WorldWideScience

Sample records for hypertrophy requires mtor

  1. Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1

    International Nuclear Information System (INIS)

    Park, In-Hyun; Erbay, Ebru; Nuzzi, Paul; Chen Jie

    2005-01-01

    The protein kinase mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation and growth, with the ribosomal subunit S6 kinase 1 (S6K1) as one of the key downstream signaling effectors. A critical role of mTOR signaling in skeletal muscle differentiation has been identified recently, and an unusual regulatory mechanism independent of mTOR kinase activity and S6K1 is revealed. An mTOR pathway has also been reported to regulate skeletal muscle hypertrophy, but the regulatory mechanism is not completely understood. Here, we report the investigation of mTOR's function in insulin growth factor I (IGF-I)-induced C2C12 myotube hypertrophy. Added at a later stage when rapamycin no longer had any effect on normal myocyte differentiation, rapamycin completely blocked myocyte hypertrophy as measured by myotube diameter. Importantly, a concerted increase of average myonuclei per myotube was observed in IGF-I-stimulated myotubes, which was also inhibited by rapamycin added at a time when it no longer affected normal differentiation. The mTOR protein level, its catalytic activity, its phosphorylation on Ser2448, and the activity of S6K1 were all found increased in IGF-I-stimulated myotubes compared to unstimulated myotubes. Using C2C12 cells stably expressing rapamycin-resistant forms of mTOR and S6K1, we provide genetic evidence for the requirement of mTOR and its downstream effector S6K1 in the regulation of myotube hypertrophy. Our results suggest distinct mTOR signaling mechanisms in different stages of skeletal muscle development: While mTOR regulates the initial myoblast differentiation in a kinase-independent and S6K1-independent manner, the hypertrophic function of mTOR requires its kinase activity and employs S6K1 as a downstream effector

  2. Androgen interacts with exercise through the mTOR pathway to induce skeletal muscle hypertrophy.

    Science.gov (United States)

    Zeng, Fanxing; Zhao, Hua; Liao, Jingwen

    2017-12-01

    This study was designed to investigate the effects of exogenous androgen and resistance exercise on skeletal muscle hypertrophy and the role of the mammalian target of rapamycin (mTOR) signalling during the process. A total of 24 male Sprague-Dawley rats were randomly assigned to sham operation and dihydrotestosterone (DHT) implantation groups with subgroups subjected to sedentary conditions or resistance exercise (SHAM+SED, SHAM+EX, DHT+SED, and DHT+EX). The experimental procedure lasted for 10 days. The mRNA expression of androgen receptor (AR) and insulin-like growth factor I (IGF-I), the expression of myosin heavy chain (MHC), as well as the phosphorylation statuses of AR, mTOR, p70 ribosomal S6 kinase (p70 S6K ), and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) were determined in the white gastrocnemius muscle. The cross sectional area and wet mass of the muscle were also measured. The cross sectional area and MHC expression were significantly higher in SHAM+EX, DHT+SED, and DHT+EX than in SHAM+SED. There was no significant difference among groups in muscle mass. The mRNA expression of AR and IGF-I and the phosphorylation of mTOR, p70 S6K , and 4EBP1 were significantly increased in DHT+SED and SHAM+EX and were significantly enhanced in DHT+EX compared with either DHT or exercise alone. These data show that DHT causes hypertrophy in skeletal muscle and that exercise has a synergistic effect on DHT-induced hypertrophy. Exercise enhances androgen-induced rapid anabolic action, which involves activation of the mTOR pathway.

  3. β-Hydroxy-β-methylbutyrate (HMβ supplementation stimulates skeletal muscle hypertrophy in rats via the mTOR pathway

    Directory of Open Access Journals (Sweden)

    Pimentel Gustavo D

    2011-02-01

    Full Text Available Abstract β-Hydroxy-β-methylbutyrate (HMβ supplementation is used to treat cancer, sepsis and exercise-induced muscle damage. However, its effects on animal and human health and the consequences of this treatment in other tissues (e.g., fat and liver have not been examined. The purpose of this study was to evaluate the effects of HMβ supplementation on skeletal muscle hypertrophy and the expression of proteins involved in insulin signalling. Rats were treated with HMβ (320 mg/kg body weight or saline for one month. The skeletal muscle hypertrophy and insulin signalling were evaluated by western blotting, and hormonal concentrations were evaluated using ELISAs. HMβ supplementation induced muscle hypertrophy in the extensor digitorum longus (EDL and soleus muscles and increased serum insulin levels, the expression of the mammalian target of rapamycin (mTOR and phosphorylation of p70S6K in the EDL muscle. Expression of the insulin receptor was increased only in liver. Thus, our results suggest that HMβ supplementation can be used to increase muscle mass without adverse health effects.

  4. S6K1 Is Required for Increasing Skeletal Muscle Force during Hypertrophy.

    Science.gov (United States)

    Marabita, Manuela; Baraldo, Martina; Solagna, Francesca; Ceelen, Judith Johanna Maria; Sartori, Roberta; Nolte, Hendrik; Nemazanyy, Ivan; Pyronnet, Stéphane; Kruger, Marcus; Pende, Mario; Blaauw, Bert

    2016-10-04

    Loss of skeletal muscle mass and force aggravates age-related sarcopenia and numerous pathologies, such as cancer and diabetes. The AKT-mTORC1 pathway plays a major role in stimulating adult muscle growth; however, the functional role of its downstream mediators in vivo is unknown. Here, we show that simultaneous inhibition of mTOR signaling to both S6K1 and 4E-BP1 is sufficient to reduce AKT-induced muscle growth and render it insensitive to the mTORC1-inhibitor rapamycin. Surprisingly, lack of mTOR signaling to 4E-BP1 only, or deletion of S6K1 alone, is not sufficient to reduce muscle hypertrophy or alter its sensitivity to rapamycin. However, we report that, while not required for muscle growth, S6K1 is essential for maintaining muscle structure and force production. Hypertrophy in the absence of S6K1 is characterized by compromised ribosome biogenesis and the formation of p62-positive protein aggregates. These findings identify S6K1 as a crucial player for maintaining muscle function during hypertrophy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin

    Science.gov (United States)

    Winbanks, Catherine E.; Weeks, Kate L.; Thomson, Rachel E.; Sepulveda, Patricio V.; Beyer, Claudia; Qian, Hongwei; Chen, Justin L.; Allen, James M.; Lancaster, Graeme I.; Febbraio, Mark A.; Harrison, Craig A.; McMullen, Julie R.; Chamberlain, Jeffrey S.

    2012-01-01

    Follistatin is essential for skeletal muscle development and growth, but the intracellular signaling networks that regulate follistatin-mediated effects are not well defined. We show here that the administration of an adeno-associated viral vector expressing follistatin-288aa (rAAV6:Fst-288) markedly increased muscle mass and force-producing capacity concomitant with increased protein synthesis and mammalian target of rapamycin (mTOR) activation. These effects were attenuated by inhibition of mTOR or deletion of S6K1/2. Furthermore, we identify Smad3 as the critical intracellular link that mediates the effects of follistatin on mTOR signaling. Expression of constitutively active Smad3 not only markedly prevented skeletal muscle growth induced by follistatin but also potently suppressed follistatin-induced Akt/mTOR/S6K signaling. Importantly, the regulation of Smad3- and mTOR-dependent events by follistatin occurred independently of overexpression or knockout of myostatin, a key repressor of muscle development that can regulate Smad3 and mTOR signaling and that is itself inhibited by follistatin. These findings identify a critical role of Smad3/Akt/mTOR/S6K/S6RP signaling in follistatin-mediated muscle growth that operates independently of myostatin-driven mechanisms. PMID:22711699

  6. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition.

    Science.gov (United States)

    Clemens, Michael J; Elia, Androulla; Morley, Simon J

    2013-01-01

    The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.

  7. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy.

    Science.gov (United States)

    Goh, Qingnian; Millay, Douglas P

    2017-02-10

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.

  8. Comparative Analysis of Muscle Hypertrophy Models Reveals Divergent Gene Transcription Profiles and Points to Translational Regulation of Muscle Growth through Increased mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Marcelo G. Pereira

    2017-12-01

    Full Text Available Skeletal muscle mass is a result of the balance between protein breakdown and protein synthesis. It has been shown that multiple conditions of muscle atrophy are characterized by the common regulation of a specific set of genes, termed atrogenes. It is not known whether various models of muscle hypertrophy are similarly regulated by a common transcriptional program. Here, we characterized gene expression changes in three different conditions of muscle growth, examining each condition during acute and chronic phases. Specifically, we compared the transcriptome of Extensor Digitorum Longus (EDL muscles collected (1 during the rapid phase of postnatal growth at 2 and 4 weeks of age, (2 24 h or 3 weeks after constitutive activation of AKT, and (3 24 h or 3 weeks after overload hypertrophy caused by tenotomy of the Tibialis Anterior muscle. We observed an important overlap between significantly regulated genes when comparing each single condition at the two different timepoints. Furthermore, examining the transcriptional changes occurring 24 h after a hypertrophic stimulus, we identify an important role for genes linked to a stress response, despite the absence of muscle damage in the AKT model. However, when we compared all different growth conditions, we did not find a common transcriptional fingerprint. On the other hand, all conditions showed a marked increase in mTORC1 signaling and increased ribosome biogenesis, suggesting that muscle growth is characterized more by translational, than transcriptional regulation.

  9. AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload.

    Science.gov (United States)

    Riedl, Isabelle; Osler, Megan E; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A; Chibalin, Alexander V; Zierath, Juleen R

    2016-03-15

    Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5'-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3(225Q) and AMPKγ3-knockout (Prkag3(-/-)) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. Copyright © 2016 the American Physiological Society.

  10. Akt1 deficiency diminishes skeletal muscle hypertrophy by reducing satellite cell proliferation.

    Science.gov (United States)

    Moriya, Nobuki; Miyazaki, Mitsunori

    2018-02-14

    Skeletal muscle mass is determined by the net dynamic balance between protein synthesis and degradation. Although the Akt/mechanistic target of rapamycin (mTOR)-dependent pathway plays an important role in promoting protein synthesis and subsequent skeletal muscle hypertrophy, the precise molecular regulation of mTOR activity by the upstream protein kinase Akt is largely unknown. In addition, the activation of satellite cells has been indicated as a key regulator of muscle mass. However, the requirement of satellite cells for load-induced skeletal muscle hypertrophy is still under intense debate. In this study, female germline Akt1 knockout (KO) mice were used to examine whether Akt1 deficiency attenuates load-induced skeletal muscle hypertrophy through suppressing mTOR-dependent signaling and satellite cell proliferation. Akt1 KO mice showed a blunted hypertrophic response of skeletal muscle, with a diminished rate of satellite cell proliferation following mechanical overload. In contrast, Akt1 deficiency did not affect the load-induced activation of mTOR signaling and the subsequent enhanced rate of protein synthesis in skeletal muscle. These observations suggest that the load-induced activation of mTOR signaling occurs independently of Akt1 regulation and that Akt1 plays a critical role in regulating satellite cell proliferation during load-induced muscle hypertrophy.

  11. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes.

    Science.gov (United States)

    Crossland, Hannah; Timmons, James A; Atherton, Philip J

    2017-12-01

    Increased ribosomal DNA transcription has been proposed to limit muscle protein synthesis, making ribosome biogenesis central to skeletal muscle hypertrophy. We examined the relationship between ribosomal RNA (rRNA) production and IGF-1-mediated myotube hypertrophy in vitro Primary skeletal myotubes were treated with IGF-1 (50 ng/ml) with or without 0.5 µM CX-5461 (CX), an inhibitor of RNA polymerase I. Myotube diameter, total protein, and RNA and DNA levels were measured along with markers of RNA polymerase I regulatory factors and regulators of protein synthesis. CX treatment reduced 45S pre-rRNA expression (-64 ± 5% vs. IGF-1; P IGF-1; P IGF-1-treated myotubes. IGF-1-mediated increases in myotube diameter (1.27 ± 0.09-fold, P IGF-1 treatment did not prevent early increases in AKT (+203 ± 39% vs. CX; P IGF-1, myotube diameter and protein accretion were sustained. Thus, while ribosome biogenesis represents a potential site for the regulation of skeletal muscle protein synthesis and muscle mass, it does not appear to be a prerequisite for IGF-1-induced myotube hypertrophy in vitro. -Crossland, H., Timmons, J. A., Atherton, P. J. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes. © The Author(s).

  12. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice.

    Science.gov (United States)

    Murach, Kevin A; White, Sarah H; Wen, Yuan; Ho, Angel; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2017-07-10

    Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Pax7 CreER -R26R DTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6-9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p overload (p overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice.

  13. mTOR Complex Signaling through the SEMA4A-Plexin B2 Axis Is Required for Optimal Activation and Differentiation of CD8+ T Cells.

    Science.gov (United States)

    Ito, Daisuke; Nojima, Satoshi; Nishide, Masayuki; Okuno, Tatsusada; Takamatsu, Hyota; Kang, Sujin; Kimura, Tetsuya; Yoshida, Yuji; Morimoto, Keiko; Maeda, Yohei; Hosokawa, Takashi; Toyofuku, Toshihiko; Ohshima, Jun; Kamimura, Daisuke; Yamamoto, Masahiro; Murakami, Masaaki; Morii, Eiichi; Rakugi, Hiromi; Isaka, Yoshitaka; Kumanogoh, Atsushi

    2015-08-01

    Mammalian target of rapamycin (mTOR) plays crucial roles in activation and differentiation of diverse types of immune cells. Although several lines of evidence have demonstrated the importance of mTOR-mediated signals in CD4(+) T cell responses, the involvement of mTOR in CD8(+) T cell responses is not fully understood. In this study, we show that a class IV semaphorin, SEMA4A, regulates CD8(+) T cell activation and differentiation through activation of mTOR complex (mTORC) 1. SEMA4A(-/-) CD8(+) T cells exhibited impairments in production of IFN-γ and TNF-α and induction of the effector molecules granzyme B, perforin, and FAS-L. Upon infection with OVA-expressing Listeria monocytogenes, pathogen-specific effector CD8(+) T cell responses were significantly impaired in SEMA4A(-/-) mice. Furthermore, SEMA4A(-/-) CD8(+) T cells exhibited reduced mTORC1 activity and elevated mTORC2 activity, suggesting that SEMA4A is required for optimal activation of mTORC1 in CD8(+) T cells. IFN-γ production and mTORC1 activity in SEMA4A(-/-) CD8(+) T cells were restored by administration of recombinant Sema4A protein. In addition, we show that plexin B2 is a functional receptor of SEMA4A in CD8(+) T cells. Collectively, these results not only demonstrate the role of SEMA4A in CD8(+) T cells, but also reveal a novel link between a semaphorin and mTOR signaling. Copyright © 2015 by The American Association of Immunologists, Inc.

  14. RSK3 is required for concentric myocyte hypertrophy in an activated Raf1 model for Noonan syndrome.

    Science.gov (United States)

    Passariello, Catherine L; Martinez, Eliana C; Thakur, Hrishikesh; Cesareo, Maria; Li, Jinliang; Kapiloff, Michael S

    2016-04-01

    Noonan syndrome (NS) is a congenital disorder resulting from mutations of the Ras-Raf signaling pathway. Hypertrophic cardiomyopathy associated with RAF1 "RASopathy" mutations is a major risk factor for heart failure and death in NS and has been attributed to activation of MEK1/2-ERK1/2 mitogen-activated protein kinases. We recently discovered that type 3 p90 ribosomal S6 kinase (RSK3) is an ERK effector that is required, like ERK1/2, for concentric myocyte hypertrophy in response to pathological stress such as pressure overload. In order to test whether RSK3 also contributes to NS-associated hypertrophic cardiomyopathy, RSK3 knock-out mice were crossed with mice bearing the Raf1(L613V) human NS mutation. We confirmed that Raf1(L613V) knock-in confers a NS-like phenotype, including cardiac hypertrophy. Active RSK3 was increased in Raf1(L613V) mice. Constitutive RSK3 gene deletion prevented the Raf1(L613V)-dependent concentric growth in width of the cardiac myocyte and attenuated cardiac hypertrophy in female mice. These results are consistent with RSK3 being an important mediator of ERK1/2-dependent growth in RASopathy. In conjunction with previously published data showing that RSK3 is important for pathological remodeling of the heart, these data suggest that targeting of this downstream MAP-kinase pathway effector should be considered in the treatment of RASopathy-associated hypertrophic cardiomyopathy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cardiomyocyte hypertrophy induced by Endonuclease G deficiency requires reactive oxygen radicals accumulation and is inhibitable by the micropeptide humanin.

    Science.gov (United States)

    Blasco, Natividad; Cámara, Yolanda; Núñez, Estefanía; Beà, Aida; Barés, Gisel; Forné, Carles; Ruíz-Meana, Marisol; Girón, Cristina; Barba, Ignasi; García-Arumí, Elena; García-Dorado, David; Vázquez, Jesús; Martí, Ramon; Llovera, Marta; Sanchis, Daniel

    2018-06-01

    The endonuclease G gene (Endog), which codes for a mitochondrial nuclease, was identified as a determinant of cardiac hypertrophy. How ENDOG controls cardiomyocyte growth is still unknown. Thus, we aimed at finding the link between ENDOG activity and cardiomyocyte growth. Endog deficiency induced reactive oxygen species (ROS) accumulation and abnormal growth in neonatal rodent cardiomyocytes, altering the AKT-GSK3β and Class-II histone deacethylases (HDAC) signal transduction pathways. These effects were blocked by ROS scavengers. Lack of ENDOG reduced mitochondrial DNA (mtDNA) replication independently of ROS accumulation. Because mtDNA encodes several subunits of the mitochondrial electron transport chain, whose activity is an important source of cellular ROS, we investigated whether Endog deficiency compromised the expression and activity of the respiratory chain complexes but found no changes in these parameters nor in ATP content. MtDNA also codes for humanin, a micropeptide with possible metabolic functions. Nanomolar concentrations of synthetic humanin restored normal ROS levels and cell size in Endog-deficient cardiomyocytes. These results support the involvement of redox signaling in the control of cardiomyocyte growth by ENDOG and suggest a pathway relating mtDNA content to the regulation of cell growth probably involving humanin, which prevents reactive oxygen radicals accumulation and hypertrophy induced by Endog deficiency. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. [Molecular mechanisms of skeletal muscle hypertrophy].

    Science.gov (United States)

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  17. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2017-10-01

    Full Text Available Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrophy and muscle wastage. This review will highlight the fundamental role of mTOR in skeletal muscle growth by summarizing the phenotype of skeletal-specific mTOR deficiency. In addition, the evidence that mTOR is a dual regulator of anabolism and catabolism in skeletal muscle mass will be discussed. A full understanding of mTOR signaling in the maintenance of skeletal muscle mass could help to develop mTOR-targeted therapeutics to prevent muscle wasting.

  18. [Asymmetric hypertrophy of the masticatory muscles].

    Science.gov (United States)

    Arzul, L; Corre, P; Khonsari, R H; Mercier, J-M; Piot, B

    2012-06-01

    Hypertrophy of the masticatory muscles most commonly affects the masseter. Less common cases of isolated or associated temporalis hypertrophy are also reported. Parafunctional habits, and more precisely bruxism, can favor the onset of the hypertrophy. This condition is generally idiopathic and can require both medical and/or surgical management. A 29-year-old patient was referred to our department for an asymmetric swelling of the masticatory muscles. Physical examination revealed a bilateral hypertrophy of the masticatory muscles, predominantly affecting the right temporalis and the left masseter. Major bruxism was assessed by premature dental wearing. The additional examinations confirmed the isolated muscle hypertrophy. Benign asymmetric hypertrophy of the masticatory muscles promoted by bruxism was diagnosed. Treatment with injections of type A botulinum toxin was conducted in association with a splint and relaxation. Its effectiveness has been observed at six months. Few cases of unilateral or bilateral temporalis hypertrophy have been reported, added to the more common isolated masseter muscles hypertrophy. The diagnosis requires to rule out secondary hypertrophies and tumors using Magnetic Resonance Imaging. The condition is thought to be favoured by parafunctional habits such as bruxism. The conservative treatment consists in reducing the volume of the masticatory muscles using intramuscular injections of type A botulinum toxin. Other potential conservative treatments are wearing splints and muscle relaxant drugs. Surgical procedures aiming to reduce the muscle volume and/or the bone volume (mandibular gonioplasty) can be proposed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition.

    Directory of Open Access Journals (Sweden)

    Kevin Bray

    Full Text Available mTOR inhibitors are used clinically to treat renal cancer but are not curative. Here we show that autophagy is a resistance mechanism of human renal cell carcinoma (RCC cell lines to mTOR inhibitors. RCC cell lines have high basal autophagy that is required for survival to mTOR inhibition. In RCC4 cells, inhibition of mTOR with CCI-779 stimulates autophagy and eliminates RIP kinases (RIPKs and this is blocked by autophagy inhibition, which induces RIPK- and ROS-dependent necroptosis in vitro and suppresses xenograft growth. Autophagy of mitochondria is required for cell survival since mTOR inhibition turns off Nrf2 antioxidant defense. Thus, coordinate mTOR and autophagy inhibition leads to an imbalance between ROS production and defense, causing necroptosis that may enhance cancer treatment efficacy.

  20. Analysis list: Mtor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Mtor + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mtor.1.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/target/Mtor.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/tar...get/Mtor.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Mtor..tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/.gml ...

  1. The Effects of Krill Oil on mTOR Signaling and Resistance Exercise: A Pilot Study

    OpenAIRE

    Georges, John; Sharp, Matthew H.; Lowery, Ryan P.; Wilson, Jacob M.; Purpura, Martin; Hornberger, Troy A.; Harding, Flint; Johnson, James H.; Peele, David M.; Jäger, Ralf

    2018-01-01

    Introduction. Krill oil supplementation has been shown to improve postexercise immune function; however, its effect on muscle hypertrophy is currently unknown. Therefore, the aim of present study was to investigate the ability of krill oil to stimulate mTOR signaling and its ability to augment resistance training-induced changes in body composition and performance. Methods. C2C12 myoblasts cells were stimulated with krill oil or soy-derived phosphatidylcholine (S-PC), and then, the ratio of P...

  2. Periodontitis and myocardial hypertrophy.

    Science.gov (United States)

    Suzuki, Jun-Ichi; Sato, Hiroki; Kaneko, Makoto; Yoshida, Asuka; Aoyama, Norio; Akimoto, Shouta; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Izumi, Yuichi; Isobe, Mitsuaki; Komuro, Issei

    2017-04-01

    There is a deep relationship between cardiovascular disease and periodontitis. It has been reported that myocardial hypertrophy may be affected by periodontitis in clinical settings. Although these clinical observations had some study limitations, they strongly suggest a direct association between severity of periodontitis and left ventricular hypertrophy. However, the detailed mechanisms between myocardial hypertrophy and periodontitis have not yet been elucidated. Recently, we demonstrated that periodontal bacteria infection is closely related to myocardial hypertrophy. In murine transverse aortic constriction models, a periodontal pathogen, Aggregatibacter actinomycetemcomitans markedly enhanced cardiac hypertrophy with matrix metalloproteinase-2 activation, while another pathogen Porphyromonas gingivalis (P.g.) did not accelerate these pathological changes. In the isoproterenol-induced myocardial hypertrophy model, P.g. induced myocardial hypertrophy through Toll-like receptor-2 signaling. From our results and other reports, regulation of chronic inflammation induced by periodontitis may have a key role in the treatment of myocardial hypertrophy. In this article, we review the pathophysiological mechanism between myocardial hypertrophy and periodontitis.

  3. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition

    Science.gov (United States)

    Park, Dohyun; Jeong, Heeyoon; Lee, Mi Nam; Koh, Ara; Kwon, Ohman; Yang, Yong Ryoul; Noh, Jungeun; Suh, Pann-Ghill; Park, Hwangseo; Ryu, Sung Ho

    2016-01-01

    Resveratrol (RSV) is a natural polyphenol that has a beneficial effect on health, and resveratrol-induced autophagy has been suggested to be a key process in mediating many beneficial effects of resveratrol, such as reduction of inflammation and induction of cancer cell death. Although various resveratrol targets have been suggested, the molecule that mediates resveratrol-induced autophagy remains unknown. Here, we demonstrate that resveratrol induces autophagy by directly inhibiting the mTOR-ULK1 pathway. We found that inhibition of mTOR activity and presence of ULK1 are required for autophagy induction by resveratrol. In line with this mTOR dependency, we found that resveratrol suppresses the viability of MCF7 cells but not of SW620 cells, which are mTOR inhibitor sensitive and insensitive cancer cells, respectively. We also found that resveratrol-induced cancer cell suppression occurred ULK1 dependently. For the mechanism of action of resveratrol on mTOR inhibition, we demonstrate that resveratrol directly inhibits mTOR. We found that resveratrol inhibits mTOR by docking onto the ATP-binding pocket of mTOR (i.e., it competes with ATP). We propose mTOR as a novel direct target of resveratrol, and inhibition of mTOR is necessary for autophagy induction. PMID:26902888

  4. Inhibitors of mTOR

    NARCIS (Netherlands)

    Klümpen, Heinz-Josef; Beijnen, Jos H.; Gurney, Howard; Schellens, Jan H. M.

    2010-01-01

    Inhibitors of mammalian target of rapamycin (mTOR) have been approved for the treatment of renal cell carcinoma and appear to have a role in the treatment of other malignancies. The primary objective of this drug review is to provide pharmacokinetic and dynamic properties of the commonly used drugs

  5. The effect of caffeine on skeletal muscle anabolic signaling and hypertrophy.

    Science.gov (United States)

    Moore, Timothy M; Mortensen, Xavier M; Ashby, Conrad K; Harris, Alexander M; Kump, Karson J; Laird, David W; Adams, Aaron J; Bray, Jeremy K; Chen, Ting; Thomson, David M

    2017-06-01

    Caffeine is a widely consumed stimulant with the potential to enhance physical performance through multiple mechanisms. However, recent in vitro findings have suggested that caffeine may block skeletal muscle anabolic signaling through AMP-activated protein kinase (AMPK)-mediated inhibition of mechanistic target of rapamycin (mTOR) signaling pathway. This could negatively affect protein synthesis and the capacity for muscle growth. The primary purpose of this study was to assess the effect of caffeine on in vivo AMPK and mTOR pathway signaling, protein synthesis, and muscle growth. In cultured C2C12 muscle cells, physiological levels of caffeine failed to impact mTOR activation or myoblast proliferation or differentiation. We found that caffeine administration to mice did not significantly enhance the phosphorylation of AMPK or inhibit signaling proteins downstream of mTOR (p70S6k, S6, or 4EBP1) or protein synthesis after a bout of electrically stimulated contractions. Skeletal muscle-specific knockout of LKB1, the primary AMPK activator in skeletal muscle, on the other hand, eliminated AMPK activation by contractions and enhanced S6k, S6, and 4EBP1 activation before and after contractions. In rats, the addition of caffeine did not affect plantaris hypertrophy induced by the tenotomy of the gastrocnemius and soleus muscles. In conclusion, caffeine administration does not impair skeletal muscle load-induced mTOR signaling, protein synthesis, or muscle hypertrophy.

  6. Transient activation of mTOR following forced treadmill exercise in rats

    DEFF Research Database (Denmark)

    Elfving, Betina; Christensen, Tina; Ratner, Cecilia

    2013-01-01

    , while the induction of neurogenesis requires signaling through the VEGF receptor, Flk-1 (VEGFR-2). VEGF expression is believed to be regulated by two distinct mTOR (mammalian Target of Rapamycin)-containing multiprotein complexes mTORC1 and mTORC2, respectively. This study was initiated to investigate...... of mTOR was regulated after a single bout of exercise. In conclusion, the effect of treadmill exercise on the VEGF system is acute rather than chronic and there is a transient activation of mTOR. More studies are needed to understand whether this could be beneficial in the treatment of neuropsychiatric...

  7. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition.

    Science.gov (United States)

    Marques-Ramos, Ana; Candeias, Marco M; Menezes, Juliane; Lacerda, Rafaela; Willcocks, Margaret; Teixeira, Alexandre; Locker, Nicolas; Romão, Luísa

    2017-11-01

    The mechanistic/mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that integrates cellular signals from the nutrient and energy status to act, namely, on the protein synthesis machinery. While major advances have emerged regarding the regulators and effects of the mTOR signaling pathway, little is known about the regulation of mTOR gene expression. Here, we show that the human mTOR transcript can be translated in a cap-independent manner, and that its 5' untranslated region (UTR) is a highly folded RNA scaffold capable of binding directly to the 40S ribosomal subunit. We further demonstrate that mTOR is able to bypass the cap requirement for translation both in normal and hypoxic conditions. Moreover, our data reveal that the cap-independent translation of mTOR is necessary for its ability to induce cell-cycle progression into S phase. These results suggest a novel regulatory mechanism for mTOR gene expression that integrates the global protein synthesis changes induced by translational inhibitory conditions. © 2017 Marques-Ramos et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis

    Science.gov (United States)

    Abshire, Camille F.; Roy, Craig R.

    2016-01-01

    Vacuolar bacterial pathogens are sheltered within unique membrane-bound organelles that expand over time to support bacterial replication. These compartments sequester bacterial molecules away from host cytosolic immunosurveillance pathways that induce antimicrobial responses. The mechanisms by which the human pulmonary pathogen Legionella pneumophila maintains niche homeostasis are poorly understood. We uncovered that the Legionella-containing vacuole (LCV) required a sustained supply of host lipids during expansion. Lipids shortage resulted in LCV rupture and initiation of a host cell death response, whereas excess of host lipids increased LCVs size and housing capacity. We found that lipids uptake from serum and de novo lipogenesis are distinct redundant supply mechanisms for membrane biogenesis in Legionella-infected macrophages. During infection, the metabolic checkpoint kinase Mechanistic Target of Rapamycin (MTOR) controlled lipogenesis through the Serum Response Element Binding Protein 1 and 2 (SREBP1/2) transcription factors. In Legionella-infected macrophages a host-driven response that required the Toll-like receptors (TLRs) adaptor protein Myeloid differentiation primary response gene 88 (Myd88) dampened MTOR signaling which in turn destabilized LCVs under serum starvation. Inactivation of the host MTOR-suppression pathway revealed that L. pneumophila sustained MTOR signaling throughout its intracellular infection cycle by a process that required the upstream regulator Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and one or more Dot/Icm effector proteins. Legionella-sustained MTOR signaling facilitated LCV expansion and inhibition of the PI3K-MTOR-SREPB1/2 axis through pharmacological or genetic interference or by activation of the host MTOR-suppression response destabilized expanding LCVs, which in turn triggered cell death of infected macrophages. Our work identified a host metabolic requirement for LCV homeostasis and demonstrated that L

  9. Scalable and Anonymous Group Communication with MTor

    Directory of Open Access Journals (Sweden)

    Lin Dong

    2016-04-01

    Full Text Available This paper presents MTor, a low-latency anonymous group communication system. We construct MTor as an extension to Tor, allowing the construction of multi-source multicast trees on top of the existing Tor infrastructure. MTor does not depend on an external service to broker the group communication, and avoids central points of failure and trust. MTor’s substantial bandwidth savings and graceful scalability enable new classes of anonymous applications that are currently too bandwidth-intensive to be viable through traditional unicast Tor communication-e.g., group file transfer, collaborative editing, streaming video, and real-time audio conferencing.

  10. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice

    Science.gov (United States)

    You, Jae-Sung; Anderson, Garrett B.; Dooley, Matthew S.; Hornberger, Troy A.

    2015-01-01

    ABSTRACT The maintenance of skeletal muscle mass contributes substantially to health and to issues associated with the quality of life. It has been well recognized that skeletal muscle mass is regulated by mechanically induced changes in protein synthesis, and that signaling by mTOR is necessary for an increase in protein synthesis and the hypertrophy that occurs in response to increased mechanical loading. However, the role of mTOR signaling in the regulation of protein synthesis and muscle mass during decreased mechanical loading remains largely undefined. In order to define the role of mTOR signaling, we employed a mouse model of hindlimb immobilization along with pharmacological, mechanical and genetic means to modulate mTOR signaling. The results first showed that immobilization induced a decrease in the global rates of protein synthesis and muscle mass. Interestingly, immobilization also induced an increase in mTOR signaling, eIF4F complex formation and cap-dependent translation. Blocking mTOR signaling during immobilization with rapamycin not only impaired the increase in eIF4F complex formation, but also augmented the decreases in global protein synthesis and muscle mass. On the other hand, stimulating immobilized muscles with isometric contractions enhanced mTOR signaling and rescued the immobilization-induced decrease in global protein synthesis through a rapamycin-sensitive mechanism that was independent of ribosome biogenesis. Unexpectedly, the effects of isometric contractions were also independent of eIF4F complex formation. Similar to isometric contractions, overexpression of Rheb in immobilized muscles enhanced mTOR signaling, cap-dependent translation and global protein synthesis, and prevented the reduction in fiber size. Therefore, we conclude that the activation of mTOR signaling is both necessary and sufficient to alleviate the decreases in protein synthesis and muscle mass that occur during immobilization. Furthermore, these results indicate

  11. A kinase-dead knock-in mutation in mTOR leads to early embryonic lethality and is dispensable for the immune system in heterozygous mice

    Directory of Open Access Journals (Sweden)

    Cavender Druie

    2009-05-01

    Full Text Available Abstract Background The mammalian target of rapamycin protein (mTOR is an evolutionarily conserved kinase that regulates protein synthesis, cell cycle progression and proliferation in response to various environmental cues. As a critical downstream mediator of PI3K signaling, mTOR is important for lymphocyte development and function of mature T and B-cells. Most studies of mTOR in immune responses have relied on the use of pharmacological inhibitors, such as rapamycin. Rapamycin-FKBP12 complex exerts its immunosuppressive and anti-proliferative effect by binding outside the kinase domain of mTOR, and subsequently inhibiting downstream mTOR signaling. Results To determine the requirement for mTOR kinase activity in the immune system function, we generated knock-in mice carrying a mutation (D2338 in the catalytic domain of mTOR. While homozygous mTOR kd/kd embryos died before embryonic day 6.5, heterozygous mTOR+/kd mice appeared entirely normal and are fertile. mTOR +/kd mice exhibited normal T and B cell development and unaltered proliferative responses of splenocytes to IL-2 and TCR/CD28. In addition, heterozygousity for the mTOR kinase-dead allele did not sensitize T cells to rapamycin in a CD3-mediated proliferation assay. Unexpectedly, mTOR kinase activity towards its substrate 4E-BP1 was not decreased in hearts and livers from heterozygous animals. Conclusion Altogether, our findings indicate that mTOR kinase activity is indispensable for the early development of mouse embryos. Moreover, a single wild type mTOR allele is sufficient to maintain normal postnatal growth and lymphocyte development and proliferation.

  12. Endocrine responses and acute mTOR pathway phosphorylation to resistance exercise with leucine and whey

    Directory of Open Access Journals (Sweden)

    MT Lane

    2017-02-01

    Full Text Available Leucine ingestion reportedly activates the mTOR pathway in skeletal muscle, contributing to a hypertrophy response. The purpose of the study was to compare the post-resistance exercise effects of leucine and whey protein supplementation on endocrine responses and muscle mTOR pathway phosphorylation. On visit 1, subjects (X±SD; n=20; age=27.8±2.8yrs provided baseline blood samples for analysis of cortisol, glucose and insulin; a muscle biopsy of the vastus lateralis muscle to assess mTOR signaling pathway phosphorylation; and were tested for maximum strength on the leg press and leg extension exercises. For visits 2 and 3, subjects were randomized in a double-blind crossover design to ingest either leucine and whey protein (10g+10g; supplement or a non-caloric placebo. During these visits, 5 sets of 10 repetitions were performed on both exercises, immediately followed by ingestion of the supplement or placebo. Blood was sampled 30 min post-, and a muscle biopsy 45 min post-exercise. Western blots quantified total and phosphorylated proteins. Insulin increased (α<.05 with supplementation with no change in glucose compared to placebo. Relative phosphorylation of AKT and rpS6 were greater with leucine and whey supplementation compared to placebo. Supplementation of leucine and whey protein immediately after heavy resistance exercise increases anabolic signaling in human skeletal muscle.

  13. Idiopathic masseter muscle hypertrophy.

    Science.gov (United States)

    Kebede, Biruktawit; Megersa, Shimalis

    2011-11-01

    Benign Masseteric Hypertrophy is a relatively uncommon condition that can occur unilaterally or bilaterally. Pain may be a symptom, but most frequently a clinician is consulted for cosmetic reasons. In some cases prominent Exostoses at the angle of the mandible are noted. Although it is tempting to point to Malocclusion, Bruxism, clenching, or Temporomandibular joint disorders, the etiology in the majority of cases is unclear. Diagnosis is based on awareness of the condition, clinical and radiographic findings, and exclusion of more serious Pathology such as Benign and Malignant Parotid Disease, Rhabdomyoma, and Lymphangioma. Treatment usually involves resection of a portion of the Masseter muscle with or without the underlying bone.

  14. The role of satellite cells in muscle hypertrophy.

    Science.gov (United States)

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  15. Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition

    Directory of Open Access Journals (Sweden)

    Elizabeth M. MacDonald

    2014-04-01

    Full Text Available The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization and denervation (sciatic nerve resection atrophy. We found that treatment of immobilized mice with ActRIIB prevented the loss of muscle mass observed in placebo-treated mice. Our results suggest that this protection from disuse atrophy is regulated by serum and glucocorticoid-induced kinase (SGK rather than by Akt. Denervation atrophy, however, was not protected by ActRIIB treatment, yet resulted in an upregulation of the pro-growth factors Akt, SGK and components of the mTOR pathway. We then treated the denervated mice with the mTOR inhibitor rapamycin and found that, despite a reduction in mTOR activation, there is no alteration of the atrophy phenotype. Additionally, rapamycin prevented the denervation-induced upregulation of the mTORC2 substrates Akt and SGK. Thus, our studies show that denervation atrophy is not only independent from Akt, SGK and mTOR activation but also has a different underlying pathophysiological mechanism than disuse atrophy.

  16. The Effects of Krill Oil on mTOR Signaling and Resistance Exercise: A Pilot Study

    Directory of Open Access Journals (Sweden)

    John Georges

    2018-01-01

    Full Text Available Introduction. Krill oil supplementation has been shown to improve postexercise immune function; however, its effect on muscle hypertrophy is currently unknown. Therefore, the aim of present study was to investigate the ability of krill oil to stimulate mTOR signaling and its ability to augment resistance training-induced changes in body composition and performance. Methods. C2C12 myoblasts cells were stimulated with krill oil or soy-derived phosphatidylcholine (S-PC, and then, the ratio of P-p70-389 to total p70 was used as readout for mTOR signaling. In double-blind,placebo-controlled study, resistance trained subjects consumed either 3 g krill oil daily or placebo, and each took part in an 8-week periodized resistance training program. Body composition, maximal strength, peak power, and rate of perceived recovery were assessed collectively at the end of weeks 0 and 8. In addition, safety parameters (comprehensive metabolic panel (CMP, complete blood count (CBC, and urine analysis (UA and cognitive performance were measured pre- and posttesting. Results. Krill oil significantly stimulated mTOR signaling in comparison to S-PC and control. No differences for markers on the CMP, CBC, or UA were observed. Krill oil significantly increased lean body mass from baseline (p=0.021, 1.4 kg, +2.1%; however, there were no statistically significant differences between groups for any measures taken. Conclusion. Krill oil activates mTOR signaling. Krill oil supplementation in athletes is safe, and its effect on resistance exercise deserves further research.

  17. Compensative hypertrophy of the kidney

    International Nuclear Information System (INIS)

    Raynaud, C.

    1976-01-01

    Several measurement methods are available to practitioners to reveal a compensative hypertrophy. Mensuration of the kidney has the advantage of simplicity but is in fact an unreliable and inaccurate method. Separate clearances in their traditional form have never entered into routine use because of the disadvantages of ureteral catheterism. The use of radioactive tracers avoids this drawback, but clearances calculated in this way are only valid in the absence of obstructive urinary disorders. Solutions have been proposed, but the values obtained are no longer identical with the clearances. The Hg uptake test quantifies quite accurately the function of each kidney. From the results obtained a complete compensative hypertrophy developed on a healthy kidney and an incomplete compensative hypertrophy developed on the diseased kidney have been described. In each of these situations the degree to which compensative hypertrophy develops seems to be fixed at a given level peculiar to each patient [fr

  18. Raf-mediated cardiac hypertrophy in adult Drosophila

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for Raf

  19. Hypothalamic mTOR signaling regulates food intake.

    Science.gov (United States)

    Cota, Daniela; Proulx, Karine; Smith, Kathi A Blake; Kozma, Sara C; Thomas, George; Woods, Stephen C; Seeley, Randy J

    2006-05-12

    The mammalian Target of Rapamycin (mTOR) protein is a serine-threonine kinase that regulates cell-cycle progression and growth by sensing changes in energy status. We demonstrated that mTOR signaling plays a role in the brain mechanisms that respond to nutrient availability, regulating energy balance. In the rat, mTOR signaling is controlled by energy status in specific regions of the hypothalamus and colocalizes with neuropeptide Y and proopiomelanocortin neurons in the arcuate nucleus. Central administration of leucine increases hypothalamic mTOR signaling and decreases food intake and body weight. The hormone leptin increases hypothalamic mTOR activity, and the inhibition of mTOR signaling blunts leptin's anorectic effect. Thus, mTOR is a cellular fuel sensor whose hypothalamic activity is directly tied to the regulation of energy intake.

