WorldWideScience

Sample records for hypervelocity impact fusion

  1. Inertial fusion with hypervelocity impact

    International Nuclear Information System (INIS)

    Olariu, S.

    1998-01-01

    The physics of the compression and ignition processes in inertial fusion is to a certain extent independent of the nature of the incident energy pulse. The present strategy in the field of inertial fusion is to study several alternatives of deposition of the incident energy, and, at the same time, of conducting studies with the aid of available incident laser pulses. In a future reactor based on inertial fusion, the laser beams may be replaced by ion beams, which have a better energy efficiency. The main projects in the field of inertial fusion are the National Ignition Facility (NIF) in USA, Laser Megajoule (LMJ) in France, Gekko XII in Japan and Iskra V in Russia. NIF will be constructed at Lawrence Livermore National Laboratory, in California. LMJ will be constructed near Bordeaux. In the conventional approach to inertial confinement fusion, both the high-density fuel mass and the hot central spot are supposed to be produced by the deposition of the driver energy in the outer layers of the fuel capsule. Alternatively, the driver energy could be used only to produce the radial compression of the fuel capsule to high densities but relatively low temperatures, while the ignition of fusion reactions in the compressed capsule should be effected by a synchronized hypervelocity impact. Using this arrangement, it was supposed that a 54 μm projectile is incident with a velocity of 3 x 10 6 m s -1 upon a large-yield deuterium-tritium target at rest. The collision of the incident projectile and of the large-yield target takes place inside a high-Z cavity. A laser or heavy-ion pulse is converted at the walls of the cavity into X-rays, which compresses the incident projectile and the large-yield target in high-density states. The laser pulse and the movement of the incident projectile are synchronized such that the collision should take place when the densities are the largest. The collision converts the kinetic energy of the incident projectile into thermal energy, the

  2. Hypervelocity impact cratering calculations

    Science.gov (United States)

    Maxwell, D. E.; Moises, H.

    1971-01-01

    A summary is presented of prediction calculations on the mechanisms involved in hypervelocity impact cratering and response of earth media. Considered are: (1) a one-gram lithium-magnesium alloys impacting basalt normally at 6.4 km/sec, and (2) a large terrestrial impact corresponding to that of Sierra Madera.

  3. Hypervelocity impacts into graphite

    Science.gov (United States)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  4. Hypervelocity impacts into graphite

    International Nuclear Information System (INIS)

    Latunde-Dada, S; Cheesman, C; Day, D; Harrison, W; Price, S

    2011-01-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms -1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  5. Magnetic linear accelerator (MAGLAC) for hypervelocity acceleration in impact fusion (IF)

    International Nuclear Information System (INIS)

    Chen, K.W.

    1980-01-01

    This paper presents considerations on the design of a magnetic linear accelerator suitable as driver for impact fusion. We argue that the proposed approach offers an attractive option to accelerate macroscopic matter to centiluminal velocity suitable for fusion applications. The design goal is to attain a velocity approaching 200 km/sec. Recent results in suitable target design suggest that a velocity in the range of 40-100 km/sec might be sufficient to include fusion. An accelerator in this velocity range can be constructed with current-day technology. We present both design and practical engineering considerations. Future work are outlined and recommended. (orig.)

  6. Hypervelocity impact of concrete

    International Nuclear Information System (INIS)

    Watson, A.J.; Anderson, W.F.; Archer, B.

    1982-01-01

    Blocks of concrete and various other materials were impacted by high speed copper jets at the centre of one face, the resulting transient phenomena were measured using ultra high speed photography and various electrical signal transducers. Measurements were made of the jet velocity, penetration rate, crack velocity and initiation time, and strain pulse propagation. Post test measurements were made using electron microscopy, ultra sonics and stereoscopic photography. (orig.) [de

  7. Hypervelocity impact technology and applications: 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, William Dodd; Chhabildas, Lalit C. (Air Force Research Laboratory, AFRL/RWMW, Eglin AFB, FL)

    2008-07-01

    The Hypervelocity Impact Society is devoted to the advancement of the science and technology of hypervelocity impact and related technical areas required to facilitate and understand hypervelocity impact phenomena. Topics of interest include experimental methods, theoretical techniques, analytical studies, phenomenological studies, dynamic material response as related to material properties (e.g., equation of state), penetration mechanics, and dynamic failure of materials, planetary physics and other related phenomena. The objectives of the Society are to foster the development and exchange of technical information in the discipline of hypervelocity impact phenomena, promote technical excellence, encourage peer review publications, and hold technical symposia on a regular basis. It was sometime in 1985, partly in response to the Strategic Defense Initiative (SDI), that a small group of visionaries decided that a conference or symposium on hypervelocity science would be useful and began the necessary planning. A major objective of the first Symposium was to bring the scientists and researchers up to date by reviewing the essential developments of hypervelocity science and technology between 1955 and 1985. This Symposia--HVIS 2007 is the tenth Symposium since that beginning. The papers presented at all the HVIS are peer reviewed and published as a special volume of the archival journal International Journal of Impact Engineering. HVIS 2007 followed the same high standards and its proceedings will add to this body of work.

  8. Simulating plasma production from hypervelocity impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Alex, E-mail: alexcf@stanford.edu; Close, Sigrid [Stanford University, Aeronautics and Astronautics, 496 Lomita Mall, Stanford, California 94305 (United States); Mathias, Donovan [NASA Ames Research Center, Bldg. 258, Moffett Field, California 94035 (United States)

    2015-09-15

    Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent

  9. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  10. Igneous rocks formed by hypervelocity impact

    Science.gov (United States)

    Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.

    2018-03-01

    Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not

  11. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  12. HYPERFUSE: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n, 2n), (n, α), etc.) that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  13. Hyper fuse: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1979-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with a target in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14 MeV fusion neutrons released during the pellet burn cause transmutation reactions [e.g., (n, 2n), (n, α), etc.] that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  14. Characterizing Hypervelocity Impact Plasma Through Experiments and Simulations

    Science.gov (United States)

    Close, Sigrid; Lee, Nicolas; Fletcher, Alex; Nuttall, Andrew; Hew, Monica; Tarantino, Paul

    2017-10-01

    Hypervelocity micro particles, including meteoroids and space debris with masses produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma. We also show results from particle-in-cell (PIC) and computational fluid dynamics (CFD) simulations that allow us to extend to regimes not currently possible with ground-based technology. We show that significant impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (>20 km/s) impacts that produced a fully ionized plasma.

  15. Survey of the hypervelocity impact technology and applications.

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, Lalit Chandra; Orphal, Dennis L.

    2006-05-01

    HVIS 2005 was a clear success. The Symposium brought together nearly two hundred active researchers and students from thirteen countries around the world. The 84 papers presented at HVIS 2005 constitute an ''update'' on current research and the state-of-the-art of hypervelocity science. Combined with the over 7000 pages of technical papers from the eight previous Symposia, beginning in 1986, all published in the International Journal of Impact Engineering, the papers from HVIS 2005 add to the growing body of knowledge and the progressing state-of-the-art of hypervelocity science. It is encouraging to report that even with the limited funding resources compared to two decades ago, creativity and ingenuity in hypervelocity science are alive and well. There is considerable overlap in different disciplines that allows researchers to leverage. Experimentally, higher velocities are now available in the laboratory and are ideally suited for space applications that can be tied to both civilian (NASA) and DoD military applications. Computationally, there is considerable advancement both in computer and modeling technologies. Higher computing speeds and techniques such as parallel processing allow system level type applications to be addressed directly today, much in contrast to the situation only a few years ago. Needless to say, both experimentally and computationally, the ultimate utility will depend on the curiosity and the probing questions that will be incumbent upon the individual researcher. It is quite satisfying that over two dozen students attended the symposium. Hopefully this is indicative of a good pool of future researchers that will be needed both in the government and civilian industries. It is also gratifying to note that novel thrust areas exploring different and new material phenomenology relevant to hypervelocity impact, but a number of other applications as well, are being pursued. In conclusion, considerable progress is still being

  16. Axial focusing of energy from a hypervelocity impact on earth

    International Nuclear Information System (INIS)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-01-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth's surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth's interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes

  17. Axial focusing of energy from a hypervelocity impact on earth

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-12-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.

  18. Discrete Particle Method for Simulating Hypervelocity Impact Phenomena

    Directory of Open Access Journals (Sweden)

    Erkai Watson

    2017-04-01

    Full Text Available In this paper, we introduce a computational model for the simulation of hypervelocity impact (HVI phenomena which is based on the Discrete Element Method (DEM. Our paper constitutes the first application of DEM to the modeling and simulating of impact events for velocities beyond 5 kms-1. We present here the results of a systematic numerical study on HVI of solids. For modeling the solids, we use discrete spherical particles that interact with each other via potentials. In our numerical investigations we are particularly interested in the dynamics of material fragmentation upon impact. We model a typical HVI experiment configuration where a sphere strikes a thin plate and investigate the properties of the resulting debris cloud. We provide a quantitative computational analysis of the resulting debris cloud caused by impact and a comprehensive parameter study by varying key parameters of our model. We compare our findings from the simulations with recent HVI experiments performed at our institute. Our findings are that the DEM method leads to very stable, energy–conserving simulations of HVI scenarios that map the experimental setup where a sphere strikes a thin plate at hypervelocity speed. Our chosen interaction model works particularly well in the velocity range where the local stresses caused by impact shock waves markedly exceed the ultimate material strength.

  19. Optimum structure of Whipple shield against hypervelocity impact

    International Nuclear Information System (INIS)

    Lee, M

    2014-01-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  20. Optimum structure of Whipple shield against hypervelocity impact

    Science.gov (United States)

    Lee, M.

    2014-05-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  1. Flash characteristics of plasma induced by hypervelocity impact

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Beijing Automotive Technology Center, Beijing 100021 (China); Long, Renrong, E-mail: longrenrong@bit.edu.cn, E-mail: qmzhang@bit.edu.cn; Zhang, Qingming, E-mail: longrenrong@bit.edu.cn, E-mail: qmzhang@bit.edu.cn; Xue, Yijiang; Ju, Yuanyuan [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-08-15

    Using a two-stage light gas gun, a series of hypervelocity impact experiments was conducted in which 6.4-mm-diameter spherical 2024-aluminum projectiles impact 23-mm-thick targets made of the same material at velocities of 5.0, 5.6, and 6.3 km/s. Both an optical pyrometer composed of six photomultiplier tubes and a spectrograph were used to measure the flash of the plasma during hypervelocity impact. Experimental results show that, at a projectile velocity of 6.3 km/s, the strong flash lasted about 10 μs and reached a temperature of 4300 K. Based on the known emission lines of AL I, spectral methods can provide the plasma electron temperature. An electron-temperature comparison between experiment and theoretical calculation indicates that single ionization and secondary ionization are the two main ionizing modes at velocities 5.0–6.3 km/s.

  2. Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells

    Science.gov (United States)

    Frate, David T.; Nahra, Henry K.

    1996-01-01

    Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.

  3. Theoretical model for plasma expansion generated by hypervelocity impact

    International Nuclear Information System (INIS)

    Ju, Yuanyuan; Zhang, Qingming; Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei; Gong, Zizheng

    2014-01-01

    The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T e , n e ) ∝ v p 3 . Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data

  4. Theoretical model for plasma expansion generated by hypervelocity impact

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yuanyuan; Zhang, Qingming, E-mail: qmzhang@bit.edu.cn; Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Gong, Zizheng [National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China)

    2014-09-15

    The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e}) ∝ v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.

  5. Mass spectrometry of hyper-velocity impacts of organic micrograins.

    Science.gov (United States)

    Srama, Ralf; Woiwode, Wolfgang; Postberg, Frank; Armes, Steven P; Fujii, Syuji; Dupin, Damien; Ormond-Prout, Jonathan; Sternovsky, Zoltan; Kempf, Sascha; Moragas-Klostermeyer, Georg; Mocker, Anna; Grün, Eberhard

    2009-12-01

    The study of hyper-velocity impacts of micrometeoroids is important for the calibration of dust sensors in space applications. For this purpose, submicron-sized synthetic dust grains comprising either polystyrene or poly[bis(4-vinylthiophenyl)sulfide] were coated with an ultrathin overlayer of an electrically conductive organic polymer (either polypyrrole or polyaniline) and were accelerated to speeds between 3 and 35 km s(-1) using the Heidelberg Dust Accelerator facility. Time-of-flight mass spectrometry was applied to analyse the resulting ionic impact plasma using a newly developed Large Area Mass Analyser (LAMA). Depending on the projectile type and the impact speed, both aliphatic and aromatic molecular ions and cluster species were identified in the mass spectra with masses up to 400 u. Clusters resulting from the target material (silver) and mixed clusters of target and projectile species were also observed. Impact velocities of between 10 and 35 km s(-1) are suitable for a principal identification of organic materials in micrometeoroids, whereas impact speeds below approximately 10 km s(-1) allow for an even more detailed analysis. Molecular ions and fragments reflect components of the parent molecule, providing determination of even complex organic molecules embedded in a dust grain. In contrast to previous measurements with the Cosmic Dust Analyser instrument, the employed LAMA instrument has a seven times higher mass resolution--approximately 200--which allowed for a detailed analysis of the complex mass spectra. These fundamental studies are expected to enhance our understanding of cometary, interplanetary and interstellar dust grains, which travel at similar hyper-velocities and are known to contain both aliphatic and aromatic organic compounds. Copyright 2009 John Wiley & Sons, Ltd.

  6. Theoretical Research Progress in High-Velocity/Hypervelocity Impact on Semi-Infinite Targets

    Directory of Open Access Journals (Sweden)

    Yunhou Sun

    2015-01-01

    Full Text Available With the hypervelocity kinetic weapon and hypersonic cruise missiles research projects being carried out, the damage mechanism for high-velocity/hypervelocity projectile impact on semi-infinite targets has become the research keystone in impact dynamics. Theoretical research progress in high-velocity/hypervelocity impact on semi-infinite targets was reviewed in this paper. The evaluation methods for critical velocity of high-velocity and hypervelocity impact were summarized. The crater shape, crater scaling laws and empirical formulae, and simplified analysis models of crater parameters for spherical projectiles impact on semi-infinite targets were reviewed, so were the long rod penetration state differentiation, penetration depth calculation models for the semifluid, and deformed long rod projectiles. Finally, some research proposals were given for further study.

  7. The electromagnetic properties of plasma produced by hypervelocity impact

    Science.gov (United States)

    Zhang, Qingming; Gong, Liangfei; Ma, Yuefen; Long, Renrong; Gong, Zizheng

    2018-02-01

    The change of electron density in moving plasma in this paper is empirically determined according to multiple ground-based experimental results and the assumption of the Maxwell distribution. Moreover, the equation of the magnetic field intensity, dominated by the current due to the collective electron movement during the expansion, is presented on the basis of the Biot-Savart law, and its relationship with time and space is subsequently depicted. In addition, hypervelocity impact experiments on a 2AL12 target have been carried out using a two-stage light gas gun to accelerate a 2AL12 projectile of 6.4 mm to 6.2 km/s. Spiral coils are designed to measure the intensity of the electromagnetic field induced by this impact. The experimental results show that the magnetic field strength is an alternate pulse maintaining nearly 1 ms and its maximum is close to 15 μT, which is strong enough to interfere with the communication circuit and chip in spacecrafts. Lastly, numerical simulation of the magnetic field intensity using this experimental parameter reveals that the intensity in our estimation from our theory tends to be well consistent with the experimental data in the first peak of the pulse signal.

  8. Emission spectroscopy of hypervelocity impacts on aluminum, organic and high-explosive targets

    NARCIS (Netherlands)

    Verreault, J.; Day, J.P.R.; Halswijk, W.H.C.; Loiseau, J.; Huneault, J.; Higgins, A.J.; Devir, A.D.

    2015-01-01

    Laboratory experiments of hypervelocity impacts on aluminum, nylon and high-explosive targets are presented. Spectral measurements of the impact flash are recorded, together with radiometric measurements to derive the temperature of the flash. Such experiments aim at demonstrating that the impact

  9. Hypervelocity impact on Zr51Ti5Ni10Cu25Al9 bulk metallic glass

    International Nuclear Information System (INIS)

    Zheng, W.; Huang, Y.J.; Pang, B.J.; Shen, J.

    2011-01-01

    Highlights: → Hypervelocity impact experiments were performed on a bulk metallic glass. → Morphology of the bullet hole presents three different regions. → The post-impact samples keep glassy structure. → Mechanical properties of the post-impact samples were studied by nanoindentation. → Mechanical properties of the post-impact samples were discussed by free-volume model. - Abstract: In this study, the hypervelocity impact experiments were performed on Zr 51 Ti 5 Ni 10 Cu 25 Al 9 bulk metallic glass using a two-stage light gas gun. The morphologies of the bullet holes exhibit three different regions: melting area, vein-pattern area, and radiating core feature area, suggesting that various regions experience different stress states during the hypervelocity impact. For the post-impact samples, the nano-hardness increases and plastic deformability decreases both with the increase in the distance from the bullet hole and with the decrease in the impact velocity, which is discussed by means of spherical stress wave theory and free-volume model.

  10. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    Science.gov (United States)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Chris; Rodriquez, Karen; Miller, Joshua; Bohl, William

    2011-01-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  11. Hyper-velocity impacts on the molten silica of the LMJ facility: experimental results and related simulations

    International Nuclear Information System (INIS)

    Bertron, I.; Chevalier, J.M.; Malaise, F.; Barrio, A.; Courchinoux, R.

    2003-01-01

    This work presents a damaging study of the molten silica splinter-guards of the experiment chamber of the Megajoule laser facility. Damaging is due to the impact of hyper-velocity particulates coming from the interaction between X-rays and the diagnostic supports. Experiments have been carried out with the light-gas dual-stage launcher MICA in parallel with numerical simulations using a silica fragmentation and fissuring model embedded in the HESIONE code. First tests concern hyper-velocity impacts of steel balls of 550 μm diameter on silica samples. Samples are expertized to measure the craters and damaging characteristics generated by the impact. Experimental results are compared to numerical simulations in order to check the capability of the model to reproduce the effect of hyper-velocity impacts on molten silica. The final goal is to evaluate the lifetime of splinter-guards. (J.S.)

  12. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    Science.gov (United States)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  13. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    International Nuclear Information System (INIS)

    Yang, Changyi; Wu, Yiyong; Lv, Gang; Rubanov, Sergey; Jamieson, David N.

    2015-01-01

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5–30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11–68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the

  14. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Changyi [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Wu, Yiyong; Lv, Gang [National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environments, Harbin Institute of Technology, Harbin (China); Rubanov, Sergey [Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010 (Australia); Jamieson, David N., E-mail: d.jamieson@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2015-04-01

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5–30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11–68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the

  15. Effect of impact angles on ejecta and crater shape of aluminum alloy 6061-T6 targets in hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hayashi K.

    2012-08-01

    Full Text Available The effect of the impact angle of projectiles on the crater shape and ejecta in thick aluminum alloy targets was investigated in hypervelocity impacts. When polycarbonate projectiles and aluminum alloy 6061-T6 target were used, the impact angle of the projectiles clearly affected the crater shape, as expected. The impact angle also affected the ejecta mass, ejecta size and scatter angle. However, the effect at 15∘ and 22.5∘ was not great. When the impact angles were 30∘ and 45∘, the effect was clearly confirmed. The impact angle clearly affected the axial ratio of ejecta fragments, c/a.

  16. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Goel, A., E-mail: ashish09@stanford.edu; Tarantino, P. M.; Lauben, D. S.; Close, S. [Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305 (United States)

    2015-04-15

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  17. Analysis of simulated hypervelocity impacts on a titanium fuel tank from the Salyut 7 space station

    Science.gov (United States)

    Jantou, V.; McPhail, D. S.; Chater, R. J.; Kearsley, A.

    2006-07-01

    The aim of this project was to gain a better understanding of the microstructural effects of hypervelocity impacts (HVI) in titanium alloys. We investigated a titanium fuel tank recovered from the Russian Salyut 7 space station, which was launched on April 19, 1982 before being destroyed during an un-controlled re-entry in 1991, reportedly scattering debris over parts of South America. Several sections were cut out from the tank in order to undergo HVI simulations using a two-stage light gas gun. In addition, a Ti-6Al-4V alloy was studied for further comparison. The crater morphologies produced were successfully characterised using microscope-based white light interferometry (Zygo ® Corp, USA), while projectile remnants were identified via secondary ion mass spectrometry (SIMS). Microstructural alterations were investigated using focused ion beam (FIB) milling and depth profiling, as well as transmission electron microscopy (TEM). There was evidence of a very high density of dislocations in the vicinity of the crater. The extent of the deformation was localised in a region of about one to two radii of the impact craters. No notable differences were observed between the titanium alloys used during the hypervelocity impact tests.

  18. Asteroid deflection using a kinetic impactor: Insights from hypervelocity impact experiments

    Science.gov (United States)

    Hoerth, Tobias; Schäfer, Frank

    2016-04-01

    Within the framework of the planned AIDA mission [1], an impactor spacecraft (DART) hits the second component of the asteroid Didymos at hypervelocity. The impact crater will be observed from the AIM spacecraft and an observation of the ejecta plume is possible [1]. This allows conclusions to be drawn about the physical properties of the target material, and the momentum transfer will be studied [1]. In preparation for this mission, hypervelocity impact experiments can provide valuable information about the outcome of an impact event as a function of impactor and target material properties and, thus, support the interpretation of the data from the DART impact. In addition, these impact experiments provide an important means to validate numerical impact simulations required to simulate large-scale impacts that cannot be studied in laboratory experiments. Impact experiments have shown that crater morphology and size, crater growth and ejecta dynamics strongly depend on the physical properties of the target material [2]. For example, porous materials like sandstone lead to a shallower and slower ejection than low-porous materials like quartzite, and the cratering efficiency is reduced in porous targets leading to a smaller amount of ejected mass [3]. These phenomena result in a reduced momentum multiplication factor (often called "beta-value"), i.e. the ratio of the change in target momentum after the impact and the momentum of the projectile is smaller for porous materials. Hypervelocity impact experiments into target materials with different porosities and densities such as quartzite (2.9 %, 2.6 g/cm3), sandstone (25.3 %, 2 g/cm3), limestone (31 %, 1.8 g/cm3), and highly porous aerated concrete (87.5 %, 0.4 g/cm3) were conducted. Projectile velocities were varied between about 3 km/s and almost 7 km/s. A ballistic pendulum was used to measure the momentum transfer. The material strength required for scaling laws was determined for all target materials. The highest

  19. Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts

    Science.gov (United States)

    Posada-Roman, Julio E.; Jackson, David A.; Cole, Mike J.; Garcia-Souto, Jose A.

    2017-12-01

    A multichannel optical fiber laser Doppler vibrometer was demonstrated with the capability of making simultaneous non-contact measurements of impacts at 3 different locations. Two sets of measurements were performed, firstly using small ball bearings (1 mm-5.5 mm) falling under gravity and secondly using small projectiles (1 mm) fired from an extremely high velocity light gas gun (LGG) with speeds in the range 1 km/s-8 km/s. Determination of impact damage is important for industries such as aerospace, military and rail, where the effect of an impact on the structure can result in a major structural damage. To our knowledge the research reported here demonstrates the first trials of a multichannel fiber laser Doppler vibrometer being used to detect hypervelocity impacts.

  20. Hypervelocity impact of tungsten cubes on spaced armour

    International Nuclear Information System (INIS)

    Chandel, Pradeep S; Sood, Dharmanshu; Kumar, Rajeev; Sharma, Prince; Sewak, Bhupinder; Bhardwaj, Vikas; Athwal, Manoj; Mangla, Vikas; Biswas, Ipsita; Singh, Manjit

    2012-01-01

    The paper summarizes the experimental observations and simulation studies of damage potential of tungsten alloy cubes on relatively thin mild steel spaced armour target plates in the velocity regime 1300 – 4000 ms −1 using Two Stage Light Gas Gun technique. The cubes of size 9.5 mm and 12 mm having mass 15 g and 30 g respectively were made to impact normally on three target plates of size 300 mm × 300 mm of thickness 4, 4 and 10 mm at 100 mm distance apart. Flash radiography has been used to image the projectile-target interaction in the nitrogen environment at 300 mbar vacuum at room temperature. The results reveal clear perforation by 9.5 mm cube in all the three target plates up to impact velocity of about 2000 m/s. While 12 mm cube can perforate the spaced armour upto impact velocity of 4000 m/s. This shows that 9.5mm tungsten alloy cube is not effective beyond 2000 m/s while 12 mm tungsten alloy cube can defeat the spaced armour upto 4000 m/s. The simulation studies have been carried out using Autodyn 3D nonlinear code using Lagrange solver at velocities 1200 – 4000 m/s. The simulation results are in good agreement with the experimental findings.

  1. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hereil Pierre-Louis

    2015-01-01

    Full Text Available Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  2. Hypervelocity Dust Impacts in Space and the Laboratory

    Science.gov (United States)

    Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.

  3. On impact fusion

    International Nuclear Information System (INIS)

    Winterberg, F.

    1997-01-01

    Impact fusion is a promising, but much less developed road towards inertial confinement fusion. It offers an excellent solution to the so-called stand-off problem for thermonuclear microexplosions but is confronted with the challenge to accelerate macroscopic particles to the needed high velocities of 10 2 -10 3 km/s. To reach these velocities, two ways have been studied in the past. The electric acceleration of a beam of microparticles, with the particles as small as large clusters, and the magnetic acceleration of gram-size ferromagnetic or superconducting projectiles. For the generation of an intense burst of soft X-rays used for the indirect drive, impact fusion may offer new promising possibilities

  4. Impact radiative fusion concept

    International Nuclear Information System (INIS)

    Yabe, Takashi; Mochizuki, Takayasu.

    1983-01-01

    This letter proposes a new, fascinating ICF scheme. The scheme employs the soft x-ray production by hypervelocity projectiles. The soft x-ray of 10 13 W/cm 2 and 10 nsec duration, which is focusable onto a small sized pellet, can be efficiently produced. (author)

  5. Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon

    Science.gov (United States)

    Hermalyn, B.; Schultz, P. H.

    2011-12-01

    Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging

  6. Plasma and collision processes of hypervelocity meteorite impact in the prehistory of life

    Science.gov (United States)

    Managadze, G.

    2010-07-01

    A new concept is proposed, according to which the plasma and collision processes accompanying hypervelocity impacts of meteorites can contribute to the arising of the conditions on early Earth, which are necessary for the appearance of primary forms of living matter. It was shown that the processes necessary for the emergence of living matter could have started in a plasma torch of meteorite impact and have continued in an impact crater in the case of the arising of the simplest life form. It is generally accepted that planets are the optimal place for the origin and evolution of life. In the process of forming the planetary systems the meteorites, space bodies feeding planet growth, appear around stars. In the process of Earth's formation, meteorite sizes ranged from hundreds and thousands of kilometres. These space bodies consisted mostly of the planetesimals and comet nucleus. During acceleration in Earth's gravitational field they reached hypervelocity and, hitting the surface of planet, generated powerful blowouts of hot plasma in the form of a torch. They also created giant-size craters and dense dust clouds. These bodies were composed of all elements needed for the synthesis of organic compounds, with the content of carbon being up to 5%-15%. A new idea of possible synthesis of the complex organic compounds in the hypervelocity impact-generated plasma torch was proposed and experimentally confirmed. A previously unknown and experimentally corroborated feature of the impact-generated plasma torch allowed a new concept of the prehistory of life to be developed. According to this concept the intensive synthesis of complex organic compounds arose during meteoritic bombardment in the first 0.5 billion years at the stage of the planet's formation. This most powerful and destructive action in Earth's history could have played a key role and prepared conditions for the origin of life. In the interstellar gas-dust clouds, the synthesis of simple organic matter could

  7. Integrity assessment of the spacecraft subjected to the hypervelocity impact by ceramic and metal projectiles simulating space debris and micrometeoroids

    International Nuclear Information System (INIS)

    Katayama, Masahide; Takeba, Atsushi; Nitta, Kumi; Kawakita, Shirou; Matsumoto, Haruhisa; Kitazawa, Yukihito

    2010-01-01

    In order to establish the guidelines for the protection of unmanned spacecrafts from the space debris and micrometeoroid impacts, the experimental and numerical investigations have been conducted at Japan Aerospace Exploration Agency. This paper presents mainly its numerical methodology, especially from the viewpoint of highly non-linear and dynamic material model: i.e. the equation of state, constitutive model and fracture or failure model, including a brittle material model for ceramics and an equation of state for the shock-induced vaporization accompanied by hypervelocity impact. The experimental results of hypervelocity impact by two-stage light-gas gun and plasma drag gun are compared with corresponding numerical simulation results by using a hydrocode, and both results are demonstrated to be overall in good agreement with each other.

  8. Integrity assessment of the spacecraft subjected to the hypervelocity impact by ceramic and metal projectiles simulating space debris and micrometeoroids

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Masahide, E-mail: masahide.katayama@ctc-g.co.jp [Science and Engineering Systems Division, ITOCHU Techno-Solutions, 3-2-5, Kasumigaseki, Chiyoda-ku, Tokyo 100-6080 (Japan); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama-shi, Kanagawa 226-8503 (Japan); Takeba, Atsushi [Science and Engineering Systems Division, ITOCHU Techno-Solutions, 3-2-5, Kasumigaseki, Chiyoda-ku, Tokyo 100-6080 (Japan); Nitta, Kumi; Kawakita, Shirou; Matsumoto, Haruhisa [Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba-city, Ibaraki 305-8505 (Japan); Kitazawa, Yukihito [Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba-city, Ibaraki 305-8505 (Japan); Aero-Engine and Space Operations, IHI Corporation, 3-1-1, Toyosu, Koto-ku, Tokyo 135-8710 (Japan)

    2010-10-15

    In order to establish the guidelines for the protection of unmanned spacecrafts from the space debris and micrometeoroid impacts, the experimental and numerical investigations have been conducted at Japan Aerospace Exploration Agency. This paper presents mainly its numerical methodology, especially from the viewpoint of highly non-linear and dynamic material model: i.e. the equation of state, constitutive model and fracture or failure model, including a brittle material model for ceramics and an equation of state for the shock-induced vaporization accompanied by hypervelocity impact. The experimental results of hypervelocity impact by two-stage light-gas gun and plasma drag gun are compared with corresponding numerical simulation results by using a hydrocode, and both results are demonstrated to be overall in good agreement with each other.

  9. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    Science.gov (United States)

    Xia, Kang; Zhan, Haifei; Hu, De'An; Gu, Yuantong

    2016-09-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.

  10. Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    Science.gov (United States)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.

    1993-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3

  11. A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact

    Science.gov (United States)

    Tancredi, G.; Ishitsuka, J.; Schultz, P. H.; Harris, R. S.; Brown, P.; Revelle, D. O.; Antier, K.; Le Pichon, A.; Rosales, D.; Vidal, E.; Varela, M. E.; Sánchez, L.; Benavente, S.; Bojorquez, J.; Cabezas, D.; Dalmau, A.

    2009-01-01

    On September 15, 2007, a bright fireball was observed and a big explosion was heard by many inhabitants near the southern shore of Lake Titicaca. In the community of Carancas (Peru), a 13.5 m crater and several fragments of a stony meteorite were found close to the site of the impact. The Carancas event is the first impact crater whose formation was directly observed by several witnesses as well as the first unambiguous seismic recording of a crater-forming meteorite impact on Earth. We present several lines of evidence that suggest that the Carancas crater was a hypervelocity impact. An event like this should have not occurred according to the accepted picture of stony meteoroids ablating in the Earth’s atmosphere, therefore it challenges our present models of entry dynamics. We discuss alternatives to explain this particular event. This emphasizes the weakness in the pervasive use of “average” parameters (such as tensile strength, fragmentation behavior and ablation behavior) in current modeling efforts. This underscores the need to examine a full range of possible values for these parameters when drawing general conclusions from models about impact processes.

  12. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-04-01

    A computational approach used for subsurface explosion cratering has been extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for our first computer simulation because it was the most thoroughly studied. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Shoemaker estimates that the impact occurred about 20,000 to 30,000 years ago [Roddy (1977)]. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s. meteorite mass of 1.57E + 08 kg, with a corresponding kinetic energy of 1.88E + 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation a Tillotson equation-of-state description for iron and limestone was used with no shear strength. A color movie based on this calculation was produced using computer-generated graphics. Results obtained for this preliminary calculation of the formation of Meteor Crater, Arizona, are in good agreement with Meteor Crater Measurements

  13. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10 8 kg, with a corresponding kinetic energy of 1.88 x 10 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references

  14. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10/sup 8/ kg, with a corresponding kinetic energy of 1.88 x 10/sup 16/ J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references.

  15. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    Science.gov (United States)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  16. Secondary ion mass spectrometry (SIMS) analysis of hypervelocity microparticle impact sites on LDEF surfaces

    Science.gov (United States)

    Simon, C. G.; Buonaquisti, A. J.; Batchelor, D. A.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, J. J.; Brownlee, D. E.; Best, S. R.

    1995-01-01

    Two dimensional elemental ion maps have been recorded for hundreds of microparticle impact sites and contamination features on LDEF surfaces. Since the majority of the analyzed surfaces were metal-oxide-silicon (MOS) impact detectors from the Interplanetary Dust Experiment, a series of 'standard' and 'blank' analyses of these surfaces are included. Hypervelocity impacts of forsterite olivine microparticles on activated flight sensors served as standards while stylus and pulsed laser simulated 'impacts' served as analytical blanks. Results showed that despite serious contamination issues, impactor residues can be identified in greater than 1/3 of the impact sites. While aluminum oxide particles could not be detected on aluminum surfaces, they were detected on germanium surfaces from row 12. Remnants of manmade debris impactors consisting of paint chips and bits of metal were identified on surfaces from LDEF Rows 3 (west or trailing side), 6 (south), 9 (ram or leading side), 12 (north) and the space end. Higher than expected ratios of manmade microparticle impacts to total microparticle impacts were found on the space end and the trailing side. These results were consistent with time-tagged and time-segregated microparticle impact data from the IDE and other LDEF experiments. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences include pre-, post and inflight deposited surface contaminants as well as indigenous heterogeneous material contaminants. Non-flight contaminations traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF, even on a micro scale. In-flight deposited (low velocity) contaminants include urine droplets and bits of metal film from eroded thermal

  17. Hydrocode modeling of the spallation process during hypervelocity impacts: Implications for the ejection of Martian meteorites

    Science.gov (United States)

    Kurosawa, Kosuke; Okamoto, Takaya; Genda, Hidenori

    2018-02-01

    Hypervelocity ejection of material by impact spallation is considered a plausible mechanism for material exchange between two planetary bodies. We have modeled the spallation process during vertical impacts over a range of impact velocities from 6 to 21 km/s using both grid- and particle-based hydrocode models. The Tillotson equations of state, which are able to treat the nonlinear dependence of density on pressure and thermal pressure in strongly shocked matter, were used to study the hydrodynamic-thermodynamic response after impacts. The effects of material strength and gravitational acceleration were not considered. A two-dimensional time-dependent pressure field within a 1.5-fold projectile radius from the impact point was investigated in cylindrical coordinates to address the generation of spalled material. A resolution test was also performed to reject ejected materials with peak pressures that were too low due to artificial viscosity. The relationship between ejection velocity veject and peak pressure Ppeak was also derived. Our approach shows that "late-stage acceleration" in an ejecta curtain occurs due to the compressible nature of the ejecta, resulting in an ejection velocity that can be higher than the ideal maximum of the resultant particle velocity after passage of a shock wave. We also calculate the ejecta mass that can escape from a planet like Mars (i.e., veject > 5 km/s) that matches the petrographic constraints from Martian meteorites, and which occurs when Ppeak = 30-50 GPa. Although the mass of such ejecta is limited to 0.1-1 wt% of the projectile mass in vertical impacts, this is sufficient for spallation to have been a plausible mechanism for the ejection of Martian meteorites. Finally, we propose that impact spallation is a plausible mechanism for the generation of tektites.

  18. DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization

    Science.gov (United States)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  19. Hypervelocity Impact Test Fragment Modeling: Modifications to the Fragment Rotation Analysis and Lightcurve Code

    Science.gov (United States)

    Gouge, Michael F.

    2011-01-01

    Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.

  20. Production of Prebiotic Molecule Precursors from Hypervelocity Impact Simulation Experiments on Carbonate Sediments

    Science.gov (United States)

    Farcy, B. J.; Grubisic, A.; Li, X.; Pinnick, V. T.; Sutton, M.; Pavlov, A.; Brinckerhoff, W. B.

