters formed by aluminum spheres impacting at normal incidence against quartz sand targets in gravitational acceleration environments ranging from 0.073 to 1.0 g (g = 980 cm/sq sec) are reported. Impact velocities varied from 0.4 to 8.0 km/sec. Crater dimensions and formation times are compared with results from a simplified dimensional analysis of the cratering processes. Although the comparison indicates a dominant role of gravity relative to the target strength for craters formed in sand, the results serve primarily to emphasize that both gravity and strength are variables of fundamental significance to cratering processes.

  20. Successful Development of the Long-Test-Duration Hypervelocity Detonation-Driven Shock Tunnel

    Science.gov (United States)

    Jiang, Z. L.; Yu, H. R.

    The hypersonic technology is one of the key issues for future aerospace industries, and hypersonic physics is a challenging topic in gas dynamics research area [1]. The hypersonic test facility being capable of duplicating hypersonic flight conditions is the most important tool not only for developing hypersonic vehicles, but also for promoting the fundamental study on high temperature gas flows. Advanced hypersonic test facilities have been developed for more than 50 years [2], but there is still a lack of the facility for generating high-enthalpy flows with a Mach number higher than 7 for hypersonic propulsion due to huge technological barriers in wind tunnel techniques, especially for facility damages due to severe heat transfer problems [3].

  1. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2015 Geminid Meteor Shower

    Science.gov (United States)

    Moser, D. E.; Suggs, R. M.; Ehlert, S. R.

    2017-01-01

    Since early 2006 the Meteoroid Environment Office (MEO) at NASA's Marshall Space Flight Center has routinely monitored the Moon for impact flashes produced by meteoroids striking the lunar surface. Activity from the Geminid meteor shower (EM) was observed in 2015, resulting in the detection of 45 lunar impact flashes (roughly 10% of the NASA dataset), in about 10 hours of observation with peak R magnitudes ranging from 6.5 to 11. A subset of 30 of these flashes, observed 14-15 December, was analyzed in order to determine the luminous efficiency, the ratio of emitted luminous energy to the meteoroid's kinetic energy. The resulting luminous efficiency, found to range between n = 1.8 x 10(exp -4) and 3.3 x 10(exp -3), depending on the assumed mass index and flux, was than applied to calculate the masses of Geminid meteoroids striking the Moon in 2015.

  2. Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta

    Science.gov (United States)

    Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.

    1975-01-01

    Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.

  3. Particle Size Distrbution in an Experimental Hypervelocity Impact on Dry Sandstone.

    Science.gov (United States)

    Buhl, Elmar; Poelchau, Michael H.; Deutsch, Alex; Kenkmann, Thomas; Dresen, Georg

    2013-04-01

    The particle size distribution (PSD) is a frequently used parameter to describe the deformation-induced fragmentation of fault rocks. It has been shown that resulting particle sizes may be described by a power law (fractal) size distribution: N(d) ~ dD where N(d) is the number of particles larger than diameter d, and D is the D-value. PSDs reported for impact deformation are still very few. D-values for natural and experimental impacts have been reported to range between 1.2-1.8 and 1.4-1.7, respectively. Here we show the systematic distribution of the PSD in the subsurface of an experimental impact crater. The investigated experiment was performed in the framework of the MEMIN project [1]. A 20 cm cube of quartz-rich sandstone (Seeberger Sandstein) was impacted by a 2.5 mm steel sphere at 4.8 km/s, producing a crater of 5.76 cm diameter and 11.0 mm depth [2]. For sample preparation the crater was impregnated with epoxy and the block was bisected. Thin sections were prepared from the crater sub-surface. Backscattered electron (BSE) micro-analysis was conducted by means of a Zeiss Leo 1525 Scanning Electron Microscope. A succession of 20 images (400x magnification) with increasing distance from the crater floor was analyzed. The image analysis software JMicrovision was used for automated object extraction. Area and perimeter of all detected particles were exported and used for PSD analysis. The obtained PSD were fit with a linear function in a log-log plot over at least one order of magnitude in diameter indicating that the PSD follows a power law relationship N(d) ~ dD. The distinct modes of deformation in the crater sub-surface [3] are closely linked to the fracture pattern and thus with the D-value. As expected, comminution was most effective closest to the crater floor. The highest D-value of 1.74 was found at a depth of 0.26-1.07 mm beneath the crater floor. Thus the largest fraction of fine material is situated in there. With growing distance the D-values drop

  4. Risk Assessment of Cassini Sun Sensor Integrity Due to Hypervelocity Impact of Saturn Dust Particles

    Science.gov (United States)

    Lee, Allan Y.

    2016-01-01

    A sophisticated interplanetary spacecraft, Cassini is one of the heaviest and most sophisticated interplanetary spacecraft humans have ever built and launched. Since achieving orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for first and second extended missions through September 2017. In late 2016, the Cassini spacecraft will begin a daring set of ballistic orbits that will hop the rings and dive between the upper atmosphere of Saturn and its innermost D-ring twenty-two times. The "dusty" environment of the inner D-ring region the spacecraft must fly through is hazardous because of the possible damage that dust particles, travelling at speeds as high as 31.4 km/s, can do to spacecraft hardware. During hazardous proximal ring-plane crossings, the Cassini mission operation team plans to point the high-gain antenna to the RAM vector in order to protect most of spacecraft instruments from the incoming energetic ring dust particles. However, this particular spacecraft attitude will expose two Sun sensors (that are mounted on the antenna dish) to the incoming dust particles. High-velocity impacts on the Sun sensor cover glass might penetrate the 2.54-mm glass cover of the Sun sensor. Even without penetration damage, craters created by these impacts on the surface of the cover glass will degrade the transmissibility of light through it. Apart from being directly impacted by the dust particles, the Sun sensors are also threatened by some fraction of ricochet ejecta that are produced by dust particle impacts on the large antenna dish (made of graphite fiber epoxy composite material). Finally, the spacecraft attitude control system must cope with disturbances due to both the translational and angular impulses imparted on the large antenna dish and the long magnetometer boom by the incoming high-velocity projectiles. Analyses performed to quantify the risks the Sun sensors must contend

  5. Aerogel Keystones: Extraction Of Complete Hypervelocity Impact Events From Aerogel Collectors

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, A J; Snead, C; Butterworth, A; Graham, G A; Bradley, J; Bajt, S; Grant, P G; Bench, G; Brennan, S; Piannetta, P

    2003-11-07

    In January 2006, the Stardust mission will return the first samples from a solid solar-system body since Apollo, and the first samples of contemporary interstellar dust ever collected. Although sophisticated laboratory instruments exist for the analysis of Stardust samples, techniques for the recovery of particles and particle residues from aerogel collectors remain primitive. Here we describe our recent progress in developing techniques for extracting small volumes of aerogel, which we have called ''keystones,'' which completely contain particle impacts but minimize the damage to the surrounding aerogel collector. These keystones can be fixed to custom-designed micromachined silicon fixtures (so-called ''microforklifts''). In this configuration the samples are self-supporting, which can be advantageous in situations in which interference from a supporting substrate is undesirable. The keystones may also be extracted and placed onto a substrate without a fixture. We have also demonstrated the capability of homologously crushing these unmounted keystones for analysis techniques which demand flat samples.

  6. A ballistic limit equation for hypervelocity impacts on CFRP Al H/C satellite structures

    Science.gov (United States)

    Ryan, S.; Schäfer, F.; Destefanis, R.; Lambert, M.

    Composite sandwich panels consisting of Carbon Fiber Reinforced Plastic facesheets bonded to Aluminum honeycomb cores CFRP Al H C SP are amongst the most commonly used structures for satellites due to their relative low mass and high thermal and mechanical stability To assess the threat of micrometeoroid orbital debris M OD on a satellite mission equations which define the limits of structural perforation in terms of impactor mass velocity and angle are required This type of equation is referred to as a Ballistic Limit Equation BLE There is presently no validated BLE existing for application in the risk assessment of CFRP Al H C SP structures During a recent experimental test campaign performed in the framework of ESA Contract 16721 e g 1 using EMI s two-stage light-gas guns the ballistic performance of multiple representative CFRP Al HC SP structural configurations GOCE Radarsat-2 Herschel Planck BeppoSax was investigated The experimental results have been used to adjust and validate a new empirical BLE derived from an existing Whipple Shield BLE which provides a significant improvement in the accuracy of ballistic performance prediction over existing techniques Additionally the equation is capable of predicting the ballistic limit of an Electronic-box representative structure located behind the structural wall Good agreement with the experimental results is achieved for the vast majority of test set-ups For some set-ups the ballistic limit was conservatively predicted however this is attributed to the additional

  7. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris.

    Science.gov (United States)

    Kawai, Nobuaki; Tsurui, Kenji; Hasegawa, Sunao; Sato, Eiichi

    2010-11-01

    A single microparticle launching method is described to simulate the hypervelocity impacts of micrometeoroids and microdebris on space structures at the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency. A microparticle placed in a sabot with slits is accelerated using a rifled two-stage light-gas gun. The centrifugal force provided by the rifling in the launch tube separates the sabot. The sabot-separation distance and the impact-point deviation are strongly affected by the combination of the sabot diameter and the bore diameter, and by the projectile diameter. Using this method, spherical projectiles of 1.0-0.1 mm diameter were launched at up to 7 km/s.

  8. High-pressure mineral phases of olivine (Mg2SiO4) formed by pre-compression followed by laser-driven hypervelocity shock impact

    Science.gov (United States)

    Turner, A. A.; Tschauner, O. D.; Zaug, J. M.; Stavrou, E.; Armstrong, M.

    2016-12-01

    Understanding high-pressure phase transitions of olivine is a growing sphere of interest for Geoscientists, as olivine is an abundant mineral in the upper mantle of the Earth as well as pre-shocked meteorites. Knowledge of extreme condition olivine chemistry will provide insight into the process of shock metamorphism, which alters the composition and texture of materials during bolide impact and under extreme terrestrial conditions. The intention of investigating olivine under high pressures is to determine under what conditions the silicate spinel Ringwoodite (γ-Mg2SiO4), a high-pressure phase of olivine, is synthesized in shock-metamorphosed meteorites and to explore the nature of olivine beyond the phase boundary of Ringwoodite. Queries posed for these experiments focus primarily on what possible phases form as the result of compressing olivine to pressures above the 40 GPa, the likelihood of those phases to be conserved upon shock release, and what retrograde transformation products could possibly be generated from olivine under such pressures. Two independent endmember specimens (forsterite) of single crystal olivine (Mg2SiO4) were coated with 2.5 µm of aluminum and pre-compressed to 25 and 35 GPa, respectively in a diamond anvil cell. Lithium fluoride served as the pressure-transmitting medium. The specimens were then exposed to a laser-driven hypervelocity shock impact (400 picosecond duration) in order to investigate what phases if any form under more extreme pressures and dynamic stress states. The addition of laser-driven hypervelocity shock added 18 GPa of pressure to the pre-compressed samples, for a total of 43 and 53 GPa, respectively. From the analysis of the x-ray diffraction (XRD) measurements, it was determined that the olivine underwent a reduction of silicon and oxidation of the aluminum coating. These are fascinating observations revealed from a combined static and shock compression experiment. This work was performed under the auspices of

  9. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  10. Sensitivity of dual-wall structures under hypervelocity impact to multi-layer thermal insulation thickness and placement

    Science.gov (United States)

    Schonberg, William P.

    1993-01-01

    Results are presented from an experimental study in which Al dual-wall structures were tested, under various high-speed impact conditions, with a view to the effect of multilayer insulation thickness and location on perforation resistance. Attention is given to comparisons of the damage sustained by dual-wall systems with multilayer insulation blankets of various thicknesses and at various locations within the dual-wall system, under comparable impact loading conditions. The placement of the insulation has a significant effect on the ballistic limit of the dual-wall structures considered, while reducing insulation thickness by as much as a third did not.

  11. Investigation of Orbital Debris Impacts on Shuttle Radiator Panels

    Science.gov (United States)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Kerr, Justin H.; Lyons, Frankel; Herrin, Jason H.; Ryan, Shannon J.

    2009-01-01

    This paper documents the data collected from two hypervelocity micro-meteoroid orbital debris (MMOD) impact events where the shuttle payload bay door radiator sandwich panel was completely perforated. Scanning Electron Microscope/Energy-Dispersive x-ray Spectroscopy (SEM/EDS) analysis of impact residue provided evidence to identify the source of each impact. Impact site features that indicate projectile directionality are discussed, along with hypervelocity impact testing on representative samples conducted to simulate the impact event. The paper provides results of a study of impact risks for the size of particles that caused the MMOD damage and the regions of the orbiter vehicle that would be vulnerable to an equivalent projectile

  12. Momentum Enhancement from Hypervelocity Crater Ejecta: Implications for the AIDA Target

    Science.gov (United States)

    Flynn, G. J.; Durda, D. D.; Patmore, E. B.; Jack, S. J.; Molesky, M. J.; Strait, M. M.; Macke, R. M.

    2017-09-01

    We performed hypervelocity impact cratering of porous meteorites and terrestrial pumice and found higher values of the momentum enhancement factor due to ejecta than found in hydrocode modeling. This has important implications for kinetic impact deflection of small, hazardous asteroids and on the Asteroid Impact and Deflection Assessment mossion.

  13. The NASA Ames Hypervelocity Free Flight Aerodynamic Facility: Experimental Simulation of the Atmospheric Break-Up of Meteors

    Science.gov (United States)

    Wilder, M. C.; Bogdanoff, D. W.

    2015-01-01

    The Hypervelocity Free Flight Aerodynamic Facility at NASA Ames Research Center provides a potential platform for the experimental simulation of meteor breakup at conditions that closely match full-scale entry condition for select parameters. The poster describes the entry environment simulation capabilities of the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center and provides example images of the fragmentation of a hypersonic projectile for which break-up was initiated by mechanical forces (impact with a thin polymer diaphragm).

  14. Hypervelocity orbital intercept guidance using certainty control

    Science.gov (United States)

    Alfano, Salvatore; Fosha, Charles E., Jr.

    1991-06-01

    Terminal guidance of a hypervelocity exoatmospheric orbital interceptor with free end time is examined. A new approach called certainty control is developed where control energy expenditure is reduced by constraining the expected final state to a function of projected estimate error. Conceptually, the constraint produces a shrinking sphere about the predicted impact point with the radius being a function of estimated error. If the predicted miss is inside or touching the sphere, thrusting is not necessary. The interceptor is modeled as a satellite with lateral thrusting capability using two-body orbital dynamics. The target is modeled as an intercontinental ballistic missile (IBM) in its final boost phase prior to burnout. Filtering is accomplished using an eight-state extended Kalman filter with line-of-sight and range updates. The estimated relative trajectory and variances are propagated numerically to predicted impact time and then approximated by splines, eliminating the need to propagate new data repeatedly when present conditions are varied. A search is then made for a new impact time and point that will minimize present interceptor velocity changes and final mass distance. This control strategy, which is applied to two intercept problems, substantially reduces fuel consumption.

  15. Dynamic impact testing with servohydraulic testing machines

    Science.gov (United States)

    Bardenheier, R.; Rogers, G.

    2006-08-01

    The design concept of “Crashworthiness” requires the information on material behaviour under dynamic impact loading in order to describe and predict the crash behaviour of structures. Especially the transport related industries, like car, railway or aircraft industry, pursue the concept of lightweight design for a while now. The materials' maximum constraint during loading is pushed to permanently increasing figures. This means in terms of crashworthiness that the process of energy absorption in structures and the mechanical behaviour of materials must well understood and can be described appropriately by material models. In close cooperation with experts from various industries and research institutes Instron has developed throughout the past years a new family of servohydraulic testing machines specifically designed to cope with the dynamics of high rate testing. Main development steps are reflected versus their experimental necessities.

  16. Hybrid Guidance Control for a Hypervelocity Small Size Asteroid Interceptor Vehicle

    Science.gov (United States)

    Zebenay, Melak M.; Lyzhoft, Joshua R.; Barbee, Brent W.

    2017-01-01

    Near-Earth Objects (NEOs) are comets and/or asteroids that have orbits in proximity with Earth's own orbit. NEOs have collided with the Earth in the past, which can be seen at such places as Chicxulub crater, Barringer crater, and Manson crater, and will continue in the future with potentially significant and devastating results. Fortunately such NEO collisions with Earth are infrequent, but can happen at any time. Therefore it is necessary to develop and validate techniques as well as technologies necessary to prevent them. One approach to mitigate future NEO impacts is the concept of high-speed interceptor. This concept is to alter the NEO's trajectory via momentum exchange by using kinetic impactors as well as nuclear penetration devices. The interceptor has to hit a target NEO at relative velocity which imparts a sufficient change in NEO velocity. NASA's Deep Impact mission has demonstrated this scenario by intercepting Comet Temple 1, 5 km in diameter, with an impact relative speed of approximately 10 km/s. This paper focuses on the development of hybrid guidance navigation and control (GNC) algorithms for precision hypervelocity intercept of small sized NEOs. The spacecraft's hypervelocity and the NEO's small size are critical challenges for a successful mission as the NEO will not fill the field of view until a few seconds before intercept. The investigation needs to consider the error sources modeled in the navigation simulation such as spacecraft initial state uncertainties in position and velocity. Furthermore, the paper presents three selected spacecraft guidance algorithms for asteroid intercept and rendezvous missions. The selected algorithms are classical Proportional Navigation (PN) based guidance that use a first order difference to compute the derivatives, Three Plane Proportional Navigation (TPPN), and the Kinematic Impulse (KI). A manipulated Bennu orbit that has been changed to impact Earth will be used as a demonstrative example to compare the

  17. Study of the Transformation of Meteoritic Organics during Hypervelocity Impacts in Support of Characterisation of Exogenous Organic Matter on the Surface of Icy Satellites

    Science.gov (United States)

    Zaitsev, Maxim; Gerasimov, Mikhail; Ivanova, Marina; Lorenz, Cyril; Aseev, Sergey; Korochantsev, Alexander

    The main goal of the planned missions to Jupiter's Galilean satellites Ganymede or Europa is the search for extraterrestrial life which can be reviled by characterization of surface organics at the landing site. Planets and satellites are exposed for steady meteoritic and cometary bombardment which delivers exogenous organic species. The exogenous organic matter on the satellites surfaces can be represented by both unaltered organic matter of meteorites and comets, and by organic matter which is synthesized from organic and/or mineral components of falling bodies during the impacts. Adequate interpretation of volatile organic compounds (VOCs) on the surface of Ganymede or Europa must take into account the presence of exogenous organic matter described above. The quantitative composition of exogenous organics is difficult to predict because it depends on the frequency of meteoritic/cometary bombardment, conditions and efficiency of organic synthesis in water mantle below the ice crust, speed of the ice crust renovation, and other factors. However, the qualitative composition of exogenous organics can be described through the study of organic matter in different classes of meteorites and products of their shock-evaporative transformation. We have carried out comparative studies of VOCs - products of pyrolysis of carbonaceous chondrites and condensed products of their high-temperature transformation in simulated shock-induced evaporation by pulse laser. We have investigated VOCs in samples of carbonaceous CM2 and CO3 chondrites (Murchison and Kainsaz respectively) and in condensed products of their high-temperature evaporation in neutral (helium) atmosphere using pyrolytic gas chromatography coupled with mass spectrometry (Pyr-GC/MS) [1, 2]. Condensates contained the same hydrocarbons that we extracted at 460(°) C from the bulk samples of meteorites (aliphatic, alicyclic and aromatic hydrocarbons) but sufficiently larger amount of nitrogen-containing compounds

  18. Examination of Steel Specimens Impacted at Hypervelocity

    Science.gov (United States)

    1975-06-01

    However, the shock velocity in lead is lower, thus requiring smaller lead projectiles to give the same shock reverberation time as for an iron...X10xl0I xl0I xl010 p is in gm/cm3 C/Po, 2D/Po, and 3S/P are in ergs/gm and where o andthe remaining quantities are in mm/psec. The reverberation time is

  19. Molecular dynamics simulation of impact test

    Energy Technology Data Exchange (ETDEWEB)

    Akahoshi, Y. [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan); Schmauder, S.; Ludwig, M. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1998-11-01

    This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)

  20. Repeatability and uncertainty analyses of NASA/MSFC light gas gun test data

    Science.gov (United States)

    Schonberg, William P.; Cooper, David

    1993-01-01

    This Final Report presents an overview of the impact tests performed at NASA/MSFC in the time period 1985 to 1991 and the results of phenomena repeatability and data uncertainty studies performed using the information obtained from those tests. An analysis of the data from over 400 tests conducted between 1989 and 1991 was performed to generate a database to supplement the Hypervelocity Impact Damage Database developed under a previous effort.

  1. Exobiology: Laboratory tests of the impact related aspects of Panspermia

    Science.gov (United States)

    Burchell, M. J.; Shrine, N. R. G.; Bunch, A.; Zarnecki, J. C.

    The idea that life began elsewhere and then naturally migrated to the Earth is known as Panspermia. One such possibility is that life is carried on objects (meteorites, comets and dust) that arrive at the Earth. The life (bacteria) is then presumed to survive the sudden deceleration and impact, and then subsequently develop here on Earth. This step, the survivability of bacteria during the deceleration typical of an object arriving at Earth from space, is studied in this paper. To this end a two-stage light gas gun was used to fire projectiles coated with bacteria into a variety of targets at impact speeds of 3.8 to 4.9 km s-1. Targets used were rock, glass, metal and aerogel (density 100 kg m-3). Various techniques were used to search for bacteria that had transferred to the target material during the impact. These included taking cultures from the target crater and ejecta, and use of fluorescent dyes to mark sites of live bacteria. So far only one sample has shown a signal for bacteria surviving an impact. This was for bacteria cultured from the ejecta spalled from a rock surface during an impact. However, this result needs to be repeated before any firm claims can be made for bacteria surviving a hypervelocity impact event.

  2. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    Science.gov (United States)

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10-7 torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10-10 torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  3. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Collette, Andrew; Drake, Keith; Northway, Paige [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Gruen, Eberhard [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Mocker, Anna [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Munsat, Tobin [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Srama, Ralf [MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); and others

    2012-07-15

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  4. 30 CFR 7.46 - Impact test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force of...

  5. Charpy Impact Test on Polymeric Molded Parts

    Directory of Open Access Journals (Sweden)

    Alexandra Raicu

    2012-09-01

    Full Text Available The paper presents the Charpy impact tests on the AcrylonitrileButadiene-Styrene (ABS polymeric material parts. The Charpy impact test, also known as the Charpy V-notch test, is a standardized strain rate test which determines the amount of energy absorbed by a material during fracture. This is a typical method described in ASTM Standard D 6110. We use for testing an Instron - Dynatup equipment which have a fully integrated hardware and software package that let us capture load information at very high speed from the impact tests.

  6. The True Origin of Hypervelocity Stars

    Science.gov (United States)

    Gnedin, Oleg

    2011-10-01

    We propose to obtain WFC3 images of 4 hypervelocity stars in the Galactic halo, in order to conclusively establish their origin. This will be a final epoch of a long-term program to measure precise proper motions in an absolute inertial frame. The origin of these unique stars with extremely large positive radial velocities, in excess of the escape speed from the Galaxy, is consistent only with being ejected by the massive black hole at the Galactic center. Reconstructing the full three-dimensional space motion of these stars, through astrometric proper motions, provides a unique opportunity to measure the shape of the triaxial dark matter halo, at larger distances than is afforded by tidal streams. In Cycles 15 and 17 our team obtained two epochs of observations for these stars with ACS. The accuracy of the proper motion measurement was affected by the CTE degradation in ACS and the unexpected change in the PSF after SM4. The CTE error of HVS3 was unfortunately amplified by the need to use different guide stars and take the second-epoch observations at a 180 degree different orientation. We request third-epoch observations for 4 targets with WFC3 to double the proper motion baseline to 5-6 years and to reduce the systematic error using our newly-developed CTE correction. The new measurement will conclusively confirm or reject the Galactocentric origin of HVSs.

  7. Impact testing of textile composite materials

    Science.gov (United States)

    Portanova, Marc

    1995-01-01

    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  8. Tests of the Giant Impact Hypothesis

    Science.gov (United States)

    Jones, J. H.

    1998-01-01

    The giant impact hypothesis has gained popularity as a means of explaining a volatile-depleted Moon that still has a chemical affinity to the Earth. As Taylor's Axiom decrees, the best models of lunar origin are testable, but this is difficult with the giant impact model. The energy associated with the impact would be sufficient to totally melt and partially vaporize the Earth. And this means that there should he no geological vestige of Barber times. Accordingly, it is important to devise tests that may be used to evaluate the giant impact hypothesis. Three such tests are discussed here. None of these is supportive of the giant impact model, but neither do they disprove it.

  9. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments.

    Science.gov (United States)

    Wang, Guiji; He, Jia; Zhao, Jianheng; Tan, Fuli; Sun, Chengwei; Mo, Jianjun; Xong, Xin; Wu, Gang

    2011-09-01

    Electrical explosion of metallic foil or wire is widely used to the fields of material science (preparation of nao-meter materials), dynamics of materials, and high energy density physics. In this paper, the techniques of gaining hypervelocity flyer driven by electrical explosion of metallic foil were researched, which are used to study dynamics of materials and hypervelocity impact modeling of space debris. Based on low inductance technologies of pulsed storage energy capacitor, detonator switch and parallel plate transmission lines with solid films insulation, two sets of experimental apparatuses with storage energy of 14.4 kJ and 40 kJ were developed for launching hypervelocity flyer. By means of the diagnostic technologies of velocity interferometer system for any reflectors and fibre-optic pins, the hypervelocity polyester (Mylar) flyers were gained. For the apparatus of 14.4 kJ, flyer of diameter φ6 ~ φ10 mm and thickness of 0.1 ~ 0.2 mm was accelerated to the hypervelocity of 10 ~ 14 km/s. And for the apparatus of 40 kJ, flyer of diameter φ20 ~ 30 mm and thickness of 0.2 mm was launched to the velocity of 5 ~ 8 km/s. The flatness of the flyer is not more than 34 ns for the flyer with diameter of 20 mm, and less than 22 ns for the flyer with diameter of 10 mm. Based on the Lagrange hydrodynamic code, one dimensional simulation was done by introducing database of equation of states, discharging circuit equation and Joule heat equation, and modifying energy equation. The simulation results are well agreed with the experimental results in accelerating processing. The simulation results can provide good advices in designing new experiments and developing new experimental devices. Finally, some experiments of materials dynamics and hypervelocity impact of space debris were done by using the apparatus above. The results show that the apparatus of metallic foil electrically exploding driving hypervelocity flyer is a good and versatile tool for shock dynamics.

  10. The hypervelocity hot subdwarf US 708 - remnant of a double-detonation SN Ia?

    Science.gov (United States)

    Geier, Stephan

    2013-10-01

    Type Ia supernovae {SN Ia} are the most important standard candles for measuring the expansion history of the universe. The thermonuclear explosion of a white dwarf can explain their observed properties, but neither the progenitor systems nor any stellar remnants have been conclusively identified. Underluminous SN Ia have been proposed to originate from a so-called double-detonation of a white dwarf. After a critical amount of helium is deposited on the surface through accretion from a close companion, the helium is ignited causing a detonation wave that triggers the explosion of the white dwarf itself. The helium star will then be ejected at so large a velocity that it will escape the Galaxy. The predicted properties of this remnant are an excellent match to the so-called hypervelocity star US 708, a hot, helium-rich star moving at more than 750 km/s, sufficient to leave the Galaxy.Here we propose medium-resolution COS spectroscopy to measure the vsini of the hypervelocity He-sdO US 708 for the first time and to search for abundance anomalies caused by pollution through an SN Ia event. This will allow us to test the double-detonation scenario with sdB donor empirically.

  11. The Anatomy of a Shock-Boundary Layer Interaction in Hypervelocity Flow

    Science.gov (United States)

    Knisely, Andrew; Swantek, Andrew; Austin, Joanna

    2013-11-01

    We examine laminar shock-boundary layer interaction over a double wedge geometry in hypervelocity flow. The macroscopic features of this configuration have been shown to be sensitive to the thermochemical energy exchange occurring on a molecular scale. In the current work, an expansion tube is used to accelerate air and nitrogen gas to hypervelocity flow conditions (3.8 km/s, 8.0 MJ/kg) over a 30-55 degree double wedge model. To examine the response of the gas dynamic flow features to real gas effects, we ``tune'' the chemical composition (O2 content) of the freestream by varying the relative ratio of nitrogen gas and air in the initial test gas. High speed schlieren and chemiluminescence (100k fps) are used to produce overlaid images that visualize the flow structures and identify regions of increased thermochemical activity. These qualitative data are combined with quantitative, pointwise NO vibrational temperature measurements made in the A-X transition band (220-255 nm) to investigate regions of interest such as behind the bow shock and in the shear layer. A transition in bow shock standoff distance and post-shock temperature profiles is identified at 50% O2 content. The authors would like to acknowledge funding from the U.S. Air Force Office of Scientific Research, grant number FA 9550-11-1-0129, with Dr John Schmisseur as program manager.

  12. Impact sensitivity test of liquid energetic materials

    Science.gov (United States)

    Tiutiaev, A.; Dolzhikov, A.; Zvereva, I.

    2017-10-01

    This paper presents new experimental method for sensitivity evaluation at the impact. A large number of researches shown that the probability of explosion initiating of liquid explosives by impact depends on the chemical nature and the various external characteristics. But the sensitivity of liquid explosive in the presence of gas bubbles increases many times as compared with the liquid without gas bubbles. In this case local chemical reaction focus are formed as a result of compression and heating of the gas inside the bubbles. In the liquid as a result of convection, wave motion, shock, etc. gas bubbles are easily generated, it is necessary to develop methods for determining sensitivity of liquid explosives to impact and to research the explosives ignition with bubbles. For the experimental investigation, the well-known impact machine and the so-called appliance 1 were used. Instead of the metal cup in the standard method in this paper polyurethane foam cylindrical container with liquid explosive was used. Polyurethane foam cylindrical container is easily deforms by impact. A large number of tests with different liquid explosives were made. It was found that the test liquid explosive to impact in appliance 1 with polyurethane foam to a large extent reflect the real mechanical sensitivity due to the small loss of impact energy on the deformation of the metal cup, as well as the best differentiation liquid explosive sensitivity due to the higher resolution method.

  13. Impact microcraters on an Australasian microtektite

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Sudhakar, M.

    has a welded promontory, is unique. The projectiles that produced the impacts defined varying trajectories and velocities, ranging from hypervelocity to low velocity (a few 10 m/s). The impacts took place while the microtektite was in flight...

  14. Hypervelocity Technology Escape System Concepts. Volume 1. Development and Evaluation

    Science.gov (United States)

    1988-07-01

    vigilance 0 Prophylactic ,ledici nes/therapeutic drugs* Stomach awareness Key: HVT = Hypervelocity vehicle DCS = Decompression sickness CNS = Central ...Extrapolated A-V pressure ANpessure presur diffe ~ nce difen .. ~~,~of 80 mm Hg’ -W mmHO .. ,....s........ 40 80 80 100 120 140 180 180 200 RPM Human...thermal control. When the environmental tempe .ature is increased, arterial/ venous shunts are opened In the skin increasing blood flow in these areas

  15. The probability of forming hypervelocity stars in the Galaxy

    Science.gov (United States)

    Dremova, G. N.; Dremov, V. V.; Orlov, V. V.; Tutukov, A. V.; Shirokova, K. S.

    2015-11-01

    The probability of forming a Galactic hypervelocity star is estimated for the scenario of Hills, which describes the dynamical capture of one component of a binary star by the gravitational field of the supermassive black hole in the Galactic center, leading to the ejection of the other component. Ten thousand initial orientations of the binary orbits were considered, and the semi-major axes of the binary orbits were varied in a wide range from 11.3 R ⊙ to 425 R ⊙. Two series of computations were carried out, in which the mass of the supermassive black hole was taken to be 106 M ⊙ and 3.4 × 106 M ⊙. Numerical simulations of encounters of the binary and black hole in the framework of the three-body and N-body problems are used to localize regions favorable for the formation of hypervelocity stars. The motion of the ejected star in the regular field of the Galaxy is calculated, and the conditions under which the star escapes the Galaxy defined. The probability of escaping the Galaxy is caluclated as a function of various parameters the initial separation of the binary components and the distance of the binary from the black hole. On average, the probability of forming a hypervelocity star is higher for closer encounters and more tightly bound binary pairs.

  16. Apollo command module land impact tests

    Science.gov (United States)

    Mccullough, J. E.; Lands, J. F., Jr.

    1972-01-01

    Full-scale-model and actual spacecraft were impact tested to define the emergency land-landing capability of the Apollo command module. Structural accelerations and strains were recorded on analog instrumentation, and a summary to these data is included. The landing kinematics were obtained from high-speed photography. Photographs of the structural damage caused during the tests are included. Even though extensive damage can be expected, the crew will receive nothing more than minor injuries during the majority of the probable landing conditions.

  17. Accelerator experiments with soft protons and hyper-velocity dust particles: application to ongoing projects of future X-ray missions

    DEFF Research Database (Denmark)

    Perinati, E.; Diebold, S.; Kendziorra, E.

    2012-01-01

    We report on our activities, currently in progress, aimed at performing accelerator experiments with soft protons and hyper-velocity dust particles. They include tests of different types of X-ray detectors and related components (such as filters) and measurements of scattering of soft protons...... and hyper-velocity dust particles off X-ray mirror shells. These activities have been identified as a goal in the context of a number of ongoing space projects in order to assess the risk posed by environmental radiation and dust and qualify the adopted instrumentation with respect to possible damage...... or performance degradation. In this paper we focus on tests for the Silicon Drift Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff accelerators at the University of T\\"ubingen and at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper...

  18. Antenna Pattern Impact on MIMO OTA Testing

    DEFF Research Database (Denmark)

    Fan, Wei; Nielsen, Jesper Ødum; Franek, Ondrej

    2013-01-01

    This paper investigates the impact of the DUT antenna pattern on the test area performance for multi-probe based MIMO OTA setup in terms of received voltage and spatial correlation. The plane wave synthesis (PWS) technique has been proposed for vertical polarization in the literature, where...... the goal is to approximate plane waves with arbitrary directions. The received voltage at the antenna terminal depends on the antenna radiation pattern and the impinging plane waves. A novel closed form technique to reproduce the received voltage with arbitrary incoming plane waves based on trigonometric...... of the antenna pattern on spatial correlation accuracy for prefaded signal synthesis (PFS) technique is investigated as well. Simulation and measurement results show that the number of required probes depend directly on the DUT antenna pattern. To test realistic DUTs with higher variations in directivity, we...

  19. Final Results of Shuttle MMOD Impact Database

    Science.gov (United States)

    Hyde, J. L.; Christiansen, E. L.; Lear, D. M.

    2015-01-01

    The Shuttle Hypervelocity Impact Database documents damage features on each Orbiter thought to be from micrometeoroids (MM) or orbital debris (OD). Data is divided into tables for crew module windows, payload bay door radiators and thermal protection systems along with other miscellaneous regions. The combined number of records in the database is nearly 3000. Each database record provides impact feature dimensions, location on the vehicle and relevant mission information. Additional detail on the type and size of particle that produced the damage site is provided when sampling data and definitive spectroscopic analysis results are available. Guidelines are described which were used in determining whether impact damage is from micrometeoroid or orbital debris impact based on the findings from scanning electron microscopy chemical analysis. Relationships assumed when converting from observed feature sizes in different shuttle materials to particle sizes will be presented. A small number of significant impacts on the windows, radiators and wing leading edge will be highlighted and discussed in detail, including the hypervelocity impact testing performed to estimate particle sizes that produced the damage.

  20. Reaction of Projectiles with Targets during Hypervelocity Impact

    Science.gov (United States)

    Russell, Rod; Bless, Stephan; Persad, Chadee; Manthiram, Karthish

    2009-06-01

    Hollow tungsten projectiles were filled with bismuth oxide or copper and shot into aluminum blocks at 2200 m/s. The blocks were cut open, and the contents and morphology of the penetration channels were examined. In the case of copper fill, the channel was found to be filled with a black foam containing closed-cell bubbles. X-ray diffraction revealed the presence of CuAl2, indicating reaction with the aluminum target. In the case of bismuth oxide, there was little foam, but the penetration channel walls had many craters, which contained nodules of bismuth metal, again indicating reaction with the target. There were variations in crater diameter apparently corresponding to the onset and termination of the reactions. The exothermic nature of the reactions produced cracks in the target blocks.

  1. Simulation of melting and vaporization of metals at hypervelocity impact

    Energy Technology Data Exchange (ETDEWEB)

    Povarnitsyn, M E; Khishchenko, K V; Levashov, P R [Joint Institute for High Temperature, Russian Academy of Sciences, 13/19 Izhorskaya, Moscow 125412 (Russian Federation)], E-mail: povar@ihed.ras.ru

    2008-02-15

    Simulations of experiments on shock-induced melting, fragmentation and vaporization in aluminum and zinc targets are presented. A titanium impactor moves at a velocity of 10.4 km/s and causes melting of these materials in a shock wave. Under rarefaction thermodynamic path crosses the liquid-vapor coexistence boundary and enters into metastable liquid region. Liquid in a metastable state may undergo either liquid-vapor phase separation or mechanical fragmentation. Homogeneous nucleation theory and mechanical fragmentation criterion of Grady are taken into account to control the kinetics of these processes in our model. The first effect dominates in the vicinity of the critical point, the second one - at lower temperatures. Analysis of phase transitions and kinetics of phase separation is performed using thermodynamically complete equation of state with allowance for stable and metastable regions for all materials under consideration.

  2. In-Flight Imaging Systems for Hypervelocity and Re-Entry Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to create a rugged, reliable, compact, standardized imaging system for hypervelocity and re-entry vehicles using sapphire windows, small imagers, and...

  3. Instrumented impact testing at high velocities

    Science.gov (United States)

    Delfosse, Daniel; Pageau, Gilles; Bennett, Roger; Poursartip, Anoush

    Impact loading of carbon fiber-reinforced plastic CFRP) aircraft parts is a major concern. Birds or hailstones striking an aircraft generally have a low mass and a high velocity, whereas typically instrumented impact experiments are performed with a high mass and a low velocity. Our aim has been to build an instrumented impact facility with a low-mass projectile capable of simulating these impact events, since there is evidence that a low-velocity impact will not always result in the same amount or even type of damage as a high-velocity impact. This paper provides a detailed description of the instrumented low-mass impact facility at The University of British Columbia (UBC). A gas gun is used to accelerate the instrumented projectile to impact velocities as high as 50 m/s, corresponding to an energy level of 350 J. The contact force during the impact event is measured by an incorporated load cell. The necessary mathematical operations to determine the real load-displacement curves are outlined, and the results of some impact events at different velocities are shown.

  4. Bedside paediatric HIV testing in Malawi: Impact on testing rates ...

    African Journals Online (AJOL)

    Background Provider initiated testing and counselling (PITC) is recommended for all inpatients in Malawi if they have not been tested in the previous 3 months. However testing rates remain low among children. We audited the effect of implementing a bedside diagnostic HIV testing service to determine if it would improve ...

  5. Subsurface deformation in hypervelocity cratering experiments into high-porosity tuffs

    Science.gov (United States)

    Winkler, Rebecca; Poelchau, Michael H.; Moser, Stefan; Kenkmann, Thomas

    2016-10-01

    Hypervelocity impact experiments on porous tuff targets were carried out to determine the effect of porosity on deformation mechanisms in the crater's subsurface. Blocks of Weibern Tuff with about 43% porosity were impacted by 2.5 mm and 12.0 mm diameter steel spheres with velocities between 4.8 km s-1 and 5.6 km s-1. The postimpact subsurface damage was quantified with computer tomography as well as with meso- and microscale analyses of the bisected crater subsurface. The intensity and style of deformation in mineral clasts and the tuff matrix were mapped and their decay with subsurface depth was determined. Subsurface deformation styles include pore space compaction, clast rotation, as well as microfracture formation. Evaluation of the deformation indicates near-surface energy coupling at a calculated depth of burial of 2 projectile diameters (dp), which is in conflict with the crater shape, which displays a deep, central penetration tube. Subsurface damage extends to 2 dp beneath the crater floor in the experiments with 2.5 mm projectiles and increases to 3 dp for 12 mm projectiles. Based on overprinting relationships and the geometrical orientation of deformation features, a sequence of subsurface deformation events was derived (1) matrix compaction, (2) intragranular crack formation in clasts, (3) deformation band formation in the compacted matrix, (4) tensile fracturing.

  6. Numerical Simulation of Interaction of Hypervelocity Particle Stream with a Target

    Energy Technology Data Exchange (ETDEWEB)

    Lomov, I; Liu, B; Georgevich, V; Antoun, T

    2007-07-31

    We present results of direct numerical simulations of impact of hypervelocity particle stream with a target. The stream of interest consists of submillimeter (30-300 micron) brittle ceramic particles. Current supercomputer capabilities make it possible to simulate a realistic size of streams (up to 20 mm in diameter and 500 mm in length) while resolving each particle individually. Such simulations make possible to study the damage of the target from synergistic effects of individual impacts. In our research we fixed the velocity distribution along the axis of the stream (1-4 km/s) and volume fraction of the solid material (1-10%) and study effects of particle size variation, particle and target material properties and surrounding air properties. We ran 3D calibration simulations with up to 10 million individual particles and conducted sensitivity studies with 2D cylindrically symmetric simulations. We used an Eulerian Godunov hydrocode with adaptive mesh refinement. The particles, target material and air are represented with volume-of-fluid approach. Brittle particle and target material has been simulated with pressure-dependent yield strength and Steinberg model has been used for metal targets. Simulations demonstrated penetration depth and a hole diameter similar to experimental observations and can explain the influence of parameters of the stream on the character of the penetration.

  7. Experimental Investigation of Mars Science Laboratory Entry Vehicle Aeroheating in AEDC Hypervelocity Tunnel 9

    Science.gov (United States)

    Hollis, Brian R.; Collier, Arnold S.

    2017-01-01

    An experimental investigation of the aeroheating environment of the Mars Science Laboratory entry vehicle was conducted in the Arnold Engineering Development Complex Hypervelocity Wind Tunnel 9. Testing was performed on a 6-in. (0.1524 m) diameter model in the tunnel's Mach 8 and Mach 10 nozzles at free stream Reynolds numbers from 4.1×10*exp 6)/ft to 49×10(exp 6)/ft and from 1.2×10(exp 6)/ft to 19×10(exp 6)/ft, respectively, using pure nitrogen test gas. These conditions spanned the boundary layer flow regimes from completely laminar to fully turbulent flow over the entire forebody. A computational fluid dynamics study was conducted in support of the wind tunnel testing. Laminar and turbulent solutions were generated for all wind tunnel test conditions and comparisons of predicted heating distributions were performed with the data. These comparisons showed agreement for most cases to within the estimated +/-12% experimental uncertainty margin for fully-laminar or fully-turbulent conditions, while transitional heating data were bounded by laminar and turbulent predictions. These results helped to define uncertainty margins on the use of computational tools for vehicle design.

  8. 75 FR 5931 - Anthropomorphic Test Devices; Hybrid III Test Dummy, ES-2re Side Impact Crash Test Dummy

    Science.gov (United States)

    2010-02-05

    ...; Hybrid III Test Dummy, ES-2re Side Impact Crash Test Dummy AGENCY: National Highway Traffic Safety... final rule that had adopted specifications and qualification requirements for a new crash test dummy called the ``ES- 2re'' test dummy. The ES-2re is a 50th percentile adult male side impact crash test...

  9. Mechanics of Taylor impact testing of polycarbonate

    National Research Council Canada - National Science Library

    Sarva, Sai; Mulliken, Adam D; Boyce, Mary C

    2007-01-01

    The deformation of polymers under high-rate loading conditions is a governing factor in their use in impact-resistant applications, such as protective shields, safety glass windows and transparent armor...

  10. IMPACT TESTS OF MICROMILLING TOOL MOUNTED IN MICROMILLING MACHINE SPINDLE

    Directory of Open Access Journals (Sweden)

    Marcin MATUSZAK

    2012-07-01

    Full Text Available Method of performing impact test of tool mounted in micromilling machine spindle is presented. Due to very small tool dimensions performing impact test in classical way is impossible. Accelerometer cannot be used for impulse response measurement. For measurement of tool displacement laser vibrometer is used. Frequency response function was measured in two directions in seven points of micromilling tool. Additionally frequency response function in three points of machine spindle is measured. Resonant frequencies and their amplitude for points on tool and on machine spindle are compared. Results of performed impact tests are shown. Conclusions arising from performed impact tests are presented.

  11. Test System Impact on System Availability

    DEFF Research Database (Denmark)

    Pau, L. F.

    1987-01-01

    The specifications are presented for an imperfect automatic test system (ATS) (test frequency distribution, reliability, false alarm rate, nondetection rate) in order to account for the availability, readiness, mean time between unscheduled repairs (MTBUR), reliability, and maintenance of the sys......The specifications are presented for an imperfect automatic test system (ATS) (test frequency distribution, reliability, false alarm rate, nondetection rate) in order to account for the availability, readiness, mean time between unscheduled repairs (MTBUR), reliability, and maintenance...... of the system subject to monitoring and test. A time-dependent Markov model is presented, and applied in three cases, with examples of numerical results provided for preventive maintenance decisions, design of an automatic test system, buffer testing in computers, and data communications....

  12. Conceptual Design of a Flight Validation Mission for a Hypervelocity Asteroid Intercept Vehicle

    Science.gov (United States)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    Near-Earth Objects (NEOs) are asteroids and comets whose orbits approach or cross Earth s orbit. NEOs have collided with our planet in the past, sometimes to devastating effect, and continue to do so today. Collisions with NEOs large enough to do significant damage to the ground are fortunately infrequent, but such events can occur at any time and we therefore need to develop and validate the techniques and technologies necessary to prevent the Earth impact of an incoming NEO. In this paper we provide background on the hazard posed to Earth by NEOs and present the results of a recent study performed by the NASA/Goddard Space Flight Center s Mission Design Lab (MDL) in collaboration with Iowa State University s Asteroid Deflection Research Center (ADRC) to design a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle (HAIV) as part of a Phase 2 NASA Innovative Advanced Concepts (NIAC) research project. The HAIV is a two-body vehicle consisting of a leading kinetic impactor and trailing follower carrying a Nuclear Explosive Device (NED) payload. The HAIV detonates the NED inside the crater in the NEO s surface created by the lead kinetic impactor portion of the vehicle, effecting a powerful subsurface detonation to disrupt the NEO. For the flight validation mission, only a simple mass proxy for the NED is carried in the HAIV. Ongoing and future research topics are discussed following the presentation of the detailed flight validation mission design results produced in the MDL.

  13. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev

    2017-01-01

    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  14. Low power arcjet test facility impacts

    Science.gov (United States)

    Morren, W. Earl; Lichon, Paul J.

    1992-01-01

    Performance characterization of a flight-type 1.4 kW arcjet system were conducted at the Rocket Research Company (RRC) in Redmond, WA, and at the NASA LeRC in Cleveland, OH. The objectives of these tests were as follows: to compare low-power arcjet performance at two different test facilities; to compare arcjet performance obtained with a 2:1 mixture of gaseous hydrogen and nitrogen and hydrazine; and to quantify the effects of test cell pressure on thruster operating characteristics. Performance and thruster temperature distributions were measured at thruster input power levels and propellant mass flow rates ranging from 1274 to 1370 W and from 3.2 x 10(exp -5) to 5.1 x 10(exp -5) kg/s, respectively. Specific impulses measured at the two facilities, at comparable test cell pressures, using gaseous hydrogen-nitrogen propellant mixtures agreed to within 1 percent over the range of operating conditions tested. The specific impulses measured using hydrazine propellant were higher than that for the cold hydrogen-nitrogen mixtures. Agreement between by hydrazine and gas mixture data was good, however, when the differences in propellant enthalpies at the thruster inlet were considered. Specific impulse showed a strong dependence on test facility pressure, and was 3 to 4 percent higher below 0.1 Pa than for test cell pressures above 5 Pa.

  15. Impact Testing for Materials Science at NASA - MSFC

    Science.gov (United States)

    Sikapizye, Mitch

    2010-01-01

    The Impact Testing Facility (ITF) at NASA - Marshall Space Flight Center is host to different types of guns used to study the effects of high velocity impacts. The testing facility has been and continues to be utilized for all NASA missions where impact testing is essential. The Facility has also performed tests for the Department of Defense, other corporations, as well as universities across the nation. Current capabilities provided by Marshall include ballistic guns, light gas guns, exploding wire gun, and the Hydrometeor Impact Gun. A new plasma gun has also been developed which would be able to propel particles at velocities of 20km/s. This report includes some of the guns used for impact testing at NASA Marshall and their capabilities.