  20. Induction of mitochondrial biogenesis and respiration is associated with mTOR regulation in hepatocytes of rats treated with the pan-PPAR activator tetradecylthioacetic acid (TTA)

    Energy Technology Data Exchange (ETDEWEB)

    Hagland, Hanne R.; Nilsson, Linn I.H. [Department of Biomedicine, University of Bergen (Norway); Burri, Lena [Institute of Medicine, University of Bergen, Haukeland University Hospital (Norway); Nikolaisen, Julie [Department of Biomedicine, University of Bergen (Norway); Berge, Rolf K. [Institute of Medicine, University of Bergen, Haukeland University Hospital (Norway); Department of Heart Disease, Haukeland University Hospital (Norway); Tronstad, Karl J., E-mail: karl.tronstad@biomed.uib.no [Department of Biomedicine, University of Bergen (Norway)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We investigated mechanisms of mitochondrial regulation in rat hepatocytes. Black-Right-Pointing-Pointer Tetradecylthioacetic acid (TTA) was employed to activate mitochondrial oxidation. Black-Right-Pointing-Pointer Mitochondrial biogenesis and respiration were induced. Black-Right-Pointing-Pointer It was confirmed that PPAR target genes were induced. Black-Right-Pointing-Pointer The mechanism involved activation mTOR. -- Abstract: The hypolipidemic effect of peroxisome proliferator-activated receptor (PPAR) activators has been explained by increasing mitochondrial fatty acid oxidation, as observed in livers of rats treated with the pan-PPAR activator tetradecylthioacetic acid (TTA). PPAR-activation does, however, not fully explain the metabolic adaptations observed in hepatocytes after treatment with TTA. We therefore characterized the mitochondrial effects, and linked this to signalling by the metabolic sensor, the mammalian target of rapamycin (mTOR). In hepatocytes isolated from TTA-treated rats, the changes in cellular content and morphology were consistent with hypertrophy. This was associated with induction of multiple mitochondrial biomarkers, including mitochondrial DNA, citrate synthase and mRNAs of mitochondrial proteins. Transcription analysis further confirmed activation of PPAR{alpha}-associated genes, in addition to genes related to mitochondrial biogenesis and function. Analysis of mitochondrial respiration revealed that the capacity of both electron transport and oxidative phosphorylation were increased. These effects coincided with activation of the stress related factor, ERK1/2, and mTOR. The protein level and phosphorylation of the downstream mTOR actors eIF4G and 4E-BP1 were induced. In summary, TTA increases mitochondrial respiration by inducing hypertrophy and mitochondrial biogenesis in rat hepatocytes, via adaptive regulation of PPARs as well as mTOR.

  1. Compensatory hypertrophy of the teres minor muscle after large rotator cuff tear model in adult male rat.

    Science.gov (United States)

    Ichinose, Tsuyoshi; Yamamoto, Atsushi; Kobayashi, Tsutomu; Shitara, Hitoshi; Shimoyama, Daisuke; Iizuka, Haku; Koibuchi, Noriyuki; Takagishi, Kenji

    2016-02-01

    Rotator cuff tear (RCT) is a common musculoskeletal disorder in the elderly. The large RCT is often irreparable due to the retraction and degeneration of the rotator cuff muscle. The integrity of the teres minor (TM) muscle is thought to affect postoperative functional recovery in some surgical treatments. Hypertrophy of the TM is found in some patients with large RCTs; however, the process underlying this hypertrophy is still unclear. The objective of this study was to determine if compensatory hypertrophy of the TM muscle occurs in a large RCT rat model. Twelve Wistar rats underwent transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons in the left shoulder. The rats were euthanized 4 weeks after the surgery, and the cuff muscles were collected and weighed. The cross-sectional area and the involvement of Akt/mammalian target of rapamycin (mTOR) signaling were examined in the remaining TM muscle. The weight and cross-sectional area of the TM muscle was higher in the operated-on side than in the control side. The phosphorylated Akt/Akt protein ratio was not significantly different between these sides. The phosphorylated-mTOR/mTOR protein ratio was significantly higher on the operated-on side. Transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons activates mTOR signaling in the TM muscle, which results in muscle hypertrophy. The Akt-signaling pathway may not be involved in this process. Nevertheless, activation of mTOR signaling in the TM muscle after RCT may be an effective therapeutic target of a large RCT. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. Prolactin induces adrenal hypertrophy

    Directory of Open Access Journals (Sweden)

    E.J. Silva

    2004-02-01

    Full Text Available Although adrenocorticotropic hormone is generally considered to play a major role in the regulation of adrenal glucocorticoid secretion, several reports have suggested that other pituitary hormones (e.g., prolactin also play a significant role in the regulation of adrenal function. The aim of the present study was to measure the adrenocortical cell area and to determine the effects of the transition from the prepubertal to the postpubertal period on the hyperprolactinemic state induced by domperidone (4.0 mg kg-1 day-1, sc. In hyperprolactinemic adult and young rats, the adrenals were heavier, as determined at necropsy, than in the respective controls: adults (30 days: 0.16 ± 0.008 and 0.11 ± 0.007; 46 days: 0.17 ± 0.006 and 0.12 ± 0.008, and 61 days: 0.17 ± 0.008 and 0.10 ± 0.004 mg for treated and control animals, respectively; P < 0.05, and young rats (30 days: 0.19 ± 0.003 and 0.16 ± 0.007, and 60 days: 0.16 ± 0.006 and 0.13 ± 0.009 mg; P < 0.05. We selected randomly a circular area in which we counted the nuclei of adrenocortical cells. The area of zona fasciculata cells was increased in hyperprolactinemic adult and young rats compared to controls: adults: (61 days: 524.90 ± 47.85 and 244.84 ± 9.03 µm² for treated and control animals, respectively; P < 0.05, and young rats: (15 days: 462.30 ± 16.24 and 414.28 ± 18.19; 60 days: 640.51 ± 12.91 and 480.24 ± 22.79 µm²; P < 0.05. Based on these data we conclude that the increase in adrenal weight observed in the hyperprolactinemic animals may be due to prolactin-induced adrenocortical cell hypertrophy.

  3. Advanced Research of mTOR and Lung Carcinoid Tumors

    Directory of Open Access Journals (Sweden)

    Zixuan ZHANG

    2013-01-01

    Full Text Available Mammalian target of rapamycin (mTOR, a main protein kinase in the phosphoinositide 3-kinase (PI3K/AKT/mTOR signaling pathway, is an important intracellular mediator involved in multiple celluar functions including proliferation, differentiation, apoptosis, tumorigenesis, and angiogenesis. Recently, the high expression of mTOR and mTOR-related kinase have been found in neuroendocrin tumors. Therefore, mTOR pathway represents an attractive target for new anticancer therapies except surgery.

  4. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  5. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin

    DEFF Research Database (Denmark)

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia

    2014-01-01

    In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy...... and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H......-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H...

  6. Effects of ketamine administration on mTOR and reticulum stress signaling pathways in the brain after the infusion of rapamycin into prefrontal cortex.

    Science.gov (United States)

    Abelaira, Helena M; Réus, Gislaine Z; Ignácio, Zuleide M; Dos Santos, Maria Augusta B; de Moura, Airam B; Matos, Danyela; Demo, Júlia P; da Silva, Júlia B I; Michels, Monique; Abatti, Mariane; Sonai, Beatriz; Dal Pizzol, Felipe; Carvalho, André F; Quevedo, João

    2017-04-01

    Recent studies show that activation of the mTOR signaling pathway is required for the rapid antidepressant actions of glutamate N-methyl-D-aspartate (NMDA) receptor antagonists. A relationship between mTOR kinase and the endoplasmic reticulum (ER) stress pathway, also known as the unfolded protein response (UPR) has been shown. We evaluate the effects of ketamine administration on the mTOR signaling pathway and proteins of UPR in the prefrontal cortex (PFC), hippocampus, amygdala and nucleus accumbens, after the inhibiton of mTOR signaling in the PFC. Male adult Wistar rats received pharmacological mTOR inhibitor, rapamycin (0.2 nmol), or vehicle into the PFC and then a single dose of ketamine (15 mg/kg, i.p.). The immunocontent of mTOR, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), eukaryotic elongation factor 2 kinase (eEF2K) homologous protein (CHOP), PKR-like ER kinase (PERK) and inositol-requiring enzyme 1 (IRE1) - alpha were determined in the brain. The mTOR levels were reduced in the rapamycin group treated with saline and ketamine in the PFC; p4EBP1 levels were reduced in the rapamycin group treated with ketamine in the PFC and nucleus accumbens; the levels of peEF2K were increased in the PFC in the vehicle group treated with ketamine and reduced in the rapamycin group treated with ketamine. The PERK and IRE1-alpha levels were decreased in the PFC in the rapamycin group treated with ketamine. Our results suggest that mTOR signaling inhibition by rapamycin could be involved, at least in part, with the mechanism of action of ketamine; and the ketamine antidepressant on ER stress pathway could be also mediated by mTOR signaling pathway in certain brain structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. mTOR dysregulation and tuberous sclerosis-related epilepsy

    NARCIS (Netherlands)

    Curatolo, Paolo; Moavero, Romina; van Scheppingen, Jackelien; Aronica, Eleonora

    2018-01-01

    The mammalian target of rapamycin (mTOR) pathway has emerged as a key player for proper neural network development, and it is involved in epileptogenesis triggered by both genetic or acquired factors. Areas covered. The robust mTOR signaling deregulation observed in a large spectrum of epileptogenic

  8. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle.

    Science.gov (United States)

    Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi

    2013-01-01

    To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to-slow MHC isoform transition in response to mechanical overload with inhibition of the ERK1/2 pathway and operates independently of the calcineurin pathway.

  9. Lysophosphatidic acid acyltransferase beta regulates mTOR signaling.

    Directory of Open Access Journals (Sweden)

    Michelle A Blaskovich

    Full Text Available Lysophosphatidic acid acyltransferase (LPAAT-β is a phosphatidic acid (PA generating enzyme that plays an essential role in triglyceride synthesis. However, LPAAT-β is now being studied as an important regulator of cell growth and differentiation and as a potential therapeutic target in cancer since PA is necessary for the activity of key proteins such as Raf, PKC-ζ and mTOR. In this report we determine the effect of LPAAT-β silencing with siRNA in pancreatic adenocarcinoma cell lines. We show for the first time that LPAAT-β knockdown inhibits proliferation and anchorage-independent growth of pancreatic cancer cells. This is associated with inhibition of signaling by mTOR as determined by levels of mTORC1- and mTORC2-specific phosphorylation sites on 4E-BP1, S6K and Akt. Since PA regulates the activity of mTOR by modulating its binding to FKBP38, we explored the possibility that LPAAT-β might regulate mTOR by affecting its association with FKBP38. Coimmunoprecipitation studies of FKBP38 with mTOR show increased levels of FKBP38 associated with mTOR when LPAAT-β protein levels are knocked down. Furthermore, depletion of LPAAT-β results in increased Lipin 1 nuclear localization which is associated with increased nuclear eccentricity, a nuclear shape change that is dependent on mTOR, further confirming the ability of LPAAT-β to regulate mTOR function. Our results provide support for the hypothesis that PA generated by LPAAT-β regulates mTOR signaling. We discuss the implications of these findings for using LPAAT-β as a therapeutic target.

  10. Genetics Home Reference: myostatin-related muscle hypertrophy

    Science.gov (United States)

    ... Twitter Home Health Conditions Myostatin-related muscle hypertrophy Myostatin-related muscle hypertrophy Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description Myostatin-related muscle hypertrophy is a rare condition characterized ...

  11. mTOR Inhibition and Tuberous Sclerosis Prevention

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-09-01

    Full Text Available Investigators at Children's Memorial Health Institute, Warsaw, Poland, report monozygotic twin sisters with tuberous sclerosis complex (TSC, one treated with the mTOR inhibitor everolimus since age 4 years.

  12. mTOR Inhibition and Clinical Transplantation: Pancreas and Islet.

    Science.gov (United States)

    Berney, Thierry; Andres, Axel; Toso, Christian; Majno, Pietro; Squifflet, Jean-Paul

    2018-02-01

    This brief overview discusses the beneficial and deleterious effects of mammalian target of rapamycin (mTOR) inhibitors on β cells, and how sirolimus- and everolimus-based immunosuppression have impacted on practices and outcomes of pancreas and islet transplantation. Sirolimus was the cornerstone of immunosuppressive regimens in islet transplantation at the turn of the millenium, but utilization of mTOR inhibitors has progressively decreased from greater than 80% to less than 50% of islet transplant recipients in more recent years. For whole pancreas transplantation, mTOR inhibitors were used in approximately 20% of patients in the early 2000s, but this dropped over the years to less than 10% currently. This decrease is arguably due to less well-tolerated side effects without the advantage of better outcomes. Nonetheless, mTOR inhibitors remain extremely valuable as second-line immunosuppressants in pancreas and islet transplantation.

  13. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    Science.gov (United States)

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  14. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    Science.gov (United States)

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  15. Role of mTOR Inhibitors in Kidney Disease

    Directory of Open Access Journals (Sweden)

    Moto Kajiwara

    2016-06-01

    Full Text Available The first compound that inhibited the mammalian target of rapamycin (mTOR, sirolimus (rapamycin was discovered in the 1970s as a soil bacterium metabolite collected on Easter Island (Rapa Nui. Because sirolimus showed antiproliferative activity, researchers investigated its molecular target and identified the TOR1 and TOR2. The mTOR consists of mTOR complex 1 (mTORC1 and mTORC2. Rapalogues including sirolimus, everolimus, and temsirolimus exert their effect mainly on mTORC1, whereas their inhibitory effect on mTORC2 is mild. To obtain compounds with more potent antiproliferative effects, ATP-competitive inhibitors of mTOR targeting both mTORC1 and mTORC2 have been developed and tested in clinical trials as anticancer drugs. Currently, mTOR inhibitors are used as anticancer drugs against several solid tumors, and immunosuppressive agents for transplantation of various organs. This review discusses the role of mTOR inhibitors in renal disease with a particular focus on renal cancer, diabetic nephropathy, and kidney transplantation.

  16. Leptin induces cardiac fibrosis through galectin-3, mTOR and oxidative stress: potential role in obesity.

    Science.gov (United States)

    Martínez-Martínez, Ernesto; Jurado-López, Raquel; Valero-Muñoz, María; Bartolomé, María Visitación; Ballesteros, Sandra; Luaces, María; Briones, Ana María; López-Andrés, Natalia; Miana, María; Cachofeiro, Victoria

    2014-05-01

    Leptin acts as a cardiac profibrotic factor. However, the mechanisms underlying this effect are unclear. Therefore, we sought to elucidate the mediators involved in this process and the potential role of leptin in cardiac fibrosis associated with obesity. Male Wistar rats were fed either a high-fat diet (HFD; 33.5% fat), or a standard diet (3.5% fat) for 6 weeks. HFD animals show cardiac hypertrophy, fibrosis and an increase in O2- production as evaluated by dihydroethidium. Echocardiographic parameters of cardiac structure and systolic function were similar in both groups. Cardiac levels of leptin, collagen I, galectin-3 and transforming growth factor β (TGF-β) were higher in HFD than in controls. In cardiac myofibroblasts, leptin (10-100 ng/ml) increased O2-, collagen I, galectin-3, TGF-β and connective tissue growth factor production (CTGF). These effects were prevented by the presence of either melatonin (10 mmol/l) or the inhibitor of mTOR, rapamycin (10 mmol/l). Blockage of galectin-3 activity by N-acetyllactosamine (LacNac 10 mmol/l) reduced both collagen I and O2(*-) production induced by leptin. The p70S6 kinase activation/phosphorylation, the downstream mediator of mTOR, induced by leptin was not modified by melatonin. Leptin reduced the metalloproteinase (MMP) 2 activity and the presence of melatonin, rapamycin or LacNac were unable to prevent it. The data suggest that leptin locally produced in the heart could participate in the fibrosis observed in HFD by affecting collagen turnover. Collagen synthesis induced by leptin seems to be mediated by the production of galectin-3, TGF-β and CTGF through oxidative stress increased by activation of mTOR pathway.

  17. Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers

    Science.gov (United States)

    Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.

    2009-01-01

    Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125

  18. Black Tea High-Molecular-Weight Polyphenol-Rich Fraction Promotes Hypertrophy during Functional Overload in Mice

    Directory of Open Access Journals (Sweden)

    Yuki Aoki

    2017-03-01

    Full Text Available Mitochondria activation factor (MAF is a high-molecular-weight polyphenol extracted from black tea that stimulates training-induced 5′ adenosine monophosphate-activated protein kinase (AMPK activation and improves endurance capacity. Originally, MAF was purified from black tea using butanol and acetone, making it unsuitable for food preparation. Hence, we extracted a MAF-rich sample “E80” from black tea, using ethanol and water only. Here, we examined the effects of E80 on resistance training. Eight-week old C57BL/6 mice were fed with a normal diet or a diet containing 0.5% E80 for 4, 7 and 14 days under conditions of functional overload. It was found that E80 administration promoted overload-induced hypertrophy and induced phosphorylation of the Akt/mammalian target of rapamycin (mTOR pathway proteins, such as Akt, P70 ribosomal protein S6 kinase (p70S6K, and S6 in the plantaris muscle. Therefore, functional overload and E80 administration accelerated mTOR signaling and increased protein synthesis in the muscle, thereby inducing hypertrophy.

  19. CL316,243, a β3-adrenergic receptor agonist, induces muscle hypertrophy and increased strength.

    Science.gov (United States)

    Puzzo, Daniela; Raiteri, Roberto; Castaldo, Clotilde; Capasso, Raffaele; Pagano, Ester; Tedesco, Mariateresa; Gulisano, Walter; Drozd, Lisaveta; Lippiello, Pellegrino; Palmeri, Agostino; Scotto, Pietro; Miniaci, Maria Concetta

    2016-11-22

    Studies in vitro have demonstrated that β3-adrenergic receptors (β3-ARs) regulate protein metabolism in skeletal muscle by promoting protein synthesis and inhibiting protein degradation. In this study, we evaluated whether activation of β3-ARs by the selective agonist CL316,243 modifies the functional and structural properties of skeletal muscles of healthy mice. Daily injections of CL316,243 for 15 days resulted in a significant improvement in muscle force production, assessed by grip strength and weight tests, and an increased myofiber cross-sectional area, indicative of muscle hypertrophy. In addition, atomic force microscopy revealed a significant effect of CL316,243 on the transversal stiffness of isolated muscle fibers. Interestingly, the expression level of mammalian target of rapamycin (mTOR) downstream targets and neuronal nitric oxide synthase (NOS) was also found to be enhanced in tibialis anterior and soleus muscles of CL316,243 treated mice, in accordance with previous data linking β3-ARs to mTOR and NOS signaling pathways. In conclusion, our data suggest that CL316,243 systemic administration might be a novel therapeutic strategy worthy of further investigations in conditions of muscle wasting and weakness associated with aging and muscular diseases.

  20. Biphasic activation of the mTOR pathway in the gustatory cortex is correlated with and necessary for taste learning.

    Science.gov (United States)

    Belelovsky, Katya; Kaphzan, Hanoch; Elkobi, Alina; Rosenblum, Kobi

    2009-06-10

    Different forms of memories and synaptic plasticity require synthesis of new proteins at the time of acquisition or immediately after. We are interested in the role of translation regulation in the cortex, the brain structure assumed to store long-term memories. The mammalian target of rapamycin, mTOR (also known as FRAP and RAFT-1), is part of a key signal transduction mechanism known to regulate translation of specific subset of mRNAs and to affect learning and synaptic plasticity. We report here that novel taste learning induces two waves of mTOR activation in the gustatory cortex. Interestingly, the first wave can be identified both in synaptoneurosomal and cellular fractions, whereas the second wave is detected in the cellular fraction but not in the synaptic one. Inhibition of mTOR, specifically in the gustatory cortex, has two effects. First, biochemically, it modulates several known downstream proteins that control translation and reduces the expression of postsynaptic density-95 in vivo. Second, behaviorally, it attenuates long-term taste memory. The results suggest that the mTOR pathway in the cortex modulates both translation factor activity and protein expression, to enable normal taste memory consolidation.

  1. Down-regulation of mTOR leads to up-regulation of osteoprotegerin in bone marrow cells

    International Nuclear Information System (INIS)

    Mogi, Makio; Kondo, Ayami

    2009-01-01

    Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor regulates bone mass by inhibiting osteoclastic bone resorption. mTOR, which is the mammalian target of rapamycin, is a kinase and central regulator of cell growth, proliferation, and survival. By using Rapamycin, we studied whether mTOR pathway is associated with OPG protein production in the mouse bone marrow-derived stromal cell line ST2. Rapamycin markedly increased the level of soluble OPG in ST2 cells. This antibiotic treatment resulted in the suppression of phosphorylation of mTOR. Rapamycin had no effects on the proliferation, differentiation, or apoptosis of the cells. Treatment with bone morphogenetic protein-4, which can induce OPG protein in ST2 cells, also resulted in a decrease in the density of the phospho-mTOR-band, suggesting that the suppression of the phospho-mTOR pathway is necessary for OPG production in ST2 cells. Thus, suitable suppression of mTOR phosphorylation is a necessary requirement for OPG production in bone marrow stromal cells.

  2. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis.

    Directory of Open Access Journals (Sweden)

    Kathrin Thedieck

    Full Text Available TOR (Target of Rapamycin is a highly conserved protein kinase and a central controller of cell growth. TOR is found in two functionally and structurally distinct multiprotein complexes termed TOR complex 1 (TORC1 and TOR complex 2 (TORC2. In the present study, we developed a two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS based proteomic strategy to identify new mammalian TOR (mTOR binding proteins. We report the identification of Proline-rich Akt substrate (PRAS40 and the hypothetical protein Q6MZQ0/FLJ14213/CAE45978 as new mTOR binding proteins. PRAS40 binds mTORC1 via Raptor, and is an mTOR phosphorylation substrate. PRAS40 inhibits mTORC1 autophosphorylation and mTORC1 kinase activity toward eIF-4E binding protein (4E-BP and PRAS40 itself. HeLa cells in which PRAS40 was knocked down were protected against induction of apoptosis by TNFalpha and cycloheximide. Rapamycin failed to mimic the pro-apoptotic effect of PRAS40, suggesting that PRAS40 mediates apoptosis independently of its inhibitory effect on mTORC1. Q6MZQ0 is structurally similar to proline rich protein 5 (PRR5 and was therefore named PRR5-Like (PRR5L. PRR5L binds specifically to mTORC2, via Rictor and/or SIN1. Unlike other mTORC2 members, PRR5L is not required for mTORC2 integrity or kinase activity, but dissociates from mTORC2 upon knock down of tuberous sclerosis complex 1 (TSC1 and TSC2. Hyperactivation of mTOR by TSC1/2 knock down enhanced apoptosis whereas PRR5L knock down reduced apoptosis. PRR5L knock down reduced apoptosis also in mTORC2 deficient cells. The above suggests that mTORC2-dissociated PRR5L may promote apoptosis when mTOR is hyperactive. Thus, PRAS40 and PRR5L are novel mTOR-associated proteins that control the balance between cell growth and cell death.

  3. mTOR Signaling Confers Resistance to Targeted Cancer Drugs.

    Science.gov (United States)

    Guri, Yakir; Hall, Michael N

    2016-11-01

    Cancer is a complex disease and a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that target cancer-specific signaling pathways. However, the clinical benefits of such drugs are at best transient due to tumors displaying intrinsic or adaptive resistance. The underlying compensatory pathways that allow cancer cells to circumvent a drug blockade are poorly understood. We review here recent studies suggesting that mammalian TOR (mTOR) signaling is a major compensatory pathway conferring resistance to many cancer drugs. mTOR-mediated resistance can be cell-autonomous or non-cell-autonomous. These findings suggest that mTOR signaling should be monitored routinely in tumors and that an mTOR inhibitor should be considered as a co-therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The effect of inter-set rest intervals on resistance exercise-induced muscle hypertrophy.

    Science.gov (United States)

    Henselmans, Menno; Schoenfeld, Brad J

    2014-12-01

    Due to a scarcity of longitudinal trials directly measuring changes in muscle girth, previous recommendations for inter-set rest intervals in resistance training programs designed to stimulate muscular hypertrophy were primarily based on the post-exercise endocrinological response and other mechanisms theoretically related to muscle growth. New research regarding the effects of inter-set rest interval manipulation on resistance training-induced muscular hypertrophy is reviewed here to evaluate current practices and provide directions for future research. Of the studies measuring long-term muscle hypertrophy in groups employing different rest intervals, none have found superior muscle growth in the shorter compared with the longer rest interval group and one study has found the opposite. Rest intervals less than 1 minute can result in acute increases in serum growth hormone levels and these rest intervals also decrease the serum testosterone to cortisol ratio. Long-term adaptations may abate the post-exercise endocrinological response and the relationship between the transient change in hormonal production and chronic muscular hypertrophy is highly contentious and appears to be weak. The relationship between the rest interval-mediated effect on immune system response, muscle damage, metabolic stress, or energy production capacity and muscle hypertrophy is still ambiguous and largely theoretical. In conclusion, the literature does not support the hypothesis that training for muscle hypertrophy requires shorter rest intervals than training for strength development or that predetermined rest intervals are preferable to auto-regulated rest periods in this regard.

  5. SIRT1 may play a crucial role in overload-induced hypertrophy of skeletal muscle.

    Science.gov (United States)

    Koltai, Erika; Bori, Zoltán; Chabert, Clovis; Dubouchaud, Hervé; Naito, Hisashi; Machida, Shuichi; Davies, Kelvin Ja; Murlasits, Zsolt; Fry, Andrew C; Boldogh, Istvan; Radak, Zsolt

    2017-06-01

    Silent mating type information regulation 2 homologue 1 (SIRT1) activity and content increased significantly in overload-induced hypertrophy. SIRT1-mediated signalling through Akt, the endothelial nitric oxide synthase mediated pathway, regulates anabolic process in the hypertrophy of skeletal muscle. The regulation of catabolic signalling via forkhead box O 1 and protein ubiquitination is SIRT1 dependent. Overload-induced changes in microRNA levels regulate SIRT1 and insulin-like growth factor 1 signalling. Significant skeletal muscle mass guarantees functional wellbeing and is important for high level performance in many sports. Although the molecular mechanism for skeletal muscle hypertrophy has been well studied, it still is not completely understood. In the present study, we used a functional overload model to induce plantaris muscle hypertrophy by surgically removing the soleus and gastrocnemius muscles in rats. Two weeks of muscle ablation resulted in a 40% increase in muscle mass, which was associated with a significant increase in silent mating type information regulation 2 homologue 1 (SIRT1) content and activity (P overload-induced hypertrophy. These findings, along with the well-known regulatory roles that SIRT1 plays in modulating both anabolic and catabolic pathways, allow us to propose the hypothesis that SIRT1 may actually play a crucial causal role in overload-induced hypertrophy of skeletal muscle. This hypothesis will now require rigorous direct and functional testing. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  6. Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy.

    Science.gov (United States)

    Ramasamy, Subbiah; Velmurugan, Ganesan; Rekha, Balakrishnan; Anusha, Sivakumar; Shanmugha Rajan, K; Shanmugarajan, Suresh; Ramprasath, Tharmarajan; Gopal, Pandi; Tomar, Dhanendra; Karthik, Karuppusamy V; Verma, Suresh Kumar; Garikipati, Venkata Naga Srikanth; Sudarsan, Rajan

    2018-04-01

    The physiological cardiac hypertrophy is an adaptive condition without myocyte cell death, while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. This study explores the miRNome of α-2M-induced physiologically hypertrophied cardiomyocytes and the role of miRNA-99 family during cardiac hypertrophy. Physiological and pathological cardiac hypertrophy was induced in H9c2 cardiomyoblast cell lines using α-2M and isoproterenol respectively. Total RNA isolation and small RNA sequencing were executed for physiological hypertrophy model. The differentially expressed miRNAs and its target mRNAs were validated in animal models. Transcription factor binding sites were predicted in the promoter of specific miRNAs and validated by ChIP-PCR. Subsequently, the selected miRNA was functionally characterized by overexpression and silencing. The effects of silencing of upstream regulator and downstream target gene were studied. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy, of which miR-99 family was highly downregulated upon α-2M treatment. However, this miR-99 family expression was upregulated during pathological hypertrophy and confirmed in animal models. ChIP-PCR confirms the binding of Egr-1 transcription factor to the miR-99 promoter. Further, silencing of Egr-1 decreased the expression of miR-99. The overexpression or silencing of miR-99 diverges the physiological hypertrophy to pathological hypertrophy and vice versa by regulating Akt-1 pathway. Silencing of Akt-1 replicates the effect of overexpression of miR-99. The results proved Egr-1 mediated regulation of miR-99 family that plays a key role in determining the fate of cardiac hypertrophy by regulating Akt-1 signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Association of myocardial cell necrosis with experimental cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Revis, N W; Cameron, A J.V.

    1979-01-01

    Cardiac hypertrophy was induced in rabbits by injecting thyroxime or isoprenaline, or by surgically constricting the abdominal aorta. An increase in heart weight was associated with a change in the ratios of bound to free forms of five lysosomal enzymes, a change in serum creatine phosphokinase and lactate dehydrogenase, and a change in the morphology of the myocardial cells. Isoprenaline treatment for 5 days induced a maximal change in heart weight, in the ratio of lysosomal enzymes, and in the serum enzymes. Thyroxine treatment was required for 15 days before maximal changes in heart weight, ratio, and serum enzymes were observed. In contrast, coarctation of the aorta caused a progressive change in heart weight, in the ratio of lysosomal enzymes, and in serum enzymes. These results suggest that necrosis of the myocardial cells does indeed accompany cardiac hypertrophy. It was further observed that autophagosomes, degenerating mitochondria in the myocardial cells during the induction of cardiac hypertrophy, and myofibril lysis were found, all of which confirms the suggestion of myocardial cell necrosis in the experimentally enlarged heart.

  8. A Recollection of mTOR Signaling in Learning and Memory

    Science.gov (United States)

    Graber, Tyson E.; McCamphill, Patrick K.; Sossin, Wayne S.

    2013-01-01

    Mechanistic target of rapamcyin (mTOR) is a central player in cell growth throughout the organism. However, mTOR takes on an additional, more specialized role in the developed neuron, where it regulates the protein synthesis-dependent, plastic changes underlying learning and memory. mTOR is sequestered in two multiprotein complexes (mTORC1 and…

  9. Postural control in women with breast hypertrophy

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    2012-07-01

    Full Text Available OBJECTIVES: The consequences of breast hypertrophy have been described based on the alteration of body mass distribution, leading to an impact on psychological and physical aspects. The principles of motor control suggest that breast hypertrophy can lead to sensorimotor alterations and the impairment of body balance due to postural misalignment. The aim of this study is to evaluate the postural control of women with breast hypertrophy under different sensory information conditions. METHOD: This cross-sectional study included 14 women with breast hypertrophy and 14 without breast hypertrophy, and the mean ages of the groups were 39 ±15 years and 39±16 years, respectively. A force platform was used to assess the sensory systems that contribute to postural control: somatosensory, visual and vestibular. Four postural conditions were sequentially tested: eyes open and fixed platform, eyes closed and fixed platform, eyes open and mobile platform, and eyes closed and mobile platform. The data were processed, and variables related to the center of pressure were analyzed for each condition. The Kruskal-Wallis test was used to compare the conditions between the groups for the area of center of pressure displacement and the velocity of center of pressure displacement in the anterior-posterior and medial-lateral directions. The alpha level error was set at 0.05. RESULTS: Women with breast hypertrophy presented an area that was significantly higher for three out of four conditions and a higher velocity of center of pressure displacement in the anterior-posterior direction under two conditions: eyes open and mobile platform and eyes closed and mobile platform. CONCLUSIONS: Women with breast hypertrophy have altered postural control, which was demonstrated by the higher area and velocity of center of pressure displacement.

  10. mTOR inhibitors in urinary bladder cancer.

    Science.gov (United States)

    Pinto-Leite, R; Arantes-Rodrigues, R; Sousa, Nuno; Oliveira, P A; Santos, L

    2016-09-01

    Despite the great scientific advances that have been made in cancer treatment, there is still much to do, particularly with regard to urinary bladder cancer. Some of the drugs used in urinary bladder cancer treatment have been in use for more than 30 years and show reduced effectiveness and high recurrence rates. There have been several attempts to find new and more effective drugs, to be used alone or in combination with the drugs already in use, in order to overcome this situation.The biologically important mammalian target of rapamycin (mTOR) pathway is altered in cancer and mTOR inhibitors have raised many expectations as potentially important anticancer drugs. In this article, the authors will review the mTOR pathway and present their experiences of the use of some mTOR inhibitors, sirolimus, everolimus and temsirolimus, in isolation and in conjunction with non-mTOR inhibitors cisplatin and gemcitabine, on urinary bladder tumour cell lines. The non-muscle-invasive cell line, 5637, is the only one that exhibits a small alteration in the mTOR and AKT phosphorylation after rapalogs exposure. Also, there was a small inhibition of cell proliferation. With gemcitabine plus everolimus or temsirolimus, the results were encouraging as a more effective response was noticed with both combinations, especially in the 5637 and T24 cell lines. Cisplatin associated with everolimus or temsirolimus also gave promising results, as an antiproliferative effect was observed when the drugs were associated, in particular on the 5637 and HT1376 cell lines. Everolimus or temsirolimus in conjunction with gemcitabine or cisplatin could have an important role to play in urinary bladder cancer treatment, depending on the tumour grading.

  11. The nuclear import of ribosomal proteins is regulated by mTOR

    Science.gov (United States)

    Kazyken, Dubek; Kaz, Yelimbek; Kiyan, Vladimir; Zhylkibayev, Assylbek A.; Chen, Chien-Hung; Agarwal, Nitin K.; Sarbassov, Dos D.

    2014-01-01

    Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins. PMID:25294810

  12. The mTOR signalling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals.

    Science.gov (United States)

    Tan, Heng Kean; Moad, Ahmed Ismail Hassan; Tan, Mei Lan

    2014-01-01

    The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.

  13. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengpeng [Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Liang, Xinrong; Shan, Tizhong [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Jiang, Qinyang [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); College of Animal Science and Technology, Guangxi University, Nanning 530004 (China); Deng, Changyan [Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Zheng, Rong, E-mail: zhengrong@mail.hzau.edu.cn [Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Kuang, Shihuan, E-mail: skuang@purdue.edu [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2015-07-17

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7{sup CreER} and Mtor{sup flox/flox} mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number and size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. - Highlights: • Pax7{sup CreER} was used to delete Mtor gene in satellite cells. • Satellite cell specific deletion of Mtor impairs muscle regeneration. • mTOR is necessary for satellite cell proliferation and differentiation. • Deletion of Mtor leads to reduced expression of key myogenic genes.

  14. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration

    International Nuclear Information System (INIS)

    Zhang, Pengpeng; Liang, Xinrong; Shan, Tizhong; Jiang, Qinyang; Deng, Changyan; Zheng, Rong; Kuang, Shihuan

    2015-01-01

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7 CreER and Mtor flox/flox mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number and size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. - Highlights: • Pax7 CreER was used to delete Mtor gene in satellite cells. • Satellite cell specific deletion of Mtor impairs muscle regeneration. • mTOR is necessary for satellite cell proliferation and differentiation. • Deletion of Mtor leads to reduced expression of key myogenic genes

  15. Isolated unilateral temporalis muscle hypertrophy in a child: a case report with literature review

    OpenAIRE

    Ranasinghe, Jagath C.; Wickramasinghe, Chandani; Rodrigo, Ganganath

    2018-01-01

    Background Temporalis muscle hypertrophy is a rare entity of masticatory muscle hypertrophy. All types of masticatory muscle hypertrophies have been documented of which temporalis muscle hypertrophy is one. Temporalis muscle hypertrophy is most commonly bilateral and usually associated with other types of masticatory muscles hypertrophy such as masseter or pterygoid hypertrophy. However, isolated unilateral temporalis muscle hypertrophy is extremely rare and only 9 cases have been reported to...

  16. [A girl with congenital hemifacial hypertrophy

    NARCIS (Netherlands)

    Broeke, S.M. van den; Wolvius, E.B.; Adrichem, L.N. van; Baat, C. de

    2006-01-01

    A girl with congenital hemifacial hypertrophy had been observed and treated by a multidisciplinary team for craniofacial disorders in an academic medical centre since birth. At the age of 8 she was treated on account of considerable facial asymmetry and multiple intraoral problems. The two-step

  17. Left ventricular hypertrophy : virtuous intentions, malign consequences

    NARCIS (Netherlands)

    Pokharel, S; Sharma, UC; Pinto, YM

    Left ventricular hypertrophy (LVH) is currently the focus of intense cardiovascular research, with the resultant rapid evolution of novel concepts relating to its exceedingly complex pathophysiology. In addition to the alterations in signal transduction and disturbances in Ca2+ homeostasis, there

  18. Left ventricular hypertrophy: virtuous intentions, malign consequences

    NARCIS (Netherlands)

    Pokharel, Saraswati; Sharma, Umesh C.; Pinto, Yigal M.

    2003-01-01

    Left ventricular hypertrophy (LVH) is currently the focus of intense cardiovascular research, with the resultant rapid evolution of novel concepts relating to its exceedingly complex pathophysiology. In addition to the alterations in signal transduction and disturbances in Ca(2+) homeostasis, there

  19. mTOR signaling and its roles in normal and abnormal brain development.

    Directory of Open Access Journals (Sweden)

    Nobuyuki eTakei

    2014-04-01

    Full Text Available Target of rapamycin (TOR was first identified in yeast as a target molecule of rapamycin, an anti-fugal and immunosuppressant macrolide compound. In mammals, its orthologue is called mTOR (mammalian TOR. mTOR is a serine/threonine kinase that converges different extracellular stimuli, such as nutrients and growth factors, and diverges into several biochemical reactions, including translation, autophagy, transcription, and lipid synthesis among others. These biochemical reactions govern cell growth and cause cells to attain an anabolic state. Thus, the disruption of mTOR signaling is implicated in a wide array of diseases such as cancer, diabetes, and obesity. In the central nervous system (CNS, the mTOR signaling cascade is activated by nutrients, neurotrophic factors, and neurotransmitters that enhances protein (and possibly lipid synthesis and suppresses autophagy. These processes contribute to normal neuronal growth by promoting their differentiation, neurite elongation and branching, and synaptic formation during development. Therefore, disruption of mTOR signaling may cause neuronal degeneration and abnormal neural development. While reduced mTOR signaling is associated with neurodegeneration, excess activation of mTOR signaling causes abnormal development of neurons and glia, leading to brain malformation. In this review, we first introduce the current state of molecular knowledge of mTOR complexes and signaling in general. We then describe mTOR activation in neurons, which leads to translational enhancement, and finally discuss the link between mTOR and normal/abnormal neuronal growth during development.

  20. Architecture of human mTOR complex 1.

    Science.gov (United States)

    Aylett, Christopher H S; Sauer, Evelyn; Imseng, Stefan; Boehringer, Daniel; Hall, Michael N; Ban, Nenad; Maier, Timm

    2016-01-01

    Target of rapamycin (TOR), a conserved protein kinase and central controller of cell growth, functions in two structurally and functionally distinct complexes: TORC1 and TORC2. Dysregulation of mammalian TOR (mTOR) signaling is implicated in pathologies that include diabetes, cancer, and neurodegeneration. We resolved the architecture of human mTORC1 (mTOR with subunits Raptor and mLST8) bound to FK506 binding protein (FKBP)-rapamycin, by combining cryo-electron microscopy at 5.9 angstrom resolution with crystallographic studies of Chaetomium thermophilum Raptor at 4.3 angstrom resolution. The structure explains how FKBP-rapamycin and architectural elements of mTORC1 limit access to the recessed active site. Consistent with a role in substrate recognition and delivery, the conserved amino-terminal domain of Raptor is juxtaposed to the kinase active site. Copyright © 2016, American Association for the Advancement of Science.

  1. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  2. Leucine elicits myotube hypertrophy and enhances maximal contractile force in tissue engineered skeletal muscle in vitro.