    2017-12-01

    Organic molecules, including amino acids and other biotic precursors, have been shown to form in the cooling and expanding plasma plume generated from hypervelocity impacts through the processes of atomization, ionization, and molecular recombination of impactor and impact surface. Various sources of carbon, such as atmospheric methane and carbonaceous material from meteorites, are known to yield cyano-bearing molecules and simple amino acids from impact plasmas. However, the role of mineralogical carbon has not yet been investigated in this process. We have performed experiments using laser ablation mass spectrometry (LA-MS) to study the negative ion yield of plasma-produced prebiotic molecules. A mixture of 10% NH4Cl and 90% CaCO3 was pressed into a pellet and ablated with a 1064 nm Nd:YAG laser, and the resultant negative ions were measured by a plasma analyzer quadrupole MS. Mass spectra show characteristic peaks at m/z = 26 and m/z = 42, indicating the presence of CN- and CNO- ions. When isotopically labeled 15NH4Cl and Ca13CO3 were used in the sample ablation pellet, the purported CN- and CNO- peaks shifted according to their added isotopic mass. Indeed, comparison of resulting ion formation from momentum-based techniques, such as massive cluster secondary ion mass spectrometry, show comparable fragmentation and recombination of CN- and CNO- ions. These findings show that CN- ions, as well as CN radicals and thus HCN, can be formed during meteoritic bombardment of carbonate minerals. During the late heavy bombardment of the earth from 4.1-3.8 Ga, impact-driven chemistry could have played a dominant role in shaping the earth's early prebiotic inventory and sources of chemical energy. As carbonate sediments are common in the Archean, carbonate deposits are most likely an important contributor of carbon for this process, along with atmospheric and meteoritic carbon sources.

  1. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    Science.gov (United States)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in

  2. Development of a Numerical Model of Hypervelocity Impact into a Pressurized Composite Overwrapped Pressure Vessel

    Science.gov (United States)

    Garcia, M. A.; Davis, B. A.; Miller, J. E.

    2017-01-01

    considered a catastrophic failure. This assumption is conservative and made due to lack of knowledge on the level of allow-able damage to the composite overwrap that can be sustained and still allow successful completion of the mission. To quantify the allowable damage level to the composite overwrap involves assessing stress redistribution following damage as well as evaluating possible time-dependent mechanisms involved in the COPV response to an impact event. Limited published work in this subject has shown that COPV can withstand at least some level of damage due to high energy impacts. These observations have been confirmed and expanded upon in recent experimental research performed by NASA. This research has demonstrated that there is not only robustness in a COPV to compensate for CFRP damage, but has also identified two significant failure modes for pressurized COPV. The lowest threshold failure mode involves the perforation of the vessel, and the highest threshold failure mode is the catastrophic rupture. While both of these failure modes mean a loss of the COPV, system robustness affords some tolerance to the venting as opposed to the more catastrophic rupture. As a consequence, it is necessary to understand the conditions that result in the transition between these failure modes. The aforementioned experimental research has been performed in both the unpressurized and pressurized condition to identify the damage level that triggered the failure thresh-old. This COPV test program was sponsored by the NASA Engineering and Safety Center (NESC), and tests were performed at NASA White Sands Test Facility (WSTF). Planning and coordination were provided by NASA JSC Hypervelocity Impact Technology (HVIT) group, and the COPVs were provided by the ISS Program. Unpressurized testing has been conducted at the pressure of the vacuum test chamber, while, the pressurized testing has been conducted at 290 +/- 10 bar (4,200 ? 100 psi) using nitrogen as the pressurizing gas, which

  3. Numerical investigations on pressurized AL-composite vessel response to hypervelocity impacts: Comparison between experimental works and a numerical code

    Directory of Open Access Journals (Sweden)

    Mespoulet Jérôme

    2015-01-01

    Full Text Available Response of pressurized composite-Al vessels to hypervelocity impact of aluminum spheres have been numerically investigated to evaluate the influence of initial pressure on the vulnerability of these vessels. Investigated tanks are carbon-fiber overwrapped prestressed Al vessels. Explored internal air pressure ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from experiments (Xray radiographies, particle velocity measurement and post-mortem vessels have been compared to numerical results given from LS-DYNA ALE-Lagrange-SPH full coupling models. Simulations exhibit an under estimation in term of debris cloud evolution and shock wave propagation in pressurized air but main modes of damage/rupture on the vessels given by simulations are coherent with post-mortem recovered vessels from experiments. First results of this numerical work are promising and further simulation investigations with additional experimental data will be done to increase the reliability of the simulation model. The final aim of this crossed work is to numerically explore a wide range of impact conditions (impact angle, projectile weight, impact velocity, initial pressure that cannot be explore experimentally. Those whole results will define a rule of thumbs for the definition of a vulnerability analytical model for a given pressurized vessel.

  4. Influence of different gaps among the split targets with gradient potential to the discharge effects generated by hypervelocity impact

    Science.gov (United States)

    Tang, Enling; Zhao, Liangliang; Han, Yafei; Zhang, Qingming; Wang, Ruizhi; He, Liping; Liu, Shuhua

    2018-04-01

    Due to the actual situation of spacecraft surface' charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane), respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low-potential target by forming

  5. Influence of different gaps among the split targets with gradient potential to the discharge effects generated by hypervelocity impact

    Directory of Open Access Journals (Sweden)

    Enling Tang

    2018-04-01

    Full Text Available Due to the actual situation of spacecraft surface’ charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane, respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low

  6. First Principles Based Reactive Atomistic Simulations to Understand the Effects of Molecular Hypervelocity Impact on Cassini's Ion and Neutral Mass Spectrometer

    Science.gov (United States)

    Jaramillo-Botero, A.; Cheng, M-J; Cvicek, V.; Beegle, Luther W.; Hodyss, R.; Goddard, W. A., III

    2011-01-01

    We report here on the predicted impact of species such as ice-water, CO2, CH4, and NH3, on oxidized titanium, as well as HC species on diamond surfaces. These simulations provide the dynamics of product distributions during and after a hypervelocity impact event, ionization fractions, and dissociation probabilities for the various species of interest as a function of impact velocity (energy). We are using these results to determine the relevance of the fragmentation process to Cassini INMS results, and to quantify its effects on the observed spectra.

  7. Characterizing Hypervelocity Impact (HVI-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear

    Directory of Open Access Journals (Sweden)

    Menglong Liu

    2017-05-01

    Full Text Available Hypervelocity impact (HVI, ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region, a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation, which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence.

  8. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B. C.; Melosh, H. J. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Thebault, P. [LESIA, Observatoire de Paris, F-92195 Meudon Principal Cedex (France); Henning, W. G. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Gaidos, E. [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Elkins-Tanton, L. T. [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Bridges, J. C. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Morlok, A., E-mail: johns477@purdue.edu [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2012-12-10

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10{sup 19} kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at {approx}6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that {approx}10{sup 47} molecules of SiO vapor are needed to explain an emission feature at {approx}8 {mu}m in the Spitzer IRS spectrum of HD 172555. We find that unless there are {approx}10{sup 48} atoms or 0.05 M{sub Circled-Plus} of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the {approx}8 {mu}m feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  9. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    International Nuclear Information System (INIS)

    Johnson, B. C.; Melosh, H. J.; Lisse, C. M.; Chen, C. H.; Wyatt, M. C.; Thebault, P.; Henning, W. G.; Gaidos, E.; Elkins-Tanton, L. T.; Bridges, J. C.; Morlok, A.

    2012-01-01

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10 19 kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at ∼6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that ∼10 47 molecules of SiO vapor are needed to explain an emission feature at ∼8 μm in the Spitzer IRS spectrum of HD 172555. We find that unless there are ∼10 48 atoms or 0.05 M ⊕ of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the ∼8 μm feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  10. Excess of L-Alanine in Amino Acids Synthesized in a Plasma Torch Generated by a Hypervelocity Meteorite Impact Reproduced in the Laboratory

    Science.gov (United States)

    Managadze, George G.; Engle, Michael H.; Getty, Stephanie A.; Wurz, Peter; Brinckerhoff, William B.; Shokolov, Anatoly; Sholin, Gennady; Terent'ev, Sergey A.; Chumikov, Alexander E.; Skalkin, Alexander S

    2016-01-01

    We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

  11. Hypervelocity dust particle impacts observed by the Giotto Magnetometer and Plasma Experiments

    OpenAIRE

    Neubauer, F. M.; Glassmeier, K. H.; Coates, A. J.; Goldstein, R.; Acuña, M. H.; Musmann, G.

    1990-01-01

    We report thirteen very short events in the magnetic field of the inner magnetic pile‐up region of comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cemetery dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events ...

  12. Impact of Flight Enthalpy, Fuel Simulant, and Chemical Reactions on the Mixing Characteristics of Several Injectors at Hypervelocity Flow Conditions

    Science.gov (United States)

    Drozda, Tomasz G.; Baurle, Robert A.; Drummond, J. Philip

    2016-01-01

    conditions. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared to the values obtained from RAS under the true enthalpy conditions and using helium and hydrogen. Finally, the impact of combustion on mixing, often deemed small enough to neglect at hypervelocity conditions, is assessed by comparing the results obtained from the hydrogen-fueled reacting and non-reacting RAS. For reacting flows, in addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also considered. In all of the simulations, the incoming air Mach number and the fuel-to-air ratio are the same, while the total pressure, total enthalpy, and the fuel simulant vary depending on the case considered. It is found that under some conditions the "cold" flow experiments are a good approximation of the flight.

  13. Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments

    International Nuclear Information System (INIS)

    Neubauer, F.M.; Glassmeier, K.H.; Goldstein, R.; Acuna, M.H.; Musmann, G.; Coates, A.J.

    1990-01-01

    The authors report thirteen very short events in the magnetic field of the inner magnetic pile-up region of comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cometary dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events derived from spacecraft attitude perturbations by the Giotto camera [Curdt and Keller, private communication]. Their characteristic shape generally involves a sudden decrease in magnetic field magnitude, a subsequent overshoot beyond initial field values and an asymptotic approach to the initial field somewhat reminiscent of the magnetic field signature after the AMPTE releases in the solar wind. These observations give a new way of analyzing ultra-fast dust particles incident on a spacecraft

  14. Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments

    Science.gov (United States)

    Neubauer, F. M.; Glassmeier, K.-H.; Coates, A. J.; Goldstein, R.; Acuna, M. H.

    1990-01-01

    This paper describes 13 very short events in the magnetic field of the inner magnetic pile-up region of Comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cometary dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events derived from spacecraft attitude perturbations by the Giotto camera. Their characteristic shape generally involves a sudden decrease in magnetic-field magnitude, a subsequent overshoot beyond initial field values, and an asymptotic approach to the initial field (somewhat reminiscent of the magnetic-field signature after the AMPTE releases in the solar wind). These observations give a new way of analyzing ultra-fast dust particles incident on a spacecraft.

  15. Risk Assessment of Cassini Sun Sensor Integrity Due to Hypervelocity Impact of Saturn Dust Particles

    Science.gov (United States)

    Lee, Allan Y.

    2016-01-01

    A sophisticated interplanetary spacecraft, Cassini is one of the heaviest and most sophisticated interplanetary spacecraft humans have ever built and launched. Since achieving orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for first and second extended missions through September 2017. In late 2016, the Cassini spacecraft will begin a daring set of ballistic orbits that will hop the rings and dive between the upper atmosphere of Saturn and its innermost D-ring twenty-two times. The "dusty" environment of the inner D-ring region the spacecraft must fly through is hazardous because of the possible damage that dust particles, travelling at speeds as high as 31.4 km/s, can do to spacecraft hardware. During hazardous proximal ring-plane crossings, the Cassini mission operation team plans to point the high-gain antenna to the RAM vector in order to protect most of spacecraft instruments from the incoming energetic ring dust particles. However, this particular spacecraft attitude will expose two Sun sensors (that are mounted on the antenna dish) to the incoming dust particles. High-velocity impacts on the Sun sensor cover glass might penetrate the 2.54-mm glass cover of the Sun sensor. Even without penetration damage, craters created by these impacts on the surface of the cover glass will degrade the transmissibility of light through it. Apart from being directly impacted by the dust particles, the Sun sensors are also threatened by some fraction of ricochet ejecta that are produced by dust particle impacts on the large antenna dish (made of graphite fiber epoxy composite material). Finally, the spacecraft attitude control system must cope with disturbances due to both the translational and angular impulses imparted on the large antenna dish and the long magnetometer boom by the incoming high-velocity projectiles. Analyses performed to quantify the risks the Sun sensors must contend

  16. Two-stage light-gas magnetoplasma accelerator for hypervelocity impact simulation

    International Nuclear Information System (INIS)

    Khramtsov, P P; Vasetskij, V A; Makhnach, A I; Grishenko, V M; Chernik, M Yu; Shikh, I A; Doroshko, M V

    2016-01-01

    The development of macroparticles acceleration methods for high-speed impact simulation in a laboratory is an actual problem due to increasing of space flights duration and necessity of providing adequate spacecraft protection against micrometeoroid and space debris impacts. This paper presents results of experimental study of a two-stage light- gas magnetoplasma launcher for acceleration of a macroparticle, in which a coaxial plasma accelerator creates a shock wave in a high-pressure channel filled with light gas. Graphite and steel spheres with diameter of 2.5-4 mm were used as a projectile and were accelerated to the speed of 0.8-4.8 km/s. A launching of particle occurred in vacuum. For projectile velocity control the speed measuring method was developed. The error of this metod does not exceed 5%. The process of projectile flight from the barrel and the process of a particle collision with a target were registered by use of high-speed camera. The results of projectile collision with elements of meteoroid shielding are presented. In order to increase the projectile velocity, the high-pressure channel should be filled with hydrogen. However, we used helium in our experiments for safety reasons. Therefore, we can expect that the range of mass and velocity of the accelerated particles can be extended by use of hydrogen as an accelerating gas. (paper)

  17. Two-stage light-gas magnetoplasma accelerator for hypervelocity impact simulation

    Science.gov (United States)

    Khramtsov, P. P.; Vasetskij, V. A.; Makhnach, A. I.; Grishenko, V. M.; Chernik, M. Yu; Shikh, I. A.; Doroshko, M. V.

    2016-11-01

    The development of macroparticles acceleration methods for high-speed impact simulation in a laboratory is an actual problem due to increasing of space flights duration and necessity of providing adequate spacecraft protection against micrometeoroid and space debris impacts. This paper presents results of experimental study of a two-stage light- gas magnetoplasma launcher for acceleration of a macroparticle, in which a coaxial plasma accelerator creates a shock wave in a high-pressure channel filled with light gas. Graphite and steel spheres with diameter of 2.5-4 mm were used as a projectile and were accelerated to the speed of 0.8-4.8 km/s. A launching of particle occurred in vacuum. For projectile velocity control the speed measuring method was developed. The error of this metod does not exceed 5%. The process of projectile flight from the barrel and the process of a particle collision with a target were registered by use of high-speed camera. The results of projectile collision with elements of meteoroid shielding are presented. In order to increase the projectile velocity, the high-pressure channel should be filled with hydrogen. However, we used helium in our experiments for safety reasons. Therefore, we can expect that the range of mass and velocity of the accelerated particles can be extended by use of hydrogen as an accelerating gas.

  18. Hypervelocity Impact Testing of Materials for Additive Construction: Applications on Earth, the Moon, and Mars

    Science.gov (United States)

    Ordonez, Erick; Edmunson, Jennifer; Fiske, Michael; Christiansen, Eric; Miller, Josh; Davis, Bruce Alan; Read, Jon; Johnston, Mallory; Fikes, John

    2017-01-01

    Additive Construction is the process of building infrastructure such as habitats, garages, roads, berms, etcetera layer by layer (3D printing). The National Aeronautics and Space Administration (NASA) and the United States Army Corps of Engineers (USACE) are pursuing additive construction to build structures using resources available in-situ. Using materials available in-situ reduces the cost of planetary missions and operations in theater. The NASA team is investigating multiple binders that can be produced on planetary surfaces, including the magnesium oxide-based Sorel cement; the components required to make Ordinary Portland Cement (OPC), the common cement used on Earth, have been found on Mars. The availability of OPC-based concrete on Earth drove the USACE to pursue additive construction for base housing and barriers for military operations. Planetary and military base structures must be capable of resisting micrometeoroid impacts with velocities ranging from 11 to 72km/s for particle sizes 200 micrometers or more (depending on protection requirements) as well as bullets and shrapnel with a velocity of 1.036km/s with projectiles 5.66mm diameter and 57.40mm in length, respectively.

  19. Recent Representative IAT Studies in Hypervelocity Penetration Mechanics With Bibliographies

    National Research Council Canada - National Science Library

    Reinecke, W

    2002-01-01

    .... The IAT's investigations are experimental, analytical, and numerical and are concerned primarily with slender rods impacting armor steel and ceramic targets at hypervelocity that is, above about two km...

  20. Investigation of electromagnetic launcher behavior for impact fusion. Annual report, July 1, 1983-May 1, 1984

    International Nuclear Information System (INIS)

    Thio, Y.C.

    1984-06-01

    A program to develop an ultrahigh velocity accelerator (SUVAC), based on the electromagnetic railgun accelerator concept and sponsored by the US Department of Energy, has been initiated at Westinghouse R and D Center. The program involves the construction over a 4-year period (July 1983 to June 1987) of a multi-stage railgun accelerator which has the potential of accelerating a 1-g projectile to about 30 km/s (Mach 100). The scientific objective of the program is to use the accelerator so built as the experimental apparatus to investigate the potential technical problems of accelerating macroparticles to velocity presently thought to be required to produce impact fusion. The program is part of a joint program with the University of Washington to develop the scientific and technological basis to achieve controlled thermonuclear fusion by hypervelocity impact. This report summarizes the progress made in the first year of the program. It covers work done for the period July 1, 1983 to May 1, 1984

  1. Impact fusion with a segmented rail gun

    International Nuclear Information System (INIS)

    Muller, R.A.; Garwin, R.L.; Richter, B.

    1979-01-01

    The basic rail gun equations are reviewed. The delivery of E = 1 megajoule in dt = 10 nanoseconds, with a specific energy of 20 MJ/g (i.e., a bullet mass of 0.05 g) is considered. These values are taken from the requirements being considered for heavy-ion fusion. Using these numbers, we can solve immediately for the final particle velocity u/sub f/ from E = 1/2 mu/sub f/ 2 to get u/sub f/ = 200 km/sec. For a delivery time of 10 nanoseconds, this velocity implies that the projectile length is about 2 mm. Impact fusion is feasible because of the coincidence that a bullet with all dimensions roughly 2 mm has the required mass

  2. Possible application of electromagnetic guns to impact fusion

    Science.gov (United States)

    Kostoff, R. N.; Peaslee, A. T., Jr.; Ribe, F. L.

    1982-01-01

    The possible application of electromagnetic guns to impact fusion for the generation of electric power is discussed, and advantages of impact fusion over the more conventional inertial confinement fusion concepts are examined. It is shown that impact fusion can achieve the necessary high yields, of the order of a few gigajoules, which are difficult to achieve with lasers except at unrealistically high target gains. The rail gun accelerator is well adapted to the delivery of some 10-100 megajoules of energy to the fusion target, and the electrical technology involved is relatively simple: inductive storage or rotating machinery and capacitors. It is concluded that the rail gun has the potential of developing into an impact fusion macroparticle accelerator.

  3. Economic effect of fusion in energy market. Economic impact of fusion deployment in energy market

    International Nuclear Information System (INIS)

    Konishi, Satoshi

    2002-01-01

    Energy model analysis estimates the significant contribution of fusion in the latter half of the century under the global environment constraints if it will be successfully developed and introduced into the market. The total possible economical impact of fusion is investigated from the aspect of energy cost savings, sales, and its effects on Gross Domestic Products. Considerable economical possibility will be found in the markets for fusion related devices, of currently developing countries, and for synthesized fuel. The value of fusion development could be evaluated from these possible economic impact in comparison with its necessary investment. (author)

  4. The electromagnetic rocket gun impact fusion driver

    International Nuclear Information System (INIS)

    Winterberg, F.

    1984-01-01

    A macroparticle accelerator to be used as an impact fusion driver is discussed and which can accelerate a small projectile to --200 km/sec over a distance of a few 100 meters. The driver which we have named electromagnetic rocket gun, accelerates a small rocket-like projectile by a travelling magnetic wave. The rocket propellant not only serves as a sink to absorb the heat produced in the projectile by resistive energy losses, but at the same time is also the source of additional thrust through the heating of the propellant to high temperatures by the travelling magnetic wave. The total thrust on the projectile is the sum of the magnetic and recoil forces. In comparison to a rocket, the efficiency is here much larger, with the momentum transferred to the gun barrel of the gun rather than to a tenuous jet. (author)

  5. Hypervelocity Impact: Proceedings of the 1992 Symposium Held in Austin, Texas on 17-19 November 1992

    Science.gov (United States)

    1993-10-01

    hardening of the impact surface. The metals, copper and aluminum, are both represented in a wealth of impact data obtained in macroscopic impacts at...both theoretical and computational modeling of deformation physics. We have obtained a wealth of impact data in the form of cratered targets, many still...Lawrence Livermore National Laboratory Nellis, William J. Lawrence Livermore Naitonal Laboratory Normandia, Dr. Michael J. Kaman Sciences Corporation

  6. The intact capture of hypervelocity dust particles using underdense foams

    Science.gov (United States)

    Maag, Carl R.; Borg, J.; Tanner, William G.; Stevenson, T. J.; Bibring, J.-P.

    1994-01-01

    probability of survival for the impacting particle. The primary objectives of the experiment are to (1) Examine the morphology of primary and secondary hypervelocity impact craters. Primary attention will be paid to craters caused by ejecta during hypervelocity impacts of different substrates. (2) Determine the size distribution of ejecta by means of witness plates and collect fragments of ejecta from craters by means of momentum-sensitive mcropore foam. (3) Assess the directionality of the flux by means of penetration-hole alignment of thin films placed above the cells. (4) Capture intact the particles that perforated the thin film and entered the cell. Capture media consisted of both previously flight-tested micropore foams and aerogel. The foams had different latent heats of fusion and, accordingly, will capture particles over a range of momenta. Aerogel was incorporated into the cells to determine the minimum diameter than can be captured intact.

  7. Survival of organic materials in hypervelocity impacts of ice on sand, ice, and water in the laboratory.

    Science.gov (United States)

    Burchell, Mark J; Bowden, Stephen A; Cole, Michael; Price, Mark C; Parnell, John

    2014-06-01

    The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ~2 and ~4 km s(-1) at targets that included water ice, water, and sand. This involved shock pressures in the range of 2-12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9 km s(-1) and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies.

  8. Novel diagnostics for dust in space, Laboratory and fusion plasmas

    International Nuclear Information System (INIS)

    Castaldo, C.

    2011-01-01

    In situ diagnostics for mobile dust, based on dust impact ionization phenomena, as well as silica aerogel dust collectors are discussed for applications to space and fusion plasmas. The feasibility of an electro-optical probe to detect hypervelocity (>1 km/s) dust particles in tokamaks is evaluated. For quiescent plasmas, a diagnostic of submicron dust based on measurements of plasma fluctuation spectra can be used (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. The impact of physics assumptions on fusion economics

    International Nuclear Information System (INIS)

    Ward, D.; Cook, I.; Knight, P.J.

    2001-01-01

    The development of fusion promises a long term supply of energy with widespread resources and good safety and environmental properties. However the introduction of fusion into the future energy market will rely on the development of an economically viable fusion power plant. Although predictions of the likely cost of electricity produced by a future fusion power plant are uncertain, it is important that an assessment is made to ensure that the likely economics are not unreasonable. In this paper the impact of different physics (and other) constraints on the economics of fusion is considered. Comparison with the expected future cost of electricity from other sources must take account of the trends in the energy market, particularly at present towards sources with low external costs related to impact on human health and the natural environment. Although these costs depend on the country concerned, a range of expected future costs can be derived. Comparison with the expected range of fusion costs shows that fusion can contribute to the future energy market. (author)

  10. Effects of waste management on the impact of fusion power

    International Nuclear Information System (INIS)

    Botts, T.; Powell, J.

    1978-01-01

    Throughputs and inventories of radioactive materials that would have to be managed by a country whose primary form of electrical generation is fusion are estimated. Whole body dose rates for the entire population due to normal and off-normal incidents are calculated. For the case of equilibrium systems, two fusion cases are compared to an advanced fission power case. Comparisons are made for various stages of the fuel cycle and activated materials cycles. Fission reactor radiological impact is dominated by fuel reprocessing facility releases. These releases will decrease significantly if methods of containing 85 Kr are implemented. Tritium releases during normal plant operations comprise most of the radiologic impact for both fusion cases. Total dose rates are estimated to be roughly two orders of magnitude lower for fusion than for fission reactors

  11. Occupational doses and impact on fusion economics

    International Nuclear Information System (INIS)

    Mustoe, J.; Currie, I.D.; Frias, M. Pascual

    2001-01-01

    As part of the SEAFP-99 programme, water cooled and helium cooled fusion power plant design concepts were assessed with regard to occupational doses and related availability and operating costs. Different design and management measures to reduce occupational doses were considered. This task assessed the existing designs and proposed extensions or changes, where required. For each significant contributor, possible methods were specified which could reduce the operator dose and outage time. Where this was the case expected; costs or savings incurred by the improvement were estimated. Overall, the use of a system to remove particulate corrosion product activity from the primary coolant was considered essential for the water-cooled variant. In addition, application of the most up-to-date ALARA techniques could make the estimated dose for the water-cooled conceptual design appreciably lower than earlier estimated. It was concluded that the water cooled conceptual design could meet the project design target for occupational dose of 0.7 p-Sv per GW(e). A survey of occupational doses from the UK AGR plants was also carried out. From this, it is judged that the helium cooled fusion plant conceptual design could meet the project design target for occupational dose of 0.7 p-Sv per GW(e) without the need for additional plant to reduce primary coolant activity levels

  12. Exploratory investigations of hypervelocity intact capture spectroscopy

    Science.gov (United States)

    Tsou, P.; Griffiths, D. J.

    1993-01-01

    The ability to capture hypervelocity projectiles intact opens a new technique available for hypervelocity research. A determination of the reactions taking place between the projectile and the capture medium during the process of intact capture is extremely important to an understanding of the intact capture phenomenon, to improving the capture technique, and to developing a theory describing the phenomenon. The intact capture of hypervelocity projectiles by underdense media generates spectra, characteristic of the material species of projectile and capture medium involved. Initial exploratory results into real-time characterization of hypervelocity intact capture techniques by spectroscopy include ultra-violet and visible spectra obtained by use of reflecting gratings, transmitting gratings, and prisms, and recorded by photographic and electronic means. Spectrometry proved to be a valuable real-time diagnostic tool for hypervelocity intact capture events, offering understanding of the interactions of the projectile and the capture medium during the initial period and providing information not obtainable by other characterizations. Preliminary results and analyses of spectra produced by the intact capture of hypervelocity aluminum spheres in polyethylene (PE), polystyrene (PS), and polyurethane (PU) foams are presented. Included are tentative emission species identifications, as well as gray body temperatures produced in the intact capture process.

  13. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  14. Simple light gas guns for hypervelocity studies

    International Nuclear Information System (INIS)

    Combs, S.K.; Haselton, H.H.; Milora, S.L.

    1990-01-01

    Two-stage light guns are used extensively in hypervelocity research. The applications of this technology include impact studies and special materials development. Oak Ridge National Laboratory (ORNL) has developed two-stage guns that accelerate small projectiles (4-mm nominal diameter) to velocities of up to ∼5 km/s. These guns are relatively small and simple (thus, easy to operate), allowing a significant number of test shots to be carried out and data accumulated in a short time. Materials that have been used for projectiles include plastics, frozen isotopes of hydrogen, and lithium hydride. One gun has been used to demonstrate repetitive operation at a rate of 0.7 Hz; and, with a few design improvements, it appears capable of performing at firing frequencies of 1--2 Hz. A schematic of ORNL two-stage device is shown below. Unlike most such devices, no rupture disks are used. Instead, a fast valve (high-flow type) initiates the acceleration process in the first stage. Projectiles can be loaded into the gun breech via the slide mechanism; this action has been automated which allows repetitive firing. Alternatively, the device is equipped with ''pipe gun'' apparatus in which gas can be frozen in situ in the gun barrel to form the projectile. This equipment operates with high reliability and is well suited for small-scale testing at high velocity. 17 refs., 6 figs., 2 tabs

  15. Numerical studies of deuterium-tritium ignition in impact-fusion targets

    International Nuclear Information System (INIS)

    Zubrin, R.M.; Ribe, F.L.

    1989-01-01

    A numerical one-dimensional solution of the Euler equations for an imploding spherical tungsten shell with internal deuterium-tritium gas is applied to study impact-fusion dynamics with parameters of fusion reactor relevance. Thermal conduction and radiative energy loss by the plasma are taken into account, as is heating by fusion generated alpha particles. A variety of target sizes and impact velocities are examined, and scaling laws for fusion yields are deduced which define possible parameters for conceptual commercial impact-fusion power reactors. It is found that shell energies and velocities of about 30 MJ and 110 km/s would be satisfactory. A commercial impact-fusion reactor based on such parameters is discussed

  16. Hyvax: A hypervelocity railgun experiment

    International Nuclear Information System (INIS)

    Parker, J.V.; Cummings, C.E.; Parsons, W.M.; Peterson, D.R.

    1983-01-01

    The experiment is designed to utilize an existing 1.89 MJ, 20 kV capacitor bark which is configured as 7 independent modules which each store 270 kJ. Projectile size is a compromise between low mass and the desire to maintain a bore diameter which is characteristic of future hypervelocity railguns. The predicted performance for this design, assuming a net driving force of 80 percent theoretical, is 23.9 km/sec with an overall efficiency of 18.4 percent. The average driving current is about 480 kA; rising from 380 kA in the first stage to 560 kA in the last stage. The projectile will be injected at 0.5 km/sec using a helium driven injector. The planned diagnostics for the railgun include voltage and current at each stage, muzzle voltage, and magnetic loop position probes at 20 locations along the barrel. Altogether 38 channels of data will be recorded on a CAMAC-based transient digitizer system. Data will be read out by a dedicated microprocessor and processed to obtain position velocity, acceleration and driving force as a function of time. In addition, a number of diagnostics will be mounted on the experimental chamber including; an x-ray shadowgraph system to look for projectile damage and to determine if the projectile is tumbling, foil switches for an independent velocity measurement, and a plasma density probe to evaluate the efficacy of various muzzle flash suppression schemes. At the present time the railgun barrel is being assembled and installed in the capacitor bank facility. We anticipate testing the first two stages in June and the full railgun in July. An experimental program of 30 shots is planned for the period July-September

  17. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  18. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalick, S.; Jansen, P.; Kessler, G.; Klumpp, P.

    1980-08-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  19. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.

    1980-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrides are coupled to the breeders. The results also indicate that from a resource standpaint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  20. Impact of fusion-fission hybrids on world nuclear future

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Jansen, P.; Kessler, G.; Klumpp, P.

    1981-01-01

    An investigation has been conducted to examine the impact of fusion-fission hybrids on world nuclear future. The primary objectives of this investigation have been: (1) to determine whether hybrids can allow us to meet the projected nuclear component of the world energy demand within current estimates of uranium resources with or without fast breeders, and (2) to identify the preferred hybrid concept from a resource standpoint. The results indicate that hybrids have the potential to lower the world uranium demand to values well below the resource base. However, the time window for hybrid introduction is quite near and narrow (2000-2020). If historical market penetration rates are assumed, the demand will not be met within the resource base unless hybrids are coupled to the breeders. The results also indicate that from a resource standpoint hybrids which breed their own tritium and have a low blanket energy multiplication are preferable. (orig.) [de

  1. Overview of systems requirements for impact fusion power

    International Nuclear Information System (INIS)

    Williams, J.M.; Booth, L.A.; Krakowski, R.A.

    1979-01-01

    The development of impact fusion power reactor concepts is very limited at this time. Key systems factors in arriving at practical concepts will be conception of credible systems and subsystems which promise an acceptable overall energy balance and development of target/projectile designs and gain versus projectile energy curves which allow system design tradeoffs to be accomplished. Important system parameters will be subsystem efficiencies (particularly the accelerator), target/projectile gain as a function of target design, circulating power fraction or engineering gain, system pulse repetition rate, size/cost scaling of components, containment cavity design limits, maximum yield, minimum economical yield, minimum projectile velocity and energy, and overall economics. When more detailed conceptual designs are available, then system tradeoffs and performance optimization will be possible

  2. Generation of sub-gigabar-pressure shocks by a hyper-velocity impact in the collider driven by laser-induced cavity pressure

    Science.gov (United States)

    Badziak, J.; Kucharik, M.; Liska, R.

    2018-02-01

    The generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. The dependence of parameters of the shock generated in the target by the impact of a gold projectile on the impacted target material and the laser driver energy is examined. It is found that both in case of low-density (CH, Al) and high-density (Au, Cu) solid targets the shock pressures in the sub-Gbar range can be produced in the LICPA-driven collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10 - 20 %, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.

  3. Impact of fluorescent protein fusions on the bacterial flagellar motor

    NARCIS (Netherlands)

    Heo, M.; Nord, A. L.; Chamousset, D.; van Rijn, E.; Beaumont, H.J.E.; Pedaci, F.

    2017-01-01

    Fluorescent fusion proteins open a direct and unique window onto protein function. However, they also introduce the risk of perturbation of the function of the native protein. Successful applications of fluorescent fusions therefore rely on a careful assessment and minimization of the side

  4. Dynamic evaluation of environmental impact due to tritium accidental release from the fusion reactor

    International Nuclear Information System (INIS)

    Nie, Baojie; Ni, Muyi; Jiang, Jieqiong; Wu, Yican

    2015-01-01

    As one of the key safety issues of fusion reactors, tritium environmental impact of fusion accidents has attracted great attention. In this work, the dynamic tritium concentrations in the air and human body were evaluated on the time scale based on accidental release scenarios under the extreme environmental conditions. The radiation dose through various exposure pathways was assessed to find out the potential relationships among them. Based on this work, the limits of HT and HTO release amount for arbitrary accidents were proposed for the fusion reactor according to dose limit of ITER. The dynamic results aim to give practical guidance for establishment of fusion emergency standard and design of fusion tritium system. - Highlights: • Dynamic tritium concentration in the air and human body evaluated on the time scale. • Different intake forms and relevant radiation dose assessed to find out the potential relationships. • HT and HTO release amount limits for arbitrary accidents proposed for the fusion reactor according to dose limit

  5. Systems-design and energy-balance considerations for impact fusion

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.

    1979-01-01

    Areas of concern and potential problems for impact fusion are qualitatively considered within an overall systems context. A parametric and qualitative description of the general energy balance and systems considerations for an Impact Fusion Reactor (IFR) design is discussed. Reactor systems design considerations for an IFR are presented. An attempt to assess the IFR viability is made based on highly simplified but limiting projectile-target energy balances and thermonuclear burn models

  6. Impact of fluorescent protein fusions on the bacterial flagellar motor.

    Science.gov (United States)

    Heo, M; Nord, A L; Chamousset, D; van Rijn, E; Beaumont, H J E; Pedaci, F

    2017-10-03

    Fluorescent fusion proteins open a direct and unique window onto protein function. However, they also introduce the risk of perturbation of the function of the native protein. Successful applications of fluorescent fusions therefore rely on a careful assessment and minimization of the side effects, but such insight is still lacking for many applications. This is particularly relevant in the study of the internal dynamics of motor proteins, where both the chemical and mechanical reaction coordinates can be affected. Fluorescent proteins fused to the stator of the Bacterial Flagellar Motor (BFM) have previously been used to unveil the motor subunit dynamics. Here we report the effects on single motors of three fluorescent proteins fused to the stators, all of which altered BFM behavior. The torque generated by individual stators was reduced while their stoichiometry remained unaffected. MotB fusions decreased the switching frequency and induced a novel bias-dependent asymmetry in the speed in the two directions. These effects could be mitigated by inserting a linker at the fusion point. These findings provide a quantitative account of the effects of fluorescent fusions to the stator on BFM dynamics and their alleviation- new insights that advance the use of fluorescent fusions to probe the dynamics of protein complexes.

  7. DebriSat Hypervelocity Impact Test

    Science.gov (United States)

    2015-08-01

    public release; distribution unlimited.  Targets: Scaled Multishock Shield, DebrisLV, and DebriSat  500-600 g hollow aluminum and nylon projectile... insulation . DebriSat’s internal components were structurally similar to real flight hardware but were nonfunctional. AEDC-TR-15-S-2 6...structures with an AL 5052 honeycomb core and M55J carbon fiber face sheets. The basic system characteristics of the DebriSat are given in Table 1

  8. Dynamic evaluation of environmental impact due to tritium accidental release from the fusion reactor.

    Science.gov (United States)

    Nie, Baojie; Ni, Muyi; Jiang, Jieqiong; Wu, Yican

    2015-10-01

    As one of the key safety issues of fusion reactors, tritium environmental impact of fusion accidents has attracted great attention. In this work, the dynamic tritium concentrations in the air and human body were evaluated on the time scale based on accidental release scenarios under the extreme environmental conditions. The radiation dose through various exposure pathways was assessed to find out the potential relationships among them. Based on this work, the limits of HT and HTO release amount for arbitrary accidents were proposed for the fusion reactor according to dose limit of ITER. The dynamic results aim to give practical guidance for establishment of fusion emergency standard and design of fusion tritium system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Report on impact fusion workshop, LASL, July 1979

    International Nuclear Information System (INIS)

    Russell, F.M.