  16. Low-power arcjet test facility impacts

    Science.gov (United States)

    Morren, W. E.; Lichon, Paul J.

    1992-01-01

    Performance characterizations of a flight-type 1.4 kW arcjet system were conducted. Performance and thruster temperature distributions were measured at thruster input power levels and propellant mass flow rates ranging from 1274 to 1370 W and from 3.2 x 10 exp -5 to 5.1 x 10 exp -5 kg/s, respectively. Specific impulses measured at the two facilities, at comparable test cell pressures, using gaseous hydrogen-nitrogen propellant mixtures agreed to within 1 percent over the range of operating conditions tested. The specific impulses measured using hydrazine propellant were higher than that for the cold hydrogen/nitrogen mixtures. Agreement between the hydrazine and gas mixture data was good, however, when the differences in propellant ethalpies at the thruster inlet were considered. Specific impulse showed a strong dependence on test facility pressure, and was 3 to 4 percent higher below 0.1 Pa than for test cell pressures above 5 Pa.

  17. 76 FR 31860 - Anthropomorphic Test Devices; Hybrid III Test Dummy, ES-2re Side Impact Crash Test Dummy

    Science.gov (United States)

    2011-06-02

    ...; Hybrid III Test Dummy, ES-2re Side Impact Crash Test Dummy AGENCY: National Highway Traffic Safety... rule published on June 16, 2008, concerning a 50th percentile adult male side crash test dummy called... qualification tests of several of the crash test dummies, including the Hybrid III and ES-2re test dummies...

  18. Impact of troponin testing in noncardiac admissions.

    Science.gov (United States)

    Tota-Maharaj, Rajesh; Perera, Bhooshan; Murray, Jeffrey; Petrini, Joann; Keller, Andrew M

    2014-12-01

    There is little data to support Troponin I (TNI) use in the management of noncardiac patients. We studied the use of TNI in patients on our gastroenterology service, to determine whether there was a change in management as a result of TNI testing. Patients admitted from September 2011 to June 2012 to our gastroenterology service who had TNI performed were included. Data collected included symptoms, cardiovascular risk factors, medical treatment, and testing. Sixty-three of 295 patients had a positive TNI. The mean length of stay was significantly longer with a positive troponin (180 vs. 108 hours, Pchange in management. This study supports adherence to national guidelines for the use of TNI, to reduce TNI testing and length of hospital stay.

  19. Numerical comparison between different strength after impact test procedures

    Directory of Open Access Journals (Sweden)

    Klaus M.

    2010-06-01

    Full Text Available Different procedures are established to investigate the residual properties of sandwich panels after impact damage. Two used procedures for the testing of this properties are compression after impact (CAI and 4-point bending. In this paper a numerical procedure is presented for a first prediction of the behaviour of pre-damaged sandwich specimens under different boundary conditions (or testing procedures. A sequence of impact experiments using a drop tower is performed to assess the damage tolerance of sandwich panels with aramid paper foldcores and CFRP skins. The tested impact energy range allowed to investigate a variety of damage scenarios from barely visible damages (BVID to fibre fractures in all plies of the impacted face sheet. Additionally 4-point bending tests are performed with the panels previously damaged by impact loadings to assess the residual bending strength of these samples. The developed numerical procedure is used to reproduce these experiments (the impact as well as the 4-point bending tests. Also the same procedure is employed in an attempt to predict the behaviour of samples with the same build-up in simulated compression after impact tests.

  20. Theory of an Electromagnetic Mass Accelerator for Achieving Hypervelocities

    Science.gov (United States)

    Thom, Karlheinz; Norwood, Joseph., Jr.

    1961-01-01

    It is shown that for any electromagnetic accelerator which employs an electromagnetic force for driving the projectile and uses the projectile as the heat sink for the energy dissipated in it by ohmic heating, the maximum velocity attainable without melting is a function of the mass of the projectile. Therefore, for hypervelocities a large projectile mass is required and thus a power supply of very large capacity is necessary. It is shown that the only means for reducing the power requirement is maximizing the gradient of the mutual inductance. In the scheme of the sliding-coil accelerator investigated herein, the gradient of the mutual inductance is continuously maintained at a high value. It is also shown that for minimum length of the accelerator, the current must be kept constant despite the rise in induced voltage during acceleration. The use of a capacitor bank as an energy source with the condition that the current be kept constant is investigated. Experiments at low velocities are described.

  1. MMT hypervelocity star survey. III. The complete survey

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-05-20

    We describe our completed spectroscopic survey for unbound hypervelocity stars (HVSs) ejected from the Milky Way. Three new discoveries bring the total number of unbound late B-type stars to 21. We place new constraints on the nature of the stars and on their distances using moderate resolution MMT spectroscopy. Half of the stars are fast rotators; they are certain 2.5-4 M {sub ☉} main sequence stars at 50-120 kpc distances. Correcting for stellar lifetime, our survey implies that unbound 2.5-4 M {sub ☉} stars are ejected from the Milky Way at a rate of 1.5 × 10{sup –6} yr{sup –1}. These unbound HVSs are likely ejected continuously over the past 200 Myr and do not share a common flight time. The anisotropic spatial distribution of HVSs on the sky remains puzzling. Southern hemisphere surveys like SkyMapper will soon allow us to map the all-sky distribution of HVSs. Future proper motion measurements with Hubble Space Telescope and Gaia will provide strong constraints on origin. Existing observations are all consistent with HVS ejections from encounters with the massive black hole in the Galactic center.

  2. Hypervelocity Stars: From the Galactic Center to the Halo

    Science.gov (United States)

    Kenyon, Scott J.; Bromley, Benjamin C.; Geller, Margaret J.; Brown, Warren R.

    2008-06-01

    Hypervelocity stars (HVSs) traverse the Galaxy from the central black hole to the outer halo. We show that the Galactic potential within 200 pc acts as a high-pass filter preventing low-velocity HVSs from reaching the halo. To trace the orbits of HVSs throughout the Galaxy, we construct two forms of the potential which reasonably represent the observations in the range 5-105 pc: a simple spherically symmetric model and a bulge-disk-halo model. We use the Hills mechanism (disruption of binaries by the tidal field of the central black hole) to inject HVSs into the Galaxy and to compute the observable spatial and velocity distributions of HVSs with masses in the range 0.6-4 M⊙. These distributions reflect the mass function in the Galactic center, properties of binaries in the Galactic center, and aspects of stellar evolution and the injection mechanism. For 0.6-4 M⊙ main-sequence stars, the fraction of unbound HVSs and the asymmetry of the velocity distribution for their bound counterparts increase with stellar mass. The density profiles for unbound HVSs decline with distance from the Galactic center approximately as r-2 (but are steeper for the most massive stars, which evolve off the main sequence during their travel time from the Galactic center); the density profiles for the bound ejecta decline with distance approximately as r-3. In a survey with a limiting magnitude of Vlesssim 23, the detectability of HVSs (unbound or bound) increases with stellar mass.

  3. Groundwater Remediation and Alternate Energy at White Sands Test Facility

    Science.gov (United States)

    Fischer, Holger

    2008-01-01

    White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.

  4. Tier 3 Certification Fuel Impacts Test Program

    Science.gov (United States)

    The recent Tier 3 regulations for light duty vehicles introduced a new certification fuel designed to be more characteristic of current market fuels. A laboratory test program was conducted to measure differences in CO2 and fuel economy between the current and future certificatio...

  5. Predicted space motions for hypervelocity and runaway stars: proper motions and radial velocities for the Gaia Era

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J.; Brown, Warren R.; Geller, Margaret J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States)

    2014-10-01

    We predict the distinctive three-dimensional space motions of hypervelocity stars (HVSs) and runaway stars moving in a realistic Galactic potential. For nearby stars with distances less than 10 kpc, unbound stars are rare; proper motions alone rarely isolate bound HVSs and runaways from indigenous halo stars. At large distances of 20-100 kpc, unbound HVSs are much more common than runaways; radial velocities easily distinguish both from indigenous halo stars. Comparisons of the predictions with existing observations are encouraging. Although the models fail to match observations of solar-type HVS candidates from SEGUE, they agree well with data for B-type HVS and runaways from other surveys. Complete samples of g ≲ 20 stars with Gaia should provide clear tests of formation models for HVSs and runaways and will enable accurate probes of the shape of the Galactic potential.

  6. Comparative Testing for Corporate Impact Assessment Tools

    DEFF Research Database (Denmark)

    Farsang, Andrea; Reisch, Lucia A.

    Environmental and social pressures have increased substantially over the few last decades, and have been accompanied by growing political pressure (e.g., mandatory economic, environmental, social, and governance reporting) and respective societal demands (e.g., critical media reports). Companies...... of our study are: poverty, water and sanitation, education, food and agriculture, climate change, and human rights in three industries, namely: footwear, coffee, and paper and pulp. The paper develops a protocol for the selection and quantification of indicators that can be used in selecting...... the appropriate tools for measuring impacts in the selected sectors on SDGs. Background: In the Global Value Project, a long list of indicators was compiled covering the main thematic areas and challenges of sustainability. In a second step, this long list was reduced using predefined criteria as well as other...

  7. Land impact test of the Apollo Command Module at MSC

    Science.gov (United States)

    1968-01-01

    Technicians and engineers gather to monitor a land impact test of the Apollo Command Module (Airframe 009) in a test area at Manned Spacecraft Center (MSC). In this view, the Command Module test vehicle is released from the tower to fall to the ground.

  8. Comparison of Impact Duration Between Experiment and Theory From Charpy Impact Test

    Directory of Open Access Journals (Sweden)

    Muhammad Said N.B.

    2016-01-01

    Full Text Available This study presents the comparison of impact duration between experiment and theory from impact signal through a Charpy test. Recently, the number of accidents on the highway has been increased and it depends on the impact duration of material that have the ability to provide adequate protection to passengers from harmful and improve occupant survivability during crash event. Charpy impact test was implemented on different material and thickness but at the same striker velocity. Impact signal is obtained through the strain gauge that has been installed to striker hammer and connected to frequency data acquisition system. Collected signal is then analysed to identify the time period during impact before fractured. Result from both experiment and theory shows an increment to the impact duration as thickness is increased. Charpy test shows that aluminium 6061-T6 has a higher impact duration compared to carbon steel 1050.

  9. A Comparison of Quasi-Static Indentation Testing to Low Velocity Impact Testing

    Science.gov (United States)

    Nettles, Alan T.; Douglas, Michael J.

    2001-01-01

    The need for a static test method for modeling low-velocity foreign object impact events to composites would prove to be very beneficial to researchers since much more data can be obtained from a static test than from an impact test. In order to examine if this is feasible, a series of static indentation and low velocity impact tests were carried out and compared. Square specimens of many sizes and thickness were utilized to cover the array of types of low velocity impact events. Laminates with a n/4 stacking sequence were employed since this is by the most common type of engineering laminate. Three distinct flexural rigidities under two different boundary conditions were tested in order to obtain damage due to large deflections, contact stresses and both to examine if the static indentation-impact comparisons are valid under the spectrum of damage modes that can be experienced. Comparisons between static indentation and low velocity impact tests were based on the maximum applied transverse load. The dependent parameters examined included dent depth, back surface crack length, delamination area and to a limited extent, load-deflection behavior. Results showed that no distinct differences could be seen between the static indentation tests and the low velocity impact tests, indicating that static indentation can be used to represent a low velocity impact event.

  10. Diverse Studies in the Reactivated NASA/Ames Radiation Facility: From Shock Layer Spectroscopy to Thermal Protection System Impact

    Science.gov (United States)

    Miller, Robert J.; Hartman, G. Joseph (Technical Monitor)

    1994-01-01

    NASA/Ames' Hypervelocity Free-Flight Radiation Facility has been reactivated after having been decommissioned for some 15 years, first tests beginning in early 1994. This paper discusses two widely different studies from the first series, one involving spectroscopic analysis of model shock-layer radiation, and the other the production of representative impact damage in space shuttle thermal protection tiles for testing in the Ames arc-jet facilities. These studies emphasize the interorganizational and interdisciplinary value of the facility in the newly-developing structure of NASA.

  11. Standard test methods for notched bar impact testing of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 These test methods describe notched-bar impact testing of metallic materials by the Charpy (simple-beam) test and the Izod (cantilever-beam) test. They give the requirements for: test specimens, test procedures, test reports, test machines (see Annex A1) verifying Charpy impact machines (see Annex A2), optional test specimen configurations (see Annex A3), precracking Charpy V-notch specimens (see Annex A4), designation of test specimen orientation (see Annex A5), and determining the percent of shear fracture on the surface of broken impact specimens (see Annex A6). In addition, information is provided on the significance of notched-bar impact testing (see Appendix X2), methods of measuring the center of strike (see Appendix X2). 1.2 These test methods do not address the problems associated with impact testing at temperatures below -196 C (-320 F, 77 K). 1.3 The values stated in SI units are to be regarded as the standard. Inch-pound units are provided for information only. This standard does not purpor...

  12. Impact test on natural fiber reinforced polymer composite materials

    Directory of Open Access Journals (Sweden)

    D. Chandramohan

    2013-06-01

    Full Text Available In this research, natural fibers like Sisal (Agave sisalana, Banana (Musa sepientum & Roselle (Hibiscus sabdariffa , Sisal and banana (hybrid , Roselle and banana (hybrid and Roselle and sisal (hybrid are fabricated with bio epoxy resin using molding method. In this work, impact strength of Sisal and banana (hybrid, Roselle and banana (hybridand Roselle and sisal (hybrid composite at dry and wet conditions were studied. Impact test were conducted izod impact testing machine. In this work micro structure of the specimens are scanned by the Scanning Electron Microscope.

  13. The Impact of IPv6 on Penetration Testing

    NARCIS (Netherlands)

    Ottow, Christiaan; van Vliet, Frank; de Boer, Pieter-Tjerk; Pras, Aiko

    In this paper we discuss the impact the use of IPv6 has on remote penetration testing of servers and web applications. Several modifications to the penetration testing process are proposed to accommodate IPv6. Among these modifications are ways of performing fragmentation attacks, host discovery and

  14. High-resolution imaging of hypervelocity metal jets using advanced high-speed photographic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, L.L.; Muelder, S.A.

    1995-08-29

    It is now possible to obtain high resolution sequential photographs of the initial formation and evolution of hypervelocity metal jets formed by shaped charge devices fired in air. Researchers have been frustrated by the high velocity of the jet material and the luminous sheath of hot gases cloaking the jet that made detailed observation of the jet body extremely difficult. The camera system that provides the photographs is a large format multi-frame electro-optic camera, referred to as an IC camera (IC stands for image converter), that utilizes electro-optic shuttering, monochromatic pulsed laser illumination and bandpass filtering to provide sequential pictures (in 3D if desired) with minimal degradation due to luminous air shocks or motion blur. The large format (75mm image plane), short exposure (15 ns minimum), ruby laser illumination and bandpass filtering (monochromatic illumination while excluding extraneous light) produces clear, sharp, images of the detailed surface structure of a metal shaped charge jet during early jet formation, elongation of the jet body, jet tip evolution and subsequent particulation (breakup) of the jet body. By utilizing the new camera system in conjunction with the more traditional rotating mirror high speed cameras, pulsed radiography, and electrical sensors, a maximum amount of, often unique, data can be extracted from a single experiment. This paper was intended primarily as an oral presentation. For purposes of continuity and simplicity in these proceedings, the authors have chosen to concentrate on the development of the IC camera system and its impact on the photography of high speed shaped chargejets.

  15. Development of an Impact Resistant Test Method for Polycarbonate.

    Science.gov (United States)

    1984-02-01

    defined test procedures. The notched Izod test has been and continues to be used for qualitatively evaluating impact resitance of polycarbonate per...produced by Dlacing the finish machined samples in a preheated air-circulating Instron heating chamber at 105°C (257°F) for two hours (typical fabrication... heat treatment temperature), followed by air cooldown to room temperature for one hour followed by immediate testing. 12 I H mtmm *m 13 m*m

  16. The Impact of Personality and Test Conditions on Mathematical Test Performance

    Science.gov (United States)

    Hayes, Heather; Embretson, Susan E.

    2013-01-01

    Online and on-demand tests are increasingly used in assessment. Although the main focus has been cheating and test security (e.g., Selwyn, 2008) the cross-setting equivalence of scores as a function of contrasting test conditions is also an issue that warrants attention. In this study, the impact of environmental and cognitive distractions, as…

  17. An artificial neural network to discover hypervelocity stars: candidates in Gaia DR1/TGAS

    Science.gov (United States)

    Marchetti, T.; Rossi, E. M.; Kordopatis, G.; Brown, A. G. A.; Rimoldi, A.; Starkenburg, E.; Youakim, K.; Ashley, R.

    2017-09-01

    The paucity of hypervelocity stars (HVSs) known to date has severely hampered their potential to investigate the stellar population of the Galactic Centre and the Galactic potential. The first Gaia data release (DR1, 2016 September 14) gives an opportunity to increase the current sample. The challenge is the disparity between the expected number of HVSs and that of bound background stars. We have applied a novel data mining algorithm based on machine learning techniques, an artificial neural network, to the Tycho-Gaia astrometric solution catalogue. With no pre-selection of data, we could exclude immediately ˜99 per cent of the stars in the catalogue and find 80 candidates with more than 90 per cent predicted probability to be HVSs, based only on their position, proper motions and parallax. We have cross-checked our findings with other spectroscopic surveys, determining radial velocities for 30 and spectroscopic distances for five candidates. In addition, follow-up observations have been carried out at the Isaac Newton Telescope for 22 stars, for which we obtained radial velocities and distance estimates. We discover 14 stars with a total velocity in the Galactic rest frame >400 km s-1, and five of these have a probability of >50 per cent of being unbound from the Milky Way. Tracing back their orbits in different Galactic potential models, we find one possible unbound HVS with v ˜ 520 km s-1, five bound HVSs and, notably, five runaway stars with median velocity between 400 and 780 km s-1. At the moment, uncertainties in the distance estimates and ages are too large to confirm the nature of our candidates by narrowing down their ejection location, and we wait for future Gaia releases to validate the quality of our sample. This test successfully demonstrates the feasibility of our new data-mining routine.

  18. Developing the impact testing module with labVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Soo; Jeon, Soo Hong; Jeong, Weui Bong [Pusan National Univ., Busan (Korea, Republic of)

    2007-07-01

    Fast Fourier Transformation (FFT) is one of the most useful way to analyze response signal for the purpose of grasping the dynamic characteristics of system. Vibration test using impact hammer is typical and simple experimental method widely used for catching hold of dynamic peculiar characters and modal behaviors of system. In this thesis, impact testing module for NI-PXI equipment is developed. The analyzing and visualizing module are developed with labVIEW tool. A user can see quickly and easily modal shape of system after analyzing acquired data. This developed module will be expected to build up more convenient and serviceable measurement system.

  19. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    Science.gov (United States)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  20. Aggregate impact testing of selected granite samples from sites in ...

    African Journals Online (AJOL)

    The Aggregate Impact Testing machine was used to measure the resistance to fa ilure of Rocks from five (5) selected granite quarries to a suddenly applied force using S ingapore standard. The results obtained show that brittleness (S20) value of the rocks were between 2 - 10. These values are less than the stated ...

  1. Advanced diagnostics for impact-flash spectroscopy on light-gas guns.

    Energy Technology Data Exchange (ETDEWEB)

    Breiland, William George; Reinhart, William Dodd; Miller, Paul Albert; Brown, Justin L.; Thornhill, Tom Finley, III (,; ); Mangan, Michael A.; Shaner, Eric Arthur; Chhabildas, Lalit Chandra; Grine, Albert D.; Wanke, Michael Clement; Alexander, C. Scott

    2007-03-01

    This study is best characterized as new technology development for implementing new sensors to investigate the optical characteristics of a rapidly expanding debris cloud resulting from hypervelocity impact regimes of 7 to 11 km/s. Our gas guns constitute a unique test bed that match operational conditions relevant to hypervelocity impact encountered in space engagements. We have demonstrated the use of (1) terahertz sensors, (2) silicon diodes for visible regimes, (3) germanium and InGaAs sensors for the near infrared regimes, and (4) the Sandia lightning detectors which are similar to the silicon diodes described in 2. The combination and complementary use of all these techniques has the strong potential of ''thermally'' characterizing the time dependent behavior of the radiating debris cloud. Complementary spectroscopic measurements provide temperature estimates of the impact generated debris by fitting its spectrum to a blackbody radiation function. This debris is time-dependent as its transport/expansion behavior is changing with time. The rapid expansion behavior of the debris cools the cloud rapidly, changing its thermal/temperature characteristics with time. A variety of sensors that span over a wide spectrum, varying from visible regime to THz frequencies, now gives us the potential to cover the impact over a broader temporal regime starting from high pressures (Mbar) high-temperatures (eV) to low pressures (mbar) low temperatures (less than room temperature) as the debris expands and cools.

  2. Crash-test dummy and pendulum impact tests of ice hockey boards: greater displacement does not reduce impact.

    Science.gov (United States)

    Schmitt, Kai-Uwe; Muser, Markus H; Thueler, Hansjuerg; Bruegger, Othmar

    2018-01-01

    One injury mechanism in ice hockey is impact with the boards. We investigated whether more flexible hockey boards would provide less biomechanical loading on impact than did existing (reference) boards. We conducted impact tests with a dynamic pendulum (mass 60 kg) and with crash test dummies (ES-2 dummy, 4.76 m/s impact speed). Outcomes were biomechanical loading experienced by a player in terms of head acceleration, impact force to the shoulder, spine, abdomen and pelvis as well as compression of the thorax. The more flexible board designs featured substantial displacement at impact. Some so-called flexible boards were displaced four times more than the reference board. The new boards possessed less stiffness and up to 90 kg less effective mass, reducing the portion of the board mass a player experienced on impact, compared with boards with a conventional design. Flexible boards resulted in a similar or reduced loading for all body regions, apart from the shoulder. The displacement of a board system did not correlate directly with the biomechanical loading. Flexible board systems can reduce the loading of a player on impact. However, we found no correlation between the displacement and the biomechanical loading; accordingly, displacement alone was insufficient to characterise the overall loading of a player and thus the risk of injury associated with board impact. Ideally, the performance of boards is assessed on the basis of parameters that show a good correlation to injury risk. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Impact Tensile Testing of Stainless Steels at Various Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    D. K. Morton

    2008-03-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  4. Experimental demonstration of plasma-drag acceleration of a dust cloud to hypervelocities.

    Science.gov (United States)

    Ticoş, C M; Wang, Zhehui; Wurden, G A; Kline, J L; Montgomery, D S; Dorf, L A; Shukla, P K

    2008-04-18

    Simultaneous acceleration of hundreds of dust particles to hypervelocities by collimated plasma flows ejected from a coaxial gun is demonstrated. Graphite and diamond grains with radii between 5 and 30 microm, and flying at speeds up to 3.7 km/s, have been recorded with a high-speed camera. The observations agree well with a model for plasma-drag acceleration of microparticles much larger than the plasma screening length.

  5. Simulated hail impact testing of photovoltaic solar panels

    Science.gov (United States)

    Moore, D.; Wilson, A.; Ross, R.

    1978-01-01

    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  6. TEST IMPACT: ENGLISH CERTIFICATION EXIT REQUIREMENTS IN TAIWAN

    Directory of Open Access Journals (Sweden)

    Yi-Ching Pan

    2009-01-01

    Full Text Available Abstract: In light of the importance of understanding the social impacts of test use, this paper synthesizes the opinions and surveys of a variety of stakeholders, including businesses, the government, administrators, educators and students, regarding the English exit requirements, as reported in major local newspapers during the last decade.  It then constructs implications in terms of considerations for those involved in the establishment of the requirements and provides insights and suggestions for other stakeholders.  By doing so, it is hoped that this study will be beneficial to those who are active in the fields of English teaching, policy-making and test development.

  7. Sand Impact Tests of a Half-Scale Crew Module Boilerplate Test Article

    Science.gov (United States)

    Vassilakos, Gregory J.; Hardy, Robin C.

    2012-01-01

    Although the Orion Multi-Purpose Crew Vehicle (MPCV) is being designed primarily for water landings, a further investigation of launch abort scenarios reveals the possibility of an onshore landing at Kennedy Space Center (KSC). To gather data for correlation against simulations of beach landing impacts, a series of sand impact tests were conducted at NASA Langley Research Center (LaRC). Both vertical drop tests and swing tests with combined vertical and horizontal velocity were performed onto beds of common construction-grade sand using a geometrically scaled crew module boilerplate test article. The tests were simulated using the explicit, nonlinear, transient dynamic finite element code LS-DYNA. The material models for the sand utilized in the simulations were based on tests of sand specimens. Although the LSDYNA models provided reasonable predictions for peak accelerations, they were not always able to track the response through the duration of the impact. Further improvements to the material model used for the sand were identified based on results from the sand specimen tests.

  8. TEST IMPACT: ENGLISH CERTIFICATION EXIT REQUIREMENTS IN TAIWAN

    OpenAIRE

    Yi-Ching Pan

    2009-01-01

    Abstract: In light of the importance of understanding the social impacts of test use, this paper synthesizes the opinions and surveys of a variety of stakeholders, including businesses, the government, administrators, educators and students, regarding the English exit requirements, as reported in major local newspapers during the last decade.  It then constructs implications in terms of considerations for those involved in the establishment of the requirements and provides insights and sugge...

  9. Optimal design and dynamic impact tests of removable bollards

    Science.gov (United States)

    Chen, Suwen; Liu, Tianyi; Li, Guoqiang; Liu, Qing; Sun, Jianyun

    2017-10-01

    Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduce the corresponding damage. Compared with a fixed bollard system, a removable bollard system provides more flexibility as it can be removed when needed. This paper first proposes a new type of K4-rated removable anti-ram bollard system. To simulate the collision of a vehicle hitting the bollard system, a finite element model was then built and verified through comparison of numerical simulation results and existing experimental results. Based on the orthogonal design method, the factors influencing the safety and economy of this proposed system were examined and sorted according to their importance. An optimal design scheme was then produced. Finally, to validate the effectiveness of the proposed design scheme, four dynamic impact tests, including two front impact tests and two side impact tests, have been conducted according to BSI Specifications. The residual rotation angles of the specimen are smaller than 30º and satisfy the requirements of the BSI Specification.

  10. Measurements of rope elongation or deflection in impact destructive testing

    Directory of Open Access Journals (Sweden)

    Adam Szade

    2015-01-01

    Full Text Available The computation of energy dissipation in mechanical protective systems and the corresponding determination of their safe use in mine shafts, requires a precise description of their bending and elongation, for instance, in conditions of dynamic, transverse loading induced by the falling of mass. The task aimed to apply a fast parallactic rangefinder and then to mount it on a test stand, which is an original development of the Central Mining Institute's Laboratory of Rope Testing in Katowice. In the solution presented in this paper, the measuring method and equipment in which the parallactic laser rangefinder, provided with a fast converter and recording system, ensures non-contact measurement of elongation, deflection or deformation of the sample (construction during impact loading. The structure of the unit, and metrological parameters are also presented. Additionally, the method of calibration and examples of the application in the impact tests of steel wire ropes are presented. The measurement data obtained will provide a basis for analysis, the prediction of the energy of events and for applying the necessary means to maintain explosion-proofness in the case of destructive damage to mechanical elements in the mine atmosphere. What makes these measurements novel is the application of a fast and accurate laser rangefinder to the non-contact measurement of crucial impact parameters of dynamic events that result in the destruction of the sample. In addition, the method introduces a laser scanning vibrometer with the aim of evaluating the parameters of the samples before and after destruction.

  11. Compression-after-impact testing of thin composite materials

    Science.gov (United States)

    Nettles, Alan T.; Hodge, Andrew J.

    1991-01-01

    A new method has been devised to test composite specimens as thin as 8 plies and up to 7.6 cm in width for compression strength. This method utilizes a fixture incorporating the best features of the Celanese and IITRI fixtures combined with an antibuckling jig developed at the University of Dayton Research Institute. This new method uses up to 83 percent less material than the most commonly used compression-after-impact technique (which calls for a 48 ply test specimen) and can also be performed on smaller loading frames since a much smaller force is needed to fail the specimen. The thickness of the test specimen can be fabricated to exactly match production part thickness, thus yielding more meaningful results. CAI tests were performed on IM6/3501 carbon/epoxy utilizing this new method. To verify the design, a series of tests were performed in which undamaged specimens were tested using the new fixture and ASTM D 3410-87 (Celanese compression test) and the results compared. The new fixture works well and will be a valuable asset to MSFC's damage tolerance program.

  12. Target Soil Impact Verification: Experimental Testing and Kayenta Constitutive Modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Broome, Scott Thomas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Flint, Gregory Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Dewers, Thomas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Newell, Pania [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failure and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.

  13. Machine for development impact tests in sports seats and similar

    Science.gov (United States)

    Gonçalves, R. M.

    2015-10-01

    This paper describes the stages of development of a machine to perform impact tests in sport seats, seats for spectators and multiple seats. This includes reviews and recommendations for testing laboratories that have needs similar to the laboratory where unfolded this process.The machine was originally developed seeking to meet certain impact tests in accordance with the NBR15925 standards; 15878 and 16031. The process initially included the study of the rules and the election of the tests for which the machine could be developed and yet all reports and outcome of interaction with service providers and raw materials.For operating facility, it was necessary to set entirely the machine control, which included the concept of dialogue with operator, the design of the menu screens and the procedures for submission and registration of results. To ensure reliability in the process, the machine has been successfully calibrated according to the requirements of the Brazilian network of calibration.The criticism to this enterprise covers the technical and economic aspects involved and points out the main obstacles that were needed to overcome.

  14. Cycom 977-2 Composite Material: Impact Test Results

    Science.gov (United States)

    Engel, Carl D.; Herald, Stephen; Watkins, Casey

    2005-01-01

    The reaction frequency data from 13A testing by MSFC and WSTF appear well behaved for the sample number used by each and exhibit the same type of energy level dependency. The reaction frequency shift in energy level is unexplained at this time. All the 13A data suggest that only a small amount of material is consumed when reactions take place. At ambient pressure, most of not all reactions are quenched as indicated by the small mass loss. As test pressure is increased in LOX using 13B results. Cycom does not support initiation of reactions or propagations of reactions in GOX at 100 psis based on tests at MSFC and WSTF at 72 ft-lb impact energy. No batch effect was identified in LOX or GOX.

  15. Structural response of reduced scale naval structures under impact tests

    Directory of Open Access Journals (Sweden)

    Calle M.A.G.

    2014-01-01

    Full Text Available Scaled models are important in naval engineering since actual ship size makes too expensive to test prototypes. However, the analysis of ship collision events employing naval structures in reduced scale is not an ordinary ship research area. The aim of this work is to create the basis for a posterior similarity study by analysing reduced scale ship structures submitted to impact loads. Two basic naval structures, commonly found in the construction of large ships, were considered for this study: a T cross-section beam submitted to a mid-span impact test and a double plate panel with inner cross reinforcement also submitted to a central impact load. These models were made in a reduced scale of 1:100. The experimental material characterization was also carried out in this work, including the evaluation of the stress strain curve under quasi static conditions, the strain rate sensitivity and the structural failure using three criteria developed particularly for numerical modelling of ship collision by other authors.

  16. A Blind Test of the Younger Dryas Impact Hypothesis.

    Science.gov (United States)

    Holliday, Vance; Surovell, Todd; Johnson, Eileen

    2016-01-01

    The Younger Dryas Impact Hypothesis (YDIH) states that North America was devastated by some sort of extraterrestrial event ~12,800 calendar years before present. Two fundamental questions persist in the debate over the YDIH: Can the results of analyses for purported impact indicators be reproduced? And are the indicators unique to the lower YD boundary (YDB), i.e., ~12.8k cal yrs BP? A test reported here presents the results of analyses that address these questions. Two different labs analyzed identical splits of samples collected at, above, and below the ~12.8ka zone at the Lubbock Lake archaeological site (LL) in northwest Texas. Both labs reported similar variation in levels of magnetic micrograins (>300 mg/kg >12.8ka and <11.5ka, but <150 mg/kg 12.8ka to 11.5ka). Analysis for magnetic microspheres in one split, reported elsewhere, produced very low to nonexistent levels throughout the section. In the other split, reported here, the levels of magnetic microspherules and nanodiamonds are low or nonexistent at, below, and above the YDB with the notable exception of a sample <11,500 cal years old. In that sample the claimed impact proxies were recovered at abundances two to four orders of magnitude above that from the other samples. Reproducibility of at least some analyses are problematic. In particular, no standard criteria exist for identification of magnetic spheres. Moreover, the purported impact proxies are not unique to the YDB.

  17. A Blind Test of the Younger Dryas Impact Hypothesis.

    Directory of Open Access Journals (Sweden)

    Vance Holliday

    Full Text Available The Younger Dryas Impact Hypothesis (YDIH states that North America was devastated by some sort of extraterrestrial event ~12,800 calendar years before present. Two fundamental questions persist in the debate over the YDIH: Can the results of analyses for purported impact indicators be reproduced? And are the indicators unique to the lower YD boundary (YDB, i.e., ~12.8k cal yrs BP? A test reported here presents the results of analyses that address these questions. Two different labs analyzed identical splits of samples collected at, above, and below the ~12.8ka zone at the Lubbock Lake archaeological site (LL in northwest Texas. Both labs reported similar variation in levels of magnetic micrograins (>300 mg/kg >12.8ka and <11.5ka, but <150 mg/kg 12.8ka to 11.5ka. Analysis for magnetic microspheres in one split, reported elsewhere, produced very low to nonexistent levels throughout the section. In the other split, reported here, the levels of magnetic microspherules and nanodiamonds are low or nonexistent at, below, and above the YDB with the notable exception of a sample <11,500 cal years old. In that sample the claimed impact proxies were recovered at abundances two to four orders of magnitude above that from the other samples. Reproducibility of at least some analyses are problematic. In particular, no standard criteria exist for identification of magnetic spheres. Moreover, the purported impact proxies are not unique to the YDB.

  18. Instrumented Impact Testing: Influence of Machine Variables and Specimen Position

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; McCowan, C. N.; Santoyo, R. A.

    2008-09-15

    An investigation has been conducted on the influence of impact machine variables and specimen positioning on characteristic forces and absorbed energies from instrumented Charpy tests. Brittle and ductile fracture behavior has been investigated by testing NIST reference samples of low, high and super-high energy levels. Test machine variables included tightness of foundation, anvil and striker bolts, and the position of the center of percussion with respect to the center of strike. For specimen positioning, we tested samples which had been moved away or sideways with respect to the anvils. In order to assess the influence of the various factors, we compared mean values in the reference (unaltered) and altered conditions; for machine variables, t-test analyses were also performed in order to evaluate the statistical significance of the observed differences. Our results indicate that the only circumstance which resulted in variations larger than 5 percent for both brittle and ductile specimens is when the sample is not in contact with the anvils. These findings should be taken into account in future revisions of instrumented Charpy test standards.

  19. Impact of subsidies on cancer genetic testing uptake in Singapore.

    Science.gov (United States)

    Li, Shao-Tzu; Yuen, Jeanette; Zhou, Ke; Binte Ishak, Nur Diana; Chen, Yanni; Met-Domestici, Marie; Chan, Sock Hoai; Tan, Yee Pin; Allen, John Carson; Lim, Soon Thye; Soo, Khee Chee; Ngeow, Joanne

    2017-04-01

    Previous reports cite high costs of clinical cancer genetic testing as main barriers to patient's willingness to test. We report findings of a pilot study that evaluates how different subsidy schemes impact genetic testing uptake and total cost of cancer management. We included all patients who attended the Cancer Genetics Service at the National Cancer Centre Singapore (January 2014-May 2016). Two subsidy schemes, the blanket scheme (100% subsidy to all eligible patients), and the varied scheme (patients received 50%-100% subsidy dependent on financial status) were compared. We estimated total spending on cancer management from government's perspective using a decision model. 445 patients were included. Contrasting against the blanket scheme, the varied scheme observed a higher attendance of patients (34 vs 8 patients per month), of which a higher proportion underwent genetic testing (5% vs 38%), while lowering subsidy spending per person (S$1098 vs S$1161). The varied scheme may potentially save cost by reducing unnecessary cancer surveillance when first-degree relatives uptake rate is above 36%. Provision of subsidy leads to a considerable increase in genetic testing uptake rate. From the government's perspective, subsidising genetic testing may potentially reduce total costs on cancer management. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Impact of Laboratory Test Use Strategies in a Turkish Hospital.

    Directory of Open Access Journals (Sweden)

    Fatma Meriç Yılmaz

    Full Text Available Eliminating unnecessary laboratory tests is a good way to reduce costs while maintain patient safety. The aim of this study was to define and process strategies to rationalize laboratory use in Ankara Numune Training and Research Hospital (ANH and calculate potential savings in costs.A collaborative plan was defined by hospital managers; joint meetings with ANHTA and laboratory professors were set; the joint committee invited relevant staff for input, and a laboratory efficiency committee was created. Literature was reviewed systematically to identify strategies used to improve laboratory efficiency. Strategies that would be applicable in local settings were identified for implementation, processed, and the impact on clinical use and costs assessed for 12 months.Laboratory use in ANH differed enormously among clinics. Major use was identified in internal medicine. The mean number of tests per patient was 15.8. Unnecessary testing for chloride, folic acid, free prostate specific antigen, hepatitis and HIV testing were observed. Test panel use was pinpointed as the main cause of overuse of the laboratory and the Hospital Information System test ordering page was reorganized. A significant decrease (between 12.6-85.0% was observed for the tests that were taken to an alternative page on the computer screen. The one year study saving was equivalent to 371,183 US dollars.Hospital-based committees including laboratory professionals and clinicians can define hospital based problems and led to a standardized approach to test use that can help clinicians reduce laboratory costs through appropriate use of laboratory tests.

  1. Modal Testing Using Impact Excitation and a Scanning LDV

    Directory of Open Access Journals (Sweden)

    A.B. Stanbridge

    2000-01-01

    Full Text Available If a laser Doppler vibrometer is used in a continuously-scanning mode to measure the response of a vibrating structure, its output spectrum contains side-bands from which the response mode shape, as defined along the scan line, may be obtained. With impact excitation, the response is the summation of a set of exponentially-decaying sinusoids which, in the frequency domain, has peaks at the natural frequencies and at `sideband' pseudo-natural frequencies, spaced at multiples of the scan frequency. Techniques are described for deriving natural mode shapes from these, using standard modal analysis procedures. Some limitations as to the types of mode which can be analysed are described. The process is simple and speedy, even when compared with a normal point-by-point impact test survey. Information may also be derived, using a circular scan, on the direction of vibration, and angular vibration, at individual points.

  2. Manganese steel in impact wear testing; Manganhartstahl in Stossverschleisstest

    Energy Technology Data Exchange (ETDEWEB)

    Patzelt, B.; Hemmann, U.; Deters, L. [Magdeburg Univ. (Germany). Inst. fuer Maschinenkonstruktion

    2000-12-01

    Beating arms in impact crushers show high wear. In order to simulate the process of the mainly occuring impact wear, experimental investigations with a special test device were carried out. With this 11 different charges of manganese steel differing in their chemical composition were tested. The different chemical composition of the charges led to different results concerning the wear resistance. A significant interrelationship between wear resistance and macro-hardness of the charges of the manganese steel could be detected. With a faster rotor speed a considerable increase of wear could be determined as well. Microscopical investigations on worn test pieces exhibit a typical embedding of small particles of concrete into the metal matrix. (orig.) [German] Die Schlagleisten in Prallbrechern unterliegen einen hohen Verschleiss. Um den Prozess des hauptsaechlich auftretenden Stossverschleisses zu simulieren, wurden Modelluntersuchungen mit einer speziellen Pruefeinrichtung durchgefuehrt. Dabei konnten 11 verschiedene Chargen von Manganhartstahl, die sich im wesentlichen in ihrer chemischen Zusammensetzung unterschieden, untersucht werden. Die unterschiedliche chemische Zusammensetzung der einzelnen Chargen fuehrte zu unterschiedlichen Ergebnissen hinsichtlich der Verschleissbestaendigkeit der einzelnen Modellschlagleisten. Hierbei ist ein signifikanter Zusammenhang zwischen der Verschleissbestaendigkeit und der Makrohaerte der Manganhartstaehle zu erkennen. Die Umfangsgeschwindigkeit des Rotors der Pruefeinrichtung beeinflusst ebenfalls das Verschleissverhalten, und zwar fuehrte eine hoehere Umfangsgeschwindigkeit zu hoeherem Verschleiss. Mikroskopische Untersuchungen an geschaedigten Probekoerpern zeigten ein Einbetten von kleinsten Partikeln aus Beton im oberflaechennahen Stoffbereich der Metallmatrix. (orig.)

  3. Impact of looping on middle school science standardized achievement tests

    Science.gov (United States)

    Barger, Tammy M.

    Looping may be defined as a teacher remaining with a group of students for multiple academic years. In this quantitative study, looping was examined as a factor on science achievement. State-wide eighth grade school level 2010 Pennsylvania System of School Assessment (PSSA) data were used. By responding to a mailing, school administrators indicated if 2010 eighth grade students had or had not been looped. The schools' percentage of advanced and proficient Science PSSA data were used to determine if the independent variable had a significant impact on science achievement. The results of the independent t-test analysis suggest that looping does not contribute to science achievement for this study sample.

  4. Double Asteroid Redirection Test (DART) element of AIDA mission

    Science.gov (United States)

    Cheng, A.; Michel, P.; Rivkin, A.; Barnouin, O.; Stickle, A.; Miller, P.; Chesley, S.; Richardson, D.

    2017-09-01

    The AIDA mission, an international cooperation between NASA and ESA, will be the first demonstration of a kinetic impactor spacecraft to deflect an asteroid. AIDA will perform the first hypervelocity impact on an asteroid where the impact conditions are fully known and the target properties are also characterized. AIDA will reduce risks for any future asteroid hazard mitigation.

  5. Impact hammer test of ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Yuto, E-mail: noguchi.yuto@jaea.go.jp; Maruyama, Takahito; Ueno, Kenichi; Komai, Masafumi; Takeda, Nobukazu; Kakudate, Satoshi

    2016-11-01

    An impact hammer test of the full-scale mock-up of the ITER blanket remote handling system (BRHS) was carried out to validate the results of the seismic analysis of the BRHS which were performed using a finite element (FE) model. As the FE analysis of the BRHS predicted a vertical mode ∼8 Hz, which coincides with a major natural frequency of the vacuum vessel of ITER, evaluating the dynamic response of the BRHS experimentally and measuring the system's damping is indispensable in verifying the structural design of the system. Recent preliminary impact testing on the full-scale mock-up of the BRHS showed that the mock-up has a vertical major natural mode having a natural frequency of ∼7.5 Hz and a damping ratio of 0.5%. Several other major natural modes having frequencies less than 10 Hz were found to have damping ratios ranging from 0.2% to 2%. It was confirmed that the natural major frequencies obtained in the experiments are in agreement with the major frequencies obtained via analysis.

  6. Controlled Impact Demonstration instrumented test dummies installed in plane

    Science.gov (United States)

    1984-01-01

    In this photograph are seen some of dummies in the passenger cabin of the B-720 aircraft. NASA Langley Research Center instrumented a large portion of the aircraft and the dummies for loads in a crashworthiness research program. In 1984 NASA Dryden Flight Research Facility and the Federal Aviation Adimistration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID). The test involved crashing a Boeing 720 aircraft with four JT3C-7 engines burning a mixture of standard fuel with an additive called Anti-misting Kerosene (AMK) designed to supress fire. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the

  7. Thermal protection for hypervelocity flight in earth's atmosphere by use of radiation backscattering ablating materials

    Science.gov (United States)

    Howe, John T.; Yang, Lily

    1991-01-01

    A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.

  8. RTM370 Polyimide Braided Composites: Characterization and Impact Testing

    Science.gov (United States)

    Chuang, Kathy C.; Revilock, Duane M.; Ruggeri, Charles R.; Criss, Jim M., Jr.; Mintz, Eric A.

    2013-01-01

    RTM370 imide oligomer based on 2,3,3',4'-biphenyl dianhydride (a-BPDA), 3,4'-oxydianiline (3,4'-ODA) and terminated with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h and a high cured glass transition temperature (Tg) of 370 C. RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites display excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288degC (550 F) for 1000 h, and under hot-wet conditions. In ballistic impact testing, RTM370 triaxial braided T650-35 carbon fiber composites exhibited enhanced energy absorption at 288 C (550 F) compared to ambient temperature.

  9. Engineering Polymer Blends for Impact Damage Mitigation

    Science.gov (United States)

    Gordon, Keith L.; Smith, Russell W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Structures containing polymers such as DuPont's Surlyn® 8940, demonstrate puncture healing when impacted by a 9 millimeter projectile traveling from speeds near 300 meters per second (1,100 feet per second) to hypervelocity impacts in the micrometeoroid velocity range of 5 kilometers per second (16,000 feet per second). Surlyn® 8940 puncture heals over a temperature range of minus 30 degrees Centigrade to plus 70 degrees Centigrade and shows potential for use in pressurized vessels subject to impact damage. However, such polymers are difficult to process and limited in applicability due to their low thermal stability, poor chemical resistance and overall poor mechanical properties. In this work, several puncture healing engineered melt formulations were developed. Moldings of melt blend formulations were impacted with a 5.56 millimeter projectile with a nominal velocity of 945 meters per second (3,100 feet per second) at about 25 degrees Centigrade, 50 degrees Centigrade and 100 degrees Centigrade, depending upon the specific blend being investigated. Self-healing tendencies were determined using surface vacuum pressure tests and tensile tests after penetration using tensile dog-bone specimens (ASTM D 638-10). For the characterization of tensile properties both pristine and impacted specimens were tested to obtain tensile modulus, yield stress and tensile strength, where possible. Experimental results demonstrate a range of new puncture healing blends which mitigate damage in the ballistic velocity regime.

  10. Wavelet analysis in ecology and epidemiology: impact of statistical tests.

    Science.gov (United States)

    Cazelles, Bernard; Cazelles, Kévin; Chavez, Mario

    2014-02-06

    Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the 'beta-surrogate' method.

  11. Low temperature impact testing of welded structural wrought iron

    Science.gov (United States)

    Rogers, Zachary

    During the second half of the 19th century, structural wrought iron was commonly used in construction of bridges and other structures. Today, these remaining structures are still actively in use and may fall under the protection of historic preservation agencies. Continued use and protection leads to the need for inspection, maintenance, and repair of the wrought iron within these structures. Welding can be useful to achieve the appropriate repair, rehabilitation, or replacement of wrought iron members. There is currently very little published on modern welding techniques for historic wrought iron. There is also no pre-qualified method for this welding. The demand for welding in the repair of historic structural wrought iron has led to a line of research investigating shielded metal arc welding (SMAW) of historic wrought iron at the University of Colorado Denver. This prior research selected the weld type and other weld specifications to try and achieve a recognized specific welding procedure using modern SMAW technology and techniques. This thesis continues investigating SMAW of historic wrought iron. Specifically, this thesis addresses the toughness of these welds from analysis of the data collected from performing Charpy V-Notch (CVN) Impact Tests. Temperature was varied to observe the material response of the welds at low temperature. The wrought iron used in testing was from a historic vehicle bridge in Minnesota, USA. This area, and many other areas with wrought iron structures, can experience sustained or fluctuating temperatures far below freezing. Investigating the toughness of welds in historic wrought iron at these temperatures is necessary to fully understand material responses of the existing structures in need of maintenance and repair. It was shown that welded wrought iron is tougher and more ductile than non-welded wrought iron. In regards to toughness, welding is an acceptable repair method. Information on wrought iron, low temperature failure

  12. Three-body encounters in the Galactic Centre: the origin of the hypervelocity star SDSS J090745.0+024507

    NARCIS (Netherlands)

    Gualandris, A.; Portegies Zwart, S.F.; Sipior, M.S.

    2005-01-01

    In the late 1980s Hills predicted that runaway stars could be accelerated to velocities greater than 1000kms-1 by dynamical encounters with the supermassive black hole (SMBH) in the Galactic Centre. The recently discovered hypervelocity star SDSS J090745.0+024507 (hereafter the HVS) is escaping the

  13. Test Directions as a Critical Component of Test Design: Best Practices and the Impact of Examinee Characteristics

    Science.gov (United States)

    Lakin, Joni M.

    2014-01-01

    The purpose of test directions is to familiarize examinees with a test so that they respond to items in the manner intended. However, changes in educational measurement as well as the U.S. student population present new challenges to test directions and increase the impact that differential familiarity could have on the validity of test score…

  14. Characterization of hypervelocity metal fragments for explosive initiation

    Science.gov (United States)

    Yeager, John D.; Bowden, Patrick R.; Guildenbecher, Daniel R.; Olles, Joseph D.