    Science.gov (United States)

    Martin, Neil R W; Turner, Mark C; Farrington, Robert; Player, Darren J; Lewis, Mark P

    2017-10-01

    The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue engineering approach in order to test whether supplementing culture medium with leucine could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of the mTORC1 target proteins 4EBP-1 and rpS6 and myotube hypertrophy appeared to occur in a dose dependent manner, with 5 and 20 mM of leucine inducing similar effects, which were greater than those seen with 1 mM. Maximal contractile force was also elevated with leucine supplementation; however, although this did not appear to be enhanced with increasing leucine doses, this effect was completely ablated by co-incubation with the mTOR inhibitor rapamycin, showing that the augmented force production in the presence of leucine was mTOR sensitive. Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered skeletal muscle constructs, we were able to show that the effects of leucine and muscle contraction are additive, since the two stimuli had cumulative effects on maximal contractile force production. These results extend our current knowledge of the efficacy of leucine as an anabolic nutritional aid showing for the first time that leucine supplementation may augment skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal muscle for highly-controlled investigations into nutritional regulation of muscle physiology. © 2017 The Authors. Journal of Cellular Physiology Published by wiley periodicals, Inc.

  3. mTOR and the health benefits of exercise.

    Science.gov (United States)

    Watson, Kurt; Baar, Keith

    2014-12-01

    Exercise is the greatest physiological stress that our bodies experience. For example, during maximal endurance exercise in elite athlete's cardiac output can increase up to 8-fold and the working muscles receive 21-times more blood each minute than at rest. Given the physiological stress associated with exercise and the adaptations that occur to handle this stress, it is not surprising that exercise training is known to prevent or effectively treat a multitude of degenerative conditions including cardiovascular disease, cancer, diabetes, depression, Alzheimer's disease, Parkinson's disease, and many others. Many of the health benefits of exercise are mediated by the mammalian/mechanistic target of rapamycin (mTOR), either in complex 1 or 2, not only within the working muscle, but also in distant tissues such as fat, liver, and brain. This review will discuss how exercise activates mTOR in diverse tissues and the ways that mTOR is important in the adaptive response that makes us bigger, stronger, and healthier as a result of exercise. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Kinetic modelling of in vitro data of PI3K, mTOR1, PTEN enzymes and on-target inhibitors Rapamycin, BEZ235, and LY294002.

    Science.gov (United States)

    Goltsov, Alexey; Tashkandi, Ghassan; Langdon, Simon P; Harrison, David J; Bown, James L

    2017-01-15

    The phosphatidylinositide 3-kinases (PI3K) and mammalian target of rapamycin-1 (mTOR1) are two key targets for anti-cancer therapy. Predicting the response of the PI3K/AKT/mTOR1 signalling pathway to targeted therapy is made difficult because of network complexities. Systems biology models can help explore those complexities but the value of such models is dependent on accurate parameterisation. Motivated by a need to increase accuracy in kinetic parameter estimation, and therefore the predictive power of the model, we present a framework to integrate kinetic data from enzyme assays into a unified enzyme kinetic model. We present exemplar kinetic models of PI3K and mTOR1, calibrated on in vitro enzyme data and founded on Michaelis-Menten (MM) approximation. We describe the effects of an allosteric mTOR1 inhibitor (Rapamycin) and ATP-competitive inhibitors (BEZ235 and LY294002) that show dual inhibition of mTOR1 and PI3K. We also model the kinetics of phosphatase and tensin homolog (PTEN), which modulates sensitivity of the PI3K/AKT/mTOR1 pathway to these drugs. Model validation with independent data sets allows investigation of enzyme function and drug dose dependencies in a wide range of experimental conditions. Modelling of the mTOR1 kinetics showed that Rapamycin has an IC 50 independent of ATP concentration and that it is a selective inhibitor of mTOR1 substrates S6K1 and 4EBP1: it retains 40% of mTOR1 activity relative to 4EBP1 phosphorylation and inhibits completely S6K1 activity. For the dual ATP-competitive inhibitors of mTOR1 and PI3K, LY294002 and BEZ235, we derived the dependence of the IC 50 on ATP concentration that allows prediction of the IC 50 at different ATP concentrations in enzyme and cellular assays. Comparison of drug effectiveness in enzyme and cellular assays showed that some features of these drugs arise from signalling modulation beyond the on-target action and MM approximation and require a systems-level consideration of the whole PI3K

  5. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy

    DEFF Research Database (Denmark)

    Møller, Rikke S; Weckhuysen, Sarah; Chipaux, Mathilde

    2016-01-01

    OBJECTIVE: To assess the prevalence of somatic MTOR mutations in focal cortical dysplasia (FCD) and of germline MTOR mutations in a broad range of epilepsies. METHODS: We collected 20 blood-brain paired samples from patients with FCD and searched for somatic variants using deep-targeted gene panel...... sequencing. Germline mutations in MTOR were assessed in a French research cohort of 93 probands with focal epilepsies and in a diagnostic Danish cohort of 245 patients with a broad range of epilepsies. Data sharing among collaborators allowed us to ascertain additional germline variants in MTOR. RESULTS: We...... detected recurrent somatic variants (p.Ser2215Phe, p.Ser2215Tyr, and p.Leu1460Pro) in the MTOR gene in 37% of participants with FCD II and showed histologic evidence for activation of the mTORC1 signaling cascade in brain tissue. We further identified 5 novel de novo germline missense MTOR variants in 6...

  6. Determination and validation of mTOR kinase-domain 3D structure by homology modeling

    Directory of Open Access Journals (Sweden)

    Lakhlili W

    2015-07-01

    Full Text Available Wiame Lakhlili,1 Gwénaël Chevé,2 Abdelaziz Yasri,2 Azeddine Ibrahimi1 1Laboratoire de Biotechnologie (MedBiotech, Faculté de Médecine et de Pharmacie de Rabat, Université Mohammed V de Rabat, Rabat, Morroco; 2OriBase Pharma, Cap Gamma, Parc Euromédecine, Montpellier, France Abstract: The AKT/mammalian target of rapamycin (mTOR pathway is considered as one of the commonly activated and deregulated signaling pathways in human cancer. mTOR is associated with other proteins in two molecular complexes: mTOR complex 1/Raptor and the mTOR complex 2/Rictor. Using the crystal structure of the related lipid kinase PI3Kγ, we built a model of the catalytic region of mTOR. The modeling of the three-dimensional (3D structure of the mTOR was performed by homology modeling program SWISS-MODEL. The quality and validation of the obtained model were performed using PROCHECK and PROVE softwares. The overall stereochemical property of the protein was assessed by the Ramachandran plot. The model validation was also done by docking of known inhibitors. In this paper, we describe and validate a 3D model for the mTOR catalytic site.Keywords: mTOR, homology modeling, mTOR kinase-domain, docking

  7. Left ventricular hypertrophy: virtuous intentions, malign consequences.

    Science.gov (United States)

    Pokharel, Saraswati; Sharma, Umesh C; Pinto, Yigal M

    2003-06-01

    Left ventricular hypertrophy (LVH) is currently the focus of intense cardiovascular research, with the resultant rapid evolution of novel concepts relating to its exceedingly complex pathophysiology. In addition to the alterations in signal transduction and disturbances in Ca(2+) homeostasis, there are structural changes in myofilaments, disorganization of the cytoskeletal framework and increased collagen synthesis. LVH is associated with progressive left ventricular remodeling that culminates to heart failure. The modern treatment of left ventricular hypertrophy is now largely based on the hypothesis that neuroendocrine activation is important in the progression of the disease and inhibition of neurohormones is likely to have long-term benefit with regard to morbidity and mortality. Drugs specifically designed to unload the left ventricle, such as diuretics and vasodilators, appears to be less effective in reducing LV mass and improving prognosis. Thus, the evolution of treatment for LVH itself has provided much enlightenment for our understanding of the fundamental biology of the disorder.

  8. Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid.

    Directory of Open Access Journals (Sweden)

    Jae Sung You

    Full Text Available Signaling by mTOR is a well-recognized component of the pathway through which mechanical signals regulate protein synthesis and muscle mass. However, the mechanisms involved in the mechanical regulation of mTOR signaling have not been defined. Nevertheless, recent studies suggest that a mechanically-induced increase in phosphatidic acid (PA may be involved. There is also evidence which suggests that mechanical stimuli, and PA, utilize ERK to induce mTOR signaling. Hence, we reasoned that a mechanically-induced increase in PA might promote mTOR signaling via an ERK-dependent mechanism. To test this, we subjected mouse skeletal muscles to mechanical stimulation in the presence or absence of a MEK/ERK inhibitor, and then measured several commonly used markers of mTOR signaling. Transgenic mice expressing a rapamycin-resistant mutant of mTOR were also used to confirm the validity of these markers. The results demonstrated that mechanically-induced increases in p70(s6k T389 and 4E-BP1 S64 phosphorylation, and unexpectedly, a loss in total 4E-BP1, were fully mTOR-dependent signaling events. Furthermore, we determined that mechanical stimulation induced these mTOR-dependent events, and protein synthesis, through an ERK-independent mechanism. Similar to mechanical stimulation, exogenous PA also induced mTOR-dependent signaling via an ERK-independent mechanism. Moreover, PA was able to directly activate mTOR signaling in vitro. Combined, these results demonstrate that mechanical stimulation induces mTOR signaling, and protein synthesis, via an ERK-independent mechanism that potentially involves a direct interaction of PA with mTOR. Furthermore, it appears that a decrease in total 4E-BP1 may be part of the mTOR-dependent mechanism through which mechanical stimuli activate protein synthesis.

  9. Breast Hypertrophy, Reduction Mammaplasty, and Body Image.

    Science.gov (United States)

    Fonseca, Cristiane Costa; Veiga, Daniela Francescato; Garcia, Edgard da Silva; Cabral, Isaías Vieira; de Carvalho, Monique Maçais; de Brito, Maria José Azevedo; Ferreira, Lydia Masako

    2018-02-07

    Body image dissatisfaction is one of the major factors that motivate patients to undergo plastic surgery. However, few studies have associated body satisfaction with reduction mammaplasty. The aim of this study was to evaluate the impact of breast hypertrophy and reduction mammaplasty on body image. Breast hypertrophy patients, with reduction mammaplasty already scheduled between June 2013 and December 2015 (mammaplasty group, MG), were prospectively evaluated through the body dysmorphic disorder examination (BDDE), body investment scale (BIS), and breast evaluation questionnaire (BEQ55) tools. Women with normal-sized breasts were also evaluated as study controls (normal-sized breast group, NSBG). All the participants were interviewed at the initial assessment and after six months. Data were analyzed before and after six months. Each group consisted of 103 women. The MG group had a significant improvement in BDDE, BIS, and BEQ55 scores six months postoperatively (P ≤ 0.001 for the three instruments), whereas the NSBG group showed no alteration in results over time (P = 0.876; P = 0.442; and P = 0.184, respectively). In the intergroup comparison it was observed that the MG group began to invest more in the body, similarly to the NSBG group, and surpassed the level of satisfaction and body image that the women of the NSBG group had after the surgery. Reduction mammaplasty promoted improvement in body image of women with breast hypertrophy. © 2018 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  10. Gender and post-ischemic recovery of hypertrophied rat hearts

    Directory of Open Access Journals (Sweden)

    Popov Kirill M

    2006-03-01

    Full Text Available Abstract Background Gender influences the cardiac response to prolonged increases in workload, with differences at structural, functional, and molecular levels. However, it is unknown if post-ischemic function or metabolism of female hypertrophied hearts differ from male hypertrophied hearts. Thus, we tested the hypothesis that gender influences post-ischemic function of pressure-overload hypertrophied hearts and determined if the effect of gender on post-ischemic outcome could be explained by differences in metabolism, especially the catabolic fate of glucose. Methods Function and metabolism of isolated working hearts from sham-operated and aortic-constricted male and female Sprague-Dawley rats before and after 20 min of no-flow ischemia (N = 17 to 27 per group were compared. Parallel series of hearts were perfused with Krebs-Henseleit solution containing 5.5 mM [5-3H/U-14C]-glucose, 1.2 mM [1-14C]-palmitate, 0.5 mM [U-14C]-lactate, and 100 mU/L insulin to measure glycolysis and glucose oxidation in one series and oxidation of palmitate and lactate in the second. Statistical analysis was performed using two-way analysis of variance. The sequential rejective Bonferroni procedure was used to correct for multiple comparisons and tests. Results Female gender negatively influenced post-ischemic function of non-hypertrophied hearts, but did not significantly influence function of hypertrophied hearts after ischemia such that mass-corrected hypertrophied heart function did not differ between genders. Before ischemia, glycolysis was accelerated in hypertrophied hearts, but to a greater extent in males, and did not differ between male and female non-hypertrophied hearts. Glycolysis fell in all groups after ischemia, except in non-hypertrophied female hearts, with the reduction in glycolysis after ischemia being greatest in males. Post-ischemic glycolytic rates were, therefore, similarly accelerated in hypertrophied male and female hearts and higher in

  11. Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats.

    Science.gov (United States)

    Nishida, Hikaru; Ikegami, Ayaka; Kaneko, Chiaki; Kakuma, Hitomi; Nishi, Hisano; Tanaka, Noriko; Aoyama, Michiko; Usami, Makoto; Okimura, Yasuhiko

    2015-01-01

    Branched-chain amino acids (BCAAs) and IGF-I, the secretion of which is stimulated by growth hormone (GH), prevent muscle atrophy. mTOR plays a pivotal role in the protective actions of BCAA and IGF-1. The pathway by which BCAA activates mTOR is different from that of IGF-1, which suggests that BCAA and GH work independently. We tried to examine whether BCAA exerts a protective effect against dexamethasone (Dex)-induced muscle atrophy independently of GH using GH-deficient spontaneous dwarf rats (SDRs). Unexpectedly, Dex did not induce muscle atrophy assessed by the measurement of cross-sectional area (CSA) of the muscle fibers and did not increase atrogin-1, MuRF1 and REDD1 expressions, which are activated during protein degradation. Glucocorticoid (GR) mRNA levels were higher in SDRs compared to GH-treated SDRs, indicating that the low expression of GR is not the reason of the defect of Dex's action in SDRs. BCAA did not stimulate the phosphorylation of p70S6K or 4E-BP1, which stimulate protein synthesis. BCAA did not decrease the mRNA level of atrogin-1 or MuRF1. These findings suggested that Dex failed to modulate muscle mass and that BCAA was unable to activate mTOR in SDRs because these phosphorylations of p70S6K and 4E-BP1 and the reductions of these mRNAs are regulated by mTOR. In contrast, after GH supplementation, these responses to Dex were normalized and muscle fiber CSA was decreased by Dex. BCAA prevented the Dex-induced decrease in CSA. BCAA increased the phosphorylation of p70S6K and decreased the Dex-induced elevations of atrogin-1 and Bnip3 mRNAs. However, the amount of mTORC1 components including mTOR was not decreased in the SDRs compared to the normal rats. These findings suggest that GH increases mTORC1 activity but not its content to recover the action of BCAA in SDRs and that GH is required for actions of Dex and BCAA in muscles.

  12. Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats.

    Directory of Open Access Journals (Sweden)

    Hikaru Nishida

    Full Text Available Branched-chain amino acids (BCAAs and IGF-I, the secretion of which is stimulated by growth hormone (GH, prevent muscle atrophy. mTOR plays a pivotal role in the protective actions of BCAA and IGF-1. The pathway by which BCAA activates mTOR is different from that of IGF-1, which suggests that BCAA and GH work independently. We tried to examine whether BCAA exerts a protective effect against dexamethasone (Dex-induced muscle atrophy independently of GH using GH-deficient spontaneous dwarf rats (SDRs. Unexpectedly, Dex did not induce muscle atrophy assessed by the measurement of cross-sectional area (CSA of the muscle fibers and did not increase atrogin-1, MuRF1 and REDD1 expressions, which are activated during protein degradation. Glucocorticoid (GR mRNA levels were higher in SDRs compared to GH-treated SDRs, indicating that the low expression of GR is not the reason of the defect of Dex's action in SDRs. BCAA did not stimulate the phosphorylation of p70S6K or 4E-BP1, which stimulate protein synthesis. BCAA did not decrease the mRNA level of atrogin-1 or MuRF1. These findings suggested that Dex failed to modulate muscle mass and that BCAA was unable to activate mTOR in SDRs because these phosphorylations of p70S6K and 4E-BP1 and the reductions of these mRNAs are regulated by mTOR. In contrast, after GH supplementation, these responses to Dex were normalized and muscle fiber CSA was decreased by Dex. BCAA prevented the Dex-induced decrease in CSA. BCAA increased the phosphorylation of p70S6K and decreased the Dex-induced elevations of atrogin-1 and Bnip3 mRNAs. However, the amount of mTORC1 components including mTOR was not decreased in the SDRs compared to the normal rats. These findings suggest that GH increases mTORC1 activity but not its content to recover the action of BCAA in SDRs and that GH is required for actions of Dex and BCAA in muscles.

  13. RNA Sequencing Identifies Upregulated Kyphoscoliosis Peptidase and Phosphatidic Acid Signaling Pathways in Muscle Hypertrophy Generated by Transgenic Expression of Myostatin Propeptide

    Directory of Open Access Journals (Sweden)

    Yuanxin Miao

    2015-04-01

    Full Text Available Myostatin (MSTN, a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph, and zinc metallopeptidase STE24 (Zmpste24. In addition, kyphoscoliosis peptidase (Ky, which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA pathways (Dgki, Dgkz, Plcd4 were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  14. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    Science.gov (United States)

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-04-09

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  15. The role of mTOR in ovarian cancer, polycystic ovary syndrome and ovarian aging.

    Science.gov (United States)

    Liu, Jin; Wu, Dai-Chao; Qu, Li-Hua; Liao, Hong-Qing; Li, Mei-Xiang

    2018-05-12

    The mammalian target of rapamycin, mTOR, is a serine-threonine protein kinase downstream of the phosphatidylinositol 3-kinase (PI3K)-AKT axis. The pathway can regulate cell growth, proliferation, and survival by activating ribosomal kinases. Recent studies have implicated the mTOR signaling pathway in ovarian neoplasms, polycystic ovary syndrome (PCOS) and premature ovarian failure (POF). Preclinical investigations have demonstrated that the PI3K/AKT/mTOR pathway is frequently activated in the control of various ovarian functions. mTOR allows cancer cells to escape the normal biochemical system and regulates the balance between apoptosis and survival. Some recent studies have suggested that involvement of the mTOR signaling system is an important pathophysiological basis of PCOS. Overexpression of the mTOR pathway can impair the interaction of cumulus cells, lead to insulin resistance, and affect the growth of follicles directly. The roles of mTOR signaling in follicular development have been extensively studied in recent years; abnormalities in this process lead to a series of pathologies such as POF and infertility. To improve understanding of the role of the mTOR signaling pathway in the pathogenesis and development of ovarian diseases, here we review the roles of mTOR signaling in such diseases and discuss the corresponding therapeutic strategies that target this pathway. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  16. Targeting mTOR in HIV-Negative Classic Kaposi's Sarcoma

    Directory of Open Access Journals (Sweden)

    Ofer Merimsky

    2008-01-01

    Full Text Available A 66-year old female with HIV-negative classic Kaposi's sarcoma responded to mTOR targeting by rapamycin. The response was well documented by PET-CT. This case provides supporting evidence that the mTOR pathway may be important in the tumorigenesis of KS and that rapamycin may have activity in this disease.

  17. Dietary interventions that reduce mTOR activity rescue autistic-like behavioral deficits in mice

    NARCIS (Netherlands)

    Wu, Jiangbo; de Theije, Caroline G M; da Silva, Sofia Lopes; Abbring, Suzanne; van der Horst, Hilma; Broersen, Laus M; Willemsen, Linette; Kas, Martien; Garssen, Johan; Kraneveld, Aletta D

    Enhanced mammalian target of rapamycin (mTOR) signaling in the brain has been implicated in the pathogenesis of autism spectrum disorder (ASD). Inhibition of the mTOR pathway improves behavior and neuropathology in mouse models of ASD containing mTOR-associated single gene mutations. The current

  18. mTOR in squamous cell carcinoma of the oesophagus: a potential target for molecular therapy?

    NARCIS (Netherlands)

    Boone, J.; ten Kate, F. J. W.; Offerhaus, G. J. A.; van Diest, P. J.; Borel Rinkes, I. H. M.; van Hillegersberg, R.

    2008-01-01

    AIMS: The mammalian target of rapamycin (mTOR), an important regulator of protein translation and cell proliferation, is activated in various malignancies. In a randomised controlled trial of advanced renal cell carcinoma patients, targeted therapy to mTOR by means of rapamycin analogues has been

  19. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target.

    NARCIS (Netherlands)

    Galanopoulou, A.S.; Gorter, J.A.; Cepeda, C.

    2012-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway regulates cell growth, differentiation, proliferation, and metabolism. Loss-of-function mutations in upstream regulators of mTOR have been highly associated with dysplasias, epilepsy, and neurodevelopmental disorders. These include tuberous

  20. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking

    NARCIS (Netherlands)

    Sinclair, Linda V.; Finlay, David; Feijoo, Carmen; Cornish, Georgina H.; Gray, Alex; Ager, Ann; Okkenhaug, Klaus; Hagenbeek, Thijs J.; Spits, Hergen; Cantrell, Doreen A.

    2008-01-01

    Phosphatidylinositol-3-OH kinase (PI(3)K) and the nutrient sensor mTOR are evolutionarily conserved regulators of cell metabolism. Here we show that PI(3)K and mTOR determined the repertoire of adhesion and chemokine receptors expressed by T lymphocytes. The key lymph node-homing receptors CD62L

  1. Promotion of ovarian follicle growth following mTOR activation: synergistic effects of AKT stimulators.

    Directory of Open Access Journals (Sweden)

    Yuan Cheng

    Full Text Available Mammalian target of rapamycin (mTOR is a serine/threonine kinase and mTOR signaling is important in regulating cell growth and proliferation. Recent studies using oocyte- and granulosa cell-specific deletion of mTOR inhibitor genes TSC1 or TSC2 demonstrated the important role of mTOR signaling in the promotion of ovarian follicle development. We now report that treatment of ovaries from juvenile mice with an mTOR activator MHY1485 stimulated mTOR, S6K1 and rpS6 phosphorylation. Culturing ovaries for 4 days with MHY1485 increased ovarian explant weights and follicle development. In vivo studies further demonstrated that pre-incubation of these ovaries with MHY1485 for 2 days, followed by allo-grafting into kidney capsules of adult ovariectomized hosts for 5 days, led to marked increases in graft weights and promotion of follicle development. Mature oocytes derived from MHY1485-activated ovarian grafts could be successfully fertilized, leading the delivery of healthy pups. We further treated ovaries with the mTOR activator together with AKT activators (PTEN inhibitor and phosphoinositol-3-kinase stimulator before grafting and found additive enhancement of follicle growth. Our studies demonstrate the ability of an mTOR activator in promoting follicle growth, leading to a potential strategy to stimulate preantral follicle growth in infertile patients.

  2. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S.; Liu, Qingsong

    2016-01-01

    Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors. PMID:27077655

  3. Mechanistic target of rapamycin (MTOR) protein expression in the tumor and its microenvironment correlates with more aggressive pathology at cystectomy

    NARCIS (Netherlands)

    Winters, B.R. (Brian R.); Vakar-Lopez, F. (Funda); Brown, L. (Lisha); Montgomery, B. (Bruce); Seiler, R. (Roland); P.C. Black (Peter C.); J.L. Boormans (Joost); Dall′Era, M. (Marc); Davincioni, E. (Elai); Douglas, J. (James); Gibb, E.A. (Ewan A.); B.W. van Rhijn (Bas); M.S. van der Heijden (Michiel); Hsieh, A.C. (Andrew C.); Wright, J.L. (Jonathan L.); Lam, H.-M. (Hung-Ming)

    2018-01-01

    textabstractBackground: The mechanistic target of rapamycin (mTOR) has been implicated in driving tumor biology in multiple malignancies, including urothelial carcinoma (UC). We investigate how mTOR and phosphorylated mTOR (pmTOR) protein expression correlate with chemoresponsiveness in the tumor

  4. Biomechanical implications of skeletal muscle hypertrophy and atrophy: a musculoskeletal model

    Directory of Open Access Journals (Sweden)

    Andrew D. Vigotsky

    2015-11-01

    Full Text Available Muscle hypertrophy and atrophy occur frequently as a result of mechanical loading or unloading, with implications for clinical, general, and athletic populations. The effects of muscle hypertrophy and atrophy on force production and joint moments have been previously described. However, there is a paucity of research showing how hypertrophy and atrophy may affect moment arm (MA lengths. The purpose of this model was to describe the mathematical relationship between the anatomical cross-sectional area (ACSA of a muscle and its MA length. In the model, the ACSAs of the biceps brachii and brachialis were altered to hypertrophy up to twice their original size and to atrophy to one-half of their original size. The change in MA length was found to be proportional to the arcsine of the square root of the change in ACSA. This change in MA length may be a small but important contributor to strength, especially in sports that require large joint moments at slow joint angular velocities, such as powerlifting. The paradoxical implications of the increase in MA are discussed, as physiological factors influencing muscle contraction velocity appear to favor a smaller MA length for high velocity movements but a larger muscle MA length for low velocity, high force movements.

  5. The emerging role of m-TOR up-regulation in brain Astrocytoma.

    Science.gov (United States)

    Ryskalin, Larisa; Limanaqi, Fiona; Biagioni, Francesca; Frati, Alessandro; Esposito, Vincenzo; Calierno, Maria Teresa; Lenzi, Paola; Fornai, Francesco

    2017-05-01

    The present manuscript is an overview of various effects of mTOR up-regulation in astrocytoma with an emphasis on its deleterious effects on the proliferation of Glioblastoma Multiforme. The manuscript reports consistent evidence indicating the occurrence of mTOR up-regulation both in experimental and human astrocytoma. The grading of human astrocytoma is discussed in relationship with mTOR up-regulation. In the second part of the manuscript, the biochemical pathways under the influence of mTOR are translated to cell phenotypes which are generated by mTOR up-regulation and reverted by its inhibition. A special section is dedicated to the prominent role of autophagy in mediating the effects of mTOR in glioblastoma. In detail, autophagy inhibition produced by mTOR up-regulation determines the fate of cancer stem cells. On the other hand, biochemical findings disclose the remarkable effects of autophagy activators as powerful inducers of cell differentiation with a strong prevalence towards neuronal phenotypes. Thus, mTOR modulation acts on the neurobiology of glioblastoma just like it operates in vivo at the level of brain stem cell niches by altering autophagy-dependent cell differentiation. In the light of such a critical role of autophagy we analyzed the ubiquitin proteasome system. The merging between autophagy and proteasome generates a novel organelle, named autophagoproteasome which is strongly induced by mTOR inhibitors in glioblastoma cells. Remarkably, when mTOR is maximally inhibited the proteasome component selectively moves within autophagy vacuoles, thus making the proteasome activity dependent on the entry within autophagy compartment.

  6. The Role of the Mammalian Target of Rapamycin (mTOR) in Pulmonary Fibrosis

    Science.gov (United States)

    Nho, Richard

    2018-01-01

    The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-dependent pathway is one of the most integral pathways linked to cell metabolism, proliferation, differentiation, and survival. This pathway is dysregulated in a variety of diseases, including neoplasia, immune-mediated diseases, and fibroproliferative diseases such as pulmonary fibrosis. The mTOR kinase is frequently referred to as the master regulator of this pathway. Alterations in mTOR signaling are closely associated with dysregulation of autophagy, inflammation, and cell growth and survival, leading to the development of lung fibrosis. Inhibitors of mTOR have been widely studied in cancer therapy, as they may sensitize cancer cells to radiation therapy. Studies also suggest that mTOR inhibitors are promising modulators of fibroproliferative diseases such as idiopathic pulmonary fibrosis (IPF) and radiation-induced pulmonary fibrosis (RIPF). Therefore, mTOR represents an attractive and unique therapeutic target in pulmonary fibrosis. In this review, we discuss the pathological role of mTOR kinase in pulmonary fibrosis and examine how mTOR inhibitors may mitigate fibrotic progression. PMID:29518028

  7. Mammalian target of rapamycin (mTOR): a central regulator of male fertility?

    Science.gov (United States)

    Jesus, Tito T; Oliveira, Pedro F; Sousa, Mário; Cheng, C Yan; Alves, Marco G

    2017-06-01

    Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermatogenesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system.

  8. Dietary interventions that reduce mTOR activity rescue autistic-like behavioral deficits in mice.

    Science.gov (United States)

    Wu, Jiangbo; de Theije, Caroline G M; da Silva, Sofia Lopes; Abbring, Suzanne; van der Horst, Hilma; Broersen, Laus M; Willemsen, Linette; Kas, Martien; Garssen, Johan; Kraneveld, Aletta D

    2017-01-01

    Enhanced mammalian target of rapamycin (mTOR) signaling in the brain has been implicated in the pathogenesis of autism spectrum disorder (ASD). Inhibition of the mTOR pathway improves behavior and neuropathology in mouse models of ASD containing mTOR-associated single gene mutations. The current study demonstrated that the amino acids histidine, lysine, threonine inhibited mTOR signaling and IgE-mediated mast cell activation, while the amino acids leucine, isoleucine, valine had no effect on mTOR signaling in BMMCs. Based on these results, we designed an mTOR-targeting amino acid diet (Active 1 diet) and assessed the effects of dietary interventions with the amino acid diet or a multi-nutrient supplementation diet (Active 2 diet) on autistic-like behavior and mTOR signaling in food allergic mice and in inbred BTBR T+Itpr3tf/J mice. Cow's milk allergic (CMA) or BTBR male mice were fed a Control, Active 1, or Active 2 diet for 7 consecutive weeks. CMA mice showed reduced social interaction and increased self-grooming behavior. Both diets reversed behavioral impairments and inhibited the mTOR activity in the prefrontal cortex and amygdala of CMA mice. In BTBR mice, only Active 1 diet reduced repetitive self-grooming behavior and attenuated the mTOR activity in the prefrontal and somatosensory cortices. The current results suggest that activated mTOR signaling pathway in the brain may be a convergent pathway in the pathogenesis of ASD bridging genetic background and environmental triggers (food allergy) and that mTOR over-activation could serve as a potential therapeutic target for the treatment of ASD. Copyright © 2016. Published by Elsevier Inc.

  9. Community level evaluation of adenoid hypertrophy on the basis of symptom scoring and its X-ray correlation

    Directory of Open Access Journals (Sweden)

    Yogita Dixit

    2016-01-01

    Full Text Available Introduction: One of the major causes of pediatric morbidity today at the community level is infection involving the ear, nose, and throat. Maximum of these patients respond well initially on general regular medications, but then recurrent complaints are not very uncommon. One of the major causes for such recurrence is hypertrophy of adenoids, the evaluation of which requires a battery of sophisticated investigative tools and expertise which are lacking at the community level. The aim of the study is to evaluate various symptoms related to adenoid hypertrophy and its correlation to the size of the adenoid seen in the lateral view nasopharyngeal X-ray. The aim of the study was to assess various symptoms related to adenoid hypertrophy and its correlation with the size of adenoid radiologically. Methods: A total of fifty cases of pediatric age with strong clinical suspicion of adenoid hypertrophy were included in the study. Through ENT examination was done. X-ray lateral view nasopharynx was obtained. Results: Adenoid hypertrophy was graded according to symptoms score and lateral cephalometric/radiographs. Snoring was the most frequent symptom which had a linear relation with the size of the adenoid. Conclusion: There was good agreement between symptom and the X-ray findings.

  10. Hypertrophied hearts: what of sevoflurane cardioprotection?

    DEFF Research Database (Denmark)

    Larsen, Jens Kjærgaard Rolighed; Smerup, Morten Holdgaard; Hasenkam, John Michael

    2009-01-01

    pigs (n=7-12/group) were subjected to 45 min distal coronary artery balloon occlusion, followed by 120 min of reperfusion. Controls were given pentobarbital, while sevoflurane cardioprotection was achieved by 3.2% inhalation throughout the experiment. Chronic banding of the ascending aorta resulted......-at-risk) was reduced from mean 55.0 (13.6%) (+/-SD) in controls to 17.5 (13.2%) by sevoflurane (P=0.001). Sevoflurane reduced the infarct size in hypertrophied hearts to 14.6 (10.4%) (P=0.001); however, in hypertrophic controls, infarcts were reduced to 34.2 (10.2%) (P=0.001). CONCLUSION: Sevoflurane abrogated...

  11. Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.

    Science.gov (United States)

    Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T

    2015-03-01

    Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.

  12. Diagnostic electrocardiographic dyad criteria of emphysema in left ventricular hypertrophy.

    Science.gov (United States)

    Lanjewar, Swapnil S; Chhabra, Lovely; Chaubey, Vinod K; Joshi, Saurabh; Kulkarni, Ganesh; Kothagundla, Chandrasekhar; Kaul, Sudesh; Spodick, David H

    2013-01-01

    The electrocardiographic diagnostic dyad of emphysema, namely a combination of the frontal vertical P-vector and a narrow QRS duration, can serve as a quasidiagnostic marker for emphysema, with specificity close to 100%. We postulated that the presence of left ventricular hypertrophy in emphysema may affect the sensitivity of this electrocardiographic criterion given that left ventricular hypertrophy generates prominent left ventricular forces and may increase the QRS duration. We reviewed the electrocardiograms and echocardiograms for 73 patients with emphysema. The patients were divided into two groups based on the presence or absence of echocardiographic evidence of left ventricular hypertrophy. The P-vector, QRS duration, and forced expiratory volume in one second (FEV1) were computed and compared between the two subgroups. There was no statistically significant difference in qualitative lung function (FEV1) between the subgroups. There was no statistically significant difference in mean P-vector between the subgroups. The mean QRS duration was significantly longer in patients with left ventricular hypertrophy as compared with those without left ventricular hypertrophy. The presence of left ventricular hypertrophy may not affect the sensitivity of the P-vector verticalization when used as a lone criterion for diagnosing emphysema. However, the presence of left ventricular hypertrophy may significantly reduce the sensitivity of the electrocardiographic diagnostic dyad in emphysema, as it causes a widening of the QRS duration.

  13. Altered carnitine transport in pressure-overload hypertrophied rat hearts

    International Nuclear Information System (INIS)

    O'Rourke, B.; Foster, K.; Reibel, D.K.

    1986-01-01

    The authors have previously observed reduced carnitine levels in hypertrophied hearts of rats subjected to aortic constriction. In an attempt to determine the mechanism for reduced myocardial carnitine content, carnitine transport was examined in isolated perfused hearts. Hearts were excised from sham-operated and aortic-constricted rats 3 weeks following surgery and perfused at 60 mm Hg aortic pressure with buffer containing various concentrations of L- 14 C-carnitine. Carnitine uptake by control and hypertrophied hearts was linear throughout 30 minutes of perfusion with 40 μM carnitine. Total carnitine uptake was significantly reduced by 25% in hypertrophied hearts at each time point examined. The reduction in uptake by hypertrophied hearts was also evident when hearts were perfused with 100 or 200 μM carnitine. When 0.05 mM mersalyl acid was included in the buffer to inhibit the carrier-mediated component of transport, no difference in carnitine uptake was observed indicating that the transport of carnitine by diffusion was unaltered in the hypertrophied myocardium. Carrier-mediated carnitine uptake (total uptake - uptake by diffusion) was significantly reduced by approximately 40% in hypertrophied hearts at all concentrations examined. Thus, the reduction in carnitine content in the pressure-overload hypertrophied rat heart appears to be due to a reduction in carrier-mediated carnitine uptake by the heart

  14. Antidepressant action of ketamine via mTOR is mediated by inhibition of nitrergic Rheb degradation.

    Science.gov (United States)

    Harraz, M M; Tyagi, R; Cortés, P; Snyder, S H

    2016-03-01

    As traditional antidepressants act only after weeks/months, the discovery that ketamine, an antagonist of glutamate/N-methyl-D-aspartate (NMDA) receptors, elicits antidepressant actions in hours has been transformative. Its mechanism of action has been elusive, though enhanced mammalian target of rapamycin (mTOR) signaling is a major feature. We report a novel signaling pathway wherein NMDA receptor activation stimulates generation of nitric oxide (NO), which S-nitrosylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Nitrosylated GAPDH complexes with the ubiquitin-E3-ligase Siah1 and Rheb, a small G protein that activates mTOR. Siah1 degrades Rheb leading to reduced mTOR signaling, while ketamine, conversely, stabilizes Rheb that enhances mTOR signaling. Drugs selectively targeting components of this pathway may offer novel approaches to the treatment of depression.

  15. PREDICTION OF THE COURSE OF OSTEOARTHROSIS FROM mTOR (MAMMALIAN TARGET OF RAPAMYCIN GENE EXPRESSION

    Directory of Open Access Journals (Sweden)

    E V Chetina

    2012-01-01

    Results. Analysis of gene expression in the outpatients with OA identified two subgroups: in one subgroup (n = 13 mTOR expression was considerably much less than that in the control group; the expression of ATG1 and p21 did not differ greatly from the control and that of caspase 3 and TNF-α was significantly higher. The other outpatients (n = 20 and all the examined patients needing endoprosthetic replacement were ascertained to have a higher gene expression of mTOR, ATG1, p21, caspase 3, and TNF-α than in the control group. Before endoprosthetic replacement, severe joint destruction in patients with OA was associated with enhanced gene expression of mTOR, ATG1, p21, and caspase 3. Conclusion. In early-stage disease, increased mTOR gene expression may serve as a prognostic marker of the severity of the disease and articular cartilage destruction.

  16. mTOR as a multifunctional therapeutic target in HIV infection

    DEFF Research Database (Denmark)

    Nicoletti, Ferdinando; Fagone, Paolo; Meroni, PierLuigi

    2011-01-01

    Patients undergoing long-term highly active antiretroviral therapy treatment are probably at a higher risk of various HIV-related complications. Hyperactivation of The mammalian target of rapamycin (mTOR) has been found to contribute to dysregulated apoptosis and autophagy which determine CD4(+)-T......-cell loss, impaired function of innate immunity and development of neurocognitive disorders. Dysregulated mTOR activation has also been shown to play a key part in the development of nephropathy and in the pathogenesis of HIV-associated malignancies. These studies strongly support a multifunctional key role...... for mTOR in the pathogenesis of HIV-related disorders and suggest that specific mTOR inhibitors could represent a novel approach for the prevention and treatment of these pathologies....

  17. Regulation of the mTOR Pathway by a Novel Rheb Binding Protein BNIP3

    National Research Council Canada - National Science Library

    Guan, Kun-Liang

    2008-01-01

    .... We demonstrate that BNIP3 plays a critical role in hypoxia-induced mTOR inhibition. Furthermore we found that BNIP3 itself has a growth inhibitory activity and inactivation of BNIP3 promotes cell growth...

  18. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy.

    LENUS (Irish Health Repository)

    Wander, Seth A

    2011-04-01

    Mammalian target of rapamycin (mTOR) is a PI3K-related kinase that regulates cell growth, proliferation, and survival via mTOR complex 1 (mTORC1) and mTORC2. The mTOR pathway is often aberrantly activated in cancers. While hypoxia, nutrient deprivation, and DNA damage restrain mTORC1 activity, multiple genetic events constitutively activate mTOR in cancers. Here we provide a brief overview of the signaling pathways up- and downstream of mTORC1 and -2, and discuss the insights into therapeutic anticancer targets - both those that have been tried in the clinic with limited success and those currently under clinical development - that knowledge of these pathways gives us.

  19. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    Science.gov (United States)

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  20. Delayed Recovery of Skeletal Muscle Mass following Hindlimb Immobilization in mTOR Heterozygous Mice

    OpenAIRE

    Lang, Susan M.; Kazi, Abid A.; Hong-Brown, Ly; Lang, Charles H.

    2012-01-01

    The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/-) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated ...

  1. Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy

    Directory of Open Access Journals (Sweden)

    Kay Andrea

    2009-10-01

    Full Text Available Abstract The mammalian target of rapamycin (mTOR is an intracellular serine/threonine protein kinase positioned at a central point in a variety of cellular signaling cascades. The established involvement of mTOR activity in the cellular processes that contribute to the development and progression of cancer has identified mTOR as a major link in tumorigenesis. Consequently, inhibitors of mTOR, including temsirolimus, everolimus, and ridaforolimus (formerly deforolimus have been developed and assessed for their safety and efficacy in patients with cancer. Temsirolimus is an intravenously administered agent approved by the US Food and Drug Administration (FDA and the European Medicines Agency (EMEA for the treatment of advanced renal cell carcinoma (RCC. Everolimus is an oral agent that has recently obtained US FDA and EMEA approval for the treatment of advanced RCC after failure of treatment with sunitinib or sorafenib. Ridaforolimus is not yet approved for any indication. The use of mTOR inhibitors, either alone or in combination with other anticancer agents, has the potential to provide anticancer activity in numerous tumor types. Cancer types in which these agents are under evaluation include neuroendocrine tumors, breast cancer, leukemia, lymphoma, hepatocellular carcinoma, gastric cancer, pancreatic cancer, sarcoma, endometrial cancer, and non-small-cell lung cancer. The results of ongoing clinical trials with mTOR inhibitors, as single agents and in combination regimens, will better define their activity in cancer.