    1979-12-01

    The concept of power production from thermonuclear fusion caused by inertial confinement of D,T fuel was examined from the standpoints of overall scientific feasibility and present state-of-art in the technologies involved. No defect in principle was found but much R and D work is needed in all aspects and especially that of accelerator devices. So far only one intrinsically stable macro-particle accelerator has been proposed, based on the mixed-μ concept of stability. (author)

  10. Hypervelocity Dust Injection for Plasma Diagnostic Applications

    Science.gov (United States)

    Ticos, Catalin

    2005-10-01

    Hypervelocity micron-size dust grain injection was proposed for high-temperature magnetized plasma diagnosis. Multiple dust grains are launched simultaneously into high temperature plasmas at several km/s or more. The hypervelocity dust grains are ablated by the electron and ion fluxes. Fast imaging of the resulting luminous plumes attached to each grain is expected to yield local magnetic field vectors. Combination of multiple local magnetic field vectors reproduces 2D or even 3D maps of the internal magnetic field topology. Key features of HDI are: (1) a high spatial resolution, due to a relatively small transverse size of the elongated tail, and (2) a small perturbation level, as the dust grains introduce negligible number of particles compared to the plasma particle inventory. The latter advantage, however, could be seriously compromised if the gas load from the accelerator has an unobstructed access to the diagnosed plasma. Construction of a HDI diagnostic for National Spherical Torus Experiment (NSTX), which includes a coaxial plasma gun for dust grain acceleration, is underway. Hydrogen and deuterium gas discharges inside accelerator are created by a ˜ 1 mF capacitor bank pre-charged up to 10 kV. The diagnostic apparatus also comprises a dust dispenser for pre-loading the accelerator with dust grains, and an imaging system that has a high spatial and temporal resolution.

  11. Considerations of the social impact of fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Gastil, R.D.; Markus, H.S.

    1976-09-01

    It is concluded that the direct effects of an ideal form of fusion technologies would be socially more desirable than those of the alternatives. This is particularly true of the second generation fusion power plant. However, given our technological inputs, this was a trivial result. Less trivial was consideration of the negative effects that might accrue through the availability of potentially unlimited supplies of low cost energy. It is concluded that while there may be reasonable humanist argument both for and against such abundance, in a democratic society control of energy development for its own sake is likely to be unacceptable. However, if the indirect effects of pollution, despoilment, and resource depletion through ever expanding energy use become sufficiently disturbing to the well-being of the majority, unlimited energy may come to be seen as undesirable by the society. To this extent successful research and development for unlimited sources such as the fusion or mixed solar alternatives might be judged from some point far in the future to have been a mistake. This could occur even though advances in the technology of pollution control and resource use greatly reduce the pollution and hazard accompanying a much higher rate of energy utilization.

  12. Considerations of the social impact of fusion power

    International Nuclear Information System (INIS)

    Gastil, R.D.; Markus, H.S.

    1976-09-01

    It is concluded that the direct effects of an ideal form of fusion technologies would be socially more desirable than those of the alternatives. This is particularly true of the second generation fusion power plant. However, given our technological inputs, this was a trivial result. Less trivial was consideration of the negative effects that might accrue through the availability of potentially unlimited supplies of low cost energy. It is concluded that while there may be reasonable humanist argument both for and against such abundance, in a democratic society control of energy development for its own sake is likely to be unacceptable. However, if the indirect effects of pollution, despoilment, and resource depletion through ever expanding energy use become sufficiently disturbing to the well-being of the majority, unlimited energy may come to be seen as undesirable by the society. To this extent successful research and development for unlimited sources such as the fusion or mixed solar alternatives might be judged from some point far in the future to have been a mistake. This could occur even though advances in the technology of pollution control and resource use greatly reduce the pollution and hazard accompanying a much higher rate of energy utilization

  13. Impact of monaural frequency compression on binaural fusion at the brainstem level.

    Science.gov (United States)

    Klauke, Isabelle; Kohl, Manuel C; Hannemann, Ronny; Kornagel, Ulrich; Strauss, Daniel J; Corona-Strauss, Farah I

    2015-08-01

    A classical objective measure for binaural fusion at the brainstem level is the so-called β-wave of the binaural interaction component (BIC) in the auditory brainstem response (ABR). However, in some cases it appeared that a reliable detection of this component still remains a challenge. In this study, we investigate the wavelet phase synchronization stability (WPSS) of ABR data for the analysis of binaural fusion and compare it to the BIC. In particular, we examine the impact of monaural nonlinear frequency compression on binaural fusion. As the auditory system is tonotopically organized, an interaural frequency mismatch caused by monaural frequency compression could negatively effect binaural fusion. In this study, only few subjects showed a detectable β-wave and in most cases only for low ITDs. However, we present a novel objective measure for binaural fusion that outperforms the current state-of-the-art technique (BIC): the WPSS analysis showed a significant difference between the phase stability of the sum of the monaurally evoked responses and the phase stability of the binaurally evoked ABR. This difference could be an indicator for binaural fusion in the brainstem. Furthermore, we observed that monaural frequency compression could indeed effect binaural fusion, as the WPSS results for this condition vary strongly from the results obtained without frequency compression.

  14. Hypervelocity Expansion Facility for Fundamental High-Enthalpy Research

    Science.gov (United States)

    2017-02-27

    ii Final Technical Report of Contract ONR N00014-15-1-2260 Entitled: HYPERVELOCITY EXPANSION FACILITY FOR FUNDAMENTAL HIGH-ENTHALPY...previous DoD investments in high-energy pulsed laser diagnostics for instantaneous planar velocimetry and thermometry to perform scientific studies of...capability for fundamental and applied studies of hypervelocity high enthalpy flows. In this document, we report on the progress over the 18-month

  15. Impact of ICRH on the measurement of fusion alphas by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Eriksson, L.-G.; Bindslev, Henrik

    2009-01-01

    Collective Thomson scattering (CTS) has been proposed for measuring the phase space distributions of confined fast ion populations in ITER plasmas. This study determines the impact of fast ions accelerated by ion cyclotron resonance heating (ICRH) on the ability of CTS to diagnose fusion alphas......, corresponding to an off-axis resonance. The sensitivities of the results to the He-3 concentration (0.1-4%) and the heating power (20-40 MW) are considered. Fusion born alphas dominate the total CTS signal for large Doppler shifts of the scattered radiation. The tritons generate a negligible fraction...... perpendicular velocities, it may be difficult to draw conclusions about the physics of alpha particles alone by CTS. With this exception, the CTS diagnostic can reveal the physics of the fusion alphas in ITER even under the presence of fast ions due to ICRH....

  16. A comparison of the radiological impact of energy production by fission and fusion reactions

    International Nuclear Information System (INIS)

    Rancillac, F.; Despres, A.

    1990-04-01

    The impacts of respectively a light water reactor and a planned fusion reactor, for which tritium-deuterium fusion reactions will act as energy source have been compared. The comparison is made on the basis of a generated capacity of 1 GWe.year, using the following criteria: fuel inventories, radioactive releases, collective effective dose equivalent commitments to the public and the volume of wastes. The accidental risk is not introduced. Fusion reactor parameters are still subject to uncertainties, which prevent accurate quantification of radionuclide releases (tritium apart) from the nuclear plant. Only orders of magnitude extrapolated from values for the NET tokamak are given. Despite these uncertainties, it would seem more interesting, from the dosimetric point of view, to use fusion reactors to produce electricity, although problems of radioactive releases, handling and long-term storage of radioactive waste would remain. Fusion reactors also generate generate high-level wastes with long-term exposure rates that are lower than those of light water reactors [fr

  17. Testing of a Plasmadynamic Hypervelocity Dust Accelerator

    Science.gov (United States)

    Ticos, Catalin M.; Wang, Zhehui; Dorf, Leonid A.; Wurden, G. A.

    2006-10-01

    A plasmadynamic accelerator for microparticles (or dust grains) has been designed, built and tested at Los Alamos National laboratory. The dust grains are expected to be accelerated to hypervelocities on the order of 1-30 km/s, depending on their size. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10 kV, a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems. The coaxial plasma gun produces a high density (10^18 cm-3) and low temperature (˜ 1 eV) plasma in deuterium ejected by J x B forces, which provides drag on the dust particles in its path. Carbon dust particles will be used, with diameters from 1 to 50 μm. The plasma parameters produced in the coaxial gun are presented and their implication to dust acceleration is discussed. High speed dust will be injected in the National Spherical Torus Experiment to measure the pitch angle of magnetic field lines.

  18. Effect of compressibility on the hypervelocity penetration

    Science.gov (United States)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  19. Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor

    Directory of Open Access Journals (Sweden)

    Bong Guen Hong

    2018-02-01

    Full Text Available A configuration of a fusion-driven transmutation reactor with a low aspect ratio tokamak-type neutron source was determined in a self-consistent manner by using coupled analysis of tokamak systems and neutron transport. We investigated the impact of blanket configuration on the characteristics of a fusion-driven transmutation reactor. It was shown that by merging the TRU burning blanket and tritium breeding blanket, which uses PbLi as the tritium breeding material and as coolant, effective transmutation is possible. The TRU transmutation capability can be improved with a reduced blanket thickness, and fast fluence at the first wall can be reduced.  Article History: Received: July 10th 2017; Received: Dec 17th 2017; Accepted: February 2nd 2018; Available online How to Cite This Article: Hong, B.G. (2018 Impact of Blanket Configuration on the Design of a Fusion-Driven Transmutation Reactor. International Journal of Renewable Energy Development, 7(1, 65-70. https://doi.org/10.14710/ijred.7.1.65-70

  20. Fast-ignition heavy-ion fusion target by jet impact

    International Nuclear Information System (INIS)

    Velarde, P.; Ogando, F.; Eliezer, S.; Martinez-Val, J.M.

    2005-01-01

    A new target design for HIF, based on the fast-ignition principles, is proposed. Unlike the previous designs proposed so far, in this case just one energy source is needed to drive the whole process to ignition. The ultra-fast deposition of energy onto the compressed core is produced in this case by hypervelocity jets generated during the process. The collision of jets converts their kinetic energy into thermal energy of the nuclear fuel, which is expected to produce ignition under proper design. The process is studied in this paper, describing its most relevant features like jet production and later collision

  1. Laser-fusion 40Ar/39Ar Ages of Darwin Impact Glass

    Science.gov (United States)

    Lo, Ching-Hua; Howard, Kieren T.; Chung, Sun-Lin; Meffre, Sebastien

    2002-11-01

    Three samples of Darwin Glass, an impact glass found in Tasmania, Australia at the edge of the Australasian tektite strewn field were dated using the 40Ar/39Ar single-grain laser fusion technique, yielding isochron ages of 796-815 ka with an overall weighted mean of 816 ± 7 ka. These data are statistically indistinguishable from those recently reported for the Australasian tektites from Southeast Asia and Australia (761-816 ka; with a mean weighted age of 803 ± 3 ka). However, considering the compositional and textural differences and the disparity from the presumed impact crater area for Australasian tektites, Darwin Glass is more likely to have resulted from a distinct impact during the same period of time.

  2. Determination of parameters for hypervelocity dust grains encountered in near-Earth space

    Science.gov (United States)

    Tanner, William G.; Maag, Carl R.; Alexander, W. Merle; Sappenfield, Patricia

    1993-01-01

    Primarily interest was in the determination of the population of micrometeoroids and space debris and interpretation of the hole size in a thin film or in a micropore foam returned from space with theoretical calculations describing the event. In order to augment the significance of the theoretical calculations of the impact event, an experiment designed to analyze the charge production due to hypervelocity impacts on thin films also produced data which described the penetration properties of micron and sub-micron sized projectiles. The thin film penetration sites in the 500 A and 1000 A aluminum films were counted and a size distribution function was derived. In the case of the very smallest dust grains, there were no independent measurements of velocities like that which existed for the larger dust grains (d(sub p) is less than or equal to 1 micron). The primary task then became to assess the relationship between the penetration hole and the particle diameter of the projectile which made the hole. The most promising means to assess the measure of the diameters of impacting grains came in the form of comparing cratering mechanics to penetration mechanics. Future experimentation will produce measurements of the cratering as opposed to the penetrating event. Particles encountered by surfaces while being flown in space will degrade that surface in a systematic manner even when the impact is with small hypervelocity particles, d(sub p) is less than or equal to 10 microns. Though not to a degree which would precipitate a catastrophic failure of a system, the degradation of the materials comprising the interconnected system will occur. It is the degradation of the optical system and the subsequent embrittlement of other materials that can lead to degradation if not to failure. It is to this end that research was conducted to compare the primary consequences for experiments which will be flown to those which have been returned.

  3. Development and application of streakline visualization in hypervelocity flows

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, P.; Hornung, H.G. [Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125 (United States)

    2002-07-01

    A method for visualizing streaklines in hypervelocity flows has been developed. The method uses the high temperatures produced in hypervelocity flows to ablate small amounts of sodium deposited onto a wire stretched across the flow and to broaden the lines in the sodium spectrum. By using a dye laser, tuned to a wavelength close to one of the sodium D-lines, as the light source in shadowgraph or Schlieren visualization, streaklines seeded with sodium become visible through absorption and/or enhanced refractivity. The technique has been used to investigate the stability of the shear layer produced by the curved bow shock on a cylindrically blunted wedge. The results suggest that the shear layer is unstable, exhibiting structures with a wavelength that is comparable to half the nose radius of the body. (orig.)

  4. Hypervelocity launch capabilities to over 10 km/s

    International Nuclear Information System (INIS)

    Chhabildas, L.C.

    1991-01-01

    Very high pressure and acceleration is necessary to launch flier plates to hypervelocities. In addition, the high pressure loading must be uniform, structured, and shockless, i.e., time-dependent to prevent the flier plate from either fracturing or melting. In this paper, a novel technique is described which allows the use of megabar level loading pressures, and 10 9 g acceleration to launch intact flier plates to velocities of 12.2 km/s. 32 refs., 2 figs

  5. Distributed energy store powered railguns for hypervelocity launch

    Science.gov (United States)

    Maas, Brian L.; Bauer, David P.; Marshall, Richard A.

    1993-01-01

    Highly distributed power supplies are proposed as a basis for current difficulties with hypervelocity railgun power-supply compactness. This distributed power supply configuration reduces rail-to-rail voltage behind the main armature, thereby reducing the tendency for secondary armature current formation; secondary current elimination is essential for achieving the efficiencies associated with muzzle velocity above 6 km/sec. Attention is given to analytical and experimental results for two distributed energy storage schemes.

  6. Fusion Implementation

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    2002-01-01

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans

  7. Feasibility study of a railgun as a driver for impact fusion: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thio. Y.C.

    1986-06-01

    The feasibility of a railgun as a driver for impact fusion is studied through a series of theoretical and experimental investigations. The results of both the theoretical and experimental investigations presented here have helped to identify the potential problems of the railgun launcher to attain velocity in excess of 100 km/s. These include ablation, viscous drag, and secondary arc formation due to either armature dispersion (instability) or restrike. These problems are analyzed and examined experimentally. The behavior of the conventional open-plasma-armature driven railguns have been shown to be quite complex and not easily controllable in the domain of ultrahigh velocity (>6 km/s). Methods to overcome these problems are proposed, analyzed in regards to their technological feasibility, and tested experimentally wherever possible. Techniques for reducing radiative ablation, the concept of a mechanically controlled plasma armature, and the concept of achieving super high augmentation by the technique of trans-augmentation are presented.

  8. Feasibility study of a railgun as a driver for impact fusion: Final report

    International Nuclear Information System (INIS)

    Thio, Y.C.

    1986-06-01

    The feasibility of a railgun as a driver for impact fusion is studied through a series of theoretical and experimental investigations. The results of both the theoretical and experimental investigations presented here have helped to identify the potential problems of the railgun launcher to attain velocity in excess of 100 km/s. These include ablation, viscous drag, and secondary arc formation due to either armature dispersion (instability) or restrike. These problems are analyzed and examined experimentally. The behavior of the conventional open-plasma-armature driven railguns have been shown to be quite complex and not easily controllable in the domain of ultrahigh velocity (>6 km/s). Methods to overcome these problems are proposed, analyzed in regards to their technological feasibility, and tested experimentally wherever possible. Techniques for reducing radiative ablation, the concept of a mechanically controlled plasma armature, and the concept of achieving super high augmentation by the technique of trans-augmentation are presented

  9. Kinase impact assessment in the landscape of fusion genes that retain kinase domains: a pan-cancer study

    Science.gov (United States)

    Kim, Pora; Jia, Peilin; Zhao, Zhongming

    2018-01-01

    Abstract Assessing the impact of kinase in gene fusion is essential for both identifying driver fusion genes (FGs) and developing molecular targeted therapies. Kinase domain retention is a crucial factor in kinase fusion genes (KFGs), but such a systematic investigation has not been done yet. To this end, we analyzed kinase domain retention (KDR) status in chimeric protein sequences of 914 KFGs covering 312 kinases across 13 major cancer types. Based on 171 kinase domain-retained KFGs including 101 kinases, we studied their recurrence, kinase groups, fusion partners, exon-based expression depth, short DNA motifs around the break points and networks. Our results, such as more KDR than 5′-kinase fusion genes, combinatorial effects between 3′-KDR kinases and their 5′-partners and a signal transduction-specific DNA sequence motif in the break point intronic sequences, supported positive selection on 3′-kinase fusion genes in cancer. We introduced a degree-of-frequency (DoF) score to measure the possible number of KFGs of a kinase. Interestingly, kinases with high DoF scores tended to undergo strong gene expression alteration at the break points. Furthermore, our KDR gene fusion network analysis revealed six of the seven kinases with the highest DoF scores (ALK, BRAF, MET, NTRK1, NTRK3 and RET) were all observed in thyroid carcinoma. Finally, we summarized common features of ‘effective’ (highly recurrent) kinases in gene fusions such as expression alteration at break point, redundant usage in multiple cancer types and 3′-location tendency. Collectively, our findings are useful for prioritizing driver kinases and FGs and provided insights into KFGs’ clinical implications. PMID:28013235

  10. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  11. Microstructure, Composition, and Impact Toughness Across the Fusion Line of High-Strength Bainitic Steel Weldments

    Science.gov (United States)

    Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen

    2017-09-01

    This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements ( e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.

  12. Impaction durability of porous polyether-ether-ketone (PEEK) and titanium-coated PEEK interbody fusion devices.

    Science.gov (United States)

    Torstrick, F Brennan; Klosterhoff, Brett S; Westerlund, L Erik; Foley, Kevin T; Gochuico, Joanna; Lee, Christopher S D; Gall, Ken; Safranski, David L

    2018-05-01

    Various surface modifications, often incorporating roughened or porous surfaces, have recently been introduced to enhance osseointegration of interbody fusion devices. However, these topographical features can be vulnerable to damage during clinical impaction. Despite the potential negative impact of surface damage on clinical outcomes, current testing standards do not replicate clinically relevant impaction loading conditions. The purpose of this study was to compare the impaction durability of conventional smooth polyether-ether-ketone (PEEK) cervical interbody fusion devices with two surface-modified PEEK devices that feature either a porous structure or plasma-sprayed titanium coating. A recently developed biomechanical test method was adapted to simulate clinically relevant impaction loading conditions during cervical interbody fusion procedures. Three cervical interbody fusion devices were used in this study: smooth PEEK, plasma-sprayed titanium-coated PEEK, and porous PEEK (n=6). Following Kienle et al., devices were impacted between two polyurethane blocks mimicking vertebral bodies under a constant 200 N preload. The posterior tip of the device was placed at the entrance between the polyurethane blocks, and a guided 1-lb weight was impacted upon the anterior face with a maximum speed of 2.6 m/s to represent the strike force of a surgical mallet. Impacts were repeated until the device was fully impacted. Porous PEEK durability was assessed using micro-computed tomography (µCT) pre- and postimpaction. Titanium-coating coverage pre- and postimpaction was assessed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy. Changes to the surface roughness of smooth and titanium-coated devices were also evaluated. Porous PEEK and smooth PEEK devices showed minimal macroscopic signs of surface damage, whereas the titanium-coated devices exhibited substantial visible coating loss. Quantification of the porous PEEK deformation

  13. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  14. Fusion Canada issue 20

    International Nuclear Information System (INIS)

    1993-03-01

    Fusion Canada's publication of the National Fusion Program. Included in this issue is the CFFTP Industrial Impact Study, CCFM/TdeV Update:helium pumping, research funds, and deuterium in beryllium - high temperature behaviour. 3 figs

  15. Evaluation of the impact of a committed site on fusion reactor development

    International Nuclear Information System (INIS)

    Reid, R.L.; Nagy, A.

    1979-01-01

    The technical and economic merits of a committed fusion site for development of tokamak, mirror, and EBT reactor from ignition through demo phases were evaluated. Schedule compression resulting from evolving several reactor concepts and/or phases on a committed site as opposed to sequential use of independent sites was estimated. Land, water, and electrical power requirements for a committed fusion site were determined. A conceptual plot plan for siting three fusion reactors on a committed site was configured. Reactor support equipment common to the various concepts was identified as candidates for sharing. Licensing issues for fusion plants were briefly addressed

  16. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins.

    Science.gov (United States)

    Liu, Liming

    2015-06-01

    Understanding the impact of glycosylation and keeping a close control on glycosylation of product candidates are required for both novel and biosimilar monoclonal antibodies (mAbs) and Fc-fusion protein development to ensure proper safety and efficacy profiles. Most therapeutic mAbs are of IgG class and contain a glycosylation site in the Fc region at amino acid position 297 and, in some cases, in the Fab region. For Fc-fusion proteins, glycosylation also frequently occurs in the fusion partners. Depending on the expression host, glycosylation patterns in mAb or Fc-fusions can be significantly different, thus significantly impacting the pharmacokinetics (PK) and pharmacodynamics (PD) of mAbs. Glycans that have a major impact on PK and PD of mAb or Fc-fusion proteins include mannose, sialic acids, fucose (Fuc), and galactose (Gal). Mannosylated glycans can impact the PK of the molecule, leading to reduced exposure and potentially lower efficacy. The level of sialic acid, N-acetylneuraminic acid (NANA), can also have a significant impact on the PK of Fc-fusion molecules. Core Fuc in the glycan structure reduces IgG antibody binding to IgG Fc receptor IIIa relative to IgG lacking Fuc, resulting in decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activities. Glycoengineered Chinese hamster ovary (CHO) expression systems can produce afucosylated mAbs that have increased ADCC activities. Terminal Gal in a mAb is important in the complement-dependent cytotoxicity (CDC) in that lower levels of Gal reduce CDC activity. Glycans can also have impacts on the safety of mAb. mAbs produced in murine myeloma cells such as NS0 and SP2/0 contain glycans such as Galα1-3Galβ1-4N-acetylglucosamine-R and N-glycolylneuraminic acid (NGNA) that are not naturally present in humans and can be immunogenic when used as therapeutics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Plasma jet acceleration of dust particles to hypervelocities

    International Nuclear Information System (INIS)

    Ticos, C. M.; Wang, Zhehui; Wurden, G. A.; Kline, J. L.; Montgomery, D. S.

    2008-01-01

    A convenient method to accelerate simultaneously hundreds of micron-size dust particles to a few km/s over a distance of about 1 m is based on plasma drag. Plasma jets which can deliver sufficient momentum to the dust particles need to have speeds of at least several tens of km/s, densities of the order of 10 22 m -3 or higher, and low temperature ∼1 eV, in order to prevent dust destruction. An experimental demonstration of dust particles acceleration to hypervelocities by plasma produced in a coaxial gun is presented here. The plasma flow speed is deduced from photodiode signals while the plasma density is measured by streaked spectroscopy. As a result of the interaction with the plasma jet, the dust grains are also heated to high temperatures and emit visible light. A hypervelocity dust shower is imaged in situ with a high speed video camera at some distance from the coaxial gun, where light emission from the plasma flow is less intense. The bright traces of the flying microparticles are used to infer their speed and acceleration by employing the time-of-flight technique. A simple model for plasma drag which accounts for ion collection on the grain surface gives predictions for dust accelerations which are in good agreement with the experimental observations.

  18. Impact of long-lived radionuclides on waste classification for fusion

    International Nuclear Information System (INIS)

    Maninger, R.C.

    1985-01-01

    A major goal for commercial applications of fusion reactors is to minimize radioactive wastes and to dispose of them by near-surface burial. There currently are no regulations specifically applicable to fusion wastes but those in force for fission wastes furnish a framework for expected fusion regulations. This paper recommends that all nuclides with half-lives greater than five years be assigned concentration limits as done in 10CFR61 for fission wastes. The paper gives approximate limits for all the significant long half-life sources of gamma radiation in the currently known periodic table. In the absence of working fusion reactors, computer models must be used to estimate the expected actual concentrations of radioactive nuclides. These estimates are needed to guide design parameters to achieve minimum radioactivity in fusion reactors. It is believed that the computer models and nuclear reaction libraries must be much more comprehensive than ordinarily used today to do activation calculations

  19. Impact of an integrated core/SOL description on the R and B T optimization of tokamak fusion reactors

    Science.gov (United States)

    Siccinio, M.; Fable, E.; Angioni, C.; Saarelma, S.; Scarabosio, A.; Zohm, H.

    2018-01-01

    An updated and improved version of the 0D divertor and scrape-off layer (SOL) model published in Siccinio et al (2016 Plasma Phys. Control. Fusion 58 125011) was coupled with the 1.5D transport code ASTRA (Pereverzev 1991 IPP Report 5/42, Pereverzev and Yushmanov 2002 IPP Report 5/98 and Fable et al 2013 Plasma Phys. Control. Fusion 55 124028). The resulting numerical tool was employed for various scans in the major radius R and in the toroidal magnetic field B T—for different safety factors q, allowable loop voltages V loop and H factors—in order to identify the most convenient choices for an electricity producing tokamak. Such a scenario analysis was carried out evaluating self-consistently, and simultaneously, the core profile and transport effects, which significantly impact on the fusion power outcome, and the divertor heat loads, which represent one of the most critical issues in view of the realization of fusion power plants (Zohm et al 2013 Nucl. Fusion 53 073019 and Wenninger et al 2017 Nucl. Fusion 57 046002). The main result is that, when divertor limits are enforced, the curves at constant electrical power output are closed on themselves in the R-BT plane, and a maximum achievable power exists—i.e. no benefits would be obtained from a further increase in R and B T once the optimum is reached. This result appears as an intrinsic physical limit for all those devices where a radiative SOL is needed to deal with the power exhaust, and where a lower limit on the power crossing the separatrix (e.g. because of the L-H transition) is present.

  20. Stopping of hypervelocity clusters in solids

    International Nuclear Information System (INIS)

    Anders, Christian; Ziegenhain, Gerolf; Urbassek, Herbert M; Bringa, Eduardo M

    2011-01-01

    Using molecular-dynamics simulations, we study the processes underlying the stopping of energetic clusters upon impact in matter. We investigate self-bombardment of both a metallic (Cu) and a van-der-Waals bonded (frozen Ar) target. Clusters with sizes up to N = 10 4 atoms and with energies per atom of E/N = 0.1-1600 eV atom -1 were studied. We find that the stopping force exerted on a cluster follows an N 2/3 -dependence with cluster size N; thus large clusters experience less stopping than equi-velocity atoms. In the course of being stopped, the cluster is strongly deformed and attains a roughly pancake shape. Due to the cluster inertia, maximum deformation occurs later than the maximum stopping force. The time scale of projectile stopping is set by t 0 , the time the cluster needs to cover its own diameter before impacting the target; it thus depends on both cluster size and velocity. The time when the cluster experiences its maximum stopping force is around (0.7-0.8)t 0 . We find that the cluster is deformed with huge strain rates of around 1/2t 0 ; this amounts to 10 11 -10 13 s -1 for the cases studied here. (paper)

  1. Hybrid Guidance Control for a Hypervelocity Small Size Asteroid Interceptor Vehicle

    Science.gov (United States)

    Zebenay, Melak M.; Lyzhoft, Joshua R.; Barbee, Brent W.

    2017-01-01

    Near-Earth Objects (NEOs) are comets and/or asteroids that have orbits in proximity with Earth's own orbit. NEOs have collided with the Earth in the past, which can be seen at such places as Chicxulub crater, Barringer crater, and Manson crater, and will continue in the future with potentially significant and devastating results. Fortunately such NEO collisions with Earth are infrequent, but can happen at any time. Therefore it is necessary to develop and validate techniques as well as technologies necessary to prevent them. One approach to mitigate future NEO impacts is the concept of high-speed interceptor. This concept is to alter the NEO's trajectory via momentum exchange by using kinetic impactors as well as nuclear penetration devices. The interceptor has to hit a target NEO at relative velocity which imparts a sufficient change in NEO velocity. NASA's Deep Impact mission has demonstrated this scenario by intercepting Comet Temple 1, 5 km in diameter, with an impact relative speed of approximately 10 km/s. This paper focuses on the development of hybrid guidance navigation and control (GNC) algorithms for precision hypervelocity intercept of small sized NEOs. The spacecraft's hypervelocity and the NEO's small size are critical challenges for a successful mission as the NEO will not fill the field of view until a few seconds before intercept. The investigation needs to consider the error sources modeled in the navigation simulation such as spacecraft initial state uncertainties in position and velocity. Furthermore, the paper presents three selected spacecraft guidance algorithms for asteroid intercept and rendezvous missions. The selected algorithms are classical Proportional Navigation (PN) based guidance that use a first order difference to compute the derivatives, Three Plane Proportional Navigation (TPPN), and the Kinematic Impulse (KI). A manipulated Bennu orbit that has been changed to impact Earth will be used as a demonstrative example to compare the

  2. FTIR Analyses of Hypervelocity Impact Deposits: DebriSat Tests

    Science.gov (United States)

    2015-03-27

    DEPT SPACE MATERIALS LABORATORY ENGINEERING & TECHNOLOGY GROUP Shant Kenderian, DIRECTOR DEPT MATERIALS PROCESSING DEPT SPACE MATERIALS LABORATORY...ENGINEERING & TECHNOLOGY GROUP © The Aerospace Corporation, 2015. All trademarks, service marks, and trade names are the property of their respective owners...mitchell.nolan.ctr@us.af.mil SECURITY CLASSIFICATION UNCLASSIFIED Brian Roebuck AEDC brian.roebuck@us.af.mil Norman Fitz-Coy University of Florida nfc

  3. Characterization of Orbital Debris via Hyper-Velocity Ground-Based Tests

    Science.gov (United States)

    Cowardin, Heather

    2016-01-01

    The purpose of the DebriSat project is to replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoDand NASA breakup models.

  4. In-Flight Imaging Systems for Hypervelocity and Re-Entry Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to create a rugged, reliable, compact, standardized imaging system for hypervelocity and re-entry vehicles using sapphire windows, small imagers, and...

  5. Fusion Canada issue 25

    International Nuclear Information System (INIS)

    1994-08-01

    A short bulletin from the National Fusion Program highlighting in this issue an economic impact study of the Canadian site for ITER, Harvey Skarsgard: fusion pioneer retires, NFP: Phillips and Holtslander exchange roles, Europe's fusion funding proposals and an update of CCFM/TdeV. 1 fig

  6. Hypervelocity stars from young stellar clusters in the Galactic Centre

    Science.gov (United States)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  7. Comparison of environmental impact of waste disposal from fusion, fission and coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Bruno [Fichtner GmbH und Co. KG, Stuttgart (Germany)

    2011-08-15

    The radiotoxic hazard of waste from fusion power plants has been compared with that of fission power and radioactive trace elements in coal ash within some research programs such as SEAFP and SEIF. Within another program, in 2005 a Power Plant Conceptual Study (PPCS) has been finalized investigating 4 fusion power plant models A to D. In this paper, the radiotoxicity of model B is compared with a fission power plant, concentrating on the production of wastes. The hazard of the respective masses of enriched uranium before use in a fission power plant and coal ash of a power plant generating the same amount of electricity are used as benchmarks. It is evident that the development of ingestion and inhalation hazard of the PPCS model B is different from the results of earlier studies because of different assumptions on material impurities and other constraints. An important aspect is the presence of actinides in fusion power plant waste. (orig.)

  8. Impact of body mass index on adjacent segment disease after lumbar fusion for degenerative spine disease.

    Science.gov (United States)

    Ou, Chien-Yu; Lee, Tao-Chen; Lee, Tsung-Han; Huang, Yu-Hua

    2015-04-01

    Adjacent segment disease is an important complication after fusion of degenerative lumbar spines. However, the role of body mass index (BMI) in adjacent segment disease has been addressed less. To examine the relationship between BMI and adjacent segment disease after lumbar fusion for degenerative spine diseases. For this retrospective study, we enrolled 190 patients undergoing lumbar fusion surgery for degeneration. BMI at admission was documented. Adjacent segment disease was defined by integration of the clinical presentations and radiographic criteria based on the morphology of the dural sac on magnetic resonance images. Adjacent segment disease was identified in 13 of the 190 patients, accounting for 6.8%. The interval between surgery and diagnosis as adjacent segment disease ranged from 21 to 66 months. Five of the 13 patients required subsequent surgical intervention for clinically relevant adjacent segment disease. In the logistic regression model, BMI was a risk factor for adjacent segment disease after lumbar fusion for degenerative spine diseases (odds ratio, 1.68; 95% confidence interval, 1.27-2.21; P disease rate by 67.6%. The patients were subdivided into 2 groups based on BMI, and up to 11.9% of patients with BMI ≥ 25 kg/m were diagnosed as having adjacent segment disease at the last follow-up. BMI is a risk factor for adjacent segment disease in patients undergoing lumbar fusion for degenerative spine diseases. Because BMI is clinically objective and modifiable, controlling body weight before or after surgery may provide opportunities to reduce the rate of adjacent segment disease and to improve the outcome of fusion surgery.

  9. The impact of PDF and alphas uncertainties on Higgs Production in gluon fusion at hadron colliders

    NARCIS (Netherlands)

    Demartin, Federico; Forte, Stefano; Mariani, Elisa; Rojo, Juan; Vicini, Alessandro

    2010-01-01

    We present a systematic study of uncertainties due to parton distributions and the strong coupling on the gluon-fusion production cross section of the Standard Model Higgs at the Tevatron and LHC colliders. We compare procedures and results when three recent sets of PDFs are used, CTEQ6.6, MSTW08

  10. Fusion facility siting considerations

    International Nuclear Information System (INIS)

    Bussell, G.T.

    1985-01-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. A critically important consideration in this regard is site selection. The purpose of this paper is to examine major siting issues that may affect the economics, safety, and environmental impact of fusion

  11. Consideration of some fundamental erosion processes encountered in hypervelocity electromagnetic propulsion

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Hawke, R.S.

    1982-01-01

    Experimental and theoretical research has been conducted jointly at the Livermore and Los Alamos National laboratories on dc electromagnetic railgun Lorentz accelerators. Pellets weighing a few grams to tens of grams have been launched at velocities up to better than 11 km/s. The research is addressed to attaining repeated launches of samples at hypervelocity in target impact experiments. In these experiments, shock-induced pressures in the tens of megabars range are obtained for high pressure equation-of-state research. Primary energy sources of the order of several hundred kJ to a MJ and induction currents of the order of 1 or more MA are necessary for these launches. Erosion and deformation of the conductor rails and the accelerated sample material are continuing problems. The heating, stress, and erosion resulting from simultaneous imposition of rail induction current, dense plasma (armature) interaction, current distribution, magnetic field stresses and projectile/rail contact friction are examined. It is found that while frictional heating and consequent sliding contact erosion are minor contributors to the overall erosion process, the same cannot be said for plasma impingement, penetration, and almost simultaneous induction current (Joule) heating

  12. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev

    2017-01-01

    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  13. Hypervelocity Launching and Frozen Fuels as a Major Contribution to Spaceflight

    Science.gov (United States)

    Cocks, F. H.; Harman, C. M.; Klenk, P. A.; Simmons, W. N.

    Acting as a virtual first stage, a hypervelocity launch together with the use of frozen hydrogen/frozen oxygen propellant, offers a Single-Stage-To-Orbit (SSTO) system that promises an enormous increase in SSTO mass-ratio. Ram acceleration provides hypervelocity (2 km/sec) to the orbital vehicle with a gas gun supplying the initial velocity required for ram operation. The vehicle itself acts as the center body of a ramjet inside a launch tube, filled with gaseous fuel and oxidizer, acting as an engine cowling. The high acceleration needed to achieve hypervelocity precludes a crew, and it would require greatly increased liquid fuel tank structural mass if a liquid propellant is used for post-launch vehicle propulsion. Solid propellants do not require as much fuel- chamber strengthening to withstand a hypervelocity launch as do liquid propellants, but traditional solid fuels have lower exhaust velocities than liquid hydrogen/liquid oxygen. The shock-stability of frozen hydrogen/frozen oxygen propellant has been experimentally demonstrated. A hypervelocity launch system using frozen hydrogen/frozen oxygen propellant would be a revolutionary new development in spaceflight.

  14. Estimation of the environmental or radiological impact in the event of accidental release of radionuclides in a DCLL fusion reactor; Estimacion del impacto radiologico ambiental en caso de liberacion accidental de radionucleidos en un reactor de fusion DCLL

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, I.; Gomez Ros, J. M.; Sanz, J.; Mota, F.

    2013-07-01

    Tritium production and activation in the LiPb products can pose a radiological risk in the event of accidental release in a fusion reactor. Within the research programme Consolider TECNO{sub F}US (CSD2008-079) fusion technology has developed a design for a reactor with regenerative wrap with dual refrigeration (DCLL). The purpose of this communication is to present estimates of the radiological impact derived from an accidental release of radionuclides from the circuit of LiPb provinients. (Author)

  15. Tritium production, management and its impact on safety for a D-3He fusion reactor

    International Nuclear Information System (INIS)

    Sze, D.K.; Herring, S.; Sawan, M.