    2017-07-01

    The fragment impact response of two plastic-bonded explosive (PBX) formulations was studied using explosively driven aluminum fragments. A generic aluminum-capped detonator generated sub-mm aluminum particles moving at hypersonic velocities. The ability of these fragments to initiate reaction or otherwise damage two PBX materials was assessed using go/no-go experiments at standoff distances of up to 160 mm. Lower density PBX 9407 (RDX-based) was initiable at up to 115 mm, while higher density PBX 9501 (HMX-based) was only initiable at up to 6 mm. Several techniques were used to characterize the size, distribution, and velocity of the particles. Witness plate materials, including copper and polycarbonate, and backlit high speed video were used to characterize the distribution of particles, finding that the aluminum cap did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Finally, precise digital holography experiments were conducted to measure the three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 μm and traveled between 2.2 and 3.2 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. These types of data are critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.

  15. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    Science.gov (United States)

    Hamers, Adrian S.; Perets, Hagai B.

    2017-09-01

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to the SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ˜100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.

  16. A train-to-train impact test of crash energy management passenger rail equipment

    Science.gov (United States)

    2006-12-04

    This paper gives an overview of the in-line full-scale impact tests conducted by the Federal : Railroad Administration and discusses a strategy for preventing override between colliding : equipment. Override of the impacting equipment during a passen...

  17. Simulation and low velocity impact testing on confined explosives

    NARCIS (Netherlands)

    Scholtes, J.H.G.; Verbeek, H.J.

    2010-01-01

    TNO Defence Security and Safety, performs in depth research in energetic material responses to several Insensitive Munitions (IM) stimuli like cook-off, bullet-fragment impact and shaped charge impact. The response of energetic materials to these stimuli depends strongly on the properties of these

  18. High-Stakes Standardized Testing & Marginalized Youth: An Examination of the Impact on Those Who Fail

    Science.gov (United States)

    Kearns, Laura-Lee

    2011-01-01

    This study examines the impact of high-stakes, large-scale, standardized literacy testing on youth who have failed the Ontario Secondary School Literacy Test. Interviews with youth indicate that the unintended impact of high-stakes testing is more problematic than policy makers and educators may realize. In contrast to literacy policy's aims to…

  19. Impact characteristic of the peculiar spacer grids for advanced fuel assembly by drop type impact test

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kyung Ho; Kim, Hyung Kyu; Kang, Heung Seok; Song, Kee Nam [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. The former is related to the mechanical integrity of the grid spring and dimple, and the latter is related to the structural integrity of the spacer grid. In this report, the drop type impact test is established that the mechanical strength of the candidate partial spacer grids for advanced PWR fuel assembly. It is accomplished by the comparison with the commercial same cell size spacer grid, which is composed of 5 x 5 partial V5H grid shape by Westinghouse design. Because of there is no specified design criterion about the structural strength of the partial spacer grid. As the results of them, two influential spacer grids are similar with that the reference grid. And the 5 x 5 cell type partial spacer grid is extended the 1/4 size model (8 x 8 cell type ) for verifying the mechanical performance, and then the negative points will be improving for detail design. 9 refs., 33 figs., 4 tabs. (Author)

  20. The Impact of Self-Study on GRE Test Performance.

    Science.gov (United States)

    Swinton, Spencer S.; Powers, Donald E.

    The study reported here was intended to "round out" the Graduate Record Examinations (GRE) Board's continuing study of special test preparation for the GRE General Test by providing information that was previously unavailable on the effects of one kind of special test preparation--self-test-familiarization for the verbal and quantitative…

  1. Visualizing the impact of prevalence on a diagnostic test

    DEFF Research Database (Denmark)

    Rehling, Michael

    2010-01-01

    The purpose of a diagnostic test is to confirm or rule out disease or to increase or decrease the probability of disease. Only a few tests can separate all patients into those with and without a disease (true positive and true negative test). Usually there will be some false test results (false...

  2. IVA Ultrasonic and Eddy Current NDE for ISS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phased array ultrasonic testing (PAUT) instruments and array eddy current testing instruments were tested on hypervelocity impact damaged aluminum plates simulating...

  3. Discovery of Two New Hypervelocity Stars from the LAMOST Spectroscopic Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.; Liu, X.-W.; Chen, B.-Q. [South-Western Institute for Astronomy Research, Yunnan University, Kunming 650500 (China); Zhang, H.-W.; Wang, C.; Tian, Z.-J. [Department of Astronomy, Peking University, Beijing 100871 (China); Xiang, M.-S.; Li, Y.-B. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yuan, H.-B. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Wang, B., E-mail: yanghuang@pku.edu.cn, E-mail: x.liu@pku.edu.cn, E-mail: zhanghw@pku.edu.cn [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Observatories, CAS, Kunming 650216 (China)

    2017-09-20

    We report the discovery of two new unbound hypervelocity stars (HVSs) from the LAMOST spectroscopic surveys. They are, respectively, a B2V-type star of ∼7 M {sub ⊙} with a Galactic rest-frame radial velocity of 502 km s{sup −1} at a Galactocentric radius of ∼21 kpc and a B7V-type star of ∼4 M {sub ⊙} with a Galactic rest-frame radial velocity of 408 km s{sup −1} at a Galactocentric radius of ∼30 kpc. The origins of the two HVSs are not clear given their currently poorly measured proper motions. However, the future data releases of Gaia should provide proper motion measurements accurate enough to solve this problem. The ongoing LAMOST spectroscopic surveys are expected to yield more HVSs to form a statistical sample, providing vital constraints on understanding the nature of HVSs and their ejection mechanisms.

  4. Crash energy management : one- and two-car passenger rail impact tests - summary of structural and occupant test results

    Science.gov (United States)

    2016-12-01

    Two full-scale impact tests were conducted to measure the crashworthiness performance of Crash Energy Management (CEM) equipped passenger rail cars. On December 3, 2003, a single car impacted a fixed barrier at approximately 35 mph and on February 26...

  5. Finite element analysis of unnotched charpy impact tests

    Science.gov (United States)

    2008-10-01

    This paper describes nonlinear finite element analysis (FEA) to examine the energy to : fracture unnotched Charpy specimens under pendulum impact loading. An oversized, : nonstandard pendulum impactor, called the Bulk Fracture Charpy Machine (BFCM), ...

  6. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static.

  7. The Impact of Gender in Oral Proficiency Testing.

    Science.gov (United States)

    O'Loughlin, Kieran

    2002-01-01

    Discusses the role of gender in speaking tests and suggests that in oral interviews it is possible that both interviewing and rating may be highly gendered processes. Audiotaped female and male test-takers who undertook practice IELTS interviews, one with a female interviewer and once with a male interviewer. Results from discourse and test score…

  8. Soft Soil Impact Testing and Simulation of Aerospace Structures

    Science.gov (United States)

    Fasanella, Edwin L.; Jackson, Karen E.; Kellas, Sotiris

    2008-01-01

    In June 2007, a 38-ft/s vertical drop test of a 5-ft-diameter, 5-ft-long composite fuselage section that was retrofitted with a novel composite honeycomb Deployable Energy Absorber (DEA) was conducted onto unpacked sand. This test was one of a series of tests to evaluate the multi-terrain capabilities of the DEA and to generate test data for model validation. During the test, the DEA crushed approximately 6-in. and left craters in the sand of depths ranging from 7.5- to 9-in. A finite element model of the fuselage section with DEA was developed for execution in LS-DYNA, a commercial nonlinear explicit transient dynamic code. Pre-test predictions were generated in which the sand was represented initially as a crushable foam material MAT_CRUSHABLE_FOAM (Mat 63). Following the drop test, a series of hemispherical penetrometer tests were conducted to assist in soil characterization. The penetrometer weighed 20-lb and was instrumented with a tri-axial accelerometer. Drop tests were performed at 16-ft/s and crater depths were measured. The penetrometer drop tests were simulated as a means for developing a more representative soil model based on a soil and foam material definition MAT_SOIL_AND FOAM (Mat 5) in LS-DYNA. The model of the fuselage with DEA was reexecuted using the updated soil model and test-analysis correlations are presented.

  9. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives

    National Research Council Canada - National Science Library

    Kozowyk, P.R.B; Langejans, G; Poulis, J.A

    2016-01-01

    ... been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy...

  10. Hypervelocity launchers

    CERN Document Server

    Igra, Ozer

    2016-01-01

    In the present volume numerous descriptions of Ram accelerators are presented. These descriptions provide good overview on the progress made and the present state of the Ram accelerator technology worldwide.  In addition, articles describing light gas gun, ballistic range including a chapter dealing with shock waves in solids are given. Along with the technical description of considered facilities, samples of obtained results are also included. Each chapter is written by an expert in the described topic providing a comprehensive description of the discussed phenomena.  .

  11. Experimental and numerical analysis of Al6063 duralumin using Taylor impact test

    Directory of Open Access Journals (Sweden)

    Grązka M.

    2012-08-01

    Full Text Available The paper presents results of experimental and numerical analysis of dynamic behaviour Al6063 duralumin. Dynamical experiments were made using Taylor impact test. Experimental results at next step of study were used in numerical analyses of dynamic yield stress of tested material and model parameters of the Johnson–Cook constitutive equation. The main aim of this analysis is to find out dynamical properties of Al6063 duralumin tested in Taylor impact test.

  12. A framework for testing the ability of models to project climate change and its impacts

    DEFF Research Database (Denmark)

    Refsgaard, J. C.; Madsen, H.; Andréassian, V.

    2014-01-01

    a validation framework and guiding principles applicable across earth science disciplines for testing the capability of models to project future climate change and its impacts. Model test schemes comprising split-sample tests, differential split-sample tests and proxy site tests are discussed in relation...... in order to build further confidence in model projections.......Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents...

  13. Development of computer simulation models for pedestrian subsystem impact tests

    NARCIS (Netherlands)

    Kant, R.; Konosu, A.; Ishikawa, H.

    2000-01-01

    The European Enhanced Vehicle-safety Committee (EEVC/WG10 and WG17) proposed three component subsystem tests for cars to assess pedestrian protection. The objective of this study is to develop computer simulation models of the EEVC pedestrian subsystem tests. These models are available to develop a

  14. Low velocity instrumented impact testing of four new damage tolerant carbon/epoxy composite systems

    Science.gov (United States)

    Lance, D. G.; Nettles, A. T.

    1990-01-01

    Low velocity drop weight instrumented impact testing was utilized to examine the damage resistance of four recently developed carbon fiber/epoxy resin systems. A fifth material, T300/934, for which a large data base exists, was also tested for comparison purposes. A 16-ply quasi-isotropic lay-up configuration was used for all the specimens. Force/absorbed energy-time plots were generated for each impact test. The specimens were cross-sectionally analyzed to record the damage corresponding to each impact energy level. Maximum force of impact versus impact energy plots were constructed to compare the various systems for impact damage resistance. Results show that the four new damage tolerant fiber/resin systems far outclassed the T300/934 material. The most damage tolerant material tested was the IM7/1962 fiber/resin system.

  15. Estimating Future Adverse Impact Using Selection Ratios and Group Differences in Test Score Means.

    Science.gov (United States)

    Aamodt, Michael G.; And Others

    Estimating the validity of a test is only one concern for the human resources professional developing a personnel selection battery. An equally important concern is whether the test will result in adverse impact against a member of a protected class. It would be useful if the probability of adverse impact could be estimated prior to spending time…

  16. Experimental and numerical analysis of aramid fiber laminates with DCPD resin matrix subjected to impact tests

    Directory of Open Access Journals (Sweden)

    Bocian Miroslaw

    2017-01-01

    Full Text Available Research for innovative composite material solutions for impact absorbers is focused on the analysis of their ability to absorb impact energy. For this purpose, aramid fiber laminate with DCPD resin matrix was prepared. Laminate samples were tested on the drop test and were subjected to ballistic loads. The laminate structure was modeled with ABAQUS software with the objective to optimize and estimate the ability to absorb impact energy in the range of high speeds (350m/s.

  17. Experimental and numerical analysis of aramid fiber laminates with DCPD resin matrix subjected to impact tests

    OpenAIRE

    Bocian Miroslaw; Pach Joanna; Jamroziak Krzysztof; Kosobudzki Mariusz; Polak Slawomir; Pyka Dariusz; Kurzawa Adam; Kurowski Janusz

    2017-01-01

    Research for innovative composite material solutions for impact absorbers is focused on the analysis of their ability to absorb impact energy. For this purpose, aramid fiber laminate with DCPD resin matrix was prepared. Laminate samples were tested on the drop test and were subjected to ballistic loads. The laminate structure was modeled with ABAQUS software with the objective to optimize and estimate the ability to absorb impact energy in the range of high speeds (350m/s).

  18. Testing and Resilience of the Impact Origin of the Moon

    Science.gov (United States)

    Righter, K.; Canup, R. M.

    2016-01-01

    The leading hypothesis for the origin of the Moon is the giant impact model, which grew out of the post-Apollo science community. The hypothesis was able to explain the high E-M system angular momentum, the small lunar core, and consistent with the idea that the early Moon melted substantially. The standard hypothesis requires that the Moon be made entirely from the impactor, strangely at odds with the nearly identical oxygen isotopic composition of the Earth and Moon, compositions that might be expected to be different if Moon came from a distinct impactor. Subsequent geochemical research has highlighted the similarity of both geochemical and isotopic composition of the Earth and Moon, and measured small but significant amounts of volatiles in lunar glassy materials, both of which are seemingly at odds with the standard giant impact model. Here we focus on key geochemical measurements and spacecraft observations that have prompted a healthy re-evaluation of the giant impact model, provide an overview of physical models that are either newly proposed or slightly revised from previous ideas, to explain the new datasets.

  19. Rotary Wing Aircraft Water Impact Test and Analyses Correlation

    National Research Council Canada - National Science Library

    Wittlin, Gil

    2000-01-01

    ... with a decreasing dependence on expensive scale model ditching tests. This paper describes an effort that focuses on the application of a crash modeling and simulation approach utilizing both a nonlinear finite-element code (MSC/DYTRAN(registered...

  20. Prognostic impact of stress testing in coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Severi, S.; Michelassi, C. (CNR Clinical Physiology Institute, Pisa, (Italy))

    1991-05-01

    Observational data prospectively collected permit the examination of a complex set of decisions, including the decision not to perform any stress testing. Patients with or without previous myocardial infarction admitted for coronary evaluation and not submitted to any stress testing because of clinical reasons are at a higher risk for subsequent death. For prognostication, no test has been better validated than exercise electrocardiography: it can identify patients at low and high risk for future cardiac events among those without symptoms, with typical chest pain, and with previous myocardial infarction. In patients with triple-vessel disease, the results of exercise also allow those at low and high risk to be recognized. Both exercise radionuclide angiography and {sup 201}Tl scintigraphy (the latter in larger patient populations) have also demonstrated significant prognostic value on patients with or without previous myocardial infarction. Neither one has shown superiority to the other in prognostication. So far, they have been considered the only viable alternatives to exercise electrocardiography stress testing for diagnosis and prognostication. However, their costs limit their extensive application. Preliminary data suggest that intravenous dipyridamole echocardiography can be used for both diagnosis and prognostication of coronary artery disease; moreover, the prognostic information derived from dipyridamole echocardiography testing seems independent of and additive to that provided by exercise electrocardiography. Further prospective studies on larger patient populations are needed to better define the prognostic value of dipyridamole echocardiography testing.47 references.

  1. Simulating the Impact Response of Three Full-Scale Crash Tests of Cessna 172 Aircraft

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.; Annett, Martin S.; Stimson, Chad M.

    2017-01-01

    During the summer of 2015, a series of three full-scale crash tests were performed at the Landing and Impact Research Facility located at NASA Langley Research Center of Cessna 172 aircraft. The first test (Test 1) represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test (Test 2) represented a controlled-flight- into-terrain (CFIT) with a nose down pitch attitude of the aircraft, which impacted onto soft soil. The third test (Test 3) also represented a CFIT with a nose up pitch attitude of the aircraft, which resulted in a tail strike condition. Test 3 was also conducted onto soft soil. These crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters and to generate impact test data for model calibration. Finite element models were generated and impact analyses were conducted to simulate the three impact conditions using the commercial nonlinear, transient dynamic finite element code, LS-DYNA®. The objective of this paper is to summarize test-analysis results for the three full-scale crash tests.

  2. Impact responses, compressive and burst tests of glass/epoxy (GRE) composite pipes

    Science.gov (United States)

    Abrar, F. S. B.; Majid, M. S. A.; Ridzuan, M. J. M.; Syayuthi, A. R. A.

    2017-10-01

    The paper presents the impact responses, compression and burst tests of glass reinforced epoxy (GRE) composites pipes. Impact loadings of three different energy levels (5 J, 7.5 J, and 10 J) were applied, followed by monotonic burst tests. Uniaxial compressive tests were conducted GRE samples using a universal testing machine in accordance with ASTM D695-10. In addition, the tests were also repeated with samples of different winding angles of ±45 ° and ±55 ° and tested at room temperature, and elevated temperatures of 45 °C and 65 °C. The result shows that the higher the impact energy applied to the pipes, the lower the burst strength of the pipes. The maximum burst strength found decreased with an increase in the impact energy level. The results also indicate that the strength of the GRE pipes significantly decreases with increase in temperature though, they are also found to increase as the winding angles decrease.

  3. Defining the coupled effects of cryogenic, space-radiation, and hypervelocity impact damamge on COPV's Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the research proposed herein is to define the coupled (combined) effect of critical environments on the structural performance of composite overwrap...

  4. Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts

    Science.gov (United States)

    Miller, J. E.; Lyons, F.; Christiansen, E. L.; Lear, D. M.

    2017-01-01

    Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar ar-rays meet their sunlit power demands and supply excess power to battery packs for power de-livery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are ex-posed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.

  5. Defining the coupled effects of cryogenic, space-radiation, and hypervelocity impact damamge on COPV's Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The intent of the proposed effort is to investigate the detailed composite overwrapped pressure vessel (COPV) performance characteristics after being subject to...

  6. Hypervelocity Impact Analysis of International Space Station Whipple and Enhanced Stuffed Whipple Shields

    Science.gov (United States)

    2004-12-01

    4.826 mm) Al2219-T87 Rear Wall 0.04” (1.016 mm) Al2024 -T3 Witness Plate 4.5” Front to Back 3” Gap from Back of Rear Wall to Front of...Witness Plate 0.08” (2.032 mm) Al6061-T6 Bumper 0.19” (4.826 mm) RW Al2219-T87 Rear Wall 0.04” Al2024 -T3 Witness Plate 6 Layers of Nextel AF62, 6

  7. Toward a Characterization of the Debris Cloud Created in a Hypervelocity Impact on a Thin Plate

    Science.gov (United States)

    1993-08-01

    I.0) CALL DHOLE (TS,DP,RP,RT,LP,V,BHN,DH) MTARG-PI*(DH/2.0)*(DH/2.0)*TS*RT R-L22/TS IF (R.GE.1.0) FSR-I.0 IF (R.LT.1.0) ISR=R MSR-FSR*MTARG MUSM-MTARG... DHOLE (TS,DP,RP,RT,LP,V,BHN,DH) 4 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 89 DOUBLE PRECISION K,LP C ....... THIS SUBROUTINE CALCULATES THE HOLE IN A THIN

  8. Hypervelocity impact microfoil perforations in the LEO space environment (LDEF, MAP AO-023 experiment)

    Science.gov (United States)

    Mcdonnell, J. A. M.; Stevenson, T. J.

    1992-01-01

    The Microabrasion Foil Experiment comprises arrays of frames, each supporting two layers of closely spaced metallic foils and a back-stop plate. The arrays, deploying aluminum and brass foil ranging from 1.5 to some 30 microns were exposed for 5.78 years on NASA's LDEF at a mean altitude of 458 km. They were deployed on the North, South, East, West, and Space pointing faces; results presented comprise the perforation rates for each location as a function of foil thickness. Initial results refer primarily to aluminum of 5 microns thickness or greater. This penetration distribution, comprising 2,342 perforations in total, shows significantly differing characteristics for each detector face. The anisotropy confirms, incorporating the dynamics of particulate orbital mechanics, the dominance of incorporating extraterrestrial particulates penetrating thicknesses greater than 20 microns in Al foil, yielding fluxes compatible with hyperbolic geocentric velocities. For thinner foils, a disproportionate increase in flux of particles on the East, North, and South faces shows the presence of orbital particulates which exceed the extraterrestrial component perforation rate at 5 micron foil thickness by a factor of approx. 4.

  9. The evolution and impact of testing baghouse filter performance.

    Science.gov (United States)

    Pham, Minh; Clark, Christina; Mckenna, John

    2012-08-01

    In 1995, the US. Environmental Protection Agency (EPA) initiated the Environmental Technology Verification (ETV) program for the purpose of generating both independent and credible performance verification of innovative technologies and helping to accelerate acceptance of these products into the marketplace to further benefit the environment and protect public health. The EPA has approved a testing protocol under this program to verify the performance of commercially available filtration products for pulse-jet baghouses in removingfine particulate matter (aerodynamic diameter<2.5 microm; PM2.5). This verification testing protocol was later used as a basis for the development of the American Society for Testing and Materials (ASTM) Method D6830-02 and the International Organization for Standardization (ISO) Method 11057. The South Coast Air Quality Management District (SCAQMD) in California and the EPA s Office of Air Quality Planning and Standards (OAQPS) highly encourage the use of ETV/ASTM-verified filtration media. This paper highlights the evolution of the standard test methods, the EPA's and SCAQMD's regulatory activities, the benefits of using verified filtration media, and the importance of including the filter performance testing in future consideration of baghouse permitting, baghouse operation and maintenance (O&M) plans, quality assurance/quality control (QA/QC), and bag monitoring plans.

  10. Impact of musical experience on the Seashore Rhythm Test.

    Science.gov (United States)

    Karzmark, P

    2001-08-01

    The Seashore Rhythm Test (SRT) is sensitive to musical talent. The possibility that this reduces its clinical sensitivity in cognitively impaired persons with musical experience was investigated. Subjects were 101 referrals to the neuropsychology service of a large medical center. The results indicate that patients with a substantial amount of musical experience tend to perform normally on the SRT, even when overall performance on a neuropsychological test battery suggests cognitive impairment. This finding suggests caution in interpreting normal SRT results in those with a musical background.

  11. Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    Science.gov (United States)

    Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.

    2013-01-01

    One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material

  12. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Somerville, MA (United States); Bergey, Daniel [Building Science Corporation, Somerville, MA (United States)

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  13. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bergey, Daniel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  14. Research Status and Action of Sub-millimeter Debris Impact Damage on Spacecraft Structure

    OpenAIRE

    Higashide, Masumi; Kurosaki, Hirohisa; Hasegawa, Sunao; 東出, 真澄; 黒崎, 裕久; 長谷川, 直

    2015-01-01

    To assess debris impact risk for the satellite, submillimeter debris impact damage has not been investigated enough to conduct satellite protective designing. JAXA is researching vulnerability of satellite structure materials against submillimeter debris impact, and proposing shielding methods. This report shows summary of submillimeter impact damages of honeycomb sandwich panels. The damage of the panel was investigated by hypervelocity impact experiments with the two-stage light gas gun in ...

  15. Moscow: A natural testing area for strong warming impact assessment

    Science.gov (United States)

    Klimenko, V. V.; Tereshin, A. G.; Kasilova, E. V.

    2017-11-01

    In recent decades, Moscow has experienced the impact of remarkable climate changes on a scale that has significantly exceeded the climate changes in most of the world's populated regions. Analysis of operation of the Moscow energy system under these new conditions has allowed us to reveal that the climate changes have determined alleviation of energy supply requirements during the cold season, contributed to decreased overall energy consumption, and led to reduced seasonal irregularity of the annual power load schedule. The results of this study allow us to conclude that an increase in the annual-mean temperature by 3-4°C in temperate and cold climate zones for continental regions brings no apparent negative consequences for operation of the energy system.

  16. Normalization of Impact Energy by Laminate Thickness for Compression After Impact Testing

    Science.gov (United States)

    Nettles, A. T.; Hromisin, S. M.

    2013-01-01

    The amount of impact energy used to damage a composite laminate is a critical parameter when assessing residual strength properties. The compression after impact (CAI) strength of impacted laminates is dependent upon how thick the laminate is and this has traditionally been accounted for by normalizing (dividing) the impact energy by the laminate's thickness. However, when comparing CAI strength values for a given lay-up sequence and fiber/resin system, dividing the impact energy by the specimen thickness has been noted by the author to give higher CAI strength values for thicker laminates. A study was thus undertaken to assess the comparability of CAI strength data by normalizing the impact energy by the specimen thickness raised to a power to account for the higher strength of thicker laminates. One set of data from the literature and two generated in this study were analyzed by dividing the impact energy by the specimen thickness to the 1, 1.5, 2, and 2.5 powers. Results show that as laminate thickness and damage severity decreased, the value which the laminate thickness needs to be raised to in order to yield more comparable CAI data increases.

  17. The Impact of Standardised Testing on Later High Stakes Test Outcomes

    OpenAIRE

    Regan-Stansfield, Joseph

    2017-01-01

    Standardised tests are a common, yet contentious, feature of many countries’ schooling systems. In May 2010, over one-quarter of English primary schools boycotted that year’s mandatory age eleven standardised tests (colloquially known as SATs tests). This paper investigates the plausibly causal effect of participation in standardised testing on later end-of-schooling qualification (GCSE) attainment. After controlling for non-random boycott participation, and relying on a selection-on-observab...

  18. Delays in DUI blood testing: Impact on cannabis DUI assessments.

    Science.gov (United States)

    Wood, Ed; Brooks-Russell, Ashley; Drum, Phillip

    2016-01-01

    This study examined the time from law enforcement dispatch to the first blood draw in cases of driving under the influence (DUI) vehicular homicide and a subset of DUI vehicular assault cases in Colorado in 2012. Laboratory toxicology results were also examined to understand the implications of delays in blood draws in cases of driving while under the influence of marijuana's delta-9-tetrahydrocannabinol (THC). Colorado court records were reviewed and information regarding charges, presence of alcohol and/or drugs, time of law enforcement contact and blood draw, crash location, and other contextual factors were identified. The distributions of first blood draw times were studied by charge and by responding law enforcement agency. Toxicology data from a different cohort of DUI traffic arrests in Colorado and Washington were examined to determine the proportion of blood tests for THC that were above specified legal limits in those states. The average time from law enforcement dispatch to blood draw in cases of vehicular homicide and vehicular assault was 2.32 h (SD ± 1.31 h), with a range of 0.83 to 8.0 h and a median of 2.0 h. Data from DUI traffic arrests found that between 42 and 70% of all cannabinoid-positive traffic arrests tested below 5 ng/ml THC in blood, which is the legal limit in Colorado and Washington. Given the current delays to blood testing in cases of arrests for vehicular homicide and vehicular assault in Colorado, many blood tests are unlikely to confirm that drivers who are impaired from smoking marijuana have THC levels above established legal limits.

  19. Impact of Gamification of Vision Tests on the User Experience.

    Science.gov (United States)

    Bodduluri, Lakshmi; Boon, Mei Ying; Ryan, Malcolm; Dain, Stephen J

    2017-08-01

    Gamification has been incorporated into vision tests and vision therapies in the expectation that it may increase the user experience and engagement with the task. The current study aimed to understand how gamification affects the user experience, specifically during the undertaking of psychophysical tasks designed to estimate vision thresholds (chromatic and achromatic contrast sensitivity). Three tablet computer-based games were developed with three levels of gaming elements. Game 1 was designed to be a simple clinical test (no gaming elements), game 2 was similar to game 1 but with added gaming elements (i.e., feedback, scores, and sounds), and game 3 was a complete game. Participants (N = 144, age: 9.9-42 years) played three games in random order. The user experience for each game was assessed using a Short Feedback Questionnaire. The median (interquartile range) fun level for the three games was 2.5 (1.6), 3.9 (1.7), and 2.5 (2.8), respectively. Overall, participants reported greater fun level and higher preparedness to play the game again for game 2 than games 1 and 3 (P users, without affecting engagement with the vision test.

  20. Point of care testing: The impact of nanotechnology.

    Science.gov (United States)

    Syedmoradi, Leila; Daneshpour, Maryam; Alvandipour, Mehrdad; Gomez, Frank A; Hajghassem, Hassan; Omidfar, Kobra

    2017-01-15

    Point-of-care (POC) diagnostic devices are integral in the health care system and particularly for the diagnosis and monitoring of diseases. POC testing has a variety of advantages including the ability to provide rapid and accurate results, ease of use, low cost, and little need for specialized equipment. One of the goals of POC testing is the development of a chip-based, miniaturized, portable, and self-containing system that allows for the assay of different analytes in complex samples. To achieve these goals, many researchers have focused on paper-based and printed electrode technologies as the material for fabricating POC diagnostic systems. These technologies are affordable, sensitive, user-friendly, rapid, and scalable for manufacturing. Moreover, the combination such devices with nanomaterials provide a path for the development of highly sensitive and selective biosensors for future generation POC tools. This review article discusses present technologies in on-site or at home POC diagnostic assays implemented in paper-based microfluidic and screen printing devices over the past decade as well as in the near future. In addition, recent advances in the application of nanomaterials such as gold nanoparticles, carbon nanotubes (CNTs), magnetic nanoparticles, and graphene in POC devices will be reviewed. The factors that limit POC testing to become real world products and future directions are also identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Elemental Water Impact Test: Phase 2 36-Inch Aluminum Tank Head

    Science.gov (United States)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. EWIT Phase 2 featured a 36-inch aluminum tank head. The tank head was outfitted with one accelerometer, twelve pressure transducers, three string potentiometers, and four strain gages. The tank head was dropped from heights of 1 foot and 2 feet. The focus of this report is the correlation of analytical models against test data. As a measure of prediction accuracy, peak responses from the baseline LS-DYNA model were compared to peak responses from the tests.

  2. Heavy-Ion Radiation Impact on a 4Mb FRAM under Different Test Conditions

    CERN Document Server

    Gupta, V.; Tsiligiannis, G.; Zadeh, A.; Javanainen, A.; Virtanen, A.; Puchner, H.; Saigne, F.; Wrobel, F.; Dilillo, L.

    2015-01-01

    The impact of heavy-ions on commercial Ferroelectric Memories (FRAMs) is analyzed. The influence of different test modes (static and dynamic) on this memory is investigated. Static test results show that the memory is prone to temporary effects occurring in the peripheral circuitry. Dynamic tests results show a high sensitivity of this memory to heavy-ions.

  3. Light airplane crash tests at impact velocities of 13 and 27 m/sec

    Science.gov (United States)

    Alfaro-Bou, E.; Vaughan, V. L., Jr.

    1977-01-01

    Two similar general aviation airplanes were crash tested at the Langley impact dynamics research facility at velocities of 13 and 27 m/sec. Other flight parameters were held constant. The facility, instrumentation, tests specimens, and test method are briefly described. Structural damage and accelerometer data are discussed.

  4. A review of the impact of cost and quality of HIV kits on HIV testing in ...

    African Journals Online (AJOL)

    Ademu

    Double ELISA was used to test blood samples before a particular specimen was diagnosed as reactive or non-reactive. A time came when immunoconfirmatory test was introduced into HIV antibodies testing for confirmations of the presence of HIV. Objectives: This present retospective study is to review the impact of cost ...

  5. Impact of Genetic Counseling and Testing on Altruistic Motivations to Test: A Longitudinal Study

    Science.gov (United States)

    Garg, Rahul; Vogelgesang, Joseph; Kelly, Kimberly

    2015-01-01

    Despite the importance of altruism in an individual’s participation in genetic counseling and testing, little research has explored the change in altruistic motivations to test over time. This study analyzed altruistic motivations to test and change in altruistic motivations after genetic counseling and testing among individuals (N=120) at elevated risk for BRCA1/2 mutations. The perceived benefits of genetic testing were assessed and utilized in a mixed-methods, repeated measures design at three time points: pre-counseling, counseling and post-genetic testing, along with transcripts of genetic counseling sessions. Qualitative analysis using an immersion/crystallization method resulted in six common perceived benefits of testing: cancer prevention, awareness, family’s survival, relief from anxiety, for science, and future planning. Perceived benefits were then coded into three categories according to Hamilton’s kin selection theory: altruistic motivation, personal motivation, and motivation for mutual benefit. At pre-counseling, those with a personal cancer history (p=0.003) and those with one or more children (p=.013), were significantly more likely to cite altruistic motivations to test. Altruistic motivations significantly increased post-counseling (p=0.01) but declined post-testing (paltruistic and personal motivations. The possibility of a positive test result might have led those with personal history of cancer to have altruistic motivations for testing. Genetic counseling may have increased altruistic motivations to help family and may be a prime opportunity to discuss other forms of altruism. PMID:26578231

  6. The role of the modified taylor impact test in dynamic material research

    Directory of Open Access Journals (Sweden)

    Bagusat Frank

    2015-01-01

    Full Text Available Dynamic material research with strain rates of more than 1000 1/s is experimentally very often done with a Split-Hopkinson Bar, Taylor impact tests or planar plate impact test investigations. At the Ernst-Mach-Institut (EMI, a variant of an inverted classical Taylor impact test is used by application of velocity interferometers of the VISAR type (“Modified Taylor Impact Test”, MTT. The conduction of the experiments is similar to that of planar plate impact tests. The data reduction and derivation of dynamic material data can also be restricted to an analysis of the VISAR signal. Due to these properties, nearly each highly dynamic material characterization in our institute done by planar plate investigations is usually accompanied by MTT experiments. The extended possibilities and usefulness of a combined usage of these two highly dynamic characterization methods are explained. Recently, further developed MTT experiments with very small specimen sizes are presented. For the first time, Taylor impact and planar impact specimen can be used for which the load directions even in case of thin plate test material are identical and not perpendicular to each other. Consequences for testing construction elements are discussed.

  7. Ejection of Hyper-Velocity Stars by Intermediate-Mass Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Baumgardt, Holger [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, 53121 Bonn (Germany); Gualandris, Alessia [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Kruislaan 403 (Netherlands); Zwart, Simon Portegies [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Kruislaan 403 (Netherlands)

    2006-12-15

    We have performed N-body simulations of the formation of hyper-velocity stars (HVS) in the centre of the Milky Way due to inspiralling intermediate-mass black holes (IMBHs). We find that due to dynamical friction, IMBHs sink into the centre of the Galaxy where they deplete the central cusp of stars. Some of these stars become HVS and are ejected with velocities sufficiently high to escape the Galaxy. Our simulations show that HVS are generated in short bursts which last only a few Myrs until the IMBH is swallowed by the supermassive black hole (SMBH). After the HVS have reached the galactic halo, their escape velocities correlate with the distance from the Galactic centre in the sense that the fastest HVS can be found furthest away from the centre. Finally, our simulations show that the presence of an IMBH in the Galactic centre changes the stellar density distribution inside r < 0.02 pc into a core profile, which takes at least 100 Myrs to replenish.

  8. THE NATURE OF HYPERVELOCITY STARS AND THE TIME BETWEEN THEIR FORMATION AND EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Cohen, Judith G., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: jlc@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-07-20

    We obtain Keck HIRES spectroscopy of HVS5, one of the fastest unbound stars in the Milky Way halo. We show that HVS5 is a 3.62 {+-} 0.11 M{sub Sun} main-sequence B star at a distance of 50 {+-} 5 kpc. The difference between its age and its flight time from the Galactic center is 105 {+-} 18 (stat) {+-}30 (sys) Myr; flight times from locations elsewhere in the Galactic disk are similar. This 10{sup 8} yr 'arrival time' between formation and ejection is difficult to reconcile with any ejection scenario involving massive stars that live for only 10{sup 7} yr. For comparison, we derive arrival times of 10{sup 7} yr for two unbound runaway B stars, consistent with their disk origin where ejection results from a supernova in a binary system or dynamical interactions between massive stars in a dense star cluster. For HVS5, ejection during the first 10{sup 7} yr of its lifetime is ruled out at the 3{sigma} level. Together with the 10{sup 8} yr arrival times inferred for three other well-studied hypervelocity stars (HVSs), these results are consistent with a Galactic center origin for the HVSs. If the HVSs were indeed ejected by the central black hole, then the Galactic center was forming stars {approx_equal}200 Myr ago, and the progenitors of the HVSs took {approx_equal}100 Myr to enter the black hole's loss cone.

  9. The Impact of Test Dimensionality, Common-Item Set Format, and Scale Linking Methods on Mixed-Format Test Equating

    Science.gov (United States)

    Öztürk-Gübes, Nese; Kelecioglu, Hülya

    2016-01-01

    The purpose of this study was to examine the impact of dimensionality, common-item set format, and different scale linking methods on preserving equity property with mixed-format test equating. Item response theory (IRT) true-score equating (TSE) and IRT observed-score equating (OSE) methods were used under common-item nonequivalent groups design.…

  10. Measurement of Low Level Explosives Reaction in Gauged Multi-Dimensional Steven Impact Tests

    Energy Technology Data Exchange (ETDEWEB)

    Niles, A M; Garcia, F; Greenwood, D W; Forbes, J W; Tarver, C M; Chidester, S K; Garza, R G; Swizter, L L

    2001-05-31

    The Steven Test was developed to determine relative impact sensitivity of metal encased solid high explosives and also be amenable to two-dimensional modeling. Low level reaction thresholds occur at impact velocities below those required for shock initiation. To assist in understanding this test, multi-dimensional gauge techniques utilizing carbon foil and carbon resistor gauges were used to measure pressure and event times. Carbon resistor gauges indicated late time low level reactions 200-540 {micro}s after projectile impact, creating 0.39-2.00 kb peak shocks centered in PBX 9501 explosives discs and a 0.60 kb peak shock in a LX-04 disk. Steven Test modeling results, based on ignition and growth criteria, are presented for two PBX 9501 scenarios: one with projectile impact velocity just under threshold (51 m/s) and one with projectile impact velocity just over threshold (55 m/s). Modeling results are presented and compared to experimental data.

  11. Response of an Impact Test Apparatus for Fall Protective Headgear Testing Using a Hybrid-III Head/Neck Assembly.

    Science.gov (United States)

    Caccese, V; Ferguson, J; Lloyd, J; Edgecomb, M; Seidi, M; Hajiaghamemar, M

    2016-02-01

    A test method based upon a Hybrid-III head and neck assembly that includes measurement of both linear and angular acceleration is investigated for potential use in impact testing of protective headgear. The test apparatus is based upon a twin wire drop test system modified with the head/neck assembly and associated flyarm components. This study represents a preliminary assessment of the test apparatus for use in the development of protective headgear designed to prevent injury due to falls. By including angular acceleration in the test protocol it becomes possible to assess and intentionally reduce this component of acceleration. Comparisons of standard and reduced durometer necks, various anvils, front, rear, and side drop orientations, and response data on performance of the apparatus are provided. Injury measures summarized for an unprotected drop include maximum linear and angular acceleration, head injury criteria (HIC), rotational injury criteria (RIC), and power rotational head injury criteria (PRHIC). Coefficient of variation for multiple drops ranged from 0.4 to 6.7% for linear acceleration. Angular acceleration recorded in a side drop orientation resulted in highest coefficient of variation of 16.3%. The drop test apparatus results in a reasonably repeatable test method that has potential to be used in studies of headgear designed to reduce head impact injury.

  12. Impact of Solar Array Designs on High Voltage Operations

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Ferguson, Dale; Piszczor, Mike; ONeill, Mark

    2006-01-01

    As power levels of advanced spacecraft climb above 25 kW, higher solar array operating voltages become attractive. Even in today s satellites, operating spacecraft buses at 100 V and above has led to arcing in GEO communications satellites, so the issue of spacecraft charging and solar array arcing remains a design problem. In addition, micrometeoroid impacts on all of these arrays can also lead to arcing if the spacecraft is at an elevated potential. For example, tests on space station hardware disclosed arcing at 75V on anodized A1 structures that were struck with hypervelocity particles in Low Earth Orbit (LEO) plasmas. Thus an understanding of these effects is necessary to design reliable high voltage solar arrays of the future, especially in light of the Vision for Space Exploration of NASA. In the future, large GEO communication satellites, lunar bases, solar electric propulsion missions, high power communication systems around Mars can lead to power levels well above 100 kW. As noted above, it will be essential to increase operating voltages of the solar arrays well above 80 V to keep the mass of cabling needed to carry the high currents to an acceptable level. Thus, the purpose of this paper is to discuss various solar array approaches, to discuss the results of testing them at high voltages, in the presence of simulated space plasma and under hypervelocity impact. Three different types of arrays will be considered. One will be a planar array using thin film cells, the second will use planar single or multijunction cells and the last will use the Stretched Lens Array (SLA - 8-fold concentration). Each of these has different approaches for protection from the space environment. The thin film cell based arrays have minimal covering due to their inherent radiation tolerance, conventional GaAs and multijunction cells have the traditional cerium-doped microsheet glasses (of appropriate thickness) that are usually attached with Dow Corning DC 93-500 silicone

  13. Asteroid Impact and Deflection Assessment (AIDA) Mission: The double Asteroid redirection test (DART)

    OpenAIRE

    Cheng, A F; Michel, P; Barnouin, O.S.; Campo-Bagatin, A.; Miller, P.; Pravec, P.; Richardson, D. C.; Rivkin, A. S.; Schwartz, S.R.; Stickel, A.; Tsiganis, K.; Ulamec, S.

    2016-01-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. AIDA is a joint ESA-NASA cooperative project [1,2], that includes the ESA Asteroid Impact Mission (AIM) rendezvous spacecraft and the NASA Double Asteroid Redirection Test (DART) mission. The AIDA target is the near- Earth binary asteroid 65803 Didymos, which will make an unusually close approach to Earth in October, 20...

  14. Cycom 977-2 Composite Material: Impact Test Results (workshop presentation)

    Science.gov (United States)

    Engle, Carl; Herald, Stephen; Watkins, Casey

    2005-01-01

    Contents include the following: Ambient (13A) tests of Cycom 977-2 impact characteristics by the Brucenton and statistical method at MSFC and WSTF. Repeat (13A) tests of tested Cycom from phase I at MSFC to expended testing statistical database. Conduct high-pressure tests (13B) in liquid oxygen (LOX) and GOX at MSFC and WSTF to determine Cycom reaction characteristics and batch effect. Conduct expended ambient (13A) LOX test at MSFC and high-pressure (13B) testing to determine pressure effects in LOX. Expend 13B GOX database.

  15. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    Science.gov (United States)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Emmerling, William C.; Altobelli, Donald J.

    2012-01-01

    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade.

  16. Safety impact of an integrated crash warning system based on field test data.

    Science.gov (United States)

    2011-06-13

    This paper provides the results of an analysis : conducted to assess the safety impact of an integrated : vehicle-based crash warning system based on : naturalistic driving data collected from a field : operational test. The system incorporates four ...

  17. Results of a diesel multiple unit fuel tank blunt impact test

    Science.gov (United States)

    2017-04-04

    The Federal Railroad Administrations Office of Research and Development is conducting research into passenger locomotive fuel tank crashworthiness. A series of impact tests is being conducted to measure fuel tank deformation under two types of dyn...

  18. Sensitivity of Occupant Response Subject to Prescribed Corridors for Impact Testing

    Directory of Open Access Journals (Sweden)

    J.R. Crandall

    1996-01-01

    Full Text Available A technology to study the sensitivity of impact responses to prescribed test conditions is presented. Motor vehicle impacts are used to illustrate the principles of this sensitivity technology. Impact conditions are regulated by specifying either a corridor for the acceleration time history or other test parameters such as velocity change, static crush distance, and pulse duration. By combining a time domain constrained optimization method and a multirigid body dynamics simulator, the upper and lower bounds of occupant responses subject to the regulated corridors were obtained. It was found that these prescribed corridors may be either so wide as to allow extreme variations in occupant response or so narrow that they are physically unrealizable in the laboratory test environment. A new corridor based on specifications for the test parameters of acceleration, velocity. crush distance, and duration for frontal vehicle impacts is given.

  19. Impact test of a crash-energy management passenger rail car

    Science.gov (United States)

    2004-04-06

    On December 3, 2003, a single-car impact test was : conducted to assess the crashworthiness performance of a : modified passenger rail car. A coach car retrofitted with a : Crash Energy Management (CEM) end structure impacted a : fixed barrier at app...

  20. Impact of Emotional Intelligence Enhancement on Test Anxiety among EFL Learners: an Experimental Study

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ebrahimi

    2016-03-01

    Full Text Available Emotional Intelligence (EI also EQ is an affective factor capable of being enhanced, (Test Anxiety is another affective factor capable of being reduced. The present study is based on examination of possible impact(s of enhancing Emotional Intelligence on the reduction of Test Anxiety among Iranian university students. For this purpose, 45 students in intervention and control conditions completed the "Emotional Intelligence Questionnaire" and filled Sarason Test Anxiety Scale; afterwards, they received instructions on EQ and strategies to enhance it. At the end of the course, the same Test Anxiety Questionnaire was administered to the participants. By the use of descriptive statistics and independent samples t-test the data were analyzed. The analysis of the data uncovered that there is a significant difference in the reduction of students' Test Anxiety in experimental group. The results can shed light on how students’ emotional intelligence enhancement influences Test Anxiety and also possibly in a broader scale, testing outcomes.

  1. Impact testing of polymer-filled auxetics using Split Hopkinson Pressure Bar

    Czech Academy of Sciences Publication Activity Database

    Fíla, T.; Zlámal, P.; Jiroušek, O.; Falta, J.; Koudelka_ml., P.; Kytýř, D.; Doktor, T.; Valach, Jaroslav

    2017-01-01

    Roč. 19, č. 10 (2017), č. článku 1700076. ISSN 1438-1656 R&D Projects: GA MŠk(CZ) LO1219 Keywords : bridge decks * filled polymers * filling * honeycomb structures * impact testing * mechanical testing * Poisson ratio * polyurethanes Subject RIV: JJ - Other Materials Impact factor: 2.319, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/adem.201700076/abstract

  2. Testing the impact of miniaturization on phylogeny: Paleozoic dissorophoid amphibians.

    Science.gov (United States)

    Fröbisch, Nadia B; Schoch, Rainer R

    2009-06-01

    Among the diverse clade of Paleozoic dissorophoid amphibians, the small, terrestrial amphibamids and the neotenic branchiosaurids have frequently been suggested as possible antecedents of either all or some of the modern amphibian clades. Classically, amphibamids and branchiosaurids have been considered to represent distinct, but closely related clades within dissorophoids, but despite their importance for the controversial lissamphibian origins, a comprehensive phylogenetic analysis of small dissorophoids has thus far not been attempted. On the basis of an integrated data set, the relationships of amphibamids and branchiosaurids were analyzed using parsimony and Bayesian approaches. Both groups represent miniaturized forms and it was tested whether similar developmental pathways, associated with miniaturization, lead to an artificial close relationship of branchiosaurids and amphibamids. Moreover, the fit of the resulting tree topologies to the distribution of fossil taxa in the stratigraphic rock record was assessed as an additional source of information. The results show that characters associated with a miniaturized morphology are not responsible for the close clustering of branchiosaurids and amphibamids. Instead, all analyses invariably demonstrate a monophyletic clade of branchiosaurids highly nested within derived amphibamids, indicating that branchiosaurids represent a group of secondarily neotenic amphibamid dissorophoids. This understanding of the phylogenetic relationships of small dissorophoid amphibians provides a new framework for the discussion of their evolutionary history and the evolution of characters shared by branchiosaurids and/or amphibamids with modern amphibian taxa.

  3. The psychological impact of predictive genetic testing for Huntington's disease: a systematic review of the literature.

    Science.gov (United States)

    Crozier, S; Robertson, N; Dale, M

    2015-02-01

    Huntington's disease (HD) is a neurodegenerative genetic condition for which a predictive genetic test by mutation analysis has been available since 1993. However, whilst revealing the future presence of the disease, testing may have an adverse psychological impact given that the disease is progressive, incurable and ultimately fatal. This review seeks to systematically explore the psychological impact of genetic testing for individuals undergoing pre-symptomatic mutation analysis. Three databases (Medline, PsycInfo and Scopus) were interrogated for studies utilising standardised measures to assess psychological impact following predictive genetic testing for HD. From 100 papers initially identified, eight articles were eligible for inclusion. Psychological impact of predictive genetic testing was not found to be associated with test result. No detrimental effect of predictive genetic testing on non-carriers was found, although the process was not found to be psychologically neutral. Fluctuation in levels of distress was found over time for carriers and non-carriers alike. Methodological weaknesses of published literature were identified, notably the needs of individuals not requesting genetic testing, as well as inadequate support for individuals registering elevated distress and declining post-test follow-up. Further assessment of these vulnerable individuals is warranted to establish the extent and type of future psychological support.