  2. Discovery and Development of ATP-Competitive mTOR Inhibitors Using Computational Approaches.

    Science.gov (United States)

    Luo, Yao; Wang, Ling

    2017-11-16

    The mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation, metabolism, and angiogenesis. This protein is an attractive target for new anticancer drug development. Significant progress has been made in hit discovery, lead optimization, drug candidate development and determination of the three-dimensional (3D) structure of mTOR. Computational methods have been applied to accelerate the discovery and development of mTOR inhibitors helping to model the structure of mTOR, screen compound databases, uncover structure-activity relationship (SAR) and optimize the hits, mine the privileged fragments and design focused libraries. Besides, computational approaches were also applied to study protein-ligand interactions mechanisms and in natural product-driven drug discovery. Herein, we survey the most recent progress on the application of computational approaches to advance the discovery and development of compounds targeting mTOR. Future directions in the discovery of new mTOR inhibitors using computational methods are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. The Role of mTOR Inhibitors for the Treatment of B-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Pinelopi Argyriou

    2012-01-01

    Full Text Available Despite the fact that the majority of lymphomas initially respond to treatment, many patients relapse and die from disease that is refractory to current regimens. The need for new treatment strategies in lymphomas has led to the investigation and evaluation of novel agents that target cellular pathways. The mammalian target of rapamycin (mTOR is a representative pathway that may be implicated in lymphomagenesis. Rapamycin and especially its derivatives (temsirolimus, everolimus, and deforolimus represent the first described mTOR inhibitors. These agents have shown promising results in the treatment of lymphoid malignancies. On the other hand, new ATP-competitive mTOR inhibitors that provoke a broader inhibition of mTOR activity are in early stages of clinical development. The purpose of this paper is to summarize the existing knowledge about mTOR inhibitors and their use in the treatment of B-cell lymphomas. Relevant issues regarding mTOR biology in general as well as in B-cell lymphoid neoplasms are also discussed in short.

  4. mTOR inhibition sensitizes ONC201-induced anti-colorectal cancer cell activity.

    Science.gov (United States)

    Jin, Zhe-Zhu; Wang, Wei; Fang, Di-Long; Jin, Yong-Jun

    2016-09-30

    We here tested the anti-colorectal cancer (CRC) activity by a first-in-class small molecule TRAIL inducer ONC201. The potential effect of mTOR on ONC201's actions was also examined. ONC201 induced moderate cytotoxicity against CRC cell lines (HT-29, HCT-116 and DLD-1) and primary human CRC cells. Significantly, AZD-8055, a mTOR kinase inhibitor, sensitized ONC201-induced cytotoxicity in CRC cells. Meanwhile, ONC201-induced TRAIL/death receptor-5 (DR-5) expression, caspase-8 activation and CRC cell apoptosis were also potentiated with AZD-8055 co-treatment. Reversely, TRAIL sequestering antibody RIK-2 or the caspase-8 specific inhibitor z-IETD-fmk attenuated AZD-8055 plus ONC201-induced CRC cell death. Further, mTOR kinase-dead mutation (Asp-2338-Ala) or shRNA knockdown significantly sensitized ONC201's activity in CRC cells, leading to profound cell death and apoptosis. On the other hand, expression of a constitutively-active S6K1 (T389E) attenuated ONC201-induced CRC cell apoptosis. For the mechanism study, we showed that ONC201 blocked Akt, but only slightly inhibited mTOR in CRC cells. Co-treatment with AZD-8055 also concurrently blocked mTOR activation. These results suggest that mTOR could be a primary resistance factor of ONC201 in CRC cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation.

    Science.gov (United States)

    Sinclair, Charles; Bommakanti, Gayathri; Gardinassi, Luiz; Loebbermann, Jens; Johnson, Matthew Joseph; Hakimpour, Paul; Hagan, Thomas; Benitez, Lydia; Todor, Andrei; Machiah, Deepa; Oriss, Timothy; Ray, Anuradha; Bosinger, Steven; Ravindran, Rajesh; Li, Shuzhao; Pulendran, Bali

    2017-09-08

    Antigen-presenting cells (APCs) occupy diverse anatomical tissues, but their tissue-restricted homeostasis remains poorly understood. Here, working with mouse models of inflammation, we found that mechanistic target of rapamycin (mTOR)-dependent metabolic adaptation was required at discrete locations. mTOR was dispensable for dendritic cell (DC) homeostasis in secondary lymphoid tissues but necessary to regulate cellular metabolism and accumulation of CD103 + DCs and alveolar macrophages in lung. Moreover, while numbers of mTOR-deficient lung CD11b + DCs were not changed, they were metabolically reprogrammed to skew allergic inflammation from eosinophilic T helper cell 2 (T H 2) to neutrophilic T H 17 polarity. The mechanism for this change was independent of translational control but dependent on inflammatory DCs, which produced interleukin-23 and increased fatty acid oxidation. mTOR therefore mediates metabolic adaptation of APCs in distinct tissues, influencing the immunological character of allergic inflammation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Macrophage microRNA-155 promotes cardiac hypertrophy and failure

    NARCIS (Netherlands)

    Heymans, Stephane; Corsten, Maarten F.; Verhesen, Wouter; Carai, Paolo; van Leeuwen, Rick E. W.; Custers, Kevin; Peters, Tim; Hazebroek, Mark; Stöger, Lauran; Wijnands, Erwin; Janssen, Ben J.; Creemers, Esther E.; Pinto, Yigal M.; Grimm, Dirk; Schürmann, Nina; Vigorito, Elena; Thum, Thomas; Stassen, Frank; Yin, Xiaoke; Mayr, Manuel; de Windt, Leon J.; Lutgens, Esther; Wouters, Kristiaan; de Winther, Menno P. J.; Zacchigna, Serena; Giacca, Mauro; van Bilsen, Marc; Papageorgiou, Anna-Pia; Schroen, Blanche

    2013-01-01

    Cardiac hypertrophy and subsequent heart failure triggered by chronic hypertension represent major challenges for cardiovascular research. Beyond neurohormonal and myocyte signaling pathways, growing evidence suggests inflammatory signaling pathways as therapeutically targetable contributors to this

  7. Autophagy in muscle of glucose-infusion hyperglycemia rats and streptozotocin-induced hyperglycemia rats via selective activation of m-TOR or FoxO3.

    Directory of Open Access Journals (Sweden)

    Pengfei Lv

    Full Text Available Autophagy is a conserved process in eukaryotes required for metabolism and is involved in diverse diseases. To investigate autophagy in skeletal muscle under hyperglycemia status, we established two hyperglycemia-rat models that differ in their circulating insulin levels, by glucose infusion and singe high-dose streptozotocin injection. We then detected expression of autophagy related genes with real-time PCR and western blot. We found that under hyperglycemia status induced by glucose-infusion, autophagy was inhibited in rat skeletal muscle, whereas under streptozotocin-induced hyperglycemia status autophagy was enhanced. Meanwhile, hyperglycemic gastrocnemius muscle was more prone to autophagy than soleus muscle. Furthermore, inhibition of autophagy in skeletal muscle in glucose-infusion hyperglycemia rats was mediated by the m-TOR pathway while m-TOR and FoxO3 both contributed to enhancement of autophagy in gastrocnemius muscle in streptozotocin-induced hyperglycemia rats. These data shows that insulin plays a relatively more important role than hyperglycemia in regulating autophagy in hyperglycemia rat muscle through selectively activating the m-TOR or FoxO3 pathway in a fiber-selective manner.

  8. Cold stress accentuates pressure overload-induced cardiac hypertrophy and contractile dysfunction: role of TRPV1/AMPK-mediated autophagy.

    Science.gov (United States)

    Lu, Songhe; Xu, Dezhong

    2013-12-06

    Severe cold exposure and pressure overload are both known to prompt oxidative stress and pathological alterations in the heart although the interplay between the two remains elusive. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel activated in response to a variety of exogenous and endogenous physical and chemical stimuli including heat and capsaicin. The aim of this study was to examine the impact of cold exposure on pressure overload-induced cardiac pathological changes and the mechanism involved. Adult male C57 mice were subjected to abdominal aortic constriction (AAC) prior to exposure to cold temperature (4 °C) for 4 weeks. Cardiac geometry and function, levels of TRPV1, mitochondrial, and autophagy-associated proteins including AMPK, mTOR, LC3B, and P62 were evaluated. Sustained cold stress triggered cardiac hypertrophy, compromised depressed myocardial contractile capacity including lessened fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, enhanced ROS production, and mitochondrial injury, the effects of which were negated by the TRPV1 antagonist SB366791. Western blot analysis revealed upregulated TRPV1 level and AMPK phosphorylation, enhanced ratio of LC3II/LC3I, and downregulated P62 following cold exposure. Cold exposure significantly augmented AAC-induced changes in TRPV1, phosphorylation of AMPK, LC3 isoform switch, and p62, the effects of which were negated by SB366791. In summary, these data suggest that cold exposure accentuates pressure overload-induced cardiac hypertrophy and contractile defect possibly through a TRPV1 and autophagy-dependent mechanism. Copyright © 2013. Published by Elsevier Inc.

  9. Time course of gene expression during mouse skeletal muscle hypertrophy.

    Science.gov (United States)

    Chaillou, Thomas; Lee, Jonah D; England, Jonathan H; Esser, Karyn A; McCarthy, John J

    2013-10-01

    The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50% decrease compared with control muscle) revealed three gene expression patterns during overload-induced hypertrophy: early (1 day), intermediate (3, 5, and 7 days), and late (10 and 14 days) patterns. Based on the robust changes in total RNA content and in the number of differentially expressed genes, we focused our attention on the intermediate gene expression pattern. Ingenuity Pathway Analysis revealed a downregulation of genes encoding components of the branched-chain amino acid degradation pathway during hypertrophy. Among these genes, five were predicted by Ingenuity Pathway Analysis or previously shown to be regulated by the transcription factor Kruppel-like factor-15, which was also downregulated during hypertrophy. Moreover, the integrin-linked kinase signaling pathway was activated during hypertrophy, and the downregulation of muscle-specific micro-RNA-1 correlated with the upregulation of five predicted targets associated with the integrin-linked kinase pathway. In conclusion, we identified two novel pathways that may be involved in muscle hypertrophy, as well as two upstream regulators (Kruppel-like factor-15 and micro-RNA-1) that provide targets for future studies investigating the importance of these pathways in muscle hypertrophy.

  10. Diagnostic electrocardiographic dyad criteria of emphysema in left ventricular hypertrophy

    Directory of Open Access Journals (Sweden)

    Lanjewar SS

    2013-11-01

    Full Text Available Swapnil S Lanjewar,1 Lovely Chhabra,1 Vinod K Chaubey,1 Saurabh Joshi,1 Ganesh Kulkarni,1 Chandrasekhar Kothagundla,1 Sudesh Kaul,1 David H Spodick21Department of Internal Medicine, 2Department of Cardiovascular Medicine, Saint Vincent Hospital, University of Massachusetts Medical School, Worcester, MA, USABackground: The electrocardiographic diagnostic dyad of emphysema, namely a combination of the frontal vertical P-vector and a narrow QRS duration, can serve as a quasidiagnostic marker for emphysema, with specificity close to 100%. We postulated that the presence of left ventricular hypertrophy in emphysema may affect the sensitivity of this electrocardiographic criterion given that left ventricular hypertrophy generates prominent left ventricular forces and may increase the QRS duration.Methods: We reviewed the electrocardiograms and echocardiograms for 73 patients with emphysema. The patients were divided into two groups based on the presence or absence of echocardiographic evidence of left ventricular hypertrophy. The P-vector, QRS duration, and forced expiratory volume in one second (FEV1 were computed and compared between the two subgroups.Results: There was no statistically significant difference in qualitative lung function (FEV1 between the subgroups. There was no statistically significant difference in mean P-vector between the subgroups. The mean QRS duration was significantly longer in patients with left ventricular hypertrophy as compared with those without left ventricular hypertrophy.Conclusion: The presence of left ventricular hypertrophy may not affect the sensitivity of the P-vector verticalization when used as a lone criterion for diagnosing emphysema. However, the presence of left ventricular hypertrophy may significantly reduce the sensitivity of the electrocardiographic diagnostic dyad in emphysema, as it causes a widening of the QRS duration.Keywords: emphysema, electrocardiogram, left ventricular hypertrophy, chronic

  11. Transcription Factors in Heart: Promising Therapeutic Targets in Cardiac Hypertrophy

    OpenAIRE

    Kohli, Shrey; Ahuja, Suchit; Rani, Vibha

    2011-01-01

    Regulation of gene expression is central to cell growth, differentiation and diseases. Context specific and signal dependent regulation of gene expression is achieved to a large part by transcription factors. Cardiac transcription factors regulate heart development and are also involved in stress regulation of the adult heart, which may lead to cardiac hypertrophy. Hypertrophy of cardiac myocytes is an outcome of the imbalance between prohypertrophic factors and anti-hypertrophic factors. Thi...

  12. Different atrophy-hypertrophy transcription pathways in muscles affected by severe and mild spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Millino Caterina

    2009-04-01

    Full Text Available Abstract Background Spinal muscular atrophy (SMA is a neurodegenerative disorder associated with mutations of the survival motor neuron gene SMN and is characterized by muscle weakness and atrophy caused by degeneration of spinal motor neurons. SMN has a role in neurons but its deficiency may have a direct effect on muscle tissue. Methods We applied microarray and quantitative real-time PCR to study at transcriptional level the effects of a defective SMN gene in skeletal muscles affected by the two forms of SMA: the most severe type I and the mild type III. Results The two forms of SMA generated distinct expression signatures: the SMA III muscle transcriptome is close to that found under normal conditions, whereas in SMA I there is strong alteration of gene expression. Genes implicated in signal transduction were up-regulated in SMA III whereas those of energy metabolism and muscle contraction were consistently down-regulated in SMA I. The expression pattern of gene networks involved in atrophy signaling was completed by qRT-PCR, showing that specific pathways are involved, namely IGF/PI3K/Akt, TNF-α/p38 MAPK and Ras/ERK pathways. Conclusion Our study suggests a different picture of atrophy pathways in each of the two forms of SMA. In particular, p38 may be the regulator of protein synthesis in SMA I. The SMA III profile appears as the result of the concurrent presence of atrophic and hypertrophic fibers. This more favorable condition might be due to the over-expression of MTOR that, given its role in the activation of protein synthesis, could lead to compensatory hypertrophy in SMA III muscle fibers.

  13. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    International Nuclear Information System (INIS)

    Reibel, D.K.; O'Rourke, B.

    1986-01-01

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H 2 O left atrial filling pressure with a ventricular afterload of 80 cm of H 2 O with buffer containing 1.2 mM 14 C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. 14 CO 2 production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by 14 CO 2 production during this time was 0.728 +/- 0.06 μmoles/min/g dry in control hearts and 0.710 +/- 0.02 μmoles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O 2 consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 μmoles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine

  14. Mechanisms for altered carnitine content in hypertrophied rat hearts

    International Nuclear Information System (INIS)

    Reibel, D.K.; O'Rourke, B.; Foster, K.A.

    1987-01-01

    Carnitine levels are reduced in hypertrophied hearts of rats subjected to aortic constriction (banding) and evaluated in hypertrophied hearts of spontaneously hypertensive rats (SHR). In an attempt to determine the mechanisms for these alterations, L-[ 14 C]carnitine transport was examined in isolated perfused hearts. Total carnitine uptake was significantly reduced by ∼20% in hypertrophied hearts of banded rats at all perfusate carnitine concentrations employed. The reduction in total uptake was due to a 40% reduction in carrier-mediated carnitine uptake with no difference in uptake by diffusion. In contrast, carnitine uptake was not altered in isolated hypertrophied hearts of SHR. However, serum carnitine levels were elevated in SHR, which could result in increased myocardial carnitine uptake in vivo. The data suggest that altered carnitine content in hypertrophied hearts of aortic-banded rats is due to an alteration in the carrier-mediated carnitine transport system in the myocardium. However, altered carnitine content in hypertrophied hearts of SHR is not due to a change in the carnitine transport system per se but may rather be due to a change in serum carnitine levels

  15. GFR meets mTOR: value of different methods to measure and estimate GFR & (side) effects of mTOR inhibition in renal transplantation

    NARCIS (Netherlands)

    Baas, M.C.

    2011-01-01

    The subject of this thesis is twofold: where GFR and mTOR meet. Precise measurement of kidney function is difficult and cumbersome and many, simpler alternatives have been developed to determine GFR. Determination of GFR remains an approximation since the GFR itself is not a static phenomenon. This

  16. mTOR drives cerebral blood flow and memory deficits in LDLR-/- mice modeling atherosclerosis and vascular cognitive impairment.

    Science.gov (United States)

    Jahrling, Jordan B; Lin, Ai-Ling; DeRosa, Nicholas; Hussong, Stacy A; Van Skike, Candice E; Girotti, Milena; Javors, Martin; Zhao, Qingwei; Maslin, Leigh Ann; Asmis, Reto; Galvan, Veronica

    2018-01-01

    We recently showed that mTOR attenuation blocks progression and abrogates established cognitive deficits in Alzheimer's disease (AD) mouse models. These outcomes were associated with the restoration of cerebral blood flow (CBF) and brain vascular density (BVD) resulting from relief of mTOR inhibition of NO release. Recent reports suggested a role of mTOR in atherosclerosis. Because mTOR drives aging and vascular dysfunction is a universal feature of aging, we hypothesized that mTOR may contribute to brain vascular and cognitive dysfunction associated with atherosclerosis. We measured CBF, BVD, cognitive function, markers of inflammation, and parameters of cardiovascular disease in LDLR -/- mice fed maintenance or high-fat diet ± rapamycin. Cardiovascular pathologies were proportional to severity of brain vascular dysfunction. Aortic atheromas were reduced, CBF and BVD were restored, and cognitive dysfunction was attenuated potentially through reduction in systemic and brain inflammation following chronic mTOR attenuation. Our studies suggest that mTOR regulates vascular integrity and function and that mTOR attenuation may restore neurovascular function and cardiovascular health. Together with our previous studies in AD models, our data suggest mTOR-driven vascular damage may be a mechanism shared by age-associated neurological diseases. Therefore, mTOR attenuation may have promise for treatment of cognitive impairment in atherosclerosis.

  17. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR

    Directory of Open Access Journals (Sweden)

    Kenneth Maiese

    2016-01-01

    Full Text Available Throughout the globe, diabetes mellitus (DM is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder. DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy. The mechanistic target of rapamycin (mTOR is a promising agent for the development of novel regenerative strategies for the treatment of DM. mTOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis, insulin resistance, insulin secretion, stem cell proliferation and differentiation, pancreatic β-cell function, and programmed cell death with apoptosis and autophagy. mTOR is central element for the protein complexes mTOR Complex 1 (mTORC1 and mTOR Complex 2 (mTORC2 and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase (PI 3-K, protein kinase B (Akt, AMP activated protein kinase (AMPK, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae (SIRT1, Wnt1 inducible signaling pathway protein 1 (WISP1, and growth factors. As a result, mTOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease. Future studies directed to elucidate the delicate balance mTOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.

  18. ESAT6 inhibits autophagy flux and promotes BCG proliferation through MTOR

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hu, E-mail: austhudong@126.com [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Medical Inspection Center, Anhui University of Science and Technology, Huainan (China); Jing, Wu, E-mail: wujing8008@126.com [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Medical Inspection Center, Anhui University of Science and Technology, Huainan (China); Runpeng, Zhao; Xuewei, Xu; Min, Mu; Ru, Cai [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Yingru, Xing; Shengfa, Ni [Affiliated Cancer Hospital, Anhui University of Science and Technology (China); Rongbo, Zhang [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Medical Inspection Center, Anhui University of Science and Technology, Huainan (China)

    2016-08-19

    In recent years, increasing studies have found that pathogenic Mycobacterium tuberculosis (Mtb) inhibits autophagy, which mediates the anti-mycobacterial response, but the mechanism is not clear. We previously reported that secretory acid phosphatase (SapM) of Mtb can negatively regulate autophagy flux. Recently, another virulence factor of Mtb, early secretory antigenic target 6 (ESAT6), has been found to be involved in inhibiting autophagy, but the mechanism remains unclear. In this study, we show that ESAT6 hampers autophagy flux to boost bacillus Calmette-Guerin (BCG) proliferation and reveals a mechanism by which ESAT6 blocks autophagosome-lysosome fusion in a mammalian target of rapamycin (MTOR)-dependent manner. In both Raw264.7 cells and primary macrophages derived from the murine abdominal cavity (ACM), ESAT6 repressed autophagy flux by interfering with the autophagosome-lysosome fusion, which resulted in an increased load of BCG. Impaired degradation of LC3Ⅱ and SQSTM1 by ESAT6 was related to the upregulated activity of MTOR. Contrarily, inhibiting MTOR with Torin1 removed the ESAT6-induced autophagy block and lysosome dysfunction. Furthermore, in both Raw264.7 and ACM cells, MTOR inhibition significantly suppressed the survival of BCG. In conclusion, our study highlights how ESAT6 blocks autophagy and promotes BCG survival in a way that activates MTOR. - Highlights: • A mechanism for disruping autophagy flux induced by ESAT6. • ESAT6-inhibited autophagy is MTOR-dependent. • ESAT6-boosted BCG is MTOR-dependent.

  19. Delayed recovery of skeletal muscle mass following hindlimb immobilization in mTOR heterozygous mice.

    Directory of Open Access Journals (Sweden)

    Susan M Lang

    Full Text Available The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/- mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR(+/- mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR(+/- mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR(+/- mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth.

  20. Delayed recovery of skeletal muscle mass following hindlimb immobilization in mTOR heterozygous mice.

    Science.gov (United States)

    Lang, Susan M; Kazi, Abid A; Hong-Brown, Ly; Lang, Charles H

    2012-01-01

    The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/-) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR(+/-) mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR(+/-) mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR(+/-) mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA) during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth.

  1. The Influence of Protein Supplementation on Muscle Hypertrophy

    Science.gov (United States)

    Fardi, A.; Welis, W.

    2018-04-01

    The problem of this study was the lack of knowledge about nutrition, so the use of protein supplements to support the occurrence of muscle hypertrophy is not optimal. The use of natural supplements is a substitute of the manufacturer's supplements. The purpose of this study was to determine the effect of natural protein supplementation to muscle hypertrophy.The method of the research was a quasi experiment. There are 26 subject and were divided two group. Instrument of this research is to use tape measure and skinfold to measure muscle rim and thickness of fat in arm and thigh muscle. Then to calculate the circumference of the arm and thigh muscles used the formula MTC - (3.14 x TSF). MTC is the arm muscle or thigh muscle and TSF is the thickness of the muscles of the arm or thigh muscles. Data analysis technique used was t test at 5% significant level. The result of the research showed that average score of arm muscle hypertrophy at pretest control group was 255.61 + 17.69 mm and posttest average score was 263.48.58 + 17.21 mm and average score of thigh muscle hypertrophy at pretest control group was 458.32 + 8.72 mm and posttest average score was 468.78 + 11.54 mm. Average score of arm muscle hypertrophy at pretest experiment group was 252.67 + 16.05 mm and posttest average score was 274.58 ± 16.89 mm and average score of thigh muscle hypertrophy at pretest experiment group was 459.49 ± 6.99 mm and posttest average score was 478.70 + 9.05 mm. It can be concluded that there was a significant effect of natural protein supplementation on muscle hypertrophy.

  2. Germline activating MTOR mutation arising through gonadal mosaicism in two brothers with megalencephaly and neurodevelopmental abnormalities.

    Science.gov (United States)

    Mroske, Cameron; Rasmussen, Kristen; Shinde, Deepali N; Huether, Robert; Powis, Zoe; Lu, Hsiao-Mei; Baxter, Ruth M; McPherson, Elizabeth; Tang, Sha

    2015-11-05

    In humans, Mammalian Target of Rapamycin (MTOR) encodes a 300 kDa serine/ threonine protein kinase that is ubiquitously expressed, particularly at high levels in brain. MTOR functions as an integrator of multiple cellular processes, and in so doing either directly or indirectly regulates the phosphorylation of at least 800 proteins. While somatic MTOR mutations have been recognized in tumors for many years, and more recently in hemimegalencephaly, germline MTOR mutations have rarely been described. We report the successful application of family-trio Diagnostic Exome Sequencing (DES) to identify the underlying molecular etiology in two brothers with multiple neurological and developmental lesions, and for whom previous testing was non-diagnostic. The affected brothers, who were 6 and 23 years of age at the time of DES, presented symptoms including but not limited to mild Autism Spectrum Disorder (ASD), megalencephaly, gross motor skill delay, cryptorchidism and bilateral iris coloboma. Importantly, we determined that each affected brother harbored the MTOR missense alteration p.E1799K (c.5395G>A). This exact variant has been previously identified in multiple independent human somatic cancer samples and has been shown to result in increased MTOR activation. Further, recent independent reports describe two unrelated families in whom p.E1799K co-segregated with megalencephaly and intellectual disability (ID); in both cases, p.E1799K was shown to have originated due to germline mosaicism. In the case of the family reported herein, the absence of p.E1799K in genomic DNA extracted from the blood of either parent suggests that this alteration most likely arose due to gonadal mosaicism. Further, the p.E1799K variant exerts its effect by a gain-of-function (GOF), autosomal dominant mechanism. Herein, we describe the use of DES to uncover an activating MTOR missense alteration of gonadal mosaic origin that is likely to be the causative mutation in two brothers who present

  3. Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism.

    Science.gov (United States)

    Varela, Luis; Martínez-Sánchez, Noelia; Gallego, Rosalía; Vázquez, María J; Roa, Juan; Gándara, Marina; Schoenmakers, Erik; Nogueiras, Rubén; Chatterjee, Krishna; Tena-Sempere, Manuel; Diéguez, Carlos; López, Miguel

    2012-06-01

    Hyperthyroidism is characterized in rats by increased energy expenditure and marked hyperphagia. Alterations of thermogenesis linked to hyperthyroidism are associated with dysregulation of hypothalamic AMPK and fatty acid metabolism; however, the central mechanisms mediating hyperthyroidism-induced hyperphagia remain largely unclear. Here, we demonstrate that hyperthyroid rats exhibit marked up-regulation of the hypothalamic mammalian target of rapamycin (mTOR) signalling pathway associated with increased mRNA levels of agouti-related protein (AgRP) and neuropeptide Y (NPY), and decreased mRNA levels of pro-opiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC), an area where mTOR co-localizes with thyroid hormone receptor-α (TRα). Central administration of thyroid hormone (T3) or genetic activation of thyroid hormone signalling in the ARC recapitulated hyperthyroidism effects on feeding and the mTOR pathway. In turn, central inhibition of mTOR signalling with rapamycin in hyperthyroid rats reversed hyperphagia and normalized the expression of ARC-derived neuropeptides, resulting in substantial body weight loss. The data indicate that in the hyperthyroid state, increased feeding is associated with thyroid hormone-induced up-regulation of mTOR signalling. Furthermore, our findings that different neuronal modulations influence food intake and energy expenditure in hyperthyroidism pave the way for a more rational design of specific and selective therapeutic compounds aimed at reversing the metabolic consequences of this disease. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. Phlorizin Prevents Glomerular Hyperfiltration but not Hypertrophy in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Slava Malatiali

    2008-01-01

    Full Text Available The relationships of renal and glomerular hypertrophies to development of hyperfiltration and proteinuria early in streptozotocin-induced diabetes were explored. Control, diabetic, phlorizin-treated controls, and diabetic male Fischer rats were used. Phlorizin (an Na+-glucose cotransport inhibitor was given at a dose sufficient to normalize blood glucose. Inulin clearance (Cinulin and protein excretion rate (PER were measured. For morphometry, kidney sections were stained with periodic acid Schiff. At one week, diabetes PER increased 2.8-folds (P<.001, Cinulin increased 80% (P<.01. Kidney wet and dry weights increased 10%–12% (P<.05, and glomerular tuft area increased 9.3% (P<.001. Phlorizin prevented proteinuria, hyperfiltration, and kidney hypertrophy, but not glomerular hypertrophy. Thus, hyperfiltration, proteinuria, and whole kidney hypertrophy were related to hyperglycemia but not to glomerular growth. Diabetic glomerular hypertrophy constitutes an early event in the progression of glomerular pathology which occurs in the absence of mesangial expansion and persists even after changes in protein excretion and GFR are reversed through glycemic control.

  5. Neurogenic muscle hypertrophy in a 12-year-old girl.

    Science.gov (United States)

    Zutelija Fattorini, Matija; Gagro, Alenka; Dapic, Tomislav; Krakar, Goran; Marjanovic, Josip

    2017-01-01

    Muscular hypertrophy secondary to denervation is very rare, but well-documented phenomena in adults. This is the first report of a child with neurogenic unilateral hypertrophy due to S1 radiculopathy. A 12-year-old girl presented with left calf hypertrophy and negative history of low back pain or trauma. The serum creatinine kinase level and inflammatory markers were normal. Magnetic resonance imaging showed muscle hypertrophy of the left gastrocnemius and revealed a protruded lumbar disc at the L5-S1 level. The protruded disc abuts the S1 root on the left side. Electromyography showed mild left S1 radiculopathy. Passive stretching and work load might clarify the origin of neurogenic hypertrophy but there is still a need for further evidence. Clinical, laboratory, magnetic resonance imaging and electromyography findings showed that S1 radiculopathy could be a cause of unilateral calf swelling in youth even in the absence of a history of back or leg pain. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. Regulation of autophagy by amino acids and MTOR-dependent signal transduction.

    Science.gov (United States)

    Meijer, Alfred J; Lorin, Séverine; Blommaart, Edward F; Codogno, Patrice

    2015-10-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.

  7. Discovery and optimization of potent and selective imidazopyridine and imidazopyridazine mTOR inhibitors.

    Science.gov (United States)

    Peterson, Emily A; Boezio, Alessandro A; Andrews, Paul S; Boezio, Christiane M; Bush, Tammy L; Cheng, Alan C; Choquette, Deborah; Coats, James R; Colletti, Adria E; Copeland, Katrina W; DuPont, Michelle; Graceffa, Russell; Grubinska, Barbara; Kim, Joseph L; Lewis, Richard T; Liu, Jingzhou; Mullady, Erin L; Potashman, Michele H; Romero, Karina; Shaffer, Paul L; Stanton, Mary K; Stellwagen, John C; Teffera, Yohannes; Yi, Shuyan; Cai, Ti; La, Daniel S

    2012-08-01

    mTOR is a critical regulator of cellular signaling downstream of multiple growth factors. The mTOR/PI3K/AKT pathway is frequently mutated in human cancers and is thus an important oncology target. Herein we report the evolution of our program to discover ATP-competitive mTOR inhibitors that demonstrate improved pharmacokinetic properties and selectivity compared to our previous leads. Through targeted SAR and structure-guided design, new imidazopyridine and imidazopyridazine scaffolds were identified that demonstrated superior inhibition of mTOR in cellular assays, selectivity over the closely related PIKK family and improved in vivo clearance over our previously reported benzimidazole series. Copyright © 2012. Published by Elsevier Ltd.

  8. Hypothalamic roles of mTOR complex I: Integration of nutrient and hormone signals to regulate energy homeostasis

    Science.gov (United States)

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight...

  9. mTOR inhibition sensitizes human hepatocellular carcinoma cells to resminostat

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xingang, E-mail: pengxinggang26@sina.com [Department of Emergency General Surgery, The Affiliated Hospital of Qingdao University, Qingdao (China); Zhang, Donghui, E-mail: zhangdonghuiyx@sina.com [Department of Infectious Disease, Linyi People’s Hospital, Linyi (China); Li, Zhengling, E-mail: lizhenglingzz@sina.com [Department of Nursing, Tengzhou Central People’s Hospital, Tengzhou (China); Fu, Meili, E-mail: fumeilidrlinyi@tom.com [Department of Infectious Disease, Linyi People’s Hospital, Linyi (China); Liu, Haiyan, E-mail: liuhaiyanlinyi5@sina.com [Department of Nursing, Linyi People’s Hospital, Linyi (China)

    2016-09-02

    Histone deacetylases (HDACs) hyper-activity in hepatocellular carcinoma (HCC) is often associated with patients’ poor prognosis. Our previous study has shown that resminostat, a novel HDAC inhibitor (HDACi), activated mitochondrial permeability transition pore (mPTP)-dependent apoptosis pathway in HCC cells. Here we explored the potential resminostat resistance factor by focusing on mammalian target of rapamycin (mTOR). We showed that AZD-2014, a novel mTOR kinase inhibitor, potentiated resminostat-induced cytotoxicity and proliferation inhibition in HCC cells. Molecularly, AZD-2014 enhanced resminostat-induced mPTP apoptosis pathway activation in HCC cells. Inhibition of this apoptosis pathway, by the caspase-9 specific inhibitor Ac-LEHD-CHO, the mPTP blockers (sanglifehrin A/cyclosporine A), or by shRNA-mediated knockdown of mPTP component cyclophilin-D (Cyp-D), significantly attenuated resminostat plus AZD-2014-induced cytotoxicity and apoptosis in HCC cells. Significantly, mTOR shRNA knockdown or kinase-dead mutation (Asp-2338-Ala) also sensitized HCC cells to resminostat, causing profound cytotoxicity and apoptosis induction. Together, these results suggest that mTOR could be a primary resistance factor of resminostat. Targeted inhibition of mTOR may thus significantly sensitize HCC cells to resminostat. - Highlights: • AZD-2014 potentiates resminostat’s cytotoxicity against HCC cells. • AZD-2014 facilitates resminostat-induced HCC cell apoptosis. • AZD-2014 augments resminostat-induced mitochondrial apoptosis pathway activation. • mTOR shRNA or kinase-dead mutation significantly sensitizes HCC cells to resminostat.

  10. Phenformin-Induced Mitochondrial Dysfunction Sensitizes Hepatocellular Carcinoma for Dual Inhibition of mTOR.

    Science.gov (United States)

    Veiga, Sonia Rosa; Ge, Xuemei; Mercer, Carol A; Hernández-Alvarez, María Isabel; Thomas, Hala Elnakat; Hernández-Losa, Javier; Ramón Y Cajal, Santiago; Zorzano, Antonio; Thomas, George; Kozma, Sara C

    2018-04-24

    Hepatocellular carcinoma (HCC) ranks second in cancer mortality and has limited therapeutic options. We recently described the synergistic effect of allosteric and ATP-site competitive inhibitors against the mammalian target of rapamycin (mTOR) for the treatment of HCC. However, such inhibitors induce glycemia and increase mitochondrial efficiency. Here we determined whether the mitochondrial complex I inhibitor Phenformin could reverse both side effects, impose an energetic-stress on cancer cells and suppress the growth of HCC. Human HCC cell lines were used in vitro to access the signaling and energetic impact of mTOR inhibitors and Phenformin, either alone or in combination. Next, the therapeutic utility of these drugs alone or in combination was investigated pre-clinically in human orthotopic tumors implanted in mice, by analyzing their impact on the tumor burden and overall survival. We found Phenformin caused mitochondrial dysfunction and fragmentation, inducing a compensatory shift to glycolysis. In contrast, dual inhibition of mTOR impaired cell growth and glycolysis, while increasing mitochondrial fusion and efficiency. In a mouse model of human HCC, dual inhibition of mTOR, together with Phenformin, was highly efficacious in controlling tumor burden. However, more striking, pretreatment with Phenformin sensitized tumors to dual inhibition of mTOR, leading to a dramatic improvement in survival. Treatment of HCC cells in vitro with the biguanide Phenformin causes a metabolic shift to glycolysis, mitochondrial dysfunction and fragmentation, and dramatically sensitizes orthotopic liver tumors to dual inhibition of mTOR. We therefore propose this therapeutic approach should be tested clinically in HCC. Copyright ©2018, American Association for Cancer Research.

  11. Blocking mammalian target of rapamycin (mTOR) improves neuropathic pain evoked by spinal cord injury.

    Science.gov (United States)

    Wang, Xiaoping; Li, Xiaojia; Huang, Bin; Ma, Shuai

    2016-01-01

    Spinal cord injury (SCI) is an extremely serious type of physical trauma observed in clinics. Neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effective therapeutic agents and treatment strategies. Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that is well known for its critical roles in regulating protein synthesis and growth. Furthermore, compelling evidence supports the notion that widespread dysregulation of mTOR and its downstream pathways are involved in neuropathic pain. Thus, in this study we specifically examined the underlying mechanisms by which mTOR and its signaling pathways are involved in SCI-evoked neuropathic pain in a rat model. Overall, we demonstrated that SCI increased the protein expression of p-mTOR, and mTORmediated- phosphorylation of 4E-binding protein 4 (4E-BP1) and p70 ribosomal S6 protein kinase 1 (S6K1) in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal mTOR by intrathecal injection of rapamycin significantly inhibited pain responses induced by mechanical and thermal stimulation. In addition, blocking spinal phosphatidylinositide 3-kinase (p-PI3K) pathway significantly attenuated activities of p-mTOR pathways as well as mechanical and thermal hyperalgesia in SCI rats. Moreover, blocking mTOR and PI3K decreased the enhanced levels of substance P and calcitonin gene-related peptide (CGRP) in the dorsal horn of SCI rats. We revealed specific signaling pathways leading to SCI-evoked neuropathic pain, including the activation of PI3K, mTOR and its downstream signaling pathways. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.

  12. Cross regulation between mTOR signaling and O-GlcNAcylation.

    Science.gov (United States)

    Very, Ninon; Steenackers, Agata; Dubuquoy, Caroline; Vermuse, Jeanne; Dubuquoy, Laurent; Lefebvre, Tony; El Yazidi-Belkoura, Ikram

    2018-06-01

    The hexosamine biosynthetic pathway (HBP) integrates glucose, amino acids, fatty acids and nucleotides metabolisms for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis. UDP-GlcNAc is the nucleotide sugar donor for O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) processes. O-GlcNAc transferase (OGT) is the enzyme which transfers the N-acetylglucosamine (O-GlcNAc) residue onto target proteins. Several studies previously showed that glucose metabolism dysregulations associated with obesity, diabetes or cancer correlated with an increase of OGT expression and global O-GlcNAcylation levels. Moreover, these diseases present an increased activation of the nutrient sensing mammalian target of rapamycin (mTOR) pathway. Other works demonstrate that mTOR regulates protein O-GlcNAcylation in cancer cells through stabilization of OGT. In this context, we studied the cross-talk between these two metabolic sensors in vivo in obese mice predisposed to diabetes and in vitro in normal and colon cancer cells. We report that levels of OGT and O-GlcNAcylation are increased in obese mice colon tissues and colon cancer cells and are associated with a higher activation of mTOR signaling. In parallel, treatments with mTOR regulators modulate OGT and O-GlcNAcylation levels in both normal and colon cancer cells. However, deregulation of O-GlcNAcylation affects mTOR signaling activation only in cancer cells. Thus, a crosstalk exists between O-GlcNAcylation and mTOR signaling in contexts of metabolism dysregulation associated to obesity or cancer.

  13. Finding a better drug for epilepsy: The mTOR pathway as an antiepileptogenic target

    Science.gov (United States)

    Galanopoulou, Aristea S.; Gorter, Jan A.; Cepeda, Carlos

    2012-01-01

    Summary The mTOR signaling pathway regulates cell growth, differentiation, proliferation and metabolism. Loss of function mutations in upstream regulators of mTOR have been highly associated with dysplasias, epilepsy and neurodevelopmental disorders. These include tuberous sclerosis, which is due to mutations in TSC1 or TSC2 genes, mutations in phosphatase and tensin homolog (PTEN) as in Cowden syndrome, polyhydramnios, megalencephaly, symptomatic epilepsy syndrome (PMSE) due to mutations in the STE20-related kinase adaptor alpha (STRADalpha), and neurofibromatosis type 1 attributed to neurofibromin 1 mutations. Inhibition of the mTOR pathway with rapamycin may prevent epilepsy and improve the underlying pathology in mouse models with disrupted mTOR signaling, due to PTEN or TSC mutations. However the timing and duration of its administration appear critical in defining the seizure and pathology-related outcomes. Rapamycin application in human cortical slices from patients with cortical dysplasias reduces the 4-aminopyridine induced oscillations. In the multiple-hit model of infantile spasms, pulse high dose rapamycin administration can reduce the cortical overactivation of the mTOR pathway, suppresses spasms and has disease-modifying effects by partially improving cognitive deficits. In post-status epilepticus models of temporal lobe epilepsy, rapamycin may ameliorate the development of epilepsy-related pathology and reduce the expression of spontaneous seizures, but its effects depend on the timing and duration of administration, and possibly the model used. The observed recurrence of seizures and epilepsy-related pathology after rapamycin discontinuation suggests the need for continuous administration to maintain the benefit. However, the use of pulse administration protocols may be useful in certain age-specific epilepsy syndromes, like infantile spasms, whereas repetitive pulse rapamycin protocols may suffice to sustain a long-term benefit in genetic disorders

  14. mTOR at the Transmitting and Receiving Ends in Tumor Immunity.

    Science.gov (United States)

    Guri, Yakir; Nordmann, Thierry M; Roszik, Jason

    2018-01-01

    Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis.

  15. mTOR at the Transmitting and Receiving Ends in Tumor Immunity

    Directory of Open Access Journals (Sweden)

    Yakir Guri

    2018-03-01

    Full Text Available Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis.