    1991-11-01

    About three percent of the fusion energy produced by a D- 3 He reactor is in the form of neutrons. Those neutrons are generated by D-D and D-T reactions, with the tritium produced by the D-D fusion. The neutrons will react with structural steel, deuterium, 3 He and shielding material to produce tritium. About half of the tritium generated by the D-D reaction will not burn in the plasma and will exit as a part of the plasma exhaust. Thus, there is enough tritium produced in a D- 3 He reactor and careful management will be required. The tritium produced in the shield and plasma can be managed with an acceptable effect on cost and safety. 3 refs., 2 figs., 3 tabs

  16. Evaluation of tritium transport in the biomass-fusion hybrid system and its environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Kyosuke [Graduate School of Energy Science, Kyoto University, Kyoto (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, Osaka (Japan)

    2015-10-15

    Highlights: • We assumed that tritium migrates from biomass hybrid fusion system to fuel cell vehicles. • We developed a seven-compartment model to describe the water flow and tritium in an urban area Osaka. • Tritium concentration of surface soil water run by 4 Bq/L level after 60 years later. • The tritium does not deserve health hazard but easily detectable in the environment. - Abstract: The behavior of tritium contained in the biofuel produced by the fusion energy is analyzed. Hydrogen product is contaminated with tritium from breeding blanket of fusion plant within the regulation limit and released to atmosphere when used for fuel cell vehicles. In the model city, Osaka, seven-compartment model describes the behavior of exhausted tritium by adapting the environment water flow and its migration was analyzed with STELLA system dynamics code. Tritium (HTO) with a concentration of 5000 Bq//m{sup 3} exhausted from the running vehicle increases decades and reaches steady state after about 50 years, at around 40 Bq/m{sup 3} in atmosphere and 4 Bq/L in surface soil water that does not deserve health hazard, however causes contamination of large populated area.

  17. THE GALACTIC POTENTIAL AND THE ASYMMETRIC DISTRIBUTION OF HYPERVELOCITY STARS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Alexander, Tal; Wu Xufen; Zhao Hongsheng; Famaey, Benoit; Gentile, Gianfranco

    2009-01-01

    In recent years several hypervelocity stars (HVSs) have been observed in the halo of our Galaxy. Such HVSs have possibly been ejected from the Galactic center and then propagated in the Galactic potential up to their current position. The recent survey for candidate HVSs show an asymmetry in the kinematics of candidate HVSs (position and velocity vectors), where more outgoing stars than ingoing stars (i.e., positive Galactocentric velocities versus negative ones) are observed. We show that such kinematic asymmetry, which is likely due to the finite lifetime of the stars and Galactic potential structure, could be used in a novel method to probe and constrain the Galactic potential, identify the stellar type of the stars in the survey and estimate the number of HVSs. Kinematics-independent identification of the stellar types of the stars in such surveys (e.g., spectroscopic identification) could further improve these results. We find that the observed asymmetry between ingoing and outgoing stars favors specific Galactic potential models. It also implies a lower limit of ∼54 ± 8 main-sequence HVSs in the survey sample (∼>648 ± 96 in the Galaxy), assuming that all of the MS stars in the survey originate from the GC. The other stars in the survey are likely to be hot blue horizontal branch stars born in the halo rather than stars ejected from the GC.

  18. Hypervelocity star candidates in Gaia DR1/TGAS

    Science.gov (United States)

    Marchetti, T.; Rossi, E. M.; Kordopatis, G.; Brown, A. G. A.; Rimoldi, A.; Starkenburg, E.; Youakim, K.; Ashley, R.

    2018-04-01

    Hypervelocity stars (HVSs) are characterized by a total velocity in excess of the Galactic escape speed, and with trajectories consistent with coming from the Galactic Centre. We apply a novel data mining routine, an artificial neural network, to discover HVSs in the TGAS subset of the first data release of the Gaia satellite, using only the astrometry of the stars. We find 80 stars with a predicted probability >90% of being HVSs, and we retrieved radial velocities for 47 of those. We discover 14 objects with a total velocity in the Galactic rest frame >400 km s-1, and 5 of these have a probability >50% of being unbound from the Milky Way. Tracing back orbits in different Galactic potentials, we discover 1 HVS candidate, 5 bound HVS candidates, and 5 runaway star candidates with remarkably high velocities, between 400 and 780 km s-1. We wait for future Gaia releases to confirm the goodness of our sample and to increase the number of HVS candidates.

  19. Wake of a blunt planetary probe model under hypervelocity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kastell, D.; Hannemann, D.; Eitelberg, G. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Stroemungsmechanik

    1998-12-31

    The flow in the wake of a planetary probe under hypervelocity re-entry conditions has two idiosyncrasies not present in the conventional (cold) hypersonic flows: the strong dissociation reaction occurring behind the bow shock wave, and the freezing of the chemical reactions of the flow by the rapid expansion at the shoulder of the probe. The aim of the present study was to both understand the relative importance of the two phenomena upon the total heat and pressure loads on a planetary probe and its possible payload as well as to provide experimental validation data for those developing numerical codes for planetary probe design and analysis. For the experimental study an instrumented blunted 140 cone was tested in the High Enthalpy Shock Tunnel in Goettingen (HEG). The numerical calculations were performed with a Thin-Layer Navier-Stokes code which is capable of simulating chemical and thermal nonequilibrium flows. For the forebody loads the prediction methods were very reliable and capable of accounting for the kinetic effects caused by the high specific enthalpy of the flow. On the other side considerable discrepancies between experimental and numerical results for the wake of the model have been observed. (orig.)

  20. Wake of a blunt planetary probe model under hypervelocity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kastell, D.; Hannemann, D.; Eitelberg, G. (DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Stroemungsmechanik)

    1998-01-01

    The flow in the wake of a planetary probe under hypervelocity re-entry conditions has two idiosyncrasies not present in the conventional (cold) hypersonic flows: the strong dissociation reaction occurring behind the bow shock wave, and the freezing of the chemical reactions of the flow by the rapid expansion at the shoulder of the probe. The aim of the present study was to both understand the relative importance of the two phenomena upon the total heat and pressure loads on a planetary probe and its possible payload as well as to provide experimental validation data for those developing numerical codes for planetary probe design and analysis. For the experimental study an instrumented blunted 140 cone was tested in the High Enthalpy Shock Tunnel in Goettingen (HEG). The numerical calculations were performed with a Thin-Layer Navier-Stokes code which is capable of simulating chemical and thermal nonequilibrium flows. For the forebody loads the prediction methods were very reliable and capable of accounting for the kinetic effects caused by the high specific enthalpy of the flow. On the other side considerable discrepancies between experimental and numerical results for the wake of the model have been observed. (orig.)

  1. Formation and spatial distribution of hypervelocity stars in AGN outflows

    Science.gov (United States)

    Wang, Xiawei; Loeb, Abraham

    2018-05-01

    We study star formation within outflows driven by active galactic nuclei (AGN) as a new source of hypervelocity stars (HVSs). Recent observations revealed active star formation inside a galactic outflow at a rate of ∼ 15M⊙yr-1 . We verify that the shells swept up by an AGN outflow are capable of cooling and fragmentation into cold clumps embedded in a hot tenuous gas via thermal instabilities. We show that cold clumps of ∼ 103 M⊙ are formed within ∼ 105 yrs. As a result, stars are produced along outflow's path, endowed with the outflow speed at their formation site. These HVSs travel through the galactic halo and eventually escape into the intergalactic medium. The expected instantaneous rate of star formation inside the outflow is ∼ 4 - 5 orders of magnitude greater than the average rate associated with previously proposed mechanisms for producing HVSs, such as the Hills mechanism and three-body interaction between a star and a black hole binary. We predict the spatial distribution of HVSs formed in AGN outflows for future observational probe.

  2. MMT HYPERVELOCITY STAR SURVEY. II. FIVE NEW UNBOUND STARS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-05-20

    We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannot be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10-100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1-2 Mpc.

  3. MMT hypervelocity star survey. III. The complete survey

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-05-20

    We describe our completed spectroscopic survey for unbound hypervelocity stars (HVSs) ejected from the Milky Way. Three new discoveries bring the total number of unbound late B-type stars to 21. We place new constraints on the nature of the stars and on their distances using moderate resolution MMT spectroscopy. Half of the stars are fast rotators; they are certain 2.5-4 M {sub ☉} main sequence stars at 50-120 kpc distances. Correcting for stellar lifetime, our survey implies that unbound 2.5-4 M {sub ☉} stars are ejected from the Milky Way at a rate of 1.5 × 10{sup –6} yr{sup –1}. These unbound HVSs are likely ejected continuously over the past 200 Myr and do not share a common flight time. The anisotropic spatial distribution of HVSs on the sky remains puzzling. Southern hemisphere surveys like SkyMapper will soon allow us to map the all-sky distribution of HVSs. Future proper motion measurements with Hubble Space Telescope and Gaia will provide strong constraints on origin. Existing observations are all consistent with HVS ejections from encounters with the massive black hole in the Galactic center.

  4. MMT hypervelocity star survey. III. The complete survey

    International Nuclear Information System (INIS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2014-01-01

    We describe our completed spectroscopic survey for unbound hypervelocity stars (HVSs) ejected from the Milky Way. Three new discoveries bring the total number of unbound late B-type stars to 21. We place new constraints on the nature of the stars and on their distances using moderate resolution MMT spectroscopy. Half of the stars are fast rotators; they are certain 2.5-4 M ☉ main sequence stars at 50-120 kpc distances. Correcting for stellar lifetime, our survey implies that unbound 2.5-4 M ☉ stars are ejected from the Milky Way at a rate of 1.5 × 10 –6 yr –1 . These unbound HVSs are likely ejected continuously over the past 200 Myr and do not share a common flight time. The anisotropic spatial distribution of HVSs on the sky remains puzzling. Southern hemisphere surveys like SkyMapper will soon allow us to map the all-sky distribution of HVSs. Future proper motion measurements with Hubble Space Telescope and Gaia will provide strong constraints on origin. Existing observations are all consistent with HVS ejections from encounters with the massive black hole in the Galactic center.

  5. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  6. Characterization of Oribtal Debris via Hyper-Velocity Ground-Based Tests

    Science.gov (United States)

    Cowardin, H.

    2015-01-01

    Existing DoD and NASA satellite breakup models are based on a key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve the break-up models and the NASA Size Estimation Model (SEM) for events involving more modern satellite designs, the NASA Orbital Debris Program Office has worked in collaboration with the University of Florida to replicate a hypervelocity impact using a satellite built with modern-day spacecraft materials and construction techniques. The spacecraft, called DebriSat, was intended to be a representative of modern LEO satellites and all major designs decisions were reviewed and approved by subject matter experts at Aerospace Corporation. DebriSat is composed of 7 major subsystems including attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. All fragments down to 2 mm is size will be characterized via material, size, shape, bulk density, and the associated data will be stored in a database for multiple users to access. Laboratory radar and optical measurements will be performed on a subset of fragments to provide a better understanding of the data products from orbital debris acquired from ground-based radars and telescopes. The resulting data analysis from DebriSat will be used to update break-up models and develop the first optical SEM in conjunction with updates into the current NASA SEM. The characterization of the fragmentation will be discussed in the subsequent presentation.

  7. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.

    Science.gov (United States)

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  8. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Collette, Andrew; Drake, Keith; Northway, Paige [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Gruen, Eberhard [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Mocker, Anna [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Munsat, Tobin [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Srama, Ralf [MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); and others

    2012-07-15

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  9. Impact of peptide clustering on unbinding forces in the context of fusion mimetics

    International Nuclear Information System (INIS)

    Pähler, Gesa; Lorenz, Bärbel; Janshoff, Andreas

    2013-01-01

    Highlights: ► Coiled-coil peptides as SNARE mimetics for membrane fusion. ► Interaction forces assessed by colloidal probe microscopy. ► Lateral organization of lipopeptides visualized by atomic force microscopy. -- Abstract: Coiled-coil zipping and unzipping is a pivotal process in SNARE-regulated membrane fusion. In this study we examine this process mediated by a minimal model for coiled-coil formation employing force spectroscopy in the context of membrane-coated surfaces and probes. The interaction forces of several hundred pN are surprisingly low considering the proposed amount of molecular bonds in the contact zone. However, by means of high-resolution imaging employing atomic force microscopy and studying the lateral mobility of lipids and peptides as a function of coiled-coil formation, we are able to supply a detailed view on processes occurring on the membrane surfaces during force measurements. The interaction forces determined here are not only dependent on the peptide concentration on the surface, but also on the regional organization of lateral peptide clusters found prior to coiled-coil formation

  10. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes

    International Nuclear Information System (INIS)

    Rizk, Mazen; Antranikian, Garabed; Elleuche, Skander

    2012-01-01

    Highlights: ► Multifunctional enzymes offer an interesting approach for biomass degradation. ► Size and conformation of separate constructs play a role in the effectiveness of chimeras. ► A connecting linker allows for maximal flexibility and increased thermostability. ► Genes with functional similarities are the best choice for fusion candidates. -- Abstract: The reduction of fossil fuels, coupled with its increase in price, has made the search for alternative energy resources more plausible. One of the topics gaining fast interest is the utilization of lignocellulose, the main component of plants. Its primary constituents, cellulose and hemicellulose, can be degraded by a series of enzymes present in microorganisms, into simple sugars, later used for bioethanol production. Thermophilic bacteria have proven to be an interesting source of enzymes required for hydrolysis since they can withstand high and denaturing temperatures, which are usually required for processes involving biomass degradation. However, the cost associated with the whole enzymatic process is staggering. A solution for cost effective and highly active production is through the construction of multifunctional enzyme complexes harboring the function of more than one enzyme needed for the hydrolysis process. There are various strategies for the degradation of complex biomass ranging from the regulation of the enzymes involved, to cellulosomes, and proteins harboring more than one enzymatic activity. In this review, the construction of multifunctional biomass degrading enzymes through end-to-end gene fusions, and its impact on production and activity by choosing the enzymes and linkers is assessed.

  11. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  12. The fusion reactor

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1974-01-01

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  13. Confinement inertial fusion. Power reactors of nuclear fusion by lasers

    International Nuclear Information System (INIS)

    Velarde, G.; Ahnert, C.; Aragones, J.M.; Leira, G; Martinez-Val, J.M.

    1980-01-01

    The energy crisis and the need of the nuclear fusion energy are analized. The nuclear processes in the laser interation with the ablator material are studied, as well as the thermohydrodinamic processes in the implossion, and the neutronics of the fusion. The fusion reactor components are described and the economic and social impact of its introduction in the future energetic strategies.(author)

  14. Economics of fusion research

    International Nuclear Information System (INIS)

    1977-01-01

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics

  15. Economics of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-10-15

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  16. Electromagnetic Effices from Impacts on Spacecraft

    Science.gov (United States)

    Close, Sigrid

    2018-04-01

    Hypervelocity micro particles, including meteoroids and space debris with masses electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma and show that impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (> 20 km/s) impacts that produced a fully ionized plasma.

  17. Study on the impact of the engineering energy gain and the FPC mass power density on the generation cost of fusion power plant

    International Nuclear Information System (INIS)

    Huang Desuo; Wu Yican

    2004-01-01

    The impact of the engineering energy gain and the fusion-power-core (FPC) mass power density (MPD) on the generation cost of fusion power plant are analyzed based on the economic elasticity approach in this paper. From the functions describing the relationship of the generation cost with the engineering energy gain and the MPD, the elasticity coefficients of the generation cost with the engineering energy gain and the MPD have been derived respectively to analyze their sensitivity to the generation cost and the MPD to the generation cost decreases with increasing the engineering energy gain or the MPD. (authors)

  18. Impact of the impurity seeding for divertor protection on the performance of fusion reactors

    Science.gov (United States)

    Siccinio, Mattia; Fable, Emiliano; Angioni, Clemente; Saarelma, Samuli; Scarabosio, Andrea; Zohm, Hartmut

    2017-10-01

    A 0D divertor and scrape-off layer (SOL) model has been coupled to the 1.5D core transport code ASTRA. The resulting numerical tool has been employed for various parameter scans in order to identify the most convenient choices for the operation of electricity producing fusion devices with seeded impurities for the divertor protection. In particular, the repercussions of such radiative species on the main plasma through the fuel dilution have been taken into account. The main result we found is that, when the limits on the maximum tolerable divertor heat flux are enforced, the curves at constant electrical power output are closed on themselves in the R-BT plane, i.e. no improvement would descend from a further increase of R or BT once the maximum has been reached. This occurrence appears as an intrinsic physical limit for all devices where a radiative SOL is needed to deal with the power exhaust. Furthermore, the relative importance of the different power loss channels (e.g. hydrogen radiation, charge exchange, perpendicular transport and impurity radiation), through which the power entering the SOL is dissipated before reaching the target plate, is investigated with our model.

  19. Combined FDG PET/CT imaging for restaging of colorectal cancer patients: impact of image fusion on staging accuracy

    International Nuclear Information System (INIS)

    Strunk, H.; Jaeger, U.; Flacke, S.; Hortling, N.; Bucerius, J.; Joe, A.; Reinhardt, M.; Palmedo, H.

    2005-01-01

    Purpose: To evaluate the diagnostic impact of positron emission tomography (PET) with fluorine-18-labeled deoxy-D-glucose (FDG) combined with non-contrast computed tomography (CT) as PET-CT modality in restaging colorectal cancer patients. Material and methods: In this retrospective study, 29 consecutive patients with histologically proven colorectal cancer (17 female, 12 male, aged 51-76 years) underwent whole body scans in one session on a dual modality PET-CT system (Siemens Biograph) 90 min. after i.v. administration of 370 MBq 18 F-FDG. The CT imaging was performed with 40 mAs, 130 kV, slice-thickness 5 mm and without i.v. contrast administration. PET and CT images were reconstructed with a slice-thickness of 5 mm in coronal, sagittal and transverse planes. During a first step of analysis, PET and CT images were scored blinded and independently by a group of two nuclear medicine physicians and a group of two radiologists, respectively. For this purpose, a five-point-scale was used. The second step of data-analysis consisted of a consensus reading by both groups. During the consensus reading, first a virtual (meaning mental) fusion of PET and CT images and afterwards the 'real' fusion (meaning coregistered) PET-CT images were also scored with the same scale. The imaging results were compared with histopathology findings and the course of disease during further follow-up. Results: The total number of malignant lesions detected with the combined PET/CT were 86. For FDG-PET alone it was n=68, and for CT alone n=65. Comparing PET-CT and PET, concordance was found in 81 of 104 lesions. Discrepancies predominantly occurred in the lung, where PET alone often showed true positive results in lymph nodes and soft tissue masses, where CT often was false negative. Comparing mental fusion and 'real' co-registered images, concordance was found in 94 of 104 lesions. In 13 lesions or, respectively, in 7 of 29 patients, a relevant information was gathered using fused images

  20. Benzene-fused BODIPYs: Synthesis and the impact of fusion mode

    KAUST Repository

    Ni, Yong; Zeng, Wangdong; Huang, Kuo-Wei; Wu, Jishan

    2013-01-01

    exhibits near infrared absorption. The impact of benzannulation at different positions of BODIPY is discussed, and the geometry and electronic structure are studied by DFT calculations. This journal is © 2013 The Royal Society of Chemistry.

  1. Research-to-operations (R2O) for the Space Environmental Effects Fusion System (SEEFS) system-impact products

    Science.gov (United States)

    Quigley, Stephen

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Branch of the Space and Missile Systems Center (SMC SLG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command's (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems. Jointly developed projects that have been completed as prototypes and are undergoing development for real-time operations include a SEEFS architecture and database, five system-impact products, and a high-level decision aid product. This first round of SEEFS products includes the Solar Radio Burst Effects (SoRBE) on radar and satellite communications, Radar Auroral Clutter (RAC), Scintillation Effects on radar and satellite communications (RadScint and SatScint), and Satellite Surface and Deep Charge/Discharge (Char/D) products. This presentation will provide overviews of the current system impact products, along with plans and potentials for future products expected for the SEEFS program. The overviews will include information on applicable research-to-operations (R2O) issues, to include input data coverage and quality control, output confidence levels, modeling standards, and validation efforts.

  2. The collision of a hypervelocity massive projectile with free-standing graphene: Investigation of secondary ion emission and projectile fragmentation

    Science.gov (United States)

    Geng, Sheng; Verkhoturov, Stanislav V.; Eller, Michael J.; Della-Negra, Serge; Schweikert, Emile A.

    2017-02-01

    We present here the study of the individual hypervelocity massive projectiles (440-540 keV, 33-36 km/s Au4004+ cluster) impact on 1-layer free-standing graphene. The secondary ions were detected and recorded separately from each individual impact in the transmission direction using a time-of-flight mass spectrometer. We observed C1-10± ions emitted from graphene, the projectiles which penetrated the graphene, and the Au1-3± fragment ions in mass spectra. During the projectile-graphene interaction, the projectile loses ˜15% of its initial kinetic energy (˜0.18 keV/atom, 72 keV/projectile). The Au projectiles are neutralized when approaching the graphene and then partially ionized again via electron tunneling from the hot rims of the holes on graphene, obtaining positive and negative charges. The projectile reaches an internal energy of ˜450-500 eV (˜4400-4900 K) after the impact and then undergoes a ˜90-100 step fragmentation with the ejection of Au1 atoms in the experimental time range of ˜0.1 μs.

  3. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  4. Fusion reactor safety

    International Nuclear Information System (INIS)

    1987-12-01

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  5. The National Ignition Facility: inertial fusion energy applications, waste management, and environmental impacts

    International Nuclear Information System (INIS)

    Kirchner, F.R.; Lazaro, M.A.; Miley, G.H.; Petra, M.

    1996-01-01

    Proposed design of NIF is reviewed from the standpoint of radioactive and hazardous materials. Detailed analyses of these factors indicated that minimal environmental impacts are expected to occur, and very low exposures are predicted for both workers and the general public

  6. CT and MR image fusion using two different methods after prostate brachytherapy: impact on post-implant dosimetric assessment

    International Nuclear Information System (INIS)

    Servois, V.; El Khoury, C.; Lantoine, A.; Ollivier, L.; Neuenschwander, S.; Chauveinc, L.; Cosset, J.M.; Flam, T.; Rosenwald, J.C.

    2003-01-01

    To study different methods of CT and MR images fusion in patient treated by brachytherapy for localized prostate cancer. To compare the results of the dosimetric study realized on CT slices and images fusion. Fourteen cases of patients treated by 1125 were retrospectively studied. The CT examinations were realized with continuous section of 5 mm thickness, and MR images were obtained with a surface coil with contiguous section of 3 mm thickness. For the images fusion process, only the T2 weighted MR sequence was used. Two processes of images fusion were realized for each patient, using as reference marks the bones of the pelvis and the implanted seeds. A quantitative and qualitative appreciation was made by the operators, for each patient and both methods of images fusion. The dosimetric study obtained by a dedicated software was realized on CT images and all types of images fusion. The usual dosimetric indexes (D90, V 100 and V 150) were compared for each type of image. The quantitative results given by the software of images fusion showed a superior accuracy to the one obtained by the pelvic bony reference marks. Conversely, qualitative and quantitative results obtained by the operators showed a better accuracy of the images fusion based on iodine seeds. For two patients out of three presenting a D90 inferior to 145 Gy on CT examination, the D90 was superior to this norm when the dosimetry was based on images fusion, whatever the method used. The images fusion method based on implanted seed matching seems to be more precise than the one using bony reference marks. The dosimetric study realized on images fusion could allow to rectify possible errors, mainly due to difficulties in surrounding prostate contour delimitation on CT images. (authors)

  7. Benzene-fused BODIPYs: Synthesis and the impact of fusion mode

    KAUST Repository

    Ni, Yong

    2013-01-01

    BODIPY derivatives with one or two benzene units fused at different positions are prepared using novel synthetic methods. The resulting dye 1 shows deep red fluorescence with a large Stokes shift. Dyes 2 and 3 are reported for the first time and 3 exhibits near infrared absorption. The impact of benzannulation at different positions of BODIPY is discussed, and the geometry and electronic structure are studied by DFT calculations. This journal is © 2013 The Royal Society of Chemistry.

  8. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through...... individual fusion events using time-lapse and antagonists of CD47 and syncytin-1. All time-lapse recordings have been studied by two independent observers. A total of 1808 fusion events were analyzed. The present study shows that CD47 and syncytin-1 have different roles in osteoclast fusion depending...... broad contact surfaces between the partners' cell membrane while syncytin-1 mediate fusion through phagocytic-cup like structure. J. Cell. Physiol. 9999: 1-8, 2016. © 2016 Wiley Periodicals, Inc....

  9. The impact of image fusion in resolving discrepant findings between FDG-PET and MRI/CT in patients with gynaecological cancers

    International Nuclear Information System (INIS)

    Tsai, Cheng-Chien; Kao, Pan-Fu; Yen, Tzu-Chen; Tsai, Chien-Sheng; Hong, Ji-Hong; Ng, Koon-Kwan; Lai, Chyong-Huey; Chang, Ting-Chang; Hsueh, Swei

    2003-01-01

    This study was performed to prospectively investigate the impact of image fusion in resolving discrepant findings between fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) or X-ray computed tomography (CT) in patients with gynaecological cancers. Discrepant findings were defined as lesions where the difference between the FDG-PET and MRI/CT images was assigned a value of at least 2 on a 5-point probability scale. The FDG-PET and MRI/CT images were taken within 1 month of each other. Image fusion between FDG-PET and CT was performed by automatic registration between the two images. During an 18-month period, 34 malignant lesions and seven benign lesions from 32 patients who had undergone either surgical excision or a CT-guided histopathological investigation were included for analysis. Among these cases, image fusion was most frequently required to determine the nature and/or the extent of abdominal and pelvic lesions (28/41, 68%), especially as regards peritoneal seeding (8/41, 20%). Image fusion was most useful in providing better localisation for biopsy (16/41, 39%) and in discriminating between lesions with pathological versus physiological FDG uptake (12/41, 29%). Image fusion changed the original diagnosis based on MRI/CT alone in 9/41 lesions (22%), and the original diagnosis based on FDG-PET alone in 5/41 lesions (12%). It led to alteration of treatment planning (surgery or radiotherapy) in seven of the 32 patients (22%). In patients with gynaecological cancers, the technique of image fusion is helpful in discriminating the nature of FDG-avid lesions, in effectively localising lesions for CT-guided biopsy and in providing better surgical or radiotherapy planning. (orig.)

  10. Some fusion perspectives

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1977-01-01

    Some of the concepts of nuclear fusion reactions, advanced fusion fuels, environmental impacts, etc., are explored using the following general outline: I. Principles of Fusion (Nuclear Fuels and Reactions, Lawson Condition, n tau vs T, Nuclear Burn Characteristics); II. Magnetic Mirror Possibilities (the Ion Layer and Electron Layer, Exponential Build-up at MeV energies, Lorentz trapping at GeV energies); III. Pellet Fuel Fusion Prospects (Advanced Pellet Fuel Fusion Prospects, Burn Characteristics and Applications, Excitation-heating Prospects for Runaway Ion Temperatures). Inasmuch as the outline is very skeletal, a significant research and development effort may be in order to evaluate these prospects in more detail and hopefully ''harness the H-bomb'' for peaceful applications, the author concludes. 28 references

  11. Development of a Thermo-chemical Non-equilibrium Solver for Hypervelocity Flows

    Science.gov (United States)

    Balasubramanian, R.; Anandhanarayanan, K.

    2015-04-01

    In the present study, a three dimensional flowsolver is indigenously developed to numerically simulate hypervelocity thermal and chemical non equilibrium reactive air flow past flight vehicles. The two-temperature, five species, seventeen reactions, thermo-chemical non equilibrium, non-ionizing, air-chemistry model of Park is implemented in a compressible viscous code CERANS and solved in the finite volume framework. The energy relaxation is addressed by a conservation equation for the vibrational energy of the gas mixture resulting in the evaluation of its vibrational temperature. The AUSM-PW+ numerical flux function has been used for modeling the convective fluxes and a central differencing approximation is used for modeling the diffusive fluxes. The flowsolver had been validated for specifically chosen test cases with inherent flow complexities of non-ionizing hypervelocity thermochemical nonequilibrium flows and results obtained are in good agreement with results available in open literature.

  12. Experimental demonstration of plasma-drag acceleration of a dust cloud to hypervelocities.

    Science.gov (United States)

    Ticoş, C M; Wang, Zhehui; Wurden, G A; Kline, J L; Montgomery, D S; Dorf, L A; Shukla, P K

    2008-04-18

    Simultaneous acceleration of hundreds of dust particles to hypervelocities by collimated plasma flows ejected from a coaxial gun is demonstrated. Graphite and diamond grains with radii between 5 and 30 microm, and flying at speeds up to 3.7 km/s, have been recorded with a high-speed camera. The observations agree well with a model for plasma-drag acceleration of microparticles much larger than the plasma screening length.

  13. Energy by nuclear fusion

    International Nuclear Information System (INIS)

    Buende, R.; Daenner, W.; Herold, H.; Raeder, J.

    1976-12-01

    This report reviews the state of knowledge in a number of fields of fusion research up to autumn 1976. Section 1 gives a very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawson-type diagrams. Section 2 outlines the reserves and cost of lithium and deuterium, gives estimates of the total energy available from DT fusion and comments on production technology, availlability and handling of the fuels. In section 3 a survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of interial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented in section 4, which is followed in section 5 by a discussion of the key problems of fusion power plants. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed in section 6. Section 7 and 8 treat the aspects of safety and environment. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste (orig.) [de

  14. Fusion Power Deployment

    International Nuclear Information System (INIS)

    Schmidt, J.A.; Ogden, J.M.

    2002-01-01

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment

  15. Fusion power

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The principles of fusion power, and its advantages and disadvantages, are outlined. Present research programmes and future plans directed towards the development of a fusion power reactor, are summarized. (U.K.)

  16. Prospects for alternative Fusion Fuels

    International Nuclear Information System (INIS)

    Glancy, J.

    1986-01-01

    The author has worked on three different magnetic confinement concepts for alternate fusion fueled reactors: tokamaks; tanden mirrors, and reversed field pinches. The focus of this article is on prospects for alternate fusion fuels as the author sees them relative to the other choices: increased numbers of coal plants, fission reactors, renewables, and D-T fusion. Discussion is limited on the consideration of alternate fusion fuels to the catalyzed deuterium-deuterium fuel cycle. Reasons for seeking an alternate energy source are cost, a more secure fuel supply, environmental impact and safety. The technical risks associated with development of fusion are examined briefly

  17. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  18. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Science.gov (United States)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  19. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Takashi; Endo, Youichi [Graduate Student, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Kanazawa, Chikara [Undergraduate, Chiba University 1-33 Yayoi, Inage, Chiba, 63-8522 (Japan); Ota, Masanori; Maeno, Kazuo, E-mail: maeno@faculty.chiba-u.j [Graduate School of Engineering, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan)

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N{sub 2} are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  20. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    International Nuclear Information System (INIS)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-01-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N 2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  1. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  2. Meteorite impact in the ocean

    Science.gov (United States)

    Strelitz, R.

    1979-01-01

    In the present study, the dynamic of hypervelocity impacts and crater formation in water are examined with allowance for the unique properties of water. More precisely, the transient crater calculated is permitted to relax and act as a source of oceanic surface waves.

  3. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  4. Fusion Canada

    International Nuclear Information System (INIS)

    1987-07-01

    This first issue of a quarterly newsletter announces the startup of the Tokamak de Varennes, describes Canada's national fusion program, and outlines the Canadian Fusion Fuels Technology Program. A map gives the location of the eleven principal fusion centres in Canada. (L.L.)

  5. Need for research and development in fusion: Economical energy for a sustainable future with low environmental impact

    International Nuclear Information System (INIS)

    Logan, B.G.; Perkins, L.J.; Moir, R.W.; Ryutov, D.D.

    1995-01-01

    Fusion, advanced fission, and solar-electric plants are the only unlimited nonfossil options for a sustainable energy future for the world. Fusion poses the only indigenous fuel reserve that will last as long as the earth itself lasts. However, continued innovation and diversity in fusion R ampersand D will be required to meet its economic goal. The long-term nature of fusion research means that the required R ampersand D investment will not come from the private sector. However, once fusion is realized commercially, the dividend for humanity will be profound in terms of the welfare of the global community. We should also not underestimate the huge potential export opportunities that would then open up for industry. Federal energy R ampersand D at nearly 1% of U.S. energy costs is prudent and justified to allow pursuit of all three primary energy options for a sustainable energy future. Multiple parallel paths are essential to ensure success. The projected timescale for significant shortfalls in world energy supply to become apparent is nearly 30 to 40 yr depending on assumptions. The time to develop fusion from near-term R ampersand D through significant commercial market penetration is at least of the same order, so its development must not be delayed. 6 refs., 2 figs

  6. Fusion reactors as a future energy source

    International Nuclear Information System (INIS)

    Seifritz, W.

    A detailed update of fusion research concepts is given. Discussions are given for the following areas: (1) the magnetic confinement principle, (2) UWMAK I: conceptual design for a fusion reactor, (3) the inertial confinement principle, (4) the laser fusion power plant, (5) electron-induced fusion, (6) the long-term development potential of fusion reactors, (7) the symbiosis between fusion and fission reactors, (8) fuel supply for fusion reactors, (9) safety and environmental impact, and (10) accidents, and (11) waste removal and storage

  7. Laboratory Impact Experiments

    Science.gov (United States)

    Horanyi, M.; Munsat, T.

    2017-12-01

    The experimental and theoretical programs at the SSERVI Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) address the effects of hypervelocity dust impacts and the nature of the space environment of granular surfaces interacting with solar wind plasma and ultraviolet radiation. These are recognized as fundamental planetary processes due their role in shaping the surfaces of airless planetary objects, their plasma environments, maintaining dust haloes, and sustaining surface bound exospheres. Dust impacts are critically important for all airless bodies considered for possible human missions in the next decade: the Moon, Near Earth Asteroids (NEAs), Phobos, and Deimos, with direct relevance to crew and mission safety and our ability to explore these objects. This talk will describe our newly developed laboratory capabilities to assess the effects of hypervelocity dust impacts on: 1) the gardening and redistribution of dust particles; and 2) the generation of ionized and neutral gasses on the surfaces of airless planetary bodies.

  8. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  9. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  10. Fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  11. Hypervelocity Microparticle Impact Studies: Simulating Cosmic Dust Impacts on the Dustbuster

    Science.gov (United States)

    Austin, D. E.; Manning, H. L. K.; Bailey, C. L.; Farnsworth, J. T.; Ahrens, T. J.; Beauchamp, J. L.

    2002-01-01

    Iron and copper microparticles accelerated to 2-20 km/s in a 2 MV Van de Graaff accelerator were used to test a recently-developed cosmic dust mass spectrometer, known as the Dustbuster. Additional information is contained in the original extended abstract.

  12. On the Use of Sensor Fusion to Reduce the Impact of Rotational and Additive Noise in Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Ignacio Rojas

    2012-06-01

    Full Text Available The main objective of fusion mechanisms is to increase the individual reliability of the systems through the use of the collectivity knowledge. Moreover, fusion models are also intended to guarantee a certain level of robustness. This is particularly required for problems such as human activity recognition where runtime changes in the sensor setup seriously disturb the reliability of the initial deployed systems. For commonly used recognition systems based on inertial sensors, these changes are primarily characterized as sensor rotations, displacements or faults related to the batteries or calibration. In this work we show the robustness capabilities of a sensor-weighted fusion model when dealing with such disturbances under different circumstances. Using the proposed method, up to 60% outperformance is obtained when a minority of the sensors are artificially rotated or degraded, independent of the level of disturbance (noise imposed. These robustness capabilities also apply for any number of sensors affected by a low to moderate noise level. The presented fusion mechanism compensates the poor performance that otherwise would be obtained when just a single sensor is considered.

  13. Thermal protection for hypervelocity flight in earth's atmosphere by use of radiation backscattering ablating materials

    Science.gov (United States)

    Howe, John T.; Yang, Lily

    1991-01-01

    A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.

  14. Anthropometric characteristics, high prevalence of undernutrition and weight loss: impact on outcomes in patients with adolescent idiopathic scoliosis after spinal fusion.

    LENUS (Irish Health Repository)

    Tarrant, Roslyn C

    2015-02-01

    Abnormal anthropometry including comparably lower weight and body mass index (BMI) in the adolescent idiopathic scoliosis (AIS) population is increasingly recognised, however, no study has examined postoperative weight loss or its clinical relevance in these relatively thin patients. This study aimed to assess perioperative nutritional status as well as clinically severe involuntary weight loss and its impact on outcomes in patients with AIS undergoing posterior spinal fusion (PSF). A further objective was to compare preoperative anthropometric measurements of the current AIS cohort with healthy controls.

  15. Mass acceleration in a multi-module plasma jet for impact fusion. Final report, 31 July 1985-30 July 1986

    International Nuclear Information System (INIS)

    Burton, R.L.; Goldstein, S.A.; Tidman, D.A.; Wang, S.Y.; Winsor, N.K.; Witherspoon, F.D.