  4. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    Science.gov (United States)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  5. Influence of fall height on high impact polystyrene deformation and characteristics of drop weight test

    Directory of Open Access Journals (Sweden)

    Mizera Ales

    2017-01-01

    Full Text Available This study deals with high impact polystyrene (HIPS which was subjected the drop-weight test. HIPS is a polymer produced by the reaction between butadiene synthetic elastomer and styrene (5–14 % which contains the crystal polymer in certain amounts and is commonly used in mechanical engineering applications where machine parts are exposed to impact loading. The injection moulded HIPS samples were subjected the penetration test at different fall heights and the results were subsequently evaluated and discussed. It was found out that all fall heights are suitable for HIPS penetration, but the optimal one is 50 J because of the smallest variation range. Higher heights are not needed because of increasing power consumption of the test device. From the results, it is clear, that HIPS is not so highly impact resistant material as for example HDPE, because of that is this material suitable for applications where is not often exposed to too big impacts at high velocities.

  6. Impact of Panel Gene Testing for Hereditary Breast and Ovarian Cancer on Patients.

    Science.gov (United States)

    Lumish, Heidi S; Steinfeld, Hallie; Koval, Carrie; Russo, Donna; Levinson, Elana; Wynn, Julia; Duong, James; Chung, Wendy K

    2017-10-01

    Recent advances in next generation sequencing have enabled panel gene testing, or simultaneous testing for mutations in multiple genes for a clinical condition. With more extensive and widespread genetic testing, there will be increased detection of genes with moderate penetrance without established clinical guidelines and of variants of uncertain significance (VUS), or genetic variants unknown to either be disease-causing or benign. This study surveyed 232 patients who underwent genetic counseling for hereditary breast and ovarian cancer to examine the impact of panel gene testing on psychological outcomes, patient understanding, and utilization of genetic information. The survey used standardized instruments including the Impact of Event Scale (IES), Multidimensional Impact of Cancer Risk Assessment (MICRA), Satisfaction with Decision Instrument (SWD), Ambiguity Tolerance Scale (AT-20), genetics knowledge, and utilization of genetic test results. Study results suggested that unaffected individuals with a family history of breast or ovarian cancer who received positive results were most significantly impacted by intrusive thoughts, avoidance, and distress. However, scores were also modestly elevated among unaffected patients with a family history of breast and ovarian cancer who received VUS, highlighting the impact of ambiguous results that are frequent among patients undergoing genetic testing with large panels of genes. Potential risk factors for increased genetic testing-specific distress in this study included younger age, black or African American race, Hispanic origin, lower education level, and lower genetic knowledge and highlight the need for developing strategies to provide effective counseling and education to these communities, particularly when genetic testing utilizes gene panels that more commonly return VUS. More detailed pre-test education and counseling may help patients appreciate the probability of various types of test results and how results

  7. The impact of screening-test negative samples not enumerated by MPN

    DEFF Research Database (Denmark)

    Corbellini, Luis Gustavo; Ribeiro Duarte, Ana Sofia; de Knegt, Leonardo

    2015-01-01

    In microbiological surveys, false negative results in detection tests precluding the enumeration by MPN may occur. The objective of this study was to illustrate the impact of screening test failure on the probability distribution of Salmonella concentrations in pork using a Bayesian method. A tot...

  8. Train-to-Train Impact Test of Crash-Energy Management Passenger Rail Equipment: Occupant Experiments

    Science.gov (United States)

    2006-11-06

    As part of an ongoing passenger rail crashworthiness effort, : a full-scale impact test of a train with crash energy management : (CEM) passenger cars was conducted on March 23, 2006. In : this test, a train made up of a CEM cab car, four CEM coach :...

  9. The Impact of Intensive Reading Interventions on Student Standardized Test Scores

    Science.gov (United States)

    Munoz, Carolyn Sue

    2010-01-01

    The purpose of this study was to identify the impact intensive reading instruction had for 28 students with learning disabilities at the middle school level on standardized tests. National Assessment of Education Progress testing indicates that across the United States, learning disabled students literacy skills are decreasing annually, and these…

  10. Trial by Dutch Laboratories for Evaluation of Non-Invasive Prenatal Testing. Part I - Clinical Impact

    NARCIS (Netherlands)

    Oepkes, Dick; Page-Christiaens, Lieve C; Bax, Caroline J; Bekker, Mireille N; Bilardo, Catia M; Boon, Elles M J; Schuring-Blom, G Heleen; Coumans, Audrey B C; Faas, Brigitte H; Galjaard, Robert-Jan H; Go, Attie T; Henneman, Lidewij; Macville, Merryn V E; Pajkrt, Eva; Suijkerbuijk, Ron F; Huijsdens-vanAmsterdam, Karin; Van Opstal, Diane; Verweij, E J Joanne; Weiss, Marjan M; Sistermans, Erik A

    2016-01-01

    OBJECTIVE: To evaluate the clinical impact of nationwide implementation of genome-wide Non-Invasive Prenatal Testing (NIPT) in pregnancies at increased risk for fetal trisomies 21, 18 and 13. METHOD: Women with elevated risk based on first trimester combined testing (FCT ≥ 1:200) or medical history,

  11. The TOEFL Trump Card: An Investigation of Test Impact in an ESL Classroom

    Science.gov (United States)

    Johnson, Karen E.; Jordan, Stefanie Rehn; Poehner, Matthew E.

    2005-01-01

    Much of the research on the effects of tests on foreign and second-language classrooms has examined the impact or washback effect that commercial/institutional language tests, such as the TOEFL, have on teachers' instructional practices (Hughes, 1998; Wall & Alderson, 1993). Using a case study methodology, this study uncovered the ways in…

  12. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    Science.gov (United States)

    Barbee, Brent W.; Hernandez, Sonia

    2012-01-01

    Earth has previously been struck with devastating force by near-Earth asteroids (NEAs) and will be struck again. Telescopic search programs aim to provide advance warning of such an impact, but no techniques or systems have yet been tested for deflecting an incoming NEA. To begin addressing this problem, we have analyzed the more than 8000 currently known NEAs to identify those that offer opportunities for safe and meaningful near-term tests of the proposed kinetic impact asteroid deflection technique. In this paper we present our methodology and results, including complete mission designs for the best kinetic impactor test mission opportunities.

  13. Mesoscopic analyses of porous concrete under static compression and drop weight impact tests

    DEFF Research Database (Denmark)

    Agar Ozbek, A.S.; Pedersen, R.R.; Weerheijm, J.

    2008-01-01

    was considered as a four-phase material incorporating aggregates, bulk cement paste, interfacial transition zones and meso-size air pores. The stress-displacement relations obtained from static compression tests, the stress values, and the corresponding damage levels provided by the drop weight impact tests were......The failure process in highly porous concrete was analyzed experimentally and numerically. A triaxial visco-plastic damage model and a mesoscale representation of the material composition were considered to reproduce static compression and drop weight impact tests. In the mesoscopic model, concrete...

  14. Robust location, extraction, handling and storage of small hypervelocity particles c aptured in aerogel collectors

    Science.gov (United States)

    Westphal, A.; Snead, C.; Borg, J.; Quirico, E.; Raynal, P.; Zolensky, M.; Ferrini, G.; Colangeli, L.; Palumbo, P.

    It has been about a decade since the first demonstrations that hypervelocity particles could be captured, partially intact, in aerogel collectors. But the initial promise of a bonanza of partially-intact extraterrestrial particles, collected in space, has yet to materialize. One of the difficulties that investigators have encountered is that the location, extraction, handling and analysis of very small (10 microns and smaller) grains, which constitute the vast majority of the captured particles, is challenging and burdensome. Furthermore, current extraction techniques tend to be destructive over large areas of the collectors. We have developed techniques which may alleviate some of these difficulties. We have learned how to rapidly and efficiently locate captured particles in aerogel collectors, using an automated microscopic scanning system originally developed for experimental nuclear astrophysics. We have learned how to precisely excavate small access tunnels and trenches using an automated micromanipulator and glass microneedles as tools. These excavations are only destructive to the collector in a very small area --- this feature may be particularly important for excavations in the precious Stardust collectors. Using actuatable silicon microtweezers, we have learned how to extract and store ``naked'' particles --- essentially free of aerogel --- as small as 3 microns in size. We have also developed a technique for extracting particles, along with their terminal tracks, still embedded in small cubical aerogel blocks. We have developed a novel method for storing very small particles in etched nuclear tracks. We have applied these techniques to the extraction and storage of grains captured in aerogel collectors (PIE, OCDE, Comet- 99) in low earth orbit.

  15. Impact testing of the H1224A shipping/storage container

    Energy Technology Data Exchange (ETDEWEB)

    Harding, D.C.; Bobbe, J.G.; Stenberg, D.R.; Arviso, M.

    1994-05-01

    H1224A weapons containers have been used for years by the Department of Energy and Department of Defense to transport and store W78 warhead midsections. Although designed to protect these midsections only in low-energy handling drop and impact accidents, a recent transportation risk assessment effort has identified a need to evaluate the container`s ability to protect weapons in higher-energy environments. Four impact tests were performed on H1224A containers with W78 Mod 6c mass mockup midsections inside, onto an essentially unyielding target. Dynamic acceleration and strain levels were recorded during the side-on and end-on impacts, each at 12.2 m/s (40 ft/s) and 38.1 m/s (125 ft/s). Measured peak accelerations experienced by the midsections during lower velocity impacts ranged from 250 to 600 Gs for the end-on impact and 350 to 600 Gs for the side-on impact. Measured peak accelerations of the midsections during the higher velocity impacts ranged from 3,000 to 10,000 Gs for the end-on impact and 8,000 to 10,000 Gs for the side-on impact. Deformations in the H1224A container ranged from minimal to severe buckling and weld tearing. At higher impact velocities, the H1224A container may not provide significant energy absorption for the re-entry vehicle midsection but can provide some confinement of potentially damaged components.

  16. Preliminary Draft Environmental Impact Statement. Electronic Combat Test Capability, Utah Test and Training Range

    Science.gov (United States)

    1989-07-01

    ECTC tests. Each threat site will be equipped with intrusion alarms. Approximately seven security cameras will be located at key road intersections in...warning of enemy aircraft. A key objective of the ECTC is to evaluate how successfully combinations of "blue" systems work together. Figure 2.1-3...region. Some of the more common rodents in lower elevations are the chisel-toothed kangaroo rat ( Dipodomys microps), the desert woodrat (Neotoma lepida

  17. Effects of High-Density Impacts on Shielding Capability

    Science.gov (United States)

    Christiansen, Eric L.; Lear, Dana M.

    2014-01-01

    Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.

  18. Crash Testing and Simulation of a Cessna 172 Aircraft: Pitch Down Impact Onto Soft Soil

    Science.gov (United States)

    Fasanella, Edwin L.; Jackson, Karen E.

    2016-01-01

    During the summer of 2015, NASA Langley Research Center conducted three full-scale crash tests of Cessna 172 (C-172) aircraft at the NASA Langley Landing and Impact Research (LandIR) Facility. The first test represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test, which is the focus of this paper, represented a controlled-flight-into-terrain (CFIT) with a nose-down pitch attitude of the aircraft, which impacted onto soft soil. The third test, also conducted onto soil, represented a CFIT with a nose-up pitch attitude of the aircraft, which resulted in a tail strike condition. These three crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters (ELTs) and to generate impact test data for model validation. LS-DYNA finite element models were generated to simulate the three test conditions. This paper describes the model development and presents test-analysis comparisons of acceleration and velocity time-histories, as well as a comparison of the time sequence of events for Test 2 onto soft soil.

  19. Modeling the Impact of Test Anxiety and Test Familiarity on the Criterion-Related Validity of Cognitive Ability Tests

    Science.gov (United States)

    Reeve, Charlie L.; Heggestad, Eric D.; Lievens, Filip

    2009-01-01

    The assessment of cognitive abilities, whether it is for purposes of basic research or applied decision making, is potentially susceptible to both facilitating and debilitating influences. However, relatively little research has examined the degree to which these factors might moderate the criterion-related validity of cognitive ability tests. To…

  20. Mammalian Toxicology Testing: Problem Definition Study, Technology Changes Impact on Testing Requirements.

    Science.gov (United States)

    1981-01-01

    specific activity. I anticipate the major change in equipment in nutagenicity testing to be the improved sensitivity of radiotracer techniques. 20...three-day meeting on this subject area will be held at Raleigh, NC, in February, 1981. The purpose of this industry /government sponsored symposium will be... OIL : SCROTUM op a....... TOAC MOUTH m K.XRAY :SKIN COAL TAR: SKIN ~~oAREN -fIIL SKIN SOOT: SCROTUM 860o 1900 1920 1940 1960 1900 FIGURE 1 ENVIRONMENTAL

  1. IADC Vulnerability Report, IT32-13

    Science.gov (United States)

    Christiansen, E. L.; Miller, J. E.; Hyde, Jimx

    2016-01-01

    This section provides hypervelocity impact test data for two types of batteries: Lithium-Ion (Li-Ion) and Nickel Hydrogen (Ni-H2) batteries. The impact tests were directed by the NASA Johnson Space Center Hypervelocity Impact Technology (HVIT) group in Houston Texas, and were performed at the NASA White Sands Test Facility (WSTF).

  2. Guidelines for conducting impact tests on shipping packages for radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Mok, G.C.; Carlson, R.W.; Lu, S.C.; Fischer, L.E.

    1995-09-01

    Federal regulation (10 CFR Part 71) specifies a number of impact conditions (free-drop, penetration, and puncture), under which a package for the transport of radioactive materials must be tested or evaluated to demonstrate compliance with the regulation. This report is a comprehensive guide to the planning and execution of these impact tests. The report identifies the required considerations for both the design, pre-, and post-test inspections of the test model and the measurement, recording, analysis, and reporting of the test data. The report also presents reasons for the requirements, identifies the major difficulties in meeting these requirements, and suggests possible methods to overcome the difficulties. Discussed in substantial detail is the use of scale models and instrumented measurements.

  3. Development of a tornado safe room door from wood Products: door design and impact testing

    Science.gov (United States)

    Robert H. Falk; James J. Bridwell

    2016-01-01

    In this study, a tornado safe room door built from wood products and steel sheeting was developed and impact-tested according to tornado safe room standards. Results indicate that an door constructed from as few as two sheets of 23/32-in. (18.26-mm) construction-grade plywood and overlaid with 18-gauge (0.05-in.- (1.27- mm-) thick) steel can pass the required impact...

  4. Modeling the impact of novel diagnostic tests on pediatric and extrapulmonary tuberculosis

    OpenAIRE

    Denkinger, CM; Kampmann, B; Ahmed, S.; Dowdy, DW

    2014-01-01

    Background Extrapulmonary tuberculosis (EPTB) and most pediatric TB cannot be diagnosed using sputum-based assays. The epidemiological impact of different strategies to diagnose EPTB and pediatric TB is unclear. Methods We developed a dynamic epidemic model of TB in a hypothetical population with epidemiological characteristics similar to India. We evaluated the impact of four alternative diagnostic test platforms on adult EPTB and pediatric TB mortality over 10 years: (1) Nucleic acid amplif...

  5. Railgun Application for High Energy Impact Testing of Nano-Reinforced Kevlar-Based Composite Materials

    Science.gov (United States)

    Micheli, D.; Vricella, A.; Pastore, R.; Morles, R. B.; Marchetti, M.

    2013-08-01

    An advanced electromagnetic accelerator, called railgun, has been assembled and tuned in order to perform high energy impact test on layered structures. Different types of layered composite materials have been manufactured and characterized in terms of energy absorbing capability upon impact of metallic bullets fired at high velocity. The composite materials under testing are manufactured by integrating several layers of Kevlar fabric and carbon fiber ply within a polymeric matrix reinforced by carbon nanotubes at 1% of weight percentage. The experimental results show that the railgun-device is a good candidate to perform impact testing of materials in the space debris energy range, and that carbon nanotubes may enhance, when suitably coupled to the composite's matrix, the excellent antiballistic properties of the Kevlar fabrics.

  6. The impact of human gene patents on genetic testing in the United Kingdom.

    Science.gov (United States)

    Hawkins, Naomi

    2011-04-01

    This article reports the results of an empirical study examining the impact of human gene patents on the development and delivery of genetic tests in the public sector in the United Kingdom. Semi-structured qualitative interviews. The study found that, despite the potential for gene patents to have significant negative consequences for genetic testing, in fact, human gene patents have little or no impact on practice for those developing genetic tests in the public sector in the United Kingdom. This is not because patents are managed optimally; rather, gene patents are essentially ignored. This article reports the factors that motivate this behavior. At least insofar as there seems to be no apparent problem of lack of patient access, there is no significant public health problem. However, there is divergence between the legal and the practical situation. Complacency about the lack of impact of patents on access to diagnostics is risky, and concerns about patents should be addressed proactively, rather than reactively.

  7. The Impact of Human Gene Patents on Genetic Testing in the UK

    Science.gov (United States)

    Hawkins, Naomi

    2011-01-01

    This paper reports the results of an empirical study examining the impact of human gene patents on the development and delivery of genetic tests in the public sector in the UK. The study found that, despite the potential for gene patents to have significant negative consequences for genetic testing, in fact, human gene patents have little or no impact on practice for those developing genetic tests in the public sector in the UK. This is not because patents are managed optimally; rather, gene patents are essentially ignored. This paper reports the factors that motivate this behavior. At least insofar as there seems to be no apparent problem of lack of patient access, there is no significant public health problem. However, there is divergence between the legal and the practical situation. Complacency about the lack of impact of patents on access to diagnostics is risky, and concerns about patents should be addressed proactively, rather than reactively. PMID:21150786

  8. Review of Evidence of Environmental Impacts of Animal Research and Testing

    Directory of Open Access Journals (Sweden)

    Katherine Groff

    2014-06-01

    Full Text Available Millions of animals are used in research and toxicity testing, including in drug, medical device, chemical, cosmetic, personal care, household, and other product sectors, but the environmental consequences are yet to be adequately addressed. Evidence suggests that their use and disposal, and the associated use of chemicals and supplies, contribute to pollution as well as adverse impacts on biodiversity and public health. The objective of this review is to examine such evidence. The review includes examinations of (1 resources used in animal research; (2 waste production in laboratories; (3 sources of pollution; (4 impacts on laboratory workers’ health; and (5 biodiversity impacts. The clear conclusion from the review is that the environmental implications of animal testing must be acknowledged, reported, and taken into account as another factor in addition to ethical and scientific reasons weighing heavily in favor of moving away from allowing and requiring animal use in research and testing.

  9. Analysis of dynamic deformation behavior of AZ31 using Taylor Rod on Anvil Impact Tests

    Science.gov (United States)

    Sharma, Maruwada Sukanya; Kirtley, Daniel; Gokhale, Arun; Thadhani, Naresh

    2017-06-01

    The dynamic behavior and detailed microstructural characterization of rolled magnesium alloy AZ31 is described in this work. Magnesium alloys have gained considerable importance as they possess a high strength-to-weight ratio. The goal of the current work is to provide an insight on the dynamic deformation of AZ31 magnesium alloys. Taylor rod-on-anvil impact tests have been conducted at different velocities, on rods machined along the rolling and transverse directions of the as-rolled AZ31 plate, in order to capture the effects of anisotropy on the dynamic deformation behavior. The experiments used laser beam interruption to measure the impact velocity of the samples and high-speed digital imaging to capture transient deformation states. The impacted samples showed anisotropic deformation resulting in an elliptical impact surface foot print. Additionally, detailed orientation maps and micrographs revealed extensive twinning along with some cracks on the impact faces of the samples. Quantitative microscopy revealed that the surface area per unit volume of twins at least tripled under all impact conditions. In this presentation evolution of microstructure and anisotropy in rolled AZ31 samples subjected to Taylor rod-on-anvil impact tests will be discussed.

  10. Safety assessment characteristics of pedestrian legform impactors in vehicle-front impact tests.

    Science.gov (United States)

    Matsui, Yasuhiro

    2014-12-01

    This study investigated the characteristics of safety assessment results of front-area vehicle impact tests carried out using the Transport Research Laboratory (TRL) legform impactor and a flexible legform impactor (FLEX legform impactor). Different types of vehicles (sedan, sport utility vehicle, high-roof K-car, and light cargo van) were examined. The impact locations in the study were the center of the bumper and an extremely stiff structure of the bumper (i.e., in front of the side member) of each tested vehicle. The measured injury criteria were normalized by injury assessment reference values of each legform impactor. The test results for center and side-member impacts indicated that there were no significant differences in ligament injury assessments derived from the normalized knee ligament injury measures between the TRL legform impactor and the FLEX legform impactor. Evaluations made using the TRL legform impactor and the FLEX legform impactor are thus similar in the vehicle safety investigation for knee ligament injury. Vehicle-center impact test results revealed that the tibia fracture assessments derived from the normalized tibia fracture measures did not significantly differ between the TRL legform impactor and the FLEX legform impactor. However, for an impact against an extremely stiff structure, there was a difference in the tibia fracture assessment between the FLEX legform impactor and the TRL legform impactor owing to their different sensor types. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Electrical failure on satellite's power harnesses due to small debris impacts

    OpenAIRE

    Hirai, Takayuki; Higashide, Masumi; Kurosaki, Hirohisa; Kawakita, Shirou; Mando, Yuki; Yamaguchi, Shota; Tanaka, Koji; 平井, 隆之; 東出, 真澄; 黒崎, 裕久; 川北, 史朗; 万戸, 雄輝; 山口, 翔太; 田中, 孝治

    2017-01-01

    Loss of satellite functions due to space debris collisions includes not only mechanical failures like breakup of satellite main bodies but also electric failures such as decrease in power supply from solar arrays and power harnesses. In particular, the past hypervelocity impact experiments suggest that sustained arcs and resulting ground faults on the power harnesses could be triggered by impacts of tiny space debris particles smaller than 1 mm which constantly impact on satellite surfaces. T...

  12. Impact of Body Composition on Performance in Fitness Tests among Personnel of the Croatian Navy

    OpenAIRE

    Sporiš, Goran; Jukić, Igor; Bok, Daniel; Vuleta Jr., Dinko; Harasin, Dražen

    2011-01-01

    The purpose of this study was to determine the impact of body weight on fitness tests among the personnel of the Croatian navy. Forty two naval personnel (age 27±4.1 years; body mass 86.2±4.9 kg; height 184.6±7.4 cm; body fat percentage 17.3±5.2) participated in this study. In order to evaluate the fitness of the naval servicemen, we applied a testing procedure that included measurements of 7 fitness tests and 15 body anthropometric tests. A negative correlation was found between ...

  13. A small-scale test for fiber release from carbon composites. [pyrolysis and impact

    Science.gov (United States)

    Gilwee, W. J., Jr.; Fish, R. H.

    1980-01-01

    A test method was developed to determine relative fiber loss from pyrolyzed composites with different resins and fiber construction. Eleven composites consisting of woven and unwoven carbon fiber reinforcement and different resins were subjected to the burn and impact test device. The composites made with undirectional tape had higher fiber loss than those with woven fabric. Also, the fiber loss was inversely proportional to the char yield of the resin.

  14. Disability income insurance: the private market and the impact of genetic testing.

    Science.gov (United States)

    Christianson, David J

    2007-01-01

    This article discusses the disability insurance industry in order to provide context regarding the potential impact of genetic testing on disability insurance. It describes disability income insurance, exploring both the protection it offers and its main contract provisions. It goes on to describe the private insurance market and the differences between group and individual insurance, and concludes with implications of genetic testing with respect to the private disability insurance market.

  15. Polysomy 17 in breast cancer: clinicopathologic significance and impact on HER-2 testing

    OpenAIRE

    Vanden Bempt, Isabelle; Van Loo, Peter; Drijkoningen, Maria; Neven, Patrick; Smeets, Ann; Christiaens, Marie-Rose; Paridaens, Robert; Peeters, Christiane

    2008-01-01

    PURPOSE: Polysomy 17 is frequently found in breast cancer and may complicate the interpretation of HER-2 testing results. We investigated the impact of polysomy 17 on HER-2 testing and studied its clinicopathologic significance in relation to HER2 gene amplification. PATIENTS AND METHODS: In 226 patients with primary invasive breast carcinoma, HER2 gene and chromosome 17 copy numbers were determined by dual-color fluorescent in situ hybridization (FISH). The interpretation of FISH results was...

  16. Soft impact testing of a wall-floor-wall reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Vepsä, Ari, E-mail: ari.vepsa@vtt.fi; Calonius, Kim; Saarenheimo, Arja; Aatola, Seppo; Halonen, Matti

    2017-01-15

    Highlights: • A wall-floor-wall reinforced concrete structure was built. • The structure was subjected to three almost identical soft impact tests. • Response was measured with accelerometers, displacement sensors and strain gauges. • Modal tests was also carried out with the same structure in different conditions. • The results are meant to be used for validation of computational methods and models. - Abstract: Assessing the safety of the reactor building of a nuclear power plant against the crash of an airplane calls for valid computational tools such as finite element models and material constitutive models. Validation of such tools and models in turn calls for reliable and relevant experimental data. The problem is that such data is scarcely available. One of the aspects of such a crash is vibrations that are generated by the impact. These vibrations tend to propagate from the impact point to the internal parts of the building. If strong enough, these vibrations may cause malfunction of the safety-critical equipment inside the building. To enable validation of computational models for this type of behaviour, we have conducted a series of three tests with a wall-floor-wall reinforced concrete structure under soft impact loading. The response of the structure was measured with accelerometers, displacement sensors and strain gauges. In addition to impact tests, the structure was subjected to modal tests under different conditions. The tests yielded a wealth of useful data for validation of computational models and better understanding about shock induced vibration physics especially in reinforced concrete structures.

  17. Putting social impact assessment to the test as a method for implementing responsible tourism practice

    Energy Technology Data Exchange (ETDEWEB)

    McCombes, Lucy, E-mail: l.mccombes@leedsbeckett.ac.uk [International Centre for Research in Events, Tourism and Hospitality (ICRETH), Leeds Beckett University, Headingley Campus, Macaulay Hall 103, Leeds LS6 3QS (United Kingdom); Vanclay, Frank, E-mail: frank.vanclay@rug.nl [Professor of Cultural Geography, Faculty of Spatial Sciences, University of Groningen, PO Box 800, 9700AV Groningen (Netherlands); Evers, Yvette, E-mail: y.evers@tft-earth.org [The Forest Trust, Chemin de Chantavril 2, 1260 Nyon (Switzerland)

    2015-11-15

    The discourse on the social impacts of tourism needs to shift from the current descriptive critique of tourism to considering what can be done in actual practice to embed the management of tourism's social impacts into the existing planning, product development and operational processes of tourism businesses. A pragmatic approach for designing research methodologies, social management systems and initial actions, which is shaped by the real world operational constraints and existing systems used in the tourism industry, is needed. Our pilot study with a small Bulgarian travel company put social impact assessment (SIA) to the test to see if it could provide this desired approach and assist in implementing responsible tourism development practice, especially in small tourism businesses. Our findings showed that our adapted SIA method has value as a practical method for embedding a responsible tourism approach. While there were some challenges, SIA proved to be effective in assisting the staff of our test case tourism business to better understand their social impacts on their local communities and to identify actions to take. - Highlights: • Pragmatic approach is needed for the responsible management of social impacts of tourism. • Our adapted Social impact Assessment (SIA) method has value as a practical method. • SIA can be embedded into tourism businesses existing ‘ways of doing things’. • We identified challenges and ways to improve our method to better suit small tourism business context.

  18. Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum.

    Science.gov (United States)

    Swift, Nathan B; Hsiung, Bor-Kai; Kennedy, Emily B; Tan, Kwek-Tze

    2016-08-01

    Hedgehog spines are a potential model for impact resistant structures and material. While previous studies have examined static mechanical properties of individual spines, actual collision tests on spines analogous to those observed in the wild have not previously been investigated. In this study, samples of roughly 130 keratin spines were mounted vertically in thin substrates to mimic the natural spine layout on hedgehogs. A weighted crash pendulum was employed to induce and measure the effects of repeated collisions against samples, with the aim to evaluate the influence of various parameters including humidity effect, impact energy, and substrate hardness. Results reveal that softer samples-due to humidity conditioning and/or substrate material used-exhibit greater durability over multiple impacts, while the more rigid samples exhibit greater energy absorption performance at the expense of durability. This trend is exaggerated during high-energy collisions. Comparison of the results to baseline tests with industry standard impact absorbing foam, wherein the spines exhibit similar energy absorption, verifies the dynamic impact absorption capabilities of hedgehog spines and their candidacy as a structural model for engineered impact technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Impact Foam Testing for Multi-Mission Earth Entry Vehicle Applications

    Science.gov (United States)

    Glaab, Louis J.; Agrawal, Paul; Hawbaker, James

    2013-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, two different Rohacell foams were tested to determine their thermal conductivity in support of MMEEV design applications. These applications include thermal insulation during atmospheric entry, impact attenuation, and post-impact thermal insulation in support of thermal soak analysis. Results indicate that for these closed-cell foams, the effect of impact is limited on thermal conductivity due to the venting of the virgin material gas and subsequent ambient air replacement. Results also indicate that the effect of foam temperature is significant compared to data suggested by manufacturer's specifications.

  20. The impact of cognitive testing on the welfare of group housed primates.

    Directory of Open Access Journals (Sweden)

    Jamie Whitehouse

    Full Text Available Providing cognitive challenges to zoo-housed animals may provide enriching effects and subsequently enhance their welfare. Primates may benefit most from such challenges as they often face complex problems in their natural environment and can be observed to seek problem solving opportunities in captivity. However, the extent to which welfare benefits can be achieved through programmes developed primarily for cognitive research is unknown. We tested the impact of voluntary participation cognitive testing on the welfare of a socially housed group of crested macaques (Macaca nigra at the Macaque Study Centre (Marwell Zoo. First, we compared the rate of self-directed and social behaviours on testing and non-testing days, and between conditions within testing days. Minimal differences in behaviour were found when comparing testing and non-testing days, suggesting that there was no negative impact on welfare as a result of cognitive testing. Lipsmacking behaviours were found to increase and aggressive interaction was found to decrease in the group as a result of testing. Second, social network analysis was used to assess the effect of testing on associations and interactions between individuals. The social networks showed that testing subjects increased their association with others during testing days. One interpretation of this finding could be that providing socially housed primates with an opportunity for individuals to separate from the group for short periods could help mimic natural patterns of sub-group formation and reunion in captivity. The findings suggest, therefore, that the welfare of captive primates can be improved through the use of cognitive testing in zoo environments.

  1. The impact of cognitive testing on the welfare of group housed primates.

    Science.gov (United States)

    Whitehouse, Jamie; Micheletta, Jérôme; Powell, Lauren E; Bordier, Celia; Waller, Bridget M

    2013-01-01

    Providing cognitive challenges to zoo-housed animals may provide enriching effects and subsequently enhance their welfare. Primates may benefit most from such challenges as they often face complex problems in their natural environment and can be observed to seek problem solving opportunities in captivity. However, the extent to which welfare benefits can be achieved through programmes developed primarily for cognitive research is unknown. We tested the impact of voluntary participation cognitive testing on the welfare of a socially housed group of crested macaques (Macaca nigra) at the Macaque Study Centre (Marwell Zoo). First, we compared the rate of self-directed and social behaviours on testing and non-testing days, and between conditions within testing days. Minimal differences in behaviour were found when comparing testing and non-testing days, suggesting that there was no negative impact on welfare as a result of cognitive testing. Lipsmacking behaviours were found to increase and aggressive interaction was found to decrease in the group as a result of testing. Second, social network analysis was used to assess the effect of testing on associations and interactions between individuals. The social networks showed that testing subjects increased their association with others during testing days. One interpretation of this finding could be that providing socially housed primates with an opportunity for individuals to separate from the group for short periods could help mimic natural patterns of sub-group formation and reunion in captivity. The findings suggest, therefore, that the welfare of captive primates can be improved through the use of cognitive testing in zoo environments.

  2. Impact of DNA testing for early-onset familial Alzheimer disease and frontotemporal dementia.

    Science.gov (United States)

    Steinbart, E J; Smith, C O; Poorkaj, P; Bird, T D

    2001-11-01

    DNA testing of persons at risk for hereditary, degenerative neurologic diseases is relatively new. Only anecdotal reports of such testing in familial Alzheimer disease (FAD) exist, and little is know about the personal and social impact of such testing. In a descriptive, observational study, individuals at 50% risk for autosomal dominant, early-onset FAD or frontotemporal dementia with parkinsonism linked to chromosome 17 underwent DNA testing for the genetic mutations previously identified in affected family members. Individuals were followed up for (1/2) to 3 years and were interviewed regarding attitudes toward the testing process and the impact of the results. Twenty-one (8.4%) of 251 persons at risk for FAD or frontotemporal dementia requested genetic testing. The most common reasons for requesting testing were concern about early symptoms of dementia, financial or family planning, and relief from anxiety. Twelve individuals had positive DNA test results, and 6 of these had early symptoms of dementia; 8 had negative results; and 1 has not yet received results. Of 14 asymptomatic individuals completing testing, 13 believed the testing was beneficial. Two persons reported moderate anxiety and 1 reported moderate depression. As expected, persons with negative test results had happier experiences overall, but even they had to deal with ongoing anxiety and depression. Thus far, there have been no psychiatric hospitalizations, suicide attempts, or denials of insurance. Genetic testing in early-onset FAD and frontotemporal dementia can be completed successfully. Most individuals demonstrate effective coping skills and find the testing to be beneficial, but long-term effects remain unknown.

  3. The Impact of Cognitive Testing on the Welfare of Group Housed Primates

    Science.gov (United States)

    Whitehouse, Jamie; Micheletta, Jérôme; Powell, Lauren E.; Bordier, Celia; Waller, Bridget M.

    2013-01-01

    Providing cognitive challenges to zoo-housed animals may provide enriching effects and subsequently enhance their welfare. Primates may benefit most from such challenges as they often face complex problems in their natural environment and can be observed to seek problem solving opportunities in captivity. However, the extent to which welfare benefits can be achieved through programmes developed primarily for cognitive research is unknown. We tested the impact of voluntary participation cognitive testing on the welfare of a socially housed group of crested macaques (Macaca nigra) at the Macaque Study Centre (Marwell Zoo). First, we compared the rate of self-directed and social behaviours on testing and non-testing days, and between conditions within testing days. Minimal differences in behaviour were found when comparing testing and non-testing days, suggesting that there was no negative impact on welfare as a result of cognitive testing. Lipsmacking behaviours were found to increase and aggressive interaction was found to decrease in the group as a result of testing. Second, social network analysis was used to assess the effect of testing on associations and interactions between individuals. The social networks showed that testing subjects increased their association with others during testing days. One interpretation of this finding could be that providing socially housed primates with an opportunity for individuals to separate from the group for short periods could help mimic natural patterns of sub-group formation and reunion in captivity. The findings suggest, therefore, that the welfare of captive primates can be improved through the use of cognitive testing in zoo environments. PMID:24223146

  4. UTILIZATION OF ImPACT TESTING TO MEASURE INJURY RISK IN ALPINE SKI AND SNOWBOARD ATHLETES.

    Science.gov (United States)

    Faltus, John; Huntimer, Brittney; Kernozek, Thomas; Cole, John

    2016-08-01

    While studies that have examined the prevalence of musculoskeletal injuries in alpine skiing and snowboarding exist, there has been no discussion of how neurocognitive deficits may influence such injuries. Recent authors have identified a possible link between Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) testing results and the prevalence of musculoskeletal injury in athletic populations. However, no study has specifically examined this in the alpine skiing and snowboard athletes who sustain injury and those that do not. The purpose was to review injury data and ImPACT test results within the local ski/snowboard population to determine if there was a difference in components of ImPACT test scores between injured and non-injured athletes. It was hypothesized that differences would exist in component scores on ImPACT testing between injured and non-injured athletes. Retrospective cohort study. Injury records and baseline ImPACT testing scores for 93 athletes aged 14-17 participating in a local ski and snowboard club during the 2009-2012 seasons were gathered retrospectively. Injuries documented for the lower and upper extremity included ligament sprains, muscle strains, contusions, dislocation/subluxation, fractures and concussions. Athletes who sustained any of these listed injuries were categorized within the injured athlete group. Each component of ImPACT test scores was compared between gender and for injury status within skiing and snowboarding disciplines using a series of two-way analysis of variance tests. There was no difference between non-injured and injured females as well as non-injured and injured males in reaction time and visual motor speed (VMS), however there was an interaction between gender and injury status on composite reaction time and visual motor speed, or VMS. The composite reaction time for females was 4.7% faster with injury while males without injury had a composite reaction time that was slower by 5.8%. Females had

  5. Damage development in rod-on-rod impact test on 1100 pure aluminum

    Science.gov (United States)

    Iannitti, G.; Bonora, N.; Bourne, N.; Ruggiero, A.; Testa, G.

    2017-01-01

    Stress triaxiality plays a major role in the nucleation and growth of ductile damage in metals and alloys. Although, the mechanisms responsible for ductile failure are the same at low and high strain rate, in impact dynamics, in addition to time resolved stress triaxiality and plastic strain accumulation, pressure also contributes to establish the condition for ductile failure to occur. In this work, ductile damage development in 1100 commercially pure aluminum was investigated by means of rod-on-rod (ROR) impact tests. Based on numerical simulations, using a continuum damage mechanics (CDM) model that accounts for the role of pressure on damage parameters and stochastic variability of such parameters, the impact velocity for no damage, incipient and fully developed damage were estimated. ROR tests at selected velocities were performed and damage distribution and extent were investigated by sectioning of soft recovered samples. Comparison between numerical simulations and experimental results is presented and discussed.

  6. A review of the impact of cost and quality of HIV kits on HIV testing in ...

    African Journals Online (AJOL)

    Objectives: This present retospective study is to review the impact of cost and quality of HIV reagent kits in the two periods A and B on the patients and confidence on the health care provider. Methods: We collated and compared laboratory records for both periods of HIV antibodies testing at Aminu Kano Teaching Hospital ...

  7. Game-Based Assessment: Investigating the Impact on Test Anxiety and Exam Performance

    Science.gov (United States)

    Mavridis, A.; Tsiatsos, T.

    2017-01-01

    The aim of this study is to assess the impact of a 3D educational computer game on students' test anxiety and exam performance when used in evaluative situations as compared to the traditional method of examination. The participants of the study were students in tertiary education who were examined using game-based assessment and traditional…

  8. Using Tests To Evaluate the Impact of Curricular Reform on Higher Order Thinking.

    Science.gov (United States)

    Davis, Alan

    The dominant issues in considering the use of tests developed outside the classroom to measure the impact of curriculum reform on higher order thinking are reviewed by a panel interviewed for this discussion. Panel members are: (1) Stuart Kahl, (2) Robert Linn, (3) Senta A. Raizen, (4) Lauren Resnick, and (5) Thomas A. Romberg. It is conceded…

  9. Laboratory wind tunnel testing of three commonly used saltation impact sensors

    Science.gov (United States)

    Electronic sensors that record individual impacts from saltating particles are used with increasing frequency in wind erosion field studies. Little is known about the limitations of these instruments or comparability of data collected with them. We tested the three most commonly used Saltation Imp...

  10. The Impact of the 2004 Hurricanes on Florida Comprehensive Assessment Test Scores: Implications for School Counselors

    Science.gov (United States)

    Baggerly, Jennifer; Ferretti, Larissa K.

    2008-01-01

    What is the impact of natural disasters on students' statewide assessment scores? To answer this question, Florida Comprehensive Assessment Test (FCAT) scores of 55,881 students in grades 4 through 10 were analyzed to determine if there were significant decreases after the 2004 hurricanes. Results reveal that there was statistical but no practical…

  11. Measuring the Impact of Language-Learning Software on Test Performance of Chinese Learners of English

    Science.gov (United States)

    Nicholes, Justin

    2016-01-01

    This classroom quasi-experiment aimed to learn if and to what degree supplementing classroom instruction with Rosetta Stone (RS), Tell Me More (TMM), Memrise (MEM), or ESL WOW (WOW) impacted high-stakes English test performance in areas of university-level writing, reading, speaking, listening, and grammar. Seventy-eight (N = 78) Chinese learners…

  12. A simulation test of the impact on soil moisture by agricultural ...

    African Journals Online (AJOL)

    To study the impact by agricultural machinery on changes in soil moisture, we used a simulated test method employing round iron plate based on the ground pressure ratio between the front and rear wheels of wheeled tractors and crawler tractors. We conducted soil compactions with five pressure loads (35, 98, 118, 196 ...

  13. A low cost method of testing compression-after-impact strength of composite laminates

    Science.gov (United States)

    Nettles, Alan T.

    1991-01-01

    A method was devised to test the compression strength of composite laminate specimens that are much thinner and wider than other tests require. The specimen can be up to 7.62 cm (3 in) wide and as thin as 1.02 mm (.04 in). The best features of the Illinois Institute of Technology Research Institute (IITRI) fixture are combined with an antibuckling jig developed and used at the University of Dayton Research Institute to obtain a method of compression testing thin, wide test coupons on any 20 kip (or larger) loading frame. Up to 83 pct. less composite material is needed for the test coupons compared to the most commonly used compression-after-impact (CAI) tests, which calls for 48 ply thick (approx. 6.12 mm) test coupons. Another advantage of the new method is that composite coupons of the exact lay-up and thickness of production parts can be tested for CAI strength, thus yielding more meaningful results. This new method was used to compression test 8 and 16 ply laminates of T300/934 carbon/epoxy. These results were compared to those obtained using ASTM standard D 3410-87 (Celanese compression test). CAI testing was performed on IM6/3501-6, IM7/SP500 and IM7/F3900. The new test method and associated fixture work well and is a valuable asset to MSFC's damage tolerance program.

  14. NASA-STD-6001B Test 1 Upward Flame Propagation; Sample Length Impact on MOC Investigation

    Science.gov (United States)

    Harper, Susana Tapia; Juarez, Alfredo; Woods, Brenton L.; Beeson, Harold D.

    2017-01-01

    Understanding the combustion behavior of materials in the elevated oxygen environments of habitable spacecraft is of utmost importance to crew safety and mission success. Currently, certification for unrestricted flight usage of a material with respect to flammability involves passing the Upward Flame Propagation Test of NASA-STD-6001B (Test 1). This test evaluates materials in a standardized test configuration for two failure criteria: self-extinguishment within 15 cm (6 in.) and the propensity of flame propagation by means of flaming material transfer. By the NASA standard, full-length samples are 30 cm (12 in.) in length; however, factors independent of the test method such as limited material availability or various nonstandard test configurations limit the full pretest sample lengths available for test. This paper characterizes the dependence, if any, of pretest sample length on NASA-STD-6001B Test 1 results. Testing was performed using the Maximum Oxygen Concentration (MOC) Threshold Method to obtain a data set for each sample length tested. In addition, various material types, including cloth (Nomex), foam (TA-301) and solids (Ultem), were tested to investigate potential effects of test specimen types. Though additional data needs to be generated to provide statistical confidence, preliminary findings are that use of variable sample lengths has minimal impact on NASA-STD-6001B flammability performance and MOC determination.

  15. Numerical Simulation of Projectile Oblique Impact on Microspacecraft Structure

    Directory of Open Access Journals (Sweden)

    Zhiyuan Zhang

    2017-01-01

    Full Text Available In the present study, the microspacecraft bulkhead was reduced to the double honeycomb panel, and the projectile oblique hypervelocity impact on the double honeycomb panel was simulated. The distribution of the debris cloud and the damage of a honeycomb sandwich panel were investigated when the incident angles were set to be 60°, 45°, and 30°. The results showed that as incident angle decreased, the distribution of debris cloud was increased gradually, while the maximum perforation size of the rear face sheet was firstly increased with the decrease of the incident angle and then decreased. On the other hand, the damage area and the damage degree of the front face sheet of the second honeycomb panel layer were increased with the decrease of the incident angle. Finally, the critical angle of front and rear face sheets of the honeycomb sandwich panel was obtained under oblique hypervelocity impact.

  16. Pedestrian headform testing: inferring performance at impact speeds and for headform masses not tested, and estimating average performance in a range of real-world conditions.

    Science.gov (United States)

    Hutchinson, T Paul; Anderson, Robert W G; Searson, Daniel J

    2012-01-01

    Tests are routinely conducted where instrumented headforms are projected at the fronts of cars to assess pedestrian safety. Better information would be obtained by accounting for performance over the range of expected impact conditions in the field. Moreover, methods will be required to integrate the assessment of secondary safety performance with primary safety systems that reduce the speeds of impacts. Thus, we discuss how to estimate performance over a range of impact conditions from performance in one test and how this information can be combined with information on the probability of different impact speeds to provide a balanced assessment of pedestrian safety. Theoretical consideration is given to 2 distinct aspects to impact safety performance: the test impact severity (measured by the head injury criterion, HIC) at a speed at which a structure does not bottom out and the speed at which bottoming out occurs. Further considerations are given to an injury risk function, the distribution of impact speeds likely in the field, and the effect of primary safety systems on impact speeds. These are used to calculate curves that estimate injuriousness for combinations of test HIC, bottoming out speed, and alternative distributions of impact speeds. The injuriousness of a structure that may be struck by the head of a pedestrian depends not only on the result of the impact test but also the bottoming out speed and the distribution of impact speeds. Example calculations indicate that the relationship between the test HIC and injuriousness extends over a larger range than is presently used by the European New Car Assessment Programme (Euro NCAP), that bottoming out at speeds only slightly higher than the test speed can significantly increase the injuriousness of an impact location and that effective primary safety systems that reduce impact speeds significantly modify the relationship between the test HIC and injuriousness. Present testing regimes do not take fully into

  17. Measurement of Low Level Explosives Reaction in the Two-Dimensional Steven Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J.W.; Tarver, C.M.; Chidester, S.K.; Garcia, F.; Greenwood, D.W.; Garza, R.

    2000-10-10

    The two-dimensional Steven impact test has been developed to be reproducible and amenable to computer modeling. This test has a hemispherical projectile traveling at tens of m/s impacting a metal cased explosive target. To assist in the understanding of this safety test, two-dimensional shock wave gauge techniques were used to measure the pressures of a few kilobars and times of reactions less than a millisecond. This work is in accord with a long-term goal to develop two-dimensional shock diagnostic techniques that are more than just time of arrival indicators. Experiments were performed where explosives were impacted at levels below shock initiation levels but caused low level reactions. Carbon foil and carbon resistor pressure gauges were used to measure pressures and time of events. The carbon resistor gauges indicate a late time low level reaction at 350 {micro}s after impact of the hemispherical projectile creating 0.5-6 kb peak shocks at the center of PBX 9501 (HMX/Estane/BDNPA-F; 95/2.5/2.5 wt %) explosive discs. The Steven test calculations are based on an ignition and growth criteria and found that the low level reaction occurs at 335 {micro}s, which is in good agreement with the experimental data. Some additional experiments simulating the Steven impact test were done on a gas gun with carbon foil and constantan strain gauges in a PMMA target. Hydrodynamic calculations can be used to evaluate the gauge performance in these experiments and check the lateral strain measurements.

  18. HE friction sensitivity oblique impact sensitivity of explosives (the SKID test). Progress report, October 1971--December 1971

    Energy Technology Data Exchange (ETDEWEB)

    Van Velkinburgh, J.H.

    1998-12-31

    The oblique impact test series on LX-10-0 Lot 710-2 was completed. Two instrumented oblique impact tests were done using RX-04-DW dropped at 45{degrees}, 5{prime} on a smooth steel surface. One additional oblique impact using RX-04-EB at 45{degrees} 3.5{prime} was done. An instrumented vertical drop and oblique impact series was begun on RX-04-EC (96/4 HMX/Viton).

  19. The impact of commercial rapid respiratory virus diagnostic tests on patient outcomes and health system utilization.

    Science.gov (United States)

    Ko, Fiona; Drews, Steven J

    2017-10-01

    Acute respiratory tract infections due to influenza A/B and respiratory syncytial virus (RSV) are major causes of morbidity and mortality globally. Rapid tests for detection of these pathogens include antigen detection point of care tests (POC) and newer easy to use molecular tests. From experience, these assays improve both laboratory workflow and assay interpretation issues. However, the question of the benefits of using rapid test technology compared to routine laboratory testing for respiratory viral pathogens is still often asked. Areas covered: Specifically, this review aims to; 1) identify clinical/patient indicators that can be measured prior to and following the implementation of rapid diagnostic test for influenza and RSV, 2) provide multiple perspectives on the extent of impact of a rapid diagnostic test, including direct and indirect outcomes, and 3) identify the technological advancements in the development of rapid testing, demonstrating a timeline that transitions from antigen-based assays to molecular assays. Expert commentary: Key benefits to the use of either antigen-based or molecular rapid tests for patient care, patient flow within institutions, as well as laboratory utilization are identified. Due to improved test characteristics, the authors feel that rapid molecular tests have greater benefits than antigen-based detection methods.