  16. Gβγ interacts with mTOR and promotes its activation

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Molina, Evelyn [Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado postal 14-740, México, D.F. 07360 (Mexico); Dionisio-Vicuña, Misael [Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado postal 14-740, México, D.F. 07360 (Mexico); Guzmán-Hernández, María Luisa [Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado postal 14-740, México, D.F. 07360 (Mexico); Reyes-Cruz, Guadalupe [Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado postal 14-740, México, D.F. 07360 (Mexico); Vázquez-Prado, José, E-mail: jvazquez@cinvestav.mx [Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Apartado postal 14-740, México, D.F. 07360 (Mexico)

    2014-02-07

    Highlights: • Gβγ interacts with mTOR kinase domain via a mechanism sensitive to chronic treatment with rapamycin. • Gβγ interacts with mTORC1 and mTORC2 which correlates with its ability to promote mTORC1 and mTORC2 signaling. • Gβγ heterodimers containing different Gβ subunits, except Gβ{sub 4}, interact with mTOR. - Abstract: Diverse G protein-coupled receptors depend on Gβγ heterodimers to promote cell polarization and survival via direct activation of PI3Kγ and potentially other effectors. These events involve full activation of AKT via its phosphorylation at Ser473, suggesting that mTORC2, the kinase that phosphorylates AKT at Ser473, is activated downstream of Gβγ. Thus, we tested the hypothesis that Gβγ directly contributes to mTOR signaling. Here, we demonstrate that endogenous mTOR interacts with Gβγ. Cell stimulation with serum modulates Gβγ interaction with mTOR. The carboxyl terminal region of mTOR, expressed as a GST-fusion protein, including the serine/threonine kinase domain, binds Gβγ heterodimers containing different Gβ subunits, except Gβ{sub 4}. Both, mTORC1 and mTORC2 complexes interact with Gβ{sub 1}γ{sub 2} which promotes phosphorylation of their respective substrates, p70S6K and AKT. In addition, chronic treatment with rapamycin, a condition known to interfere with assembly of mTORC2, reduces the interaction between Gβγ and mTOR and the phosphorylation of AKT; whereas overexpression of Gαi interfered with the effect of Gβγ as promoter of p70S6K and AKT phosphorylation. Altogether, our results suggest that Gβγ positively regulates mTOR signaling via direct interactions and provide further support to emerging strategies based on the therapeutical potential of inhibiting different Gβγ signaling interfaces.

  17. Podocyte hypertrophy precedes apoptosis under experimental diabetic conditions.

    Science.gov (United States)

    Lee, Sun Ha; Moon, Sung Jin; Paeng, Jisun; Kang, Hye-Young; Nam, Bo Young; Kim, Seonghun; Kim, Chan Ho; Lee, Mi Jung; Oh, Hyung Jung; Park, Jung Tak; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2015-08-01

    Podocyte hypertrophy and apoptosis are two hallmarks of diabetic glomeruli, but the sequence in which these processes occur remains a matter of debate. Here we investigated the effects of inhibiting hypertrophy on apoptosis, and vice versa, in both podocytes and glomeruli, under diabetic conditions. Hypertrophy and apoptosis were inhibited using an epidermal growth factor receptor inhibitor (PKI 166) and a pan-caspase inhibitor (zAsp-DCB), respectively. We observed significant increases in the protein expression of p27, p21, phospho-eukaryotic elongation factor 4E-binding protein 1, and phospho-p70 S6 ribosomal protein kinase, in both cultured podocytes exposed to high-glucose (HG) medium, and streptozotocin-induced diabetes mellitus (DM) rat glomeruli. These increases were significantly inhibited by PKI 166, but not by zAsp-DCB. In addition, the amount of protein per cell, the relative cell size, and the glomerular volume were all significantly increased under diabetic conditions, and these changes were also blocked by treatment with PKI 166, but not zAsp-DCB. Increased protein expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, together with increased Bax/Bcl-2 ratios, were also observed in HG-stimulated podocytes and DM glomeruli. Treatment with either zAsp-DCB or PKI 166 resulted in a significant attenuation of these effects. Both PKI 166 and zAsp-DCB also inhibited the increase in number of apoptotic cells, as assessed by Hoechst 33342 staining and TUNEL assay. Under diabetic conditions, inhibition of podocyte hypertrophy results in attenuated apoptosis, whereas blocking apoptosis has no effect on podocyte hypertrophy, suggesting that podocyte hypertrophy precedes apoptosis.

  18. Extra-Esophageal Pepsin from Stomach Refluxate Promoted Tonsil Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Jin Hyun Kim

    Full Text Available Gastroesophageal reflux is associated with numerous pathologic conditions of the upper aerodigestive tract. Gastric pepsin within reflux contributes to immunologic reactions in the tonsil. In this study, we aimed to find the relationships between pepsin and tonsillar hypertrophy.We explored the notion whether tonsillar hypertrophy was due to pepsin-mediated gastric reflux in tonsil hypertrophy. Fifty-four children with tonsil hypertrophy and 30 adults with tonsillitis were recruited before surgical treatment. Blood and tonsil tissues from each patient were harvested for analysis of changes in lymphocyte and macrophage numbers coupled with histological and biochemical analysis. Pepsin was expressed at different levels in tonsil tissues from each tonsillar hypertrophy. Pepsin-positive cells were found in the crypt epithelium, surrounding the lymphoid follicle with developing fibrosis, and also surrounding the lymphoid follicle that faced the crypt. And also, pepsin staining was well correlated with damaged tonsillar squamous epithelium and TGF-β1 and iNOS expression in the tonsil section. In addition, pepsin and TGF-β1-positive cells were co-localized with CD68-positive cells in the crypt and surrounding germinal centers. In comparison of macrophage responsiveness to pepsin, peripheral blood mononuclear cells (PBMNCs were noticeably larger in the presence of activated pepsin in the child group. Furthermore, CD11c and CD163-positive cells were significantly increased by activated pepsin. However, this was not seen for the culture of PBMNCs from the adult group.The lymphocytes and monocytes are in a highly proliferative state in the tonsillar hypertrophy and associated with increased expression of pro-inflammatory factors as a result of exposure to stomach reflux pepsin.

  19. Congenital hypertrophy of multiple intrinsic muscles of the foot.

    Science.gov (United States)

    Shiraishi, Tomohiro; Park, Susam; Niu, Atushi; Hasegawa, Hiromi

    2014-12-01

    Congenital hypertrophy of a single intrinsic muscle of the foot is rare, and as far as we know, only six cases have been reported. We describe a case of congenital anomaly that showed hypertrophy of multiple intrinsic muscles of the foot; the affected muscles were all the intrinsic muscles of the foot except the extensor digitorum brevis or extensor hallucis. Other tissues such as adipose tissue, nervous tissue, or osseous tissue showed no abnormalities. To reduce the volume of the foot we removed parts of the enlarged muscles.

  20. Association of heart failure hospitalizations with combined electrocardiography and echocardiography criteria for left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Gerdts, Eva; Okin, Peter M; Boman, Kurt

    2012-01-01

    The value of performing echocardiography in hypertensive patients with electrocardiographic left ventricular hypertrophy (LVH) is uncertain.......The value of performing echocardiography in hypertensive patients with electrocardiographic left ventricular hypertrophy (LVH) is uncertain....

  1. Myocardial hypertrophy in the recipient with twin-to-twin transfusion syndrome

    DEFF Research Database (Denmark)

    Jeppesen, D.L.; Jorgensen, F.S.; Pryds, O.A.

    2008-01-01

    pressure measurements revealed persistent systemic hypertension. Biventricular hypertrophy was demonstrated by echocardiography. Blood pressure normalised after treatment with Nifedipine and the cardiac hypertrophy subsided over the following weeks. A potential contributing mechanism is intrauterine...

  2. Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations.

    Directory of Open Access Journals (Sweden)

    Zhaojuan Yang

    Full Text Available The mammalian target of the rapamycin (mTOR pathway, which drives cell proliferation, is frequently hyperactivated in a variety of malignancies. Therefore, the inhibition of the mTOR pathway has been considered as an appropriate approach for cancer therapy. In this study, we examined the roles of mTOR in the maintenance and differentiation of cancer stem-like cells (CSCs, the conversion of conventional cancer cells to CSCs and continuous tumor growth in vivo. In H-Ras-transformed mouse liver tumor cells, we found that pharmacological inhibition of mTOR with rapamycin greatly increased not only the CD133+ populations both in vitro and in vivo but also the expression of stem cell-like genes. Enhancing mTOR activity by over-expressing Rheb significantly decreased CD133 expression, whereas knockdown of the mTOR yielded an opposite effect. In addition, mTOR inhibition severely blocked the differentiation of CD133+ to CD133- liver tumor cells. Strikingly, single-cell culture experiments revealed that CD133- liver tumor cells were capable of converting to CD133+ cells and the inhibition of mTOR signaling substantially promoted this conversion. In serial implantation of tumor xenografts in nude BALB/c mice, the residual tumor cells that were exposed to rapamycin in vivo displayed higher CD133 expression and had increased secondary tumorigenicity compared with the control group. Moreover, rapamycin treatment also enhanced the level of stem cell-associated genes and CD133 expression in certain human liver tumor cell lines, such as Huh7, PLC/PRC/7 and Hep3B. The mTOR pathway is significantly involved in the generation and the differentiation of tumorigenic liver CSCs. These results may be valuable for the design of more rational strategies to control clinical malignant HCC using mTOR inhibitors.

  3. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Barbé, Caroline; Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul

    2015-09-15

    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. Copyright © 2015 the American Physiological Society.

  4. A Systems Biology Approach to Investigating Sex Differences in Cardiac Hypertrophy.

    Science.gov (United States)

    Harrington, Josephine; Fillmore, Natasha; Gao, Shouguo; Yang, Yanqin; Zhang, Xue; Liu, Poching; Stoehr, Andrea; Chen, Ye; Springer, Danielle; Zhu, Jun; Wang, Xujing; Murphy, Elizabeth

    2017-08-19

    Heart failure preceded by hypertrophy is a leading cause of death, and sex differences in hypertrophy are well known, although the basis for these sex differences is poorly understood. This study used a systems biology approach to investigate mechanisms underlying sex differences in cardiac hypertrophy. Male and female mice were treated for 2 and 3 weeks with angiotensin II to induce hypertrophy. Sex differences in cardiac hypertrophy were apparent after 3 weeks of treatment. RNA sequencing was performed on hearts, and sex differences in mRNA expression at baseline and following hypertrophy were observed, as well as within-sex differences between baseline and hypertrophy. Sex differences in mRNA were substantial at baseline and reduced somewhat with hypertrophy, as the mRNA differences induced by hypertrophy tended to overwhelm the sex differences. We performed an integrative analysis to identify mRNA networks that were differentially regulated in the 2 sexes by hypertrophy and obtained a network centered on PPARα (peroxisome proliferator-activated receptor α). Mouse experiments further showed that acute inhibition of PPARα blocked sex differences in the development of hypertrophy. The data in this study suggest that PPARα is involved in the sex-dimorphic regulation of cardiac hypertrophy. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  5. Left ventricular hypertrophy among chronic kidney disease patients ...

    African Journals Online (AJOL)

    Introduction: The presence of left ventricular hypertrophy (LVH) in patients with Chronic Kidney Disease (CKD) is associated with worsening cardiovascular outcomes. There is a dearth of data on LVH in Ghanaian CKD patients. Methods: This was a cross sectional study carried out at the Komfo Anokye Teaching Hospital ...

  6. Pharmacological targeting of CDK9 in cardiac hypertrophy.

    Science.gov (United States)

    Krystof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, Jirí

    2010-07-01

    Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of transcription, and among these CDK9 is directly associated with cardiac hypertrophy. CDK9 phosphorylates the C-terminal domain of RNA polymerase II and thus stimulates the elongation phase of transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of CDK9 is available. Recent determination of CDK9's crystal structure now allows the development of selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9 may therefore constitute a novel target for drugs against cardiac hypertrophy.

  7. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.

    Science.gov (United States)

    Egner, Ingrid M; Bruusgaard, Jo C; Gundersen, Kristian

    2016-08-15

    The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei. © 2016. Published by The Company of Biologists Ltd.

  8. Skeletal muscle function and hypertrophy are diminished in old age.

    NARCIS (Netherlands)

    Degens, H.; Alway, S.E.

    2003-01-01

    Muscle loss occurs during aging. To investigate whether the hypertrophic response is attenuated at old age, we used male Fischer 344 (26 months old; n = 5) and Fischer 344 x Brown Norway rats (6, 9, and 33 months old; n = 8, 10, and 6, respectively). Hypertrophy of the left plantaris muscle was

  9. Myocardial uptake of thallium-201 in rat with cardiac hypertrophy

    International Nuclear Information System (INIS)

    Torii, Yukio; Adachi, Haruhiko; Kizu, Akira; Nakagawa, Masao; Ijichi, Hamao

    1985-01-01

    The thallium-201 (TL) has been used in order to diagnose myocardial infarction and ischemia. Although it is well known that TL distributes in the myocardium in proportion to the distribution of coronary blood flow, the biological property of TL in the loaded myocardium remains unclear. We studied the myocardial uptake of TL in rat with cardiac hypertrophy. Experiments were performed in 30 anesthetized rats devided into 3 groups; control group (C,N=14), hypertrophy group (H,N=6) and diltiazem group (D, 0.3 mg/kg/min. IV. N=10). Cardiac hypertrophy was produced with the banding of the ascending aorta. Myocardial blood flow (MBF) was measured by microspheres labeled with Strontium-85. Cardiac weight was increased in H, and both MBF and TL uptake were proportionally increased. MBF was negatively correlated with the extraction fraction in C (r=-0.71), in H (r=-0.66) and in D (r=-0.85), and this relationship in H was significantly different from it in C (p<0.05), but not in D. From these results, we concluded that TL uptake in H is not always dependant on MBF and affected by the altered metabolism of hypertrophied myocardium. (author)

  10. Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy.

    Science.gov (United States)

    Sussman, Mark A; McCulloch, Andrew; Borg, Thomas K

    2002-11-15

    Biomechanical signaling is a complex interaction of both intracellular and extracellular components. Both passive and active components are involved in the extracellular environment to signal through specific receptors to multiple signaling pathways. This review provides an overview of extracellular matrix, specific receptors, and signaling pathways for biomechanical stimulation in cardiac hypertrophy.

  11. Role of hypoxia-inducible factor in diabetic myocardial hypertrophy ...

    African Journals Online (AJOL)

    Purpose: This study was carried out to investigate the role of hypoxia-inducible factor (HIF) in diabetic cardiomyopathy in vitro. Methods: Hypoxia was induced chemically in H9C2 cells (cardiac hypertrophy model), and the cells were treated with phenylephrine (PE), deferoxamine (DFO), PE + DFO, and HIF-1α siRNA under ...

  12. Role of hypoxia-inducible factor in diabetic myocardial hypertrophy

    African Journals Online (AJOL)

    Diabetes or hyperglycemia disrupts HIF-mediated cardiac hypertrophy adaptive regulatory mechanism [14]. In diabetic retinopathy, abnormal increase of ... detection system. Flow cytometry. After digesting with EDTA-free trypsin, the H9C2 cells were centrifuged at 1000 rpm for 5 min. After discarding the medium, the cells ...

  13. The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration.

    Science.gov (United States)

    Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S

    2015-01-01

    The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P=0.002), hepatic (39%, Prespiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR.

  14. Regulation of autophagy by amino acids and MTOR-dependent signal transduction

    NARCIS (Netherlands)

    Meijer, Alfred J.; Lorin, Séverine; Blommaart, Edward F.; Codogno, Patrice

    2015-01-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins

  15. PRAS40 is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection.

    Directory of Open Access Journals (Sweden)

    Zhao Zhong Chong

    Full Text Available Emerging strategies that center upon the mammalian target of rapamycin (mTOR signaling for neurodegenerative disorders may bring effective treatment for a number of difficult disease entities. Here we show that erythropoietin (EPO, a novel agent for nervous system disorders, prevents apoptotic SH-SY5Y cell injury in an oxidative stress model of oxygen-glucose deprivation through phosphatidylinositol-3-kinase (PI 3-K/protein kinase B (Akt dependent activation of mTOR signaling and phosphorylation of the downstream pathways of p70 ribosomal S6 kinase (p70S6K, eukaryotic initiation factor 4E-binding protein 1 (4EBP1, and proline rich Akt substrate 40 kDa (PRAS40. PRAS40 is an important regulatory component either alone or in conjunction with EPO signal transduction that can determine cell survival through apoptotic caspase 3 activation. EPO and the PI 3-K/Akt pathways control cell survival and mTOR activity through the inhibitory post-translational phosphorylation of PRAS40 that leads to subcellular binding of PRAS40 to the cytoplasmic docking protein 14-3-3. However, modulation and phosphorylation of PRAS40 is independent of other protective pathways of EPO that involve extracellular signal related kinase (ERK 1/2 and signal transducer and activator of transcription (STAT5. Our studies highlight EPO and PRAS40 signaling in the mTOR pathway as potential therapeutic strategies for development against degenerative disorders that lead to cell demise.

  16. The effects of β-elemene on the expression of mTOR, HIF-1α ...

    African Journals Online (AJOL)

    The purpose of this manuscript was to study the regulation effects of â-elemene combined with radiotherapy on three different gene expressions in lung adenocarcinoma A549 cell. mTOR gene, HIF-1á gene, Survivin gene were included in the gene group. Cell culture and RT-PCR were applied to finish this research.

  17. Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells

    Science.gov (United States)

    Quan, Juan-Hua; Choi, In-Wook; Yang, Jung-Bo; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Ryu, Jae-Sook

    2014-01-01

    Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time- and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite. PMID:25548410

  18. mTOR Hyperactivation in down syndrome hippocampus appears early during development

    NARCIS (Netherlands)

    Iyer, Anand M.; van Scheppingen, Jackelien; Milenkovic, Ivan; Anink, Jasper J.; Adle-Biassette, Homa; Kovacs, Gabor G.; Aronica, Eleonora

    2014-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway is a key developmental pathway involved in mechanisms underlying cellular aging and neurodegeneration. We hypothesized that its deregulation may occur during early brain development in patients with Down syndrome (DS). The expression

  19. Crosstalk of the mTOR network with stress granules and the TGF-beta pathway

    NARCIS (Netherlands)

    Prentzell, Mirja Tamara

    2018-01-01

    Alle organismen en cellen hebben voedingsstoffen nodig om te kunnen groeien en overleven. Het mTOR (mechanistic of mammalian target of rapamycin) kinase is een knooppunt in een complex signaaltransductie netwerk dat celgroei in reactie op voedingsstoffen faciliteert. Ontregeling van dit netwerk

  20. Identification of Palmitoleic Acid Controlled by mTOR Signaling as a Biomarker of Polymyositis

    Directory of Open Access Journals (Sweden)

    Geng Yin

    2017-01-01

    Full Text Available Polymyositis (PM is a chronic disease characterized by muscle pain, weakness, and increase in muscle-related enzymes, accompanied with inflammations in lymphocytes. However, it is not well understood how the molecular alternations in lymphocytes contribute to the development of polymyositis. The mechanistic target of rapamycin (mTOR signaling is the central regulator of metabolism and inflammation in mammalian cells. Based on previous studies, we proposed that mTOR signaling may control inflammatory reactions via lipid metabolism. In this study, we aim to figure out the role of mTOR signaling in the development of polymyositis and identify novel biomarkers for the detection and therapy of polymyositis. After screening and validation, we found that palmitoleic acid, a monounsaturated fatty acid, is highly regulated by mTOR signaling. Inhibition of mTORC1 activity decreases palmitoleic acid level. Moreover, mTORC1 regulates the level of palmitoleic acid by controlling its de novo synthesis. Importantly, increased palmitoleic acid has been proven to be a marker of polymyositis. Our work identifies palmitoleic acid in peripheral blood mononuclear cells (PBMC as a biomarker of polymyositis and offers new targets to the clinical therapy.

  1. Role of nutrients and mTOR signaling in the regulation of pancreatic progenitors development

    Directory of Open Access Journals (Sweden)

    Lynda Elghazi

    2017-06-01

    Full Text Available Objective: Poor fetal nutrition increases the risk of type 2 diabetes in the offspring at least in part by reduced embryonic β-cell growth and impaired function. However, it is not entirely clear how fetal nutrients and growth factors impact β-cells during development to alter glucose homeostasis and metabolism later in life. The current experiments aimed to test the impact of fetal nutrients and growth factors on endocrine development and how these signals acting on mTOR signaling regulate β-cell mass and glucose homeostasis. Method: Pancreatic rudiments in culture were used to study the role of glucose, growth factors, and amino acids on β-cell development. The number and proliferation of pancreatic and endocrine progenitor were assessed in the presence or absence of rapamycin. The impact of mTOR signaling in vivo on pancreas development and glucose homeostasis was assessed in models deficient for mTOR or Raptor in Pdx1 expressing pancreatic progenitors. Results: We found that amino acid concentrations, and leucine in particular, enhance the number of pancreatic and endocrine progenitors and are essential for growth factor induced proliferation. Rapamycin, an mTORC1 complex inhibitor, reduced the number and proliferation of pancreatic and endocrine progenitors. Mice lacking mTOR in pancreatic progenitors exhibited hyperglycemia in neonates, hypoinsulinemia and pancreatic agenesis/hypoplasia with pancreas rudiments containing ductal structures lacking differentiated acinar and endocrine cells. In addition, loss of mTORC1 by deletion of raptor in pancreatic progenitors reduced pancreas size with reduced number of β-cells. Conclusion: Together, these results suggest that amino acids concentrations and in particular leucine modulates growth responses of pancreatic and endocrine progenitors and that mTOR signaling is critical for these responses. Inactivation of mTOR and raptor in pancreatic progenitors suggested that alterations in some of

  2. Association of MTOR and AKT Gene Polymorphisms with Susceptibility and Survival of Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Ying Piao

    Full Text Available The phosphoinositide 3-kinase (PI3K/protein kinase B (PKB, AKT/mammalian target of rapamycin (mTOR signaling pathway plays a critical role in angiogenesis and cell growth, proliferation, metabolism, migration, differentiation, and apoptosis. Genetic diversity in key factors of this pathway may influence protein function and signal transduction, contributing to disease initiation and progression. Studies suggest that MTOR rs1064261 and AKT rs1130233 polymorphisms are associated with risk and/or prognosis of multiple cancer types. However, this relationship with gastric cancer (GC remains unclear. The aim of this study was to investigate the role of MTOR and AKT polymorphisms in the risk and prognosis of GC.The Sequenom MassARRAY platform was used to genotype 1842 individuals for MTOR rs1064261 T→C and AKT rs1130233 G→A polymorphisms. ELISA was used to detect Helicobacter pylori antibodies in serum. Immunohistochemical analysis was used to detect total and phosphorylated MTOR and AKT proteins.The MTOR rs1064261 (TC+CC genotype and the AKT rs1130233 (GA+AA genotype were associated with increased risk of GC in men (P = 0.049, P = 0.030. In H. pylori-negative individuals, the AKT rs1130233 GA and (GA+AA genotypes were related to increased risk of atrophic gastritis (AG; P = 0.012, P = 0.024. Notably, the AKT rs1130233 (GA+AA genotype demonstrated significant interactions with H. pylori in disease progression from healthy controls (CON to AG (P = 0.013 and from AG to GC (P = 0.049. Additionally, for individuals with the AKT rs1130233 variant, those in the H. pylori-positive group had higher levels of phosphorylated AKT (p-AKT expression. The AKT rs1130233 genotype was found to be associated with clinicopathological parameters including lymph node metastasis and alcohol drinking (P<0.05.MTOR rs1064261and AKT rs1130233 polymorphisms were associated with increased GC risk in males and increased AG risk in H. pylori-negative individuals. A significant

  3. TIME COURSE CHANGE OF IGF1/AKT/MTOR/P70S6K PATHWAY ACTIVATION IN RAT GASTROCNEMIUS MUSCLE DURING REPEATED BOUTS OF ECCENTRIC EXERCISE

    Directory of Open Access Journals (Sweden)

    Eisuke Ochi

    2010-06-01

    Full Text Available The purpose of this study was to examine whether insulin-like growth factor (IGF-1 and Akt/mTOR/p70S6K pathway activity is altered by chronic eccentric exercise in rat medial gastrocnemius muscle. Male Wistar rats (n = 24 were randomly assigned to 1 of the 2 groups: eccentric exercise (ECC group or sham-operated control (CON group. Rats in the ECC group were trained every second day for 10 days (5 sessions in total or 20 days (10 sessions in total. After either 5 or 10 exercise sessions, muscle specimens were dissected and weighed. The mRNA expression of IGF-1 and its variant, mechano growth factor (MGF, was evaluated using real time reverse transcriptase-polymerase chain reaction (RT-PCR. Tissue concentrations of Akt (P, mTOR (P, and p70S6K (P were measured by using western blot analysis. The medial gastrocnemius muscle mass of the ECC group did not show any significant difference after 5 exercise sessions, whereas the muscle mass increased significantly after 10 exercise sessions with a concomitant increase in the cross-sectional area of muscle fibers (p < 0.05. The expression of IGF-1 mRNA and the tissue concentrations of Akt (P and p70S6K (P after 10 exercise sessions was significantly higher than those of the age-matched controls and the rats that received 5 exercise sessions. The expression of MGF mRNA in both ECC5S and ECC10S were significantly higher than that in each period-matched control (p < 0.01. The tissue concentration of mTOR (P after 10 sessions showed a significant increase when compared with period-matched controls (p < 0.01. These results suggest that activation of the IGF-1/Akt/mTOR/p70S6K signaling pathway becomes dominant in the later phase of chronic exercise, when significant muscular hypertrophy is observed

  4. Melatonin protects against myocardial hypertrophy induced by lipopolysaccharide.

    Science.gov (United States)

    Lu, Qi; Yi, Xin; Cheng, Xiang; Sun, Xiaohui; Yang, Xiangjun

    2015-04-01

    Melatonin is thought to have the ability of antiatherogenic, antioxidant, and vasodilatory. It is not only a promising protective in acute myocardial infarction but is also a useful tool in the treatment of pathological remodeling. However, its role in myocardial hypertrophy remains unclear. In this study, we investigated the protective effects of melatonin on myocardial hypertrophy induced by lipopolysaccharide (LPS) and to identify their precise mechanisms. The cultured myocardial cell was divided into six groups: control group, LPS group, LPS + ethanol (4%), LPS + melatonin (1.5 mg/ml) group, LPS + melatonin (3 mg/ml) group, and LPS + melatonin (6 mg/ml) group. The morphologic change of myocardial cell was observed by inverted phase contrast microscope. The protein level of myocardial cell was measured by Coomassie brilliant blue protein kit. The secretion level of tumor necrosis factor-α (TNF-α) was evaluated by enzyme-linked immunosorbent assay (ELISA). Ca(2+) transient in Fura-2/AM-loaded cells was measured by Till image system. The expression of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) was measured by Western blot analysis. Our data demonstrated that LPS induced myocardial hypertrophy, promoted the secretion levels of TNF-α, and increased Ca(2+) transient level and the expression of CaMKII and CaN. Administration of melatonin 30 min prior to LPS stimulation dose-dependently attenuated myocardial hypertrophy. In conclusion, the results revealed that melatonin had the potential to protect against myocardial hypertrophy induced by LPS in vitro through downregulation of the TNF-α expression and retains the intracellular Ca(2+) homeostasis.

  5. Tissue characteristics in left ventricular hypertrophy using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yoshida, Shigeru; Ueno, Yuji; Arita, Mikio; Nishio, Ichiro; Masuyama, Yoshiaki

    1988-01-01

    For 15 normotensive patients with asymmetric septal hypertrophy (ASH), 10 hypertensive patients with concentric hypertrophy (CH), and five normal subjects (N), we examined changes in myocardial T 1 and T 2 values related to the cardiac cycle. The usefulness of those values in differentiating diseases with left ventricular hypertrophy was evaluated. Left ventricular (LV) short-axis spin echo images and inversion recovery images were obtained at endsystolic and diastolic cardiac phases, and T 1 and T 2 images were calculated. The regional wall thickness (WT) and T 1 and T 2 values were measured in the anterior septum, anterior wall, lateral wall, posterior wall and posterior septum. Myocardial T 1 and T 2 values were significantly decreased in systole (T 1 : 185.6±37.9 msec, T 2 : 24.4±6.3 msec, mean±SD) compared to those in diastole (T 1 : 249.2±56.7 msec, T 2 : 31.7±9.4 msec). In both the ASH and CH groups, significant correlations were observed between diastolic T 1 values and WT (ASH: r = 0.80, p 2 values and WT (ASH: r = 0.58, p 1 values in the ASH group (343.4±40.5 msec) were significantly higher than those of the CH group (247.3±21.4 msec), although the mean wall thickness values were similar in both groups. The T 1 /WT and T 2 /WT were significantly lower in the CH group than those in the ASH and N groups. In conclusion, myocardial T 1 and T 2 values were related not only to the cardiac cycle, but to wall thickness and to types of hypertrophy. The T 1 and T 2 values may be useful for distinguishing hypertrophic cardiomyopathy from hypertrophy due to hypertension. (author)

  6. Fluoxetine regulates mTOR signalling in a region-dependent manner in depression-like mice

    Science.gov (United States)

    Liu, Xiao-Long; Luo, Liu; Mu, Rong-Hao; Liu, Bin-Bin; Geng, Di; Liu, Qing; Yi, Li-Tao

    2015-01-01

    Previous studies have demonstrated that the mammalian target of rapamycin (mTOR) signaling pathway has an important role in ketamine-induced, rapid antidepressant effects despite the acute administration of fluoxetine not affecting mTOR phosphorylation in the brain. However, the effects of long-term fluoxetine treatment on mTOR modulation have not been assessed to date. In the present study, we examined whether fluoxetine, a type of commonly used antidepressant agent, alters mTOR signaling following chronic administration in different brain regions, including the frontal cortex, hippocampus, amygdala and hypothalamus. We also investigated whether fluoxetine enhanced synaptic protein levels in these regions via the activation of the mTOR signaling pathway and its downstream regulators, p70S6K and 4E-BP-1. The results indicated that chronic fluoxetine treatment attenuated the chronic, unpredictable, mild stress (CUMS)-induced mTOR phosphorylation reduction in the hippocampus and amygdala of mice but not in the frontal cortex or the hypothalamus. Moreover, the CUMS-decreased PSD-95 and synapsin I levels were reversed by fluoxetine, and these effects were blocked by rapamycin only in the hippocampus. In conclusion, our findings suggest that chronic treatment with fluoxetine can induce synaptic protein expression by activating the mTOR signaling pathway in a region-dependent manner and mainly in the hippocampus. PMID:26522512

  7. Cord Blood Cells Responses to IL2, IL7 and IL15 Cytokines for mTOR Expression

    Directory of Open Access Journals (Sweden)

    Anahita Mohammadian

    2017-04-01

    Full Text Available Purpose: Mammalian target of rapamycin (mTORis important in hematopoiesis and affect cell growth,differentiation and survival. Although previous studies were identified the effect of cytokines on the mononuclear cells development however the cytokines effect on mTOR in cord blood mononuclear cells was unclear. The aim of this study was to evaluate mTOR expression in cord blood mononuclear and cord blood stem cells (CD34+ cells in culture conditions for lymphoid cell development. Methods: Isolation of The mononuclear cells (MNCs from umbilical cord blood were done with use of Ficollpaque density gradient. We evaluated cultured cord blood mononuclear and CD34+ cells in presece of IL2, IL7 and IL15 at distinct time points during 21 days by using flow cytometry. In this study, we presented the role of IL2, IL7 and IL15 on the expression of mTOR in cord blood cells. Results: mTOR expression were increased in peresence of IL2, IL7 and IL15 in day 14 and afterword reduced. However in persence of IL2 and IL15 expression of mTOR significantly reduced. mTOR expression in CD34+ cells decreased significantly from day7 to day 21 in culture. Conclusion: cytokines play important role in mTOR expression during hematopoiesis and development of cord blood mononuclear cells.

  8. Correlation between telomerase and mTOR pathway in cancer stem cells.

    Science.gov (United States)

    Dogan, Fatma; Biray Avci, Cigir

    2018-01-30

    Cancer stem cells (CSCs), which are defined as a subset of tumor cells, are able to self-renew, proliferate, differentiate similar to normal stem cells. Therefore, targeting CSCs has been considered as a new approach in cancer therapy. The mammalian target of rapamycin (mTOR) is a receptor tyrosine kinase which plays an important role in regulating cell proliferation, differentiation, cell growth, self-renewal in CSCs. On the other hand, hTERT overactivation provides replicative feature and immortality to CSCs, so the stemness and replicative properties of CSCs depend on telomerase activity. Therefore hTERT/telomerase activity may become a universal biomarker for anticancer therapy and it is an attractive therapeutic target for CSCs. It is known that mTOR regulates telomerase activity at the translational and post-translational level. Researchers show that mTOR inhibitor rapamycin reduces telomerase activity without changing hTERT mRNA activity. Correlation between mTOR and hTERT is important for survival and immortality of cancer cells. In addition, the PI3K/AKT/mTOR signaling pathway and hTERT up-regulation are related with cancer stemness features and drug resistance. mTOR inhibitor and TERT inhibitor combination may construct a novel strategy in cancer stem cells and it can make a double effect on telomerase enzyme. Consequently, inhibition of PI3K/AKT/mTOR signaling pathway components and hTERT activation may prohibit CSC self-renewal and surpass CSC-mediated resistance in order to develop new cancer therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cortisol inhibits mTOR signaling in avascular necrosis of the femoral head.

    Science.gov (United States)

    Liao, Yun; Su, Rui; Zhang, Ping; Yuan, Bo; Li, Ling

    2017-10-18

    ANFH is a major health problem, to which long lasting and definitive treatments are lacking. The aim of this study is to study RNA alterations attributed to cortisol-induced ANFH. Rat models were stratified into three groups: in vitro group (n = 20) for molecular biological assays, control group (n = 3), and ANFH group induced using lipopolysaccharide and dexamethasone (n = 3). Bone marrow-derived endothelial progenitor cells (BM-EPCs) were extracted from the rats. An RNA expression array was performed on BM-EPCs, and enriched genes were subject to pathway analysis. In vitro studies following findings of array results were also performed using the isolated BM-EPCs. Significant alterations in mammalian target of rapamycin (mTOR) and HIF signaling pathways were identified in BM-EPCs of ANFH. By applying cortisol and dexamethasone to BM-EPCs, significant changes in mTOR and HIF elements were identified. The alteration of HIF pathways appeared to be downstream of mTOR signaling. Glucocorticoid receptor (GR) expression was related to glucocorticoid-dependent mRNA expression of mTOR/HIF genes. mTOR-dependent angiogenesis but not anabolism was the target of GR in ANFH. Inhibition of mTOR signaling also induced apoptosis of BM-EPCs via CHOP-dependent DR5 induction in response to GR stimulation. Decreased mTOR signaling in response to GR stimulation leading to downregulated HIF pathway as well as increased apoptosis could be the pathophysiology.

  10. PPARalpha siRNA-treated expression profiles uncover the causal sufficiency network for compound-induced liver hypertrophy.

    Directory of Open Access Journals (Sweden)

    Xudong Dai

    2007-03-01

    Full Text Available Uncovering pathways underlying drug-induced toxicity is a fundamental objective in the field of toxicogenomics. Developing mechanism-based toxicity biomarkers requires the identification of such novel pathways and the order of their sufficiency in causing a phenotypic response. Genome-wide RNA interference (RNAi phenotypic screening has emerged as an effective tool in unveiling the genes essential for specific cellular functions and biological activities. However, eliciting the relative contribution of and sufficiency relationships among the genes identified remains challenging. In the rodent, the most widely used animal model in preclinical studies, it is unrealistic to exhaustively examine all potential interactions by RNAi screening. Application of existing computational approaches to infer regulatory networks with biological outcomes in the rodent is limited by the requirements for a large number of targeted permutations. Therefore, we developed a two-step relay method that requires only one targeted perturbation for genome-wide de novo pathway discovery. Using expression profiles in response to small interfering RNAs (siRNAs against the gene for peroxisome proliferator-activated receptor alpha (Ppara, our method unveiled the potential causal sufficiency order network for liver hypertrophy in the rodent. The validity of the inferred 16 causal transcripts or 15 known genes for PPARalpha-induced liver hypertrophy is supported by their ability to predict non-PPARalpha-induced liver hypertrophy with 84% sensitivity and 76% specificity. Simulation shows that the probability of achieving such predictive accuracy without the inferred causal relationship is exceedingly small (p < 0.005. Five of the most sufficient causal genes have been previously disrupted in mouse models; the resulting phenotypic changes in the liver support the inferred causal roles in liver hypertrophy. Our results demonstrate the feasibility of defining pathways mediating drug

  11. Leucine supplementation of a chronically restricted protein and energy diet enhances mTOR pathway activation but not muscle protein synthesis in neonatal pigs.

    Science.gov (United States)

    Manjarín, Rodrigo; Columbus, Daniel A; Suryawan, Agus; Nguyen, Hanh V; Hernandez-García, Adriana D; Hoang, Nguyet-Minh; Fiorotto, Marta L; Davis, Teresa

    2016-01-01

    Suboptimal nutrient intake represents a limiting factor for growth and long-term survival of low-birth weight infants. The objective of this study was to determine if in neonates who can consume only 70 % of their protein and energy requirements for 8 days, enteral leucine supplementation will upregulate the mammalian target of rapamycin (mTOR) pathway in skeletal muscle, leading to an increase in protein synthesis and muscle anabolism. Nineteen 4-day-old piglets were fed by gastric tube 1 of 3 diets, containing (kg body weight(-1) · day(-1)) 16 g protein and 190 kcal (CON), 10.9 g protein and 132 kcal (R), or 10.8 g protein + 0.2 % leucine and 136 kcal (RL) at 4-h intervals for 8 days. On day 8, plasma AA and insulin levels were measured during 6 post-feeding intervals, and muscle protein synthesis rate and mTOR signaling proteins were determined at 120 min post-feeding. At 120 min, leucine was highest in RL (P protein synthesis, phosphorylation of S6 kinase (p-S6K1) and 4E-binding protein (p-4EBP1), and activation of eukaryotic initiation factor 4 complex (eIF4E · eIF4G). RL increased (P ≤ 0.01) p-S6K1, p-4EBP1 and eIF4E · eIF4G compared to R. In conclusion, when protein and energy intakes are restricted for 8 days, leucine supplementation increases muscle mTOR activation, but does not improve body weight gain or enhance skeletal muscle protein synthesis in neonatal pigs.

  12. Blocking mammalian target of rapamycin (mTOR improves neuropathic pain evoked by spinal cord injury

    Directory of Open Access Journals (Sweden)

    Wang Xiaoping

    2016-01-01

    Full Text Available Spinal cord injury (SCI is an extremely serious type of physical trauma observed in clinics. Neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effective therapeutic agents and treatment strategies. Mammalian target of rapamycin (mTOR is a serine/threonine protein kinase that is well known for its critical roles in regulating protein synthesis and growth. Furthermore, compelling evidence supports the notion that widespread dysregulation of mTOR and its downstream pathways are involved in neuropathic pain. Thus, in this study we specifically examined the underlying mechanisms by which mTOR and its signaling pathways are involved in SCI-evoked neuropathic pain in a rat model. Overall, we demonstrated that SCI increased the protein expression of p-mTOR, and mTORmediated- phosphorylation of 4E–binding protein 4 (4E-BP1 and p70 ribosomal S6 protein kinase 1 (S6K1 in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal mTOR by intrathecal injection of rapamycin significantly inhibited pain responses induced by mechanical and thermal stimulation. In addition, blocking spinal phosphatidylinositide 3-kinase (p-PI3K pathway significantly attenuated activities of p-mTOR pathways as well as mechanical and thermal hyperalgesia in SCI rats. Moreover, blocking mTOR and PI3K decreased the enhanced levels of substance P and calcitonin gene-related peptide (CGRP in the dorsal horn of SCI rats. We revealed specific signaling pathways leading to SCI-evoked neuropathic pain, including the activation of PI3K, mTOR and its downstream signaling pathways. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.

  13. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells.

    Science.gov (United States)

    Jones, Russell G; Pearce, Edward J

    2017-05-16

    Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. Copyright © 2017. Published by Elsevier Inc.

  14. Comment on "A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation": building a model of the mTOR signaling network with a potentially faulty tool.

    Science.gov (United States)

    Manning, Brendan D

    2012-07-10

    In their study published in Science Signaling (Research Article, 27 March 2012, DOI: 10.1126/scisignal.2002469), Dalle Pezze et al. tackle the dynamic and complex wiring of the signaling network involving the protein kinase mTOR, which exists within two distinct protein complexes (mTORC1 and mTORC2) that differ in their regulation and function. The authors use a combination of immunoblotting for specific phosphorylation events and computational modeling. The primary experimental tool employed is to monitor the autophosphorylation of mTOR on Ser(2481) in cell lysates as a surrogate for mTOR activity, which the authors conclude is a specific readout for mTORC2. However, Ser(2481) phosphorylation occurs on both mTORC1 and mTORC2 and will dynamically change as the network through which these two complexes are connected is manipulated. Therefore, models of mTOR network regulation built using this tool are inherently imperfect and open to alternative explanations. Specific issues with the main conclusion made in this study, involving the TSC1-TSC2 (tuberous sclerosis complex 1 and 2) complex and its potential regulation of mTORC2, are discussed here. A broader goal of this Letter is to clarify to other investigators the caveats of using mTOR Ser(2481) phosphorylation in cell lysates as a specific readout for either of the two mTOR complexes.