    1986-08-01

    Successful development of a mass accelerator for impact fusion requires successful development of its components. The Advanced Impluse Module (AIM) is now operational, and is presently being used to povide a structured armature for electromagnetic gun experiments. Metals materials have been identified for the accelerator bore, and their limits identified and tested. A side-mounted, removable projectile detector and its circuitry has been developed. The next step is to use these components to achieve significantly higher velocities than have been achieved by our previous technology

  16. Mass acceleration in a multi-module plasma jet for impact fusion. Final report, 21 May 1984-21 May 1985

    International Nuclear Information System (INIS)

    Burton, R.L.; Goldstein, S.A.; Tidman, D.A.; Massey, D.W.; Winsor, N.K.; Witherspoon, F.D.

    1985-07-01

    GT-Devices began work on multi-module mass accelerators for impact fusion in 1981. The technique employs sequentially switched high pressure plasma jets to accelerate a lightweight projectile in a circular barrel. The purpose of the work of the past 12 months was to improve the understanding of the plasma jet acceleration process, and to translate that understanding into verifiable results. Both goals have been accomplished. During the past year we conceived, designed, built and fired 325 shots on the Module Test Facility (MTF). This facility provided sufficient diagnostics to investigate a wide variety of geometries, plasmas and current pulses, so that rapid progress was made

  17. Fusion devices

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  18. Energy from inertial fusion

    International Nuclear Information System (INIS)

    1995-03-01

    This book contains 22 articles on inertial fusion energy (IFE) research and development written in the framework of an international collaboration of authors under the guidance of an advisory group on inertial fusion energy set up in 1991 to advise the IAEA. It describes the actual scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It also identifies ways in which international co-operation in ICF could be stimulated. The book is intended for a large audience and provides an introduction to inertial fusion energy and an overview of the various technologies needed for IFE power plants to be developed. It contains chapters on (i) the fundamentals of IFE; (ii) inertial confinement target physics; (iii) IFE power plant design principles (requirements for power plant drivers, solid state laser drivers, gas laser drivers, heavy ion drivers, and light ion drivers, target fabrication and positioning, reaction chamber systems, power generation and conditioning and radiation control, materials management and target materials recovery), (iv) special design issues (radiation damage in structural materials, induced radioactivity, laser driver- reaction chamber interfaces, ion beam driver-reaction chamber interfaces), (v) inertial fusion energy development strategy, (vi) safety and environmental impact, (vii) economics and other figures of merit; (viii) other uses of inertial fusion (both those involving and not involving implosions); and (ix) international activities. Refs, figs and tabs

  19. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  20. Peaceful fusion

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [IANUS, TU Darmstadt (Germany)

    2014-07-01

    Like other intense neutron sources fusion reactors have in principle a potential to be used for military purposes. Although the use of fissile material is usually not considered when thinking of fusion reactors (except in fusion-fission hybrid concepts) quantitative estimates about the possible production potential of future commercial fusion reactor concepts show that significant amounts of weapon grade fissile materials could be produced even with very limited amounts of source materials. In this talk detailed burnup calculations with VESTA and MCMATH using an MCNP model of the PPCS-A will be presented. We compare different irradiation positions and the isotopic vectors of the plutonium bred in different blankets of the reactor wall with the liquid lead-lithium alloy replaced by uranium. The technical, regulatory and policy challenges to manage the proliferation risks of fusion power will be addressed as well. Some of these challenges would benefit if addressed at an early stage of the research and development process. Hence, research on fusion reactor safeguards should start as early as possible and accompany the current research on experimental fusion reactors.

  1. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations

    Science.gov (United States)

    H, L. SWAMI; C, DANANI; A, K. SHAW

    2018-06-01

    Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic‑Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well

  2. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  3. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  4. Laser fusion

    International Nuclear Information System (INIS)

    Ashby, D.E.T.F.

    1976-01-01

    A short survey is given on laser fusion its basic concepts and problems and the present theoretical and experimental methods. The future research program of the USA in this field is outlined. (WBU) [de

  5. Fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The efforts of the Chemical Technology Division in fusion energy include the areas of fuel handling, processing, and containment. Current studies are concerned largely with the development of vacuum pumps for fusion reactors and experiments and with development and evaluation of techniques for recovering tritium from solid or liquid breeding blankets. In addition, a small effort is devoted to support of the ORNL design of a major Tokamak experiment, The Next Step (TNS)

  6. Laser fusion

    International Nuclear Information System (INIS)

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  7. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  8. Impact of Starting Point and Bicortical Purchase of C1 Lateral Mass Screws on Atlantoaxial Fusion: Meta-Analysis and Review of the Literature.

    Science.gov (United States)

    Elliott, Robert E; Tanweer, Omar; Smith, Michael L; Frempong-Boadu, Anthony

    2015-08-01

    Structured review of literature and application of meta-analysis statistical techniques. Review published series describing clinical and radiographic outcomes of patients treated with C1 lateral mass screws (C1LMS), specifically analyzing the impact of starting point and bicortical purchase on successful atlantoaxial arthrodesis. Biomechanical studies suggest posterior arch screws and C1LMS with bicortical purchase are stronger than screws placed within the center of the lateral mass or those with unicortical purchase. Online databases were searched for English-language articles between 1994 and 2012 describing posterior atlantal instrumentation with C1LMS. Thirty-four studies describing 1247 patients having posterior atlantoaxial fusion with C1LMS met inclusion criteria. All studies provided class III evidence. Arthrodesis was quite successful regardless of technique (99.0% overall). Meta-analysis and multivariate regression analyses showed that neither posterior arch starting point nor bicortical screw purchase translated into a higher rate of successful arthrodesis. There were no complications from bicortical screw purchase. The Goel-Harms technique is a very safe and successful technique for achieving atlantoaxial fusion, regardless of minor variations in C1LMS technique. Although biomechanical studies suggest markedly increased rigidity of bicortical and posterior arch C1LMS, the significance of these findings may be minimal in the clinical setting of atlantoaxial fixation and fusion with modern techniques. The decision to use either technique must be made after careful review of the preoperative multiplanar computed tomography imaging, assessment of the unique anatomy of each patient, and the demands of the clinical scenario such as bone quality.

  9. Fusion research at ORNL

    International Nuclear Information System (INIS)

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress

  10. The impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Sanz, J.; Vujic, J.L.

    1996-01-01

    Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ''steady state'' (SS) or ''equivalent steady state'' (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used

  11. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  12. Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Part 2. Railgun accelerators

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1979-01-01

    The possibility of using a railgun accelerator to launch 0.1-g projectiles to hypervelocities (150 km/s or more) to initiate thermonuclear fusion is studied. The analysis revealed that a railgun with a plasma-arc armature is a viable approach to the goal. When calculating the railgun's probable performance, it was discovered that this launch system might possibly be designed to avoid adverse effects from boundary layer drag. An appendix provided by A.C. Buckingham summarizes his calculations that predict the amount of erosive drag between projectile and rail. Finally, it was found that certain properties of railgun and projectile materials can impose operational limits. Using these limits, single- and multistage accelerators were designed. Within such limits, a railgun could accelerate a 0.1-g projectile to hypervelocities

  13. Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Part 1. Magnetic-gradient and electrostatic accelerators

    International Nuclear Information System (INIS)

    Brittingham, J.N.

    1979-01-01

    The feasibility of using magnetic-gradient and electrostatic accelerators to launch a 0.1-g projectile to hypervelocities (150 km/s or more) is studied. Such hypervelocity projectiles could be used to ignite deuterium-tritium fuel pellets in a fusion reactor. For the magnetic-gradient accelerator, several types of projectile were studied: shielded and unshielded copper, ferromagnetic, and superconducting. The calculations revealed the superconducting projectile to be the best of those materials. It would require a 3.2-km-long magnetic-gradient accelerator and achieve a 92% efficiency. This accelerator-projectile combination would be the one most likely to launch a 0.1-g projectile to 150 km/s or more. Its components would cost $58.9 million. The electrostatic accelerator was found to be impractical because of its excessive length of 23 km

  14. Discovery of Two New Hypervelocity Stars from the LAMOST Spectroscopic Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.; Liu, X.-W.; Chen, B.-Q. [South-Western Institute for Astronomy Research, Yunnan University, Kunming 650500 (China); Zhang, H.-W.; Wang, C.; Tian, Z.-J. [Department of Astronomy, Peking University, Beijing 100871 (China); Xiang, M.-S.; Li, Y.-B. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yuan, H.-B. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Wang, B., E-mail: yanghuang@pku.edu.cn, E-mail: x.liu@pku.edu.cn, E-mail: zhanghw@pku.edu.cn [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Observatories, CAS, Kunming 650216 (China)

    2017-09-20

    We report the discovery of two new unbound hypervelocity stars (HVSs) from the LAMOST spectroscopic surveys. They are, respectively, a B2V-type star of ∼7 M {sub ⊙} with a Galactic rest-frame radial velocity of 502 km s{sup −1} at a Galactocentric radius of ∼21 kpc and a B7V-type star of ∼4 M {sub ⊙} with a Galactic rest-frame radial velocity of 408 km s{sup −1} at a Galactocentric radius of ∼30 kpc. The origins of the two HVSs are not clear given their currently poorly measured proper motions. However, the future data releases of Gaia should provide proper motion measurements accurate enough to solve this problem. The ongoing LAMOST spectroscopic surveys are expected to yield more HVSs to form a statistical sample, providing vital constraints on understanding the nature of HVSs and their ejection mechanisms.

  15. Mitigation of Autoignition Due to Premixing in a Hypervelocity Flow Using Active Wall Cooling

    Science.gov (United States)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2013-01-01

    Preinjection of fuel on the forebody of an airbreathing vehicle is a proposed method to gain access to hypervelocity flight Mach numbers. However, this creates the possibility of autoignition either near the wall or in the core of the flow, thereby consuming fuel prematurely as well as increasing the amount of pressure drag on the vehicle. The computational fluid dynamics code VULCAN was used to conduct three dimensional simulations of the reacting flow in the vicinity of hydrogen injectors on a flat plate at conditions relevant to a Mach 12 notional flight vehicle forebody to determine the location where autoignition occurs. Active wall cooling strategies were formulated and simulated in response to regions of autoignition. It was found that tangential film cooling using hydrogen or helium were both able to nearly or completely eliminate wall autoignition in the flow domain of interest.

  16. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  17. The importance of high injection velocity to reduce plasma armature growth and drag in hypervelocity railguns

    International Nuclear Information System (INIS)

    Hawke, R.S.; Dixon, W.R.; Kang, S.W.; McCallen, R.C.; Susoeff, A.R.; Asay, J.R.; Shaninpoor, M.

    1987-01-01

    Plasmas are required to serve as armature in hypervelocity railguns. Typically, the plasmas are at temperatures of about 20-30,000 K and result in a high heat flux on the barrel wall. Slow moving plasmas radiate heat and melt the launcher wall causing it to ablate and resulting in a growth of the armature mass and length. As the velocity increases, the more massive and longer armature will result in greater viscous drag and ultimately limit the maximum achievable velocity. Several possible means of reducing the armature growth are possible. This paper discusses two of them, use of heat resistant barrel materials, and reduction of wall heating by reduction of exposure time through use of a high initial velocity. A summary of experimentally based, material ablation resistance calculations is presented. Second, the benefit of high injection velocity is evaluated. Finally, a joint SNLA and LLNL railgun research project based on the above considerations are described

  18. Research on the HYLIFE liquid-first-wall concept for future laser-fusion reactors: liquid jet impact experiments. Final report No. 8

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1982-08-01

    The goal of this initial scoping study was to evaluate the transient and steady state drag of a single bar and of some selected arrays of bars and to determine the momentum removed from impacting liquid slugs. In order to achieve this aim, use has been made of both the published literature and experimental data obtained from a small-scale experimental apparatus. The implications of two possible scaling laws for use in designing the small-scale experiment are discussed. The use of near-universal curves to evaluate the momentum removed during the initial transient period is described. The small-scale apparatus used to obtain steady-state drag data is described. Finally, these results are applied to the HYLIFE fusion reactor

  19. Shock Tunnel Studies of the Hypersonic Flowfield around the Hypervelocity Ballistic Models with Aerospikes

    Science.gov (United States)

    Balakalyani, G.; Saravanan, S.; Jagadeesh, G.

    Reduced drag and aerodynamic heating are the two basic design requirements for any hypersonic vehicle [1]. The flowfield around an axisymmetric blunt body is characterized by a bow shockwave standing ahead of its nose. The pressure and temperature behind this shock wave are very high. This increased pressure and temperature are responsible for the high levels of drag and aerodynamic heating over the body. In the past, there have been many investigations on the use of aerospikes as a drag reduction tool. These studies on spiked bodies aim at reducing both the drag and aerodynamic heating by modifying the hypersonic flowfield ahead of the nose of the body [2]. However, most of them used very simple configurations to experimentally study the drag reduction using spikes at hypersonic speeds [3] and therefore very little experimental data is available for a realistic geometric configuration. In the present study, the standard AGARD Hypervelocity Ballistic model 1 is used as the test model. The addition of the spike to the blunt body significantly alters the flowfield ahead of the nose, leading to the formation of a low pressure conical recirculation region, thus causing a reduction in drag and wall heat flux [4]. In the present investigation, aerodynamic drag force is measured over the Hypervelocity Ballistic model-1, with and without spike, at a flow enthalpy of 1.7 MJ/kg. The experiments are carried out at a Mach number of 8 and at zero angle of attack. An internally mountable accelerometer based 3-component force balance system is used to measure the aerodynamic forces on the model. Also computational studies are carried out to complement the experiments.

  20. Fusion events

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The fusion reactions between low energy heavy ions have a very high cross section. First measurements at energies around 30-40 MeV/nucleon indicated no residue of either complete or incomplete fusion, thus demonstrating the disappearance of this process. This is explained as being due to the high amount o energies transferred to the nucleus, what leads to its total dislocation in light fragments and particles. Exclusive analyses have permitted to mark clearly the presence of fusion processes in heavy systems at energies above 30-40 MeV/nucleon. Among the complete events of the Kr + Au reaction at 60 MeV/nucleon the majority correspond to binary collisions. Nevertheless, for the most considerable energy losses, a class of events do occur for which the detected fragments appears to be emitted from a unique source. These events correspond to an incomplete projectile-target fusion followed by a multifragmentation. Such events were singled out also in the reaction Xe + Sn at 50 MeV/nucleon. For the events in which the energy dissipation was maximal it was possible to isolate an isotropic group of events showing all the characteristics of fusion nuclei. The fusion is said to be incomplete as pre-equilibrium Z = 1 and Z = 2 particles are emitted. The cross section is of the order of 25 mb. Similar conclusions were drown for the systems 36 Ar + 27 Al and 64 Zn + nat Ti. A cross section value of ∼ 20 mb was determined at 55 MeV/nucleon in the first case, while the measurement of evaporation light residues in the last system gave an upper limit of 20-30 mb for the cross section at 50 MeV/nucleon

  1. Sagittal spinal balance after lumbar spinal fusion: the impact of anterior column support results from a randomized clinical trial with an eight- to thirteen-year radiographic follow-up.

    Science.gov (United States)

    Videbaek, Tina S; Bünger, Cody E; Henriksen, Mads; Neils, Egund; Christensen, Finn B

    2011-02-01

    Randomized clinical trial. To analyze the long-term clinical impact of anterior column support on sagittal balance after lumbar spinal fusion. Several investigators have stressed the importance of maintaining sagittal balance in relation to spinal fusion to avoid lumbar 'flat back,' accelerated adjacent segment degeneration, pain, and inferior functional outcome. Only limited evidence exists on how sagittal alignment affects clinical outcome. Anterior lumbar interbody fusion combined with posterolateral fusion has been proved superior to posterolateral fusion alone regarding outcome and cost-effectiveness. No randomized controlled trial has been published analyzing the effect of anterior support on radiographic measurements of sagittal balance. Between 1996 and 1999, 148 patients with severe chronic low back pain were randomly selected for posterolateral lumbar fusion plus anterior support (PLF + ALIF) or posterolateral lumbar fusion. A total of 92 patients participated. Sagittal balance parameters were examined on full lateral radiographs of the spine: pelvic incidence (PI), pelvic tilt (PT), sacral slope, thoracic kyphosis, lumbar lordosis, and positioning of C7 plumb line. The type of lumbar lordosis was evaluated and outcome assessed by Oswestry Disability Index (ODI). Follow-up rate was 74%. Sagittal balance parameters were similar between randomization groups. None of the parameters differed significantly between patients with an ODI from 0 to 40 and patients with ODI over 40. Balanced patients had a significantly superior outcome as measured by ODI (P Lumbar lordosis and type of lordosis correlated with outcome but could not explain the superior outcome in the group with anterior support. Whether sagittal balance and anterior support during fusion provide a protective effect on adjacent motion segments remains unclear.

  2. Nuclear fusion

    International Nuclear Information System (INIS)

    Huber, H.

    1978-01-01

    A comprehensive survey is presented of the present state of knowledge in nuclear fusion research. In the first part, potential thermonuclear reactions, basic energy balances of the plasma (Lawson criterion), and the main criteria to be observed in the selection of appropriate thermonuclear reactions are dealt with. This is followed by a discussion of the problems encountered in plasma physics (plasma confinement and heating, transport processes, plasma impurities, plasma instabilities and plasma diagnostics) and by a consideration of the materials problems involved, such as material of the first wall, fuel inlet and outlet, magnetic field generation, as well as repair work and in-service inspections. Two main methods have been developed to tackle these problems: reactor concepts using the magnetic pinch (stellarator, Tokamak, High-Beta reactors, mirror machines) on the one hand, and the other concept using the inertial confinement (laser fusion reactor). These two approaches and their specific problems as well as past, present and future fusion experiments are treated in detail. The last part of the work is devoted to safety and environmental aspects of the potential thermonuclear aspects of the potential thermonuclear reactor, discussing such problems as fusion-specific hazards, normal operation and potential hazards, reactor incidents, environmental pollution by thermal effluents, radiological pollution, radioactive wastes and their disposal, and siting problems. (orig./GG) [de

  3. Short fusion

    CERN Multimedia

    2002-01-01

    French and UK researchers are perfecting a particle accelerator technique that could aid the quest for fusion energy or make X-rays that are safer and produce higher-resolution images. Led by Dr Victor Malka from the Ecole Nationale Superieure des Techniques Avancees in Paris, the team has developed a better way of accelerating electrons over short distances (1 page).

  4. Magnetic fusion

    International Nuclear Information System (INIS)

    2002-01-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project

  5. Cold fusion

    International Nuclear Information System (INIS)

    Seo, Suk Yong; You, Jae Jun

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author)

  6. Hypervelocity launchers

    CERN Document Server

    Igra, Ozer

    2016-01-01

    In the present volume numerous descriptions of Ram accelerators are presented. These descriptions provide good overview on the progress made and the present state of the Ram accelerator technology worldwide.  In addition, articles describing light gas gun, ballistic range including a chapter dealing with shock waves in solids are given. Along with the technical description of considered facilities, samples of obtained results are also included. Each chapter is written by an expert in the described topic providing a comprehensive description of the discussed phenomena.  .

  7. Physics of mirror fusion systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1976-01-01

    Recent experimental results with the 2XIIB mirror machine at Lawrence Livermore Laboratory have demonstrated the stable confinement of plasmas at fusion temperatures and with energy densities equaling or exceeding that of the confining fields. The physics of mirror confinement is discussed in the context of these new results. Some possible approaches to further improving the confinement properties of mirror systems and the impact of these new approaches on the prospects for mirror fusion reactors are discussed

  8. Fusion impulse containment

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.

    1979-01-01

    The characteristics of impact fusion energy releases are not known sufficiently well to examine in detail specific containment vessel concepts or designs. Therefore it appears appropriate to formulate the impulse containment problem in general and to derive results in the form of explicit expressions from which magnitude estimates and parametric dependencies (trends) can be inferred conveniently and rapidly. In the following presentation we carry out this task using assumptions and approximations that are required to perform the analysis

  9. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1985-10-01

    KfK is involved in the European Fusion Programme predominantly in the NET and Fusion Technology part. The following fields of activity are covered: Studies for NET, alternative confinement concepts, and needs and issues of integral testing. Research on structural materials. Development of superconducting magnets. Gyrotron development (part of the Physics Programme). Nuclear technology (breeding materials, blanket design, tritium technology, safety and environmental aspects of fusion, remote maintenance). Reported here are status and results of work under contracts with the CEC within the NET and Technology Programme. The aim of the major part of this R and D work is the support of NET, some areas (e.g. materials, safety and environmental impact, blanket design) have a wider scope and address problems of a demonstration reactor. In the current working period, several new proposals have been elaborated to be implemented into the 85/89 Euratom Fusion Programme. New KfK contributions relate to materials research (dual beam and fast reactor irradiations, ferritic steels), to blanket engineering (MHD-effects) and to safety studies (e.g. magnet safety). (orig./GG)

  10. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  11. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  12. Splenogonadal Fusion

    Directory of Open Access Journals (Sweden)

    Sung-Lang Chen

    2008-11-01

    Full Text Available Splenogonadal fusion (SGF is a rare congenital non-malignant anomaly characterized by fusion of splenic tissue to the gonad, and can be continuous or discontinuous. Very few cases have been diagnosed preoperatively, and many patients who present with testicular swelling undergo unnecessary orchiectomy under the suspicion of testicular neoplasm. A 16-year-old boy presented with a left scrotal mass and underwent total excision of a 1.6-cm tumor without damaging the testis, epididymis or its accompanying vessels. Pathologic examination revealed SFG (discontinuous type. If clinically suspected before surgery, the diagnosis may be confirmed by Tc-99m sulfur colloid imaging, which shows uptake in both the spleen and accessory splenic tissue within the scrotum. Frozen section should be considered if there remains any doubt regarding the diagnosis during operation.

  13. Laser fusion

    International Nuclear Information System (INIS)

    Eliezer, S.

    1982-02-01

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  14. Fusion spectroscopy

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1995-09-01

    This article traces developments in the spectroscopy of high temperature laboratory plasma used in controlled fusion research from the early 1960's until the present. These three and a half decades have witnessed many orders of magnitude increase in accessible plasma parameters such as density and temperature as well as particle and energy confinement timescales. Driven by the need to interpret the radiation in terms of the local plasma parameters, the thrust of fusion spectroscopy has been to develop our understanding of (i) the atomic structure of highly ionised atoms, usually of impurities in the hydrogen isotope fuel; (ii) the atomic collision rates and their incorporation into ionization structure and emissivity models that take into account plasma phenomena like plasma-wall interactions, particle transport and radiation patterns; (iii) the diagnostic applications of spectroscopy aided by increasingly sophisticated characterisation of the electron fluid. These topics are discussed in relation to toroidal magnetically confined plasmas, particularly the Tokamak which appears to be the most promising approach to controlled fusion to date. (author)

  15. DebrisLV Hypervelocity Impact Post-Shot Physical Results Summary

    Science.gov (United States)

    2015-02-27

    simulaFng  a  solar-­‐panel   •  15  MJoules  energy   •  6061-T6 Frame •  Nylon Body •  Hollow Center for Electronics BODY...model  results  to  predict   plasm  jet  formaOon  in  relaOvely  simple  structures.    More  modeling  needs  to...Post-­‐Shot  Materials  Physics  Results,”   TOR-­‐2014-­‐03192   Approved Electronically by: Technical Peer Review Performed by

  16. Development of a capacitor powered rail gun for hypervelocity impact studies

    International Nuclear Information System (INIS)

    Shrader, J.E.

    1983-01-01

    Boeing has built and tested several rail gun designs using two different capacitor banks as power sources. For each design, the muzzle velocity predicted with the Boeing Electromagnetic Gun code (BEMG) matched the measured muzzle velocity within 5%, providing gas sealing between the rails and the dielectric of the barrel was maintained. This did not validate the model, but gave reasonable confidence in it. Using the BEMG model, a parametric study was conducted to determine the sensitivity of muzzle velocities between 2 and 5 km/s to the input variables. A practical point design was assumed, and then each parameter individually varied while the others were held constant. The point design assumed an initial velocity of 0.5 km/s and an inductance per unit length (L') of 0.8 x 10 -6 H/m. Other parameters were similar to the earlier designs. The earlier designs tested had no initial velocity, and an L' of 0.3 x 10 6 H/m. A gas gun was assumed to produce the initial velocity, and resulted in only modest increases in muzzle velocity. However, it eliminated a separate make switch, since a foil across the back of the projectile becomes a make switch, and it is expected to substantially reduce rail erosion near the breech of the gun. Rail erosion was a significant problem for repeated firings in earlier designs. The parametric study showed that for the velocities of interest, increasing L' was the single best way to improve gun performance. In a practical gun, this will be achieved by making a two turn barrel, rather than a single turn barrel. The results of this study will be used to design, build and test a small gun (about 9 mm bore) using a 150 kJ capacitor bank as a power source. Using the experience gained with this gun, a large gun (about 20 mm bore) will be designed, built and tested using a 1.3 MJ capacitor bank

  17. Experimentation and Modeling of Hypervelocity Impacts of Spacecraft MMOD Shielding with Incorporated Shear Thickening Fluid

    Data.gov (United States)

    National Aeronautics and Space Administration — The student is beginning a doctoral program at Mississippi State University (MSU) with an expected graduation date of December 2015. The proposed research will...

  18. Influence of microstructure on impact properties of 9–18%Cr ODS steels for fusion/fission applications

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Fournier, B.; Stratil, Luděk; Malaplate, J.; Rouffié, A.-L.; Wident, P.; Ziolek, L.; Béchade, J.-L.

    2011-01-01

    Roč. 411, 1-3 (2011), s. 112-118 ISSN 0022-3115 R&D Projects: GA ČR GA106/08/1397 Institutional research plan: CEZ:AV0Z20410507 Keywords : ODS steel * extrusion shape * crystallographic texture * morphologic texture * brittle fracture mechanisms Subject RIV: JG - Metallurgy Impact factor: 2.052, year: 2011

  19. Impact of body mass index on surgical outcomes, narcotics consumption, and hospital costs following anterior cervical discectomy and fusion.

    Science.gov (United States)

    Narain, Ankur S; Hijji, Fady Y; Haws, Brittany E; Kudaravalli, Krishna T; Yom, Kelly H; Markowitz, Jonathan; Singh, Kern

    2018-02-01

    OBJECTIVE Given the increasing prevalence of obesity, more patients with a high body mass index (BMI) will require surgical treatment for degenerative spinal disease. In previous investigations of lumbar spine pathology, obesity has been associated with worsened postoperative outcomes and increased costs. However, few studies have examined the association between BMI and postoperative outcomes following anterior cervical discectomy and fusion (ACDF) procedures. Thus, the purpose of this study was to compare surgical outcomes, postoperative narcotics consumption, complications, and hospital costs among BMI stratifications for patients who have undergone primary 1- to 2-level ACDF procedures. METHODS The authors retrospectively reviewed a prospectively maintained surgical database of patients who had undergone primary 1- to 2-level ACDF for degenerative spinal pathology between 2008 and 2015. Patients were stratified by BMI as follows: normal weight (costs. Regression analyses were controlled for preoperative demographic and procedural characteristics. RESULTS Two hundred seventy-seven patients were included in the analysis, of whom 20.9% (n = 58) were normal weight, 37.5% (n = 104) were overweight, 24.9% (n = 69) were obese I, and 16.6% (n = 46) were obese II-III. A higher BMI was associated with an older age (p = 0.049) and increased comorbidity burden (p = 0.001). No differences in sex, smoking status, insurance type, diagnosis, presence of neuropathy, or preoperative VAS pain scores were found among the BMI cohorts (p > 0.05). No significant differences were found among these cohorts as regards operative time, intraoperative blood loss, length of hospital stay, and number of operative levels (p > 0.05). Additionally, no significant differences in postoperative narcotics consumption, VAS score improvement, complication rates, arthrodesis rates, reoperation rates, or total direct costs existed across BMI stratifications (p > 0.05). CONCLUSIONS Patients with a

  20. Modeling Cyber Situational Awareness Through Data Fusion

    Science.gov (United States)

    2013-03-01

    following table: Table 3.10: Example Vulnerable Hosts for Criticality Assessment Experiment Example Id OS Applications/Services Version 1 Mac OS X VLC ...linux.org/. [4] Blasch, E., I. Kadar, J. Salerno, M. Kokar, S. Das, G. Powell, D. Corkill, and E. Ruspini. “Issues and challenges of knowledge representation...Holsopple. “Issues and challenges in higher level fusion: Threat/impact assessment and intent modeling (a panel summary)”. Information Fusion (FUSION

  1. Fusion reactors and the environment

    International Nuclear Information System (INIS)

    Hancox, R.

    1990-04-01

    Fusion power, based on the nuclear fusion of light elements to yield a net gain of energy, has the potential to extend the world's resources in a way which is environmentally attractive. Nevertheless, the easiest route to fusion - the reaction between deuterium and tritium - involves hazards from the use of tritium and the neutron activation of the structural materials. These hazards have been considered on the basis of simple conceptual reactor designs, both in relation to normal operation and decommissioning and to potential accident situations. Results from several studies are reviewed and suggest that fusion reactors appear to have an inherently lower environmental impact than fission reactors. However, the realization of this potential has yet to be demonstrated. (author)

  2. U. S. Fusion Energy Future

    International Nuclear Information System (INIS)

    Schmidt, John A.; Jassby, Dan; Larson, Scott; Pueyo, Maria; Rutherford, Paul H.

    2000-01-01

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems

  3. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1984-10-01

    The KfK-Association has continued work on 17 R and D contracts of the Fusion Technology Programme. An effort of 94 manyears per year is at present contributed by 10 KfK departments, covering all aereas defined in the Fusion Technology Programme. The dominant part of the work is directed towards the need of the NET design or supporting experiments. Some additional effort addresses long term technological issues and system studies relevant to DEMO or confinement schemes alternative to tokamaks. Direct contribution to the NET team has increased by augmentation of NET study contracts and delegation of personnel, three KfK delegates being at present members of the NET team. In reverse, specifications and design guidelines worked out by NET have started to have an impact on the current R and D-work in the laboratory. (orig./GG)

  4. Fusion Machines

    International Nuclear Information System (INIS)

    Weynants, R.R.

    2004-01-01

    A concise overview is given of the principles of inertial and magnetic fusion, with an emphasis on the latter in view of the aim of this summer school. The basis of magnetic confinement in mirror and toroidal geometry is discussed and applied to the tokamak concept. A brief discussion of the reactor prospects of this configuration identifies which future developments are crucial and where alternative concepts might help in optimising the reactor design. The text also aims at introducing the main concepts encountered in tokamak research that will be studied and used in the subsequent lectures

  5. Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers

    Science.gov (United States)

    Flaherty, W.; Austin, J. M.

    2013-10-01

    We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.

  6. THE NATURE OF HYPERVELOCITY STARS AND THE TIME BETWEEN THEIR FORMATION AND EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Cohen, Judith G., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: jlc@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-07-20

    We obtain Keck HIRES spectroscopy of HVS5, one of the fastest unbound stars in the Milky Way halo. We show that HVS5 is a 3.62 {+-} 0.11 M{sub Sun} main-sequence B star at a distance of 50 {+-} 5 kpc. The difference between its age and its flight time from the Galactic center is 105 {+-} 18 (stat) {+-}30 (sys) Myr; flight times from locations elsewhere in the Galactic disk are similar. This 10{sup 8} yr 'arrival time' between formation and ejection is difficult to reconcile with any ejection scenario involving massive stars that live for only 10{sup 7} yr. For comparison, we derive arrival times of 10{sup 7} yr for two unbound runaway B stars, consistent with their disk origin where ejection results from a supernova in a binary system or dynamical interactions between massive stars in a dense star cluster. For HVS5, ejection during the first 10{sup 7} yr of its lifetime is ruled out at the 3{sigma} level. Together with the 10{sup 8} yr arrival times inferred for three other well-studied hypervelocity stars (HVSs), these results are consistent with a Galactic center origin for the HVSs. If the HVSs were indeed ejected by the central black hole, then the Galactic center was forming stars {approx_equal}200 Myr ago, and the progenitors of the HVSs took {approx_equal}100 Myr to enter the black hole's loss cone.

  7. THE NATURE OF HYPERVELOCITY STARS AND THE TIME BETWEEN THEIR FORMATION AND EJECTION

    International Nuclear Information System (INIS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Cohen, Judith G.

    2012-01-01

    We obtain Keck HIRES spectroscopy of HVS5, one of the fastest unbound stars in the Milky Way halo. We show that HVS5 is a 3.62 ± 0.11 M ☉ main-sequence B star at a distance of 50 ± 5 kpc. The difference between its age and its flight time from the Galactic center is 105 ± 18 (stat) ±30 (sys) Myr; flight times from locations elsewhere in the Galactic disk are similar. This 10 8 yr 'arrival time' between formation and ejection is difficult to reconcile with any ejection scenario involving massive stars that live for only 10 7 yr. For comparison, we derive arrival times of 10 7 yr for two unbound runaway B stars, consistent with their disk origin where ejection results from a supernova in a binary system or dynamical interactions between massive stars in a dense star cluster. For HVS5, ejection during the first 10 7 yr of its lifetime is ruled out at the 3σ level. Together with the 10 8 yr arrival times inferred for three other well-studied hypervelocity stars (HVSs), these results are consistent with a Galactic center origin for the HVSs. If the HVSs were indeed ejected by the central black hole, then the Galactic center was forming stars ≅200 Myr ago, and the progenitors of the HVSs took ≅100 Myr to enter the black hole's loss cone.

  8. Construction and characterization of a new high current ion source for research of impact of hydrogen irradiation on wall materials for use in nuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo Parra, Rodrigo; Neu, Rudolf [Max Planck Institute for Plasma Physics, Garching (Germany); Technische Universitaet Muenchen, Garching (Germany); Oberkofler, Martin; Schmid, Klaus; Weghorn, Arno [Max Planck Institute for Plasma Physics, Garching (Germany)

    2016-07-01

    The HSQ (HochStromQuelle) is a high current DuoPIGatron type ion source used for research in surface properties of wall materials for nuclear fusion reactors. The existing HSQ-I will be replaced by the conceptually identical HSQ-II, currently under construction. Varying the acceleration potential and optimizing gas inflow and beam focusing grid voltage, ion currents before the deflecting magnet between 10 and 875 μA were reached for acceleration voltages of 0.7 to 8 kV. The ion beam footprint will be characterized, and ion optics will be installed before and after the deflecting magnet, capable of bending 10 keV Ar. A monoenergetic beam of a single species (e.g. D{sub 3}{sup +}) will finally be used for irradiation of samples in the separate implantation chamber at a base pressure of 10{sup -8} mbar. The energy of the impinging particles ranges from 200 eV/D to several keV/D. Fluxes of 10{sup 15} D/cm{sup 2}/s to the target are expected. The temperature of the sample is varied via electron impact heating and the sample weight can be assessed in situ by means of a magnetic suspension balance.

  9. Impact of Age and Duration of Symptoms on Surgical Outcome of Single-Level Microscopic Anterior Cervical Discectomy and Fusion in the Patients with Cervical Spondylotic Radiculopathy

    Directory of Open Access Journals (Sweden)

    Farzad Omidi-Kashani

    2014-01-01

    Full Text Available We aim to evaluate the impact of age and duration of symptoms on surgical outcome of the patients with cervical spondylotic radiculopathy (CSR who had been treated by single-level microscopic anterior cervical discectomy and fusion (ACDF. We retrospectively evaluated 68 patients (48 female and 20 male with a mean age of 41.2±4.3 (ranged from 24 to 72 years old in our Orthopedic Department, Imam Reza Hospital. They were followed up for 31.25±4.1 months (ranged from 25 to 65 months. Pain and disability were assessed by Visual Analogue Scale (VAS and Neck Disability Index (NDI questionnaires in preoperative and last follow-up visits. Functional outcome was eventually evaluated by Odom’s criteria. Surgery could significantly improve pain and disability from preoperative 6.2±1.4 and 22.2±6.2 to 3.5±2.0 and 8.7±5.2 (1–21 at the last follow-up visit, respectively. Satisfactory outcomes were observed in 89.7%. Symptom duration of more and less than six months had no effect on surgical outcome, but the results showed a statistically significant difference in NDI improvement in favor of the patients aged more than 45 years (P=0.032, although pain improvement was similar in the two groups.

  10. Impact of Age and Duration of Symptoms on Surgical Outcome of Single-Level Microscopic Anterior Cervical Discectomy and Fusion in the Patients with Cervical Spondylotic Radiculopathy.

    Science.gov (United States)

    Omidi-Kashani, Farzad; Ghayem Hasankhani, Ebrahim; Ghandehari, Reza

    2014-01-01

    We aim to evaluate the impact of age and duration of symptoms on surgical outcome of the patients with cervical spondylotic radiculopathy (CSR) who had been treated by single-level microscopic anterior cervical discectomy and fusion (ACDF). We retrospectively evaluated 68 patients (48 female and 20 male) with a mean age of 41.2 ± 4.3 (ranged from 24 to 72 years old) in our Orthopedic Department, Imam Reza Hospital. They were followed up for 31.25 ± 4.1 months (ranged from 25 to 65 months). Pain and disability were assessed by Visual Analogue Scale (VAS) and Neck Disability Index (NDI) questionnaires in preoperative and last follow-up visits. Functional outcome was eventually evaluated by Odom's criteria. Surgery could significantly improve pain and disability from preoperative 6.2 ± 1.4 and 22.2 ± 6.2 to 3.5 ± 2.0 and 8.7 ± 5.2 (1-21) at the last follow-up visit, respectively. Satisfactory outcomes were observed in 89.7%. Symptom duration of more and less than six months had no effect on surgical outcome, but the results showed a statistically significant difference in NDI improvement in favor of the patients aged more than 45 years (P = 0.032), although pain improvement was similar in the two groups.