  20. Elemental Water Impact Test: Phase 3 Plunge Depth of a 36-Inch Aluminum Tank Head

    Science.gov (United States)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA water landing simulations. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 3 featured a composite tank head that was tested at a range of heights to verify the ability to predict structural failure of composites. To support planning for Phase 3, a test series was conducted with an aluminum tank head dropped from heights of 2, 6, 10, and 12 feet to verify that the test article would not impact the bottom of the test pool. This report focuses on the comparisons of the measured plunge depths to LS-DYNA predictions. The results for the tank head model demonstrated the following. 1. LS-DYNA provides accurate predictions for peak accelerations. 2. LS-DYNA consistently under-predicts plunge depth. An allowance of at least 20% should be added to the LS-DYNA predictions. 3. The LS-DYNA predictions for plunge depth are relatively insensitive to the fluid-structure coupling stiffness.

  1. Failure Behaviors Depending on the Notch Location of the Impact Test Specimens on the HAZ

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yun Chan; Kim, Dong Wook; Lee, Young Suk [Chungang Univ., Seoul (Korea, Republic of); Hong, Jae Keun; Park, Ji Hong [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2007-07-01

    Numerical studies were performed to examine the effects of notch location of impact specimens on the failure behavior of HAZ (Heat Affected Zone) when Charpy V-notch impact test were made at a low temperature (1 .deg. C). Carbon steel plate (SA-516 Gr. 70) with thickness of 25mm for pressure vessel was welded by SMAW (Shielded Metal-Arc Welding) and specimens were fabricated from the welded plate. Charpy tests were then performed with specimens having different notch positions of specimens varying from the fusion line through HAZ to base metal. A series of finite element analysis which simulates the Charpy test and crack propagation initiating at the tip of V-notch was carried out as well. The finite element analysis takes into account the irregular fusion line and non-homogenous material properties due to the notch location of the specimen in HAZ. Results reveals that the energies absorbed during impact test depend significantly on the notch location and direction of specimen. Finite element analysis also demonstrates that the notch location of specimens, to a great extent, influences the reliability and consistency of the test.

  2. Head impact velocities in FIS World Cup snowboarders and freestyle skiers: Do real-life impacts exceed helmet testing standards?

    Science.gov (United States)

    Steenstrup, Sophie E; Mok, Kam-Ming; McIntosh, Andrew S; Bahr, Roald; Krosshaug, Tron

    2018-01-01

    Prior to the 2013-2014 season, the International Ski Federation (FIS) increased the helmet testing speed from a minimum requirement of 5.4 to 6.8 m/s for alpine downhill, super-G and giant slalom and for freestyle ski cross, but not for the other freestyle disciplines or snowboarding. Whether this increased testing speed reflects impact velocities in real head injury situations on snow is unclear. We therefore investigated the injury mechanisms and gross head impact biomechanics in four real head injury situations among World Cup (WC) snowboard and freestyle athletes and compared these with helmet homologation laboratory test requirements. The helmets in the four cases complied with at least European Standards (EN) 1077 (Class B) or American Society for Testing and Materials (ASTM) F2040. We analysed four head injury videos from the FIS Injury Surveillance System throughout eight WC seasons (2006-2014) in detail. We used motion analysis software to digitize the helmet's trajectory and estimated the head's kinematics in two dimensions, including directly preimpact and postimpact. All four impacts were to the occiput. In the four cases, the normal-to-slope preimpact velocity ranged from 7.0(±SD 0.2) m/s to 10.5±0.5 m/s and the normal-to-slope velocity change ranged from 8.4±0.6 m/s to 11.7±0.7 m/s. The sagittal plane helmet angular velocity estimates indicated a large change in angular velocity (25.0±2.9 rad/s to 49.1±0.3 rad/s). The estimated normal-to-slope preimpact velocity was higher than the current strictest helmet testing rule of 6.8 m/s in all four cases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. LX-04 Violence Measurements-Steven Tests Impacted by Projectiles Shot from a Howitzer Gun

    Science.gov (United States)

    Chidester, Steven K.; Vandersall, Kevin S.; Switzer, Lori L.; Tarver, Craig M.

    2006-07-01

    Characterization of the reaction violence of LX-04 explosive (85% HMX and 15% Viton A by weight) was obtained from Steven Impact Tests performed above the reaction initiation threshold. A 155 mm Howitzer propellant driven gas gun was used to accelerate the Steven Test projectiles in the range of approximately 170-300 m/s to react (ignite) the LX-04 explosive. Blast overpressure gauges, acoustic microphones, and high-speed photography characterized the level of high explosive reaction violence. A detonation in this velocity range was not observed and when comparing these results (and the Susan test results) with that of other HMX based explosives, LX-04 has a more gradual reaction violence slope as the impact velocity increases. The high binder content (15%) of the LX-04 explosive is believed to be the key factor to the lower level of violence.

  4. LX-04 VIOLENCE MEASUREMENTS- STEVEN TESTS IMPACTED BY PROJECTILES SHOT FROM A HOWITZER GUN

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, S K; Vandersall, K S; Switzer, L L; Tarver, C M

    2005-07-18

    Characterization of the reaction violence of LX-04 explosive (85% HMX and 15% Viton A by weight) was obtained from Steven Impact Tests performed above the reaction initiation threshold. A 155 mm Howitzer propellant driven gas gun was used to accelerate the Steven Test projectiles in the range of approximately 170-300 m/s to react (ignite) the LX-04 explosive. Blast overpressure gauges, acoustic microphones, and high-speed photography characterized the level of high explosive reaction violence. A detonation in this velocity range was not observed and when comparing these results (and the Susan test results) with that of other HMX based explosives, LX-04 has a more gradual reaction violence slope as the impact velocity increases. The high binder content (15%) of the LX-04 explosive is believed to be the key factor to the lower level of violence.

  5. Advances in impact resistance testing for explosion-proof electrical equipment

    Directory of Open Access Journals (Sweden)

    Pasculescu Vlad Mihai

    2017-01-01

    Full Text Available The design, construction and exploitation of electrical equipment intended to be used in potentially explosive atmospheres presents a series of difficulties. Therefore, the approach of these phases requires special attention concerning technical, financial and occupational health and safety aspects. In order for them not to generate an ignition source for the explosive atmosphere, such equipment have to be subjected to a series of type tests aiming to decrease the explosion risk in technological installations which operate in potentially explosive atmospheres. Explosion protection being a concern of researchers and authorities worldwide, testing and certification of explosion-proof electrical equipment, required for their conformity assessment, are extremely important, taking into account the unexpected explosion hazard due to potentially explosive atmospheres, risk which has to be minimized in order to ensure the occupational health and safety of workers, for preventing material losses and for decreasing the environmental pollution. Besides others, one of the type tests, which shall be applied, for explosion-proof electrical equipment is the impact resistance test, described in detail in EN 60079 which specifies the general requirements for construction, testing and marking of electrical equipment and Ex components intended for use in explosive atmospheres. This paper presents an analysis on the requirements of the impact resistance test for explosion-proof electrical equipment and on the possibilities to improve this type of test, by making use of modern computer simulation tools based on finite element analysis, techniques which are widely used nowadays in the industry and for research purposes.

  6. Budget impact analysis of chronic kidney disease mass screening test in Japan.

    Science.gov (United States)

    Kondo, Masahide; Yamagata, Kunihiro; Hoshi, Shu-Ling; Saito, Chie; Asahi, Koichi; Moriyama, Toshiki; Tsuruya, Kazuhiko; Konta, Tsuneo; Fujimoto, Shouichi; Narita, Ichiei; Kimura, Kenjiro; Iseki, Kunitoshi; Watanabe, Tsuyoshi

    2014-12-01

    Our recently published cost-effectiveness study on chronic kidney disease mass screening test in Japan evaluated the use of dipstick test, serum creatinine (Cr) assay or both in specific health checkup (SHC). Mandating the use of serum Cr assay additionally, or the continuation of current policy mandating dipstick test only was found cost-effective. This study aims to examine the affordability of previously suggested reforms. Budget impact analysis was conducted assuming the economic model would be good for 15 years and applying a population projection. Costs expended by social insurers without discounting were counted as budgets. Annual budget impacts of mass screening compared with do-nothing scenario were calculated as ¥79-¥-1,067 million for dipstick test only, ¥2,505-¥9,235 million for serum Cr assay only and ¥2,517-¥9,251 million for the use of both during a 15-year period. Annual budget impacts associated with the reforms were calculated as ¥975-¥4,129 million for mandating serum Cr assay in addition to the currently used mandatory dipstick test, and ¥963-¥4,113 million for mandating serum Cr assay only and abandoning dipstick test. Estimated values associated with the reform from ¥963-¥4,129 million per year over 15 years are considerable amounts of money under limited resources. The most impressive finding of this study is the decreasing additional expenditures in dipstick test only scenario. This suggests that current policy which mandates dipstick test only would contain medical care expenditure.

  7. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was

  8. The impact of usability reports and user test observations on developers understanding of usability data

    DEFF Research Database (Denmark)

    Høegh, Rune Thaarup; Nielsen, Christian Monrad; Pedersen, Michael Bach

    2006-01-01

    A usability evaluation provides a strong and rich basis for understanding and improving the design of user interaction with a software system. Exploiting this evaluation requires feedback that significantly impacts the developers' understanding of usability data about the interaction design...... of the system. This article presents results from an exploratory study of 2 ways of providing feedback from a usability evaluation: observation of user tests and reading usability reports. A case study and a field experiment were used to explore how observation and usability reports impact developers...

  9. Low amplitude impact of PBX 9501: Modified Steven spigot gun tests

    Energy Technology Data Exchange (ETDEWEB)

    Idar, D.J.; Lucht, R.A.; Straight, J.W. [and others

    1998-12-01

    Low-velocity mechanical impact and subsequent high explosive (HE) reaction are of concern in credible accident scenarios involving the handling, transport, and storage of nuclear weapons. Using modified Steven spigot gun tests, the authors have investigated the high-explosive violent-reaction (HEVR) potential of PBX 9501 to low-amplitude insult. Reliable modeling predictions require that one identify the relevant parameters and behavioral responses that are key to the reaction mechanism(s) in PBX 9501. Additional efforts have been targeted at identifying relevant differences in the response between baseline and stockpile-aged PBX 9501 to low-velocity impacts.

  10. Charpy impact test results for low activation ferritic alloys irradiated to 30 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01

    Miniature specimens of six low activation ferritic alloys have been impact field tested following irradiation at 370{degrees}C to 30 dpa. Comparison of the results with those of control specimens and specimens irradiated to 10 dpa indicates that degradation in the impact behavior appears to have saturated by {approx}10 dpa in at least four of these alloys. The 7.5Cr-2W alloy referred to as GA3X appears most promising for further consideration as a candidate structural material in fusion reactor applications, although the 9Cr-1V alloy may also warrant further investigation.

  11. Implementation & Flight Testing of IMPACT system for Autonomous ISR using Collaborating UAVs with Application to Wild Fire Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI and MIT propose to further develop, implement and test the Integrated Mission Planning & Autonomous Control Technology (IMPACT) system software for...

  12. Spin Testing for Durability Began on a Self-Tuning Impact Damper for Turbomachinery Blades

    Science.gov (United States)

    Duffy, Kirsten; Mehmed, Oral

    2003-01-01

    NASA and Pratt & Whitney will collaborate under a Space Act Agreement to perform spin testing of the impact damper to verify damping effectiveness and durability. Pratt & Whitney will provide the turbine blade and damper hardware for the tests. NASA will provide the facility and perform the tests. Effectiveness and durability will be investigated during and after sustained sweeps of rotor speed through resonance. Tests of a platform wedge damper are also planned to compare its effectiveness with that of the impact damper. Results from baseline tests without dampers will be used to measure damping effectiveness. The self-tuning impact damper combines two damping methods-the tuned mass damper and the impact damper. It consists of a ball located within a cavity in the blade. This ball rolls back and forth on a spherical trough under centrifugal load (tuned mass damper) and can strike the walls of the cavity (impact damper). The ball s rolling natural frequency is proportional to the rotor speed and can be designed to follow an engine-order line (integer multiple of rotor speed). Aerodynamic forcing frequencies typically follow these engineorder lines, and a damper tuned to the engine order will most effectively reduce blade vibrations when the resonant frequency equals the engine-order forcing frequency. This damper has been tested in flat plates and turbine blades in the Dynamic Spin Facility. During testing, a pair of plates or blades rotates in vacuum. Excitation is provided by one of three methods--eddy-current engine-order excitation (ECE), electromechanical shakers, and magnetic bearing excitation. The eddy-current system consists of magnets located circumferentially around the rotor. As a blade passes a magnet, a force is imparted on the blade. The number of magnets used can be varied to change the desired engine order of the excitation. The magnets are remotely raised or lowered to change the magnitude of the force on the blades. The other two methods apply

  13. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives: e0150436

    National Research Council Canada - National Science Library

    P R B Kozowyk; G H J Langejans; J A Poulis

    2016-01-01

    ... been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy...

  14. Characterization, testing and constitutive modelling of an impact-modified polypropylene

    Science.gov (United States)

    Wang, Yan

    2002-01-01

    Impact modified polypropylenes (or TPOs) are polymer blends of isotactic polypropylene (iPP), ethylene-propylene-diene monomer elastomer (EPDM), and high density polyethylene (HDPE). Currently, TPOs are extensively used in impact applications, such as car bumpers. However, the design process of TPO parts for impact applications is still an expensive, trial-and-error procedure. In this project, we aim to develop a material model with specific physical bases to represent a TPO material, so that TPO part design can be effective and efficient. In order to achieve our objective, morphology characterization and mechanical testing have been conducted to examine the intrinsic mechanisms of TPO. Tests were conducted over a broad range of strain rates using both a servohydraulic apparatus and an Aluminum split Hopkinson pressure bar. The TPO system we examined is multi-phasic in which an EPDM and HDPE blend forms the minor domain, distributed in the iPP matrix. The large deformation TPO response includes strain rate dependent initial stiffness; temperature, deformation state and strain rate dependent yield; temperature and deformation state dependent strain hardening. Its response is not unlike that of glassy polymers in many ways, owing to the flexibility of the iPP matrix, however the TPO shows a moderate strain hardening rate and little strain recovery upon unloading. A three-dimensional, four-element constitutive model has been developed for this TPO. The model includes rate dependent stiffness, rate and temperature dependent yield, temperature dependent strain hardening, and crystallographic slip. The model has been examined to be robust over a wide range of strain rates from quasi-static to impact, and predictive of different deformation states, such as uniaxial compression and plane strain compression. The model has been shown to capture the post-yield thermal softening and apparent lack of post-yield strain hardening at impact test conditions.

  15. Threshold Studies on TNT, Composition B, and C-4 Explosives Using the Steven Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Vandersall, K S; Switzer, L L; Garcia, F

    2005-09-26

    Steven Impact Tests were performed at low velocity on the explosives TNT, Comp B, and C-4 in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, or C-4 explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives.

  16. Impact of BRCA1/2 testing and disclosure of a positive test result on women affected and unaffected with breast or ovarian cancer.

    NARCIS (Netherlands)

    Roosmalen, M.S van; Stalmeier, P.F.M.; Verhoef, L.C.G.; Hoekstra-Weebers, J.E.; Oosterwijk-Wakka, J.C.; Hoogerbrugge-van der Linden, N.; Moog, U.; Daal, W.A.J. van

    2004-01-01

    To evaluate the impact of BRCA1/2 testing and disclosure of a positive test result on women affected and unaffected with cancer. Longitudinal cohort study including women affected and unaffected with breast or ovarian cancer testing for a BRCA1/2 mutation. Data on well-being (anxiety, depression,

  17. Impact of BRCA1/2 testing and disclosure of a positive test result on women affected and unaffected with breast or ovarian cancer

    NARCIS (Netherlands)

    van Roosmalen, MS; Stalmeier, PFM; Verhoef, LCG; Hoekstra-Weebers, JEHM; Oosterwijk, JC; Hoogerbrugge, N; Moog, U; van Daal, WAJ

    2004-01-01

    To evaluate the impact of BRCA1/2 testing and disclosure of a positive test result on women affected and unaffected with cancer. Longitudinal cohort study including women affected and unaffected with breast or ovarian cancer testing for a BRCA1/2 mutation. Data on well-being (anxiety, depression,

  18. Experimental and Modeling Studies of Crush, Puncture, and Perforation Scenarios in the Steven Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Vandersall, K S; Chidester, S K; Forbes, J W; Garcia, F; Greenwood, D W; Switzer, L L; Tarver, C M

    2002-06-28

    The Steven test and associated modeling has greatly increased the fundamental knowledge of practical predictions of impact safety hazards for confined and unconfined explosive charges. Building on a database of initial work, experimental and modeling studies of crush, puncture, and perforation scenarios were investigated using the Steven impact test. The descriptions of crush, puncture, and perforation arose from safety scenarios represented by projectile designs that ''crush'' the energetic material or either ''puncture'' with a pinpoint nose or ''perforate'' the front cover with a transportation hook. As desired, these scenarios offer different aspects of the known mechanisms that control ignition: friction, shear and strain. Studies of aged and previously damaged HMX-based high explosives included the use of embedded carbon foil and carbon resistor gauges, high-speed cameras, and blast wave gauges to determine the pressure histories, time required for an explosive reaction, and the relative violence of those reactions, respectively. Various ignition processes were modeled as the initial reaction rate expression in the Ignition and Growth reaction rate equations. Good agreement with measured threshold velocities, pressure histories, and times to reaction was calculated for LX-04 impacted by several projectile geometries using a compression dependent ignition term and an elastic-plastic model with a reasonable yield strength for impact strain rates.

  19. The impact of digital DNA counting technologies on noninvasive prenatal testing.

    Science.gov (United States)

    Sun, Kun; Jiang, Peiyong; Chan, K C Allen

    2015-01-01

    The discovery of cell-free DNA molecules in maternal plasma has opened up numerous opportunities for noninvasive prenatal testing. The advent of new digital counting technologies, including digital polymerase chain reaction and massive parallel sequencing, has provided the opportunity to quantify the cell-free DNA molecules in maternal plasma in an unprecedentedly precise manner. Powered by these technologies, prenatal testing of different kinds of hereditary conditions, ranging from monogenic diseases to chromosome aneuploidies, has been shown to be possible through the analysis of maternal plasma DNA. Discussed here are the principles of the approaches used in the noninvasive testing of different fetal conditions, with an emphasis on the impact that different digital DNA counting strategies have made on the development of these tests.

  20. Review of Evidence of Environmental Impacts of Animal Research and Testing

    OpenAIRE

    Katherine Groff; Eric Bachli; Molly Lansdowne; Theodora Capaldo

    2014-01-01

    Millions of animals are used in research and toxicity testing, including in drug, medical device, chemical, cosmetic, personal care, household, and other product sectors, but the environmental consequences are yet to be adequately addressed. Evidence suggests that their use and disposal, and the associated use of chemicals and supplies, contribute to pollution as well as adverse impacts on biodiversity and public health. The objective of this review is to examine such evidence. The review in...

  1. THRESHOLD STUDIES ON TNT, COMPOSITION B, C-4, AND ANFO EXPLOSIVES USING THE STEVEN IMPACT TEST

    Energy Technology Data Exchange (ETDEWEB)

    Vandersall, K S; Switzer, L L; Garcia, F

    2006-06-20

    Steven Impact Tests were performed at low velocity on the explosives TNT (trinitrotolulene), Composition B (63% RDX, 36% TNT, and 1% wax by weight), C-4 (91% RDX, 5.3% Di (2-ethylhexyl) sebacate, 2.1% Polyisobutylene, and 1.6% motor oil by weight) and ANFO (94% ammonium Nitrate with 6% Fuel Oil) in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, C-4 or ANFO explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives. These results will also be compared to that of the Susan Test and reaction thresholds observed in the common small-scale safety tests such as the drop hammer and friction tests in hopes of drawing a correlation.

  2. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    Science.gov (United States)

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives.

  3. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    Directory of Open Access Journals (Sweden)

    P R B Kozowyk

    Full Text Available The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives.

  4. Impact of family language and testing language on reading performance in a bilingual educational context.

    Science.gov (United States)

    Elosua Oliden, Paula; Mujika Lizaso, Josu

    2014-01-01

    When different languages co-exist in one area, or when one person speaks more than one language, the impact of language on psychological and educational assessment processes can be considerable. The aim of this work was to study the impact of testing language in a community with two official languages: Spanish and Basque. By taking the PISA 2009 Reading Comprehension Test as a basis for analysis, four linguistic groups were defined according to the language spoken at home and the test language. Psychometric equivalence between test forms and differences in results among the four language groups were analyzed. The comparison of competence means took into account the effects of the index of socioeconomic and cultural status (ISEC) and gender. One reading unit with differential item functioning was detected. The reading competence means were considerably higher in the monolingual Spanish-Spanish group. No differences were found between the language groups based on family language when the test was conducted in Basque. The study illustrates the importance of taking into account psychometric, linguistic and sociolinguistic factors in linguistically diverse assessment contexts.

  5. Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section

    Science.gov (United States)

    Fasanella, Edwin L.; Jackson, Karen E.; Sparks, Chad; Sareen, Ashish

    2003-01-01

    In March 2002, a 25-ft/s vertical drop test of a composite fuselage section was conducted onto water. The purpose of the test was to obtain experimental data characterizing the structural response of the fuselage section during water impact for comparison with two previous drop tests that were performed onto a rigid surface and soft soil. For the drop test, the fuselage section was configured with ten 100-lb. lead masses, five per side, that were attached to seat rails mounted to the floor. The fuselage section was raised to a height of 10-ft. and dropped vertically into a 15-ft. diameter pool filled to a depth of 3.5-ft. with water. Approximately 70 channels of data were collected during the drop test at a 10-kHz sampling rate. The test data were used to validate crash simulations of the water impact that were developed using the nonlinear, explicit transient dynamic codes, MSC.Dytran and LS-DYNA. The fuselage structure was modeled using shell and solid elements with a Lagrangian mesh, and the water was modeled with both Eulerian and Lagrangian techniques. The fluid-structure interactions were executed using the fast general coupling in MSC.Dytran and the Arbitrary Lagrange-Euler (ALE) coupling in LS-DYNA. Additionally, the smooth particle hydrodynamics (SPH) meshless Lagrangian technique was used in LS-DYNA to represent the fluid. The simulation results were correlated with the test data to validate the modeling approach. Additional simulation studies were performed to determine how changes in mesh density, mesh uniformity, fluid viscosity, and failure strain influence the test-analysis correlation.

  6. An investigation on impacts of scheduling configurations on Mississippi biology subject area testing

    Science.gov (United States)

    Marchette, Frances Lenora

    The purpose of this mixed modal study was to compare the results of Biology Subject Area mean scores of students on a 4 x 4 block schedule, A/B block schedule, and traditional year-long schedule for 1A to 5A size schools. This study also reviewed the data to determine if minority or gender issues might influence the test results. Interviews with administrators and teachers were conducted about the type of schedule configuration they use and the influence that the schedule has on student academic performance on the Biology Subject Area Test. Additionally, this research further explored whether schedule configurations allow sufficient time for students to construct knowledge. This study is important to schools, teachers, and administrators because it can assist them in considering the impacts that different types of class schedules have on student performance and if ethnic or gender issues are influencing testing results. This study used the causal-comparative method for the quantitative portion of the study and constant comparative method for the qualitative portion to explore the relationship of school schedules on student academic achievement on the Mississippi Biology Subject Area Test. The aggregate means of selected student scores indicate that the Mississippi Biology Subject Area Test as a measure of student performance reveals no significant difference on student achievement for the three school schedule configurations. The data were adjusted for initial differences of gender, minority, and school size on the three schedule configurations. The results suggest that schools may employ various schedule configurations and expect student performance on the Mississippi Biology Subject Area Test to be unaffected. However, many areas of concern were identified in the interviews that might impact on school learning environments. These concerns relate to effective classroom management, the active involvement of students in learning, the adequacy of teacher education

  7. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    Science.gov (United States)

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  8. Evaluation of synthetic composite tibias for fracture testing using impact loads.

    Science.gov (United States)

    Quenneville, C E; Greeley, G S; Dunning, C E

    2010-10-01

    Composite synthetic bones are a commercially available substitute for cadaveric specimens, and they have previously been validated to replicate natural bone under quasistatic, non-destructive testing. Synthetic tibias could be used to analyse injury risk to the lower leg during impact events, but their failure mode must be validated by way of comparative tests to human bone. Synthetic tibias were instrumented with strain gauges and subjected to axial impact loading. Two different projectile masses were used for the tests, and the effects of force, momentum, and energy on failure were compared with previous cadaveric data. The composite tibias failed at forces between 37-45 per cent of those from cadavers, and failed via cortical delamination in combination with fracture. A Weibull analysis generated a survivability curve based on axial force at failure, and was shown to be lower than previous cadaveric curves. Failure was dependent on both the momentum and energy applied. Strain distributions through the synthetic tibias were significantly different from those of cadavers. The convex distal articular surface of the synthetic bones may partially account for the lower fracture tolerance. As a result of the many differences in response, these synthetic tibias are not recommended for use in impact fracture studies.

  9. Fracture Behavior and Delamination Toughening of Molybdenum in Charpy Impact Tests

    Science.gov (United States)

    Babinsky, K.; Primig, S.; Knabl, W.; Lorich, A.; Stickler, R.; Clemens, H.

    2016-11-01

    This study combines advanced characterization techniques with conventional Charpy impact tests to relate the mechanical properties to the microstructure of technically pure molybdenum, especially regarding its toughness. V-notched samples with different orientations were prepared from a rolled molybdenum plate in stress-relieved and recrystallized condition. The ductile-to-brittle transition-temperature was analyzed in terms of the delamination behavior influenced by the microstructure. A pronounced increase of toughness was found for specific oriented samples, which can be explained by macroscopic delamination. Elongated grains led to enhanced delamination in Charpy impact tests with variations for different orientations. In general, delamination occurs as a result of brittle fracture; however, an increase in toughness in the Charpy impact test can be provoked. This mechanism is called thin sheet toughening or delamination toughening. Electron backscatter diffraction measurements were performed to get a deeper knowledge about crack propagation and delamination behavior in the rolled plate. Recrystallization shifts the transition region to significantly higher temperatures, which is explained by the globular grain shape as well as grain boundary segregation. The occurrence of delamination is discussed, taking texture, grain shape and segregation effects into account.

  10. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com [Airbus Group Innovations, Munich (Germany); Grosse, Christian, E-mail: Grosse@tum.de [Technical University Munich (Germany)

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  11. Uniform Foam Crush Testing for Multi-Mission Earth Entry Vehicle Impact Attenuation

    Science.gov (United States)

    Patterson, Byron W.; Glaab, Louis J.

    2012-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, four different Rohacell foams are tested at three different, uniform, strain rates (approximately 0.17, approximately 100, approximately 13,600%/s). The primary data analysis method uses a global data smoothing technique in the frequency domain to remove noise and system natural frequencies. The results from the data indicate that the filter and smoothing technique are successful in identifying the foam crush event and removing aberrations. The effect of strain rate increases with increasing foam density. The 71-WF-HT foam may support Mars Sample Return requirements. Several recommendations to improve the drop tower test technique are identified.

  12. Two-car impact test of crash energy management passenger rail cars : analysis of occupant protection measurements

    Science.gov (United States)

    2004-11-13

    As a part of ongoing passenger rail equipment safety research, a full-scale impact test of two cars with energy absorbing end structures was carried out on February 26, 2004. In this test, two coupled cars impacted a rigid barrier at 29 mph. Similar ...

  13. Shock synthesis of amino acids from impacting cometary and icy planet surface analogues

    Science.gov (United States)

    Martins, Zita; Price, Mark C.; Goldman, Nir; Sephton, Mark A.; Burchell, Mark J.

    2013-12-01

    Comets are known to harbour simple ices and the organic precursors of the building blocks of proteins--amino acids--that are essential to life. Indeed, glycine, the simplest amino acid, was recently confirmed to be present on comet 81P/Wild-2 from samples returned by NASA's Stardust spacecraft. Impacts of icy bodies (such as comets) onto rocky surfaces, and, equally, impacts of rocky bodies onto icy surfaces (such as the jovian and saturnian satellites), could have been responsible for the manufacture of these complex organic molecules through a process of shock synthesis. Here we present laboratory experiments in which we shocked ice mixtures analogous to those found in a comet with a steel projectile fired at high velocities in a light gas gun to test whether amino acids could be produced. We found that the hypervelocity impact shock of a typical comet ice mixture produced several amino acids after hydrolysis. These include equal amounts of D- and L-alanine, and the non-protein amino acids α-aminoisobutyric acid and isovaline as well as their precursors. Our findings suggest a pathway for the synthetic production of the components of proteins within our Solar System, and thus a potential pathway towards life through icy impacts.

  14. Impact of Enterovirus Testing on Resource Use in Febrile Young Infants: A Systematic Review.

    Science.gov (United States)

    Wallace, Sowdhamini S; Lopez, Michelle A; Caviness, A Chantal

    2017-02-01

    Enterovirus infection commonly causes fever in infants aged 0 to 90 days and, without testing, is difficult to differentiate from serious bacterial infection. To determine the cost savings of routine enterovirus testing and identify subgroups of infants with greater potential impact from testing among infants 0 to 90 days old with fever. Studies were identified systematically from published and unpublished literature by using Embase, Medline, the Cochrane database, and conference proceedings. Inclusion criteria were original studies, in any language, of enterovirus infection including the outcomes of interest in infants aged 0 to 90 days. Standardized instruments were used to appraise each study. The evidence quality was evaluated using Grading of Recommendations Assessment, Development, and Evaluation criteria. Two investigators independently searched the literature, screened and critically appraised the studies, extracted the data, and applied the Grading of Recommendations Assessment, Development, and Evaluation criteria. Of the 257 unique studies identified and screened, 32 were completely reviewed and 8 were included. Routine enterovirus testing was associated with reduced hospital length of stay and cost savings during peak enterovirus season. Cerebrospinal fluid pleocytosis was a poor predictor of enterovirus meningitis. The studies were all observational and the evidence was of low quality. Enterovirus polymerase chain reaction testing, independent of cerebrospinal fluid pleocytosis, can reduce length of stay and achieve cost savings, especially during times of high enterovirus prevalence. Additional study is needed to identify subgroups that may achieve greater cost savings from testing to additionally enhance the efficiency of testing. Copyright © 2017 by the American Academy of Pediatrics.

  15. HIV testing in correctional agencies and community treatment programs: the impact of internal organizational structure.

    Science.gov (United States)

    Oser, Carrie B; Tindall, Michele Staton; Leukefeld, Carl G

    2007-04-01

    This study compares the provision of HIV testing in a nationally representative sample of correctional agencies and community-based substance abuse treatment programs and identifies the internal organizational-level correlates of HIV testing in both organizations. Data are derived from the Criminal Justice Drug Abuse Treatment Studies' National Criminal Justice Treatment Practices Survey. Using an organizational diffusion theoretical framework [Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: The Free Press], the impact of Centralization of Power, Complexity, Formalization, Interconnectedness, Organizational Resources, and Organizational Size on HIV testing was examined in correctional agencies and treatment programs. Although there were no significant differences in the provision of HIV testing among correctional agencies (49%) and treatment programs (50%), the internal organizational-level correlates were more predictive of HIV testing in correctional agencies. Specifically, all dimensions, with the exception of Formalization, were related to the provision of HIV testing in correctional agencies. Implications for correctional agencies and community treatment to adopt HIV testing are discussed.

  16. Impact dynamics research facility for full-scale aircraft crash testing

    Science.gov (United States)

    Vaughan, V. L. J.; Alfaro-Bou, E.

    1976-01-01

    An impact dynamics research facility (IDRF) was developed to crash test full-scale general aviation aircraft under free-flight test conditions. The aircraft are crashed into the impact surface as free bodies; a pendulum swing method is used to obtain desired flight paths and velocities. Flight paths up to -60 deg and aircraft velocities along the flight paths up to about 27.0 m/s can be obtained with a combination of swing-cable lengths and release heights made available by a large gantry. Seven twin engine, 2721-kg aircraft were successfully crash tested at the facility, and all systems functioned properly. Acquisition of data from signals generated by accelerometers on board the aircraft and from external and onboard camera coverage was successful in spite of the amount of damage which occurred during each crash. Test parameters at the IDRF are controllable with flight path angles accurate within 8 percent, aircraft velocity accurate within 6 percent, pitch angles accurate to 4.25 deg, and roll and yaw angles acceptable under wind velocities up to 4.5 m/s.

  17. The WRAIR projectile concussive impact model of mild traumatic brain injury: re-design, testing and preclinical validation.

    Science.gov (United States)

    Leung, Lai Yee; Larimore, Zachary; Holmes, Larry; Cartagena, Casandra; Mountney, Andrea; Deng-Bryant, Ying; Schmid, Kara; Shear, Deborah; Tortella, Frank

    2014-08-01

    The WRAIR projectile concussive impact (PCI) model was developed for preclinical study of concussion. It represents a truly non-invasive closed-head injury caused by a blunt impact. The original design, however, has several drawbacks that limit the manipulation of injury parameters. The present study describes engineering advancements made to the PCI injury model including helmet material testing, projectile impact energy/head kinematics and impact location. Material testing indicated that among the tested materials, 'fiber-glass/carbon' had the lowest elastic modulus and yield stress for providing an relative high percentage of load transfer from the projectile impact, resulting in significant hippocampal astrocyte activation. Impact energy testing of small projectiles, ranging in shape and size, showed the steel sphere produced the highest impact energy and the most consistent impact characteristics. Additional tests confirmed the steel sphere produced linear and rotational motions on the rat's head while remaining within a range that meets the criteria for mTBI. Finally, impact location testing results showed that PCI targeted at the temporoparietal surface of the rat head produced the most prominent gait abnormalities. Using the parameters defined above, pilot studies were conducted to provide initial validation of the PCI model demonstrating quantifiable and significant increases in righting reflex recovery time, axonal damage and astrocyte activation following single and multiple concussions.

  18. Economic impact of rapid diagnostic methods in Clinical Microbiology: Price of the test or overall clinical impact.

    Science.gov (United States)

    Cantón, Rafael; Gómez G de la Pedrosa, Elia

    2017-12-01

    The need to reduce the time it takes to establish a microbiological diagnosis and the emergence of new molecular microbiology and proteomic technologies has fuelled the development of rapid and point-of-care techniques, as well as the so-called point-of-care laboratories. These laboratories are responsible for conducting both techniques partially to response to the outsourcing of the conventional hospital laboratories. Their introduction has not always been accompanied with economic studies that address their cost-effectiveness, cost-benefit and cost-utility, but rather tend to be limited to the unit price of the test. The latter, influenced by the purchase procedure, does not usually have a regulated reference value in the same way that medicines do. The cost-effectiveness studies that have recently been conducted on mass spectrometry in the diagnosis of bacteraemia and the use of antimicrobials have had the greatest clinical impact and may act as a model for future economic studies on rapid and point-of-care tests. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  19. An Impact Sensor System for the Characterization of the Micrometeoroid and Lunar Secondary Ejecta Environment

    Science.gov (United States)

    Liou, J.-C.; Burchell, M.; Corsaro, R.; Giovane, F.; Stansbery, E.; Blum, Jurgen; Cooke, William; Pisacane, V.

    2009-01-01

    The Impact Sensor for Micrometeoroid and Lunar Secondary Ejecta (IMMUSE) project aims to apply and integrate previously demonstrated impact sensing subsystems to characterize the micrometeoroid and lunar secondary (MMSE) environment on the surface of the Moon. Once deployed, data returned from IMMUSE will benefit: (1) Fundamental Lunar Science: providing data to improve the understanding of lunar cratering processes and dynamics of the lunar regolith. (2) Lunar Exploration Applied Science: providing an accurate MMSE environment definition for reliable impact risk assessments, cost-effective shielding designs, and mitigation measures for long-term lunar exploration activities. (3) Planetary Science: providing micrometeoroid data to aid the understanding of asteroidal collisions and the evolution of comets. A well-established link between micrometeoroid impacts and lunar regolith is also key to understanding other regolith-covered bodies from remote-sensing data. The IMMUSE system includes two components: (1) a large area (greater than or equal to 1 m2) micrometeoroid detector based on acoustic impact and fiber optic displacement sensors and (2) a 100 cm2 lunar secondary ejecta detector consisting of dual-layer laser curtain and acoustic impact sensors. The combinations of different detection mechanisms will allow for a better characterization of the MMSE environment, including flux, particle size/mass, and impact velocity. IMMUSE is funded by the NASA LASER Program through 2012. The project fs goal is to reach a Technical Readiness Level of 4 in preparation for a more advanced development beyond 2012. Several prototype subsystems have been constructed and subjected to low impact and hypervelocity impact tests. The presentation will include a status review and preliminary test results.

  20. Impact of introduction of rapid diagnostic tests for malaria on antibiotic prescribing

    DEFF Research Database (Denmark)

    Hopkins, Heidi; Bruxvoort, Katia J; Cairns, Matthew E

    2017-01-01

    Objectives To examine the impact of use of rapid diagnostic tests for malaria on prescribing of antimicrobials, specifically antibiotics, for acute febrile illness in Africa and Asia.Design Analysisof nine preselected linked and codesigned observational and randomised studies (eight cluster...... or individually randomised trials and one observational study).Setting Public and private healthcare settings, 2007-13, in Afghanistan, Cameroon, Ghana, Nigeria, Tanzania, and Uganda.Participants 522 480 children and adults with acute febrile illness.Interventions Rapid diagnostic tests for malaria.Main outcome...... in different settings.Results Antibiotics were prescribed to 127 052/238 797 (53%) patients in control groups and 167 714/283 683 (59%) patients in intervention groups. Antibiotics were prescribed to 40% (35 505/89 719) of patients with a positive test result for malaria and to 69% (39 400/57 080) of those...

  1. Threshold Studies of Heated HMX-Based Energetic Material Targets Using the Steven Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Switzer, L L; Vandersall, K S; Chidester, S K; Greenwood, D W; Tarver, C M

    2003-07-01

    Impact tests performed at low velocity on heated energetic material samples are of interest when considering the situation of energetic materials involved in a fire. To determine heated reaction thresholds, Steven Test targets containing PBX 9404 or LX-04 samples heated to the range of 150-170 C were impacted at velocities up to 150 m/s by two different projectile head geometries. Comparing these measured thresholds to ambient temperature thresholds revealed that the heated LX-04 thresholds were considerably higher than ambient, whereas the heated PBX 9404 thresholds were only slightly higher than the ambient temperature thresholds. The violence of reaction level of the PBX 9404 was considerably higher than that of the LX-04 as measured with four overpressure gauges. The varying results in these samples with different HMX/binder configurations indicate that friction plays a dominant role in reaction ignition during impact. This work outlines the experimental details, compares the thresholds and violence levels of the heated and ambient temperature experiments, and discusses the dominant mechanisms of the measured thresholds.

  2. Laminated Windshield Breakage Modelling in the Context of Headform Impact Homologation Tests

    Science.gov (United States)

    Kosiński, P.; Osiński, J.

    2015-02-01

    The purpose of modelling a laminated windshield using the FEM is to provide a critical look on the way the adult headform impact tests are conducted in the process of motor vehicle certification. The main aim of the study is to modify the design of a laminated windshield in the context of a vehicle collision with vulnerable road users. The initial phase of the work was to develop a model of the adult headform impactor. The validation consisted in conducting a series of FEM analyses of the impactor certification testing according to the Regulation (EC) 631/2009. Next, the impact of the headform model on a windshield was analysed. The FEM model of laminated glass is composed of two outer layers of glass and an inner layer of polyvinyl butyral. FEM analyses of the impaction were performed at five points of the windshield characterised by various dynamic responses of the impactor and various patterns of glass cracking. In modelling the layers of glass, the Abaqus environment "brittle cracking" model was used. The following material models of PVB resin were considered: elastic, elastic-plastic, hyperelastic, and low-density foam. Furthermore, the influence of the mesh type on the process of glass cracking in a laminated windshield was analysed.

  3. Experimental and numerical analysis of Izod impact test of cortical bone tissue

    Science.gov (United States)

    Abdel-Wahab, A. A.; Silberschmidt, V. V.

    2012-05-01

    Bones can only sustain loads until a certain limit, beyond which they fail. Usually, the reasons for bone fracture are traumatic falls, sports injuries, and engagement in transport or industrial accidents. A proper treatment of bones and prevention of their fracture can be supported by in-depth understanding of deformation and fracture behavior of this tissue in such dynamic events. In this paper, a combination of experimental and numerical analysis was carried out in order to comprehend the fracture behavior of cortical bone tissue. Experimental tests were performed to study the transient dynamic behavior of cortical bone tissue under impact bending loading. The variability of absorbed energy for different cortex positions and notch depths was studied using Izod impact tests. Also, Extended Finite-Element Method implemented into the commercial finite-element software Abaqus was used to simulate the crack initiation and growth processes in a cantilever beam of cortical bone exposed to impact loading using the Izod loading scheme. The simulation results show a good agreement with the experimental data.

  4. Responses of a Highly Accelerated Life Test System to Impacts from Different Designs of Hammers

    Directory of Open Access Journals (Sweden)

    Yeong-Shu Chen

    2014-08-01

    Full Text Available The response of a table to the impact of its driving hammer in the highly accelerated life test (HALT system depends on, among other things, the location of the hammer, the presence of multiple hammers, and the angle at which the hammer is mounted to the table. The present study investigated the response of a table to a variety of impacts from different combinations of hammers. It began with a theoretical analysis of the forces of impact exerted by hammers which led to the calculation of the corresponding displacement. These theoretical calculations revealed the mechanics of the HALT system to help explain the working principles behind this complex system. Then a simulation model was built to check the accuracy of the theoretical results. Finally, the accelerations of a table in a real HALT system were measured. These data showed good agreement with the experimental results and computer simulation. The responses of HALT systems have not been investigated thoroughly to date. The current study can help equipment designers and end users better understand the working principles of this kind of systems. It can be considered a breakthrough in terms of improving the performance of reliability testing with this kind of system.

  5. An impact test system design and its applications to dynamic buckling of a spacer grid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sheng, E-mail: liusheng_05@126.com; Fan, Chenguang; Yang, Yiren

    2016-11-15

    This study is aimed at investigating the dynamic buckling load, dynamic stiffness, damping and buckling characteristics of the spacer grid assembly (SGA). A pendulum impact test system is designed to experiment the buckling of SGAs. Three criterions are discussed and compared to determine the buckling loads of SGAs: B-R criterion, energy criterion and extreme value criterion. Two approaches are applied to calculate the dynamic stiffness of SGAs: One method is natural period method based on the hypothesis of harmonic motion of the pendulum whose period is approximated because of the passivation and tailing of the impact force time history; and the other is energy method based on the conservation of mechanical energy. The equivalent viscous damping is defined as the resultant cause of dissipation and is obtained by the energy principle. The impact force time history loses its approximate symmetry after buckling occurs. The impact force and displacement reach their maxima almost at the same time at pre-buckling states but not post-buckling states. Vertical straps in SGA are found to be transversely shared by horizontal straps at the buckling position. The buckling of SGA results from the lack of strength of complete structure; and the strength of material has no effects on the buckling.

  6. In vitro testing of femoral impaction grafting with porous titanium particles: a pilot study.

    Science.gov (United States)

    Aquarius, René; Walschot, Luc; Buma, Pieter; Schreurs, Berend Willem; Verdonschot, Nico

    2009-06-01

    The disadvantages of allografts to restore femoral bone defects during revision hip surgery have led to the search for alternative materials. We investigated the feasibility of using porous titanium particles and posed the following questions: (1) Is it possible to create a high-quality femoral graft of porous titanium particles in terms of graft thickness, cement thickness, and cement penetration? (2) Does this titanium particle graft layer provide initial stability when a femoral cemented stem is implanted in it? (3) What sizes of particles are released from the porous titanium particles during impaction and subsequent cyclic loading of the reconstruction? We simulated cemented revision reconstructions with titanium particles in seven composite femurs loaded for 300,000 cycles and measured stem subsidence. Particle release from the titanium particle grafts was analyzed during impaction and loading. Impacted titanium particles formed a highly interlocked graft layer. We observed limited cement penetration into the titanium particle graft. A total mean subsidence of 1.04 mm was observed after 300,000 cycles. Most particles released during impaction were in the phagocytable range (animal testing is warranted to investigate the biologic effect of small-particle release.

  7. Tests to evaluate the ecological impact of treated ballast water on three Chinese marine species

    Science.gov (United States)

    Zhang, Yanan; Wang, Zixi; Cai, Leiming; Cai, Xiang; Sun, Wenjun; Ma, Liqing

    2014-09-01

    Ballast water has been a topic of concern for some time because of its potential to introduce invasive species to new habitats. To comply with the International Convention for the Control and Management of Ships' Ballast Water and Sediments, members of the International Maritime Organization (IMO) must equip their ships with on-board treatment systems to eliminate organism release with ballast water. There are many challenges associated with the implementation of this IMO guideline, one of which is the selection of species for testing the ecological impacts of the treated ballast water. In the United States, ballast water toxicity test methods have been defined by the United States Environmental Protection Agency. However, the test methods had not been finalized in China until the toxicity test methods for ballast water were established in 2008. The Chinese methods have been based on species from three trophic levels: Skeletonema costatum, Neomysis awatschensis, and Ctenogobius gymnauchen. All three species live in broad estuarine and open sea areas of China; they are sensitive to reference toxicants and acclimatize easily to different conditions. In this paper, the biological characteristics, test processes and statistical analysis methods are presented for the three species. Results indicate that the methods for evaluating these three organisms can be included in the ecological toxicity tests for treated ballast water in China.

  8. Impact of gene patents on diagnostic testing: a new patent landscaping method applied to spinocerebellar ataxia.

    Science.gov (United States)

    Berthels, Nele; Matthijs, Gert; Van Overwalle, Geertrui

    2011-11-01

    Recent reports in Europe and the United States raise concern about the potential negative impact of gene patents on the freedom to operate of diagnosticians and on the access of patients to genetic diagnostic services. Patents, historically seen as legal instruments to trigger innovation, could cause undesired side effects in the public health domain. Clear empirical evidence on the alleged hindering effect of gene patents is still scarce. We therefore developed a patent categorization method to determine which gene patents could indeed be problematic. The method is applied to patents relevant for genetic testing of spinocerebellar ataxia (SCA). The SCA test is probably the most widely used DNA test in (adult) neurology, as well as one of the most challenging due to the heterogeneity of the disease. Typically tested as a gene panel covering the five common SCA subtypes, we show that the patenting of SCA genes and testing methods and the associated licensing conditions could have far-reaching consequences on legitimate access to this gene panel. Moreover, with genetic testing being increasingly standardized, simply ignoring patents is unlikely to hold out indefinitely. This paper aims to differentiate among so-called 'gene patents' by lifting out the truly problematic ones. In doing so, awareness is raised among all stakeholders in the genetic diagnostics field who are not necessarily familiar with the ins and outs of patenting and licensing.

  9. Ubiquitous testing using tablets: its impact on medical student perceptions of and engagement in learning.

    Science.gov (United States)

    Kim, Kyong-Jee; Hwang, Jee-Young

    2016-03-01

    Ubiquitous testing has the potential to affect medical education by enhancing the authenticity of the assessment using multimedia items. This study explored medical students' experience with ubiquitous testing and its impact on student learning. A cohort (n=48) of third-year students at a medical school in South Korea participated in this study. The students were divided into two groups and were given different versions of 10 content-matched items: one in text version (the text group) and the other in multimedia version (the multimedia group). Multimedia items were delivered using tablets. Item response analyses were performed to compare item characteristics between the two versions. Additionally, focus group interviews were held to investigate the students' experiences of ubiquitous testing. The mean test score was significantly higher in the text group. Item difficulty and discrimination did not differ between text and multimedia items. The participants generally showed positive responses on ubiquitous testing. Still, they felt that the lectures that they had taken in preclinical years did not prepare them enough for this type of assessment and clinical encounters during clerkships were more helpful. To be better prepared, the participants felt that they needed to engage more actively in learning in clinical clerkships and have more access to multimedia learning resources. Ubiquitous testing can positively affect student learning by reinforcing the importance of being able to understand and apply knowledge in clinical contexts, which drives students to engage more actively in learning in clinical settings.