  15. Viral gametocytic hypertrophy of Crassostrea gigas in France: from occasional records to disease emergence?

    Science.gov (United States)

    Garcia, Céline; Robert, Maeva; Arzul, Isabelle; Chollet, Bruno; Joly, Jean-Pierre; Miossec, Laurence; Comtet, Thierry; Berthe, Franck

    2006-06-23

    Viral gametocytic hypertrophy was reported for the first time in 2001 in Pacific oyster Crassostrea gigas in France. Since this date, the number of reported cases and the distribution area have increased every year; however, the cases are not associated with macroscopic signs or increased mortality rates. Both male and female gametes were hypertrophied and basophilic inclusions were observed in gamete nuclei. Transmission electron microscopy revealed the presence of viral particles in these intranuclear basophilic inclusions. These particles had characteristics similar to those of the Papillomaviridae and Polyoma viridae families: they were small, non-enveloped, icosahedral, and 44 to 56 nm in diameter. The viral particles were found in male, female and hermaphrodite oysters and no significant difference in viral infection was observed between those groups. The frequency of detection and the intensity of infection were low and no host defence reaction was recognised, suggesting that the viral particles had a weak impact on C. gigas. The viral particles described in the present study seem to be similar to these described in C. virginica in the USA and Canada and in C. gigas in Korea, but further studies are required to confirm their identity. The issue of a possible emergence of this infection is discussed.

  16. Region specific patella tendon hypertrophy in humans following resistance training

    DEFF Research Database (Denmark)

    Kongsgaard, M.; Reitelseder, S; Pedersen, T.G.

    2007-01-01

    AIM: To examine if cross-sectional area (CSA) differs along the length of the human patellar tendon (PT), and if there is PT hypertrophy in response to resistance training. METHODS: Twelve healthy young men underwent baseline and post-training assessments. Maximal isometric knee extension strength...... (MVC) was determined unilaterally in both legs. PT CSA was measured at the proximal-, mid- and distal PT level and quadriceps muscle CSA was measured at mid-thigh level using magnetic resonance imaging. Mechanical properties of the patellar tendons were determined using ultrasonography. Subsequently....... CONCLUSIONS: To our knowledge, this study is the first to report tendon hypertrophy following resistance training. Further, the data show that the human PT CSA varies along the length of the tendon....

  17. Repeated blood flow restriction induces muscle fiber hypertrophy.

    Science.gov (United States)

    Sudo, Mizuki; Ando, Soichi; Kano, Yutaka

    2017-02-01

    We recently developed an animal model to investigate the effects of eccentric contraction (ECC) and blood flow restriction (BFR) on muscle tissue at the cellular level. This study clarified the effects of repeated BFR, ECC, and BFR combined with ECC (BFR+ECC) on muscle fiber hypertrophy. Male Wistar rats were assigned to 3 groups: BFR, ECC, and BFR+ECC. The contralateral leg in the BFR group served as a control (CONT). Muscle fiber cross-sectional area (CSA) of the tibialis anterior was determined after the respective treatments for 6 weeks. CSA was greater in the BFR+ECC group than in the CONT (P muscle fiber hypertrophy at the cellular level. Muscle Nerve 55: 274-276, 2017. © 2016 Wiley Periodicals, Inc.

  18. Malondialdehyde in benign prostate hypertrophy: a useful marker?

    Directory of Open Access Journals (Sweden)

    Rosaria Alba Merendino

    2003-01-01

    Full Text Available Benign prostate hypertrophy (BPH is the most common benign tumor in men due to obstruction of the urethra and, finally, uremia. Malondialdehyde (MDA is a product derived from peroxidation of polyunsaturated fatty acids and related esters. Evaluation of MDA in serum represents a non-invasive biomarker of oxidative stress. Prostate-specific antigen (PSA is a sensitive marker for prostatic hypertrophy and cancer. We analyzed MDA serum levels to evaluate the oxidative stress in BPH. To this end, 22 BPH patients and 22 healthy donors were enrolled. Data show an increase of MDA level in BPH patients and a positive correlation between PSA and MDA levels. In conclusion, we describe a previously unknown relationship between PSA and MDA as an index of inflammation and oxidative stress in BPH.

  19. mTOR pathway inhibition prevents neuroinflammation and neuronal death in a mouse model of cerebral palsy.

    Science.gov (United States)

    Srivastava, Isha N; Shperdheja, Jona; Baybis, Marianna; Ferguson, Tanya; Crino, Peter B

    2016-01-01

    Mammalian target of rapamycin (mTOR) pathway signaling governs cellular responses to hypoxia and inflammation including induction of autophagy and cell survival. Cerebral palsy (CP) is a neurodevelopmental disorder linked to hypoxic and inflammatory brain injury however, a role for mTOR modulation in CP has not been investigated. We hypothesized that mTOR pathway inhibition would diminish inflammation and prevent neuronal death in a mouse model of CP. Mouse pups (P6) were subjected to hypoxia-ischemia and lipopolysaccharide-induced inflammation (HIL), a model of CP causing neuronal injury within the hippocampus, periventricular white matter, and neocortex. mTOR pathway inhibition was achieved with rapamycin (an mTOR inhibitor; 5mg/kg) or PF-4708671 (an inhibitor of the downstream p70S6kinase, S6K, 75 mg/kg) immediately following HIL, and then for 3 subsequent days. Phospho-activation of the mTOR effectors p70S6kinase and ribosomal S6 protein and expression of hypoxia inducible factor 1 (HIF-1α) were assayed. Neuronal cell death was defined with Fluoro-Jade C (FJC) and autophagy was measured using Beclin-1 and LC3II expression. Iba-1 labeled, activated microglia were quantified. Neuronal death, enhanced HIF-1α expression, and numerous Iba-1 labeled, activated microglia were evident at 24 and 48 h following HIL. Basal mTOR signaling, as evidenced by phosphorylated-S6 and -S6K levels, was unchanged by HIL. Rapamycin or PF-4,708,671 treatment significantly reduced mTOR signaling, neuronal death, HIF-1α expression, and microglial activation, coincident with enhanced expression of Beclin-1 and LC3II, markers of autophagy induction. mTOR pathway inhibition prevented neuronal death and diminished neuroinflammation in this model of CP. Persistent mTOR signaling following HIL suggests a failure of autophagy induction, which may contribute to neuronal death in CP. These results suggest that mTOR signaling may be a novel therapeutic target to reduce neuronal cell death in

  20. Pharmacological targeting of CDK9 in cardiac hypertrophy

    Czech Academy of Sciences Publication Activity Database

    Kryštof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, J.

    2010-01-01

    Roč. 30, č. 4 (2010), s. 646-666 ISSN 0198-6325 R&D Projects: GA ČR GA204/08/0511; GA ČR GA301/09/1832; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : P-TEFb * cardiac myocyte * cardiac hypertrophy Subject RIV: CE - Biochemistry Impact factor: 10.228, year: 2010

  1. Differential control of ageing and lifespan by isoforms and splice variants across the mTOR network.

    Science.gov (United States)

    Razquin Navas, Patricia; Thedieck, Kathrin

    2017-07-15

    Ageing can be defined as the gradual deterioration of physiological functions, increasing the incidence of age-related disorders and the probability of death. Therefore, the term ageing not only reflects the lifespan of an organism but also refers to progressive functional impairment and disease. The nutrient-sensing kinase mTOR (mammalian target of rapamycin) is a major determinant of ageing. mTOR promotes cell growth and controls central metabolic pathways including protein biosynthesis, autophagy and glucose and lipid homoeostasis. The concept that mTOR has a crucial role in ageing is supported by numerous reports on the lifespan-prolonging effects of the mTOR inhibitor rapamycin in invertebrate and vertebrate model organisms. Dietary restriction increases lifespan and delays ageing phenotypes as well and mTOR has been assigned a major role in this process. This may suggest a causal relationship between the lifespan of an organism and its metabolic phenotype. More than 25 years after mTOR's discovery, a wealth of metabolic and ageing-related effects have been reported. In this review, we cover the current view on the contribution of the different elements of the mTOR signalling network to lifespan and age-related metabolic impairment. We specifically focus on distinct roles of isoforms and splice variants across the mTOR network. The comprehensive analysis of mouse knockout studies targeting these variants does not support a tight correlation between lifespan prolongation and improved metabolic phenotypes and questions the strict causal relationship between them. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Effect of prophylactic digitalization on the development of myocardial hypertrophy.

    Science.gov (United States)

    Cutilletta, A F; Rudnik, M; Arcilla, R A; Straube, R

    1977-11-01

    The effect of prophylactic digitalization on the development of left ventricular hypertrophy was studied in adult rats. Digitoxin, 0.1 mg/100 g body wt or solvent was given daily for 1 wk prior to either aortic constriction or sham operation and was continued until the animals were killed, either 1 or 4 wk after surgery. A hemodynamic study was done in those animals killed 1 wk after surgery; hearts of all animals were examined for evidence of myocardial hypertrophy. Constriction of the ascending aorta had no significant effect on cardiac output but did reduce peak flow velocity and flow acceleration. An increase in left ventricular mass, RNA, and hydroxyproline was found in the animals with aortic constriction. Digitoxin treatment did not alter peak flow velocity or flow acceleration, but did significantly increase isovolumic (dP/dt)P-1. Digitoxin had no effect on body weight, heart weight, RNA, or hydroxyproline in either the sham-operated animals or in the animals with aortic constriction. Therefore, despite plasma digitoxin levels sufficient to affect myocardial contractility, left ventricular hypertrophy still developed after aortic constriction.

  3. Hypertrophy of cultured bovine aortic endothelium following irradiation

    International Nuclear Information System (INIS)

    Rosen, E.M.; Vinter, D.W.; Goldberg, I.D.

    1989-01-01

    The vascular endothelium is a vital multifunctional tissue which covers the entire luminal surface of the circulatory system. Loss of continuity of the endothelial lining normally results in cell migration and proliferation to make up for cell loss and to ensure that exposure of the thrombogenic subendothelium to platelets and clotting factors is minimized. We showed that ionizing radiation (400-3000 cGy) causes dose-dependent cell loss from confluent monolayer cultures of bovine aortic endothelium, which cannot immediately be compensated by cell proliferation. Within 24 h, the remaining attached cells undergo substantial somatic hypertrophy (evidenced by increased protein content, cell volume, and attachment area) but remain diploid. If cell loss is not excessive, monolayer continuity is restored within several days. Although reduced protein degradation may contribute, most of the protein accumulation is due to synthesis of new protein. Unlike endothelium, irradiation of smooth muscle cultures causes neither cell loss nor increased protein synthesis. Hypertrophy of irradiated endothelial cells appears to be a consequence of a proliferative stimulus (cell loss) in a population of cells which is unable to divide. It can be modulated by replating irradiated cells at different densities. We suggest that endothelial hypertrophy is an early vascular homeostatic response before clonal proliferation of surviving cells or repopulation by cells from outside of the irradiated field can compensate for cell loss

  4. Mouse models for the study of postnatal cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    A. Del Olmo-Turrubiarte

    2015-06-01

    Full Text Available The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH, in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP isoproterenol (ISO was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB, neonates (7–15 days and young adults (6 weeks of age. Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR, alpha and beta myosins (α-MHC, β-MHC and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS. Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  5. BMAL1-dependent regulation of the mTOR signaling pathway delays aging.

    Science.gov (United States)

    Khapre, Rohini V; Kondratova, Anna A; Patel, Sonal; Dubrovsky, Yuliya; Wrobel, Michelle; Antoch, Marina P; Kondratov, Roman V

    2014-01-01

    The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1-/- mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism.

  6. mTOR: A Link from the Extracellular Milieu to Transcriptional Regulation of Oligodendrocyte Development

    Directory of Open Access Journals (Sweden)

    Teresa L. Wood

    2013-02-01

    Full Text Available Oligodendrocyte development is controlled by numerous extracellular signals that regulate a series of transcription factors that promote the differentiation of oligodendrocyte progenitor cells to myelinating cells in the central nervous system. A major element of this regulatory system that has only recently been studied is the intracellular signalling from surface receptors to transcription factors to down-regulate inhibitors and up-regulate inducers of oligodendrocyte differentiation and myelination. The current review focuses on one such pathway: the mTOR (mammalian target of rapamycin pathway, which integrates signals in many cell systems and induces cell responses including cell proliferation and cell differentiation. This review describes the known functions of mTOR as they relate to oligodendrocyte development, and its recently discovered impact on oligodendrocyte differentiation and myelination. A potential model for its role in oligodendrocyte development is proposed.

  7. CXCR4/CXCL12/CXCR7 axis is functional in neuroendocrine tumors and signals on mTOR.

    Science.gov (United States)

    Circelli, Luisa; Sciammarella, Concetta; Guadagno, Elia; Tafuto, Salvatore; del Basso de Caro, Marialaura; Botti, Giovanni; Pezzullo, Luciano; Aria, Massimo; Ramundo, Valeria; Tatangelo, Fabiana; Losito, Nunzia Simona; Ieranò, Caterina; D'Alterio, Crescenzo; Izzo, Francesco; Ciliberto, Gennaro; Colao, Annamaria; Faggiano, Antongiulio; Scala, Stefania

    2016-04-05

    To evaluate the possible crosstalk between C-X-C chemokine receptor 4 (CXCR4)/C-X-C motif chemokine 12 (CXCL12)/C-X-C chemokine receptor 7 (CXCR7) axis with the mammalian target of rapamycin (mTOR) pathway in neuroendocrine tumors (NETs). Sixty-one human NETs were included into the study. CXCR4/CXCL12/CXCR7 axis and mTOR pathway were assessed by qRT-PCR and immunohistochemistry (IHC). The effect of mTOR inhibitor, RAD001, was evaluated on CXCR4 pathway through proliferation and p-Erk and p-AKT induction. CXCR4/CXCL12/CXCR7 axis and p-mTOR were found to be active and correlated with grading, Ki67 index and tumor stage. mTOR pathway activation significantly correlated with poor prognosis. In human NET cells, CXCL12 induced mTOR signalling while AMD3100 (CXCR4-antagonist) impaired it. The mTOR-antagonist, RAD001, impaired the CXCL12-dependent induction of CXCR4 downstream effectors. Combination of AMD3100 and RAD001 potentiate cell growth inhibition. CXCR4/CXCL12/CXCR7 axis is active in NETs and signals on mTOR. CXCR4 might be considered a prognostic factor in NETs. Combined treatment with AMD3100 and RAD001 may provide clinical benefits in NET patients with drug-resistant.

  8. A pilot trial of the mTOR (mammalian target of rapamycin) inhibitor RAD001 in patients with advanced B-CLL.

    Science.gov (United States)

    Decker, Thomas; Sandherr, Michael; Goetze, Katharina; Oelsner, Madlen; Ringshausen, Ingo; Peschel, Christian

    2009-03-01

    Although B-cell chronic lymphocytic leukemia (CLL) is treatable, it remains an incurable disease and most patients inevitably suffer relapse. Many therapeutic options exist for those requiring therapy, including monoclonal antibodies and stem cell transplantation, but remissions tend to last shorter in the course of the disease. Targeting the cell cycle has recently been realized to be an attractive therapeutic approach in solid and hematological malignancies, and the proliferative nature of B-CLL is increasingly accepted. Here, we report data on a phase II pilot trial with the oral mammalian target of rapamycin (mTOR) inhibitor RAD001 5 mg/daily in patients with advanced B-CLL who had progressive disease after at least two lines of treatment. After treatment of seven patients, this trial was stopped because of toxicity concerns, although some degree of activity was observed (one partial remission, three patients with stable disease). Interestingly, cyclin E expression decreased in responding patients. Further strategies of mTOR inhibition by RAD001 in B-CLL should focus on different treatment schedules, adequate anti-infectious prophylaxis, or combinations with cytotoxic drugs.

  9. MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors.

    Science.gov (United States)

    Ogata, Takehiro; Naito, Daisuke; Nakanishi, Naohiko; Hayashi, Yukiko K; Taniguchi, Takuya; Miyagawa, Kotaro; Hamaoka, Tetsuro; Maruyama, Naoki; Matoba, Satoaki; Ikeda, Koji; Yamada, Hiroyuki; Oh, Hidemasa; Ueyama, Tomomi

    2014-03-11

    The actions of catecholamines on adrenergic receptors (ARs) induce sympathetic responses, and sustained activation of the sympathetic nervous system results in disrupted circulatory homeostasis. In cardiomyocytes, α1-ARs localize to flask-shaped membrane microdomains known as "caveolae." Caveolae require both caveolin and cavin proteins for their biogenesis and function. However, the functional roles and molecular interactions of caveolar components in cardiomyocytes are poorly understood. Here, we showed that muscle-restricted coiled-coil protein (MURC)/Cavin-4 regulated α1-AR-induced cardiomyocyte hypertrophy through enhancement of ERK1/2 activation in caveolae. MURC/Cavin-4 was expressed in the caveolae and T tubules of cardiomyocytes. MURC/Cavin-4 overexpression distended the caveolae, whereas MURC/Cavin-4 was not essential for their formation. MURC/Cavin-4 deficiency attenuated cardiac hypertrophy induced by α1-AR stimulation in the presence of caveolae. Interestingly, MURC/Cavin-4 bound to α1A- and α1B-ARs as well as ERK1/2 in caveolae, and spatiotemporally modulated MEK/ERK signaling in response to α1-AR stimulation. Thus, MURC/Cavin-4 facilitates ERK1/2 recruitment to caveolae and efficient α1-AR signaling mediated by caveolae in cardiomyocytes, which provides a unique insight into the molecular mechanisms underlying caveola-mediated signaling in cardiac hypertrophy.

  10. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.

    Science.gov (United States)

    Abe, Takashi; Loenneke, Jeremy P; Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Bemben, Michael G

    2012-07-01

    Although evidence for high-intensity resistance training-induced muscle hypertrophy has accumulated over the last several decades, the basic concept of the training can be traced back to ancient Greece: Milo of Croton lifted a bull-calf daily until it was fully grown, which would be known today as progressive overload. Now, in the 21st century, different types of training are being tested and studied, such as low-intensity exercise combined with arterial as well as venous blood flow restriction (BFR) to/from the working muscles. Because BFR training requires the use of a cuff that is placed at the proximal ends of the arms and/or legs, the BFR is only applicable to limb muscles. Consequently, most previous BFR training studies have focused on the physiological adaptations of BFR limb muscles. Muscle adaptations in non-BFR muscles of the hip and trunk are lesser known. Recent studies that have reported both limb and trunk muscle adaptations following BFR exercise training suggest that low-intensity (20-30% of 1RM) resistance training combined with BFR elicits muscle hypertrophy in both BFR limb and non-BFR muscles. However, the combination of leg muscle BFR with walk training elicits muscle hypertrophy only in the BFR leg muscles. In contrast to resistance exercise with BFR, the exercise intensity may be too low during BFR walk training to cause muscle hypertrophy in the non-BFR gluteus maximus and other trunk muscles. Other mechanisms including hypoxia, local and systemic growth factors and muscle cell swelling may also potentially affect the hypertrophic response of non-BFR muscles to BFR resistance exercise. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  11. Alcohol Inhibits Odontogenic Differentiation of Human Dental Pulp Cells by Activating mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Wei Qin

    2017-01-01

    Full Text Available Long-term heavy alcohol consumption could result in a range of health, social, and behavioral problems. People who abuse alcohol are at high risks of seriously having osteopenia, periodontal disease, and compromised oral health. However, the role of ethanol (EtOH in the biological functions of human dental pulp cells (DPCs is unknown. Whether EtOH affects the odontoblastic differentiation of DPCs through the mechanistic target of rapamycin (mTOR remains unexplored. The objective of this study was to investigate the effects of EtOH on DPC differentiation and mineralization. DPCs were isolated and purified from human dental pulps. The proliferation and odontoblastic differentiation of DPCs treated with EtOH were subsequently investigated. Different doses of EtOH were shown to be cytocompatible with DPCs. EtOH significantly activated the mTOR pathway in a dose-dependent manner. In addition, EtOH downregulated the alkaline phosphatase activity, attenuated the mineralized nodule formation, and suppressed the expression of odontoblastic markers including ALP, DSPP, DMP-1, Runx2, and OCN. Moreover, the pretreatment with rapamycin, a specific mTOR inhibitor, markedly reversed the EtOH-induced odontoblastic differentiation and cell mineralization. Our findings show for the first time that EtOH can suppress DPC differentiation and mineralization in a mTOR-dependent manner, indicating that EtOH may be involved in negatively regulating the dental pulp repair.

  12. Differential Reponses of Hematopoietic Stem and Progenitor Cells to mTOR Inhibition

    Directory of Open Access Journals (Sweden)

    Aimin Yang

    2015-01-01

    Full Text Available Abnormal activation of the mammalian target of rapamycin (mTOR signaling pathway has been observed in a variety of human cancers. Therefore, targeting of the mTOR pathway is an attractive strategy for cancer treatment and several mTOR inhibitors, including AZD8055 (AZD, a novel dual mTORC1/2 inhibitor, are currently in clinical trials. Although bone marrow (BM suppression is one of the primary side effects of anticancer drugs, it is not known if pharmacological inhibition of dual mTORC1/2 affects BM hematopoietic stem and progenitor cells (HSPCs function and plasticity. Here we report that dual inhibition of mTORC1/2 by AZD or its analogue (KU-63794 depletes mouse BM Lin−Sca-1+c-Kit+ cells in cultures via the induction of apoptotic cell death. Subsequent colony-forming unit (CFU assays revealed that inhibition of mTORC1/2 suppresses the clonogenic function of hematopoietic progenitor cells (HPCs in a dose-dependent manner. Surprisingly, we found that dual inhibition of mTORC1/2 markedly inhibits the growth of day-14 cobblestone area-forming cells (CAFCs but enhances the generation of day-35 CAFCs. Given the fact that day-14 and day-35 CAFCs are functional surrogates of HPCs and hematopoietic stem cells (HSCs, respectively, these results suggest that dual inhibition of mTORC1/2 may have distinct effects on HPCs versus HSCs.

  13. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells

    International Nuclear Information System (INIS)

    Wu, William Ka Kei; Volta, Viviana; Cho, Chi Hin; Wu, Ya Chun; Li, Hai Tao; Yu, Le; Li, Zhi Jie; Sung, Joseph Jao Yiu

    2009-01-01

    Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85 S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of 35 S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.

  14. Alcohol Inhibits Odontogenic Differentiation of Human Dental Pulp Cells by Activating mTOR Signaling.

    Science.gov (United States)

    Qin, Wei; Huang, Qi-Ting; Weir, Michael D; Song, Zhi; Fouad, Ashraf F; Lin, Zheng-Mei; Zhao, Liang; Xu, Hockin H K

    2017-01-01

    Long-term heavy alcohol consumption could result in a range of health, social, and behavioral problems. People who abuse alcohol are at high risks of seriously having osteopenia, periodontal disease, and compromised oral health. However, the role of ethanol (EtOH) in the biological functions of human dental pulp cells (DPCs) is unknown. Whether EtOH affects the odontoblastic differentiation of DPCs through the mechanistic target of rapamycin (mTOR) remains unexplored. The objective of this study was to investigate the effects of EtOH on DPC differentiation and mineralization. DPCs were isolated and purified from human dental pulps. The proliferation and odontoblastic differentiation of DPCs treated with EtOH were subsequently investigated. Different doses of EtOH were shown to be cytocompatible with DPCs. EtOH significantly activated the mTOR pathway in a dose-dependent manner. In addition, EtOH downregulated the alkaline phosphatase activity, attenuated the mineralized nodule formation, and suppressed the expression of odontoblastic markers including ALP, DSPP, DMP-1, Runx2, and OCN. Moreover, the pretreatment with rapamycin, a specific mTOR inhibitor, markedly reversed the EtOH-induced odontoblastic differentiation and cell mineralization. Our findings show for the first time that EtOH can suppress DPC differentiation and mineralization in a mTOR-dependent manner, indicating that EtOH may be involved in negatively regulating the dental pulp repair.

  15. Deregulation of mTOR signaling is involved in thymic lymphoma development in Atm-/- mice

    International Nuclear Information System (INIS)

    Kuang, Xianghong; Shen, Jianjun; Wong, Paul K.Y.; Yan, Mingshan

    2009-01-01

    Abnormal thymocyte development with thymic lymphomagenesis inevitably occurs in Atm-/- mice, indicating that ATM plays a pivotal role in regulating postnatal thymocyte development and preventing thymic lymphomagenesis. The mechanism for ATM controls these processes is unclear. We have shown previously that c-Myc, an oncoprotein regulated by the mammalian target of rapamycin (mTOR), is overexpressed in Atm-/- thymocytes. Here, we show that inhibition of mTOR signaling with its specific inhibitor, rapamycin, suppresses normal thymocyte DNA synthesis by downregulating 4EBP1, but not S6K, and that 4EBP1 phosphorylation and cyclin D1 expression are coordinately increased in Atm-/- thymocytes. Administration of rapamycin to Atm-/- mice attenuates elevated phospho-4EBP1, c-Myc and cyclin D1 in their thymocytes, and delays thymic lymphoma development. These results indicate that mTOR downstream effector 4EBP1 is essential for normal thymocyte proliferation, but deregulation of 4EBP1 in Atm deficiency is a major factor driving thymic lymphomagenesis in the animals.

  16. Invasive pulmonary aspergillosis mimicking organizing pneumonia after mTOR inhibitor therapy: A case report

    Directory of Open Access Journals (Sweden)

    Yuki Iijima

    2018-04-01

    Full Text Available A 67-year-old man presented to the hospital with complaints of fever and cough. He had a past medical history of renal cell carcinoma and had just started treatment with temsirolimus, a mammalian target of rapamycin (mTOR inhibitor. A 1-week course of antibiotics did not have any effect on his symptoms. A chest computed tomography (CT scan showed the reversed halo sign (RHS. Organizing pneumonia induced by mTOR inhibitor treatment was initially considered. However, transbronchial biopsy revealed clusters of fungal organisms, suggesting infection with Aspergillus spp. Within just 2 weeks, a CT scan showed drastic enlargement of the cavitary lesion, with multiple newly formed consolidations. The patient was diagnosed with invasive pulmonary aspergillosis. Concomitant treatment with voriconazole and micafungin was started. Two weeks after the initiation of treatment, he became afebrile with gradual regression of the cavitary lesion and consolidations. Keywords: mTOR inhibitor, Organizing pneumonia, Reversed halo sign, Invasive pulmonary aspergillosis, Immunocompromise

  17. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.

    Directory of Open Access Journals (Sweden)

    Yeon Ja Choi

    Full Text Available Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel

  18. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Susanne, E-mail: Susanne.Schuster@medizin.uni-leipzig.de [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Penke, Melanie; Gorski, Theresa [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Gebhardt, Rolf [Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Weiss, Thomas S. [Children' s University Hospital, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Kiess, Wieland; Garten, Antje [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany)

    2015-03-06

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  19. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    International Nuclear Information System (INIS)

    Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Gebhardt, Rolf; Weiss, Thomas S.; Kiess, Wieland; Garten, Antje

    2015-01-01

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  20. Effects of balanced deep-sea water on adipocyte hypertrophy and liver steatosis in high-fat, diet-induced obese mice.

    Science.gov (United States)

    Ha, Byung Geun; Park, Jung-Eun; Shin, Eun Ji; Shon, Yun Hee

    2014-07-01

    To determine the effects of balanced deep-sea water (BDSW) on adipocyte hypertrophy and liver steatosis in high-fat diet (HFD)-induced obese C57BL/6J mice. BDSW was prepared by mixing deep-sea water (DSW) mineral extracts and desalinated water. C57BL/6J mice were fed a normal diet or HFD with or without BDSW with different hardness (500, 1000, or 2000) for 20 weeks. BDSW suppressed body weight gain in HFD-fed mice. Histopathologic assays of the fat and liver revealed that BDSW inhibited the increase in adipocyte size and improved severe liver steatosis in HFD-fed mice. BDSW suppressed the expression of adipogenic, lipogenic, lipolytic, and pro-inflammatory cytokine genes and increased the expression of adipokines and β-oxidation genes in fat. In the liver, BDSW suppressed the expression of genes involved in lipogenesis and cholesterol synthesis, and increased the expression of genes related to β-oxidation. Furthermore, BDSW improved the impaired phosphorylation of IRS-1, LKB1, AMPK, and mTOR in fat and liver tissues of HFD-fed mice. These results suggest that BDSW has potential as an anti-lipidemic agent, given its ability to suppress body weight gain and liver steatosis through the regulation of lipid metabolism by signal molecule activation. Copyright © 2014 The Obesity Society.

  1. Exogenous cathepsin V protein protects human cardiomyocytes HCM from angiotensin Ⅱ-Induced hypertrophy.

    Science.gov (United States)

    Huang, Kun; Gao, Lu; Yang, Ming; Wang, Jiliang; Wang, Zheng; Wang, Lin; Wang, Guobin; Li, Huili

    2017-08-01

    Angiotensin (Ang) Ⅱ-induced cardiac hypertrophy can deteriorate to heart failure, a leading cause of mortality. Endogenous Cathepsin V (CTSV) has been reported to be cardioprotective against hypertrophy. However, little is known about the effect of exogenous CTSV on cardiac hypertrophy. We used the human cardiomyocytes HCM as a cell model to investigate the effects of exogenous CTSV on Ang Ⅱ-induced cardiac cell hypertrophy. Cell surface area and expression of classical markers of hypertrophy were analyzed. We further explored the mechanism of CTSV cardioprotective by assessing the levels and activities of PI3K/Akt/mTOR and MAPK signaling pathway proteins. We found that pre-treating cardiomyocytes with CTSV could significantly inhibit Ang Ⅱ-induced hypertrophy. The mRNA expression of hypertrophy markers ANP, BNP and β-MHC was obviously elevated in Ang Ⅱ-treated cardiac cells. Whereas, exogenous CTSV effectively halted this elevation. Further study revealed that the protective effects of exogenous CTSV might be mediated by repressing the phosphorylation of proteins in the PI3K/Akt/mTOR and MAPK pathways. Based on our results, we concluded that exogenous CTSV inhibited Ang Ⅱ-induced hypertrophy in HCM cells by inhibiting PI3K/Akt/mTOR. This study provides experimental evidence for the application of CTSV protein for the treatment of cardiac hypertrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Grafting of a Single Donor Myofibre Promotes Hypertrophy in Dystrophic Mouse Muscle

    Science.gov (United States)

    Boldrin, Luisa; Morgan, Jennifer E.

    2013-01-01

    Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells, are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the host muscle environment. PMID:23349935

  3. Smooth Muscle Hyperplasia/Hypertrophy is the Most Prominent Histological Change in Crohn's Fibrostenosing Bowel Strictures: A Semiquantitative Analysis by Using a Novel Histological Grading Scheme.

    Science.gov (United States)

    Chen, Wenqian; Lu, Cathy; Hirota, Christina; Iacucci, Marietta; Ghosh, Subrata; Gui, Xianyong

    2017-01-01

    The simplistically and ambiguously termed 'fibrostenosis' of bowel is a hallmark of severe Crohn's disease [CD] and a major contributor to medical treatment failure. Non-invasive imaging assessment and novel medical therapy targeting this condition are under investigation, which particularly requires a better understanding of the underlying histological basis. We analysed 48 patients with stricturing Crohn's ileitis or/and colitis that required surgical resection. The most representative sections of the fibrostenotic, non-stenotic and uninvolved regions were reviewed for histological analysis. For each layer of bowel wall (mucosa including muscularis mucosae [MU], submucosa [SM], muscularis propria [MP], subserosal adventitia [SS]), histological abnormalities were evaluated individually, including active and chronic inflammation, fibrosis, smooth muscle hyperplasia or hypertrophy, neuronal hypertrophy and adipocyte proliferation. A novel semiquantitative histological grading scheme was created. The most significant histopathological features characterizing the stricturing intestines were smooth muscle hyperplasia of SM, hypertrophy of MP and chronic inflammation. The muscular alteration was predominant in all layers. The overall muscular hyperplasia/hypertrophy was positively correlated with chronic inflammation and negatively correlated with fibrosis, whereas SM muscular hyperplasia was also associated with MU active inflammation. Similar changes, to a lesser extent, occurred in the adjacent non-stenotic inflamed bowel as well. In CD-associated 'fibrostenosis', it is the smooth muscle hyperplasia/hypertrophy that contributes most to the stricturing phenotype, whereas fibrosis is less significant. The 'inflammation-smooth muscle hyperplasia axis' may be the most important in the pathogenesis of Crohn's strictures. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please

  4. The Molecular Basis for Load-Induced Skeletal Muscle Hypertrophy

    Science.gov (United States)

    Marcotte, George R.; West, Daniel W.D.; Baar, Keith

    2016-01-01

    In a mature (weight neutral) animal, an increase in muscle mass only occurs when the muscle is loaded sufficiently to cause an increase in myofibrillar protein balance. A tight relationship between muscle hypertrophy, acute increases in protein balance, and the activity of the mechanistic target of rapamycin complex 1 (mTORC1) was demonstrated 15 years ago. Since then, our understanding of the signals that regulate load-induced hypertrophy has evolved considerably. For example, we now know that mechanical load activates mTORC1 in the same way as growth factors, by moving TSC2 (a primary inhibitor of mTORC1) away from its target (the mTORC activator) Rheb. However, the kinase that phosphorylates and moves TSC2 is different in the two processes. Similarly, we have learned that a distinct pathway exists whereby amino acids activate mTORC1 by moving it to Rheb. While mTORC1 remains at the forefront of load-induced hypertrophy, the importance of other pathways that regulate muscle mass are becoming clearer. Myostatin, is best known for its control of developmental muscle size. However, new mechanisms to explain how loading regulates this process are suggesting that it could play an important role in hypertrophic muscle growth as well. Lastly, new mechanisms are highlighted for how β2 receptor agonists could be involved in load-induced muscle growth and why these agents are being developed as non-exercise-based therapies for muscle atrophy. Overall, the results highlight how studying the mechanism of load-induced skeletal muscle mass is leading the development of pharmaceutical interventions to promote muscle growth in those unwilling or unable to perform resistance exercise. PMID:25359125

  5. Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy.

    Science.gov (United States)

    Lee, Yun-Sil; Lehar, Adam; Sebald, Suzanne; Liu, Min; Swaggart, Kayleigh A; Talbot, C Conover; Pytel, Peter; Barton, Elisabeth R; McNally, Elizabeth M; Lee, Se-Jin

    2015-10-15

    Myostatin is a secreted signaling molecule that normally acts to limit muscle growth. As a result, there is extensive effort directed at developing drugs capable of targeting myostatin to treat patients with muscle loss. One potential concern with this therapeutic approach in patients with muscle degenerative diseases like muscular dystrophy is that inducing hypertrophy may increase stress on dystrophic fibers, thereby accelerating disease progression. To investigate this possibility, we examined the effect of blocking the myostatin pathway in dysferlin-deficient (Dysf(-/-)) mice, in which membrane repair is compromised, either by transgenic expression of follistatin in skeletal muscle or by systemic administration of the soluble form of the activin type IIB receptor (ACVR2B/Fc). Here, we show that myostatin inhibition by follistatin transgene expression in Dysf(-/-) mice results in early improvement in histopathology but ultimately exacerbates muscle degeneration; this effect was not observed in dystrophin-deficient (mdx) mice, suggesting that accelerated degeneration induced by follistatin transgene expression is specific to mice lacking dysferlin. Dysf(-/-) mice injected with ACVR2B/Fc showed significant increases in muscle mass and amelioration of fibrotic changes normally seen in 8-month-old Dysf(-/-) mice. Despite these potentially beneficial effects, ACVR2B/Fc treatment caused increases in serum CK levels in some Dysf(-/-) mice, indicating possible muscle damage induced by hypertrophy. These findings suggest that depending on the disease context, inducing muscle hypertrophy by myostatin blockade may have detrimental effects, which need to be weighed against the potential gains in muscle growth and decreased fibrosis. © The Author 2015. Published by Oxford University Press.

  6. Incipient speciation driven by hypertrophied lips in Midas cichlid fishes?

    Science.gov (United States)

    Machado-Schiaffino, Gonzalo; Kautt, Andreas F; Torres-Dowdall, Julian; Baumgarten, Lukas; Henning, Frederico; Meyer, Axel

    2017-04-01

    Sympatric speciation has been debated in evolutionary biology for decades. Although it has gained in acceptance recently, still only a handful of empirical examples are seen as valid (e.g. crater lake cichlids). In this study, we disentangle the role of hypertrophied lips in the repeated adaptive radiations of Nicaraguan crater lake cichlid fish. We assessed the role of disruptive selection and assortative mating during the early stages of divergence and found a functional trade-off in feeding behaviour between thick- and thin-lipped ecotypes, suggesting that this trait is a target of disruptive selection. Thick-lipped fish perform better on nonevasive prey at the cost of a poorer performance on evasive prey. Using enclosures in the wild, we found that thick-lipped fish perform significantly better in rocky than in sandy habitats. We found almost no mixed pairs during two breeding seasons and hence significant assortative mating. Genetic differentiation between ecotypes seems to be related to the time since colonization, being subtle in L. Masaya (1600 generations ago) and absent in the younger L. Apoyeque (<600 generations ago). Genome-wide differentiation between ecotypes was higher in the old source lakes than in the young crater lakes. Our results suggest that hypertrophied lips might be promoting incipient sympatric speciation through divergent selection (ecological divergence in feeding performance) and nonrandom mating (assortative mating) in the young Nicaraguan crater lakes. Nonetheless, further manipulative experiments are needed in order to confirm the role of hypertrophied lips as the main cue for assortative mating. © 2017 John Wiley & Sons Ltd.

  7. Acute colonic obstruction due to benign prostatic hypertrophy.

    LENUS (Irish Health Repository)

    Mac Giobuin, S

    2012-02-01

    A seventy two year old man presented to the Emergency Department with clinical features of colonic obstruction. Subsequent radiological investigations confirmed this impression and revealed the aetiology to be compression of the sigmoid colon against the sacrum by a massively distended urinary bladder. Chronic urinary retention due to benign prostatic hypertrophy is an extremely unusual cause of large bowel obstruction. Little in this patient\\'s clinical findings suggested this aetiology. We reviewed the literature in this area and highlight the benefits of CT scanning over contrast studies.

  8. "Heart rate-dependent" electrocardiographic diagnosis of left ventricular hypertrophy.

    Science.gov (United States)

    Madias, John E

    2013-05-01

    A case is presented revealing the common phenomenon of heart rate-dependent diagnosis of electrocardiographic (ECG) diagnosis of left ventricular hypertrophy (LVH), which consists of satisfaction of LVH criteria only at faster rates whereas ECGs with a slow heart rate do not satisfy such criteria. The mechanism of the phenomenon has been attributed to the tachycardia-mediated underfilling of the left ventricle bringing the electrical "centroid" of the heart closer to the recording electrodes, which results in augmentation of the amplitude of QRS complexes, particularly in leads V2-V4. ©2012, The Author. Journal compilation ©2012 Wiley Periodicals, Inc.

  9. Isolated unilateral temporalis muscle hypertrophy in a child: a case report with literature review.

    Science.gov (United States)

    Ranasinghe, Jagath C; Wickramasinghe, Chandani; Rodrigo, Ganganath

    2018-02-19

    Temporalis muscle hypertrophy is a rare entity of masticatory muscle hypertrophy. All types of masticatory muscle hypertrophies have been documented of which temporalis muscle hypertrophy is one. Temporalis muscle hypertrophy is most commonly bilateral and usually associated with other types of masticatory muscles hypertrophy such as masseter or pterygoid hypertrophy. However, isolated unilateral temporalis muscle hypertrophy is extremely rare and only 9 cases have been reported to date in English literature since 1990 with only two patients less than 18 years. There is no exact etiology identified and the diagnosis is made by muscle biopsy combined with imaging study to exclude other possibilities. Age at presentation is ranges from 15 to 65 years with involvement of both sexes. We report the youngest child who is a seven year old girl with right side isolated unilateral temporalis muscle hypertrophy. In this patient, we discuss the youngest child with isolated unilateral temporalis muscle hypertrophy and literature review to date. The patient is a seven year old female presenting with painless swelling of the right temporalis muscle. There had no features of inflammation, trauma, neoplasm or history of parafunctions such as bruxism. The child was not complaining significantly headache or visual disturbances as well. She had undergone radiological assessment with ultrasound scan and contrast MRI. The diagnosis was confirmed by muscle biopsy which shows normal muscle architecture. She was managed conservatively with regular follow up. Isolated unilateral temporalis muscle hypertrophy is extremely rare in children. However this case raises the importance of considering alternative diagnoses despite the condition being rare in the pediatric population.