  11. Fusion Canada issue 10

    International Nuclear Information System (INIS)

    1990-02-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Fusion Materials Research, ITER physics research, fusion performance record at JET, and design options for reactor building. 4 figs

  12. Radiological and environmental aspects of fusion power

    International Nuclear Information System (INIS)

    Easterly, C.E.; Shank, K.E.; Shoup, R.L.

    1977-01-01

    Fusion-reactor technology is presently in conceptual and early developmental stages. Concomitant with hardware development, potential health and environmental impacts must be evaluated to ensure that technologists have pertinent information available so that adequate consideration may be given to health and environmental problems. This article discusses problem areas attendant to tritium, activation products, and magnetic fields associated with fusion-reactor systems

  13. Dirac R -matrix calculations for the electron-impact excitation of neutral tungsten providing noninvasive diagnostics for magnetic confinement fusion

    Science.gov (United States)

    Smyth, R. T.; Ballance, C. P.; Ramsbottom, C. A.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.

    2018-05-01

    Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determination of reliable erosion diagnostics, helping to characterize the influx of tungsten impurities into the core plasma. The following paper presents detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-Fock method, drawing comparisons with experimental measurements where available, and includes a critical assessment of existing atomic structure data. We investigate the electron-impact excitation of neutral tungsten using the Dirac R -matrix method, and by employing collisional-radiative models, we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting comparisons highlight alternative diagnostic lines to the widely used 400.88-nm line.

  14. Fusion power and the environment

    International Nuclear Information System (INIS)

    Holdren, J.P.; Fowler, T.K.; Post, R.F.

    1975-01-01

    Environmental characteristics of conceptual fusion-reactor systems based on magnetic confinement are examined quantitatively, and some comparisons with fission systems are made. Fusion, like all other energy sources, will not be completely free of environmental liabilities, but the most obvious of these--tritium leakage and activation of structural materials by neutron bombardment--are susceptible to significant reduction by ingenuity in choice of materials and design. Large fusion reactors can probably be designed so that worst-case releases of radioactivity owing to accident or sabotage would produce no prompt fatalities in the public. A world energy economy relying heavily on fusion could make heavy demands on scarce nonfuel materials, a topic deserving further attention. Fusion's potential environmental advantages are not entirely ''automatic'', converting them into practical reality will require emphasis on environmental characteristics throughout the process of reactor design and engineering. The central role of environmental impact in the long-term energy dilemma of civilization justifies the highest priority on this aspect of fusion

  15. The European fusion nuclear technology effort

    International Nuclear Information System (INIS)

    Darvas, J.

    1989-01-01

    The role of fusion technology in the European fusion development strategy is outlined. The main thrust of the present fusion technology programme is responding to development needs of the Next European Torus. A smaller, but important and growing R and D effort is dealing with problems specific to the Demonstration, or Fusion Power, Reactor. The part of the programme falling under the somewhat arbitrarily defined category of 'fusion nuclear technology' is reviewed and an outlook to future activities is given. The review includes tritium technology, blanket technology and breeder materials development, technology and materials for the protection of the first wall and of other plasma facing components, remote handling technology, and safety and environmental impact studies. A few reflections are offered on the future long-term developments in fusion technology. (orig.)

  16. Revitalizing Fusion via Fission Fusion

    Science.gov (United States)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  17. Catalysed fusion

    CERN Document Server

    Farley, Francis

    2012-01-01

    A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest for green energy. Coping with baffling jargon and manifold dangers, he is distracted by radioactive rats, lovely ladies and an unscrupulous rival. Full of doubts and hesitations, he falls for a dazzling Danish girl, who leads him astray. His brilliant idea leads to a discovery and a new route to cold fusion. But his personal life is scrambled. Does it bring fame or failure? Tragedy or triumph?

  18. Fusion cuisine

    DEFF Research Database (Denmark)

    Peters, Chris; Broersma, Marcel

    2018-01-01

    JJournalism studies as an academic field is characterized by multidisciplinarity. Focusing on one object of study, journalism and the news, it established itself by integrating and synthesizing approaches from established disciplines – a tendency that lives on today. This constant gaze to the out......JJournalism studies as an academic field is characterized by multidisciplinarity. Focusing on one object of study, journalism and the news, it established itself by integrating and synthesizing approaches from established disciplines – a tendency that lives on today. This constant gaze...... to the outside for conceptual inspiration and methodological tools lends itself to a journalism studies that is a fusion cuisine of media, communication, and related scholarship. However, what happens when this object becomes as fragmented and multifaceted as the ways we study it? This essay addresses...

  19. High speed photography of the plasma flow and the projectiles in the T.U.M. hypervelocity accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.; Kuczera, H.; Schroeder, B.

    1979-01-01

    The hypervelocity accelerator at the Technische Universitaet Muenchen, FRG, accelerates small projectiles (0.1 to 1.0 mm diameter) to velocities around 20 km/s. The photographic equipment consists of two Cordin single-frame image converter cameras and one TRW image converter camera with streak units and multiple-frame units. They are used for plasma flow diagnostics and the measurement of the position and the velocity of the projectiles. The single-frame cameras are triggered with a Laser light bar and the photographic measurement of the projectile velocity will be compared with Doppler-Radar. (author)

  20. Environmental aspects of fusion reactors

    International Nuclear Information System (INIS)

    Coffman, F.E.; Williams, J.M.

    1975-01-01

    With the continued depletion of fossil and uranium resources in the coming decades, the U. S. will be forced to look more toward renewable energy resources (e.g., wind, tidal, geothermal, and solar power) and toward such longer-term and nondepletable energy resources as fissile fast breeder reactors and fusion power. Several reference reactor designs have been completed for full-scale fusion power reactors that indicate that the environmental impacts from construction, operation, and eventual decommissioning of fusion reactors will be quite small. The principal environmental impact from fusion reactor operation will be from thermal discharges. Some of the safety and environmental characteristics that make fusion reactors appear attractive include an effectively infinite fuel supply at low cost, inherent incapability for a ''nuclear explosion'' or a ''nuclear runaway,'' the absence of fission products, the flexibility of selecting low neutron-cross-section structural materials so that emergency core cooling for a loss-of-coolant or other accident will not be necesary, and the absence of special nuclear materials such as 235 U or 239 Pu, so that diversion of nuclear weapons materials will not be possible and nuclear blackmail will not be a serious concern

  1. An artificial neural network to discover hypervelocity stars: candidates in Gaia DR1/TGAS

    Science.gov (United States)

    Marchetti, T.; Rossi, E. M.; Kordopatis, G.; Brown, A. G. A.; Rimoldi, A.; Starkenburg, E.; Youakim, K.; Ashley, R.

    2017-09-01

    The paucity of hypervelocity stars (HVSs) known to date has severely hampered their potential to investigate the stellar population of the Galactic Centre and the Galactic potential. The first Gaia data release (DR1, 2016 September 14) gives an opportunity to increase the current sample. The challenge is the disparity between the expected number of HVSs and that of bound background stars. We have applied a novel data mining algorithm based on machine learning techniques, an artificial neural network, to the Tycho-Gaia astrometric solution catalogue. With no pre-selection of data, we could exclude immediately ˜99 per cent of the stars in the catalogue and find 80 candidates with more than 90 per cent predicted probability to be HVSs, based only on their position, proper motions and parallax. We have cross-checked our findings with other spectroscopic surveys, determining radial velocities for 30 and spectroscopic distances for five candidates. In addition, follow-up observations have been carried out at the Isaac Newton Telescope for 22 stars, for which we obtained radial velocities and distance estimates. We discover 14 stars with a total velocity in the Galactic rest frame >400 km s-1, and five of these have a probability of >50 per cent of being unbound from the Milky Way. Tracing back their orbits in different Galactic potential models, we find one possible unbound HVS with v ˜ 520 km s-1, five bound HVSs and, notably, five runaway stars with median velocity between 400 and 780 km s-1. At the moment, uncertainties in the distance estimates and ages are too large to confirm the nature of our candidates by narrowing down their ejection location, and we wait for future Gaia releases to validate the quality of our sample. This test successfully demonstrates the feasibility of our new data-mining routine.

  2. Impact of tile drainage on evapotranspiration in South Dakota, USA, based on high spatiotemporal resolution evapotranspiration time series from a multi-satellite data fusion system

    Science.gov (United States)

    Yang, Yun; Anderson, Martha C.; Gao, Feng; Hain, Christopher; Kustas, William P.; Meyers, Tilden P.; Crow, Wade; Finocchiaro, Raymond G.; Otkin, Jason; Sun, Liang; Yang, Yang

    2017-01-01

    Soil drainage is a widely used agricultural practice in the midwest USA to remove excess soil water to potentially improve the crop yield. Research shows an increasing trend in baseflow and streamflow in the midwest over the last 60 years, which may be related to artificial drainage. Subsurface drainage (i.e., tile) in particular may have strongly contributed to the increase in these flows, because of its extensive use and recent gain in the popularity as a yield-enhancement practice. However, how evapotranspiration (ET) is impacted by tile drainage on a regional level is not well-documented. To explore spatial and temporal ET patterns and their relationship to tile drainage, we applied an energy balance-based multisensor data fusion method to estimate daily 30-m ET over an intensively tile-drained area in South Dakota, USA, from 2005 to 2013. Results suggest that tile drainage slightly decreases the annual cumulative ET, particularly during the early growing season. However, higher mid-season crop water use suppresses the extent of the decrease of the annual cumulative ET that might be anticipated from widespread drainage. The regional water balance analysis during the growing season demonstrates good closure, with the average residual from 2005 to 2012 as low as -3 mm. As an independent check of the simulated ET at the regional scale, the water balance analysis lends additional confidence to the study. The results of this study improve our understanding of the influence of agricultural drainage practices on regional ET, and can affect future decision making regarding tile drainage systems.

  3. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  4. Fusion Canada issue 28

    International Nuclear Information System (INIS)

    1995-06-01

    A short bulletin from the National Fusion Program highlighting in this issue the Canada - US fusion meeting in Montreal, fusion breeder work in Chile, new management at CFFTP, fast electrons in tokamaks: new data from TdeV, a program review of CCFM and Velikhov to address Montreal fusion meeting. 1 fig

  5. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Summaries of research are included for each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) the MACK/MACKLIB system for nuclear response functions, and (5) energy storage and power supply systems for fusion reactors

  6. Materials availability for fusion power plant construction

    International Nuclear Information System (INIS)

    Hartley, J.N.; Erickson, L.E.; Engel, R.L.; Foley, T.J.

    1976-09-01

    A preliminary assessment was made of the estimated total U.S. material usage with and without fusion power plants as well as the U.S. and foreign reserves and resources, and U.S. production capacity. The potential environmental impacts of fusion power plant material procurement were also reviewed including land alteration and resultant chemical releases. To provide a general measure for the impact of material procurement for fusion reactors, land requirements were estimated for mining and disposing of waste from mining

  7. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Research during this report period has covered the following areas: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) MACKLIB-IV, a new library of nuclear response functions, (5) energy storage and power supply requirements for commercial fusion reactors, (6) blanket/shield design evaluation for commercial fusion reactors, and (7) cross section measurements, evaluations, and techniques

  8. Cold fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1991-01-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of ∼1 kW/cm 3 Pd, as compared to 50 W/cm 3 of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given

  9. Fusion energy

    International Nuclear Information System (INIS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R ampersand D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R ampersand D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase

  10. Fusion power, who needs it?

    International Nuclear Information System (INIS)

    Kaw, P.K.

    1993-01-01

    It is pointed out that the fusion community world wide has not aggressively pursued a faster pace of development, which can indeed be justified on the basis of its technical accomplishments, because of certain faulty assumptions. Taking some relevant data of energy consumption (based on fossil fuels) and its environmental impact in the projections for developing countries like India and China, it is demonstrated that there is extreme urgency (time-scale of less than 20-25 years) to develop technologies like fusion if one has to prevent stagnation of per capita energy production (and quality of life) in these countries. We conclude by calling for a new aggressive goal for the world wide fusion programme, namely development of a demonstration power plant producing electricity in an environmentally acceptable manner by the year 2015. (author). 6 refs., 5 tabs., 2 figs

  11. Ch. 37, Inertial Fusion Energy Technology

    International Nuclear Information System (INIS)

    Moses, E.

    2010-01-01

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of

  12. Fusion technology: The Iter fusion experiment

    International Nuclear Information System (INIS)

    Dietz, K.J.

    1994-01-01

    Plans for the Iter international fusion experiment, in which the European Union, Japan, Canada, Russia, Sweden, Switzerland, and the USA cooperate, were begun in 1985, and construction work started in early 1994. These activities serve for the preparation of the design and construction documents for a research reactor in which a stable fusion plasma is to be generated. This is to be the basis for the construction of a fusion reactor for electricity generation. Preparatory work was performed in the Tokamak experiments with JET and TFTR. The fusion power of 1.5 GW will be attained, thus enabling Iter to keep a deuterium-tritium plasma burning. (orig.) [de

  13. Interobserver agreement in fusion status assessment after instrumental desis of the lower lumbar spine using 64-slice multidetector computed tomography

    DEFF Research Database (Denmark)

    Laoutliev, Borislav; Havsteen, Inger; Bech, Birthe Højlund

    2012-01-01

    Persistent lower back pain after instrumental posterolateral desis may arise from incomplete fusion. We investigate the impact of experience on interobserver agreement in fusion estimation.......Persistent lower back pain after instrumental posterolateral desis may arise from incomplete fusion. We investigate the impact of experience on interobserver agreement in fusion estimation....

  14. Review of gas gun technology with emphasis on fusion fueling applications

    International Nuclear Information System (INIS)

    Flagg, R.F.

    1978-01-01

    A review is made of current light gas gun and related hyper-velocity launcher technology with emphasis on physical and technological limits, advantages, and disadvantages as they apply to injection requirements for refueling Tokamak type nuclear fusion reactors. It is shown that the mass and velocity requirements for refueling are well within the capabilities of the state of the art and can be produced by several of the different types of gun/launching devices. The practical problems of adapting this performance capability to the refueling task are addressed and some possible configurations are given including both single pellet and multiple pellet injection. A short bibliography is given for those who wish additional detailed information

  15. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  16. Barriers to fusion

    International Nuclear Information System (INIS)

    Berriman, A.C.; Butt, R.D.; Dasgupta, M.; Hinde, D.J.; Morton, C.R.; Newton, J.O.

    1999-01-01

    The fusion barrier is formed by the combination of the repulsive Coulomb and attractive nuclear forces. Recent research at the Australian National University has shown that when heavy nuclei collide, instead of a single fusion barrier, there is a set of fusion barriers. These arise due to intrinsic properties of the interacting nuclei such deformation, rotations and vibrations. Thus the range of barrier energies depends on the properties of both nuclei. The transfer of matter between nuclei, forming a neck, can also affect the fusion process. High precision data have been used to determine fusion barrier distributions for many nuclear reactions, leading to new insights into the fusion process

  17. The economic viability of fusion power

    International Nuclear Information System (INIS)

    Ward, D.J.; Cook, I.; Lechon, Y.; Saez, R.

    2005-01-01

    Although fusion power is being developed because of its large resource base, low environmental impact and high levels of intrinsic safety, it is important to investigate the economics of a future fusion power plant to check that the electricity produced can, in fact, have a market. The direct cost of electricity of a fusion power plant and its key dependencies on the physics and technology assumptions, are calculated, as are the materials requirements. The other important aspect of costs, the external costs which can arise from effects such as pollution, accidents and waste are also given. Fusion is found to offer the prospect of a new energy source with acceptable direct costs and very low external costs. This places fusion in a strong position in a future energy market, especially one in which environmental constraints become increasingly important

  18. Material synergism fusion-fission

    International Nuclear Information System (INIS)

    Sankara Rao, K.B.; Raj, B.; Cook, I.; Kohyama, A.; Dudarev, S.

    2007-01-01

    In fission and fusion reactors the common features such as operating temperatures and neutron exposures will have the greatest impact on materials performance and component lifetimes. Developing fast neutron irradiation resisting materials is a common issue for both fission and fusion reactors. The high neutron flux levels in both these systems lead to unique materials problems like void swelling, irradiation creep and helium embitterment. Both fission and fusion rely on ferritic-martensitic steels based on 9%Cr compositions for achieving the highest swelling resistance but their creep strength sharply decreases above ∝ 823K. The use of oxide dispersion strengthened (ODS) alloys is envisaged to increase the operating temperature of blanket systems in the fusion reactors and fuel clad tubes in fast breeder reactors. In view of high operating temperatures, cyclic and steady load conditions and the long service life, properties like creep, low cycle fatigue,fracture toughness and creepfatigue interaction are major considerations in the selection of structural materials and design of components for fission and fusion reactors. Currently, materials selection for fusion systems has to be based upon incomplete experimental database on mechanical properties. The usage of fairly well developed databases, in fission programmes on similar materials, is of great help in the initial design of fusion reactor components. Significant opportunities exist for sharing information on technology of irradiation testing, specimen miniaturization, advanced methods of property measurement, safe windows for metal forming, and development of common materials property data base system. Both fusion and fission programs are being directed to development of clean steels with very low trace and tramp elements, characterization of microstructure and phase stability under irradiation, assessment of irradiation creep and swelling behaviour, studies on compatibility with helium and developing

  19. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  20. Laser fusion: an overview

    International Nuclear Information System (INIS)

    Boyer, K.

    1975-01-01

    The laser fusion concept is described along with developments in neodymium and carbon dioxide lasers. Fuel design and fabrication are reviewed. Some spin-offs of the laser fusion program are discussed. (U.S.)

  1. Fusion Canada issue 23

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs.

  2. Fusion Canada issue 27

    International Nuclear Information System (INIS)

    1995-03-01

    A short bulletin from the National Fusion Program highlighting in this issue ITER reactor siting, a major upgrade for TdeV tokamak, Ceramic Breeders: new tritium mapping technique and Joint Fusion Symposium. 2 figs

  3. Fusion Canada issue 23

    International Nuclear Information System (INIS)

    1994-01-01

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs

  4. Canada's Fusion Program

    International Nuclear Information System (INIS)

    Jackson, D. P.

    1990-01-01

    Canada's fusion strategy is based on developing specialized technologies in well-defined areas and supplying these technologies to international fusion projects. Two areas are specially emphasized in Canada: engineered fusion system technologies, and specific magnetic confinement and materials studies. The Canadian Fusion Fuels Technology Project focuses on the first of these areas. It tritium and fusion reactor fuel systems, remote maintenance and related safety studies. In the second area, the Centre Canadian de fusion magnetique operates the Tokamak de Varennes, the main magnetic fusion device in Canada. Both projects are partnerships linking the Government of Canada, represented by Atomic Energy of Canada Limited, and provincial governments, electrical utilities, universities and industry. Canada's program has extensive international links, through which it collaborates with the major world fusion programs, including participation in the International Thermonuclear Experimental Reactor project

  5. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Information is given on each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of CTR concepts, and (4) cross section measurements and techniques

  6. Fusion Canada issue 6

    International Nuclear Information System (INIS)

    1989-02-01

    A short bulletin from the National Fusion Program. Included in this issue is a funding report for CFFTP, a technical update for Tokamak de Varennes and a network for university research by the National Fusion Program. 4 figs

  7. Nuclear Fusion prize laudation Nuclear Fusion prize laudation

    Science.gov (United States)

    Burkart, W.

    2011-01-01

    Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna

  8. External events analysis for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1990-01-01

    External events are those off-normal events that threaten facilities either from outside or inside the building. These events, such as floods, fires, and earthquakes, are among the leading risk contributors for fission power plants, and the nature of fusion facilities indicates that they may also lead fusion risk. This paper gives overviews of analysis methods, references good analysis guidance documents, and gives design tips for mitigating the effects of floods and fires, seismic events, and aircraft impacts. Implications for future fusion facility siting are also discussed. Sites similar to fission plant sites are recommended. 46 refs

  9. Fusion Canada issue 18

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the ITER agreement signed with the EDA, the robotic maintenance for NET, the CFFTP Fusion Pilot Study, the new IEA joint programs on environment, safety and economic aspects of fusion power, and a review by the CCFM advisory committee. 3 figs.

  10. User's perspective on fusion

    International Nuclear Information System (INIS)

    Ashworth, C.P.

    1976-01-01

    The need in fusion, from the electric utilities viewpoint, is for fusion to be a real option, not huge, complicated nuclear plants costing $10 billion each and requiring restructuring the energy industry to provide and use them. A course for future fusion reactor work in order to be a real option is discussed. The advantages of alternate concepts to the tokamak are presented

  11. Fusion Canada issue 17

    International Nuclear Information System (INIS)

    1992-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on increased funding for the Canadian Fusion Program, news of the compact Toroid fuelling gun, an update on Tokamak de Varennes, the Canada - U.S. fusion meeting, measurements of plasma flow velocity, and replaceable Tokamak divertors. 4 figs

  12. Fusion Canada issue 18

    International Nuclear Information System (INIS)

    1992-08-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the ITER agreement signed with the EDA, the robotic maintenance for NET, the CFFTP Fusion Pilot Study, the new IEA joint programs on environment, safety and economic aspects of fusion power, and a review by the CCFM advisory committee. 3 figs

  13. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  14. Fusion Canada issue 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-11-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on availability of Canadian Tritium, an ITER update, a CCFM update on Tokamak and the new team organization, an international report on Fusion in Canada and a Laser Fusion Project at the University of Toronto. 3 figs.

  15. Heavy ion fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1986-01-01

    This report on the International Symposium on Heavy Ion Fusion held May 27-29, 1986 summarizes the problems and achievements in the areas of targets, accelerators, focussing, reactor studies, and system studies. The symposium participants recognize that there are large uncertainties in Heavy Ion Fusion but many of them are also optimistic that HIF may ultimately be the best approach to fusion

  16. Fusion Canada issue 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on increased funding for the Canadian Fusion Program, news of the compact Toroid fuelling gun, an update on Tokamak de Varennes, the Canada - U.S. fusion meeting, measurements of plasma flow velocity, and replaceable Tokamak divertors. 4 figs.

  17. Fusion reactors - types - problems

    International Nuclear Information System (INIS)

    Schmitter, K.H.

    1979-07-01

    A short account is given of the principles of fusion reactions and of the expected advantages of fusion reactors. Descriptions are presented of various Tokamak experimental devices being developed in a number of countries and of some mirror machines. The technical obstacles to be overcome before a fusion reactor could be self-supporting are discussed. (U.K.)

  18. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  19. Fusion Canada issue 9

    International Nuclear Information System (INIS)

    1989-11-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on availability of Canadian Tritium, an ITER update, a CCFM update on Tokamak and the new team organization, an international report on Fusion in Canada and a Laser Fusion Project at the University of Toronto. 3 figs

  20. Predicted space motions for hypervelocity and runaway stars: proper motions and radial velocities for the Gaia Era

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J.; Brown, Warren R.; Geller, Margaret J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States)

    2014-10-01

    We predict the distinctive three-dimensional space motions of hypervelocity stars (HVSs) and runaway stars moving in a realistic Galactic potential. For nearby stars with distances less than 10 kpc, unbound stars are rare; proper motions alone rarely isolate bound HVSs and runaways from indigenous halo stars. At large distances of 20-100 kpc, unbound HVSs are much more common than runaways; radial velocities easily distinguish both from indigenous halo stars. Comparisons of the predictions with existing observations are encouraging. Although the models fail to match observations of solar-type HVS candidates from SEGUE, they agree well with data for B-type HVS and runaways from other surveys. Complete samples of g ≲ 20 stars with Gaia should provide clear tests of formation models for HVSs and runaways and will enable accurate probes of the shape of the Galactic potential.

  1. Short-duration Lensing Events: Wide-orbit Planets? Free-floating Dwarfs? Or Hypervelocity Stellar Remnants?

    Science.gov (United States)

    Di Stefano, Rosanne; Patel, B.; Kallivayalil, N.; Primini, F. A.

    2009-01-01

    Ongoing microlensing observations by OGLE and MOA regularly detect and conduct high-cadence sampling of lensing events with Einstein diameter crossing times shorter than a few days. We show that many short-duration events are likely to have been caused by planet-mass or brown-dwarf lenses. Many of these low-mass lenses are located within a kpc. Information about some individual systems can be derived through a combination of lensing, radial velocity, and transit studies. The present discovery rate is high enough that the study of short-duration events could soon become the primary channel for planet detection via microlensing. We develop a protocol for observing and modeling these events, and apply it to archived data. A small number of short events may be caused by hypervelocity (v 10^3 km/s) masses located within a kpc.

  2. Heat-transfer distributions on biconics at incidence in hypersonic-hypervelocity He, N2, air, and CO2 flows

    Science.gov (United States)

    Miller, C. G.; Micol, J. R.; Gnoffo, P. A.; Wilder, S.E.

    1983-01-01

    Laminar heat-transfer rates were measured on spherically blunted, 13 degrees/F degrees on-axis and bent biconics (fore cone bent 7 degrees upward relative to aft cone) at hypersonic-hypervelocity flow conditions in the Langley Expansion Tube. Freestream velocities from 4.5 to 6.9 km/sec and Mach numbers from 6 to 9 were generated using helium, nitrogen, air, and carbon dioxide test gases, resulting in normal shock density ratios from 4 to 19. Angle of attack, referenced to the axis of the aft cone, was varied from zero to 20 degrees in 4 degree increments. The effect of nose bend, angle of attack, and real-gas phenomena on heating distributions are presented along with comparisons of measurement to prediction from a code which solves the three-dimensional 'parabolized Navier-Stokes' equations.

  3. Health physics in fusion reactor design

    International Nuclear Information System (INIS)

    Wong, K.Y.; Dinner, P.J.

    1984-06-01

    Experience in the control of tritium exposures to workers and the public gained through the design and operation of Ontario Hydro's nuclear stations has been applied to fusion projects and to design studies on emerging fusion reactor concepts. Ontario Hydro performance in occupational tritium exposure control and environmental impact is reviewed. Application of tritium control technologies and dose management methodology during facility design is highlighted

  4. Approximation of the economy of fusion energy

    Czech Academy of Sciences Publication Activity Database

    Entler, Slavomír; Horáček, Jan; Dlouhý, T.; Dostál, V.

    2018-01-01

    Roč. 152, June (2018), s. 489-497 ISSN 0360-5442 Grant - others:AV ČR(CZ) StrategieAV21/2 Program:StrategieAV Institutional support: RVO:61389021 Keywords : Nuclear fusion * Fusion energy * Economy * NPV * LCOE * External costs Subject RIV: JF - Nuclear Energetics OBOR OECD: Thermodynamics Impact factor: 4.520, year: 2016 https://www.sciencedirect.com/science/article/pii/S0360544218305395

  5. Electron-impact excitation and recombination of molecular cations in edge fusion plasma: application to H2+and BeD+

    Science.gov (United States)

    Pop, Nicolina; Iacob, Felix; Mezei, Zsolt; Motapon, Ousmanou; Niyonzima, Sebastien; Schneider, Ioan

    2017-10-01

    Dissociative recombination, ro-vibrational excitation and dissociative excitation of molecular cations with electrons are major elementary process in the kinetics and in the energy balance of astrophysically-relevant ionized media (supernovae, interstellar molecular clouds, planetary ionospheres, early Universe), in edge fusion and in many other cold media of technological interest. For the fusion plasma edge, extensive cross sections and rate coefficients have been produced for reactions induced on HD+, H2+ and BeD+ using the Multichannel Quantum Defect Theory (MQDT). Our calculations resulted in good agreement with the CRYRING (Stockholm) and TSR (Heidelberg) magnetic storage ring results, and our approach is permanently improved in order to face the new generation of electrostatic storage rings, as CSR (Heidelberg) and DESIREE (Stockholm). Member of APS Reciprocal Society: European Physics Society.

  6. First-year progress on research and development of a mass accelerator (MAID) as a driver for impact fusion, May 6, 1981-May 5, 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The objective of this program is to construct a small scale mass accelerator consisting of 10 plasma discharge modules, and perform experiments and analysis with the system so that reliable scaling laws can be obtained for the device. The effort is directed to determining whether a large scale version of such a plasma driven mass accelerator could be used as a driver for inertial fusion, or other energy-related applications

  7. Magnetic fusion and project ITER

    International Nuclear Information System (INIS)

    Park, H.K.

    1992-01-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called ''International Thermonuclear Experimental Reactor (ITER)'' will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind

  8. Tritium management in fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II

  9. The impact of early shame memories in Binge Eating Disorder: The mediator effect of current body image shame and cognitive fusion.

    Science.gov (United States)

    Duarte, Cristiana; Pinto-Gouveia, José

    2017-12-01

    This study examined the phenomenology of shame experiences from childhood and adolescence in a sample of women with Binge Eating Disorder. Moreover, a path analysis was investigated testing whether the association between shame-related memories which are traumatic and central to identity, and binge eating symptoms' severity, is mediated by current external shame, body image shame and body image cognitive fusion. Participants in this study were 114 patients, who were assessed through the Eating Disorder Examination and the Shame Experiences Interview, and through self-report measures of external shame, body image shame, body image cognitive fusion and binge eating symptoms. Shame experiences where physical appearance was negatively commented or criticized by others were the most frequently recalled. A path analysis showed a good fit between the hypothesised mediational model and the data. The traumatic and centrality qualities of shame-related memories predicted current external shame, especially body image shame. Current shame feelings were associated with body image cognitive fusion, which, in turn, predicted levels of binge eating symptomatology. Findings support the relevance of addressing early shame-related memories and negative affective and self-evaluative experiences, namely related to body image, in the understanding and management of binge eating. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Viral membrane fusion

    International Nuclear Information System (INIS)

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  11. Viral membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  12. Fusion technology 1992

    International Nuclear Information System (INIS)

    Ferro, C.; Gasparatto, M.; Knoepfel, H.

    1993-01-01

    The aim of the biennial series of symposia on the title subject, organized by the European Fusion Laboratories, is the exchange of information on the design, construction and operation of fusion experiments and on the technology being developed for the next step devices and fusion reactors. The coverage of the volume includes the technological aspects of fusion reactors in relation to new developments, this forming a guideline for the definition of future work. These proceedings comprise three volumes and contain both the invited lectures and contributed papers presented at the symposium which was attended by 569 participants from around the globe. The 343 papers, including 12 invited papers, characterize the increasing interest of industry in the fusion programme, giving a broad and current overview on the progress and trends fusion technology is experiencing now, as well as indicating the future for fusion devices

  13. Methods for Analysis and Simulation of Ballistic Impact

    Science.gov (United States)

    2017-04-01

    carbide. All experiments were conducted in reverse mode [7], with long- rod hypervelocity impact and penetration into confined cylindrical ceramic...comprehensive treatment that encompasses curvilinear coordinates, see [17], with general kinematics addressed in more detail in [49]. Governing equations of...deformation and mechanically reversible changes in damage (e.g., elastic crack closure on load release), J accounts for plastic slip from dislocations

  14. Final report on the Magnetized Target Fusion Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    John Slough

    2009-09-08

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking to be described in this proposal is to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The timescale for testing and development can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T&ion ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than

  15. Mechanisms of cold fusion: comprehensive explanations by the Nattoh model

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki

    1995-01-01

    The phenomena of cold fusion seem to be very complicated; inconsistent data between the production rates of heat, neutrons, tritiums and heliums. Our thoughts need to drastically change in order to appropriately understand the mechanisms of cold fusion. Here, a review is described for the Nattoh model, that has been developed extensively to provide comprehensive explanations for the mechanisms of cold fusion. Important experimental findings that prove the model are described. Furthermore several subjects including impacts on other fields are also discussed. (author)

  16. Recycling fusion materials

    International Nuclear Information System (INIS)

    Ooms, L.

    2005-01-01

    The inherent safety and environmental advantages of fusion power in comparison with other energy sources play an important role in the public acceptance. No waste burden for future generations is therefore one of the main arguments to decide for fusion power. The waste issue has thus been studied in several documents and the final conclusion of which it is stated that there is no permanent disposal waste needed if recycling is applied. But recycling of fusion reactor materials is far to be obvious regarding mostly the very high specific activity of the materials to be handled, the types of materials and the presence of tritium. The main objective of research performed by SCK-CEN is to study the possible ways of recycling fusion materials and analyse the challenges of the materials management from fusion reactors, based on current practices used in fission reactors and the requirements for the manufacture of fusion equipment

  17. The controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2014-01-01

    After some generalities on particle physics, and on fusion and fission reactions, the author outlines that the fission reaction is easier to obtain than the fusion reaction, evokes the fusion which takes place in stars, and outlines the difficulty to manage and control this reaction: one of its application is the H bomb. The challenge is therefore to find a way to control this reaction and make it a steady and continuous source of energy. The author then presents the most promising way: the magnetic confinement fusion. He evokes its main issues, the already performed experiments (tokamak), and gives a larger presentation of the ITER project. Then, he evokes another way, the inertial confinement fusion, and the two main experimental installations (National Ignition Facility in Livermore, and the Laser Megajoule in Bordeaux). Finally, he gives a list of benefits and drawbacks of an industrial nuclear fusion

  18. Laser fusion overview

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1976-01-01

    Because of recent breakthroughs in the target area, and in the glass laser area, the scientific feasibility of laser fusion--and of inertial fusion--may be demonstrated in the early 1980's. Then the development in that time period of a suitable laser (or storage ring or other driving source) would make possible an operational inertial fusion reactor in this century. These are roughly the same time scales as projected by the Tokamak magnetic confinement approach. It thus appears that the 15-20 year earlier start by magnetic confinement fusion may be overcome. Because inertial confinement has been demonstrated, and inertial fusion reactors may operate on smaller scales than Tokamaks, laser fusion may have important technical and economic advantages

  19. Synthetic fuels and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  20. Impact of Cervical Spine Deformity on Preoperative Disease Severity and Postoperative Outcomes Following Fusion Surgery for Degenerative Cervical Myelopathy: Sub-analysis of AOSpine North America and International Studies.

    Science.gov (United States)

    Kato, So; Nouri, Aria; Wu, Dongjin; Nori, Satoshi; Tetreault, Lindsay; Fehlings, Michael G

    2018-02-15

    Sub-analysis of the prospective AOSpine CSM North America and International studies. The aim of this study was to investigate the impact of cervical spine deformity on pre- and postoperative outcomes in fusion surgeries for degenerative cervical myelopathy. The associations between cervical alignment and patient outcomes have been reported but are not well established in a myelopathy cohort. The impact of deformity correction in this population also needs to be elucidated. A total of 757 patients were enrolled in two prospective international multicenter AOSpine studies. Among those who underwent anterior or posterior fusion surgeries, pre- and 1-year postoperative upright neutral lateral radiographs of cervical spine were investigated to measure C2-7 Cobb angle and C2-7 sagittal vertical axis (SVA). Patient outcome measures included the modified Japanese Orthopedic Association score for myelopathy severity, Neck Disability Index (NDI), and Short-form 36 (SF-36). These scores were compared between patients with and without cervical deformity, which was defined as C2-7 Cobb >10° kyphosis and/or SVA >40 mm. A total of 178 patients were included with complete pre- and postoperative radiographs. SVA significantly increased postoperatively (27.4 vs. 30.7 mm, P = 0.004). All outcome measurement showed significant improvements above minimal clinically important differences. 23.6% of the patients had cervical deformity preoperatively; preoperative deformity was associated with worse preoperative NDI scores (45.7 vs. 38.9, P = 0.04). Postoperatively, those with deformity exhibited significantly lower SF-36 physical component scores (37.2 vs. 41.4, P = 0.048). However, when focusing on the preoperatively deformed cohort, we did not find any significant differences in the postoperative outcome scores between those with and without residual deformity. There was a significant association between cervical deformity and both preoperative disease severity and

  1. Some implications for mirror research of the coupling between fusion economics and fusion physics

    International Nuclear Information System (INIS)

    Post, R.F.

    1980-01-01

    The thesis is made that physics understanding and innovation represent two of the most important ingredients of any program to develop fusion power. In this context the coupling between these and the econmics of yet-to-be realized fusion power plants is explored. The coupling is two-way: realistic evaluations of the economic (and environmental) requirements for fusion power systems can influence the physics objectives of present-day fusion research programs; physics understanding and innovative ideas can favorably impact the future economics of fusion power systems. Of equal importance is the role that physics/innovation can have on the time scale for the first practical demonstration of fusion power. Given the growing worldwide need for long-term solutions to the problem of energy it is claimed to be crucial that fusion research be carried out on a broad base and in a spirit that both facilitates the growth of physics understanding and fosters innovation. Developing this theme, some examples of mirror-based fusion system concepts are given that illustrate the coupling here described

  2. Magnetic-fusion program

    International Nuclear Information System (INIS)

    1980-08-01

    In February 1980, the Director of Energy Research requested that the Energy Research Advisory Board (ERAB) review the Department of Energy (DOE) Magnetic Fusion Program. Of particular concern to the DOE was the judicious choice of the next major steps toward demonstration of economic power production from fusion. Of equal concern was the overall soundness of the DOE Magnetic Fusion Program: its pace, scope, and funding profiles. Their finding and recommendations are included

  3. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  4. Status of fusion maintenance

    International Nuclear Information System (INIS)

    Fuller, G.M.