  10. Cost and Impact on Patient Length of Stay of Rapid Molecular Testing for Clostridium difficile.

    Science.gov (United States)

    Sewell, Bernadette; Rees, Eugene; Thomas, Ian; Ch'ng, Chin Lye; Isaac, Mike; Berry, Nidhika

    2014-12-01

    A study was performed to assess the cost of a rapid molecular assay (PCR) for diagnosis of Clostridium difficile infection (CDI) and the impact of its routine use on patient length of stay (LOS) in comparison with cell culture cytotoxin neutralization assay (CCNA). From March 2011 to September 2011, Xpert(®) C. difficile (Cepheid, Sunnyvale, CA, USA) PCR was used on patients with suspicion of CDI in two acute care hospitals in Abertawe Bro Morgannwg University Health Board, Swansea, Wales, UK. Test results were used for patient management. LOS and time to reportable result were compared for negative and positive prospective patients tested by PCR and historic control patients tested by CCNA during March 2010 to September 2010. Tests were priced using micro-costing and a cost comparison analysis was undertaken. In total, 506 patients were included. Time to reportable result for PCR samples was 1.53 h compared to 46.54 h for CCNA negatives and 22.45 h for CCNA positives. Patients tested by CCNA stayed 4.88 days longer in hospital compared to PCR patients if they tested positive and 7.03 days if tests were negative. The mean reduction in LOS observed in our study has the potential to generate cost savings of up to £2,292.62 for every patient with suspected CDI, if samples were to be tested routinely with PCR instead of CCNA. A rapid molecular test for C. difficile in an acute hospital setting produced quick results that led to a decrease in LOS compared to historic CCNA control patients. This could result in considerable savings through reduced excess inpatient days.

  11. An Innovative Solution to NASA's NEO Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Hypervelocity Asteroid Intercept Vehicle (HAIV) mission architecture, which blends a hypervelocity kinetic impactor with a subsurface nuclear explosion for optimal...

  12. LX-04 Violence Measurments: Steven Tests Impacted By Projectiles Shot From A Howitzer Gun

    Science.gov (United States)

    Chidester, Steven K.

    2005-07-01

    Characterization of the reaction violence of LX-04 explosive (85% HMX and 15% Viton by weight) was obtained from Steven Impact Tests performed above the reaction initiation threshold. A 155 mm Howitzer propellant driven gas gun was used to accelerate the Steven Test projectiles in the range of approximately 150-300 m/s to react (ignite) the LX-04 explosive. Blast overpressure gauges, acoustic microphones, and high-speed photography characterized the level of high explosive reaction violence. A detonation in this velocity range was not observed and when comparing these results (and the Susan test results) with that of other HMX based explosives, LX-04 has a more gradual reaction violence slope as the impact velocity increases. The high binder content (15%) of the LX-04 explosive is believed to be the key factor to the lower level of violence. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  13. Quantifying the Impact of Additional Laboratory Tests on the Quality of a Geomechanical Model

    Science.gov (United States)

    Fillion, Marie-Hélène; Hadjigeorgiou, John

    2017-05-01

    In an open-pit mine operation, the design of safe and economically viable slopes can be significantly influenced by the quality and quantity of collected geomechanical data. In several mining jurisdictions, codes and standards are available for reporting exploration data, but similar codes or guidelines are not formally available or enforced for geotechnical design. Current recommendations suggest a target level of confidence in the rock mass properties used for slope design. As these guidelines are qualitative and somewhat subjective, questions arise regarding the minimum number of tests to perform in order to reach the proposed level of confidence. This paper investigates the impact of defining a priori the required number of laboratory tests to conduct on rock core samples based on the geomechanical database of an operating open-pit mine in South Africa. In this review, to illustrate the process, the focus is on uniaxial compressive strength properties. Available strength data for 2 project stages were analysed using the small-sampling theory and the confidence interval approach. The results showed that the number of specimens was too low to obtain a reliable strength value for some geotechnical domains even if more specimens than the minimum proposed by the ISRM suggested methods were tested. Furthermore, the testing sequence used has an impact on the minimum number of specimens required. Current best practice cannot capture all possibilities regarding the geomechanical property distributions, and there is a demonstrated need for a method to determine the minimum number of specimens required while minimising the influence of the testing sequence.

  14. Retrospective evaluation of the impact of functional immunotoxicity testing on pesticide hazard identification and risk assessment.

    Science.gov (United States)

    Gehen, Sean C; Blacker, Ann M; Boverhof, Darrell R; Hanley, Thomas R; Hastings, Charles E; Ladics, Gregory S; Lu, Haitian; O'Neal, Fredrick O

    2014-05-01

    Conduct of a T-cell-dependent antibody response (TDAR) assay in rodents according to Environmental Protection Agency (EPA) Test Guideline OPPTS 870.7800 is now required for chemical pesticide active ingredients registered in the United States. To assess potential regulatory impact, a retrospective analysis was developed using TDAR tests conducted on 78 pesticide chemicals from 46 separate chemical classes. The objective of the retrospective analysis was to examine the frequency of positive responses and determine the potential for the TDAR to yield lower endpoints than those utilized to calculate reference doses (RfDs). A reduction in the TDAR response was observed at only the high-dose level in five studies, while it was unaltered in the remaining studies. Importantly, for all 78 pesticide chemicals, the TDAR no-observed-adverse-effect levels (TDAR NOAELs) were greater than the NOAELS currently in use as risk assessment endpoints. The TDAR NOAELs were higher than the current EPA-selected endpoints for the chronic RfD, short-term, intermediate and long-term exposure scenarios by 3-27,000, 3-1,688, 3-1,688 and 4.9-1,688 times, respectively. Based on this analysis, conduct of the TDAR assay had minimal impact on hazard identification and did not impact human health risk assessments for the pesticides included in this evaluation. These data strongly support employment of alternative approaches including initial weight-of-evidence analysis for immunotoxic potential prior to conducting functional immunotoxicity testing for pesticide active ingredients.

  15. Lunar Impact Flash Locations from NASA's Lunar Impact Monitoring Program

    Science.gov (United States)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    Meteoroids are small, natural bodies traveling through space, fragments from comets, asteroids, and impact debris from planets. Unlike the Earth, which has an atmosphere that slows, ablates, and disintegrates most meteoroids before they reach the ground, the Moon has little-to-no atmosphere to prevent meteoroids from impacting the lunar surface. Upon impact, the meteoroid's kinetic energy is partitioned into crater excavation, seismic wave production, and the generation of a debris plume. A flash of light associated with the plume is detectable by instruments on Earth. Following the initial observation of a probable Taurid impact flash on the Moon in November 2005,1 the NASA Meteoroid Environment Office (MEO) began a routine monitoring program to observe the Moon for meteoroid impact flashes in early 2006, resulting in the observation of over 330 impacts to date. The main objective of the MEO is to characterize the meteoroid environment for application to spacecraft engineering and operations. The Lunar Impact Monitoring Program provides information about the meteoroid flux in near-Earth space in a size range-tens of grams to a few kilograms-difficult to measure with statistical significance by other means. A bright impact flash detected by the program in March 2013 brought into focus the importance of determining the impact flash location. Prior to this time, the location was estimated to the nearest half-degree by visually comparing the impact imagery to maps of the Moon. Better accuracy was not needed because meteoroid flux calculations did not require high-accuracy impact locations. But such a bright event was thought to have produced a fresh crater detectable from lunar orbit by the NASA spacecraft Lunar Reconnaissance Orbiter (LRO). The idea of linking the observation of an impact flash with its crater was an appealing one, as it would validate NASA photometric calculations and crater scaling laws developed from hypervelocity gun testing. This idea was

  16. Development of Drop/Shock Test in Microelectronics and Impact Dynamic Analysis for Uniform Board Response

    Science.gov (United States)

    Kallolimath, Sharan Chandrashekar

    For the past several years, many researchers are constantly developing and improving board level drop test procedures and specifications to quantify the solder joint reliability performance of consumer electronics products. Predictive finite element analysis (FEA) by utilizing simulation software has become widely acceptable verification method which can reduce time and cost of the real-time test process. However, due to testing and metrological limitations it is difficult not only to simulate exact drop condition and capture critical measurement data but also tedious to calibrate the system to improve test methods. Moreover, some of the important ever changing factors such as board flexural rigidity, damping, drop height, and drop orientation results in non-uniform stress/strain distribution throughout the test board. In addition, one of the most challenging tasks is to quantify uniform stress and strain distribution throughout the test board and identify critical failure factors. The major contributions of this work are in the four aspects of the drop test in electronics as following. First of all, an analytical FEA model was developed to study the board natural frequencies and responses of the system with the consideration of dynamic stiffness, damping behavior of the material and effect of impact loading condition. An approach to find the key parameters that affect stress and strain distributions under predominate mode responses was proposed and verified with theoretical solutions. Input-G method was adopted to study board response behavior and cut boundary interpolation methods was used to analyze local model solder joint stresses with the development of global/local FEA model in ANSYS software. Second, no ring phenomenon during the drop test was identified theoretically when the test board was modeled as both discrete system and continuous system. Numerical analysis was then conducted by FEA method for detailed geometry of attached chips with solder

  17. The Impact of Escape Alternative Position Change in Multiple-Choice Test on the Psychometric Properties of a Test and Its Items Parameters

    Science.gov (United States)

    Hamadneh, Iyad Mohammed

    2015-01-01

    This study aimed at investigating the impact changing of escape alternative position in multiple-choice test on the psychometric properties of a test and it's items parameters (difficulty, discrimination & guessing), and estimation of examinee ability. To achieve the study objectives, a 4-alternative multiple choice type achievement test…

  18. Testing the impact on natural risks' awareness of visual communication through an exhibition

    Science.gov (United States)

    Charrière, Marie; Bogaard, Thom; Junier, Sandra; Malet, Jean-Philippe; Mostert, Erik

    2014-05-01

    The need to communicate about natural disasters in order to improve the awareness of communities at risk is not a matter for debate anymore. However, communication can be implemented using different media and tools, and their effectiveness may be difficult to grasp. Current research on the topic is usually focused on assessing whether communication practices meet users' needs, whereas impact assessment is mostly left out. It can be explained by difficulties arising from (1) the definition of the impact to measure, i.e. awareness, and the appropriate indicators to measure it and its variations, and (2) the implementation of a research design that allows assessing these impacts without bias. This research aims at both developing a methodology to measure risk awareness and to use it for testing the effectiveness of visual communication. The testing was conducted in the Ubaye Valley in France, an alpine area affected by multiple hazards, from December 2013 to mid-February 2014. The setting consisted of an exhibition in the public library of the main town, Barcelonnette. The main natural hazards of the study case (i.e. landslides, avalanches, flooding, debris flows and earthquakes), as well as structural and non-structural measures were presented to the general public using local examples of hazards events and mitigation. Various visualization tools were used: videos, Google earth map, interactive timeline, objects, mock-ups, technical devices as well as posters with pictures, drawings and graphs. In order to assess the effects of the exhibition on risk awareness, several groups of children and adults were submitted to a research design, consisting of 1) a pre-test, 2) the visit of the exhibition and 3) a post-test similar to the pre-test. Close-ended questions addressed the awareness indicators according to the literature, i.e. worry level, previous experiences with natural hazards events, exposure to awareness raising, ability to mitigate/respond/prepare, attitude to

  19. HIV testing and counselling in Estonian prisons, 2012 to 2013: aims, processes and impacts.

    Science.gov (United States)

    Kivimets, K; Uuskula, A

    2014-11-27

    We present data from an observational cohort study on human immunodeficiency virus (HIV) prevention and control measures in prisons in Estonia to assess the potential for HIV transmission in this setting. HIV testing and retesting data from the Estonian prison health department were used to estimate HIV prevalence and incidence in prison. Since 2002, voluntary HIV counselling and testing has routinely been offered to all prisoners and has been part of the new prisoners health check. At the end of 2012, there were 3,289 prisoners in Estonia, including 170 women: 28.5% were drug users and 15.6% were infected with HIV. Of the HIV-positive inmates, 8.3% were newly diagnosed on prison entry. In 2012, 4,387 HIV tests (including retests) were performed in Estonian prisons. Among 1,756 initially HIV-negative prisoners who were in prison for more than one year and therefore tested for HIV twice within 12 months (at entry and annual testing), one new HIV infection was detected, an incidence of 0.067 per 100 person-years (95% confidence interval (CI): 0.025–5.572). This analysis indicates low risk of HIV transmission in Estonian prisons. Implementation of HIV management interventions could impact positively on the health of prisoners and the communities to which they return.

  20. Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-06-01

    Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

  1. General anaesthesia-induced anaphylaxis: impact of allergy testing on subsequent anaesthesia.

    Science.gov (United States)

    Trautmann, A; Seidl, C; Stoevesandt, J; Seitz, C S

    2016-01-01

    Immunoglobulin E-mediated allergy to drugs and substances used during general anaesthesia as well as non-allergic drug hypersensitivity reactions may account for anaesthesia-induced anaphylaxis. As IgE-mediated anaphylaxis is a potentially life-threatening reaction, identification of the culprit allergen is essential to avoid anaphylaxis recurrence during subsequent general anaesthesia. To study whether preventive recommendations derived from allergy testing after intraoperative anaphylaxis were followed in subsequent general anaesthesia. Results of standardized allergy testing after anaesthesia-induced anaphylaxis and outcome of subsequent general anaesthesia were analysed retrospectively. Fifty-three of 107 patients were diagnosed with IgE-mediated allergy to a drug or substance used during general anaesthesia, and 54 patients were test negative. Twenty-eight of 29 allergy patients tolerated subsequent general anaesthesia uneventfully. One patient with cefazolin allergy suffered from anaphylaxis recurrence due to accidental reapplication of cefazolin. Twenty-two of 24 test-negative patients tolerated subsequent general anaesthesia, whereas two patients again developed anaphylaxis despite pre-medication regimens. Our results confirm the practical impact of allergy testing in general anaesthesia-induced anaphylaxis. By identification of the allergen, it is possible to avoid allergic anaphylaxis during subsequent anaesthesia. In most cases, recommended pre-medication seems to prevent the recurrence of non-allergic drug hypersensitivity reactions. © 2015 John Wiley & Sons Ltd.

  2. Does health intervention research have real world policy and practice impacts: testing a new impact assessment tool.

    Science.gov (United States)

    Cohen, Gillian; Schroeder, Jacqueline; Newson, Robyn; King, Lesley; Rychetnik, Lucie; Milat, Andrew J; Bauman, Adrian E; Redman, Sally; Chapman, Simon

    2015-01-01

    There is a growing emphasis on the importance of research having demonstrable public benefit. Measurements of the impacts of research are therefore needed. We applied a modified impact assessment process that builds on best practice to 5 years (2003-2007) of intervention research funded by Australia's National Health and Medical Research Council to determine if these studies had post-research real-world policy and practice impacts. We used a mixed method sequential methodology whereby chief investigators of eligible intervention studies who completed two surveys and an interview were included in our final sample (n = 50), on which we conducted post-research impact assessments. Data from the surveys and interviews were triangulated with additional information obtained from documentary analysis to develop comprehensive case studies. These case studies were then summarized and the reported impacts were scored by an expert panel using criteria for four impact dimensions: corroboration; attribution, reach, and importance. Nineteen (38%) of the cases in our final sample were found to have had policy and practice impacts, with an even distribution of high, medium, and low impact scores. While the tool facilitated a rigorous and explicit criterion-based assessment of post-research impacts, it was not always possible to obtain evidence using documentary analysis to corroborate the impacts reported in chief investigator interviews. While policy and practice is ideally informed by reviews of evidence, some intervention research can and does have real world impacts that can be attributed to single studies. We recommend impact assessments apply explicit criteria to consider the corroboration, attribution, reach, and importance of reported impacts on policy and practice. Impact assessments should also allow sufficient time between impact data collection and completion of the original research and include mechanisms to obtain end-user input to corroborate claims and reduce biases

  3. Shape Effect Analysis of Aluminum Projectile Impact on Whipple Shields

    Science.gov (United States)

    Carrasquilla, Maria J.; Miller, Joshua E.

    2017-01-01

    The informed design with respect to hypervelocity collisions involving micrometeoroid and orbital debris (MMOD) is influential to the success of space missions. For an orbit comparable to that of the International Space Station, velocities for MMOD can range from 1 to 15 km/s, with an average velocity around 10 km/cu s. The high energy released during collisions at these speeds can result in damage to a spacecraft, or worst-case, loss of the spacecraft, thus outlining the importance of methods to predict the likelihood and extent of damage due to an impact. Through experimental testing and numerical simulations, substantial work has been conducted to better understand the effects of hypervelocity impacts (HVI) on spacecraft systems and shields; however, much of the work has been focused on spherical impacting particles. To improve environment models for the analysis of MMOD, a large-scale satellite break-up test was performed at the Arnold Engineering and Development Complex to better understand the varied impactor geometries that could be generated from a large impact. As a part of the post-experiment analysis, an undertaking to characterize the irregular fragments generated is currently being performed by the University of Florida under the management of NASA's Orbital Debris Program Office at Johnson Space Center (JSC). DebriSat was a representative, modern LEO satellite that was catastrophically broken up in a HVI test. The test chamber was lined with a soft-catch system of foam panels that captured the fragments after impact. Initial predictions put the number of fragments larger than 2mm generated from the HVI at roughly 85,000. The number of fragments thus far extracted from the foam panels has exceeded 100,000, with that number continuously increasing. The shapes of the fragments vary dependent upon the material. Carbon-fiber reinforced polymer pieces, for instance, are abundantly found as thin, flat slivers. The characterization of these fragments with

  4. Micro-Satellite Impact Tests to Investigate Multi-Layer Insulation Fragments

    Science.gov (United States)

    Murakami, Junko; Hanada, Toshiya; Liou, J.-C.; Stansbery, Eugene

    2009-03-01

    This paper summarizes two satellite impact experiments completed in 2008. The objective of the experiments is to investigate the physical properties of satellite fragments, including those originated from Multi-Layer Insulation and a solar panel. One test generated approximately 1,800 fragments while the other produced only 1,000 fragments. This difference came from the number of needle-like fragments from carbon fiber reinforced plastics. All collected fragments were analyzed using the same method as described in the NASA standard breakup model and compared with the breakup model. This paper will present: (1) the area-to-mass ratio, size, and mass distributions of the fragments, and (2) the differences in fragment properties between the two tests.

  5. Numerical Evaluation of a Light-Gas Gun Facility for Impact Test

    Directory of Open Access Journals (Sweden)

    C. Rahner

    2014-01-01

    Full Text Available Experimental tests which match the application conditions might be used to properly evaluate materials for specific applications. High velocity impacts can be simulated using light-gas gun facilities, which come in different types and complexities. In this work different setups for a one-stage light-gas gun facility have been numerically analyzed in order to evaluate their suitability for testing materials and composites used as armor protection. A maximal barrel length of 6 m and a maximal reservoir pressure of a standard industrial gas bottle (20 MPa were chosen as limitations. The numerical predictions show that it is not possible to accelerate the projectile directly to the desired velocity with nitrogen, helium, or hydrogen as propellant gas. When using a sabot corresponding to a higher bore diameter, the necessary velocity is achievable with helium and hydrogen gases.

  6. [Impact of a training model for the Child Development Evaluation Test in primary care].

    Science.gov (United States)

    Rizzoli-Córdoba, Antonio; Delgado-Ginebra, Ismael; Cruz-Ortiz, Leopoldo Alfonso; Baqueiro-Hernández, César Iván; Martain-Pérez, Itzamara Jacqueline; Palma-Tavera, Josuha Alexander; Villasís-Keever, Miguel Ángel; Reyes-Morales, Hortensia; O'Shea-Cuevas, Gabriel; Aceves-Villagrán, Daniel; Carrasco-Mendoza, Joaquín; Antillón-Ocampo, Fátima Adriana; Villagrán-Muñoz, Víctor Manuel; Halley-Castillo, Elizabeth; Vargas-López, Guillermo; Muñoz-Hernández, Onofre

    The Child Development Evaluation (CDE) Test is a screening tool designed and validated in Mexico for the early detection of child developmental problems. For professionals who will be administering the test in primary care facilities, previous acquisition of knowledge about the test is required in order to generate reliable results. The aim of this work was to evaluate the impact of a training model for primary care workers from different professions through the comparison of knowledge acquired during the training course. The study design was a before/after type considering the participation in a training course for the CDE test as the intervention. The course took place in six different Mexican states from October to December 2013. The same questions were used before and after. There were 394 participants included. Distribution according to professional profile was as follows: general physicians 73.4%, nursing 7.7%, psychology 7.1%, nutrition 6.1% and other professions 5.6%. The questions with the lowest correct answer rates were associated with the scoring of the CDE test. In the initial evaluation, 64.9% obtained a grade lower than 20 compared with 1.8% in the final evaluation. In the initial evaluation only 1.8% passed compared with 75.15% in the final evaluation. The proposed model allows the participants to acquire general knowledge about the CDE Test. To improve the general results in future training courses, it is required to reinforce during training the scoring and interpretation of the test together with the previous lecture of the material by the participants. Copyright © 2015 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  7. Impact of body composition on performance in fitness tests among personnel of the Croatian navy.

    Science.gov (United States)

    Sporis, Goran; Jukić, Igor; Bok, Daniel; Vuleta, Dinko; Harasin, Drazen

    2011-06-01

    The purpose of this study was to determine the impact of body weight on fitness tests among the personnel of the Croatian navy. Forty two naval personnel (age 27 +/- 4.1 years; body mass 86.2 +/- 4.9 kg; height 184.6 +/- 7.4 cm; body fat percentage 17.3 +/- 5.2) participated in this study. In order to evaluate the fitness of the naval servicemen, we applied a testing procedure that included measurements of 7 fitness tests and 15 body anthropometric tests. A negative correlation was found between the body fat percentage and all the analyzed sprint tests and three anaerobic power tests (r), SP5 (r = -0.42), SP10 (r = -0.51), SP20 (r = -0.53), SJ (r = -0.45), CM (r = -0.57), SLJ (r = -0.67). Also a negative correlation was found between the body fat percentage and VO2(max) (r = -0.44). A positive correlation was found between the sprint test and the power performance test and thigh and calf girth. Spiriting ability is influenced by the strength of a person. This is one of the reasons why we found a positive correlation between the sprint test (SP5, SP10 and SP20) and thigh and calf girth. In this study we found a negative correlation between body fat percentages and all the sprint tests and three anaerobic power tests and VO2(max). The ectomorph somatotypes have positive correlations with all variables. The mesomorph somatotypes have the greatest positive correlations with all variables. The endomorph somatotypes have negative correlations with all variables. According to the body composition of Croatian naval servicemen we can conclude that they need a sufficient level of strength and endurance for everyday tasks. The effectiveness of a weight-management program is determined by the success of the participants in losing the necessary amount of weight and being able to maintain that weight loss. This requires long-term tracking of these individuals in a naval environment.

  8. Impact and cost-effectiveness of chlamydia testing in Scotland: a mathematical modelling study.

    Science.gov (United States)

    Looker, Katharine J; Wallace, Lesley A; Turner, Katherine M E

    2015-01-15

    Chlamydia is the most common sexually transmitted bacterial infection in Scotland, and is associated with potentially serious reproductive outcomes, including pelvic inflammatory disease (PID) and tubal factor infertility (TFI) in women. Chlamydia testing in Scotland is currently targeted towards symptomatic individuals, individuals at high risk of existing undetected infection, and young people. The cost-effectiveness of testing and treatment to prevent PID and TFI in Scotland is uncertain. A compartmental deterministic dynamic model of chlamydia infection in 15-24 year olds in Scotland was developed. The model was used to estimate the impact of a change in testing strategy from baseline (16.8% overall testing coverage; 0.4 partners notified and tested/treated per treated positive index) on PID and TFI cases. Cost-effectiveness calculations informed by best-available estimates of the quality-adjusted life years (QALYs) lost due to PID and TFI were also performed. Increasing overall testing coverage by 50% from baseline to 25.2% is estimated to result in 21% fewer cases in young women each year (PID: 703 fewer; TFI: 88 fewer). A 50% decrease to 8.4% would result in 20% more PID (669 additional) and TFI (84 additional) cases occurring annually. The cost per QALY gained of current testing activities compared to no testing is £40,034, which is above the £20,000-£30,000 cost-effectiveness threshold. However, calculations are hampered by lack of reliable data. Any increase in partner notification from baseline would be cost-effective (incremental cost per QALY gained for a partner notification efficacy of 1 compared to baseline: £5,119), and would increase the cost-effectiveness of current testing strategy compared to no testing, with threshold cost-effectiveness reached at a partner notification efficacy of 1.5. However, there is uncertainty in the extent to which partner notification is currently done, and hence the amount by which it could potentially be

  9. Impact of an Integrated Antibiotic Allergy Testing Program on Antimicrobial Stewardship: A Multicenter Evaluation.

    Science.gov (United States)

    Trubiano, Jason A; Thursky, Karin A; Stewardson, Andrew J; Urbancic, Karen; Worth, Leon J; Jackson, Cheryl; Stevenson, Wendy; Sutherland, Michael; Slavin, Monica A; Grayson, M Lindsay; Phillips, Elizabeth J

    2017-07-01

    Despite the high prevalence of patient-reported antibiotic allergy (so-called antibiotic allergy labels [AALs]) and their impact on antibiotic prescribing, incorporation of antibiotic allergy testing (AAT) into antimicrobial stewardship (AMS) programs (AAT-AMS) is not widespread. We aimed to evaluate the impact of an AAT-AMS program on AAL prevalence, antibiotic usage, and appropriateness of prescribing. AAT-AMS was implemented at two large Australian hospitals during a 14-month period beginning May 2015. Baseline demographics, AAL history, age-adjusted Charlson comorbidity index, infection history, and antibiotic usage for 12 months prior to testing (pre-AAT-AMS) and 3 months following testing (post-AAT-AMS) were recorded for each participant. Study outcomes included the proportion of patients who were "de-labeled" of their AAL, spectrum of antibiotic courses pre- and post-AAT-AMS, and antibiotic appropriateness (using standard definitions). From the 118 antibiotic allergy-tested patients, 226 AALs were reported (mean, 1.91/patient), with 53.6% involving 1 or more penicillin class drug. AAT-AMS allowed AAL de-labeling in 98 (83%) patients-56% (55/98) with all AALs removed. Post-AAT, prescribing of narrow-spectrum penicillins was more likely (adjusted odds ratio [aOR], 2.81, 95% confidence interval [CI], 1.45-5.42), as was narrow-spectrum β-lactams (aOR, 3.54; 95% CI, 1.98-6.33), and appropriate antibiotics (aOR, 12.27; 95% CI, 5.00-30.09); and less likely for restricted antibiotics (aOR, 0.16; 95% CI, .09-.29), after adjusting for indication, Charlson comorbidity index, and care setting. An integrated AAT-AMS program was effective in both de-labeling of AALs and promotion of improved antibiotic usage and appropriateness, supporting the routine incorporation of AAT into AMS programs.

  10. Lactose tolerance test shortened to 30 minutes: an exploratory study of its feasibility and impact

    Directory of Open Access Journals (Sweden)

    José Luis Domínguez-Jiménez

    2014-06-01

    Full Text Available Introduction: Lactose malabsorption (LM is a very common condition with a high prevalence in our setting. Lactose tolerance test (LTT is a basic, affordable test for diagnosis that requires no complex technology. It has been recently shown that this test can be shortened to 3 measurements (baseline, 30 min, 60 min with no impact on final results. The purpose of our study was to assess the feasibility and benefits of LTT simplification and shortening to 30 min, as well as the financial impact entailed. Material and methods: A multicenter, observational study of consecutive patients undergoing LTT for LM suspicion. Patients received 50 g of lactose following a fasting period of 12 h, and had blood collected from a vein at all 3 time points for the measurement of blood glucose (mg/dl. Differences between the shortened and complete test forms were analyzed using McNemar's test. A comparison of blood glucose levels between patients with normal and abnormal results was performed using Student's T-test for independent mean values. Consistency was assessed using the kappa index. A p < 0.05 was considered to be statistically significant. Results: A total of 270 patients (69.6% females were included, with a mean age of 39.9 ± 16 years. LTT was abnormal for 151 patients (55.9%. We observed no statistically significant differences in baseline blood glucose levels between patients with normal and abnormal LTT results (p = 0.13; however, as was to be expected, such differences were obvious for the remaining time points (p < 0.01. Deleting blood glucose measurements at 60 minutes only led to overdiagnose LM (false positive results in 6 patients (2.22 %, with a kappa index of 0.95 (95% CI: 0.92-0.99 (p < 0.001 versus the complete test. Suppressing measurements at 60 min would have saved at least € 7,726. Conclusion: The shortening of LTT to only 2 measurements (baseline and 30-min hardly leads to any differences in final results, and would entail savings in

  11. IMPACT ANALYSES AND TESTS OF CONCRETE OVERPACKS OF SPENT NUCLEAR FUEL STORAGE CASKS

    Directory of Open Access Journals (Sweden)

    SANGHOON LEE

    2014-02-01

    Full Text Available A concrete cask is an option for spent nuclear fuel interim storage. A concrete cask usually consists of a metallic canister which confines the spent nuclear fuel assemblies and a concrete overpack. When the overpack undergoes a missile impact, which might be caused by a tornado or an aircraft crash, it should sustain an acceptable level of structural integrity so that its radiation shielding capability and the retrievability of the canister are maintained. A missile impact against a concrete overpack produces two damage modes, local damage and global damage. In conventional approaches [1], those two damage modes are decoupled and evaluated separately. The local damage of concrete is usually evaluated by empirical formulas, while the global damage is evaluated by finite element analysis. However, this decoupled approach may lead to a very conservative estimation of both damages. In this research, finite element analysis with material failure models and element erosion is applied to the evaluation of local and global damage of concrete overpacks under high speed missile impacts. Two types of concrete overpacks with different configurations are considered. The numerical simulation results are compared with test results, and it is shown that the finite element analysis predicts both local and global damage qualitatively well, but the quantitative accuracy of the results are highly dependent on the fine-tuning of material and failure parameters.

  12. Assessment of the TASER XREP blunt impact and penetration injury potential using cadaveric testing.

    Science.gov (United States)

    Lucas, Scott R; McGowan, Joseph C; Lam, Tack C; Yamaguchi, Gary T; Carver, Matthew; Hinz, Andrew

    2013-01-01

    TASER International's extended range electronic projectile (XREP) is intended to be fired from a shotgun, impact a threat, and apply remote neuromuscular incapacitation. This study investigated the corresponding potential of blunt impact injury and penetration. Forty-three XREP rounds were deployed onto two male human cadaver torsos at impact velocities between 70.6 and 95.9 m/sec (232 and 315 ft/sec). In 42 of the 43 shots fired, the XREP did not penetrate the abdominal wall, resulting in superficial wounds only. On one shot, the XREP's nose section separated prematurely in flight, resulting in penetration. No bony fractures were observed with any of the shots. The viscous criterion (VC), blunt criterion (BC), and energy density (E/A) were calculated (all nonpenetrating tests, average ± 1 standard deviation: VC: 1.14 ± 0.94 m/sec, BC: 0.77 ± 0.15, E/A: 22.6 ± 4.15 J/cm(2)) and, despite the lack of injuries, were generally found to be greater than published tolerance values. © 2012 American Academy of Forensic Sciences.

  13. Dynamic testing of horseshoe designs at impact on synthetic and dirt Thoroughbred racetrack materials.

    Science.gov (United States)

    Mahaffey, C A; Peterson, M L; Thomason, J J; McIlwraith, C W

    2016-01-01

    Different horseshoe designs have been developed in an attempt to optimise footing for equine athletes. Horseshoe performance is assumed to be dependent on the surface and gait, but there are limited data on horseshoe performance on different surfaces, independent of gait variation. To quantify the dynamic loading for 3 aluminium racing shoe designs on Thoroughbred racetrack surface materials, using a biomechanical surface tester. A flat racing plate, a serrated V-Grip and a shoe with a 6 mm toe grab and 10 mm heel calks were tested on synthetic and dirt surfaces under typical operating conditions of temperature and moisture content for the respective material samples. Samples were tested under laboratory conditions, replicating a track surface by compacting material into a latex-lined mould surrounded by silica sand for representative boundary conditions. Peak loading and loading rates were measured vertically and horizontally (craniocaudal), simulating aspects of primary and secondary impacts of the hoof in a galloping horse. Maximum vertical and shear loads and loading rates were not significantly different between shoe types, with the exception of a reduced craniocaudal loading rate for the V-Grip shoe on the synthetic surface. All other statistical significance was related to the surface material. These 3 different Thoroughbred racing shoes do not have a significant impact on loading and loading rate, with the exception of the V-Grip shoe on a synthetic surface. Although the V-Grip may reduce craniocaudal peak load rates in a synthetic material with relatively high wax and/or low oil content, the reduction in load rate is less than the difference found between materials. This study indicates that shoeing has little effect, and that a track's surface material and its preparation have a significant effect on the dynamic loading during the impact phase of the stance. © 2015 EVJ Ltd.

  14. A 3D-psoriatic skin model for dermatological testing: The impact of culture conditions

    Directory of Open Access Journals (Sweden)

    Alexandra Duque-Fernandez

    2016-12-01

    Full Text Available Inadequate representation of the human tissue environment during a preclinical screen can result in inaccurate predictions of compound effects. Consequently, pharmaceutical investigators are searching for preclinical models that closely resemble original tissue for predicting clinical outcomes.The current research aims to compare the impact of using serum-free medium instead of complete culture medium during the last step of psoriatic skin substitute reconstruction. Skin substitutes were produced according to the self-assembly approach.Serum-free conditions have no negative impact on the reconstruction of healthy or psoriatic skin substitutes presented in this study regarding their macroscopic or histological appearances. ATR-FTIR results showed no significant differences in the CH2 bands between psoriatic substitutes cultured with or without serum, thus suggesting that serum deprivation did not have a negative impact on the lipid organization of their stratum corneum. Serum deprivation could even lead to a better organization of healthy skin substitute lipids. Percutaneous analyses demonstrated that psoriatic substitutes cultured in serum-free conditions showed a higher permeability to hydrocortisone compared to controls, while no significant differences in benzoic acid and caffeine penetration profiles were observed.Results obtained with this 3D-psoriatic skin substitute demonstrate the potential and versatility of the model. It could offer good prediction of drug related toxicities at preclinical stages performed in order to avoid unexpected and costly findings in the clinic.Together, these findings offer a new approach for one of the most important challenges of the 21st century, namely, prediction of drug toxicity.•Impact of serum-free conditions during psoriatic skin substitutes reconstruction.•Lipids disorganization of healthy and psoriatic skin substitutes.•Permeation profiles of healthy skin substitutes.•Permeation profiles of

  15. Modeling the impact of novel diagnostic tests on pediatric and extrapulmonary tuberculosis.

    Science.gov (United States)

    Denkinger, Claudia M; Kampmann, Beate; Ahmed, Syed; Dowdy, David W

    2014-09-03

    Extrapulmonary tuberculosis (EPTB) and most pediatric TB cannot be diagnosed using sputum-based assays. The epidemiological impact of different strategies to diagnose EPTB and pediatric TB is unclear. We developed a dynamic epidemic model of TB in a hypothetical population with epidemiological characteristics similar to India. We evaluated the impact of four alternative diagnostic test platforms on adult EPTB and pediatric TB mortality over 10 years: (1) Nucleic acid amplification test optimized for diagnosis of EPTB ("NAAT-EPTB"); (2) NAAT optimized for pediatric TB ("NAAT-Peds"); (3) more deployable NAAT for sputum-based diagnosis of adult pulmonary TB ("point-of-care (POC) sputum NAAT"); and (4) more deployable NAAT capable of diagnosing all forms of TB using non-invasive, non-sputum specimens ("POC non-sputum NAAT"). NAAT-EPTB lowered adult EPTB mortality by a projected 7.6% (95% uncertainty range [UR]: 6.5-8.8%). NAAT-Peds lowered pediatric TB mortality by 6.8% (UR: 4.9-8.4%). POC sputum NAAT, though only able to diagnose pulmonary TB, reduced projected pediatric TB deaths by 13.3% (UR: 4.6-15.7%) and adult EPTB deaths by 8.4% (UR 2.0-9.3%) simply by averting transmission of disease. POC non-sputum NAAT had the greatest effect, lowering pediatric TB mortality by 34.7% (UR: 26.8-38.7), and adult EPTB mortality by 38.5% (UR: 30.7-41.2). The relative impact of a POC sputum NAAT (i.e., enhanced deployability) versus NAAT-EPTB (i.e., enhanced ability to specifically diagnose TB-NSP) on adult EPTB mortality depends most strongly on factors that influence transmission, with settings of higher transmission (e.g., higher per-person transmission rate, lower diagnostic rate) favoring POC sputum NAAT. Although novel tests for pediatric TB and EPTB are likely to reduce TB mortality, major reductions in pediatric and EPTB incidence and mortality also require better diagnostic tests for adult pulmonary TB that reach a larger population.

  16. Preparations for a train-to-train impact test of crash-energy management passenger rail equipment

    Science.gov (United States)

    2005-03-16

    Preparations are ongoing for a full-scale train-to-train : impact test of crash-energy management (CEM) equipment, : during which a cab car-led passenger consist, initially moving : at 30 mph, will impact a standing locomotive-led consist. The : coll...

  17. Testing the Impact of a Pre-Instructional Digital Game on Middle-Grade Students' Understanding of Photosynthesis

    Science.gov (United States)

    Culp, Katherine McMillan; Martin, Wendy; Clements, Margaret; Lewis Presser, Ashley

    2015-01-01

    Rigorous studies of the impact of digital games on student learning remain relatively rare, as do studies of games as supports for learning difficult, core curricular concepts in the context of normal classroom practices. This study uses a blocked, cluster randomized controlled trial design to test the impact of a digital game, played as homework…

  18. Examining the Impact of Covariates on Anchor Tests to Ascertain Quality over Time in a College Admissions Test

    Science.gov (United States)

    Wiberg, Marie; von Davier, Alina A.

    2017-01-01

    We propose a comprehensive procedure for the implementation of a quality control process of anchor tests for a college admissions test with multiple consecutive administrations. We propose to examine the anchor tests and their items in connection with covariates to investigate if there was any unusual behavior in the anchor test results over time…

  19. Identification of exponent from load-deformation relation for soft materials from impact tests

    Science.gov (United States)

    Ciornei, F. C.; Alaci, S.; Romanu, I. C.; Ciornei, M. C.; Sopon, G.

    2018-01-01

    When two bodies are brought into contact, the magnitude of occurring reaction forces increase together with the amplitude of deformations. The load-deformation dependency of two contacting bodies is described by a function having the form F = Cxα . An accurate illustration of this relationship assumes finding the precise coefficient C and exponent α. This representation proved to be very useful in hardness tests, in dynamic systems modelling or in considerations upon the elastic-plastic ratio concerning a Hertzian contact. The classical method for identification of the exponent consists in finding it from quasi-static tests. The drawback of the method is the fact that the accurate estimation of the exponent supposes precise identification of the instant of contact initiation. To overcome this aspect, the following observation is exploited: during an impact process, the dissipated energy is converted into heat released by internal friction in the materials and energy for plastic deformations. The paper is based on the remark that for soft materials the hysteresis curves obtained for a static case are similar to the ones obtained for medium velocities. Furthermore, utilizing the fact that for the restitution phase the load-deformation dependency is elastic, a method for finding the α exponent for compression phase is proposed. The maximum depth of the plastic deformations obtained for a series of collisions, by launching, from different heights, a steel ball in free falling on an immobile prism made of soft material, is evaluated by laser profilometry method. The condition that the area of the hysteresis loop equals the variation of kinetical energy of the ball is imposed and two tests are required for finding the exponent. Five collisions from different launching heights of the ball were taken into account. For all the possible impact-pair cases, the values of the exponent were found and close values were obtained.

  20. Standard Test Method for Determining Resistance of Photovoltaic Modules to Hail by Impact with Propelled Ice Balls

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method provides a procedure for determining the ability of photovoltaic modules to withstand impact forces of falling hail. Propelled ice balls are used to simulate falling hailstones. 1.2 This test method defines test specimens and methods for mounting specimens, specifies impact locations on each test specimen, provides an equation for determining the velocity of any size ice ball, provides a method for impacting the test specimens with ice balls, provides a method for determining changes in electrical performance, and specifies parameters that must be recorded and reported. 1.3 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable levels of ice ball impact resistance is beyond the scope of this test method. 1.4 The size of the ice ball to be used in conducting this test is not specified. This test method can be used with various sizes of ice balls. 1.5 This test method may be applied to concentrator and nonconcentrator modules. 1.6 The v...

  1. Crash test rating and likelihood of major thoracoabdominal injury in motor vehicle crashes: the new car assessment program side-impact crash test, 1998-2010.

    Science.gov (United States)

    Figler, Bradley D; Mack, Christopher D; Kaufman, Robert; Wessells, Hunter; Bulger, Eileen; Smith, Thomas G; Voelzke, Bryan

    2014-03-01

    The National Highway Traffic Safety Administration's New Car Assessment Program (NCAP) implemented side-impact crash testing on all new vehicles since 1998 to assess the likelihood of major thoracoabdominal injuries during a side-impact crash. Higher crash test rating is intended to indicate a safer car, but the real-world applicability of these ratings is unknown. Our objective was to determine the relationship between a vehicle's NCAP side-impact crash test rating and the risk of major thoracoabdominal injury among the vehicle's occupants in real-world side-impact motor vehicle crashes. The National Automotive Sampling System Crashworthiness Data System contains detailed crash and injury data in a sample of major crashes in the United States. For model years 1998 to 2010 and crash years 1999 to 2010, 68,124 occupants were identified in the Crashworthiness Data System database. Because 47% of cases were missing crash severity (ΔV), multiple imputation was used to estimate the missing values. The primary predictor of interest was the occupant vehicle's NCAP side-impact crash test rating, and the outcome of interest was the presence of major (Abbreviated Injury Scale [AIS] score ≥ 3) thoracoabdominal injury. In multivariate analysis, increasing NCAP crash test rating was associated with lower likelihood of major thoracoabdominal injury at high (odds ratio [OR], 0.8; 95% confidence interval [CI], 0.7-0.9; p crash severity (ΔV), but not at low ΔV (OR, 0.95; 95% CI, 0.8-1.2; p = 0.55). In our model, older age and absence of seat belt use were associated with greater likelihood of major thoracoabdominal injury at low and medium ΔV (p crashes, a higher NCAP side-impact crash test rating is associated with a lower likelihood of major thoracoabdominal trauma. Epidemiologic study, level III.

  2. Review of the Air-Coupled Impact-Echo Method for Non-Destructive Testing

    Science.gov (United States)

    Nowotarski, Piotr; Dubas, Sebastian; Milwicz, Roman

    2017-10-01

    The article presents the general idea of Air-Coupled Impact-Echo (ACIE) method which is one of the non-destructive testing (NDT) techniques used in the construction industry. One of the main advantages of the general Impact Echo (IE) method is that it is sufficient to access from one side to that of the structure which greatly facilitate research in the road facilities or places which are difficult to access and diagnose. The main purpose of the article is to present state-of-the-art related to ACIE method based on the publications available at Thomson Reuters Web of Science Core Collection database (WOS) with the further analysis of the mentioned methods. Deeper analysis was also performed for the newest publications published within last 3 years related to ACIE for investigation on the subject of main focus of the researchers and scientists to try to define possible regions where additional examination and work is necessary. One of the main conclusions that comes from the performed analysis is that ACIE methods can be widely used for performing NDT of concrete structures and can be performed faster than standard IE method thanks to the Air-coupled sensors. What is more, 92.3% of the analysed recent research described in publications connected with ACIE was performed in laboratories, and only 23.1% in-situ on real structures. This indicates that method requires further research to prepare test stand ready to perform analysis on real objects outside laboratory conditions. Moreover, algorithms that are used for data processing and later presentation in ACIE method are still being developed and there is no universal solution available for all kinds of the existing and possible to find defects, which indicates possible research area for further works. Authors are of the opinion that emerging ACIE method could be good opportunity for ND testing especially for concrete structures. Development and refinement of test stands that will allow to perform in-situ tests could

  3. Impact of visual cues on directional benefit and preference: Part I--laboratory tests.

    Science.gov (United States)

    Wu, Yu-Hsiang; Bentler, Ruth A

    2010-02-01

    The purpose of the laboratory tests of the current investigation was to examine how visual cues impact directional (DIR) benefit and preference for the DIR microphone hearing aid (re: the omnidirectional [OMNI] microphone). Specifically, three hypotheses were examined: (1) the presence of visual cues would improve OMNI-aided performance to ceiling levels and therefore reduce DIR benefit and preference, (2) DIR benefit measured in the audiovisual (AV) condition could not be predicted by that measured using auditory-only (AO) testing, and (3) with visual cues, listeners with greater lipreading skills would perceive less DIR benefit than did listeners with lesser lipreading skills. Twenty-four adults with sensorineural hearing loss were recruited. Their speech recognition performances were measured in two hearing aid microphone modes (DIR and OMNI), at various signal-to-noise ratios (SNR, -10 to +10 dB in 4-dB steps) and under two presentation conditions (AV and AO) by using the AV version of the Connected Speech Test. Microphone preference (DIR versus OMNI) was also assessed with and without visual cues at each of the SNRs by using the same Connected Speech Test sentences. Lipreading skills were measured using the Utley test. The speech recognition data revealed that the participants obtained significantly less DIR benefit in the AV condition because their AV performances were at the ceiling level. Consistent with this, the likelihood of preferring DIR processing was significantly reduced when visual cues were available to the listeners. Further, DIR benefit measured in the AV condition was not correlated with that measured in the AO condition while being significantly and negatively correlated with lipreading skill. These results suggest that AO laboratory testing overestimates the DIR benefit and preference for DIR processing that hearing aid users may have in most face-to-face conversations in typical SNR, real-world environments. Additionally, because the DIR

  4. Impact of visual cues on directional benefit and preference: Part II--field tests.

    Science.gov (United States)

    Wu, Yu-Hsiang; Bentler, Ruth A

    2010-02-01

    The field tests performed in the current investigation examined how visual cues impact the benefit provided by directional (DIR) microphone hearing aids in the real world. Specifically, the study tested the hypotheses that (1) the provision of visual cues would reduce the preference for DIR processing (re: omnidirectional [OMNI] microphone) and (2) laboratory audiovisual (AV) testing would predict real-world outcomes better than auditory-only testing. The same 24 hearing-impaired adults enrolled in the laboratory testing of this study compared microphone modes (DIR versus OMNI processing) in their everyday activities three times a day for 4 wk using paper and pencil journals. In each comparison, the participants were asked to identify an environment that favored DIR processing (e.g., the talker standing in front of the user and noise at his or her back), listen to speech amid noise via both the DIR and OMNI microphone modes, and then record the preferred microphone mode in the journal. To further understand what the listeners based their preference on, the participants were also asked to provide the reasons for their preferences. Microphone modes were compared when the listeners' eyes were either open or closed. The field results first suggested that OMNI processing was more frequently preferred over DIR processing. Visual cues were not found to have a significant effect on preference for DIR processing. Furthermore, the analysis revealed that when listeners indicated "louder" or "less internal noise" as the reasons for their microphone preference, the likelihood of preferring the OMNI mode increased significantly, suggesting that OMNI processing was preferred for its louder output and lower internal circuit noise level. Finally, the preference score obtained by the laboratory preference judgment task under the AV condition was shown to be the best predictor of microphone preference in the real world. The field data did not reveal the effect of visual cues on

  5. What is the impact of commercial test preparation courses on medical examination performance?

    Science.gov (United States)

    McGaghie, William C; Downing, Steven M; Kubilius, Ramune

    2004-01-01

    Commercial test preparation courses are part of the fabric of U.S. medical education. They are also big business with 2,000 sales for 1 firm listed at nearly $250 million. This article systematically reviews and evaluates research published in peer-reviewed journals and in the "grey literature" that addresses the impact of commercial test preparation courses on standardized, undergraduate medical examinations. Thirteen computerized English language databases were searched using 29 search terms and search concepts from their onset to October 1, 2002. Also manually searched was medical education conference proceedings and publications after the end date; and medical education journal editors were contacted about articles accepted for publication, but not yet in print, that were deemed pertinent to this review. Studies that met three criteria were selected: (a) a commercial test preparation course or service was an educational intervention, (b) the outcome variable was one of several standardized medical examinations, and (c) results are published in a peer-reviewed journal or another outlet that insures scholarly scrutiny. The criteria were applied and data extracted by consensus of 2 reviewers. The search identified 11 empirical studies, of which 10 (8 journal articles, 2 unpublished reports) are included in this review. Qualitative data synthesis and tabular presentation of research methods and outcomes are used. The articles and unpublished reports reveal that current research lacks control and rigor; the incremental validity of the commercial courses on medical examination performance, if any, is extremely small; and evidence in support of the courses is weak or nonexistent; almost no details are given about the form and conduct of the commercial test preparation courses; studies are confined to courses in preparation for the Medical College Admission Test, the former National Board of Medical Examiners Part 1, and the United States Medical Licensing Examination

  6. Testing the origin of high remanent magnetization in Vredefort impact structure

    Science.gov (United States)

    Salminen, J. M.; Pesonen, L. J.; Lahti, K.; Kannus, K.