  10. Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction

    Science.gov (United States)

    Afzal, Muhammad R.; Samanta, Anweshan; Xuan, Yu-Ting; Girgis, Magdy; Elias, Harold K; Zhu, Yanqing; Davani, Arash; Yang, Yanjuan; Chen, Xing; Ye, Sheng; Wang, Ou-Li; Chen, Lei; Hauptman, Jeryl; Vincent, Robert J.; Dawn, Buddhadeb

    2016-01-01

    Rationale The role of interleukin (IL)-6 in the pathogenesis of cardiac myocyte hypertrophy remains controversial. Objective To conclusively determine whether IL-6 signaling is essential for the development of pressure overload-induced left ventricular (LV) hypertrophy, and to elucidate the underlying molecular pathways. Methods and Results Wild-type (WT) and IL-6 knockout (IL-6−/−) mice underwent sham surgery or transverse aortic constriction (TAC) to induce pressure overload. Serial echocardiograms and terminal hemodynamic studies revealed attenuated LV hypertrophy and superior preservation of LV function in IL-6−/− mice after TAC. The extents of LV remodeling, fibrosis, and apoptosis were reduced in IL-6−/− hearts after TAC. Transcriptional and protein assays of myocardial tissue identified CaMKII and STAT3 activation as important underlying mechanisms during cardiac hypertrophy induced by TAC. The involvement of these pathways in myocyte hypertrophy was verified in isolated cardiac myocytes from WT and IL-6−/− mice exposed to pro-hypertrophy agents. Furthermore, overexpression of CaMKII in H9c2 cells increased STAT3 phosphorylation, and exposure of H9c2 cells to IL-6 resulted in STAT3 activation that was attenuated by CaMKII inhibition. Together these results identify the importance of CaMKII-dependent activation of STAT3 during cardiac myocyte hypertrophy via IL-6 signaling. Conclusions Genetic deletion of IL-6 attenuates TAC-induced LV hypertrophy and dysfunction, indicating a critical role played by IL-6 in the pathogenesis of LV hypertrophy in response to pressure overload. CaMKII plays an important role in IL-6-induced STAT3 activation and consequent cardiac myocyte hypertrophy. These findings may have significant therapeutic implications for LV hypertrophy and failure in patients with hypertension. PMID:27126808

  11. Dietary protein sources differentially affect microbiota, mTOR activity and transcription of mTOR signaling pathways in the small intestine.

    Directory of Open Access Journals (Sweden)

    Soumya K Kar

    Full Text Available Dietary protein sources can have profound effects on host-microbe interactions in the gut that are critically important for immune resilience. However more knowledge is needed to assess the impact of different protein sources on gut and animal health. Thirty-six wildtype male C57BL/6J mice of 35 d age (n = 6/group; mean ± SEM body weight 21.9 ± 0.25 g were randomly assigned to groups fed for four weeks with semi synthetic diets prepared with one of the following protein sources containing (300 g/kg as fed basis: soybean meal (SBM, casein, partially delactosed whey powder, spray dried plasma protein, wheat gluten meal and yellow meal worm. At the end of the experiment, mice were sacrificed to collect ileal tissue to acquire gene expression data, and mammalian (mechanistic target of rapamycin (mTOR activity, ileal digesta to study changes in microbiota and serum to measure cytokines and chemokines. By genome-wide transcriptome analysis, we identified fourteen high level regulatory genes that are strongly affected in SBM-fed mice compared to the other experimental groups. They mostly related to the mTOR pathway. In addition, an increased (P < 0.05 concentration of granulocyte colony-stimulating factor was observed in serum of SBM-fed mice compared to other dietary groups. Moreover, by 16S rRNA sequencing, we observed that SBM-fed mice had higher (P < 0.05 abundances of Bacteroidales family S24-7, compared to the other dietary groups. We showed that measurements of genome-wide expression and microbiota composition in the mouse ileum reveal divergent responses to diets containing different protein sources, in particular for a diet based on SBM.

  12. mTOR inhibitors alone and in combination with JAK2 inhibitors effectively inhibit cells of myeloproliferative neoplasms.

    Directory of Open Access Journals (Sweden)

    Costanza Bogani

    Full Text Available BACKGROUND: Dysregulated signaling of the JAK/STAT pathway is a common feature of chronic myeloproliferative neoplasms (MPN, usually associated with JAK2V617F mutation. Recent clinical trials with JAK2 inhibitors showed significant improvements in splenomegaly and constitutional symptoms in patients with myelofibrosis but meaningful molecular responses were not documented. Accordingly, there remains a need for exploring new treatment strategies of MPN. A potential additional target for treatment is represented by the PI3K/AKT/mammalian target of rapamycin (mTOR pathway that has been found constitutively activated in MPN cells; proof-of-evidence of efficacy of the mTOR inhibitor RAD001 has been obtained recently in a Phase I/II trial in patients with myelofibrosis. The aim of the study was to characterize the effects in vitro of mTOR inhibitors, used alone and in combination with JAK2 inhibitors, against MPN cells. FINDINGS: Mouse and human JAK2V617F mutated cell lines and primary hematopoietic progenitors from MPN patients were challenged with an allosteric (RAD001 and an ATP-competitive (PP242 mTOR inhibitor and two JAK2 inhibitors (AZD1480 and ruxolitinib. mTOR inhibitors effectively reduced proliferation and colony formation of cell lines through a slowed cell division mediated by changes in cell cycle transition to the S-phase. mTOR inhibitors also impaired the proliferation and prevented colony formation from MPN hematopoietic progenitors at doses significantly lower than healthy controls. JAK2 inhibitors produced similar antiproliferative effects in MPN cell lines and primary cells but were more potent inducers of apoptosis, as also supported by differential effects on cyclinD1, PIM1 and BcLxL expression levels. Co-treatment of mTOR inhibitor with JAK2 inhibitor resulted in synergistic activity against the proliferation of JAK2V617F mutated cell lines and significantly reduced erythropoietin-independent colony growth in patients with

  13. Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise.

    Science.gov (United States)

    Li, Mengyao; Verdijk, Lex B; Sakamoto, Kei; Ely, Brian; van Loon, Luc J C; Musi, Nicolas

    2012-01-01

    AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity. Published by Elsevier Ireland Ltd.

  14. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    Science.gov (United States)

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  15. Anti-proliferative effect of metformin on a feline injection site sarcoma cell line independent of Mtor inhibition.

    Science.gov (United States)

    Pierro, J; Saba, C; McLean, K; Williams, R; Karpuzoglu, E; Prater, R; Hoover, K; Gogal, R

    2017-10-01

    Metformin is an oral hypoglycemic drug that has been shown to inhibit cancer cell proliferation via up-regulation of AMPK (AMP-activated protein kinase), and possibly inhibition of mTOR (mammalian target of rapamycin). The purpose of this study was to evaluate the effects of metformin on a feline injection site sarcoma cell line. Cells from a feline injection site sarcoma cell line were treated with metformin at varied concentrations. A dose-dependent decrease in cell viability following metformin treatment was observed, with an IC50 of 8.0mM. Using flow cytometry, the mechanism of cell death was determined to be apoptosis or necrosis. To evaluate the role of mTOR inhibition in metformin-induced cell death, Western blot was performed. No inhibition of mTOR or phosphorylated mTOR was found. Although metformin treatment leads to apoptotic or necrotic cell death in feline injection site sarcoma cells, the mechanism does not appear to be mediated by mTOR inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death.

    Science.gov (United States)

    Choi, Kyou-Chan; Kim, Shin-Hee; Ha, Ji-Young; Kim, Sang-Tae; Son, Jin H

    2010-01-01

    Our previous microarray analysis identified a neuroprotective protein Oxi-alpha, that was down-regulated during oxidative stress (OS)-induced cell death in dopamine neurons [Neurochem. Res. (2004) vol. 29, pp. 1223]. Here we find that the phylogenetically conserved Oxi-alpha protects against OS by a novel mechanism: activation of the mammalian target of rapamycin (mTOR) kinase and subsequent repression of autophagic vacuole accumulation and cell death. To the best of our knowledge, Oxi-alpha is the first molecule discovered in dopamine neurons, which activates mTOR kinase. Indeed, the down-regulation of Oxi-alpha by OS suppresses the activation of mTOR kinase. The pathogenic effect of down-regulated Oxi-alpha was confirmed by gene-specific knockdown experiment, which resulted in not only the repression of mTOR kinase and the subsequent phosphorylation of p70 S6 kinase and 4E-BP1, but also enhanced susceptibility to OS. In accordance with these observations, treatment with rapamycin, an mTOR inhibitor and autophagy inducer, potentiated OS-induced cell death, while similar treatment with an autophagy inhibitor, 3-methyladenine protected the dopamine cells. Our findings present evidence for the presence of a novel class of molecule involved in autophagic cell death triggered by OS in dopamine neurons.

  17. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth.

    Science.gov (United States)

    Koo, Junghui; Yue, Ping; Gal, Anthony A; Khuri, Fadlo R; Sun, Shi-Yong

    2014-05-01

    mTOR kinase inhibitors that target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here, we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacologic inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. ©2014 AACR.

  18. mTOR in breast cancer: differential expression in triple-negative and non-triple-negative tumors.

    LENUS (Irish Health Repository)

    Walsh, S

    2012-04-01

    Triple-negative breast cancer (TNBC) is defined by the absence of estrogen receptors (ER), progesterone receptors (PR) and overexpression of HER2. Targeted therapy is currently unavailable for this subgroup of breast cancer patients. mTOR controls cancer cell growth, survival and invasion and is thus a potential target for the treatment of patients with TNBC. Using immunohistochemistry, mTOR and p-mTOR were measured in 89 TNBCs and 99 non-TNBCs. While mTOR expression was confined to tumor cell cytoplasm, p-mTOR staining was located in the nucleus, perinuclear area and in the cytoplasm. Potentially important, was our finding that nuclear p-mTOR was found more frequently in triple-negative than non triple-negative cancers (p < 0.001). These results suggest that mTOR may play a more important role in the progression of TNBC compared to non-TNBC. Based on these findings, we conclude that mTOR may be a new target for the treatment of triple-negative breast cancer.

  19. Identification of a Non-Gatekeeper Hot Spot for Drug-Resistant Mutations in mTOR Kinase.

    Science.gov (United States)

    Wu, Tzung-Ju; Wang, Xiaowen; Zhang, Yanjie; Meng, Linghua; Kerrigan, John E; Burley, Stephen K; Zheng, X F Steven

    2015-04-21

    Protein kinases are therapeutic targets for human cancer. However, "gatekeeper" mutations in tyrosine kinases cause acquired clinical resistance, limiting long-term treatment benefits. mTOR is a key cancer driver and drug target. Numerous small-molecule mTOR kinase inhibitors have been developed, with some already in human clinical trials. Given our clinical experience with targeted therapeutics, acquired drug resistance in mTOR is thought likely, but not yet documented. Herein, we describe identification of a hot spot (L2185) for drug-resistant mutations, which is distinct from the gatekeeper site, and a chemical scaffold refractory to drug-resistant mutations. We also provide new insights into mTOR kinase structure and function. The hot spot mutations are potentially useful as surrogate biomarkers for acquired drug resistance in ongoing clinical trials and future treatments and for the design of the next generation of mTOR-targeted drugs. Our study provides a foundation for further research into mTOR kinase function and targeting. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival

    International Nuclear Information System (INIS)

    Feng, Yonghuai; Wu, Liusong

    2017-01-01

    Although mTOR (mammalian target of rapamycin) activation is frequently observed in acute myeloid leukemia (AML) patients, the precise function and the downstream targets of mTOR are poorly understood. Here we revealed that PFKFB3, but not PFKFB1, PFKFB2 nor PFKFB4 was a novel downstream substrate of mTOR signaling pathway as PFKFB3 level was augmented after knocking down TSC2 in THP1 and OCI-AML3 cells. Importantly, PFKFB3 silencing suppressed glycolysis and cell proliferation of TSC2 silencing OCI-AML3 cells and activated apoptosis pathway. These results suggested that mTOR up-regulation of PFKFB3 was essential for AML cells survival. Mechanistically, Rapamycin treatment or Raptor knockdown reduced the expression of PFKFB3 in TSC2 knockdown cells, while Rictor silencing did not have such effect. Furthermore, we also revealed that mTORC1 up-regulated PFKFB3 was dependent on hypoxia-inducible factor 1α (HIF1α), a positive regulator of glycolysis. Moreover, PFKFB3 inhibitor PFK15 and rapamycin synergistically blunted the AML cell proliferation. Taken together, PFKFB3 was a promising drug target in AML patients harboring mTOR hyper-activation.

  1. Diabetic kidney lesions of GIPRdn transgenic mice: podocyte hypertrophy and thickening of the GBM precede glomerular hypertrophy and glomerulosclerosis.

    Science.gov (United States)

    Herbach, Nadja; Schairer, Irene; Blutke, Andreas; Kautz, Sabine; Siebert, Angela; Göke, Burkhard; Wolf, Eckhard; Wanke, Ruediger

    2009-04-01

    Diabetic nephropathy is the leading cause of end-stage renal disease and the largest contributor to the total cost of diabetes care. Rodent models are excellent tools to gain more insight into the pathogenesis of diabetic nephropathy. In the present study, we characterize the age-related sequence of diabetes-associated kidney lesions in GIPR(dn) transgenic mice, a novel mouse model of early-onset diabetes mellitus. Clinical-chemical analyses as well as qualitative and quantitative morphological analyses of the kidneys of GIPR(dn) transgenic animals and nontransgenic littermate controls were performed at 3, 8, 20, and 28 wk of age. Early renal changes of transgenic mice consisted of podocyte hypertrophy, reduced numerical volume density of podocytes in glomeruli, and homogenous thickening of the glomerular basement membrane, followed by renal and glomerular hypertrophy as well as mesangial expansion and matrix accumulation. At 28 wk of age, glomerular damage was most prominent, including advanced glomerulosclerosis, tubulointerstitial lesions, and proteinuria. Real-time PCR demonstrated increased glomerular expression of Col4a1, Fn1, and Tgfb1. Immunohistochemistry revealed increased mesangial deposition of collagen type IV, fibronectin, and laminin. The present study shows that GIPR(dn) transgenic mice exhibit renal changes that closely resemble diabetes-associated kidney alterations in humans. Data particularly from male transgenic mice indicate that podocyte hypertrophy is directly linked to hyperglycemia, without the influence of mechanical stress. GIPR(dn) transgenic mice are considered an excellent new tool to study the mechanisms involved in onset and progression of diabetic nephropathy.

  2. Skin Sodium Concentration Correlates with Left Ventricular Hypertrophy in CKD.

    Science.gov (United States)

    Schneider, Markus P; Raff, Ulrike; Kopp, Christoph; Scheppach, Johannes B; Toncar, Sebastian; Wanner, Christoph; Schlieper, Georg; Saritas, Turgay; Floege, Jürgen; Schmid, Matthias; Birukov, Anna; Dahlmann, Anke; Linz, Peter; Janka, Rolf; Uder, Michael; Schmieder, Roland E; Titze, Jens M; Eckardt, Kai-Uwe

    2017-06-01

    The pathogenesis of left ventricular hypertrophy in patients with CKD is incompletely understood. Sodium intake, which is usually assessed by measuring urinary sodium excretion, has been inconsistently linked with left ventricular hypertrophy. However, tissues such as skin and muscle may store sodium. Using 23 sodium-magnetic resonance imaging, a technique recently developed for the assessment of tissue sodium content in humans, we determined skin sodium content at the level of the calf in 99 patients with mild to moderate CKD (42 women; median [range] age, 65 [23-78] years). We also assessed total body overhydration (bioimpedance spectroscopy), 24-hour BP, and left ventricular mass (cardiac magnetic resonance imaging). Skin sodium content, but not total body overhydration, correlated with systolic BP ( r =0.33, P =0.002). Moreover, skin sodium content correlated more strongly than total body overhydration did with left ventricular mass ( r =0.56, P skin sodium content is a strong explanatory variable for left ventricular mass, unaffected by BP and total body overhydration. In conclusion, we found skin sodium content to be closely linked to left ventricular mass in patients with CKD. Interventions that reduce skin sodium content might improve cardiovascular outcomes in these patients. Copyright © 2017 by the American Society of Nephrology.

  3. Trichostatin A accentuates doxorubicin-induced hypertrophy in cardiac myocytes.

    Science.gov (United States)

    Karagiannis, Tom C; Lin, Ann J E; Ververis, Katherine; Chang, Lisa; Tang, Michelle M; Okabe, Jun; El-Osta, Assam

    2010-10-01

    Histone deacetylase inhibitors represent a new class of anticancer therapeutics and the expectation is that they will be most effective when used in combination with conventional cancer therapies, such as the anthracycline, doxorubicin. The dose-limiting side effect of doxorubicin is severe cardiotoxicity and evaluation of the effects of combinations of the anthracycline with histone deacetylase inhibitors in relevant models is important. We used a well-established in vitro model of doxorubicin-induced hypertrophy to examine the effects of the prototypical histone deacetylase inhibitor, Trichostatin A. Our findings indicate that doxorubicin modulates the expression of the hypertrophy-associated genes, ventricular myosin light chain-2, the alpha isoform of myosin heavy chain and atrial natriuretic peptide, an effect which is augmented by Trichostatin A. Furthermore, we show that Trichostatin A amplifies doxorubicin-induced DNA double strand breaks, as assessed by γH2AX formation. More generally, our findings highlight the importance of investigating potential side effects that may be associated with emerging combination therapies for cancer.

  4. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance.

    Science.gov (United States)

    Arai, Chikako; Arai, Norie; Mizote, Akiko; Kohno, Keizo; Iwaki, Kanso; Hanaya, Toshiharu; Arai, Shigeyuki; Ushio, Simpei; Fukuda, Shigeharu

    2010-12-01

    Trehalose has been shown to evoke lower insulin secretion than glucose in oral saccharide tolerance tests in humans. Given this hypoinsulinemic effect of trehalose, we hypothesized that trehalose suppresses adipocyte hypertrophy by reducing storage of triglyceride and mitigates insulin resistance in mice fed a high-fat diet (HFD). Mice were fed an HFD and given drinking water containing 2.5% saccharide (glucose [Glc], trehalose [Tre], maltose [Mal], high-fructose corn syrup, or fructose [Fru]) ad libitum. After 7 weeks of HFD and saccharide intake, fasting serum insulin levels in the Tre/HFD group were significantly lower than in the Mal/HFD and Glc/HFD groups (P fructose corn syrup/HFD, or Fru/HFD group. Analysis of gene expression in mesenteric adipocytes showed that no statistically significant difference in the expression of monocyte chemoattractant protein-1 (MCP-1) messenger RNA (mRNA) was observed between the Tre/HFD group and the distilled water/standard diet group, whereas a significant increase in the MCP-1 mRNA expression was observed in the Glc/HFD, Mal/HFD, Fru/HFD, and distilled water/HFD groups. Thus, our data indicate that trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in HFD-fed mice by reducing insulin secretion and down-regulating mRNA expression of MCP-1. These findings further suggest that trehalose is a functional saccharide that mitigates insulin resistance. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Brain renin angiotensin system in cardiac hypertrophy and failure

    Directory of Open Access Journals (Sweden)

    Luciana eCampos

    2012-01-01

    Full Text Available Brain renin-angiotensin system (RAS is significantly involved in the roles of the endocrine RAS in cardiovascular regulation. Our studies indicate that the brain RAS participates in the development of cardiac hypertrophy and fibrosis through sympathetic activation. Inhibition of sympathetic hyperactivity after myocardial infarction through suppression of the brain RAS appears beneficial. The brain RAS is involved in the modulation of circadian rhythms of arterial pressure, contributing to nondipping hypertension. We conclude that the brain RAS in pathophysiological states interacts synergistically with the chronically overactive RAS through a positive biofeedback in order to maintain a state of alert diseased conditions, such as cardiac hypertrophy and failure. Therefore, targeting brain RAS with drugs such as angiotensin converting inhibitors or receptor blockers having increased brain penetrability could be of advantage. These RAS-targeting drugs are first-line therapy for all heart failure patients. Since the RAS has both endocrine and local tissue components, RAS drugs are being developed to attain increased tissue penetrability and volume of distribution and consequently an efficient inhibition of both RAS components.

  6. The mTOR inhibitor rapamycin has limited acute anticonvulsant effects in mice.

    Directory of Open Access Journals (Sweden)

    Adam L Hartman

    Full Text Available The mammalian target of rapamycin (mTOR pathway integrates signals from different nutrient sources, including amino acids and glucose. Compounds that inhibit mTOR kinase activity such as rapamycin and everolimus can suppress seizures in some chronic animal models and in patients with tuberous sclerosis. However, it is not known whether mTOR inhibitors exert acute anticonvulsant effects in addition to their longer term antiepileptogenic effects. To gain insights into how rapamycin suppresses seizures, we investigated the anticonvulsant activity of rapamycin using acute seizure tests in mice.Following intraperitoneal injection of rapamycin, normal four-week-old male NIH Swiss mice were evaluated for susceptibility to a battery of acute seizure tests similar to those currently used to screen potential therapeutics by the US NIH Anticonvulsant Screening Program. To assess the short term effects of rapamycin, mice were seizure tested in ≤ 6 hours of a single dose of rapamycin, and for longer term effects of rapamycin, mice were tested after 3 or more daily doses of rapamycin.The only seizure test where short-term rapamycin treatment protected mice was against tonic hindlimb extension in the MES threshold test, though this protection waned with longer rapamycin treatment. Longer term rapamycin treatment protected against kainic acid-induced seizure activity, but only at late times after seizure onset. Rapamycin was not protective in the 6 Hz or PTZ seizure tests after short or longer rapamycin treatment times. In contrast to other metabolism-based therapies that protect in acute seizure tests, rapamycin has limited acute anticonvulsant effects in normal mice.The efficacy of rapamycin as an acute anticonvulsant agent may be limited. Furthermore, the combined pattern of acute seizure test results places rapamycin in a third category distinct from both fasting and the ketogenic diet, and which is more similar to drugs acting on sodium channels.

  7. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yue [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Handong, E-mail: njhdwang@hotmail.com [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Qiang [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Ding, Hui [Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wu, Heming [Department of Neurosurgery, Nanjing Jingdu Hospital, No. 34, Biao 34, Yanggongjing Road, Nanjing 210002, Jiangsu Province (China); Pan, Hao [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China)

    2016-01-15

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluated the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.

  8. Gastrodin Inhibits Store-Operated Ca2+ Entry and Alleviates Cardiac Hypertrophy

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Yao

    2017-04-01

    Full Text Available Cardiac hypertrophy is a major risk factor for heart failure, which are among the leading causes of human death. Gastrodin is a small molecule that has been used clinically to treat neurological and vascular diseases for many years without safety issues. In the present study, we examined protective effect of gastrodin against cardiac hypertrophy and explored the underlying mechanism. Phenylephrine and angiotensin II were used to induce cardiac hypertrophy in a mouse model and a cultured cardiomyocyte model. Gastrodin was found to alleviate the cardiac hypertrophy in both models. Mechanistically, gastrodin attenuated the store-operated Ca2+ entry (SOCE by reducing the expression of STIM1 and Orai1, two key proteins in SOCE, in animal models as well as in cultured cardiomyocyte model. Furthermore, suppressing SOCE by RO2959, Orai1-siRNAs or STIM1-siRNAs markedly attenuated the phenylephrine-induced hypertrophy in cultured cardiomyocyte model. Together, these results showed that gastrodin inhibited cardiac hypertrophy and it also reduced the SOCE via its action on the expression of STIM1 and Orai1. Furthermore, suppression of SOCE could reduce the phenylephrine-induced cardiomyocyte hypertrophy, suggesting that SOCE-STIM1-Orai1 is located upstream of hypertrophy.

  9. Increased sarcolemmal Na+/H+ exchange activity in hypertrophied myocytes from dogs with chronic atrioventricular block

    NARCIS (Netherlands)

    van Borren, Marcel M. G. J.; Vos, Marc A.; Houtman, Marien J. C.; Antoons, Gudrun; Ravesloot, Jan H.

    2013-01-01

    Dogs with compensated biventricular hypertrophy due to chronic atrioventricular block (cAVB), are more susceptible to develop drug-induced Torsade-de-Pointes arrhythmias and sudden cardiac death. It has been suggested that the increased Na+ influx in hypertrophied cAVB ventricular myocytes

  10. Thin-plate spline analysis of craniofacial morphology in subjects with adenoid or tonsillar hypertrophy.

    Science.gov (United States)

    Baroni, Michela; Ballanti, Fabiana; Polimeni, Antonella; Franchi, Lorenzo; Cozza, Paola

    2011-04-01

    To compare the skeletal features of subjects with adenoid hypertrophy with those of children with tonsillar hypertrophy using thin-plate spline (TPS) analysis. A group of 20 subjects (9 girls and 11 boys; mean age 8.4 ± 0.9 years) with adenoid hypertrophy (AG) was compared with a group of 20 subjects (10 girls and 10 boys; mean age 8.2 ± 1.1 years) with tonsillar hypertrophy (TG). Craniofacial morphology was analyzed on the lateral cephalograms of the subjects in both groups by means of TPS analysis. A cross-sectional comparison was performed on both size and shape differences between the two groups. AG exhibited statistically significant shape and size differences in craniofacial configuration with respect to TG. Subjects with adenoid hypertrophy showed an upward dislocation of the anterior region of the maxilla, a more downward/backward position of the anterior region of the mandibular body and an upward/backward displacement of the condylar region. Conversely, subjects with tonsillar hypertrophy showed a downward dislocation of the anterior region of the maxilla, a more upward/forward position of the anterior region of the mandibular body and a downward/forward displacement of the condylar region. Subjects with adenoid hypertrophy exhibited features suggesting a more retrognathic mandible while subjects with tonsillar hypertrophy showed features suggesting a more prognathic mandible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Body-building without power training : Endogenously regulated pectoral muscle hypertrophy in confined shorebirds

    NARCIS (Netherlands)

    Dietz, MW; Piersma, T; Dekinga, A

    1999-01-01

    Shorebirds such as red knots Calidris canutus routinely make migratory flights of 3000 km or more. Previous studies on this species, based on compositional analyses, suggest extensive pectoral muscle hypertrophy in addition to fat storage before take-off. Such hypertrophy could be due to power

  12. Second statement of the working group on electrocardiographic diagnosis of left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Bacharova, Ljuba; Estes, E Harvey; Bang, Lia E

    2011-01-01

    The Working Group on Electrocardiographic Diagnosis of Left Ventricular Hypertrophy, appointed by the Editor of the Journal of Electrocardiology, presents the alternative conceptual model for the ECG diagnosis of left ventricular hypertrophy (LVH). It is stressed that ECG is a record of electrica...

  13. Vascular endothelial growth factor, capillarization, and function of the rat plantaris muscle at the onset of hypertrophy.

    NARCIS (Netherlands)

    Degens, H.; Moore, J.A.; Alway, S.E.

    2003-01-01

    Capillary proliferation occurs during compensatory hypertrophy. We investigated whether the expression of vascular endothelial growth factor (VEGF) is elevated at the onset of hypertrophy when capillary proliferation is minimal, and whether muscle damage as assessed by muscle force deficits, may

  14. A case report of cardia cancer complicated with idiopathic muscular hypertrophy of the oesophagus treated with thoracoscopic surgery.

    Science.gov (United States)

    Ren, Jun; Hao, Yingtao; Peng, Chuanliang

    2018-01-01

    The incidence of idiopathic muscular hypertrophy of oesophagus (IMHE) is low, and cancer with IMHE, showing significant hypertrophy of muscular layer of middle part of the oesophagus and successfully treated with minimally invasive thoracoscopic surgery.

  15. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Sylow, Lykke; Fazakerley, Daniel J

    2014-01-01

    , but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT4 translocation in muscle cells. AZD8055 inhibited glycolysis in MEF cells. Abrogation of mTORC2 activity by SIN1 deletion impaired glycolysis and AZD8055 had no effect in SIN1 KO MEFs. Re-expression of wildtype...... SIN1 rescued glycolysis. Glucose intolerance following AZD8055 administration was absent in mice lacking the mTORC2 subunit Rictor in muscle, and in vivo glucose uptake into Rictor-deficient muscle was reduced despite normal Akt activity. Taken together, acute mTOR inhibition is detrimental to glucose...

  16. Mechanisms of amino acid sensing in mTOR signaling pathway

    OpenAIRE

    Kim, Eunjung

    2009-01-01

    Amino acids are fundamental nutrients for protein synthesis and cell growth (increase in cell size). Recently, many compelling evidences have shown that the level of amino acids is sensed by extra- or intra-cellular amino acids sensor(s) and regulates protein synthesis/degradation. Mammalian target of rapamycin complex 1 (mTORC1) is placed in a central position in cell growth regulation and dysregulation of mTOR signaling pathway has been implicated in many serious human diseases including ca...

  17. Leucine minimizes denervation-induced skeletal muscle atrophy of rats through akt/mtor signaling pathways

    Directory of Open Access Journals (Sweden)

    Carolina Barbosa Ribeiro

    2015-03-01

    Full Text Available The aim of the present study was to evaluate the effect of leucine treatment (0.30 mM on muscle weight and signaling of myoproteins related to synthesis and degradation pathways of soleus muscle following seven days of complete sciatic nerve lesion.Wistar rats (n=24 of 3 to 4 months of age (192 ± 23 g were used. The animals were randomly distributed into four experimental groups (n=6/group: control, treated with leucine (L, denervated (D and denervated treated with leucine (DL.Dependent measures were proteins levels of AKT, AMPK, mTOR, and ACC performed by Western blot. Leucine induced a reduction in the phosphorylation of AMPK (p<0.05 by 16% in the L and by 68% in the DL groups as compared with control group. Denervation increased AMPK by 24% in the D group as compared with the control group (p<0.05. AKT was also modulated by denervation and leucine treatment, highlighted by the elevation of AKT phosphorylation in the D (65%, L (98% and DL (146% groups as compared with the control group (p<0.05. AKT phosphorylation was 49% higher in the D group as compared with the DL group.Furthermore, denervation decreased mTOR phosphorylation by 29% in the D group as compared with the control group. However, leucine treatment induced an increase of 49% in the phosphorylation of mTOR in the L group as compared with the control group, and an increase of 154% in the DL as compared with the D group ( p<0.05. ACC phosphorylation was 20% greater in the D group than the control group. Furthermore, ACC in the soleus was 22% lower in the in the L group and 50% lower in the DL group than the respective control group (p<0.05.In conclusion, leucine treatment minimized the deleterious effects of denervation on rat soleus muscle by increasing anabolic (AKT and mTOR and decreasing catabolic (AMPK pathways. These results may be interesting for muscle recovery following acute denervation, which may contribute to musculoskeletal rehabilitation after denervation.

  18. Practical recommendations for the early use of m-TOR inhibitors (sirolimus) in renal transplantation.

    Science.gov (United States)

    Campistol, Josep M; Cockwell, Paul; Diekmann, Fritz; Donati, Donato; Guirado, Luis; Herlenius, Gustaf; Mousa, Dujanah; Pratschke, Johann; San Millán, Juan Carlos Ruiz

    2009-07-01

    m-TOR inhibitors (e.g. sirolimus) are well-tolerated immunosuppressants used in renal transplantation for prophylaxis of organ rejection, and are associated with long-term graft survival. Early use of sirolimus is often advocated by clinicians, but this may be associated with a number of side-effects including impaired wound-healing, lymphoceles and delayed graft function. As transplant clinicians with experience in the use of sirolimus, we believe such side-effects can be limited by tailored clinical management. We present recommendations based on published literature and our clinical experience. Furthermore, guidance is provided on sirolimus use during surgery, both at transplantation and for subsequent operations.

  19. The Role of PDH Inhibition in the Development of Hypertrophy in the Hyperthyroid Rat Heart: A Combined MRI and Hyperpolarized MRS Study

    Science.gov (United States)

    Atherton, Helen J.; Dodd, Michael S.; Heather, Lisa C.; Schroeder, Marie A.; Griffin, Julian L.; Radda, George K.; Clarke, Kieran; Tyler, Damian J.

    2015-01-01

    Background Hyperthyroidism increases heart rate, contractility and cardiac output, as well as metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate utilisation. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase (PDK), thereby inhibiting glucose oxidation via pyruvate dehydrogenase (PDH). Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy (MRS) to investigate the rate and regulation of in vivo pyruvate dehydrogenase (PDH) flux in the hyperthyroid heart, and to establish whether modulation of flux through PDH would alter cardiac hypertrophy. Methods & Results Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (T3; 0.2 mg/kg/day). In vivo PDH flux, assessed using hyperpolarized MRS, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 s−1 vs 0.0055 ± 0.0005 s−1, P = 0.0003) and this reduction was completely reversed by both acute and chronic delivery of the PDK inhibitor, dichloroacetic acid (DCA). Hyperpolarized [2-13C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine MRI showed that chronic DCA treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 mg vs 200 ± 30 mg; P = 0.04) despite no change to the increase observed in cardiac output. Conclusions This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is PDK mediated. Relieving this inhibition can increase the metabolic flexibility of the hyperthyroid heart and reduce the level of hypertrophy that develops

  20. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study.

    Science.gov (United States)

    Atherton, Helen J; Dodd, Michael S; Heather, Lisa C; Schroeder, Marie A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Tyler, Damian J

    2011-06-07

    flexibility of the hyperthyroid heart and reduce the level of hypertrophy that develops while maintaining the increased cardiac output required to meet the higher systemic metabolic demand.

  1. Effect of strength training on regional hypertrophy of the elbow flexor muscles.

    Science.gov (United States)

    Drummond, Marcos D M; Szmuchrowski, Leszek A; Goulart, Karine N O; Couto, Bruno P

    2016-10-01

    Muscle hypertrophy is the main structural adaptation to strength training. We investigated the chronic effects of strength training on muscle hypertrophy in different regions of the elbow flexor muscles. Eleven untrained men (21.8 ± 1.62 years) underwent magnetic resonance imaging to determine the proximal, medial, distal, and mean cross-sectional areas (CSA) of the elbow flexors. The volunteers completed 12 weeks of strength training. The training protocol consisted of 4 sets of 8-10 maximum repetitions of unilateral elbow flexion. The interval between sets was 120 s. The training frequency was 3 sessions per week. The magnetic resonance images verified the presence of significant and similar hypertrophy in the distal, medial, and proximal portions of the elbow flexor muscles. Muscle hypertrophy may be assessed using only the medial CSA. We should not expect different degrees of hypertrophy among the regions of the elbow flexor muscles. Muscle Nerve 54: 750-755, 2016. © 2016 Wiley Periodicals, Inc.

  2. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    Science.gov (United States)

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  3. Glomerular hypertrophy in subjects with low nephron number: contributions of sex, body size and race.

    Science.gov (United States)

    Puelles, Victor G; Douglas-Denton, Rebecca N; Zimanyi, Monika A; Armitage, James A; Hughson, Michael D; Kerr, Peter G; Bertram, John F

    2014-09-01

    We have shown that low nephron number (Nglom) is a strong determinant of individual glomerular volume (IGV) in male Americans. However, whether the same pattern is present in female Americans remains unclear. The contributions of body surface area (BSA) and race to IGV in the context of Nglom also require further evaluation. Kidneys without overt renal disease were collected at autopsy in Mississippi, USA. The extremes of female Nglom were used to define high and low Nglom for both sexes. Nglom and IGV were estimated by design-based stereology. A total of 24 African and Caucasian American females (n = 12 per race; 6 per Nglom extreme) were included. These subjects were subsequently matched to 24 comparable males by age and Nglom and to 18 additional males by age, Nglom and BSA. IGV average and variance were very similar in female African and Caucasian Americans with high and low Nglom. Males with low Nglom from both races showed greater IGV average and variance than comparable females matched by age and Nglom. These differences in IGV between sexes were not observed in Caucasian Americans with low Nglom that were matched by age, Nglom and BSA. In contrast, glomeruli from African Americans were larger than those from Caucasian Americans, especially in subjects with high Nglom. While female Americans with low Nglom did not show glomerular hypertrophy, comparable males with low Nglom showed marked glomerular hypertrophy that was closely associated with high BSA. Glomerular size in African Americans may be confounded by multiple additional factors. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  4. Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, H.J.; Ouyang, W.; Liu, J.H.; Sun, Y.G.; Hu, R.; Huang, L.H.; Xian, J.L. [Southern Medical University, Department of Nuclear Medicine, Zhujiang Hospital, Guangzhou, China, Department of Nuclear Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Jing, C.F.; Zhou, M.J. [Sun Yat-Sen University, South China Sea Marine Biotechnology, National Engineering Research Center, Guangzhou, China, National Engineering Research Center, South China Sea Marine Biotechnology, Sun Yat-Sen University, Guangzhou (China)

    2014-04-11

    Hypertrophy is a major predictor of progressive heart disease and has an adverse prognosis. MicroRNAs (miRNAs) that accumulate during the course of cardiac hypertrophy may participate in the process. However, the nature of any interaction between a hypertrophy-specific signaling pathway and aberrant expression of miRNAs remains unclear. In this study, Spague Dawley male rats were treated with transverse aortic constriction (TAC) surgery to mimic pathological hypertrophy. Hearts were isolated from TAC and sham operated rats (n=5 for each group at 5, 10, 15, and 20 days after surgery) for miRNA microarray assay. The miRNAs dysexpressed during hypertrophy were further analyzed using a combination of bioinformatics algorithms in order to predict possible targets. Increased expression of the target genes identified in diverse signaling pathways was also analyzed. Two sets of miRNAs were identified, showing different expression patterns during hypertrophy. Bioinformatics analysis suggested the miRNAs may regulate multiple hypertrophy-specific signaling pathways by targeting the member genes and the interaction of miRNA and mRNA might form a network that leads to cardiac hypertrophy. In addition, the multifold changes in several miRNAs suggested that upregulation of rno-miR-331*, rno-miR-3596b, rno-miR-3557-5p and downregulation of rno-miR-10a, miR-221, miR-190, miR-451 could be seen as biomarkers of prognosis in clinical therapy of heart failure. This study described, for the first time, a potential mechanism of cardiac hypertrophy involving multiple signaling pathways that control up- and downregulation of miRNAs. It represents a first step in the systematic discovery of miRNA function in cardiovascular hypertrophy.

  5. Health-related quality of life among children with adenoid hypertrophy in Xi'an, China.

    Science.gov (United States)

    Jiang, Xun; Ren, Xiaoyong; Liu, Haiqin; Tian, Jiao; Du, Chunyan; Luo, Huanan; Cheng, Ying; Shang, Lei

    2015-12-01

    The aim of this study was to investigate the health-related quality of life (HRQOL) in 5-7-year-old children diagnosed with adenoid hypertrophy and the impact of adenoid hypertrophy on affected families. This is a cross-sectional case-control study evaluating 5-7-year-old children with adenoid hypertrophy (n=195), 5-7-year-old healthy children (n=156), and associated caregivers (parents and/or grandparents). A Chinese version of the PedsQL™ 4.0 Generic Core Scale was used to assess childhood HRQOL, and a Chinese version of the Family Impact Module (FIM) was used to assess the impact of adenoid hypertrophy on family members. HRQOL scores were compared between the children with adenoid hypertrophy and healthy children. In addition, a multiple step-wise regression with demographic variables of children and their caregivers, family economic status, and caregiver's HRQOL as independent variables were referenced to determine the factors that may influence HRQOL in children with adenoid hypertrophy. Children with adenoid hypertrophy showed significantly lower physical, emotional, social, and school functioning scores than healthy children (pchildren with adenoid hypertrophy also scored significantly lower than caregivers for healthy children on physical, emotional, social, cognitive, and communication functioning (pchildren also exhibited significantly higher levels of worry than healthy children (pchildren's age, children's relation with caregivers, caregiver's educational level, caregiver's own HRQOL, and the size of adenoid may all influence the HRQOL in children with adenoid hypertrophy (pchildren and their caregivers, and may negatively influence family functioning. In addition, caregivers' social characteristics may also significantly affect the HRQOL in children with adenoid hypertrophy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. mTOR signaling plays a critical role in the defects observed in muscle-derived stem/progenitor cells isolated from a murine model of accelerated aging.

    Science.gov (United States)

    Takayama, Koji; Kawakami, Yohei; Lavasani, Mitra; Mu, Xiaodong; Cummins, James H; Yurube, Takashi; Kuroda, Ryosuke; Kurosaka, Masahiro; Fu, Freddie H; Robbins, Paul D; Niedernhofer, Laura J; Huard, Johnny

    2017-07-01

    Mice expressing reduced levels of ERCC1-XPF (Ercc1 -/Δ mice) demonstrate premature onset of age-related changes due to decreased repair of DNA damage. Muscle-derived stem/progenitor cells (MDSPCs) isolated from Ercc1 -/Δ mice have an impaired capacity for cell differentiation. The mammalian target of rapamycin (mTOR) is a critical regulator of cell growth in response to nutrient, hormone, and oxygen levels. Inhibition of the mTOR pathway extends the lifespan of several species. Here, we examined the role of mTOR in regulating the MDSPC dysfunction that occurs with accelerated aging. We show that mTOR signaling pathways are activated in Ercc1 -/Δ MDSPCs compared with wild-type (WT) MDSPCs. Additionally, inhibiting mTOR with rapamycin promoted autophagy and improved the myogenic differentiation capacity of the Ercc1 -/Δ MDSPCs. The percent of apoptotic and senescent cells in Ercc1 -/Δ MDSPC cultures was decreased upon mTOR inhibition. These results establish that mTOR signaling contributes to stem cell dysfunction and cell fate decisions in response to endogenous DNA damage. Therefore, mTOR represents a potential therapeutic target for improving defective, aged stem cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1375-1382, 2017. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.