    1984-01-01

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission

  5. Membrane fusion and exocytosis.

    Science.gov (United States)

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  6. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  7. Nuclear fusion power

    International Nuclear Information System (INIS)

    Dinghee, D.A.

    1983-01-01

    In this chapter, fusion is compared with other inexhaustible energy sources. Research is currently being conducted both within and outside the USA. The current confinement principles of thermonuclear reactions are reveiwed with the discussion of economics mainly focusing on the magnetic confinement concepts. Environmental, health and safety factors are of great concern to the public and measures are being taken to address them. The magnetic fusion program logic and the inertial fusion program logic are compared

  8. Inertial confinement fusion (ICF)

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1977-01-01

    The principal goal of the inertial confinement fusion program is the development of a practical fusion power plant in this century. Rapid progress has been made in the four major areas of ICF--targets, drivers, fusion experiments, and reactors. High gain targets have been designed. Laser, electron beam, and heavy ion accelerator drivers appear to be feasible. Record-breaking thermonuclear conditions have been experimentally achieved. Detailed diagnostics of laser implosions have confirmed predictions of the LASNEX computer program. Experimental facilities are being planned and constructed capable of igniting high gain fusion microexplosions in the mid 1980's. A low cost long lifetime reactor design has been developed

  9. Inertial fusion energy

    International Nuclear Information System (INIS)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D.; Le Garrec, B.; Deutsch, C.; Migus, A.

    2005-01-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)

  10. Laser fusion program overview

    International Nuclear Information System (INIS)

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  11. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  12. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures ar...... a barrier to fusion changing from 15 k(B)T at T = 26 degrees C to 10k(H) T at T = 35 degrees C. These results are compatible with the theoretical predictions using the stalk model of vesicle fusion....

  13. Magnetic fusion reactor economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission → fusion. The present projections of the latter indicate that capital costs of the fusion ''burner'' far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ''implementation-by-default'' plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant

  14. Incomplete fusion studies

    International Nuclear Information System (INIS)

    Singh, B.P.

    2011-01-01

    In order to study the incomplete fusion reaction dynamics at energies ≅ 4-7 MeV/nucleon, several experiments have been carried out using accelerator facilities available in India. The measurements presented here cover a wide range of projectile-target combinations and enhance significantly our knowledge about incomplete fusion reaction dynamics. Here, the three sets of measurements have been presented; (i) excitation functions, (ii) forward recoil range distributions and (iii) the spin distributions. The first evidence of these reactions has been obtained from the measurement and analysis of excitation functions for xn/αxn/2αxn-channels. The measured excitation functions have been analyzed within the framework of compound nucleus model. The results obtained indicate the occurrence of fusion incompleteness at low beam energies. However, in order to determine the relative contribution of complete and incomplete fusion reaction processes, the recoil range distributions of the heavy residues have also been measured and analyzed within the framework of breakup fusion model which confirmed the fusion incompleteness in several heavy ion reactions involving α-emitting reaction channels. Further, in order to study the role of l-values in these reactions the spin distributions of the residues populated in case of complete and incomplete channels have been measured and are found to be distinctly different. The analysis of the data on spin distribution measurements indicate that the mean values of driving input angular momenta associated with direct-α-emitting (incomplete fusion) channels are higher than that observed for fusion-evaporation xn or α-emitting (complete fusion) channels, and is found to increase with direct α-multiplicity in the forward cone. One of the important conclusions drawn in the present work is that, there is significant incomplete fusion contribution even at energies slightly above the barrier. Further, the projectile structure has been found to

  15. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  16. An Innovative Solution to NASA's NEO Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development

    Data.gov (United States)

    National Aeronautics and Space Administration — A Hypervelocity Asteroid Intercept Vehicle (HAIV) mission architecture, which blends a hypervelocity kinetic impactor with a subsurface nuclear explosion for optimal...

  17. Work on fusion technology at Studsvik during 1978

    International Nuclear Information System (INIS)

    Pauli, R.; Espefaelt, R.; Lorenzen, J.

    1978-02-01

    Studsvik is associated with the EUR-ATOM fusion research program and work within fusion technology is carried out regarding reactor control, conceptual design, safety and environmental impact; radiation damage. In addition research by subcontracts is done in atomic physics data at Lund university and in surface physics at Research Institute of Physics, Stockholm university. (author)

  18. Cell fusion and nuclear fusion in plants.

    Science.gov (United States)

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fusion Canada issue 8

    International Nuclear Information System (INIS)

    1989-08-01

    A short bulletin from the National Fusion Program. Included in this issue are Canada-ITER contributions, NET Fuel Processing Loop, Bilateral Meeting for Canada-Europe, report from Tokamak de Varennes and a report from the University of Toronto on materials research for Fusion Reactors. 3 figs

  20. Fusion Canada issue 15

    International Nuclear Information System (INIS)

    1991-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the 1996 IAEA Fusion Conference site, operations at the Tokamak de Varennes including divertor pumping of impurities and pumping of carbon monoxide and methane, a discussion of the CFFTP and it's role. 1 fig

  1. Fusion helps diversification

    NARCIS (Netherlands)

    Liang, S.; Ren, Z.; de Rijke, M.

    2014-01-01

    A popular strategy for search result diversification is to first retrieve a set of documents utilizing a standard retrieval method and then rerank the results. We adopt a different perspective on the problem, based on data fusion. Starting from the hypothesis that data fusion can improve performance

  2. Fusion Canada issue 22

    International Nuclear Information System (INIS)

    1993-10-01

    A short bulletin from the National Fusion Program highlighting in this issue a bi-lateral meeting between Canada and Japan, water and hydrogen detritiation, in-situ tokamak surface analysis, an update of CCFM/TdeV and tritium accounting Industry guidance in Fusion, fast probe for plasma-surface interaction. 4 figs

  3. International fusion research council

    International Nuclear Information System (INIS)

    Belozerov, A.N.

    1977-01-01

    A brief history of the International Fusion Research Council (IFRC) is given and the minutes of the 1976 meeting in Garching are summarized. At the Garching meeting, the IFRC evaluated the quality of papers presented at recent IAEA conferences on plasma physics and controlled thermonuclear research, and made recommendations on the organization and timing of future meetings on nuclear fusion

  4. Fusion Canada issue 15

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the 1996 IAEA Fusion Conference site, operations at the Tokamak de Varennes including divertor pumping of impurities and pumping of carbon monoxide and methane, a discussion of the CFFTP and it`s role. 1 fig.

  5. Magnetic Fusion Program Plan

    International Nuclear Information System (INIS)

    1985-02-01

    This Plan reflects the present conditions of the energy situation and is consistent with national priorities for the support of basic and applied research. It is realistic in taking advantage of the technical position that the United States has already established in fusion research to make cost-effective progress toward the development of fusion power as a future energy option

  6. Fusion Canada issue 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-08-01

    A short bulletin from the National Fusion Program. Included in this issue are Canada-ITER contributions, NET Fuel Processing Loop, Bilateral Meeting for Canada-Europe, report from Tokamak de Varennes and a report from the University of Toronto on materials research for Fusion Reactors. 3 figs.

  7. Sensor Data Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Stepán, Petr

    2006-01-01

    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings.  Sonar readings are interpreted using probability density functions...

  8. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  9. Fusion reactor materials

    International Nuclear Information System (INIS)

    Sethi, V.K.; Scholz, R.; Nolfi, F.V. Jr.; Turner, A.P.L.

    1980-01-01

    Data are given for each of the following areas: (1) effects of irradiation on fusion reactor materials, (2) hydrogen permeation and materials behavior in alloys, (3) carbon coatings for fusion applications, (4) surface damage of TiB 2 coatings under energetic D + and 4 He + irradiations, and (5) neutron dosimetry

  10. The IGNITEX fusion project

    International Nuclear Information System (INIS)

    Carrera, R.

    1987-01-01

    The author discusses the recently proposed fusion ignition experiment, IGNITEX. He emphasizes the basic ideas of this concept rather than the specific details of the physics and engineering aspects of the experiment. This concept is a good example of the importance of maintaining an adequate balance between the basic scientific progress in fusion physics and the new technologies that are becoming available in order to make fusion work. The objective of the IGNITEX project is to produce and control ignited plasmas for scientific study in the simplest and least expensive way possible. Being able to study this not-yet-produced regime of plasma operation is essential to fusion research. Two years after the fission nuclear reaction was discovered, a non-self-sustained fission reaction was produced in a laboratory, and in one more year a self-sustained reaction was achieved at the University of Chicago. However, after almost forty years of fusion research, a self-sustained fusion reaction has yet not been produced in a laboratory experiment. This fact indicates the greater difficulty of the fusion experiment. Because of the difficulty involved in the production of a self-sustained fusion reaction, it is necessary to propose such an experiment with maximum ignition margins, maximum simplicity, and minimum financial risk

  11. Controlled thermonuclear fusion

    CERN Document Server

    Bobin, Jean Louis

    2014-01-01

    The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.

  12. Fusion Canada issue 4

    International Nuclear Information System (INIS)

    1988-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a technical update on Tokamak de Varennes, a report on the Beatrix II Breeding Materials Test Program, the Tritium glovebox system for UPM, Saudi Arabia, a broad update of the Canadian Fusion Fuels Technology Project is also included. 1 fig

  13. Fusion Canada issue 12

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Darlington`s Tritium Removal Facility, work at universities on Deuterium Diffusivity in Beryllium, Fusion Studies, confinement research and the operation of divertors at Tokamak de Varennes. 5 figs.

  14. Fusion Canada issue 22

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-01

    A short bulletin from the National Fusion Program highlighting in this issue a bi-lateral meeting between Canada and Japan, water and hydrogen detritiation, in-situ tokamak surface analysis, an update of CCFM/TdeV and tritium accounting Industry guidance in Fusion, fast probe for plasma-surface interaction. 4 figs.

  15. Fusion Canada issue 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a technical update on Tokamak de Varennes, a report on the Beatrix II Breeding Materials Test Program, the Tritium glovebox system for UPM, Saudi Arabia, a broad update of the Canadian Fusion Fuels Technology Project is also included. 1 fig.

  16. Fusion Canada issue 19

    International Nuclear Information System (INIS)

    1992-12-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the IAEA Plasma Biasing Meeting, the new IEA program -Nuclear Technology of Fusion reactors, TFTR tritium purification system, an update by CCFM on machine additions and modifications, and news of a new compact Toroid injector at the University of Saskatchewan. 1 fig

  17. Fusion Canada issue 14

    International Nuclear Information System (INIS)

    1991-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on a fusion cooperation agreement between Japan and Canada, an update at Tokamak de Varennes on plasma biasing experiments and boronization tests and a collaboration between Canada and the U.S. on a compact toroid fuelling gun. 4 figs

  18. Fusion Canada issue 12

    International Nuclear Information System (INIS)

    1990-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Darlington's Tritium Removal Facility, work at universities on Deuterium Diffusivity in Beryllium, Fusion Studies, confinement research and the operation of divertors at Tokamak de Varennes. 5 figs

  19. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  20. Initiative taken by India in magnetically confined fusion reactor

    International Nuclear Information System (INIS)

    Bora, Dhiraj

    2017-01-01

    There is a growing gap between demand and supply of energy in the world. Any attempt to develop new and cleaner sources of energy to meet the future global requirement is welcome. Therefore, it is attractive to think of having fusion as an alternate clean source of energy to contribute in the energy mix towards the second half of the century, with a virtually inexhaustible fuel supply. The environmental impact of fusion would be acceptable and relatively safe. These advantages have driven the world fusion research programme since its inception. Indian progress in fusion science and technology and participation in ITER will be discussed during the talk

  1. Industry's role in inertial fusion

    International Nuclear Information System (INIS)

    Glass, A.J.

    1983-01-01

    This paper is an address to the Tenth Symposium on Fusion Engineering. The speaker first addressed the subject of industry's role in inertial fusion three years earlier in 1980, outlining programs that included participation in the Shiva construction project, and the industrial participants' program set up in the laser fusion program to bring industrial scientists and engineers into the laboratory to work on laser fusion. The speaker is now the president of KMS Fusion, Inc., the primary industrial participant in the inertial fusion program. The outlook for fusion energy and the attitude of the federal government toward the fusion program is discussed

  2. Towards fusion power

    International Nuclear Information System (INIS)

    Venkataraman, G.

    1975-01-01

    An attempt has been made to present general but broad review of the recent developments in the field of plasma physics and its application to fusion power. The first chapter describes the fusion reactions and fusion power systems. The second chapter deals in detail with production and behaviour of plasma, screening, oscillations, instability, energy losses, temperature effects, etc. Magnetic confinements, including pinch systems, toroidal systems such as Tokamac and stellarator, minor machine, etc. are discussed in detail in chapter III. Laser produced plasma, laser implosion and problems associated with it and future prospects are explained in chapter IV. Chapter V is devoted entirely to the various aspects of hybrid systems. The last chapter throws light on problems of fusion technology, such as plasma heating, vacuum requirements, radiation damage, choice of materials, blanket problems, hazards of fusion reactions, etc. (K.B.)

  3. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  4. Decomposition of incomplete fusion

    International Nuclear Information System (INIS)

    Sobotka, L.B.; Sarantities, D.G.; Stracener, D.W.; Majka, Z.; Abenante, V.; Semkow, T.M.; Hensley, D.C.; Beene, J.R.; Halbert, M.L.

    1989-01-01

    The velocity distribution of fusion-like products formed in the reaction 701 MeV 28 Si+ 100 Mo is decomposed into 26 incomplete fusion channels. The momentum deficit of the residue per nonevaporative mass unit is approximately equal to the beam momentum per nucleon. The yields of the incomplete fusion channels correlate with the Q-value for projectile fragmentation rather than that for incomplete fusion. The backward angle multiplicities of light particles and heavy ions increase with momentum transfer, however, the heavy ion multiplicities also depend on the extent of the fragmentation of the incomplete fusion channel. These data indicate that at fixed linear momentum transfer, increased fragmentation of the unfused component is related to a reduced transferred angular momentum. 22 refs., 6 figs., 1 tab

  5. Nuclear fusion: The issues

    International Nuclear Information System (INIS)

    Griffin, R.D.

    1993-01-01

    The taming of fusion energy, has proved one of the most elusive quests of modern science. For four decades, the United States has doggedly pursued energy's holy grail, pumping more than $9 billion into research and reactor prototypes. This year, the federal government is slated to spend $339 million on fusion, more than the combined amount the government will spend for research on oil, natural gas, solar power, wind power, geothermal energy, biofuels and conservation. This article summarizes the technical, political in terms of international cooperation, economic, planning, etc. issues surrounding the continued development of fusion as a possible power source for the next century. Brief descriptions of how fusion works and of the design of a tokamak fusion machine are included

  6. Fusion safety data base

    International Nuclear Information System (INIS)

    Laats, E.T.; Hardy, H.A.

    1983-01-01

    The purpose of this Fusion Safety Data Base Program is to provide a repository of data for the design and development of safe commercial fusion reactors. The program is sponsored by the United States Department of Energy (DOE), Office of Fusion Energy. The function of the program is to collect, examine, permanently store, and make available the safety data to the entire US magnetic-fusion energy community. The sources of data will include domestic and foreign fusion reactor safety-related research programs. Any participant in the DOE Program may use the Data Base Program from his terminal through user friendly dialog and can view the contents in the form of text, tables, graphs, or system diagrams

  7. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  8. Inertial fusion experiments and theory

    International Nuclear Information System (INIS)

    Mima, Kunioki; Tikhonchuk, V.; Perlado, M.

    2011-01-01

    Inertial fusion research is approaching a critical milestone, namely the demonstration of ignition and burn. The world's largest high-power laser, the National Ignition Facility (NIF), is under operation at the Lawrence Livermore National Laboratory (LLNL), in the USA. Another ignition machine, Laser Mega Joule (LMJ), is under construction at the CEA/CESTA research centre in France. In relation to the National Ignition Campaign (NIC) at LLNL, worldwide studies on inertial fusion applications to energy production are growing. Advanced ignition schemes such as fast ignition, shock ignition and impact ignition, and the inertial fusion energy (IFE) technology are under development. In particular, the Fast Ignition Realization Experiment (FIREX) at the Institute of Laser Engineering (ILE), Osaka University, and the OMEGA-EP project at the Laboratory for Laser Energetics (LLE), University Rochester, and the HiPER project in the European Union (EU) for fast ignition and shock ignition are progressing. The IFE technology research and development are advanced in the frameworks of the HiPER project in EU and the LIFE project in the USA. Laser technology developments in the USA, EU, Japan and Korea were major highlights in the IAEA FEC 2010. In this paper, the status and prospects of IFE science and technology are described.

  9. Information Fusion of Conflicting Input Data

    Directory of Open Access Journals (Sweden)

    Uwe Mönks

    2016-10-01

    Full Text Available Sensors, and also actuators or external sources such as databases, serve as data sources in order to realise condition monitoring of industrial applications or the acquisition of characteristic parameters like production speed or reject rate. Modern facilities create such a large amount of complex data that a machine operator is unable to comprehend and process the information contained in the data. Thus, information fusion mechanisms gain increasing importance. Besides the management of large amounts of data, further challenges towards the fusion algorithms arise from epistemic uncertainties (incomplete knowledge in the input signals as well as conflicts between them. These aspects must be considered during information processing to obtain reliable results, which are in accordance with the real world. The analysis of the scientific state of the art shows that current solutions fulfil said requirements at most only partly. This article proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation employing the μBalTLCS (fuzzified balanced two-layer conflict solving fusion algorithm to reduce the impact of conflicts on the fusion result. The performance of the contribution is shown by its evaluation in the scope of a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The utilised data is published and freely accessible.

  10. Information Fusion of Conflicting Input Data.

    Science.gov (United States)

    Mönks, Uwe; Dörksen, Helene; Lohweg, Volker; Hübner, Michael

    2016-10-29

    Sensors, and also actuators or external sources such as databases, serve as data sources in order to realise condition monitoring of industrial applications or the acquisition of characteristic parameters like production speed or reject rate. Modern facilities create such a large amount of complex data that a machine operator is unable to comprehend and process the information contained in the data. Thus, information fusion mechanisms gain increasing importance. Besides the management of large amounts of data, further challenges towards the fusion algorithms arise from epistemic uncertainties (incomplete knowledge) in the input signals as well as conflicts between them. These aspects must be considered during information processing to obtain reliable results, which are in accordance with the real world. The analysis of the scientific state of the art shows that current solutions fulfil said requirements at most only partly. This article proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) employing the μ BalTLCS (fuzzified balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result. The performance of the contribution is shown by its evaluation in the scope of a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The utilised data is published and freely accessible.

  11. Investigations of image fusion

    Science.gov (United States)

    Zhang, Zhong

    1999-12-01

    The objective of image fusion is to combine information from multiple images of the same scene. The result of image fusion is a single image which is more suitable for the purpose of human visual perception or further image processing tasks. In this thesis, a region-based fusion algorithm using the wavelet transform is proposed. The identification of important features in each image, such as edges and regions of interest, are used to guide the fusion process. The idea of multiscale grouping is also introduced and a generic image fusion framework based on multiscale decomposition is studied. The framework includes all of the existing multiscale-decomposition- based fusion approaches we found in the literature which did not assume a statistical model for the source images. Comparisons indicate that our framework includes some new approaches which outperform the existing approaches for the cases we consider. Registration must precede our fusion algorithms. So we proposed a hybrid scheme which uses both feature-based and intensity-based methods. The idea of robust estimation of optical flow from time- varying images is employed with a coarse-to-fine multi- resolution approach and feature-based registration to overcome some of the limitations of the intensity-based schemes. Experiments show that this approach is robust and efficient. Assessing image fusion performance in a real application is a complicated issue. In this dissertation, a mixture probability density function model is used in conjunction with the Expectation- Maximization algorithm to model histograms of edge intensity. Some new techniques are proposed for estimating the quality of a noisy image of a natural scene. Such quality measures can be used to guide the fusion. Finally, we study fusion of images obtained from several copies of a new type of camera developed for video surveillance. Our techniques increase the capability and reliability of the surveillance system and provide an easy way to obtain 3-D

  12. Finger multibiometric cryptosystems: fusion strategy and template security

    Science.gov (United States)

    Peng, Jialiang; Li, Qiong; Abd El-Latif, Ahmed A.; Niu, Xiamu

    2014-03-01

    We address two critical issues in the design of a finger multibiometric system, i.e., fusion strategy and template security. First, three fusion strategies (feature-level, score-level, and decision-level fusions) with the corresponding template protection technique are proposed as the finger multibiometric cryptosystems to protect multiple finger biometric templates of fingerprint, finger vein, finger knuckle print, and finger shape modalities. Second, we theoretically analyze different fusion strategies for finger multibiometric cryptosystems with respect to their impact on security and recognition accuracy. Finally, the performance of finger multibiometric cryptosystems at different fusion levels is investigated on a merged finger multimodal biometric database. The comparative results suggest that the proposed finger multibiometric cryptosystem at feature-level fusion outperforms other approaches in terms of verification performance and template security.

  13. On the economic prospects of nuclear fusion with tokamaks

    International Nuclear Information System (INIS)

    Pfirsch, D.; Schmitter, K.H.

    1987-12-01

    This paper describes a method of cost and construction energy estimation for tokamak fusion power stations conforming to the present, early stage of fusion development. The method is based on first-wall heat load constraints rather than β limitations, which, however, might eventually be the more critical of the two. It is used to discuss the economic efficiency of pure fusion, with particular reference to the European study entitled 'Environmental Impact and Economic Prospects of Nuclear Fusion'. It is shown that the claims made therein for the economic prospects of pure fusion with tokamaks, when discussed on the basis of the present-day technology, do not stand up to critical examination. A fusion-fission hybrid, however, could afford more positive prospects. Support for the stated method is even derived when it is properly applied for cost estimation of advanced gascooled and Magnox reactors, the two very examples presented by the European study to 'disprove' it. (orig.)

  14. Physics, systems analysis and economics of fusion power plants

    International Nuclear Information System (INIS)

    Ward, D.J.

    2006-01-01

    Fusion power is being developed because of its large resource base, low environmental impact and high levels of intrinsic safety. It is important, however, to investigate the economics of a future fusion power plant to check that the electricity produced can, in fact, have a market. Using systems code analysis, including costing algorithms, this paper gives the cost of electricity expected from a range of fusion power plants, assuming that they are brought into successful operation. Although this paper does not purport to show that a first generation of fusion plants is likely to be the cheapest option for a future energy source, such plants look likely to have a market in some countries even without taking account of fusion's environmental advantages. With improved technological maturity fusion looks likely to have a widespread potential market particularly if the value of its environmental advantages are captured, for instance through avoiding a carbon tax. (author)

  15. US fusion community discussion on fusion strategies

    International Nuclear Information System (INIS)

    Marton, W.A.

    1998-01-01

    On April 26 - May 1, 1998, a US Fusion Community Forum for Major Next-Step Experiments was held at Madison, Wisconsin, USA. Both the Single Integrated Step strategy and the Multiple Machine strategy have substantial support from the about 180 scientists and engineers who participated

  16. Final Results of Shuttle MMOD Impact Database

    Science.gov (United States)

    Hyde, J. L.; Christiansen, E. L.; Lear, D. M.

    2015-01-01

    The Shuttle Hypervelocity Impact Database documents damage features on each Orbiter thought to be from micrometeoroids (MM) or orbital debris (OD). Data is divided into tables for crew module windows, payload bay door radiators and thermal protection systems along with other miscellaneous regions. The combined number of records in the database is nearly 3000. Each database record provides impact feature dimensions, location on the vehicle and relevant mission information. Additional detail on the type and size of particle that produced the damage site is provided when sampling data and definitive spectroscopic analysis results are available. Guidelines are described which were used in determining whether impact damage is from micrometeoroid or orbital debris impact based on the findings from scanning electron microscopy chemical analysis. Relationships assumed when converting from observed feature sizes in different shuttle materials to particle sizes will be presented. A small number of significant impacts on the windows, radiators and wing leading edge will be highlighted and discussed in detail, including the hypervelocity impact testing performed to estimate particle sizes that produced the damage.

  17. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis.

    Science.gov (United States)

    Martin, Peter R; Cool, Derek W; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D

    2014-07-01

    Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided "fusion" prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm(3) or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each tumor was consistently greater when using

  18. Assessing a new direction for fusion

    International Nuclear Information System (INIS)

    Waganer, L.M.

    2000-01-01

    applications in terms of market potential, environmental considerations, economic impact, risk and public perception. Quantified values were assigned to each potential fusion application and market to make more intelligent decisions on the allocation of future resources. Incorporating some of the long term market trends suggested in the December 1997 Kyoto Climate Change Conference, the most favored fusion applications were found to be the production of hydrogen fuels, transmutation of nuclear wastes and dissociation of chemical compounds, all slightly ahead of electricity production. The results from this decision analysis process will help balance the benefits of success against the risks of failure to help select promising products for future study

  19. Nonlinear propagation in fusion laser systems

    International Nuclear Information System (INIS)

    Bliss, E.S.; Glass, A.J.; Glaze, J.A.

    1977-11-01

    This report was assembled to provide a brief review of the historical development of the study of self-focusing and nonlinear light propagation and its impact on the design of large, Nd-glass lasers for fusion research. No claim to completeness is made, but we feel that the enclosed summary does not miss many of the major developments in the field

  20. Fusion of Nuclear and Emerging Technology

    International Nuclear Information System (INIS)

    Nahrul Khaer Alang Rashid

    2005-04-01

    The presentation discussed the following subjects: emerging technology; nuclear technology; fusion emerging and nuclear technology; progressive nature of knowledge; optically stimulated luminescence - application of luminescence technology to sediments; Biosystemics technology -convergence nanotechnology, ecological science, biotechnology, cognitive science and IT - prospective impact on materials science, the management of public system for bio-health, eco and food system integrity and disease mitigation

  1. Live Imaging of Mouse Secondary Palate Fusion

    Czech Academy of Sciences Publication Activity Database

    Kim, S.; Procházka, Jan; Bush, J.O.

    jaro, č. 125 (2017), č. článku e56041. ISSN 1940-087X Institutional support: RVO:68378050 Keywords : Developmental Biology * Issue 125 * live imaging * secondary palate * tissue fusion * cleft * craniofacial Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 1.232, year: 2016

  2. Relationship Between T1 Slope and Cervical Alignment Following Multilevel Posterior Cervical Fusion Surgery: Impact of T1 Slope Minus Cervical Lordosis.

    Science.gov (United States)

    Hyun, Seung-Jae; Kim, Ki-Jeong; Jahng, Tae-Ahn; Kim, Hyun-Jib

    2016-04-01

    Retrospective study. To assess the relationship between sagittal alignment of the cervical spine and patient-reported health-related quality-of-life scores following multilevel posterior cervical fusion, and to explore whether an analogous relationship exists in the cervical spine using T1 slope minus C2-C7 lordosis (T1S-CL). A recent study demonstrated that, similar to the thoracolumbar spine, the severity of disability increases with sagittal malalignment following cervical reconstruction surgery. From 2007 to 2013, 38 consecutive patients underwent multilevel posterior cervical fusion for cervical stenosis, myelopathy, and deformities. Radiographic measurements included C0-C2 lordosis, C2-C7 lordosis, C2-C7 sagittal vertical axis (SVA), T1 slope, and T1S-CL. Pearson correlation coefficients were calculated between pairs of radiographic measures and health-related quality-of-life. C2-C7 SVA positively correlated with neck disability index (NDI) scores (r = 0.495). C2-C7 lordosis (P = 0.001) and T1S-CL (P = 0.002) changes correlated with NDI score changes after surgery. For significant correlations between C2-C7 SVA and NDI scores, regression models predicted a threshold C2-C7 SVA value of 50 mm, beyond which correlations were most significant. The T1S-CL also correlated positively with C2-C7 SVA and NDI scores (r = 0.871 and r = 0.470, respectively). Results of the regression analysis indicated that a C2-C7 SVA value of 50 mm corresponded to a T1S-CL value of 26.1°. This study showed that disability of the neck increased with cervical sagittal malalignment following surgical reconstruction and a greater T1S-CL mismatch was associated with a greater degree of cervical malalignment. Specifically, a mismatch greater than 26.1° corresponded to positive cervical sagittal malalignment, defined as C2-C7 SVA greater than 50 mm. 3.

  3. Materials for fusion reactors

    International Nuclear Information System (INIS)

    Ehrlich, K.; Kaletta, D.

    1978-03-01

    The following report describes five papers which were given during the IMF seminar series summer 1977. The purpose of this series was to discuss especially the irradiation behaviour of materials intended for the first wall of future fusion reactors. The first paper deals with the basic understanding of plasma physics relating to the fusion reactor and presents the current state of art of fusion technology. The next two talks discuss the metals intended for the first wall and structural components of a fusion reactor. Since 14 MeV neutrons play an important part in the process of irradiation damage their role is discussed in detail. The question which machines are presently available to simulate irradiation damage under conditions similar to the ones found in a fusion reactor are investigated in the fourth talk which also presents the limitations of the different methods of simulation. In this context also discussed is the importance future intensive neutron sources and materials test reactors will have for this problem area. The closing paper has as a theme the review of the present status of research of metallic and non-metallic materials in view of the quite different requirements for different fusion systems; a closing topic is the world supply on rare materials required for fusion reactors. (orig) [de

  4. Fusion research in Hungary

    International Nuclear Information System (INIS)

    Zoletnik, S.

    2004-01-01

    Hungarian fusion research started in the 1970s, when the idea of installing a small tokamak experiment emerged. In return to computer equipment a soviet tokamak was indeed sent to Hungary and started to operate as MT-1 at the Central Research Institute for Physics (KFKI) in 1979. Major research topics included diagnostic development, edge plasma studies and investigation of disruptions. Following a major upgrade in 1992 (new vacuum vessel, active position control and PC network based data acquisition system) the MT-1M tokamak was used for the study of transport processes with trace impurity injection, micropellet ablation studies, X-ray tomography and laser blow-off diagnostic development. Although funding ceased in the middle of the 90's the group was held alive by collaborations with EU fusion labs: FZ -Juelich, IPP-Garching and CRPP-EPFL Lausanne. In 1998 the machine was dismantled due to reorganization of the Hungarian Academy of Sciences. New horizons opened to fusion research from 1999, when Hungary joined EURATOM and a fusion Association was formed. Since then fusion physics studies are done in collaboration with major EU fusion laboratories, Hungarian researchers also play an active role in JET diagnostics upgrade and ITER design. Major topics are pellet ablation studies, plasma turbulence diagnosis using Beam Emission Spectroscopy and other techniques, tomography and plasma diagnostics using various neutral beams. In fusion relevant technology R and D Hungary has less records. Before joining EURATOM some materials irradiation studies were done at the Budapest Research Reactor at KFKI-AEKI. The present day fusion technology programme focuses still on irradiation studies, nuclear material database and electromagnetic testing techniques. Increasing the fusion technology research activities is a difficult task, as the competition in Hungarian industry is very strong and the interest of organizations in long-term investments into R and D is rather weak and

  5. Health physics aspects of activation products from fusion reactors

    International Nuclear Information System (INIS)

    Shoup, R.L.; Poston, J.W.; Easterly, C.E.; Jacobs, D.G.

    1975-01-01

    A review of the activation products from fusion reactors and their attendant impacts is discussed. This includes a discussion on their production, expected inventories, and the status of metabolic data on these products

  6. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  7. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  8. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  9. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  10. Beam dancer fusion device

    International Nuclear Information System (INIS)

    Maier, H.B.

    1984-01-01

    To accomplish fusion of two or more fusion fuel elements numerous minute spots of energy or laser light are directed to a micro target area, there to be moved or danced about by a precision mechanical controlling apparatus at the source of the laser light or electromagnetic energy beams, so that merging and coinciding patterns of light or energy beams can occur around the area of the fuel atoms or ions. The projecting of these merging patterns may be considered as target searching techniques to locate responsive clusters of fuel elements and to compress such elements into a condition in which fusion may occur. Computerized programming may be used

  11. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  12. Japanese fusion research

    International Nuclear Information System (INIS)

    Uchida, T.

    1987-01-01

    The Japan experience during thirty years in nuclear fusion research is reported, after attending the 1st Geneva Conference in 1955, Osaka University, immedeately began linear pinch study using capacitor bank discharge. Subsequently to his trial several groups were organized to ward fusion R and D at universities in Tokyo, Nagoya, Kyoto, Sendai and son on. Based upon the recommendation of Japan Science Council, Institut of Plasma Physics (IPP) was established at Nagoya University in 1961 When the 1st International Conference on Plasma Physics and Controlled Nuclear Fusion Research was held in Saltzburg. The gloomy Bohm barrier had stood in front of many of experiments at that time. (author) [pt

  13. Defining the coupled effects of cryogenic, space-radiation, and hypervelocity impact damamge on COPV's, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The intent of the proposed effort is to investigate the detailed composite overwrapped pressure vessel (COPV) performance characteristics after being subject to...

  14. Development of Techniques for Investigating Energy Contributions to Target Deformation and Penetration During Reactive Projectile Hypervelocity Impact

    Science.gov (United States)

    2011-07-01

    inertial system, one can use the Bernoulli equation to describe the process [Wil03]. Estimating an stationary adiabatic process with an incompressible...cally the model is based on the conservation of momentum and energy, supplemented by a correctional term. 9It can be seen, that a smaller liner...system vjet minus the penetration velocity22: vjet,theoretical = vjet − u (9) The whole process can now be described by a simplified Bernoulli formula

  15. Inertial thermonuclear fusion by laser

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1993-12-01

    The principles of deuterium tritium (DT) magnetic or inertial thermonuclear fusion are given. Even if results would be better with heavy ions beams, most of the results on fusion are obtained with laser beams. Technical and theoretical aspects of the laser fusion are presented with an extrapolation to the future fusion reactor. (A.B.). 34 refs., 17 figs

  16. Inertial fusion commercial power plants

    International Nuclear Information System (INIS)

    Logan, B.G.

    1994-01-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an example of an IFE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity

  17. Why and how of fusion

    International Nuclear Information System (INIS)

    Miley, G.H.

    1977-01-01

    The potential advantages of fusion power are listed. The approaches to plasma containment are mentioned and the status of the fusion program is described. The ERDA and EPRI programs are discussed. The Fusion Energy Foundation's activities are mentioned. Fusion research at the U. of Ill. is described briefly

  18. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterization

    Science.gov (United States)

    Liou, J.-C.; Fitz-Coy, N.; Werremeyer, M.; Huynh, T.; Voelker, M.; Opiela, J.

    2012-01-01

    DebriSat is a planned laboratory ]based satellite hypervelocity impact experiment. The goal of the project is to characterize the orbital debris that would be generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 's US Navy Transit satellite. There are three phases to this project: the design and fabrication of an engineering model representing a modern, 50-cm/50-kg class LEO satellite known as DebriSat; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area ]to ]mass ratio, density, shape, material composition, optical properties, and radar cross ]section distributions, will be used to supplement the DoD fs and NASA fs satellite breakup models to better describe the breakup outcome of a modern satellite. Updated breakup models will improve mission planning, environmental models, and event response. The DebriSat project is sponsored by the Air Force fs Space and Missile Systems Center and the NASA Orbital Debris Program Office. The design and fabrication of DebriSat is led by University of Florida with subject matter experts f support from The Aerospace Corporation. The major milestones of the project include the complete fabrication of DebriSat by September 2013, the hypervelocity impact of DebriSat at the Air Force fs Arnold Engineering Development Complex in early 2014, and fragment characterization and data analyses in late 2014.

  19. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  20. Fusion-power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.; Neef, W.S.; Moir, R.W.; Campbell, R.B.; Botwin, R.; Clarkson, I.R.; Carpenter, T.J.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  1. International aspects of fusion

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1979-12-01

    International collaborative efforts in magnetic confinement fusion in which the USA is involved are reviewed. These efforts are carried under the auspices of international agencies and through bilateral agreements

  2. Magnetic fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The efforts of the Chemical Technology Division in the area of fusion energy include fuel handling, processing, and containment. These studies are closely coordinated with the ORNL Fusion Energy Division. Current experimental studies are concerned with the development of vacuum pumps for fusion reactors, the evaluation and development of techniques for recovering tritium (fuel) from either solid or liquid lithium containing blankets, and the use of deep beds of sorbents as roughing pumps and/or transfer operations. In addition, a small effort is devoted to the support of the ORNL design of The Next Step (TNS) in tokamak reactor development. The more applied studies--vacuum pump development and TNS design--are funded by the DOE/Magnetic Fusion Energy, and the more fundamental studies--blanket recovery and sorption in deep beds--are funded by the DOE/Basic Energy Sciences

  3. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1984-04-01

    KfK participates to the Fusion Technology Programme of the European Community. Most of the work in progress addresses the Next European Torus (NET) and the long term technology aspects as defined in the 82/86 programme. A minor part serves to preparation of future contributions and to design studies on fusion concepts in a wider perspective. The Fusion Technology Programme of Euratom covers mainly aspects of nuclear engineering. Plasma engineering, heating, refueling and vacuum technology are at present part of the Physics Programme. In view of NET, integration of the different areas of work will be mandatory. KfK is therefore prepared to address technical aspects beyond the actual scope of the physics experiments. The technology tasks are reported project wise under title and code of the Euratom programme. Most of the projects described here are shared with other European fusion laboratories as indicated in the table annexed to this report. (orig./GG)

  4. Fusion-breeder program

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The various approaches to a combined fusion-fission reactor for the purpose of breeding 239 Pu and 233 U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed

  5. Cold nuclear fusion device

    International Nuclear Information System (INIS)

    Ogino, Shinji.