    2010-12-01

    Vredefort impact structure (2.0 Ga) in South Africa with diameter 250-300 km [1] is considered largest impact structure on Earth. Values of natural remanent magnetization (NRM) for the impactites and some Archean host rocks of Vredefort impact structure are elevated compared to the values for similar rock types found elsewhere and these also show random directions of remanent magnetization [2, 3, 4, 5]. It has been suggested that the source for elevated NRM values and hence elevated Q values (Koenigsberger’s ratio) would be related to impact event in a way where an ultra-small single-domain magnetite formed in a high pressure/temperature environment and crystallized along planar deformation features [2, 6, 3]. It has been further suggested that a plasma field produced from the impact event generated small-wavelength magnetic fields of high intensity which randomized the directions of remanent magnetization [4, 8]. Results of [5] contradict these findings. As, firstly, concentration of elevated Q values near the center of the structure was not observed, as should be if of impact origin, and, secondly, the elevated Q values were also seen in samples from the Johannesburg Dome (120 km from Vredefort dome). Moreover a correlation between hysteresis data and elevated Q values of the basement rocks was not observed, as would be expected if the ultra-fine particles in the PDFs solely were the carriers of the high Q values [5]. This seems to rule out the direct connection of elevated NRM to the shock event. In order to further study the origin of elevated NRM values we have tried to simulate impact shock with conventional explosives and to simulate lighting strikes with high voltage measurements. Ten Archean host rock samples (masses between 0.5 and 1.5 kg) with normal Q values (0.7-2) for Vredefort impact structure were exploded using the plastic explosive with explosive velocity of 8.2 km/s. Three out of ten samples were covered with cement before exploding. Six

  7. Situation and context impacts the expression of personality: the influence of breeding season and test context.

    Science.gov (United States)

    Haage, Marianne; Bergvall, Ulrika A; Maran, Tiit; Kiik, Kairi; Angerbjörn, Anders

    2013-11-01

    Non-human animal personality is defined as consistent behavioural differences across time and situations/contexts. Behaviours are, however, often plastic and to explain how plasticity and personality may coexist an adaptive framework has been developed. Still, there is little information on how personality is impacted by situations and contexts on an individual level. We investigated this in the European mink (Mustela lutreola) by performing a set of five experiments in two situations consisting of non-breeding and breeding season, and by using different test contexts. Three personality trait domains were identified; boldness, exploration and sociability. The levels of boldness and exploration changed between seasons but remained repeatable, which implies behavioural reaction norms and supports that the concept of personality remained applicable despite plasticity. Whilst males became bolder and more explorative in the breeding season females became shyer, which reflects European mink breeding behaviour. Furthermore, behaviours performed in mirror stimulus tests fell into different domains depending on whether, the test was conducted in the own territory or not, suggesting plasticity in the response towards conspecifics. To conclude, our results highlight the importance of situation and context for the expression of personality, and the significance of measuring multiple personality trait domains with several methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Evaluation of the hazardous impact of landfill leachates by toxicity and biodegradability tests.

    Science.gov (United States)

    Kalcíková, G; Vávrová, M; Zagorc-Koncan, J; Gotvajn, A Zgajnar

    2011-01-01

    The aim of our research was to assess the ecotoxicity and biodegradability of leachates originating from two parts of a municipal landfill before and after biological treatment in the existing treatment plant. Biotests represent important tools for adequate environmental characterization of landfill leachates and could be helpful in reliable assessment and monitoring of the treatment plant efficiency. For ecotoxicity testing of landfill leachate before and after biological treatment, different organisms were chosen: the bacteria Vibrio fischeri, a mixed culture of activated sludge, duckweed Lemna minor, white mustard Sinapis alba, brine shrimp Artemia salina, and water flea Daphnia magna. For assessment of biodegradability, the method for determination of oxygen demand in a closed respirometer was used. The investigated leachates were heavily polluted, and in some cases, effluent limits were exceeded even after treatment. Results indicated that toxicity tests and physico-chemical parameters determined before and after treatment equivalently assess the efficiency of the existing treatment plant. However, the investigated leachates showed higher toxicity to Daphnia magna and especially to Lemna minor in contrast to Vibrio fischeri and Artemia salina (neither was sensitive to any of the leachates). No leachates were readily biodegradable. Experiments confirmed that the battery of toxicity tests should be applied for more comprehensive assessment of landfill leachate treatment and for reliable assessment of the treated leachate's subsequent environmental impact. It was confirmed that treated leachate, in spite of its better physico-chemical characteristics, still represents a potential environmental risk and thus should not be released into the environment.

  9. Economic impact of clinical variability in preoperative testing for major outpatient surgery.

    Science.gov (United States)

    Gil-Borrelli, Christian Carlo; Agustí, Salomé; Pla, Rosa; Díaz-Redondo, Alicia; Zaballos, Matilde

    2016-05-01

    With the purpose of decreasing the existing variability in the criteria of preoperative evaluation and facilitating the clinical decision-making process, our hospital has a protocol of preoperative tests to use with ASA I and ASA II patients. The aim of the study was to calculate the economic impact caused by clinicians' non-adherence to the protocol for the anaesthesiological evaluation of ASA 1 and ASA II patients. A retrospective study of costs with a random sample of 353 patients that were seen in the consultation for Anesthesiology over a period of one year. Aspects related to the costs, patient's profiles and specialties were analysed, according to the degree of fulfillment of the protocol. The lack of adherence to the the protocol was 70%. 130 chest X-rays and 218 ECG were performed without indication. This generated an excess costs of 34 € per patient. Taking into account the expenses of both tests and the attended population undergoing ambulatory surgery during the one-year period, an excess spending for the hospital of between 69.164 € and 83.312 € was estimated. Clinical variability should be reduced and the creation of synergies between the different departments should be enhanced in order to adjust the request for unnecessary complementary tests to decrease health care and to improve the quality of patient care. Copyright © 2016 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Numerical study of the Notch Location of the Impact Test Specimens on the HAZ of SA516 Steels

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yun Chan; Kim, Dong Wook; Lee, Young Seog [Chungang Univ., Seoul (Korea, Republic of); Hong, Jae Keun; Park, Ji Hong [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2007-07-01

    Experimental and numerical studies were performed to examine the effects of notch position on the failure behavior and energy absorption when the Charpy V-notch impact test is made at 1 .deg. C. For this purpose, carbon steel plate (SA-516 Gr. 70) with thickness of 25mm usually used for pressure vessel was welded by SMAW (Shielded Metal-Arc Welding) method and specimens were fabricated from the welded plate. The Charpy impact tests were then performed with specimens having different notch positions varying within HAZ. A series of three-dimensional FE analysis which simulates the Charpy test and crack propagation are carried out as well to examine the reproducibility of test results. The FE analysis takes into account the heterogeneous mechanical properties with complex microstructures in HAZ. Results reveal that the absorbed energies during impact test depend significantly on the notch position.

  11. Sustainability by means of processes in the world trade law. Environmental testing and sustainability impact testing; Nachhaltigkeit durch Verfahren im Welthandelsrecht. Umwelt- und Nachhaltigkeitspruefungen und die WTO

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, M.

    2007-07-01

    The author of the contribution under consideration analyzes the correlation between commercial law and sustainable development. The author arranges the new instrument of environmental testing and sustainability impact testing of trade regulations into legal aspects and analyzes the compatibility with legal principles of the World Trade Organization (WTO) as well as their transferability on the WTO. Especially, the environmental protection and sustainability are described as elements of the precautionary principle in the world trade. The process component of the precautionary principle in the WTO law is to the fore. Furthermore, other principles are discussed such as the transparency principle and the differentiated and favoured treatment of developing countries in the WTO law. As an example, the Canadian Environmental Assessment of Trade Negotiations, the Environmental Review of Trade Agreement in the United States of America, the Environmental Assessment in the North American Free Trade Area (NAFTA) as well as the Sustainability Impact Assessment of the European Union are explained and evaluated legally. Furthermore, the author discusses the opportunities and the boundaries of the negotiability of the environmental testing and sustainability impact testing to the WTO. The author suggests a coordination mechanism at the WTO for national environmental and sustainability impact testing.

  12. HIV Testing Among Young People Aged 16-24 in South Africa: Impact of Mass Media Communication Programs.

    Science.gov (United States)

    Do, Mai; Figueroa, Maria Elena; Lawrence Kincaid, D

    2016-09-01

    Knowing one's serostatus is critical in the HIV prevention, care and treatment continuum. This study examines the impact of communication programs on HIV testing in South Africa. Data came from 2204 young men and women aged 16-24 who reported to be sexually active in a population based survey. Structural equation modeling was used to test the directions and causal pathways between communication program exposure, HIV testing discussion, and having a test in the last 12 months. Bivariate and multivariate probit regressions provided evidence of exogeneity of communication exposure and the two HIV-related outcomes. One in three sampled individuals had been tested in the last 12 months. Communication program exposure only had an indirect effect on getting tested by encouraging young people to talk about testing. The study suggests that communication programs may create an environment that supports open HIV-related discussions and may have a long-term impact on behavior change.

  13. Environmental impact studies for gas hydrate production test in the Ulleung Basin, East Sea of Korea

    Science.gov (United States)

    Ryu, Byong-Jae

    2017-04-01

    To develop potential future energy resources, the Korean National Gas Hydrate Program has been carried out since 2005. The program has been supported by the Ministry of Trade, Industry and Energy (MOTIE), and carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM), the Korea Gas Corporation (KOGAS) and the Korea National Oil Corporation (KNOC) under the management of Gas Hydrate R&D Organization (GHDO). As a part of this national program, geophysical surveys, geological studies on gas hydrates and two deep drilling expeditions were performed. Gas hydrate-bearing sand layers suitable for production using current technologies were found during the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) in 2010. Environmental impact studies (EIS) also have been carried out since 2012 by KIGAM in cooperation with domestic and foreign universities and research organizations to ensure safe production test that will be performed in near future. The schedule of production test is being planned. The EIS includes assessment of environmental risks, examination on domestic environmental laws related with production test, collection of basic oceanographic information, and baseline and monitoring surveys. Oceanographic information and domestic environmental laws are already collected and analyzed. Baseline survey has been performed using the in-house developed system, KIGAM Seafloor Observation System (KISOS) since 2013. It will also be performed. R/V TAMHAE II of KIGAM used for KISOS operation. As a part of this EIS, pseudo-3D Chirp survey also was carried out in 2014 to determine the development of fault near the potential testing site. Using KIGAM Seafloor Monitoring System (KIMOS), monitoring survey is planned to be performed from three month before production test to three months after production test. The geophysical survey for determining the change of gas hydrate reservoirs and production-efficiency around the production well would also be

  14. Development of Techniques for Investigating Energy Contributions to Target Deformation and Penetration During Reactive Projectile Hypervelocity Impact

    Science.gov (United States)

    2011-07-01

    slow portion of the jet stream. The following analyses outline the methodology for tracking jet through the target and estimating the quantity between...effect of hydro-reaction is clearly shown from these analyses . In addition to extending the experimental database, an attempt was made towards...Prausnitz J. O’Connel. The Properties of Gases and Liquids. McGraw-Hill Professional, New York, 2001. [Pal02] E. Paland, editor. Technisches Taschenbuch

  15. Hypervelocity Impact: Proceedings of the 1992 Symposium Held in Austin, Texas on 17-19 November 1992

    Science.gov (United States)

    1993-10-01

    8217 thle exper~imenIts 11e alsO described inl latter sections. tlie prin lciple that Nt rct ired t i nue-deperildent (shoe kless). miega bar driv ing...begins when the obturator clears the muzzle and releases the high pressure propellant gases. The relative strength of the two is dependent upon the...separator is higher than the p)ressure in the two e•ent tubes. While the sabot and obturator De ckIpnicint 01 I1 Sca1Ui•iia cc erakr hxt pcd !ii i’r c

  16. Characterizing Hypervelocity Impact (HVI)-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear

    National Research Council Canada - National Science Library

    Menglong Liu; Kai Wang; Cliff J Lissenden; Qiang Wang; Qingming Zhang; Renrong Long; Zhongqing Su; Fangsen Cui

    2017-01-01

    .... Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently...

  17. Standard Test Method for Hail Impact Resistance of Aerospace Transparent Enclosures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of the impact resistance of an aerospace transparent enclosure, hereinafter called windshield, during hailstorm conditions using simulated hailstones consisting of ice balls molded under tightly controlled conditions. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Section 7.

  18. The impact of introducing malaria rapid diagnostic tests on fever case management

    DEFF Research Database (Denmark)

    Bruxvoort, Katia J; Leurent, Baptiste; Chandler, Clare I R

    2017-01-01

    , to evaluate the impact of mRDT introduction on case management across settings that vary in malaria endemicity and healthcare provider type. This synthesis includes 562,368 outpatient encounters (study size range 2,400-432,513). mRDTs were associated with significantly lower ACT prescription (range 8......Since 2010, the World Health Organization has been recommending that all suspected cases of malaria be confirmed with parasite-based diagnosis before treatment. These guidelines represent a paradigm shift away from presumptive antimalarial treatment of fever. Malaria rapid diagnostic tests (m......RDTs) are central to implementing this policy, intended to target artemisinin-based combination therapies (ACT) to patients with confirmed malaria and to improve management of patients with nonmalarial fevers. The ACT Consortium conducted ten linked studies, eight in sub-Saharan Africa and two in Afghanistan...

  19. Computer simulation analysis on EEVC pedestrian subsystem impact test. Evaluation of impact energy in upper legform test; EEVC hokosha hogo shikenhoan ni kansuru computer simulation kaiseki. Daitaibu shikenhoan de teiansareta shototsu energy no datosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Konosu, A.; Ishikawa, H. [Japan Automobile Research Institute Inc., Tsukuba (Japan)

    1999-11-01

    EEVC upper legform test conditions are determined exclusively from car-front shapes, bonnet leading edge (LEH) and bumper lead (BL), without considering car-front stiffness. However, the car-front stiffness may affect the test conditions significantly. Furthermore, it seems that the EEVC test condition was obtained from computer simulation using a dummy-like pedestrian model, instead of a human-like pedestrian model. Our computer simulation results indicated that car-front-stiffness varied impact energy 300 J at maximum, and impact energy obtained using the dummy-like pedestrian model was 93 to 384 J higher as compared to those obtained from the human-like pedestrian model. In order to evaluate vehicle safety performance in car-pedestrian accidents appropriately, the current EEVC impact energy curve of upper legform test should be reconsidered. (author)

  20. Hypervelocity Code to Design Light Gas Guns to Achieve 10km/s+ Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With over 100,000,000 particles smaller than 1 cm in low earth orbit, it is critical that shielding will adequately protect from impacts of this size.  A 3SLGG...

  1. Impact testing of the residual limb: System response to changes in prosthetic stiffness.

    Science.gov (United States)

    Boutwell, Erin; Stine, Rebecca; Gard, Steven

    2016-01-01

    Currently, it is unknown whether changing prosthetic limb stiffness affects the total limb stiffness and influences the shock absorption of an individual with transtibial amputation. The hypotheses tested within this study are that a decrease in longitudinal prosthetic stiffness will produce (1) a reduced total limb stiffness, and (2) reduced magnitude of peak impact forces and increased time delay to peak force. Fourteen subjects with a transtibial amputation participated in this study. Prosthetic stiffness was modified by means of a shock-absorbing pylon that provides reduced longitudinal stiffness through compression of a helical spring within the pylon. A sudden loading evaluation device was built to examine changes in limb loading mechanics during a sudden impact event. No significant change was found in the peak force magnitude or timing of the peak force between prosthetic limb stiffness conditions. Total limb stiffness estimates ranged from 14.9 to 17.9 kN/m but were not significantly different between conditions. Thus, the prosthetic-side total limb stiffness was unaffected by changes in prosthetic limb stiffness. The insensitivity of the total limb stiffness to prosthetic stiffness may be explained by the mechanical characteristics (i.e., stiffness and damping) of the anatomical tissue within the residual limb.

  2. Optimized lower leg injury probability curves from postmortem human subject tests under axial impacts.

    Science.gov (United States)

    Yoganandan, Narayan; Arun, Mike W J; Pintar, Frank A; Szabo, Aniko

    2014-01-01

    Derive optimum injury probability curves to describe human tolerance of the lower leg using parametric survival analysis. The study reexamined lower leg postmortem human subjects (PMHS) data from a large group of specimens. Briefly, axial loading experiments were conducted by impacting the plantar surface of the foot. Both injury and noninjury tests were included in the testing process. They were identified by pre- and posttest radiographic images and detailed dissection following the impact test. Fractures included injuries to the calcaneus and distal tibia-fibula complex (including pylon), representing severities at the Abbreviated Injury Score (AIS) level 2+. For the statistical analysis, peak force was chosen as the main explanatory variable and the age was chosen as the covariable. Censoring statuses depended on experimental outcomes. Parameters from the parametric survival analysis were estimated using the maximum likelihood approach and the dfbetas statistic was used to identify overly influential samples. The best fit from the Weibull, log-normal, and log-logistic distributions was based on the Akaike information criterion. Plus and minus 95% confidence intervals were obtained for the optimum injury probability distribution. The relative sizes of the interval were determined at predetermined risk levels. Quality indices were described at each of the selected probability levels. The mean age, stature, and weight were 58.2±15.1 years, 1.74±0.08 m, and 74.9±13.8 kg, respectively. Excluding all overly influential tests resulted in the tightest confidence intervals. The Weibull distribution was the most optimum function compared to the other 2 distributions. A majority of quality indices were in the good category for this optimum distribution when results were extracted for 25-, 45- and 65-year-olds at 5, 25, and 50% risk levels age groups for lower leg fracture. For 25, 45, and 65 years, peak forces were 8.1, 6.5, and 5.1 kN at 5% risk; 9.6, 7.7, and 6.1 k

  3. Hydraulic impact end effector final test report. Automation and robotics section, ER/WM-AT Program

    Energy Technology Data Exchange (ETDEWEB)

    Couture, S.

    1994-02-18

    One tool being developed for dislodging and fragmenting the hard salt cake waste in the single-shell nuclear waste tanks at the Hanford Reservation near Richland, Washington, is the hydraulic impact end effector (HIEE). This total operates by discharging 11-in. slugs of water at ultrahigh pressures. The HIEE was designed, built, and initially tested in 1992. Work in 1993 included advanced developments of the HIEE to further investigate its fragmentation abilities and to determine more effective operating procedures. These tests showed that more fragmentation can be achieved by increasing the charge pressure of 40 kpsi to 55 kpsi and by the use of different operating procedures. The size of the material and the impact energy of the water slug fired from the HIEE are believed to be major factors in material fragmentation. The material`s ability to fracture also appears to depend on the distance a fracture or crack line must travel to a free surface. Thus, larger material is more difficult to fracture than smaller material. Discharge pressures of 40 kpsi resulted in little penetration or fracturing of the material. At 55 kpsi, however, the size and depth of the fractures increased. Nozzle geometry had a significant effect on fragment size and quantity. Fragmentation was about an order of magnitude greater when the HIEE was discharged into drilled holes rather than onto the material surface. Since surface shots tend to create craters, a multi-shot procedure, coupled with an advanced nozzle design, was used to drill (crater) deep holes into large material. With this procedure, a 600-lb block was reduced to smaller pieces without the use of any additional equipment. Through this advanced development program, the HIEE has demonstrated that it can quickly fragment salt cake material into small, easily removable fragments. The HIEE`s material fragmentation ability can be substantially increased through the use of different nozzle geometries and operating procedures.

  4. Role of Native Language in Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) of Youth Athletes.

    Science.gov (United States)

    Tsushima, William T; Tsushima, Vincent G; Oshiro, Ross O; Murata, Nathan M

    2017-06-01

    The aim of this research was to examine the role of native language in the performance of youth athletes on a computerized neuropsychological test battery, the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT). The study compared the baseline test scores of 5545 participants whose native language was English versus 195 whose native language was not English. The mean age of the participants was 15.06 years. A multivariate analysis of variance revealed no differences in the five ImPACT Composite scores of the two language groups. Contrary to prior research, one cannot simply expect that non-native English speakers will do more poorly on ImPACT than native English speakers. Further research on the use of ImPACT with other non-native English-speaking youth athletes is recommended.

  5. Pendulum impact testing of an impact-breakaway, windresistant base connection for multi-post ground signs : [summary].

    Science.gov (United States)

    2012-01-01

    Roadside signs are critical to traffic control. : However, if not properly designed to yield : upon vehicle impact, these signs become lifethreatening : hazards. Yet, the signs must be able : to withstand wind loading, in Florida, up to : hurricane f...

  6. Scoring Method of a Situational Judgment Test: Influence on Internal Consistency Reliability, Adverse Impact and Correlation with Personality?

    Science.gov (United States)

    De Leng, W. E.; Stegers-Jager, K. M.; Husbands, A.; Dowell, J. S.; Born, M. Ph.; Themmen, A. P.

    2017-01-01

    Situational Judgment Tests (SJTs) are increasingly used for medical school selection. Scoring an SJT is more complicated than scoring a knowledge test, because there are no objectively correct answers. The scoring method of an SJT may influence the construct and concurrent validity and the adverse impact with respect to non-traditional students.…

  7. A prospective study of the impact of genetic susceptibility testing for BRCA1/2 or HNPCC on family relationships

    NARCIS (Netherlands)

    van Oostrom, Iris; Meijers-Heijboer, Hanne; Duivenvoorden, Hugo J.; Bröcker-Vriends, Annette H. J. T.; van Asperen, Christi J.; Sijmons, Rolf H.; Seynaeve, Caroline; van Gool, Arthur R.; Klijn, Jan G. M.; Riedijk, Samantha R.; van Dooren, Silvia; Tibben, Aad

    2007-01-01

    This study assessed the impact of genetic testing for cancer susceptibility on family relationships and determinants of adverse consequences for family relationships. Applicants for genetic testing of a known familial pathogenic mutation in BRCA1/2 or a HNPCC related gene (N=271) rated the

  8. A prospective study of the impact of genetic susceptibility testing for BRCA1/2 or HNPCC on family relationships

    NARCIS (Netherlands)

    van Oostrom, Iris; Meijers-Heijboer, Hanne; Duivenvoorden, Hugo J.; Brocker-Vriends, Annette H. J. T.; van Asperen, Chhstl J.; Sijmons, Rolf H.; Seynaeve, Caroline; Van Gool, Arthur R.; Klijn, Jan G. M.; Riedijk, Samantha R.; van Dooren, Silvia; Tibben, Aad

    This study assessed the impact of genetic testing for cancer susceptibility on family relationships and determinants of adverse consequences for family relationships. Applicants for genetic testing of a known familial pathogenic mutation in BRCA1/2 or a HNPCC related gene (N = 271) rated the

  9. A prospective study of the impact of genetic susceptibility testing for BRCA1/2 or HNPCC on family relationships.

    NARCIS (Netherlands)

    Oostrom, I.I.H. van; Meijers-Heijboer, H.; Duivenvoorden, H.J.; Brocker-Vriends, A.H.; Asperen, C.J. van; Sijmons, R.H.; Seynaeve, C.; Gool, A.R. van; Klijn, J.G.M.; Riedijk, S.R.; Dooren, S. van; Tibben, A.

    2007-01-01

    This study assessed the impact of genetic testing for cancer susceptibility on family relationships and determinants of adverse consequences for family relationships. Applicants for genetic testing of a known familial pathogenic mutation in BRCA1/2 or a HNPCC related gene (N=271) rated the

  10. Trial by Dutch laboratories for evaluation of non-invasive prenatal testing. : Part I-clinical impact

    NARCIS (Netherlands)

    Oepkes, Dick; Page-Christiaens, G. C. (Lieve); Bax, Caroline J.; Bekker, Mireille N.; Bilardo, Catia M.; Boon, Elles M. J.; Schuring-Blom, G. Heleen; Coumans, Audrey B. C.; Faas, Brigitte H.; Galjaard, Robert-Jan H.; Go, Attie T.; Henneman, Lidewij; Macville, Merryn V. E.; Pajkrt, Eva; Suijkerbuijk, Ron F.; Huijsdens-van Amsterdam, Karin; Van Opstal, Diane; Verweij, E. J. (Joanne); Weiss, Marjan M.; Sistermans, Erik A.

    2016-01-01

    Objective To evaluate the clinical impact of nationwide implementation of genome-wide non-invasive prenatal testing (NIPT) in pregnancies at increased risk for fetal trisomies 21, 18 and 13 (TRIDENT study). Method Women with elevated risk based on first trimester combined testing (FCT >= 1: 200) or

  11. Trial by Dutch laboratories for evaluation of non-invasive prenatal testing. Part I-clinical impact

    NARCIS (Netherlands)

    Oepkes, D.; Page-Christiaens, G.C.; Bax, C.J.; Bekker, M.N.; Bilardo, C.M.; Boon, E.M.; Schuring-Blom, G.H.; Coumans, A.B.; Faas, B.H.W.; Galjaard, R.H.; Go, A.T.; Henneman, L.; Macville, M.V.; Pajkrt, E.; Suijkerbuijk, R.F.; Amsterdam, K. Huijsdens-van; Opstal, D. Van; Verweij, E.J.; Weiss, M.M.; Sistermans, E.A.

    2016-01-01

    OBJECTIVE: To evaluate the clinical impact of nationwide implementation of genome-wide non-invasive prenatal testing (NIPT) in pregnancies at increased risk for fetal trisomies 21, 18 and 13 (TRIDENT study). METHOD: Women with elevated risk based on first trimester combined testing (FCT >/=

  12. Trial by Dutch laboratories for evaluation of non-invasive prenatal testing. Part I—clinical impact

    NARCIS (Netherlands)

    D. Oepkes; Page-Christiaens, G.C.L. (G. C. Lieve); C.J. Bax (Caroline); M.N. Bekker (Mireille); C.M. Bilardo (Caterina Maddalena); E.M.J. Boon (Elles ); G.H. Schuring-Blom (Heleen); A. Coumans (Audrey); B.H.W. Faas (Brigitte); R-J.H. Galjaard (Robert-Jan); A. Go (Attie); L. Henneman (Lidewij); M.V.E. Macville (Merryn); E. Pajkrt (Eva); R. Suijkerbuijk (Ron); Huijsdens-van Amsterdam, K. (Karin); A.R.M. van Opstal (Diane); Verweij, E.J.J. (E. J. Joanne); Weiss, M.M. (Marjan M.); E.A. Sistermans (Erik)

    2016-01-01

    textabstractObjective: To evaluate the clinical impact of nationwide implementation of genome-wide non-invasive prenatal testing (NIPT) in pregnancies at increased risk for fetal trisomies 21, 18 and 13 (TRIDENT study). Method: Women with elevated risk based on first trimester combined testing (FCT

  13. Preparing Climate Engineering Responses to Climate Emergencies II: Impact Detection/Attribution and Field Testing

    Science.gov (United States)

    Blackstock, J. J.; Battisti, D.; Caldeira, K.; Eardley, D. M.; Katz, J. I.; Keith, D. W.; Koonin, S. E.; Patrinos, A. A.; Schrag, D. P.; Socolow, R. H.

    2008-12-01

    Through a one-week intensive study, the authors of this abstract explored the question: What program of comprehensive technical research over the next decade would maximally reduce the uncertainties associated with climate engineering responses to climate emergencies? The motivations underlying this question, our group's focus on climate engineering concepts for manipulating incident short-wave solar radiation, and our in-depth consideration of stratospheric aerosol interventions as a case example are all described in a previous presentation (Keith et al. in this session). This second of two presentations on our study group's findings concentrates specifically on our technical evaluation of the issues associated with climate impact detection and attribution. Our analyses begin by examining the natural variability (noise) and equilibration timescales (temporal response) of a number of specific climate parameters (e.g. surface radiative flux, surface temperature, atmospheric ozone concentrations, etc.) at both the global and regional scales. First, using the assumption of immediate response for all climate parameters, order-of-magnitude signal-to-noise ratio calculations are used to estimate the minimum intervention durations and amplitudes needed for climate impacts of predicted magnitude to be attributably detected. Next, a number of relevant processes (physical, chemical and biological) within the climate system are evaluated to provide order-of-magnitude estimates for the actual temporal response of these climate parameters (e.g. delay in global temperature response due to ocean heat capacity). Cumulatively, these first-order quantitative estimates reveal a number of basic limits to the timescale over which equilibrium climatic parameter impacts of a climate engineering intervention could be detected. Building from these basic results, we examine current climate monitoring capabilities across four broad categories of climate parameters: (1) radiative; (2

  14. Impact of Complex Orography on Wake Development: Simulation Results for the Planned WindForS Test Site

    Science.gov (United States)

    Lutz, Thorsten; Schulz, Christoph; Letzgus, Patrick; Rettenmeier, Andreas

    2017-05-01

    In Southern Germany a test site will be erected in complex terrain. The purpose is to enable detailed scientific studies of terrain impact on the characteristics of two research wind turbines and to demonstrate new technologies. Within preparatory studies an appropriate site was identified and examined by field tests and numerical studies in more detail. The present paper summarizes CFD analyses on the impact of the local test site orography on the wake development of a virtual wind turbine. The effects of the orography are identified by comparative simulations for the same turbine using comparative wind situation in flat terrain.

  15. Neurocognitive performance and symptom profiles of Spanish-speaking Hispanic athletes on the ImPACT test.

    Science.gov (United States)

    Ott, Summer; Schatz, Philip; Solomon, Gary; Ryan, Joseph J

    2014-03-01

    This study documented baseline neurocognitive performance of 23,815 athletes on the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) test. Specifically, 9,733 Hispanic, Spanish-speaking athletes who completed the ImPACT test in English and 2,087 Hispanic, Spanish-speaking athletes who completed the test in Spanish were compared with 11,955 English-speaking athletes who completed the test in English. Athletes were assigned to age groups (13-15, 16-18). Results revealed a significant effect of language group (p speaking athletes completing the test in Spanish scored more poorly than Spanish-speaking and English-speaking athletes completing the test in English, on all Composite scores and Total Symptom scores. Spanish-speaking athletes completing the test in English also performed more poorly than English-speaking athletes completing the test in English on three Composite scores. These differences in performance and reported symptoms highlight the need for caution in interpreting ImPACT test data for Hispanic Americans.

  16. Impact assessment of treated wastewater on water quality of the receiver using the Wilcoxon test

    Science.gov (United States)

    Ofman, Piotr; Puchlik, Monika; Simson, Grzegorz; Krasowska, Małgorzata; Struk-Sokołowska, Joanna

    2017-11-01

    Wastewater treatment is a process which aims to reduce the concentration of pollutants in wastewater to the level allowed by current regulations. This is to protect the receivers which typically are rivers, streams, lakes. Examination of the quality of treated wastewater allows for quick elimination of possible negative effects, and the study of water receiver prevents from excessive contamination. The paper presents the results of selected physical and chemical parameters of treated wastewater from the largest on the region in north-eastern Poland city of Bialystok municipal wastewater treatment and Biała River, the receiver. The samples for research were taken 3-4 a month in 2015 from two points: before and after discharge. The impact of the wastewater treatment plant on the quality of the receiver waters was studied by using non-parametric Wilcoxon test. This test determined whether the analyzed indicators varied significantly depending on different sampling points of the river, above and below place of discharge of treated wastewater. These results prove that the treated wastewater does not affect the water quality in the Biała River.

  17. Standard Test Method for Impact Resistance of Monolithic Polycarbonate Sheet by Means of a Falling Weight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers the determination of the energy required to initiate failure in monolithic polycarbonate sheet material under specified conditions of impact using a free falling weight. 1.2 Two specimen types are defined as follows: 1.2.1 Type A consists of a flat plate test specimen and employs a clamped ring support. 1.2.2 Type B consists of a simply supported three-point loaded beam specimen (Fig. 1) and is recommended for use with material which can not be failed using the Type A specimen. For a maximum drop height of 6.096 m (20 ft) and a maximum drop weight of 22.68 kg (50 lb), virgin polycarbonate greater than 12.70 mm (1/2 in.) thick will probably require use of the Type B specimen. Note 1 - See also ASTM Methods: D 1709, D 2444 and D 3029. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of reg...

  18. submitter Heavy-Ion Radiation Impact on a 4 Mb FRAM Under Different Test Modes and Conditions

    CERN Document Server

    Gupta, Viyas; Tsiligiannis, Georgios; Zadeh, Ali; Javanainen, Arto; Virtanen, Ari; Puchner, Helmut; Saigne, Frederic; Wrobel, Frederic; Dilillo, Luigi

    2016-01-01

    The impact of heavy-ions on commercial Ferroelectric Memories (FRAMs) is analyzed. The influence of dynamic and static test modes as well as several stimuli on the error rate of this memory is investigated. Static test results show that the memory is prone to temporary effects occurring in the peripheral circuitry, with a possible effect due to fluence. Dynamic tests results show a high sensitivity of this memory to switching activity of this peripheral circuitry

  19. The impact of penicillin skin testing on clinical practice and antimicrobial stewardship.

    Science.gov (United States)

    Rimawi, Ramzy H; Cook, Paul P; Gooch, Michael; Kabchi, Badih; Ashraf, Muhammad S; Rimawi, Bassam H; Gebregziabher, Mulugeta; Siraj, Dawd S

    2013-06-01

    Penicillin skin testing (PST) is a simple and reliable way of diagnosing penicillin allergy. After being off the market for 4 years, penicilloyl-polylysine was reintroduced in 2009 as PRE-PEN. We describe the negative predictive value (NPV) of PST and the impact on antibiotic selection in a sample of hospitalized patients with a reported history of penicillin allergy. We introduced a quality improvement process at our 861-bed tertiary care hospital that used PST to guide antibiotic usage in patients with a history consistent with an immunoglobulin E (IgE)-mediated reaction to penicillin. Subjects with a negative PST were then transitioned to a β-lactam agent for the remainder of their therapy. NPV of skin testing was established at 24-hour follow-up. We are reporting the result of 146 patients tested between March 2012 and July 2012. A total of 146 patients with a history of penicillin allergy and negative PST were treated with β-lactam antibiotics. Of these, only 1 subject experienced an allergic reaction to the PST. The remaining 145 patients tolerated a full course of β-lactam therapy without an allergic response, giving the PST a 100% NPV. We estimated that PST-guided antibiotic alteration for these patients resulted in an estimated annual savings of $82,000. Patients with a history of penicillin allergy who have a negative PST result are at a low risk of developing an immediate-type hypersensitivity reaction to β-lactam antibiotics. The increased use of PST may help improve antibiotic stewardship in the hospital setting. Copyright © 2013 Society of Hospital Medicine.

  20. Impact of Patient Affect on Physician Estimate of Probability of Serious Illness and Test Ordering

    Science.gov (United States)

    Neumann, Dawn; Raad, Samih; Schriger, David L.; Hall, Cassandra L.; Capito, Jake; Kammer, David

    2017-01-01

    Purpose The authors hypothesize patient facial affect may influence clinician pretest probability (PTP) estimate of cardiopulmonary emergency (CPE) and desire to order a computerized tomographic pulmonary angiogram (CTPA). Method This prospective study was conducted at three Indiana University–affiliated hospitals in two parts: collecting videos of patients undergoing CTPA for suspected acute pulmonary embolism watching a humorous video (August 2014–April 2015) and presenting the medical histories and videos to clinicians to determine the impact of patient facial affect on physicians’ PTP estimate of CPE and desire to order a CTPA (June–November 2015). Patient outcomes were adjudicated as CPE+ or CPE− by three independent reviewers. Physicians completed a standardized test of facial affect recognition, read standardized medical histories, then viewed videos of the patients’ faces. Clinicians marked their PTP estimate of CPE and desire for a CTPA before and after seeing the video on a visual analog scale (VAS). Results Fifty physicians completed all 73 videos. Seeing the patient’s face produced a > 10% absolute change in PTP estimate of CPE in 1,204/3,650 (33%) cases and desire for a CTPA in 1,095/3,650 (30%) cases. The mean area under the receiver operating characteristic curve for CPE estimate was 0.55 ± 0.15, and the change in CPE VAS was negatively correlated with physicians’ standardized test scores (r = −0.23). Conclusions Clinicians may use patients’ faces to make clinically important inferences about presence of serious illness and need for diagnostic testing. However, these inferences may fail to align with actual patient outcomes. PMID:28403005

  1. Impact of Genetic Counseling and Testing on Altruistic Motivations to Test for BRCA1/2: a Longitudinal Study.

    Science.gov (United States)

    Garg, Rahul; Vogelgesang, Joseph; Kelly, Kimberly

    2016-06-01

    Despite the importance of altruism in an individual's participation in genetic counseling and testing, little research has explored the change in altruistic motivations to test over time. This study analyzed altruistic motivations to test and change in altruistic motivations after genetic counseling and testing among individuals (N = 120) at elevated risk for BRCA1/2 mutations. The perceived benefits of genetic testing were assessed and utilized in a mixed-methods, repeated measures design at three time points: pre-counseling, counseling and post-genetic testing, along with transcripts of genetic counseling sessions. Qualitative analysis using an immersion/crystallization method resulted in six common perceived benefits of testing: cancer prevention, awareness, family's survival, relief from anxiety, for science, and future planning. Perceived benefits were then coded into three categories according to Hamilton's kin selection theory: altruistic motivation, personal motivation, and motivation for mutual benefit. At pre-counseling, those with a personal cancer history (p = 0.003) and those with one or more children (p = 0.013), were significantly more likely to cite altruistic motivations to test. Altruistic motivations significantly increased post-counseling (p = 0.01) but declined post-testing (p altruistic and personal motivations. The possibility of a positive test result might have led those with personal history of cancer to have altruistic motivations for testing. Genetic counseling may have increased altruistic motivations to help family and may be a prime opportunity to discuss other forms of altruism.

  2. Secondary Impacts on Structures on the Lunar Surface

    Science.gov (United States)

    Christiansen, Eric; Walker, James D.; Grosch, Donald J.

    2010-01-01

    The Altair Lunar Lander is being designed for the planned return to the Moon by 2020. Since it is hoped that lander components will be re-used by later missions, studies are underway to examine the exposure threat to the lander sitting on the Lunar surface for extended periods. These threats involve both direct strikes of meteoroids on the vehicle as well as strikes from Lunar regolith and rock thrown by nearby meteorite strikes. Currently, the lander design is comprised of up to 10 different types of pressure vessels. These vessels included the manned habitation module, fuel, cryogenic fuel and gas storage containers, and instrument bays. These pressure vessels have various wall designs, including various aluminum alloys, honeycomb, and carbon-fiber composite materials. For some of the vessels, shielding is being considered. This program involved the test and analysis of six pressure vessel designs, one of which included a Whipple bumper shield. In addition to the pressure vessel walls, all the pressure vessels are wrapped in multi-layer insulation (MLI). Two variants were tested without the MLI to better understand the role of the MLI in the impact performance. The tests of performed were to examine the secondary impacts on these structures as they rested on the Lunar surface. If a hypervelocity meteor were to strike the surface nearby, it would throw regolith and rock debris into the structure at a much lower velocity. Also, when the manned module departs for the return to Earth, its rocket engines throw up debris that can impact the remaining lander components and cause damage. Glass spheres were used as a stimulant for the regolith material. Impact tests were performed with a gas gun to find the V50 of various sized spheres striking the pressure vessels. The impacts were then modeled and a fast-running approximate model for the V50 data was developed. This model was for performing risk analysis to assist in the vessel design and in the identification of ideal

  3. Verification Of Residual Strength Properties From Compression After Impact Tests On Thin CFRP Skin, A1 Honeycomb Composites

    Science.gov (United States)

    Kalnins, Kaspars; Graham, Adrian J.; Sinnema, Gerben

    2012-07-01

    This article presents a study of CFRP/Al honeycomb panels subjected to a low velocity impact which, as a result, caused strength reduction. The main scope of the current study was to investigate experimental procedures, which are not well standardized and later verify them with numerical simulations. To ensure integrity of typical lightweight structural panels of modern spacecraft, knowledge about the impact energy required to produce clearly visible damage, and the resulting strength degradation is of high importance. For this initial investigation, Readily available ‘heritage’ (1980s) sandwich structure with relatively thin skin was used for this investigation. After initial attempts to produce impact damage, it was decided to create quasistatic indentation instead of low velocity impact, to cause barely visible damage. Forty two edgewise Compressions After Impact (CAI) test specimens have been produced and tested up to failure, while recording the strain distribution by optical means during the tests. Ultrasonic C-scan inspection was used to identify the damage evolution before and after each test. The optical strain measurements acquired during the tests showed sensitivity level capable to track the local buckling of damaged region.

  4. Climate Analogues for agricultural impact projection and adaptation – a reliability test

    Directory of Open Access Journals (Sweden)

    Swen P.M. Bos

    2015-10-01

    Full Text Available The climate analogue approach is often considered a valuable tool for climate change impact projection and adaptation planning, especially for complex systems that cannot be modelled reliably. Important examples are smallholder farming systems using agroforestry or other mixed-cropping approaches. For the projected climate at a particular site of interest, the analogue approach identifies locations where the current climate is similar to these projected conditions. By comparing baseline-analogue site pairs, information on climate impacts and opportunities for adaptation can be obtained. However, the climate analogue approach is only meaningful, if climate is a dominant driver of differences between baseline and analogue site pairs. For a smallholder farming setting on Mt. Elgon in Kenya, we tested this requirement by comparing yield potentials of maize and coffee (obtained from the IIASA Global Agro-ecological Zones dataset among 50 close analogue sites for different future climate scenarios and models, and by comparing local ecological knowledge and farm characteristics for one baseline-analogue pair.Yield potentials among the 50 closest analogue locations varied strongly within all climate scenarios, hinting at factors other than climate as major drivers of what the analogue approach might interpret as climate effects. However, on average future climatic conditions seemed more favourable to maize and coffee cultivation than current conditions. The detailed site comparison revealed substantial differences between farms in important characteristics, such as farm size and presence of cash crops, casting doubt on the usefulness of the comparison for climate change analysis. Climatic constraints were similar between sites, so that no apparent lessons for adaptation could be derived. Pests and diseases were also similar, indicating that climate change may not lead to strong changes in biotic constraints at the baseline site in the near future. From

  5. Validation of the Headache Impact Test (HIT-6™) across episodic and chronic migraine

    Science.gov (United States)

    Yang, Min; Rendas-Baum, Regina; Varon, Sepideh F; Kosinski, Mark

    2011-01-01

    Objective: The purpose of this study was to assess psychometric properties of the six-item Headache Impact Text (HIT-6™) across episodic and chronic migraine. Methods: Using a migraine screener and number of headache days per month (HDPM), participants from the National Survey of Headache Impact (NSHI) study and the HIT-6 validation study (HIT6-V) were selected for this study. Eligible participants were categorized into three groups: chronic migraine (CM: ≥ 15 HDPM); episodic migraine (EM: migraine headaches. Reliability and validity of the HIT-6 were evaluated. Results: A total of 2,049 survey participants met the inclusion/exclusion criteria for this study. Participants were identified as 6.4% CM; 42.1% EM; 51.5% non-migraine, with respective mean HIT-6 scores: 62.5 ± 7.8; 60.2 ± 6.8; and 49.1 ± 8.7. High reliability was demonstrated with internal consistency (time1/time2) of 0.83/0.87 in NSHI, and 0.82/0.92 in HIT6-V. Intra-class correlation for test-retest reliability was very good at 0.77. HIT-6 scores correlated significantly (p Migraine Disability Assessment Scale scores (r = 0.56), headache pain severity (r = 0.46), and HDPM (r = 0.29). Discriminant validity analysis showed significantly different HIT-6 scores (F = 488.02, p migraine. PMID:20819842

  6. Tongue implant for assistive technologies: Test of migration, tissue reactivity and impact on tongue function.

    Science.gov (United States)

    Mimche, Sylive; Ahn, Dukju; Kiani, Mehdi; Elahi, Hassan; Murray, Kyle; Easley, Kirk; Sokoloff, Alan; Ghovanloo, Maysam

    2016-11-01

    The Tongue Drive System (TDS) is a new wearable assistive technology (AT), developed to translate voluntary tongue movements to user-defined computer commands by tracking the position of a titanium-encased magnetic tracer (Ti-Mag) implanted into the tongue. TDS application, however, is constrained by limited information on biological consequence and safety of device implantation into the tongue body. Here we implant a stainless-steel pellet in the rat tongue and assay pellet migration, tongue lick function, and tongue histology to test the safety and biocompatibility of unanchored tongue implants. Water consumption, weight and lick behavior were measured before and for >24days after implantation of a stainless-steel spherical pellet (0.5mm) into the anterior tongue body of twelve adult male rats. X-rays were obtained weekly to assess pellet migration. Pellet location and tissue reaction to implantation were determined by post-mortem dissection and histology of the anterior tongue. By dissection pellets were distributed across the transverse plane of the tongue. Measures of water consumption, weight, and lick behavior were unchanged by implantation except for a decrease in consumption immediately post-implantation in some animals. By X-ray, there was no migration of the implant, a finding supported by pellet encapsulation demonstrated histologically. Measures of lick behavior were minimally impacted by implantation. A smooth spherical stainless-steel implant in the anterior tongue of the rat does not migrate, is encapsulated and does not substantially impact lick behavior. These findings support the implantation of small tracers in the anterior tongue in humans for operating wearable assistive technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Arctic as a test case for an assessment of climate impacts on national security.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark A.; Zak, Bernard Daniel; Backus, George A.; Ivey, Mark D.; Boslough, Mark Bruce Elrick

    2008-11-01

    The Arctic region is rapidly changing in a way that will affect the rest of the world. Parts of Alaska, western Canada, and Siberia are currently warming at twice the global rate. This warming trend is accelerating permafrost deterioration, coastal erosion, snow and ice loss, and other changes that are a direct consequence of climate change. Climatologists have long understood that changes in the Arctic would be faster and more intense than elsewhere on the planet, but the degree and speed of the changes were underestimated compared to recent observations. Policy makers have not yet had time to examine the latest evidence or appreciate the nature of the consequences. Thus, the abruptness and severity of an unfolding Arctic climate crisis has not been incorporated into long-range planning. The purpose of this report is to briefly review the physical basis for global climate change and Arctic amplification, summarize the ongoing observations, discuss the potential consequences, explain the need for an objective risk assessment, develop scenarios for future change, review existing modeling capabilities and the need for better regional models, and finally to make recommendations for Sandia's future role in preparing our leaders to deal with impacts of Arctic climate change on national security. Accurate and credible regional-scale climate models are still several years in the future, and those models are essential for estimating climate impacts around the globe. This study demonstrates how a scenario-based method may be used to give insights into climate impacts on a regional scale and possible mitigation. Because of our experience in the Arctic and widespread recognition of the Arctic's importance in the Earth climate system we chose the Arctic as a test case for an assessment of climate impacts on national security. Sandia can make a swift and significant contribution by applying modeling and simulation tools with internal collaborations as well as with

  8. Lab-scale impact test to investigate the pipe-soil interaction and comparative study to evaluate structural responses

    Directory of Open Access Journals (Sweden)

    Dong-Man Ryu

    2015-07-01

    Full Text Available This study examined the dynamic response of a subsea pipeline under an impact load to determine the effect of the seabed soil. A laboratory-scale soil-based pipeline impact test was carried out to investigate the pipeline deformation/strain as well as the interaction with the soil-pipeline. In addition, an impact test was simulated using the finite element technique, and the calculated strain was compared with the experimental results. During the simulation, the pipeline was described based on an elasto-plastic analysis, and the soil was modeled using the Mohr-Coulomb fail-ure criterion. The results obtained were compared with ASME D31.8, and the differences between the analysis results and the rules were specifically investigated. Modified ASME formulae were proposed to calculate the precise structural behavior of a subsea pipeline under an impact load when considering sand- and clay-based seabed soils.

  9. Development and validation of an instrument to measure the impact of genetic testing on self-concept in Lynch syndrome

    DEFF Research Database (Denmark)

    Esplen, M J; Stuckless, N; Gallinger, S

    2011-01-01

    with two dimensions identified through factor analysis: stigma/vulnerability and bowel symptom-related anxiety. The scale showed excellent reliability (Cronbach's α = 0.93), good convergent validity by a high correlation with impact of event scale (r(102) = 0.55, p self-esteem scale......Esplen MJ, Stuckless N, Gallinger S, Aronson M, Rothenmund H, Semotiuk K, Stokes J, Way C, Green J, Butler K, Petersen HV, Wong J. Development and validation of an instrument to measure the impact of genetic testing on self-concept in Lynch syndrome. A positive genetic test result may impact...... on a person's self-concept and affect quality of life. The purpose of the study was to develop a self-concept scale to measure such impact for individuals carrying mutations for a heritable colorectal cancer Lynch syndrome (LS). Two distinct phases were involved: Phase 1 generated specific colorectal self...

  10. Neuropsychological test performance of Hawai'i high school athletes: Hawai'i ImPACT normative data.

    Science.gov (United States)

    Tsushima, William T; Oshiro, Ross; Zimbra, Daniel

    2008-04-01

    Establishing normative data of the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) performance of high school athletes in Hawai'i. Pre-season ImPACT testing was performed on 751 participants in football, baseball, basketball, soccer, volleyball, softball, and track from 4 Oahu public high schools. The ImPACT composite scores included measures of Verbal Memory, Visual Memory Processing Speed, and Reaction Time. The descriptive statistical data collected were the group means, standard deviations, standard errors of measurement, distribution of scores and percentile ranks of (1) 262 boys ages 13 to 15; (2) 297 boys ages 16 to 18; and (3) 192 girls ages 13 to 18. The means and standard deviations of the 4 ImPACT composite scores for the 751 student-athletes in Hawai'i were similar to the ImPACT scores obtained from a master database of ImPACT test results. Although differences between the Hawai'i and mainland data were nonsignificant, there appeared to be a trend revealing somewhat lower scores in the Hawai'i sample of athletes. The similarity in ImPACT test performance of Hawai'i high school athletes as compared to the mainland normative data provides support for the applicability of this computerized neuropsychological battery in Hawai'i. However in view of a trend reflecting slightly lower ImPACT scores among Hawai'i participants, the use of the normative data produced by this study may be desirable in assessing Hawai'i high school athletes.

  11. Impact of Culture-Independent Diagnostic Testing on Recovery of Enteric Bacterial Infections.

    Science.gov (United States)

    Imdad, Aamer; Retzer, Fiona; Thomas, Linda S; McMillian, Marcy; Garman, Katie; Rebeiro, Peter F; Deppen, Stephen A; Dunn, John R; Woron, Amy M

    2017-12-26

    Culture-independent diagnostic tests (CIDT) are increasingly used to identify enteric pathogens. However, foodborne illness surveillance systems have relied upon culture confirmation to estimate disease burden and identify outbreaks through molecular subtyping. This study examined the impacts of CIDT and estimated costs for culture verification of Shigella, Salmonella, Shiga-Toxin producing E. coli (STEC), and Campylobacter at the Tennessee Department of Health Public Health Laboratory (PHL). This observational study included laboratory and epidemiological surveillance data collected between years 2013-2016 from patients with the reported enteric illness. We calculated pathogen recovery at PHL based on initial diagnostic test type reported at the clinical laboratory. Adjusted prevalence ratios (PR) and 95% confidence intervals (CI) were estimated with Modified Poisson Regression. Estimates of cost were calculated for pathogen recovery from CIDT positive specimens compared to recovery from culture-derived isolates. During the study period, PHL received 5553 specimens from clinical laboratories from patients with the enteric illness. Pathogen recovery was 57% (984/1713) from referred CIDT positive stool specimens and 95% (3662/3840) from culture-derived isolates (PR=0.61, 95% CI: 0.56-0.66). Pathogen recovery from CIDT-positive specimens varied based on pathogen type: Salmonella (72%), Shigella (64%), STEC (57%) and Campylobacter (26%). Compared to stool culture-derived isolates, the cost to recover pathogens from 100 CIDT positive specimens was higher for Shigella ($6,192), Salmonella ($18,373) and STEC ($27,783). Pathogen recovery was low from CIDT positive specimens for enteric bacteria. This has important implications for the current enteric disease surveillance system, outbreak detection and costs for public health programs.

  12. ANALYSIS OF STRESS STATE AND INERTIAL PROPERTIES OF A PENDULUM USED FOR CHARPY IMPACT TEST ON PLASTICS

    Directory of Open Access Journals (Sweden)

    COJOCARU Vasile

    2016-11-01

    Full Text Available The laboratory equipment used for testing the impact behavior of plastics uses low impact energies. In the last years were developed constructive solutions of monobloc pendulums, in order to ensure design and manufacturing simplicity. The paper presents the possibilities of optimizing a 15 J pendulum using 3D CAD design and finite element analysis. It highlights the possibilities for quick determination of the pendulum inertial properties ensuring the correlation between the position of mass center and the position of impact center of pendulum. A finite element analysis of maximum stress and displacement was performed correlated with the study of inertial properties.

  13. Experimental testing of impact force on rigid and flexible barriers - A comparison

    Science.gov (United States)

    Nagl, Georg; Hübl, Johannes; Chiari, Michael

    2016-04-01

    The Trattenbach endangers the main western railway track of Austria by floods and debris flows. Three check dams for debris retention were built in the proximal fan area several decades ago. With regard to an improvement of the protective function, these structures have to be renewed. The recent concept of the uppermost barrier is a type of an energy dissipation net structure, stopping debris flows with the ability of self-cleaning by subsequent floods or by machinery employment. The access to the basin is achieved through the slit when the net has been removed. This technical structure consists of a rigid open crown dam with a 4m wide slit. This slit is closed with a flexible net. To verify this protective system, 21 small scale experiments were conducted to test and optimize this new type of Slit Net Dam. To determine the forces on the barrier, in a first setup of experiments the impact forces on a rigid wall with 24 load cells were measured. In the second setup the slit barrier with the net was investigated. On four main cables the anchor forces were measured. In a further setup the basal distance between the channel and lowest net was varied. To study the emptying of the basin and the dosing effect on debris flows.

  14. The impact of letter spacing on reading: a test of the bigram coding hypothesis.

    Science.gov (United States)

    Vinckier, Fabien; Qiao, Emilie; Pallier, Christophe; Dehaene, Stanislas; Cohen, Laurent

    2011-05-12

    Identifying letters and their relative positions is the basis of reading in literate adults. The Local Combinations Detector model hypothesizes that this ability results from the general organization of the visual system, whereby object encoding proceeds through a hierarchy of neural detectors that, in the case of reading, would be tuned to letters, bigrams, or other letter combinations. Given the increase of receptive fields by a factor of 2 to 3 from one neural level to the next, detectors should integrate information only for letters separated by at most 2 other characters. We test this prediction by measuring the impact of letter spacing on reading, purifying this effect from confounding variables. We establish that performance deteriorates non-linearly whenever letters are separated by at least 2 blank spaces, with the concomitant emergence of a word length effect. We then show that this cannot be reduced to an effect of physical size nor of visual eccentricity. Finally, we demonstrate that the threshold of about 2 spaces is constant across variations in font size. Those results support the hypothesis that the fast recognition of combinations of nearby letters plays a central role in the coding of words, such that interfering with this representation prevents the parallel analysis of letter strings.

  15. Reducing health impacts of biomass burning for cooking. The need for cookstove performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Abeliotis, K. [Department of Home Economics and Ecology, Harokopio University, Athens (Greece); Pakula, C. [Institute of Agricultural Engineering, Section Household and Appliance Technology, Rheinische Friedrich-Wilhelms University, Bonn (Germany)

    2013-08-15

    Biomass is a renewable energy source that is routinely used for cooking in the developing world, especially in rural areas. The World Health Organization estimates that about 2.5 billion people globally rely on biomass, such as wood, agricultural waste and animal dung to meet their energy needs for cooking utilising traditional low-efficiency cookstoves. However, certain human health risks are associated with the inhalation of off-gases resulting from the indoor use of biomass for cooking, especially for women and children who spend more of their time at home. On the other hand, use of energy-efficient cookstoves is considered to reduce those risks. Thus, qualitative and quantitative measurements of cookstove performance are necessary in order to make different stoves and different cooking processes comparable. The aim of this paper is the presentation of the current situation regarding biomass use for cooking with emphasis placed on the developing world, the brief of the adverse health impacts of biomass burning based on the review of literature, the presentation of the merits of improved efficiency cookstoves and to highlight the need for stove performance tests. The demand of different types of biomass is not likely to change in the near future in the developing world since biomass is readily available and cheap. Thus, the efforts to improve household air quality must concentrate on improving cookstoves efficiency and ventilation of the flue gases outdoors. Programmes for the improvement of the cookstoves efficiency in the developing world should be part of the development agenda.

  16. Impacts of diurnal temperature range on ecosystem carbon balance: an experimental test in grassland mesocosms

    Science.gov (United States)

    Phillips, C. L.; Gregg, J. W.; Wilson, J. K.; Pangle, L. A.; Bailey, D.

    2009-12-01

    Although extensive research has determined ecosystem responses to equal increases in day and night temperatures, current temperature increases have generally been asymmetrical, with increases in minimum temperature (Tmin) exceeding increases in maximum temperature (Tmax), or vice versa, depending on location. We conducted an ecosystem warming experiment in a perennial grassland to determine the effects of asymmetrically elevated diel temperature profiles using precision climate-controlled sunlit environmental chambers. Asymmetrically warmed chambers (+5/+2°C, Tmin/Tmax) were compared with symmetrically warmed (+3.5°C continuously) and control chambers (ambient). We tested three alternative hypotheses comparing the carbon balance under symmetric (SYM) and asymmetric (ASYM) warming: H1) SYM ASYM, because warmer nights in the ASYM treatment increase respiration more then photosynthesis, reducing plant growth; H3) SYM = ASYM, due to a combination of effects. Results from the third growing season support H3, that carbon balance is the same under the two elevated diel temperature profiles. During the early part of the growing season, asymmetric warming resulted in higher nighttime respiratory losses than symmetric warming, but these greater loses were compensated by increased early morning photosynthesis. As a result, carbon balance was not different in the two warming treatments at daily time steps. Furthermore, declines in soil moisture over the growing season may have important modulating impacts on the temperature sensitivity of carbon fluxes. As soils dried, carbon fluxes became less sensitive to diel temperature fluctuations, and more similar in the symmetric and asymmetric treatments.

  17. Dual axis radiographic hydrodynamic test facility. Final environmental impact statement, Volume 2: Public comments and responses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    On May 12, 1995, the U.S. Department of Energy (DOE) issued the draft Dual Axis Radiographic Hydrodynamic Test Facility Environmental Impact Statement (DARHT EIS) for review by the State of New Mexico, Indian Tribes, local governments, other Federal agencies, and the general public. DOE invited comments on the accuracy and adequacy of the draft EIS and any other matters pertaining to their environmental reviews. The formal comment period ran for 45 days, to June 26, 1995, although DOE indicated that late comments would be considered to the extent possible. As part of the public comment process, DOE held two public hearings in Los Alamos and Santa Fe, New Mexico, on May 31 and June 1, 1995. In addition, DOE made the draft classified supplement to the DARHT EIS available for review by appropriately cleared individuals with a need to know the classified information. Reviewers of the classified material included the State of New Mexico, the U.S. Environmental Protection Agency, the Department of Defense, and certain Indian Tribes. Volume 2 of the final DARHT EIS contains three chapters. Chapter 1 includes a collective summary of the comments received and DOE`s response. Chapter 2 contains the full text of the public comments on the draft DARHT EIS received by DOE. Chapter 3 contains DOE`s responses to the public comments and an indication as to how the comments were considered in the final EIS.

  18. Impact of on-site testing for maternal syphilis on treatment delays, treatment rates, and perinatal mortality in rural South Africa: a randomised controlled trial

    National Research Council Canada - National Science Library

    Myer, L; Wilkinson, D; Lombard, C; Zuma, K; Rotchford, K; Karim, S S Abdool

    2003-01-01

    .... Syphilis testing in the clinic (on-site testing) may be a useful strategy to overcome this. We studied the impact of on-site syphilis testing on treatment delays and rates, and perinatal mortality...

  19. The Validity of Value-Added Estimates from Low-Stakes Testing Contexts: The Impact of Change in Test-Taking Motivation and Test Consequences

    Science.gov (United States)

    Finney, Sara J.; Sundre, Donna L.; Swain, Matthew S.; Williams, Laura M.

    2016-01-01

    Accountability mandates often prompt assessment of student learning gains (e.g., value-added estimates) via achievement tests. The validity of these estimates have been questioned when performance on tests is low stakes for students. To assess the effects of motivation on value-added estimates, we assigned students to one of three test consequence…

  20. Impacts Analyses Supporting the National Environmental Policy Act Environmental Assessment for the Resumption of Transient Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, Annette L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Brown, LLoyd C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carathers, David C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Christensen, Boyd D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dahl, James J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farnum, Cathy Ottinger [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Steven [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sondrup, A. Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Subaiya, Peter V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wachs, Daniel M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Weiner, Ruth F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    This document contains the analysis details and summary of analyses conducted to evaluate the environmental impacts for the Resumption of Transient Fuel and Materials Testing Program. It provides an assessment of the impacts for the two action alternatives being evaluated in the environmental assessment. These alternatives are (1) resumption of transient testing using the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) and (2) conducting transient testing using the Annular Core Research Reactor (ACRR) at Sandia National Laboratory in New Mexico (SNL/NM). Analyses are provided for radiologic emissions, other air emissions, soil contamination, and groundwater contamination that could occur (1) during normal operations, (2) as a result of accidents in one of the facilities, and (3) during transport. It does not include an assessment of the biotic, cultural resources, waste generation, or other impacts that could result from the resumption of transient testing. Analyses were conducted by technical professionals at INL and SNL/NM as noted throughout this report. The analyses are based on bounding radionuclide inventories, with the same inventories used for test materials by both alternatives and different inventories for the TREAT Reactor and ACRR. An upper value on the number of tests was assumed, with a test frequency determined by the realistic turn-around times required between experiments. The estimates provided for impacts during normal operations are based on historical emission rates and projected usage rates; therefore, they are bounding. Estimated doses for members of the public, collocated workers, and facility workers that could be incurred as a result of an accident are very conservative. They do not credit safety systems or administrative procedures (such as evacuation plans or use of personal protective equipment) that could be used to limit worker doses. Doses estimated for transportation are conservative and are based on

  1. Using single-species toxicity tests, community-level responses, and toxicity identification evaluations to investigate effluent impacts

    Energy Technology Data Exchange (ETDEWEB)

    Maltby, L.; Clayton, S.A.; Yu, H.; McLoughlin, N.; Wood, R.M.; Yin, D.

    2000-01-01

    Whole effluent toxicity (WET) tests are increasingly used to monitor compliance of consented discharges, but few studies have related toxicity measured using WET tests to receiving water impacts. Here the authors adopt a four-stage procedure to investigate the toxicity and biological impact of a point source discharge and to identify the major toxicants. In stage 1, standard WET tests were employed to determine the toxicity of the effluent. This was then followed by an assessment of receiving water toxicity using in situ deployment of indigenous (Gammarus pulex) and standard (Daphnia magna) test species. The third stage involved the use of biological survey techniques to assess the impact of the discharge on the structure and functioning of the benthic macroinvertebrate community. In stage 4, toxicity identification evaluations (TIE) were used to identify toxic components in the effluent. Receiving-water toxicity and ecological impact detected downstream of the discharge were consistent with the results of WET tests performed on the effluent. Downstream of the discharge, there was a reduction in D. magna survival, in G. pulex survival and feeding rate, in detritus processing, and in biotic indices based on macroinvertebrate community structure. The TIE studies suggested that chlorine was the principal toxicant in the effluent.

  2. A Test Bed to Examine Helmet Fit and Retention and Biomechanical Measures of Head and Neck Injury in Simulated Impact.

    Science.gov (United States)

    Yu, Henry Y; Knowles, Brooklynn M; Dennison, Christopher R

    2017-09-21

    Conventional wisdom and the language in international helmet testing and certification standards suggest that appropriate helmet fit and retention during an impact are important factors in protecting the helmet wearer from impact-induced injury. This manuscript aims to investigate impact-induced injury mechanisms in different helmet fit scenarios through analysis of simulated helmeted impacts with an anthropometric test device (ATD), an array of headform acceleration transducers and neck force/moment transducers, a dual high speed camera system, and helmet-fit force sensors developed in our research group based on Bragg gratings in optical fiber. To simulate impacts, an instrumented headform and flexible neck fall along a linear guide rail onto an anvil. The test bed allows simulation of head impact at speeds up to 8.3 m/s, onto impact surfaces that are both flat and angled. The headform is fit with a crash helmet and several fit scenarios can be simulated by making context specific adjustments to the helmet position index and/or helmet size. To quantify helmet retention, the movement of the helmet on the head is quantified using post-hoc image analysis. To quantify head and neck injury potential, biomechanical measures based on headform acceleration and neck force/moment are measured. These biomechanical measures, through comparison with established human tolerance curves, can estimate the risk of severe life threatening and/or mild diffuse brain injury and osteoligamentous neck injury. To our knowledge, the presented test-bed is the first developed specifically to assess biomechanical effects on head and neck injury relative to helmet fit and retention.

  3. Real-time detector for hypervelocity microparticles using piezoelectric material (II)

    Science.gov (United States)

    Miyachi, T.; Mdm Team

    This report is concerned with results on response of a piezoelectric lead-zirconate-titanate (PZT) element, by which a possible relation of output waveform to velocity at impact is studied. At first, we point out a meaning of output waveform, in particular, a behavior of the output signal within a few hundred nanoseconds immediately after impact (named as ``first one cycle''), which is free from interference with reflected waves and could contain impact hysteresis. Accordingly, we deal with the first one cycle, and analyze it with respect to its amplitude and frequency components. We obtain the following results: 1. Output amplitude is proportional to the momentum of particles below 6 km/s. 2. Its rise-time is related to the particle velocity above 10km/s. 3. There exists a transition region in between. 4. The sensitivity is confirmed to be independent of the element thickness, contrary to the results in [1,2], in which the amplitude was defined as the maximum peak-to-peak amplitude, which was outside the first one cycle. We propose that a single PZT element can be used as a velocity sensitive detector if the output signal is measured at a sampling rate of ˜ 50MHz. We discuss a PZT detector that is to be employed as a real-time dust monitor to onboard the BepiColombo mission, MDM. This could discriminate real and junk events by analyzing the waveform. [1] T.Miyachi et al., to be published in Adv. Space Rev. ( JASR 6550). [2] T.Miyachi et al., Jpn.J.Appl.Phys.42(2003)1496.

  4. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    OpenAIRE

    Cherniaev, Aleksandr; Telichev, Igor

    2017-01-01

    This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm) orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel) directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and alu...

  5. Museum Exhibition on Testing and Measurement: Scientific Principles, Social Impact of Testing, and Dialogue with the Public

    Science.gov (United States)

    Allalouf, Avi; Alderoqui-Pinus, Diana

    2012-01-01

    This article deals with a pioneering project currently being developed, namely, the Exhibition on Testing and Measurement. This interactive traveling exhibition will be presented in science museums in Israel, the United States, and other countries. It has been conceived as an innovative means of familiarizing the public with educational…

  6. Issues in Intelligent Computer-Assisted Instruction. Testing Study Group: The Impact of Advances in Artificial Intelligence on Test Development.

    Science.gov (United States)

    O'Neil, Harold F., Jr.; Baker, Eva L.

    Among opportunities to advance the state of the art of intelligent computer-assisted instruction (ICAI) are the evaluation of ICAI systems and the use of the underlying technology in ICAI systems to develop tests. Each issue is addressed via its theoretical context, key constructs, appropriate references to the literature, methodological aspects,…

  7. Validation Testing of a Peridynamic Impact Damage Model Using NASA's Micro-Particle Gun

    Science.gov (United States)

    Baber, Forrest E.; Zelinski, Brian J.; Guven, Ibrahim; Gray, Perry

    2017-01-01

    Through a collaborative effort between the Virginia Commonwealth University and Raytheon, a peridynamic model for sand impact damage has been developed1-3. Model development has focused on simulating impacts of sand particles on ZnS traveling at velocities consistent with aircraft take-off and landing speeds. The model reproduces common features of impact damage including pit and radial cracks, and, under some conditions, lateral cracks. This study focuses on a preliminary validation exercise in which simulation results from the peridynamic model are compared to a limited experimental data set generated by NASA's recently developed micro-particle gun (MPG). The MPG facility measures the dimensions and incoming and rebound velocities of the impact particles. It also links each particle to a specific impact site and its associated damage. In this validation exercise parameters of the peridynamic model are adjusted to fit the experimentally observed pit diameter, average length of radial cracks and rebound velocities for 4 impacts of 300 µm glass beads on ZnS. Results indicate that a reasonable fit of these impact characteristics can be obtained by suitable adjustment of the peridynamic input parameters, demonstrating that the MPG can be used effectively as a validation tool for impact modeling and that the peridynamic sand impact model described herein possesses not only a qualitative but also a quantitative ability to simulate sand impact events.

  8. CO2 injection test in a shallow aquifer - numerical investigations of geochemical impacts

    Science.gov (United States)

    Hornbruch, G.; Fahrner, S.; Peter, A.; Schaefer, D.; Beyer, M.; Schreiber, B.; Geistlinger, H. W.; Lamert, H.; Werban, U.; Dietrich, P.; Grossmann, J.; Dahmke, A.

    2011-12-01

    Predicting geochemical alterations in shallow aquifers driven by CO2 intrusion is important with regard to groundwater quality aspects, risk assessment, and monitoring concepts. CO2 concentrations could be increased in response to leakage from deep geological storage formations due to upward CO2 migration. The associated mechanisms and processes induced by CO2 intrusion include a decreasing pH value, which potentially leads to mineral dissolution, ion exchange, and desorption of heavy metals from mineral surfaces. The characteristics, i.e. reaction kinetics and intensity in which these processes appear, strongly depend on initial geochemical composition of the groundwater and the aquifer matrix itself. To investigate the potential impacts of CO2 intrusion on shallow groundwater systems, a field test at a former military air field in northeastern Germany was performed. Comprehensive hydrogeological and geophysical site investigations and groundwater monitoring programs were carried out prior to, during, and after the injection, which results are presented in detail in attendant presentations. The collected data, supplemented by mineralogical investigations, have been used to set up geochemical model scenarios to simulate CO2-induced impacts at the investigated site and to evaluate whether the reactive transport model is capable of reproducing the observed groundwater chemistry alterations. In addition, model parameter uncertainties in setting initial conditions due to geochemical and hydrogeological heterogeneity at the site are considered in the 0D-3D numerical analyses to identify (1) reliable proxy parameters, which could be monitored easily as a useful basis for monitoring concepts, and (2) potential risks of a local and short-duration CO2 injection in terms of mineral dissolution and heavy metal mobilization. To address the aforementioned points, different model setups have been performed. On the one hand geochemically more complex 0D/1D model scenarios have

  9. Impact of add-on laboratory testing at an academic medical center: a five year retrospective study

    OpenAIRE

    Nelson, Louis S.; Scott R Davis; Humble, Robert M.; Kulhavy, Jeff; Aman, Dean R.; Krasowski, Matthew D

    2015-01-01

    Background Clinical laboratories frequently receive orders to perform additional tests on existing specimens (?add-ons?). Previous studies have examined add-on ordering patterns over short periods of time. The objective of this study was to analyze add-on ordering patterns over an extended time period. We also analyzed the impact of a robotic specimen archival/retrieval system on add-on testing procedure and manual effort. Methods In this retrospective study at an academic medical center, ele...

  10. Test

    DEFF Research Database (Denmark)

    Bendixen, Carsten

    2014-01-01

    Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers.......Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers....

  11. The Impact Imperative: Laser Ablation for Deflecting Asteroids, Meteoroids, and Comets From Impacting the Earth

    Science.gov (United States)

    Campbell, Jonathan W.; Phipps, Claude; Smalley, Larry; Reilly, Jim; Boccis, Dona; Howell, Joe T., Jr. (Technical Monitor)

    2002-01-01

    Impacting at hypervelocity, an asteroid struck the Earth approximately 65 million years ago in the Yucatan Peninsula area. This triggered the extinction of almost 70% of the species of life on Earth including the dinosaurs. Other impacts prior to this one have caused even greater extinctions. Preventing collisions with the Earth by hypervelocity asteroids, meteoroids, and comets is the most important immediate space challenge facing human civilization. This is the Impact Imperative. We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 200,000 or more objects in the 100 m size range, Can anything be done about this fundamental existence question facing our civilization? The answer is a resounding yes! By using an intelligent combination of Earth and space based sensors coupled with an infra-structure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them from striking the Earth.

  12. Attention Network Test in adults with ADHD - the impact of affective fluctuations

    Directory of Open Access Journals (Sweden)

    Lundervold Astri J

    2011-07-01

    Full Text Available Abstract Background The Attention Network Test (ANT generates measures of different aspects of attention/executive function. In the present study we investigated whether adults with ADHD performed different from controls on measures of accuracy, variability and vigilance as well as the control network. Secondly, we studied subgroups of adults with ADHD, expecting impairment on measures of the alerting and control networks in a subgroup with additional symptoms of affective fluctuations. Methods A group of 114 adults (ADHD n = 58; controls n = 56 performed the ANT and completed the Adult ADHD Rating Scale (ASRS and the Mood Disorder Questionnaire (MDQ. The latter was used to define affective fluctuations. Results The sex distribution was similar in the two groups, but the ADHD group was significantly older (p = .005 and their score on a test of intellectual function (WASI significantly lower than in the control group (p = .007. The two groups were not significantly different on measures of the three attention networks, but the ADHD group was generally less accurate (p = .001 and showed a higher variability through the task (p = .033. The significance was only retained for the accuracy measure when age and IQ scores were controlled for. Within the ADHD group, individuals reporting affective fluctuations (n = 22 were slower (p = .015 and obtained a lower score on the alerting network (p = .018 and a higher score on the conflict network (p = .023 than those without these symptoms. The significance was retained for the alerting network (p = .011, but not the conflict network (p = .061 when we controlled for the total ASRS and IQ scores. Discussion Adults with ADHD were characterized by impairment on accuracy and variability measures calculated from the ANT. Within the ADHD group, adults reporting affective fluctuations seemed to be more alert (i.e., less impacted by alerting cues, but slower and more distracted by conflicting stimuli than the

  13. Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of)

    2016-09-15

    To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding 10{sup 4} s{sup -1}. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

  14. Debris flow risk mitigation by the means of rigid and flexible barriers – experimental tests and impact analysis

    Directory of Open Access Journals (Sweden)

    L. Canelli

    2012-05-01

    Full Text Available The impact of a debris flow on a structure can have disastrous effects because of the enormous destructive potential of this type of phenomenon. Although the introduction of risk mitigation structures such as the Sabo Dam, the filter dam and more recently flexible barriers is usual, there are very few methods that are universally recognized for the safe design of such structures. This study presents the results of experimental tests, conducted with the use of a specifically created flume, in order to obtain detailed knowledge of the mechanical aspects, and to analyze the dynamics of the impact of a debris flow on different types of structures. The analyses of the tests, together with the calculation of the thrust caused by the flow, have made it possible to analyze the dynamics of the impact, which has shown differing effects, on the basis of the type of barrier that has been installed.

  15. Budget Impact of Increasing Market Share of Patient Self-Testing and Patient Self-Management in Anticoagulation

    NARCIS (Netherlands)

    Stevanović, Jelena; Postma, Maarten J.; Le, Hoa H.

    Background: Patient self-testing (PST) and/or patient self-management (PSM) might provide better coagulation care than monitoring at specialized anticoagulation centers. Yet, it remains an underused strategy in the Netherlands. Methods: Budget-impact analyses of current and new market-share

  16. Geochemical and biological impacts on trace and minor element incorporation in foraminiferal test carbonate. Geologica Ultraiectina (320)

    NARCIS (Netherlands)

    Dueñas Bohórquez, A.D.B.

    2010-01-01

    Since the beginning of the industrial revolution, massive release of CO2 has affected both global climate and ocean chemistry. To predict future impacts, mankind relies on numerical modeling of the Earth system. To test whether such models reliably describe climate and ocean change as a function of

  17. The Multiple Sclerosis Impact Profile (MSIP). Development and testing psychometric properties of an ICF-based health measure

    NARCIS (Netherlands)

    Wynia, Klaske; Middel, Berrie; Van Dijk, Jitse P.; De Ruiter, Han; De Keyser, Jacques; Reijneveld, Sijmen A.

    2008-01-01

    Purpose. The aim of this study was to develop and test the structure of the Multiple Sclerosis Impact Profile (MSIP), and to evaluate its reliability and validity within a large group of MS patients. Method. Data were obtained from a postal survey of 377 patients attending the Groningen MS centre of

  18. Report on Beryllium Strength Experiments Conducted at the TA-55 40 mm Impact Test Facility, Fiscal Year 2017

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, William Wyatt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollowell, Benjamin Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Todd P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Owens, Charles Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Joseph Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-10

    A series of experiments is currently in progress at eth 40 mm Impact Test Facility (ITF), located at TA-55, to understand the strength behavior of Beryllium metal at elevated temperature and pressure. In FY 2017, three experiments were conducted as a part of this project.

  19. The numerical and experimental simulation of hypervelocity flow around the HYFLEX vehicle forebody

    Science.gov (United States)

    Johnston, I. A.; Tuttle, S. L.; Jacobs, P. A.; Shimoda, T.

    Numerical and experimental techniques are used to model the flow and pressure distribution around the forebody of the HYFLEX hypersonic flight vehicle. We compare numerical simulation results with modified Newtonian theory and flight data to determine the accuracy of the computational fluid dynamics (CFD) technique used. The numerical simulations closely match the trends in flight data, and show that real gas effects have a small but significant influence on the nose pressure distribution. We also present pressure results from a scale-model tested in a shock tunnel, and compare them with simulation results. For the shock tunnel experiment, the model was placed such that part of the upper surface was in a region of the test flow where nonuniformities were significant, and it was shown that the numerical simulation could adequately capture these experimental flow features. The binary scaling parameter (describing the similarity in species dissociation between flight and model) was used to design the scale-model tests in the shock tunnel, and its effectiveness is discussed. We find that matching the flight Mach number in the shock tunnel experiment is not critical for reproducing flight pressure data, so long as flight velocity is matched, and binary scaling is maintained.

  20. Applying the Meiorin Decision requirements to the fitness test for correctional officer applicants; examining adverse impact and accommodation.

    Science.gov (United States)

    Jamnik, Veronica K; Thomas, Scott G; Gledhill, Norman

    2010-02-01

    The fitness test for correctional officer applicants (FITCO) was constructed a priori to conform to requirements established by the Meiorin Decision of the Supreme Court of Canada. A critical obligation from this decision is to determine whether the FITCO has the potential of adverse impact on any subpopulation of applicants and, if so, whether it is possible to provide accommodation. The FITCO pass rate was 28.6% for 56 women and 72.7% for 22 men, which indicates adverse impact on the female applicants. There was no specific adverse impact on minority applicants. To evaluate training as accommodation for adverse impact, a subgroup of 40 females and 8 males engaged in a 6-week FITCO-specific training program with pre-FITCO and post-FITCO performance evaluations. Over the 6 weeks, the overall FITCO pass rate of the females improved to 82.5%, whereas the pass rate of the males improved to 100%, indicating that the training program removed the adverse impact that the FITCO had on the females. We conclude that although the FITCO is likely to have an adverse impact on female correctional officer applicants, a 6-week FITCO-specific training program can provide the accommodation necessary to overcome the potential adverse impact, and the FITCO meets all the requirements established by the Supreme Court of Canada's Meiorin Decision.

  1. Impacts as a Source of Acoustic Pulse-Echo Energy for Nondestructive Testing of Concrete Structures

    Science.gov (United States)

    1993-04-01

    exists to probe the deep interior of large concrete structures such as locks and dams. Impacts from air guns that shoot steel balls, the Schmidt...criteria are discussed in this study that have a bearing on the development of a practical impact UPE system for concrete structures .... Concrete

  2. Putting social impact assessment to the test as a method for implementing responsible tourism practice

    NARCIS (Netherlands)

    McCombes, Lucy; Vanclay, Frank; Evers, Yvette

    2015-01-01

    The discourse on the social impacts of tourism needs to shift from the current descriptive critique of tourism to considering what can be done in actual practice to embed the management of tourism's social impacts into the existing planning, product development and operational processes of tourism

  3. Test methodology for low-speed rear impact human kinematics and dynamics

    NARCIS (Netherlands)

    Philippens, M.M.G.M.; Cappon, H.J.; Yoganandan, N.; Pintar, F.A.

    2000-01-01

    Design of crash dummies and development of numeric models of the human body require data sets which specify the performance of real humans in crash impact conditions. Rear impact conditions have become increasingly important during the last decade. This resulted in a growing number of research

  4. Vehicle Impact Testing of Snow Roads at McMurdo Station, Antarctica

    Science.gov (United States)

    2014-06-01

    Althoff and Thien 2005; Anderson and Shoop 2005; Ayers 1994; Ayers et al. 2004; Haugen 2002) and of low impact military tires (Ayers et al. 2006...Engineers. Althoff , P., and S. Thien. 2005. Impact of M1A1 main battle tank disturbance on soil quality, invertebrates, and vegetation

  5. The indication area of a diagnostic test. Part II--the impact of test dependence, physician's decision strategy, and patient's utility.

    Science.gov (United States)

    Stalpers, Lukas J A; Nelemans, Patty J; Geurts, Sandra M E; Jansen, Erik; de Boer, Peter; Verbeek, André L M

    2015-10-01

    Any diagnostic test has an indication area of prior probabilities wherein the gain in diagnostic certainty outweighs its loss. Here, we investigate whether indication area and the maximum diagnostic gain are robust measures if we assume test dependence, alternative physician's heuristics, and varying patient's utilities. Three mathematical functions for the dependence of test sensitivity (Se) and specificity (Sp) on the prior disease probability were studied. In addition, three different decision heuristics for further management were explored for the case that "no test" would be done. Finally, the valuation of test outcomes was varied. A sensitivity analysis was performed to determine the impact of the alternative assumptions on the indication area and maximum diagnostic gain. By assuming test dependence, the indication area shifts to higher priors and increases the maximum diagnostic gain. Decision strategies assuming a "threshold before treat" can inadvertently widen the indication area and increase the maximum diagnostic gain. Varying patient utilities will usually reduce the net diagnostic gain. A sensitivity analysis revealed the robustness of the model. The indication area and the maximum diagnostic gain are robust measures of test performance and are easier to interpret than the classical performance measures. Published by Elsevier Inc.

  6. Detection of centimeter-sized meteoroid impact events in Saturn's F ring

    Science.gov (United States)

    Showalter, M. R.

    1998-01-01

    Voyager images reveal that three prominent clumps in Saturn's F ring were short-lived, appearing rapidly and then spreading and decaying in brightness over periods of approximately 2 weeks. These features arise from hypervelocity impacts by approximately 10-centimeter meteoroids into F ring bodies. Future ring observations of these impact events could constrain the centimeter-sized component of the meteoroid population, which is otherwise unmeasurable but plays an important role in the evolution of rings and surfaces in the outer solar system. The F ring's numerous other clumps are much longer lived and appear to be unrelated to impacts.

  7. Desire for predictive testing for Alzheimer's disease and impact on advance care planning: a cross-sectional study.

    Science.gov (United States)

    Sheffrin, Meera; Stijacic Cenzer, Irena; Steinman, Michael A

    2016-12-13

    It is unknown whether older adults in the United States would be willing to take a test predictive of future Alzheimer's disease, or whether testing would change behavior. Using a nationally representative sample, we explored who would take a free and definitive test predictive of Alzheimer's disease, and examined how using such a test may impact advance care planning. A cross-sectional study within the 2012 Health and Retirement Study of adults aged 65 years or older asked questions about a test predictive of Alzheimer's disease (N = 874). Subjects were asked whether they would want to take a hypothetical free and definitive test predictive of future Alzheimer's disease. Then, imagining they knew they would develop Alzheimer's disease, subjects rated the chance of completing advance care planning activities from 0 to 100. We classified a score > 50 as being likely to complete that activity. We evaluated characteristics associated with willingness to take a test for Alzheimer's disease, and how such a test would impact completing an advance directive and discussing health plans with loved ones. Overall, 75% (N = 648) of the sample would take a free and definitive test predictive of Alzheimer's disease. Older adults willing to take the test had similar race and educational levels to those who would not, but were more likely to be ≤75 years old (odds ratio 0.71 (95% CI 0.53-0.94)). Imagining they knew they would develop Alzheimer's, 81% would be likely to complete an advance directive, although only 15% had done so already. In this nationally representative sample, 75% of older adults would take a free and definitive test predictive of Alzheimer's disease. Many participants expressed intent to increase activities of advance care planning with this knowledge. This confirms high public interest in predictive testing for Alzheimer's disease and suggests this may be an opportunity to engage patients in advance care planning discussions.

  8. Numerical Tests on Failure Process of Rock Particle under Impact Loading

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zuo

    2015-01-01

    Full Text Available By using numerical code RFPA2D (dynamic version, numerical model is built to investigate the failure process of rock particle under impact loading, and the influence of different impact loading on crushing effect and consumed energy of rock particle sample is analyzed. Numerical results indicate that crushing effect is good when the stress wave amplitude is close to the dynamic strength of rock; it is difficult for rock particle to be broken under too low stress wave amplitude; on the other hand, when stress wave amplitude is too high, excessive fine particle is produced, and crushing effect is not very good on the whole, and more crushing energy is consumed. Secondly, in order to obtain good crushing effect, it should be avoided that wavelength of impact load be too short. Therefore, it is inappropriate to choose impact rusher with too high power and too fast impact frequency for ore particle.

  9. The Impact of Test Case Summaries on Bug Fixing Performance : An Empirical Investigation

    NARCIS (Netherlands)

    Panichella, Sebastiano; Panichella, A.; Beller, M.M.; Zaidman, A.E.; Gall, Harald C.

    2016-01-01

    Automated test generation tools have been widely investigated with the goal of reducing the cost of testing activities. However, generated tests have been shown not to help developers in detecting and finding more bugs even though they reach higher structural coverage compared to manual testing.

  10. The Impact of Test Case Summaries on Bug Fixing Performance : An Empirical Investigation

    NARCIS (Netherlands)

    Panichella, S.; Panichella, A.; Beller, M.; Zaidman, A.E.; Gall, H.

    2015-01-01

    Automated test generation tools have been widely investigated with the goal of reducing the cost of testing activities. However, generated tests have been shown not to help developers in detecting and finding more bugs even though they reach higher structural coverage compared to manual testing. The

  11. Impact of a personal CYP2D6 testing workshop on physician assistant student attitudes toward pharmacogenetics.

    Science.gov (United States)

    O'Brien, Travis J; LeLacheur, Susan; Ward, Caitlin; Lee, Norman H; Callier, Shawneequa; Harralson, Arthur F

    2016-03-01

    We assessed the impact of personal CYP2D6 testing on physician assistant student competency in, and attitudes toward, pharmacogenetics (PGx). Buccal samples were genotyped for CYP2D6 polymorphisms. Results were discussed during a 3-h PGx workshop. PGx knowledge was assessed by pre- and post-tests. Focus groups assessed the impact of the workshop on attitudes toward the clinical utility of PGx. Both student knowledge of PGx, and its perceived clinical utility, increased immediately following the workshop. However, exposure to PGx on clinical rotations following the workshop seemed to influence student attitudes toward PGx utility. Personal CYP2D6 testing improves both knowledge and comfort with PGx. Continued exposure to PGx concepts is important for transfer of learning.

  12. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  13. Impacts Analyses Supporting the National Environmental Policy Act Environmental Assessment for the Resumption of Transient Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Annette L. Schafer; Lloyd C. Brown; David C. Carathers; Boyd D. Christensen; James J. Dahl; Mark L. Miller; Cathy Ottinger Farnum; Steven Peterson; A. Jeffrey Sondrup; Peter V. Subaiya; Daniel M. Wachs; Ruth F. Weiner

    2013-11-01

    Environmental and health impacts are presented for activities associated with transient testing of nuclear fuel and material using two candidate test reactors. Transient testing involves irradiation of nuclear fuel or materials for short time-periods under high neutron flux rates. The transient testing process includes transportation of nuclear fuel or materials inside a robust shipping cask to a hot cell, removal from the shipping cask, pre-irradiation examination of the nuclear materials, assembly of an experiment assembly, transportation of the experiment assembly to the test reactor, irradiation in the test reactor, transport back to the hot cell, and post-irradiation examination of the nuclear fuel or material. The potential for environmental or health consequences during the transportation, examination, and irradiation actions are assessed for normal operations, off-normal (accident) scenarios, and transportation. Impacts to the environment (air, soil, and groundwater), are assessed during each phase of the transient testing process. This report documents the evaluation of potential consequences to the general public. This document supports the Environmental Assessment (EA) required by the U.S. National Environmental Policy Act (NEPA) (42 USC Subsection 4321 et seq.).

  14. Crash Test of Three Cessna 172 Aircraft at NASA Langley Research Center's Landing and Impact Research Facility

    Science.gov (United States)

    Littell, Justin D.

    2015-01-01

    During the summer of 2015, three Cessna 172 aircraft were crash tested at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). The three tests simulated three different crash scenarios. The first simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway, the second simulated a controlled flight into terrain with a nose down pitch on the aircraft, and the third simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system captured 64 channels of airframe acceleration, along with acceleration and load in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices, representing the pilot and co-pilot. Each test contained different airframe loading conditions and results show large differences in airframe performance. This paper presents test methods used to conduct the crash tests and will summarize the airframe results from the test series.

  15. Self-Reported Impact of Chlamydia Testing on Subsequent Behavior: Results of an Online Survey of Young Adults in England.

    Science.gov (United States)

    Hartney, Thomas; Baraitser, Paula; Nardone, Anthony

    2015-09-01

    The National Chlamydia Screening Programme performs 1.7 million tests annually among young adults in England. The effect of chlamydia screening on subsequent behavior is unknown. This study examined the self-reported impact of testing on young adults' subsequent health care-seeking and sexual behavior. We conducted a cross-sectional Web-based anonymous survey using an online panel to recruit 1521 young adults aged 16 to 24 years and resident in England. Survey questions were developed using the theory of planned behavior. Multivariate log-binomial regression was used to identify the variables associated with an impact on subsequent behavior after testing. Most respondents reported that being tested for chlamydia had a positive effect on their subsequent sexual behavior (68.6%; 422/615) or health care-seeking behavior (80.0%; 492/615). In multivariate analysis, being female and having a high level of engagement at last test were both associated with positive impacts on sexual behavior (72.7% [adjusted prevalence ratio {aPR}, 1.19; 95% confidence interval {CI}, 1.07-1.33] and 82.7% [aPR, 1.55; 95% CI, 1.27-1.89], respectively), and health care-seeking behavior (84.4% [aPR, 1.13; 95% Cl, 1.04-1.24] and 86.3% [aPR, 1.23; 95% CI, 1.07-1.41], respectively). Among respondents with minimum level of engagement, 72.4% (76/105) reported an increase in subsequent health care-seeking behavior. Chlamydia testing had a positive impact on young adults' self-reported health care-seeking and sexual behavior. This suggests that chlamydia screening has a wider effect on young adults' sexual health beyond that of treatment alone.

  16. An experimental study of non-destructive testing on glass fibre reinforced polymer composites after high velocity impact event

    Science.gov (United States)

    Razali, N.; Sultan, M. T. H.; Cardona, F.

    2016-10-01

    A non-destructive testing method on Glass Fibre Reinforced Polymer (GFRP) after high velocity impact event using single stage gas gun (SSGG) is presented. Specimens of C- type and E-type fibreglass reinforcement, which were fabricated with 6mm, 8mm, 10mm and 12mm thicknesses and size 100 mm x 100 mm, were subjected to a high velocity impact with three types of bullets: conical, hemispherical and blunt at various gas gun pressure levels from 6 bar to 60 bar. Visual observation techniques using a lab microscope were used to determine the infringed damage by looking at the crack zone. Dye penetrants were used to inspect the area of damage, and to evaluate internal and external damages on the specimens after impact. The results from visual analysis of the impacted test laminates were discussed and presented. It was found that the impact damage started with induced delamination, fibre cracking and then failure, simultaneously with matrix cracking and breakage, and finally followed by the fibres pulled out. C-type experienced more damaged areas compared to E-type of GFRP.

  17. Impact of using a local protocol in preoperative testing: blind randomized clinical trial.

    Science.gov (United States)

    Santos, Mônica Loureiro; Iglesias, Antônio Carlos

    2017-01-01

    to evaluate the impact of the use of a local protocol of preoperative test requests in reducing the number of exams requested and in the occurrence of changes in surgical anesthetic management and perioperative complications. we conducted a randomized, blinded clinical trial at the Gaffrée and Guinle University Hospital with 405 patients candidates for elective surgery randomly divided into two groups, according to the practice of requesting preoperative exams: a group with non-selectively requested exams and a protocol group with exams requested according to the study protocol. Studied exams: complete blood count, coagulogram, glycemia, electrolytes, urea and creatinine, ECG and chest X-ray. Primary outcomes: changes in surgical anesthetic management caused by abnormal exams, reduction of the number of exams requested after the use of the protocol and perioperative complications. there was a significant difference (pradiografia de tórax. Desfechos primários: alterações na conduta anestésico-cirúrgica motivadas por exames anormais, redução do número de exames solicitados após o uso do protocolo e complicações perioperatórias. foi observada diferença significativa (p<0,001) no número de exames com resultados alterados entre os dois grupos (14,9% x 29,1%) e redução de 57,3% no número de exames pedidos entre os dois grupos (p<0,001), mais acentuada nos pacientes de menor faixa etária, ASA I, sem doenças associadas e submetidos a procedimentos de menor porte. Não houve diferença significativa na frequência de alterações de conduta motivada por resultado de exames, nem de complicações entre os dois grupos. Na análise multivariada hemograma e coagulograma foram os únicos exames capazes de modificar a conduta anestésico-cirúrgica. o protocolo proposto foi efetivo em eliminar um quantitativo significativo de exames complementares sem indicação clínica, sem que houvesse aumento na morbidade e mortalidades perioperatórias.

  18. Non-destructive testing principles and accurate evaluation of the hydraulic measure impact range using the DC method

    Science.gov (United States)

    Qiu, Liming; Shen, Rongxi; Song, Dazhao; Wang, Enyuan; Liu, Zhentang; Niu, Yue; Jia, Haishan; Xia, Shankui; Zheng, Xiangxin

    2017-12-01

    An accurate and non-destructive evaluation method for the hydraulic measure impact range in coal seams is urgently needed. Aiming at the application demands, a theoretical study and field test are presented using the direct current (DC) method to evaluate the impact range of coal seam hydraulic measures. We firstly analyzed the law of the apparent resistivity response of an abnormal conductive zone in a coal seam, and then investigated the principle of non-destructive testing of the coal seam hydraulic measure impact range using the DC method, and used an accurate evaluation method based on the apparent resistivity cloud chart. Finally, taking hydraulic fracturing and hydraulic flushing as examples, field experiments were carried out in coal mines to evaluate the impact ranges. The results showed that: (1) in the process of hydraulic fracturing, coal conductivity was enhanced by high-pressure water in the coal seam, and after hydraulic fracturing, the boundary of the apparent resistivity decrease area was the boundary impact range. (2) In the process of hydraulic flushing, coal conductivity was reduced by holes and cracks in the coal seam, and after hydraulic flushing, the boundary of the apparent resistivity increase area was the boundary impact range. (3) After the implementation of the hydraulic measures, there may be some blind zones in the coal seam; in hydraulic fracturing blind zones, the apparent resistivity increased or stayed constant, while in hydraulic flushing blind zones, the apparent resistivity decreased or stayed constant. The DC method realized a comprehensive and non-destructive evaluation of the impact range of the hydraulic measures, and greatly reduced the time and cost of evaluation.

  19. Izod Impact Test in Epoxi Matrix Composites Reinforced with Hemp Fiber

    Science.gov (United States)

    Rohen, Lázaro A.; Margem, Frederico M.; Neves, Anna C. C.; Monteiro, Sérgio N.; Gomes, Maycon A.; de Castro, Rafael G.; Maurício, F. V. Carlos; de Paula, Fernanda

    Synthetic fiber has been gradually replaced by natural fiber, such as lignocellulosic fiber. In comparison with synthetic fiber, natural fiber has shown economic and environmental advantages. The natural fiber presents interfacial characteristics with polymeric matrices that favor a high impact energy absorption by the composite structure. However, until now little has been evaluated about the hemp fiber incorporated in polymeric matrices. This study has the purpose of evaluate the impact resistance of this kind of epoxy matrix composite reinforced with different percentages of hemp fibers. The impact resistance has substantially increased the relative amount of hemp fiber incorporated as reinforcement in the composite. This performance was associated with the difficulty of rupture imposed by the fibers resulting from the interaction of hemp fiber / epoxy matrix that helps absorb the impact energy.

  20. Charpy impact test results of four low activation ferritic alloys irradiated at 370{degrees}C to 15 DPA

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Miniature CVN specimens of four low activation ferritic alloys have been impact tested following irradiation at 370{degrees}C to 15 dpa. Comparison of the results with those of control specimens indicates that degradation in the impact behavior occurs in each of these four alloys. The 9Cr-2W alloy referred to as GA3X and the similar alloy F82H with 7.8Cr-2W appear most promising for further consideration as candidate structural materials in fusion energy system applications. These two alloys exhibit a small DBTT shift to higher temperatures but show increased absorbed energy on the upper shelf.