    1991-01-01

    Selection of cathode material is a key to the attainment of cold nuclear fusion. However, there are only few reports on the cathode material at present and an effective development has been demanded. The device comprises an anode and a cathode and an electrolytic bath having metal salts dissolved therein and containing heavy water in a glass container. The anode is made of gold or platinum and the cathode is made of metals of V, Sr, Y, Nb, Hf or Ta, and a voltage of 3-25V is applied by way of a DC power source between them. The metal comprising V, Sr, Y, Nb, Hf or Ta absorbs deuterium formed by electrolysis of heavy water effectively to cause nuclear fusion reaction at substantially the same frequency and energy efficiency as palladium and titanium. Accordingly, a cold nuclear fusion device having high nuclear fusion generation frequency can be obtained. (N.H.)

  6. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member, syncytin-1......, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which work...

  7. Fusion Canada issue 11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-06-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on operation at Tokamak de Varennes, CRITIC irradiations at AECL, Tritium systems at TFTR, physics contribution at ITER. 4 figs.

  8. Fusion technology (FT)

    International Nuclear Information System (INIS)

    1978-01-01

    The annual report of tha fusion technology (FT) working group discusses the projects carried out by the participating institutes in the fields of 1) fuel injection and plasma heating, 2) magnetic field technology, and 3) systems investigations. (HK) [de

  9. Fusion technology development

    International Nuclear Information System (INIS)

    1979-08-01

    This report includes information on the following chapters: (1) conceptual design studies, (2) magnetics, (3) plasma heating, fueling, and exhaust, (4) materials for fusion reactors, (5) alternate applications, and (6) environment and safety

  10. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  11. Fusion cost normalization

    International Nuclear Information System (INIS)

    Schulte, S.C.; Willke, T.L.

    1978-01-01

    The categorization and accounting methods described in this paper provide a common format that can be used to assess the economic character of magnetically confined fusion reactor design concepts. The format was developed with assistance from the fusion economics community, thus ensuring that the methods meet with the approval of potential users. The format will aid designers in the preparation of design concept cost estimates and also provide policy makers with a tool to assist in appraising which design concepts may be economically promising. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising concepts, thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed

  12. Complimentary Advanced Fusion Exploration

    National Research Council Canada - National Science Library

    Alford, Mark G; Jones, Eric C; Bubalo, Adnan; Neumann, Melissa; Greer, Michael J

    2005-01-01

    .... The focus areas were in the following regimes: multi-tensor homographic computer vision image fusion, out-of-sequence measurement and track data handling, Nash bargaining approaches to sensor management, pursuit-evasion game theoretic modeling...

  13. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  14. Fusion power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  15. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  16. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Sakanaka, P.H.

    1984-01-01

    A simplified review on the status of the controlled thermonuclear fusion research aiming to present the motivation, objective, necessary conditions and adopted methods to reach the objective. (M.C.K.) [pt

  17. Fusion safety program plan

    International Nuclear Information System (INIS)

    Crocker, J.G.; Holland, D.F.; Herring, J.S.

    1980-09-01

    The program plan consists of research that has been divided into 13 different areas. These areas focus on the radioactive inventories that are expected in fusion reactors, the energy sources potentially available to release a portion of these inventories, and analysis and design techniques to assess and ensure that the safety risks associated with operation of magnetic fusion facilities are acceptably low. The document presents both long-term program requirements that must be fulfilled as part of the commercialization of fusion power and a five-year plan for each of the 13 different program areas. Also presented is a general discussion of magnetic fusion reactor safety, a method for establishing priorities in the program, and specific priority ratings for each task in the five-year plan

  18. Fusion Revisits CERN

    CERN Multimedia

    2001-01-01

    It's going to be a hot summer at CERN. At least in the Main Building, where from 13 July to 20 August an exhibition is being hosted on nuclear fusion, the energy of the Stars. Nuclear fusion is the engine driving the stars but also a potential source of energy for mankind. The exhibition shows the different nuclear fusion techniques and research carried out on the subject in Europe. Inaugurated at CERN in 1993, following collaboration between Lausanne's CRPP-EPFL and CERN, with input from Alessandro Pascolini of Italy's INFN, this exhibition has travelled round Europe before being revamped and returning to CERN. 'Fusion, Energy of the Stars', from 13 July onwards, Main Building

  19. Accelerator experiments with soft protons and hyper-velocity dust particles: application to ongoing projects of future X-ray missions

    DEFF Research Database (Denmark)

    Perinati, E.; Diebold, S.; Kendziorra, E.

    2012-01-01

    and hyper-velocity dust particles off X-ray mirror shells. These activities have been identified as a goal in the context of a number of ongoing space projects in order to assess the risk posed by environmental radiation and dust and qualify the adopted instrumentation with respect to possible damage...... or performance degradation. In this paper we focus on tests for the Silicon Drift Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff accelerators at the University of T\\"ubingen and at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper...

  20. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Peter R., E-mail: pmarti46@uwo.ca [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Cool, Derek W. [Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7, Canada and Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Romagnoli, Cesare [Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Fenster, Aaron [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Ward, Aaron D. [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each

  1. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    International Nuclear Information System (INIS)

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-01-01

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm 3 or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each tumor was

  2. Fusion Simulation Program

    International Nuclear Information System (INIS)

    Greenwald, Martin

    2011-01-01

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. (1). Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  3. The fusion dilemma

    International Nuclear Information System (INIS)

    Carruthers, R.

    1981-01-01

    The present position in fusion research is reviewed and discussed with relation to the requirements of an economic reactor. Meeting these requirements calls for a mission-oriented project of interdisciplinary character whose timely evolution from one with a research orientation, is a challenging management problem. The cost-effectiveness of future expenditure on fusion research is dependent upon acknowledging this challenge and realistically facing the difficult tasks which it presents. (U.K.)

  4. Possible fusion reactor

    International Nuclear Information System (INIS)

    Yoshikawa, S.

    1976-05-01

    A scheme to improve performance characteristics of a tokamak-type fusion reactor is proposed. Basically, the tokamak-type plasma could be moved around so that the plasma could be heated by compression, brought to the region where the blanket surrounds the plasma, and moved so as to keep wall loading below the acceptable limit. This idea should be able to help to economize a fusion reactor

  5. Fusion power plant economics

    International Nuclear Information System (INIS)

    Miller, R.L.

    1996-01-01

    The rationale, methodology, and updated comparative results of cost projections for magnetic-fusion-energy central-station electric power plants are considered. Changing market and regulatory conditions, particularly in the U.S., prompt fundamental reconsideration of what constitutes a competitive future energy-source technology and has implications for the direction and emphasis of appropriate near-term research and development programs, for fusion and other advanced generation systems. 36 refs., 2 figs., 2 tabs

  6. Sonoluminescence and bubble fusion

    OpenAIRE

    Arakeri, Vijay H

    2003-01-01

    Sonoluminescence (SL), the phenomenon of light emission from nonlinear motion of a gas bubble, involves an extreme degree of energy focusing. The conditions within the bubble during the last stages of the nearly catastrophic implosion are thought to parallel the efforts aimed at developing inertial confinement fusion. A limited review on the topic of SL and its possible connection to bubble nuclear fusion is presented here. The emphasis is on looking for a link between the various forms o...

  7. Fusion reactor materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The following topics are briefly discussed: (1) surface blistering studies on fusion reactor materials, (2) TFTR design support activities, (3) analysis of samples bombarded in-situ in PLT, (4) chemical sputtering effects, (5) modeling of surface behavior, (6) ion migration in glow discharge tube cathodes, (7) alloy development for irradiation performance, (8) dosimetry and damage analysis, and (9) development of tritium migration in fusion devices and reactors

  8. Bringing together fusion research

    International Nuclear Information System (INIS)

    Leiser, M.

    1982-01-01

    The increasing involvement of the IAEA in fusion, together with the growing efforts devoted to this area, are described. The author puts forward the idea that one of the most important aspects of this involvement is in providing a world-wide forum for scientists. The functions of the IFRC (International Fusion Research Council) as an advisory group are outlined, and the role played by IFRC in the definition and objectives of INTOR (International Tokamak Reactor) are briefly described

  9. Fusion Canada issue 13

    International Nuclear Information System (INIS)

    1991-01-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Canada's plans to participate in the Engineering Design Activities (EDA), bilateral meetings with Canada and the U.S., committee meeting with Canada-Europe, an update at Tokamak de Varennes on Plasma Biasing experiments and boronized graphite tests, fusion materials research at the University of Toronto using a dual beam accelerator and a review of the CFFTP and the CCFM. 2 figs

  10. Conference on Norwegian fusion research

    International Nuclear Information System (INIS)

    The question of instituting a systematic research programme in Norway on aspects of thermonuclear and plasma physics has been raised. The conference here reported was intended to provide basic information on the status of fusion research internationally and to discuss a possible Norwegian programme. The main contributions covered the present status of fusion research, international cooperation, fusion research in small countries and minor laboratories, fusion research in Denmark and Sweden, and a proposed fusion experiment in Bergen. (JIW)

  11. Status of fusion technology

    International Nuclear Information System (INIS)

    Mohan, Ashok

    1978-01-01

    The current status of fusion technology is surveyed. Limited reserves of fossil fuel and dangers of proliferation from nuclear reactors have brought into focus the need to develop an optional energy source. Fusion is being looked upon as an optional energy source which is free from environmental hazards unlike fossil fuels and nuclear reactors. Investments in R and D of fusion energy have increased rapidly in USA, Japan, USSR and European countries. Out of the various fusion fuels known, a mixture of D and T is widely chosen. The main problem in fusion technology is the confinement of plasma for a time sufficient to start the fusion reaction. This can be done magnetically or inertially. The three approaches to magnetic confinement are : (1) tokamak, (2) mirror and (3) pinch. Inertial confinement makes use of lasers or electron beams or ion beams. Both the methods of confinement i.e. magnetic and inertial have problems which are identified and their nature is discussed. (M.G.B.)

  12. Perspectives of fusion power

    International Nuclear Information System (INIS)

    Jensen, V.O.

    1984-01-01

    New and practically inexhaustible sources of energy must be developed for the period when oil, coal and uranium will become scarce and expensive. Nuclear fusion holds great promise as one of these practically inexhaustible energy sources. Based on the deuteriumtritium reaction with tritium obtained from naturally occuring lithium, which is also widely available in Europe, the accessible energy resources in the world are 3.10 12 to 3.10 16 toe; based on the deuterium-deuterium reaction, the deuterium content of the oceans corresponds to 10 20 toe. It is presently envisaged that in order to establish fusion as a large-scale energy source, three major thresholds must be reached: - Scientific feasibility, - Technical feasibility, i.e. the proof that the basic technical problems of the fusion reactor can be solved. - Commercial feasibility, i.e. proof that fusion power reactors can be built on an industrial scale, can be operated reliably and produce usable energy at prices competitive with other energy sources. From the above it is clear that the route to commercial fusion will be long and costly and involve the solution of extremely difficult technical problems. In view of the many steps which have to be taken, it appears unlikely that commercial fusion power will be in general use within the next 50 years and by that time world-wide expenditure on research, development and demonstration may well have exceeded 100 Bio ECU. (author)

  13. ITER, the 'Broader Approach', a DEMO fusion reactor

    International Nuclear Information System (INIS)

    Janeschitz, G.; Bahm, W.

    2007-01-01

    Fusion is a very promising future energy option, which is characterized by almost unlimited fuel reserves, favourable safety features and environmental sustainability. The aim of the worldwide fusion research is a fusion power station which imitates the process taking place in the sun and thus gains energy from the fusion of light atomic nuclei. The experimental reactor ITER which will be built in Cadarache, France, marks a breakthrough in the worldwide fusion research: For the first time an energy multiplication factor of at least 10 will be achieved, the factor by which the fusion power exceeds the external plasma heating. Partners in this project are the European Union, Japan, the Russian Federation, USA, China, South Korea and India as well as Brazil as associated partner. The facility is supposed to demonstrate a long burning, reactor-typical plasma and to test techniques such as plasma heating, plasma confinement by superconducting magnets, fuel cycle as well as energy transition, tritium breeding and remote handling technologies. The next step beyond ITER will be the demonstration power station DEMO which requires further developments in order to create the basis for its design and construction. The roadmap to fusion energy is described. It consists of several elements which are needed to develop the knowledge required for a commercial fusion reactor. The DEMO time schedule depends on the efforts in terms of personnel and budget resources the society is willing to invest in fusion taking into account the long term energy supply and its environmental impact. (orig.)

  14. Controlled thermonuclear fusion: research on magnetic fusion

    International Nuclear Information System (INIS)

    Paris, P.J.

    1988-12-01

    Recent progress in thermonuclear fusion research indicates that the scientists' schedule for the demonstration of the scientific feasibility will be kept and that break-even will be attained in the course of the next decade. To see the implementation of ignition, however, the generation of future experiments must be awaited. These projects are currently under study. With technological research going on in parallel, they should at the same time contribute to the design of a reactor. Fusion reactors will be quite different from the fission nuclear reactors we know, and the waste of the plants will also be of a different nature. It is still too early to define the precise design of a fusion reactor. On the basis of a toric machine concept like that of the tokamak, we can, however, envisage that the problems with which we are confronted will be solved one after the other. As we have just seen, these will be the objectives of the future experimental installations where ignition will be possible and where the flux of fast neutrons will be so strong that they will allow the study of low-activation materials which will be used in the structure of the reactor. But this is also a task in which from now onwards numerous laboratories in Europe and in the world participate. The works are in fact punctiform, and often the mutual incidences can only be determined by an approach simulated by numerical codes. (author) 19 figs., 6 tabs., 8 refs

  15. The ORNL fusion power demonstration study

    International Nuclear Information System (INIS)

    Shannon, T.E.; Steiner, D.

    1978-01-01

    In this paper, we review the design approach developed in the ORNL Fusion Power Demonstration Study [1]. The major emphasis of this study is in the application of current and near-term technology as the most logical path to near-term demonstration of tokamak fusion power. In addition we are pursuing a number of concepts to simplify the tokamak reactor to be more acceptable to the utility industry as a future source of energy. The discussion will focus on the areas having the greatest overall impact on reactor feasibility: 1) overall size and power output, 2) remote maintenance considerations, 3) electrical power supplies, 4) blanket design; and 5) economics. The tokamak device, by nature of its configuration and pulsed operation, is an exceptionally complex engineering design problem. We have concluded that innovative design concepts are essential to cope with this basic complexity. We feel that the feasibility of tokamak fusion power has been significantly improved by these design approaches. (author)

  16. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  17. Nuclear data needs for fusion reactors

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-01-01

    The nuclear design of fusion components (e.g., first wall, blanket, shield, magnet, limiter, divertor, etc.) requires an accurate prediction of the radiation field, the radiation damage parameters, and the activation analysis. The fusion nucleonics for these tasks are reviewed with special attention to point out nuclear data needs and deficiencies which effect the design process. The main areas included in this review are tritium breeding analyses, nuclear heating calculations, radiation damage in reactor components, shield designs, and results of uncertainty analyses as applied to fusion reactor studies. Design choices and reactor parameters that impact the neutronics performance of the blanket are discussed with emphasis on the tritium breeding ratio. Nuclear data required for kerma factors, shielding analysis, and radiation damage are discussed. Improvements in the evaluated data libraries are described to overcome the existing problems. 84 refs., 11 figs., 9 tabs

  18. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, Adrian S. [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States); Perets, Hagai B., E-mail: hamers@ias.edu [Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-09-10

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to the SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.

  19. Numerical analysis of the impact of the ion threshold, ion stiffness and temperature pedestal on global confinement and fusion performance in JET and in ITER plasmas

    DEFF Research Database (Denmark)

    Baiocchi, B.; Mantica, P.; Tala, T.

    2012-01-01

    Understanding the impact of micro-instabilities on the global plasma performance is essential in order to make realistic predictions for relevant tokamak scenarios. The semi-empirical transport model CGM is a useful tool to this scope because it depends explicitly on the threshold and the stiffne...

  20. Physics of fusion-fuel cycles

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1981-01-01

    The evaluation of nuclear fusion fuels for a magnetic fusion economy must take into account the various technological impacts of the various fusion fuel cycles as well as the relative reactivity and the required β's and temperatures necessary for economic steady-state burns. This paper will review some of the physics of the various fusion fuel cycles (D-T, catalyzed D-D, D- 3 He, D- 6 Li, and the exotic fuels: 3 He 3 He and the proton-based fuels such as P- 6 Li, P- 9 Be, and P- 11 B) including such items as: (1) tritium inventory, burnup, and recycle, (2) neutrons, (3) condensable fuels and ashes, (4) direct electrical recovery prospects, (5) fissile breeding, etc. The advantages as well as the disadvantages of the different fusion fuel cycles will be discussed. The optimum fuel cycle from an overall standpoint of viability and potential technological considerations appears to be catalyzed D-D, which could also support smaller relatively clean, lean-D, rich- 3 He satellite reactors as well as fission reactors

  1. Comparative field study: impact of laboratory assay variability on the assessment of recombinant factor IX Fc fusion protein (rFIXFc) activity.

    Science.gov (United States)

    Sommer, Jurg M; Buyue, Yang; Bardan, Sara; Peters, Robert T; Jiang, Haiyan; Kamphaus, George D; Gray, Elaine; Pierce, Glenn F

    2014-11-01

    Due to variability in the one-stage clotting assay, the performance of new factor IX (FIX) products should be assessed in this assay. The objective of this field study was to evaluate the accuracy of measuring recombinant FIX Fc fusion protein (rFIXFc) activity in clinical haemostasis laboratories using the one-stage clotting assay. Human haemophilic donor plasma was spiked with rFIXFc or BeneFIX® at 0.80, 0.20, or 0.05 IU/ml based on label potency. Laboratories tested blinded samples using their routine one-stage assay and in-house FIX plasma standard. The mean spike recoveries for BeneFIX (n=30 laboratories) were 121 %, 144 %, and 168 % of expected at nominal 0.80, 0.20, and 0.05 IU/ml concentrations, respectively. Corresponding rFIXFc spike recoveries were 88 %, 107 %, and 132 % of expected, respectively. All BeneFIX concentrations were consistently overestimated by most laboratories. rFIXFc activity was reagent-dependent; ellagic acid and silica gave higher values than kaolin, which underestimated rFIXFc. BeneFIX demonstrated significantly reduced chromogenic assay activity relative to one-stage assay results and nominal activity, while rFIXFc activity was close to nominal activity at three concentrations with better dilution linearity than the typical one-stage assay. In conclusion, laboratory- and reagent-specific assay variabilities were revealed, with progressively higher variability at lower FIX concentrations. Non-parallelism against the FIX plasma standard was observed in all one-stage assays with rFIXFc and BeneFIX, leading to significant overestimation of FIX activity at lower levels and generally high inter-laboratory variability. Compared to the accuracy currently achieved in clinical laboratories when measuring other rFIX products, most laboratories measured rFIXFc activity with acceptable accuracy and reliability using routine one-stage assay methods and commercially available plasma standards.

  2. Advanced fusion reactor

    International Nuclear Information System (INIS)

    Tomita, Yukihiro

    2003-01-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p- 6 Li and p- 11 B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D- 3 He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D- 3 He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of 3 He per a year. On the other hand, 1 million tons of 3 He is estimated to be in the moon. The 3 He of about 10 23 kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  3. Ion beam inertial fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  4. Fusion Canada issue 29

    International Nuclear Information System (INIS)

    1995-10-01

    A short bulletin from the National Fusion Program highlighting in this issue Canada-Europe Accords: 5 year R and D collaboration for the International Thermonuclear Experimental Reactor (ITER) AECL is designated to arrange and implement the Memorandum of Understanding (MOU) and the ITER Engineering Design Activities (EDA) while EUROTAM is responsible for operating Europe's Fusion R and D programs plus MOU and EDA. The MOU includes tokamaks, plasma physics, fusion technology, fusion fuels and other approaches to fusion energy (as alternatives to tokamaks). STOR-M Tokamak was restarted at the University of Saskatchewan following upgrades to the plasma chamber to accommodate the Compact Toroid (CT) injector. The CT injector has a flexible attachment thus allowing for injection angle adjustments. Real-time video images of a single plasma discharge on TdeV showing that as the plasma density increases, in a linear ramp divertor, the plasma contact with the horizontal plate decreases while contact increases with the oblique plate. Damage-resistant diffractive optical elements (DOE) have been developed for Inertial Confinement Fusion (ICF) research by Gentac Inc. and the National Optics Institute, laser beam homogeniser and laser harmonic separator DOE can also be made using the same technology. Studies using TdeV indicate that a divertor will be able to pump helium from the tokamak with a detached-plasma divertor but helium extraction performance must first be improved, presently the deuterium:helium retention radio-indicates that in order to pump enough helium through a fusion reactor, too much deuterium-tritium fuel would be pumped out. 2 fig

  5. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  6. The Microstructure of Lunar Micrometeorite Impact Craters

    Science.gov (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2016-01-01

    The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.

  7. Myoblast fusion in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Haralalka, Shruti [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Abmayr, Susan M., E-mail: sma@stowers.org [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160 (United States)

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  8. Fusion, magnetic confinement

    International Nuclear Information System (INIS)

    Berk, H.L.

    1992-01-01

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or 3 He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied

  9. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1986-05-01

    In 1982, KfK joined the fusion programme of EURATOM as a further association introducing its experience in nuclear technology. KfK closely cooperates with IPP Garching, the two institutions forming a research unit aiming at planning and realization of future development steps of fusion. KfK has combined its forces in the Nuclear Fusion Project (PKF) with participation of several KfK departments to the project tasks. Previous work of KfK in magnetic fusion has addressed mainly superconducting magnets, plasma heating by cluster ions and studies on structural materials. At present, emphasis of our work has concentrated increasingly on the nuclear part, i.e. the first wall and blanket structures and the elements of the tritium extraction and purification system. Associated to this component development are studies of remote maintenance and safety. Most of the actual work addresses NET, the next step to a demonstration of fusion feasibility. NET is supposed to follow JET, the operating plasma physics experiment of Euratom, on the 1990's. Detailed progress of the work in the past half year is described in this report. (orig./GG)

  10. Challenges of nuclear fusion

    International Nuclear Information System (INIS)

    Kunkel, W.B.

    1987-01-01

    After 30 years of research and development in many countries, the magnetic confinement fusion experiments finally seem to be getting close to the original first goal: the point of ''scientific break-even''. Plans are being made for a generation of experiments and tests with actual controlled thermonuclear fusion conditions. Therefore engineers and material scientists are hard at work to develop the required technology. In this paper the principal elements of a generic fusion reactor are described briefly to introduce the reader to the nature of the problems at hand. The main portion of the presentation summarises the recent advances made in this field and discusses the major issues that still need to be addressed in regard to materials and technology for fusion power. Specific examples are the problems of the first wall and other components that come into direct contact with the plasma, where both lifetime and plasma contamination are matters of concern. Equally challenging are the demands on structural materials and on the magnetic-field coils, particularly in connection with the neutron-radiation environment of fusion reactors. Finally, the role of ceramics must be considered, both for insulators and for fuel breeding purposes. It is evident that we still have a formidable task before us, but at this point none of the problems seem to be insoluble. (author)

  11. The need for fusion

    International Nuclear Information System (INIS)

    Llewellyn Smith, Chris

    2005-01-01

    World energy use is predicted to double in the next 40 years. Currently 80% is provided by burning fossil fuels, but this is not sustainable indefinitely because (i) it is driving climate change, and (ii) fossil fuels will eventually be exhausted (starting with oil). The resulting potential energy crisis requires increased investment in energy research and development (which is currently very small on the scale of the $3 trillion p.a. energy market, and falling). The wide portfolio of energy work that should be supported must include fusion, which is one of the very few options that are capable in principle of supplying a large fraction of need. The case for fusion has been strengthened by recent advances in plasma physics and fusion technology that are reflected in the forthcoming European Fusion Power Plant Conceptual Study, which addresses safety and cost issues. The big questions are - How can we deliver fusion power as fast as possible? How long is it likely to take? I argue for a fast track programme, and describe a fast-track model developed at Culham, which is intended to stimulate debate on the way ahead and the resources that are needed

  12. Myoblast fusion in Drosophila

    International Nuclear Information System (INIS)

    Haralalka, Shruti; Abmayr, Susan M.

    2010-01-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  13. Material for fusion reactor

    International Nuclear Information System (INIS)

    Abhishek, Anuj; Ranjan, Prem

    2011-01-01

    To make nuclear fusion power a reality, the scientists are working restlessly to find the materials which can confine the power generated by the fusion of two atomic nuclei. A little success in this field has been achieved, though there are still miles to go. Fusion reaction is a special kind of reaction which must occur at very high density and temperature to develop extremely large amount of energy, which is very hard to control and confine within using the present techniques. As a whole it requires the physical condition that rarely exists on the earth to carry out in an efficient manner. As per the growing demand and present scenario of the world energy, scientists are working round the clock to make effective fusion reactions to real. In this paper the work presently going on is considered in this regard. The progress of the Joint European Torus 2010, ITER 2005, HiPER and minor works have been studied to make the paper more object oriented. A detailed study of the technological and material requirement has been discussed in the paper and a possible suggestion is provided to make a contribution in the field of building first ever nuclear fusion reactor

  14. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  15. Fusion: Energy for the future

    International Nuclear Information System (INIS)

    1991-05-01

    Fusion, which occurs in the sun and the stars, is a process of transforming matter into energy. If we can harness the fusion process on Earth, it opens the way to assuring that future generations will not want for heat and electric power. The purpose of this booklet is to introduce the concept of fusion energy as a viable, environmentally sustainable energy source for the twenty-first century. The booklet presents the basic principles of fusion, the global research and development effort in fusion, and Canada's programs for fusion research and development

  16. ANNETTE Project: Contributing to The Nuclearization of Fusion

    Science.gov (United States)

    Ambrosini, W.; Cizelj, L.; Dieguez Porras, P.; Jaspers, R.; Noterdaeme, J.; Scheffer, M.; Schoenfelder, C.

    2018-01-01

    The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise) is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new training courses, based on identified nuclear competences needs of the work force of (future) fusion reactors and on the current availability of suitable training courses. From interaction with stakeholders involved in the ITER design and construction or the JET D-T campaign, it became clear that the lack of nuclear safety culture awareness already has an impact on current projects. Through the collaboration between the European education networks in fission (ENEN) and fusion (FuseNet) in the ANNETTE project, this project is well positioned to support the development of nuclear competences for ongoing and future fusion projects. Thereby it will make a clear contribution to the realization of fusion energy.

  17. Control of tritium permeation through fusion reactor strucural materials

    International Nuclear Information System (INIS)

    Maroni, V.A.

    1978-01-01

    The intention of this paper is to provide a brief synopsis of the status of understanding and technology pertaining to the dissolution and permeation of tritium in fusion reactor materials. The following sections of this paper attempt to develop a simple perspective for understanding the consequences of these phenomena and the nature of the technical methodology being contemplated to control their impact on fusion reactor operation. Considered in order are: (1) the occurrence of tritium in the fusion fuel cycle, (2) a set of tentative criteria to guide the analysis of tritium containment and control strategies, (3) the basic mechanisms by which tritium may be released from a fusion plant, and (4) the methods currently under development to control the permeation-related release mechanisms. To provide background and support for these considerations, existing solubility and permeation data for the hydrogen isotopes are compared and correlated under conditions to be expected in fusion reactor systems

  18. Overview of safety and environmental issues for inertial fusion energy

    International Nuclear Information System (INIS)

    Piet, S.J.; Brereton, S.J.; Tanaka, S.

    1996-01-01

    This paper summarizes safety and environmental issues of Inertial Fusion Energy (IFE): inventories, effluents, maintenance, accident safety, waste management, and recycling. The fusion confinement approach among inertial and magnetic options affects how the fusion reaction is maintained and which materials surround the reaction chamber. The target fill technology has a major impact on the target factory tritium inventory. IFE fusion reaction chambers usually employ some means to protect the first structural wall from fusion pulses. This protective fluid or granular bed also moderates and absorbs most neutrons before they reach the first structural wall. Although the protective fluid activates, most candidate fluids have low activation hazard. Hands-on maintenance seems practical for the driver, target factory, and secondary coolant systems; remote maintenance is likely required for the reaction chamber, primary coolant, and vacuum exhaust cleanup systems. The driver and fuel target facility are well separated from the main reaction chamber

  19. Performance limits for fusion first-wall structural materials

    International Nuclear Information System (INIS)

    Smith, D.L.; Majumdar, S.; Billone, M.; Mattas, R.

    2000-01-01

    Key features of fusion energy relate primarily to potential advantages associated with safety and environmental considerations and the near endless supply of fuel. However, high-performance fusion power systems will be required in order to be an economically competitive energy option. As in most energy systems, the operating limits of structural materials pose a primary constraint to the performance of fusion power systems. In the case of fusion power, the first-wall/blanket system will have a dominant impact on both economic and safety/environmental attractiveness. This paper presents an assessment of the influence of key candidate structural material properties on performance limits for fusion first-wall blanket applications. Key issues associated with interactions of the structural materials with the candidate coolant/breeder materials are discussed

  20. ANNETTE Project: Contributing to The Nuclearization of Fusion

    Directory of Open Access Journals (Sweden)

    Ambrosini W.

    2018-01-01

    Full Text Available The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new training courses, based on identified nuclear competences needs of the work force of (future fusion reactors and on the current availability of suitable training courses. From interaction with stakeholders involved in the ITER design and construction or the JET D-T campaign, it became clear that the lack of nuclear safety culture awareness already has an impact on current projects. Through the collaboration between the European education networks in fission (ENEN and fusion (FuseNet in the ANNETTE project, this project is well positioned to support the development of nuclear competences for ongoing and future fusion projects. Thereby it will make a clear contribution to the realization of fusion energy.

  1. Vacuum engineering for fusion research and fusion reactors

    International Nuclear Information System (INIS)

    Pittenger, L.C.

    1976-01-01

    The following topics are described: (1) surface pumping by cryogenic condensation, (2) operation of large condensing cryopumps, (3) pumping for large fusion experiments, and (4) vacuum technology for fusion reactors

  2. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    An outline is given of the present position of research into controlled fusion. After a brief reminder of the nuclear reactions of fusion and the principle of their use as a source of energy, the results obtained by the method of magnetic confinement are summarized. Among the many solutions that have been imagined and tried out to achieve a magnetic containing vessel capable of holding the thermonuclear plasma, the devices of the Tokamak type have a good lead and that is why they are described in greater detail. An idea is then given of the problems that arise when one intends conceiving the thermonuclear reactor based on the principle of the Tokamaks. The last section deals with fusion by lasers which is a new and most attractive alternative, at least from the viewpoint of basis physics. The report concludes with an indication of the stages to be passed through to reach production of energy on an industrial scale [fr

  3. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  4. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1987-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying responses to the fusion environment. Materials can be identified today that will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications. (author)

  5. Inverse fusion PCR cloning.

    Directory of Open Access Journals (Sweden)

    Markus Spiliotis

    Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

  6. Laser for fusion energy

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1995-01-01

    Solid state lasers have proven to be very versatile tools for the study and demonstration of inertial confinement fusion principles. When lasers were first contemplated to be used for the compression of fusion fuel in the late 1950s, the laser output energy levels were nominally one joule and the power levels were 10 3 watts (pulse duration's of 10 -3 sec). During the last 25 years, lasers optimized for fusion research have been increased in power to typically 100,000 joules with power levels approaching 10 14 watts. As a result of experiments with such lasers at many locations, DT target performance has been shown to be consistent with high gain target output. However, the demonstration of ignition and gain requires laser energies of several megajoules. Laser technology improvements demonstrated over the past decade appear to make possible the construction of such multimegajoule lasers at affordable costs. (author)

  7. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications

  8. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  9. Fusion reactor wastes

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-01-01

    The fusion reactor currently is being developed as a clean source of electricity with an essentially infinite source of fuel. These reactors are visualized as using a fusion reaction to generate large quantities of high temperature energy which can be used as process heat or for the generation of electricity. The energy would be created primarily as the kinetic energy of neutrons or other reaction products. Neutron energy could be converted to high-temperature heat by moderation and capture of the neutrons. The energy of other reaction products could be converted to high-temperature heat by capture, or directly to electricity by direct conversion electrostatic equipment. An analysis to determine the wastes released as a result of operation of fusion power plants is presented

  10. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  11. Canadian fusion program

    International Nuclear Information System (INIS)

    Brown, T.S.

    1982-06-01

    The National Research Council of Canada is establishing a coordinated national program of fusion research and development that is planned to grow to a total annual operating level of about $20 million in 1985. The long-term objective of the program is to put Canadian industry in a position to manufacture sub-systems and components of fusion power reactors. In the near term the program is designed to establish a minimum base of scientific and technical expertise sufficient to make recognized contributions and thereby gain access to the international effort. The Canadian program must be narrowly focussed on a few specializations where Canada has special indigenous skills or technologies. The programs being funded are the Tokamak de Varennes, the Fusion Fuels Technology Project centered on tritium management, and high-power gas laser technology and associated diagnostic instrumentation

  12. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  13. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  14. Alternate laser fusion drivers

    International Nuclear Information System (INIS)

    Pleasance, L.D.

    1979-11-01

    One objective of research on inertial confinement fusion is the development of a power generating system based on this concept. Realization of this goal will depend on the availability of a suitable laser or other system to drive the power plant. The primary laser systems used for laser fusion research, Nd 3+ : Glass and CO 2 , have characteristics which may preclude their use for this application. Glass lasers are presently perceived to be incapable of sufficiently high average power operation and the CO 2 laser may be limited by and issues associated with target coupling. These general perceptions have encouraged a search for alternatives to the present systems. The search for new lasers has been directed generally towards shorter wavelengths; most of the new lasers discovered in the past few years have been in the visible and ultraviolet region of the spectrum. Virtually all of them have been advocated as the most promising candidate for a fusion driver at one time or another

  15. Neutrons and fusion

    International Nuclear Information System (INIS)

    Maynard, C.W.

    1976-01-01

    The production of energy from fusion reactions does not require neutrons in the fundamental sense that they are required in a fission reactor. Nevertheless, the dominant fusion reaction, that between deuterium and tritium, yields a 14 MeV neutron. To contrast a fusion reactor based on this reaction with the fission case, 3 x 10 20 such neutrons produced per gigawatt of power. This is four times as many neutrons as in an equivalent fission reactor and they carry seven times the energy of the fission neutrons. Thus, they dominate the energy recovery problem and create technological problems comparable to the original plasma confinement problem as far as a practical power producing device is concerned. Further contrasts of the fusion and fission cases are presented to establish the general role of neutrons in fusion devices. Details of the energy deposition processes are discussed and those reactions necessary for producing additional tritium are outlined. The relatively high energy flux with its large intensity will activate almost any materials of which the reactor may be composed. This activation is examined from the point of view of decay heat, radiological safety, and long-term storage. In addition, a discussion of the deleterious effects of neutron interactions on materials is given in some detail; this includes the helium and hydrogen producing reactions and displacement rate of the lattice atoms. The various materials that have been proposed for structural purposes, for breeding, reflecting, and moderating neutrons, and for radiation shielding are reviewed from the nuclear standpoint. The specific reactions of interest are taken up for various materials and finally a report is given on the status and prospects of data for fusion studies

  16. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  17. International fusion research

    International Nuclear Information System (INIS)

    Pease, R.S.

    1983-01-01

    Nuclear energy of the light elements deuterium and lithium can be released if the 100 MK degree temperature required for deuterium-tritium thermonuclear fusion reactions can be achieved together with sufficient thermal insulation for a net energy yield. Progress of world-wide research shows good prospect for these physical conditions being achieved by the use of magnetic field confinement and of rapidly developing heating methods. Tokamak systems, alternative magnetic systems and inertial confinement progress are described. International co-operation features a number of bilateral agreements between countries: the Euratom collaboration which includes the Joint European Torus, a joint undertaking of eleven Western European nations of Euratom, established to build and operate a major confinement experiment; the development of co-operative projects within the OECD/IEA framework; the INTOR workshop, a world-wide study under IAEA auspices of the next major step in fusion research which might be built co-operatively; and assessments of the potential of nuclear fusion by the IAEA and the International Fusion Research Council. The INTOR (International Tokamak Reactor) studies have outlined a major plant of the tokamak type to study the engineering and technology of fusion reactor systems, which might be constructed on a world-wide basis to tackle and share the investment risks of the developments which lie ahead. This paper summarizes the recent progress of research on controlled nuclear fusion, featuring those areas where international co-operation has played an important part, and describes the various arrangements by which this international co-operation is facilitated. (author)

  18. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  19. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  20. Nuclear fusion: Pursuing the Soft [Symposium on fusion technology] option

    International Nuclear Information System (INIS)

    Kenward, M.

    1991-01-01

    Fusion research has come a long way since the fusion community held the first Symposium on fusion technology (Soft) in Britain 30 years ago. Some of the recent achievements of the Jet project are reported from this year's symposium, the 16th in the series, held in London at the beginning of September. (author)