  7. FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway

    International Nuclear Information System (INIS)

    Huang, Xiongfei; Zeng, Yeting; Wang, Xinrui; Ma, Xiaoxiao; Li, Qianqian; Li, Ningbo; Su, Hongying; Huang, Wendong

    2016-01-01

    The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth by rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.

  8. Caloric restriction protects against electrical kindling of the amygdala by inhibiting the mTOR signaling pathway

    Directory of Open Access Journals (Sweden)

    Bryan Victor Phillips-Farfan

    2015-03-01

    Full Text Available Caloric restriction (CR has been shown to possess antiepileptic properties; however its mechanism of action is poorly understood. CR might inhibit the activity of the mammalian or mechanistic target of rapamycin (mTOR signaling cascade, which seems to participate crucially in the generation of epilepsy. Thus, we investigated the effect of CR on the mTOR pathway and whether CR modified epilepsy generation due to electrical amygdala kindling. The former was studied by analyzing the phosphorylation of adenosine monophosphate-activated protein kinase, protein kinase B and the ribosomal protein S6. The mTOR cascade is regulated by energy and by insulin levels, both of which may be changed by CR; thus we investigated if CR altered the levels of energy substrates in the blood or the level of insulin in plasma. Finally, we studied if CR modified the expression of genes that encode proteins participating in the mTOR pathway. CR increased the after-discharge threshold and tended to reduce the after-discharge duration, indicating an anti-convulsive action. CR diminished the phosphorylation of protein kinase B and ribosomal protein S6, suggesting an inhibition of the mTOR cascade. However, CR did not change glucose, β-hydroxybutyrate or insulin levels; thus the effects of CR were independent from them. Interestingly, CR also did not modify the expression of any investigated gene. The results suggest that the anti-epileptic effect of CR may be partly due to inhibition of the mTOR pathway.

  9. FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiongfei, E-mail: xiongfeihuang@hotmail.com [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian (China); Zeng, Yeting [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Wang, Xinrui [Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350108, Fujian (China); Ma, Xiaoxiao [Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, CA 91010 (United States); Li, Qianqian; Li, Ningbo; Su, Hongying [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Huang, Wendong [Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, CA 91010 (United States)

    2016-05-27

    The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth by rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.

  10. Impact of mTOR Inhibitors on Cancer Development in Kidney Transplantation Recipients: A Population-Based Study.

    Science.gov (United States)

    Kao, C-C; Liu, J-S; Lin, M-H; Hsu, C-Y; Chang, F-C; Lin, Y-C; Chen, H-H; Chen, T-W; Hsu, C-C; Wu, M-S

    2016-04-01

    The mammalian target of rapamycin (mTOR) inhibitor is an immunosuppressive drug used in kidney transplantation. Whether the mTOR inhibitor is associated with reduced risk of cancer development and mortality after kidney transplantation is controversial. We conducted a nationwide population-based study. Patients who did not have malignancy history and received kidney transplantation between 2010 and 2013 were enrolled. Recipients who had mTOR inhibitors (n = 430) for more than 30 days comprised the study group; 1720 recipients who did not have mTOR inhibitors comprised the control group. The primary outcome is the development of cancer after kidney transplantation. These patients were followed until the first-time admission with diagnosis of cancer, death, or the end of 2014. A Cox proportional-hazard model was used to determine the risk of cancer development and all-cause mortality. During the 35-month median duration of observation, there were 16 and 61 patients with cancer development in the study group and the control group, respectively. The cancer incidence was 12.8 and 12.4 per 1000 person-years. There were 10 and 135 mortality cases, with the incidence rate of 7.8 and 26.9 per 1000 person-years. After multivariable adjustment, the mTOR inhibitors users were not associated with reduced risk of new cancer development as compared with control (hazard ratio [HR], 0.86; 95% confidence interval [CI], 0.46-1.60; P = .63), nor risk of all-cause mortality (HR, 0.70; 95% CI, 0.33-1.46; P = .34). The use of mTOR inhibitors was not associated with a reduction in the risk of cancer development and all-cause mortality in kidney transplantation recipients. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Capillarization and vascular endothelial growth factor expression in hypertrophying anterior latissimus dorsi muscle of the Japanese quail.

    NARCIS (Netherlands)

    Degens, H.; Anderson, R.K.; Alway, S.E.

    2003-01-01

    Hypertrophy may increase the diffusion distances from capillaries to the interior of the muscle fibers. We hypothesized that capillary proliferation occurs during hypertrophy, which is accompanied by an up-regulation of vascular endothelial growth factor (VEGF). Hypertrophy of the left anterior

  12. Effects of the single and combined treatment with dopamine agonist, somatostatin analog and mTOR inhibitors in a human lung carcinoid cell line: an in vitro study.

    Science.gov (United States)

    Pivonello, Claudia; Rousaki, Panagoula; Negri, Mariarosaria; Sarnataro, Maddalena; Napolitano, Maria; Marino, Federica Zito; Patalano, Roberta; De Martino, Maria Cristina; Sciammarella, Concetta; Faggiano, Antongiulio; Rocco, Gaetano; Franco, Renato; Kaltsas, Gregory A; Colao, Annamaria; Pivonello, Rosario

    2017-06-01

    Somatostatin analogues and mTOR inhibitors have been used as medical therapy in lung carcinoids with variable results. No data are available on dopamine agonists as treatment for lung carcinoids. The main aim of the current study was to evaluate the effect of the combined treatment of somatostatin analogue octreotide and the dopamine agonist cabergoline with mTOR inhibitors in an in vitro model of typical lung carcinoids: the NCI-H727 cell line. In NCI-H727 cell line, reverse transcriptase-quantitative polymerase chain reaction and immunofluorescence were assessed to characterize the expression of the somatostatin receptor 2 and 5, dopamine receptor 2 and mTOR pathway components. Fifteen typical lung carcinoids tissue samples have been used for somatostatin receptor 2, dopamine receptor 2, and the main mTOR pathway component p70S6K expression and localization by immunohistochemistry. Cell viability, fluorescence-activated cell sorting analysis and western blot have been assessed to test the pharmacological effects of octreotide, cabergoline and mTOR inhibitors, and to evaluate the activation of specific cell signaling pathways in NCI-H727 cell line. NCI-H727 cell line expressed somatostatin receptor 2, somatostatin receptor 5 and dopamine receptor 2 and all mTOR pathway components at messenger and protein levels. Somatostatin receptor 2, dopamine receptor 2, and p70S6K (non phosphorylated and phosphorylated) proteins were expressed in most typical lung carcinoids tissue samples. Octreotide and cabergoline did not reduce cell viability as single agents but, when combined with mTOR inhibitors, they potentiate mTOR inhibitors effect after long-term exposure, reducing Akt and ERK phosphorylation, mTOR escape mechanisms, and increasing the expression DNA-damage-inducible transcript 4, an mTOR suppressor. In conclusion, the single use of octreotide and cabergoline is not sufficient to block cell viability but the combined approach of these agents with mTOR inhibitors

  13. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy.

    Directory of Open Access Journals (Sweden)

    Matthew J Spindler

    Full Text Available A-kinase anchoring proteins (AKAPs are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA and D (PKD and an active Rho-guanine nucleotide exchange factor (Rho-GEF domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown.To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction.These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy.

  14. PRKCI negatively regulates autophagy via PIK3CA/AKT–MTOR signaling

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Liujing; Li, Ge; Xia, Dan; Hongdu, Beiqi; Xu, Chentong; Lin, Xin [Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Beijing (China); Peking University Center for Human Disease Genomics, Peking University, Beijing (China); Chen, Yingyu, E-mail: yingyu_chen@bjmu.edu.cn [Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, Beijing (China); Peking University Center for Human Disease Genomics, Peking University, Beijing (China)

    2016-02-05

    The atypical protein kinase C isoform PRKC iota (PRKCI) plays a key role in cell proliferation, differentiation, and carcinogenesis, and it has been shown to be a human oncogene. Here, we show that PRKCI overexpression in U2OS cells impaired functional autophagy in normal or cell stress conditions, as characterized by decreased levels of light chain 3B-II protein (LC3B-II) and weakened degradation of endogenous and exogenous autophagic substrates. Conversely, PRKCI knockdown by small interference RNA resulted in opposite effects. Additionally, we identified two novel PRKCI mutants, PRKCI{sup L485M} and PRKCI{sup P560R}, which induced autophagy and exhibited dominant negative effects. Further studies indicated that PRKCI knockdown–mediated autophagy was associated with the inactivation of phosphatidylinositol 3-kinase alpha/AKT–mammalian target of rapamycin (PIK3CA/AKT–MTOR) signaling. These data underscore the importance of PRKCI in the regulation of autophagy. Moreover, the finding may be useful in treating PRKCI-overexpressing carcinomas that are characterized by increased levels of autophagy. - Highlights: • The atypical protein kinase C iota isoform (PRKCI) is a human oncogene. • PRKCI overexpression impairs functional autophagy in U2OS cells. • It reduces LC3B-II levels and weakens SQSTM1 and polyQ80 aggregate degradation. • PRKCI knockdown has the opposite effect. • The effect of PRKCI knockdown is related to PIK3CA/AKT–MTOR signaling inactivation.

  15. Niclosamide inhibits lytic replication of Epstein-Barr virus by disrupting mTOR activation.

    Science.gov (United States)

    Huang, Lu; Yang, Mengtian; Yuan, Yan; Li, Xiaojuan; Kuang, Ersheng

    2017-02-01

    Infection with the oncogenic γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause several severe malignancies in humans. Inhibition of the lytic replication of EBV and KSHV eliminates the reservoir of persistent infection and transmission, consequently preventing the occurrence of diseases from the sources of infection. Antiviral drugs are limited in controlling these viral infectious diseases. Here, we demonstrate that niclosamide, an old anthelmintic drug, inhibits mTOR activation during EBV lytic replication. Consequently, niclosamide effectively suppresses EBV lytic gene expression, viral DNA lytic replication and virion production in EBV-infected lymphoma cells and epithelial cells. Niclosamide exhibits cytotoxicity toward lymphoma cells and induces irreversible cell cycle arrest in lytically EBV-infected cells. The ectopic overexpression of mTOR reverses the inhibition of niclosamide in EBV lytic replication. Similarly, niclosamide inhibits KSHV lytic replication. Thus, we conclude that niclosamide is a promising candidate for chemotherapy against the acute occurrence and transmission of infectious diseases of oncogenic γ-herpesviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. TBK1 Regulates Prostate Cancer Dormancy through mTOR Inhibition

    Directory of Open Access Journals (Sweden)

    Jin Koo Kim

    2013-09-01

    Full Text Available The mechanisms that regulate hematopoietic stem cell (HSC dormancy and self-renewal are well established and are largely dependent on signals emanating from the HSC niche. Recently, we found that prostate cancer (PCa cells target the HSC niche in mouse bone marrow (BM during metastasis. Little is known, however, as to how the HSC niche may regulate dormancy in cancer cells. In this study, we investigated the effects of TANK binding kinase 1 (TBK1 on PCa dormancy in the BM niche. We found that binding with niche osteoblasts induces the expression of TBK1 in PCa cells PC3 and C4-2B. Interestingly, TBK1 interacts with mammalian target of rapamycin (mTOR and inhibits its function. Rapamycin, an mTOR inhibitor, induces cell cycle arrest of PCa cells and enhances chemotherapeutic resistance of PCa cells. As a result, the knockdown of TBK1 decreases PCa stem-like cells and drug resistance in vitro and in vivo. Taken together, these results strongly indicate that TBK1 plays an important role in the dormancy and drug resistance of PCa.

  17. Advances in the therapeutic use of mammalian target of rapamycin (mTOR) inhibitors in dermatology.

    Science.gov (United States)

    Fogel, Alexander L; Hill, Sharleen; Teng, Joyce M C

    2015-05-01

    Significant developments in the use of mammalian target of rapamycin (mTOR) inhibitors (mTORIs) as immunosuppressant and antiproliferative agents have been made. Recent advances in the understanding of the mTOR signaling pathway and its downstream effects on tumorigenesis and vascular proliferation have broadened the clinical applications of mTORIs in many challenging disorders such as tuberous sclerosis complex, pachyonychia congenita, complex vascular anomalies, and inflammatory dermatoses. Systemic mTORI therapy has shown benefits in these areas, but is associated with significant side effects that sometimes necessitate drug holidays. To mitigate the side effects of systemic mTORIs for dermatologic applications, preliminary work to assess the potential of percutaneous therapy has been performed, and the evidence suggests that percutaneous delivery of mTORIs may allow for effective long-term therapy while avoiding systemic toxicities. Additional large placebo-controlled, double-blinded, randomized studies are needed to assess the efficacy, safety, duration, and tolerability of topical treatments. The objective of this review is to provide updated information on the novel use of mTORIs in the management of many cutaneous disorders. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Association of Ugrp2 gene polymorphisms with adenoid hypertrophy in the pediatric population.

    Science.gov (United States)

    Atilla, Mahmut Huntürk; Özdaş, Sibel; Özdaş, Talih; Baştimur, Sibel; Muz, Sami Engin; Öz, Işılay; Kurt, Kenan; İzbirak, Afife; Babademez, Mehmet Ali; Vatandaş, Nilgün

    2017-08-01

    Adenoid hypertrophy is a condition that presents itself as the chronic enlargement of adenoid tissues; it is frequently observed in the pediatric population. The Ugrp2 gene, a member of the secretoglobin superfamily, encodes a low-molecular weight protein that functions in the differentiation of upper airway epithelial cells. However, little is known about the association of Ugrp2 genetic variations with adenoid hypertrophy. The aim of this study is to investigate the association of single nucleotide polymorphisms in the Ugrp2 gene with adenoid hypertrophy and its related phenotypes. A total of 219 children, comprising 114 patients suffering from adenoid hypertrophy and 105 healthy patients without adenoid hypertrophy, were enrolled in this study. Genotypes of the Ugrp2 gene were determined by DNA sequencing. We identified four single nucleotide polymorphisms (IVS1-189G>A, IVS1-89T>G, c.201delC, and IVS2-15G>A) in the Ugrp2 gene. Our genotype analysis showed that the Ugrp2 (IVS1-89T>G) TG and (c.201delC) CdelC genotypes and their minor alleles were associated with a considerable increase in the risk of adenoid hypertrophy compared with the controls (p=0.012, p=0.009, p=0.013, and p=0.037, respectively). Furthermore, Ugrp2 (GTdelCG, GTdelCA) haplotypes were significantly associated with adenoid hypertrophy (four single nucleotide polymorphisms ordered from 5' to 3'; p=0.0001). Polymorfism-Polymorfism interaction analysis indicated a strong interaction between combined genotypes of the Ugrp2 gene contributing to adenoid hypertrophy, as well as an increased chance of its diagnosis (p<0.0001). In addition, diplotypes carrying the mutant Ugrp2 (c.201delC) allele were strongly associated with an increased risk of adenoid hypertrophy with asthma and adenoid hypertrophy with allergies (p=0.003 and p=0.0007, respectively). Some single nucleotide polymorphisms and their combinations in the Ugrp2 gene are associated with an increased risk of developing adenoid hypertrophy

  19. DUAL INHIBITION OF PI3K/AKT AND mTOR SIGNALING IN HUMAN NON-SMALL CELL LUNG CANCER CELLS BY A DIETARY FLAVONOID FISETIN

    Science.gov (United States)

    Khan, Naghma; Afaq, Farrukh; Khusro, Fatima H.; Adhami, Vaqar Mustafa; Suh, Yewseok; Mukhtar, Hasan

    2011-01-01

    Lung cancer is one of the most commonly occurring malignancies. It has been reported that mTOR is phosphorylated in lung cancer and its activation was more frequent in tumors with over-expression of PI3K/Akt. Therefore, dual inhibitors of PI3K/Akt and mTOR signaling could be valuable agents for treating lung cancer. In the present study, we show that fisetin, a dietary tetrahydroxyflavone inhibits cell-growth with the concomitant suppression of PI3K/Akt and mTOR signaling in human non-small cell lung cancer (NSCLC) cells. Using autodock 4, we found that fisetin physically interacts with the mTOR complex at two sites. Fisetin treatment was also found to reduce the formation of A549 cell colonies in a dose-dependent manner. Treatment of cells with fisetin caused decrease in the protein expression of PI3K (p85 and p110), inhibition of phosphorylation of Akt, mTOR, p70S6K1, eIF-4E and 4E-BP1. Fisetin-treated cells also exhibited dose-dependent inhibition of the constituents of mTOR signaling complex like Rictor, Raptor, GβL and PRAS40. There was increase in the phosphorylation of AMPKα and decrease in the phosphorylation of TSC2 on treatment of cells with fisetin. We also found that treatment of cells with mTOR inhibitor rapamycin and mTOR-siRNA caused decrease in phosphorylation of mTOR and its target proteins which were further downregulated on treatment with fisetin, suggesting that these effects are mediated in part, through mTOR signaling. Our results show that fisetin suppressed PI3K/Akt and mTOR signaling in NSCLC cells and thus, could be developed as a chemotherapeutic agent against human lung cancer. PMID:21618507

  20. mTOR activity in AIDS-related diffuse large B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Sara H Browne

    Full Text Available Patients infected with HIV have a significantly increased risk of developing non-Hodgkin lymphomas despite the widespread use of HAART. To investigate mTOR pathway activity in acquired immunodeficiency syndrome (AIDS related diffuse large B-cell lymphoma AR-DLBCL, we used immunohistochemistry to examine the presence of the phosphorylated 70 ribosomal S6 protein-kinase (p70S6K, an extensively studied effector of mTOR Complex 1 (mTORC1 and the phosphorylated phosphatase and tensin homolog (pPTEN, a negative regulator of mTORC1 pathway.We evaluated tissue samples from 126 patients with AR-DLBCL. Among them, 98 samples were from tissue microarrays (TMAs supplied by the Aids and Cancer Specimen Resource (ACSR, the remaining 28 samples were from cases diagnosed and treated at the University of California, San Diego (UCSD. The presence of p70S6K was evaluated with two antibodies directed against the combined epitopes Ser235/236 and Ser240/244, respectively; and additional monoclonal anti-bodies were used to identify pPTEN and phosphorylated proline-rich Akt substrate of 40kDa (pPRAS40. The degree of intensity and percentage of cells positive for p70S6K and pPTEN were assessed in all the samples. In addition, a subgroup of 28 patients from UCSD was studied to assess the presence of pPRAS40, an insulin-regulated activator of the mTORC1. The expression of each of these markers was correlated with clinical and histopathologic features.The majority of the patients evaluated were males (88%; only two cases (1.6% were older than 65 years of age. We found high levels of both p70S6K-paired epitopes studied, 48% positivity against Ser235/236 (44% in ACSR and 64% in UCSD group, and 86% positivity against Ser240/244 (82% in ACSR and 100% in UCSD group. We observed more positive cells and stronger intensity with epitope Ser240/244 in comparison to Ser235/236 (p<0.0001. The degree of intensity and percentage of cells positive for pPTEN was positively correlated with

  1. Myocardial perfusion in type 2 diabetes with left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Hesse, Birger; Meyer, Christian; Nielsen, Flemming S

    2004-01-01

    The purpose of this study was to assess whether acute angiotensin-converting enzyme (ACE) inhibition would improve myocardial perfusion and perfusion reserve in a subpopulation of normotensive patients with diabetes and left ventricular hypertrophy (LVH), both independent risk factors of coronary...... disease. Using positron emission tomography (PET), we investigated the response of regional myocardial perfusion to acute ACE inhibition with i.v. infusion of perindoprilat (vs saline infusion as control, minimum interval 3 days) in 12 diabetic patients with LVH. Myocardial perfusion was quantified...... with controls, maximal perfusion was reduced in patients (1.8+/-0.6 vs 2.5+/-1.0 ml min(-1) g(-1); P2.7+/-1.0 vs 3.6+/-1.3; P=0.059). During perindoprilat infusion, myocardial perfusion reserve in patients increased to 3.9+/-0.9 ( P

  2. Transcriptional activation of ribosomal RNA genes during compensatory renal hypertrophy

    International Nuclear Information System (INIS)

    Ouellette, A.J.; Moonka, R.; Zelenetz, A.; Malt, R.A.

    1986-01-01

    The overall rate of rDNA transcription increases by 50% during the first 24 hours of compensatory renal hypertrophy in the mouse. To study mechanisms of ribosome accumulation after uninephrectomy, transcription rates were measured in isolated kidneys by transcriptional runoff. 32 P-labeled nascent transcripts were hybridized to blots containing linearized, denatured cloned rDNA, and hybridization was quantitated autoradiographically and by direct counting. Overall transcriptional activity of rDNA was increased by 30% above control levels at 6 hrs after nephrectomy and by 50% at 12, 18, and 24 hrs after operation. Hybridizing RNA was insensitive to inhibiby alpha-amanitin, and no hybridization was detected to vector DNA. Thus, accelerated rDNA transcription is one regulatory element in the accretion of ribosomes in renal growth, and the regulatory event is an early event. Mechanisms of activation may include enhanced transcription of active genes or induction of inactive DNA

  3. The relationship of enuresis nocturna and adenoid hypertrophy

    Directory of Open Access Journals (Sweden)

    Muhsin Balaban

    2016-07-01

    Full Text Available Objectives: This study was organized to assess the relationship of enuresis nocturna (EN and upper airway obstruction (UAO in children. Material and Methods: This study was multi-centrically and prospectively designed including 79 children who presented to a urology clinic with symptoms of EN between January 2013 and February 2014. Sixty-four age-matched children with no history of urological complaints were randomly recruited from children admitted to a pediatric clinic as a control group. All children and parents were asked to fill out a dysfunctional elimination syndrome (DES questionnaire and children were examined by an ear, nose and throat (ENT specialist to evaluate the UAO. Descriptive statistics, chisquare and Mann-Whitney-U tests were used to compare variables. Results: The mean ages of the 79 children (48 male, 31 female in the study group and the 64 children (41 male, 23 female in the control group were 10.14+/-3.38 and 9.17+/- 2.85, respectively. Family history of the study showed that 19% of the children’s mothers, 10% of the children’s fathers and 37% of the children’s siblings had experienced EN. There was a significant difference between the study and the control groups in terms of urge to urinate, bladder emptying, bowel symptoms and psychological stress. There was also a significant difference between rates of tonsillar hypertrophy and nasopharynx obstruction in the EN group (p = 0.009. Conclusion: In this study we found that half of the children with EN had tonsillar hypertrophy, which was significantly higher than in the control group. Further studies are needed to clarify the exact relationship between UAO and EN.

  4. Protein kinase A-mediated cell proliferation in brown preadipocytes is independent of Erk1/2, PI3K and mTOR

    International Nuclear Information System (INIS)

    Wang, Yanling; Sato, Masaaki; Guo, Yuan; Bengtsson, Tore; Nedergaard, Jan

    2014-01-01

    The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI 3 K system and the mTOR complexes were all activated by cAMP, but these activations were not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias. - Highlights: • cAMP can mimick norepinephrine-induced proliferation of brown preadipocytes. • The cAMP-induced proliferation can occur in the absence of serum, of any other growth factors, and of insulin. • Erk1/2, PI 3 K and mTOR are cAMP activated but not involved in induction of proliferation. • A Protein Kinase C member may be in the signalling cascade. • This pathway analysis may also be of importance for certain endocrine hyper- and neoplasias

  5. Protein kinase A-mediated cell proliferation in brown preadipocytes is independent of Erk1/2, PI{sub 3}K and mTOR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanling; Sato, Masaaki; Guo, Yuan; Bengtsson, Tore; Nedergaard, Jan, E-mail: jan@metabol.su.se

    2014-10-15

    The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI{sub 3}K system and the mTOR complexes were all activated by cAMP, but these activations were not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias. - Highlights: • cAMP can mimick norepinephrine-induced proliferation of brown preadipocytes. • The cAMP-induced proliferation can occur in the absence of serum, of any other growth factors, and of insulin. • Erk1/2, PI{sub 3}K and mTOR are cAMP activated but not involved in induction of proliferation. • A Protein Kinase C member may be in the signalling cascade. • This pathway analysis may also be of importance for certain endocrine hyper- and neoplasias.

  6. Herbal Supplement Ameliorates Cardiac Hypertrophy in Rats with CCl4-Induced Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Ping-Chun Li

    2012-01-01

    Full Text Available We used the carbon tetrachloride (CCl4 induced liver cirrhosis model to test the molecular mechanism of action involved in cirrhosis-associated cardiac hypertrophy and the effectiveness of Ocimum gratissimum extract (OGE and silymarin against cardiac hypertrophy. We treated male wistar rats with CCl4 and either OGE (0.02 g/kg B.W. or 0.04 g/kg B.W. or silymarin (0.2 g/kg B.W.. Cardiac eccentric hypertrophy was induced by CCl4 along with cirrhosis and increased expression of cardiac hypertrophy related genes NFAT, TAGA4, and NBP, and the interleukin-6 (IL-6 signaling pathway related genes MEK5, ERK5, JAK, and STAT3. OGE or silymarin co-treatment attenuated CCl4-induced cardiac abnormalities, and lowered expression of genes which were elevated by this hepatotoxin. Our results suggest that the IL-6 signaling pathway may be related to CCl4-induced cardiac hypertrophy. OGE and silymarin were able to lower liver fibrosis, which reduces the chance of cardiac hypertrophy perhaps by lowering the expressions of IL-6 signaling pathway related genes. We conclude that treatment of cirrhosis using herbal supplements is a viable option for protecting cardiac tissues against cirrhosis-related cardiac hypertrophy.

  7. Effect of hepatocyte growth factor and angiotensin II on rat cardiomyocyte hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ai-Lan [Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Ou, Cai-Wen [The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); He, Zhao-Chu [Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Liu, Qi-Cai [Experimental Medical Research Center, Guangzhou Medical University, Guangzhou (China); Dong, Qi [Department of Physiology, Guangzhou Medical University, Guangzhou (China); Chen, Min-Sheng [Guangzhou Key Laboratory of Cardiovascular Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China)

    2012-10-15

    Angiotensin II (Ang II) plays an important role in cardiomyocyte hypertrophy. The combined effect of hepatocyte growth factor (HGF) and Ang II on cardiomyocytes is unknown. The present study was designed to determine the effect of HGF on cardiomyocyte hypertrophy and to explore the combined effect of HGF and Ang II on cardiomyocyte hypertrophy. Primary cardiomyocytes were isolated from neonatal rat hearts and cultured in vitro. Cells were treated with Ang II (1 µM) alone, HGF (10 ng/mL) alone, and Ang II (1 µM) plus HGF (10 ng/mL) for 24, 48, and 72 h. The amount of [{sup 3}H]-leucine incorporation was then measured to evaluate protein synthesis. The mRNA levels of β-myosin heavy chain and atrial natriuretic factor were determined by real-time PCR to evaluate the presence of fetal phenotypes of gene expression. The cell size of cardiomyocytes was also studied. Ang II (1 µM) increased cardiomyocyte hypertrophy. Similar to Ang II, treatment with 1 µM HGF promoted cardiomyocyte hypertrophy. Moreover, the combination of 1 µM Ang II and 10 ng/mL HGF clearly induced a combined pro-hypertrophy effect on cardiomyocytes. The present study demonstrates for the first time a novel, combined effect of HGF and Ang II in promoting cardiomyocyte hypertrophy.

  8. 19-Hydroxyeicosatetraenoic acid and isoniazid protect against angiotensin II-induced cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Elkhatali, Samya; El-Sherbeni, Ahmed A.; Elshenawy, Osama H. [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Abdelhamid, Ghada [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Helwan (Egypt); El-Kadi, Ayman O.S., E-mail: aelkadi@ualberta.ca [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2015-12-15

    We have recently demonstrated that 19-hydroxyeicosatetraenoic acid (19-HETE) is the major subterminal-HETE formed in the heart tissue, and its formation was decreased during cardiac hypertrophy. In the current study, we examined whether 19-HETE confers cardioprotection against angiotensin II (Ang II)-induced cardiac hypertrophy. The effect of Ang II, with and without 19-HETE (20 μM), on the development of cellular hypertrophy in cardiomyocyte RL-14 cells was assessed by real-time PCR. Also, cardiac hypertrophy was induced in Sprague–Dawley rats by Ang II, and the effect of increasing 19-HETE by isoniazid (INH; 200 mg/kg/day) was assessed by heart weight and echocardiography. Also, alterations in cardiac cytochrome P450 (CYP) and their associated arachidonic acid (AA) metabolites were determined by real-time PCR, Western blotting and liquid-chromatography–mass-spectrometry. Our results demonstrated that 19-HETE conferred a cardioprotective effect against Ang II-induced cellular hypertrophy in vitro, as indicated by the significant reduction in β/α-myosin heavy chain ratio. In vivo, INH improved heart dimensions, and reversed the increase in heart weight to tibia length ratio caused by Ang II. We found a significant increase in cardiac 19-HETE, as well as a significant reduction in AA and its metabolite, 20-HETE. In conclusion, 19-HETE, incubated with cardiomyocytes in vitro or induced in the heart by INH in vivo, provides cardioprotection against Ang II-induced hypertrophy. This further confirms the role of CYP, and their associated AA metabolites in the development of cardiac hypertrophy. - Highlights: • We found 19-hydroxy arachidonic acid to protect cardiomyocytes from hypertrophy. • We validated the use of isoniazid as a cardiac 19-hydroxy arachidonic acid inducer. • We found isoniazid to increase protective and inhibit toxic eicosanoides. • We found isoniazid to protect against angiotensin-induced cardiac hypertrophy. • This will help to

  9. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    Science.gov (United States)

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  10. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants

    Directory of Open Access Journals (Sweden)

    T. Fernandes

    2011-09-01

    Full Text Available Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1 receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  11. Association between routine and standardized blood pressure measurements and left ventricular hypertrophy among patients on hemodialysis.

    Science.gov (United States)

    Khangura, Jaspreet; Culleton, Bruce F; Manns, Braden J; Zhang, Jianguo; Barnieh, Lianne; Walsh, Michael; Klarenbach, Scott W; Tonelli, Marcello; Sarna, Magdalena; Hemmelgarn, Brenda R

    2010-06-24

    Left ventricular (LV) hypertrophy is common among patients on hemodialysis. While a relationship between blood pressure (BP) and LV hypertrophy has been established, it is unclear which BP measurement method is the strongest correlate of LV hypertrophy. We sought to determine agreement between various blood pressure measurement methods, as well as identify which method was the strongest correlate of LV hypertrophy among patients on hemodialysis. This was a post-hoc analysis of data from a randomized controlled trial. We evaluated the agreement between seven BP measurement methods: standardized measurement at baseline; single pre- and post-dialysis, as well as mean intra-dialytic measurement at baseline; and cumulative pre-, intra- and post-dialysis readings (an average of 12 monthly readings based on a single day per month). Agreement was assessed using Lin's concordance correlation coefficient (CCC) and the Bland Altman method. Association between BP measurement method and LV hypertrophy on baseline cardiac MRI was determined using receiver operating characteristic curves and area under the curve (AUC). Agreement between BP measurement methods in the 39 patients on hemodialysis varied considerably, from a CCC of 0.35 to 0.94, with overlapping 95% confidence intervals. Pre-dialysis measurements were the weakest predictors of LV hypertrophy while standardized, post- and inter-dialytic measurements had similar and strong (AUC 0.79 to 0.80) predictive power for LV hypertrophy. A single standardized BP has strong predictive power for LV hypertrophy and performs just as well as more resource intensive cumulative measurements, whereas pre-dialysis blood pressure measurements have the weakest predictive power for LV hypertrophy. Current guidelines, which recommend using pre-dialysis measurements, should be revisited to confirm these results.

  12. Association between routine and standardized blood pressure measurements and left ventricular hypertrophy among patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Walsh Michael

    2010-06-01

    Full Text Available Abstract Background Left ventricular (LV hypertrophy is common among patients on hemodialysis. While a relationship between blood pressure (BP and LV hypertrophy has been established, it is unclear which BP measurement method is the strongest correlate of LV hypertrophy. We sought to determine agreement between various blood pressure measurement methods, as well as identify which method was the strongest correlate of LV hypertrophy among patients on hemodialysis. Methods This was a post-hoc analysis of data from a randomized controlled trial. We evaluated the agreement between seven BP measurement methods: standardized measurement at baseline; single pre- and post-dialysis, as well as mean intra-dialytic measurement at baseline; and cumulative pre-, intra- and post-dialysis readings (an average of 12 monthly readings based on a single day per month. Agreement was assessed using Lin's concordance correlation coefficient (CCC and the Bland Altman method. Association between BP measurement method and LV hypertrophy on baseline cardiac MRI was determined using receiver operating characteristic curves and area under the curve (AUC. Results Agreement between BP measurement methods in the 39 patients on hemodialysis varied considerably, from a CCC of 0.35 to 0.94, with overlapping 95% confidence intervals. Pre-dialysis measurements were the weakest predictors of LV hypertrophy while standardized, post- and inter-dialytic measurements had similar and strong (AUC 0.79 to 0.80 predictive power for LV hypertrophy. Conclusions A single standardized BP has strong predictive power for LV hypertrophy and performs just as well as more resource intensive cumulative measurements, whereas pre-dialysis blood pressure measurements have the weakest predictive power for LV hypertrophy. Current guidelines, which recommend using pre-dialysis measurements, should be revisited to confirm these results.

  13. Transcriptional adaptations following exercise in Thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophy

    Directory of Open Access Journals (Sweden)

    Park Stephen DE

    2009-12-01

    Full Text Available Abstract Background Selection for exercise-adapted phenotypes in the Thoroughbred racehorse has provided a valuable model system to understand molecular responses to exercise in skeletal muscle. Exercise stimulates immediate early molecular responses as well as delayed responses during recovery, resulting in a return to homeostasis and enabling long term adaptation. Global mRNA expression during the immediate-response period has not previously been reported in skeletal muscle following exercise in any species. Also, global gene expression changes in equine skeletal muscle following exercise have not been reported. Therefore, to identify novel genes and key regulatory pathways responsible for exercise adaptation we have used equine-specific cDNA microarrays to examine global mRNA expression in skeletal muscle from a cohort of Thoroughbred horses (n = 8 at three time points (before exercise, immediately post-exercise, and four hours post-exercise following a single bout of treadmill exercise. Results Skeletal muscle biopsies were taken from the gluteus medius before (T0, immediately after (T1 and four hours after (T2 exercise. Statistically significant differences in mRNA abundance between time points (T0 vs T1 and T0 vs T2 were determined using the empirical Bayes moderated t-test in the Bioconductor package Linear Models for Microarray Data (LIMMA and the expression of a select panel of genes was validated using real time quantitative reverse transcription PCR (qRT-PCR. While only two genes had increased expression at T1 (P 2 932 genes had increased (P P 2 revealed an over-representation of genes localized to the actin cytoskeleton and with functions in the MAPK signalling, focal adhesion, insulin signalling, mTOR signaling, p53 signaling and Type II diabetes mellitus pathways. At T1, using a less stringent statistical approach, we observed an over-representation of genes involved in the stress response, metabolism and intracellular signaling

  14. DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in human liver cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Akio; Fujita, Yoshihito; Abudukadier, Abulizi; Fukushima, Toru; Oguri, Yasuo; Ogura, Masahito; Harashima, Shin-ichi; Hosokawa, Masaya; Inagaki, Nobuya, E-mail: inagaki@metab.kuhp.kyoto-u.ac.jp

    2015-05-15

    Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosome protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy. - Highlights: • We elucidated a novel pathway of metformin's anti-cancer action in HCC cells. • DEPTOR is involved in the suppressing effect of metformin on mTOR signaling. • Metformin increases DEPTOR protein levels via suppression of proteasome activity. • DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action.

  15. DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in human liver cancer cells

    International Nuclear Information System (INIS)

    Obara, Akio; Fujita, Yoshihito; Abudukadier, Abulizi; Fukushima, Toru; Oguri, Yasuo; Ogura, Masahito; Harashima, Shin-ichi; Hosokawa, Masaya; Inagaki, Nobuya

    2015-01-01

    Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosome protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy. - Highlights: • We elucidated a novel pathway of metformin's anti-cancer action in HCC cells. • DEPTOR is involved in the suppressing effect of metformin on mTOR signaling. • Metformin increases DEPTOR protein levels via suppression of proteasome activity. • DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action

  16. Role of mTOR, Bad, and Survivin in RasGAP Fragment N-Mediated Cell Protection

    Science.gov (United States)

    Yang, Jiang-Yan; Widmann, Christian

    2013-01-01

    Partial cleavage of p120 RasGAP by caspase-3 in stressed cells generates an N-terminal fragment, called fragment N, which activates an anti-apoptotic Akt-dependent survival response. Akt regulates several effectors but which of these mediate fragment N-dependent cell protection has not been defined yet. Here we have investigated the role of mTORC1, Bad, and survivin in the capacity of fragment N to protect cells from apoptosis. Neither rapamycin, an inhibitor of mTORC1, nor silencing of raptor, a subunit of the mTORC1 complex, altered the ability of fragment N from inhibiting cisplatin- and Fas ligand-induced death. Cells lacking Bad, despite displaying a stronger resistance to apoptosis, were still protected by fragment N against cisplatin-induced death. Fragment N was also able to protect cells from Fas ligand-induced death in conditions where Bad plays no role in apoptosis regulation. Fragment N expression in cells did neither modulate survivin mRNA nor its protein expression. Moreover, the expression of cytoplasmic survivin, known to exert anti-apoptotic actions in cells, still occurred in UV-B-irradiated epidermis of mouse expressing a caspase-3-resistant RasGAP mutant that cannot produce fragment N. Additionally, survivin function in cell cycle progression was not affected by fragment N. These results indicate that, taken individually, mTOR, Bad, or Survivin are not required for fragment N to protect cells from cell death. We conclude that downstream targets of Akt other than mTORC1, Bad, or survivin mediate fragment N-induced protection or that several Akt effectors can compensate for each other to induce the pro-survival fragment N-dependent response. PMID:23826368

  17. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2

    DEFF Research Database (Denmark)

    Witting, Nanna; Duno, M; Vissing, J

    2013-01-01

    Becker muscular dystrophy features progressive proximal weakness, wasting and often focal hypertrophy. We present a patient with pain and cramps from adolescence. Widespread muscle hypertrophy, preserved muscle strength and a 10-20-fold raised CPK were noted. Muscle biopsy was dystrophic......, and Western blot showed a 95% reduction of dystrophin levels. Genetic analyses revealed a non-sense mutation in exon 2 of the dystrophin gene. This mutation is predicted to result in a Duchenne phenotype, but resulted in a mild Becker muscular dystrophy with widespread muscle hypertrophy. We suggest...

  18. [Impacts of physical exercise on remodeling and hypertrophy of skeletal muscle.

    Science.gov (United States)

    Sakashita, Yoshihiro; Uchida, Takayuki; Nikawa, Takeshi

    The skeletal muscle has high sensitivity for the mechanical stress. Because it is enlarged by training, whereas it is easily withered by lack of exercise. When we exercise, skeletal muscle cells per se sense mechanical loading, and muscular remodeling and the muscular hypertrophy occur. It has been revealed that the intracellular signaling through PGC-1α participates in the remodeling of the skeletal muscle, while PGC-1α4, an isoform of PGC-1α, and the dystrophin-glycoprotein complex play important roles in muscular hypertrophy. This review describes the impact of physical exercise gives on the remodeling and hypertrophy of muscle through the signaling.

  19. Simvastatin and metformin inhibit cell growth in hepatitis C virus infected cells via mTOR increasing PTEN and autophagy.

    Directory of Open Access Journals (Sweden)

    José A Del Campo

    Full Text Available Hepatitis C virus (HCV infection has been related to increased risk of development of hepatocellular carcinoma (HCC while metformin (M and statins treatment seemed to protect against HCC development. In this work, we aim to identify the mechanisms by which metformin and simvastatin (S could protect from liver cancer. Huh7.5 cells were infected with HCV particles and treated with M+S. Human primary hepatocytes were treated with M+S. Treatment with both drugs inhibited Huh7.5 cell growth and HCV infection. In non-infected cells S increased translational controlled tumor protein (TCTP and phosphatase and tensin homolog (PTEN proteins while M inhibited mammalian target of rapamycin (mTOR and TCTP. Simvastatin and metformin co-administered down-regulated mTOR and TCTP, while PTEN was increased. In cells infected by HCV, mTOR, TCTP, p62 and light chain 3B II (LC3BII were increased and PTEN was decreased. S+M treatment increased PTEN, p62 and LC3BII in Huh7.5 cells. In human primary hepatocytes, metformin treatment inhibited mTOR and PTEN, but up-regulated p62, LC3BII and Caspase 3. In conclusion, simvastatin and metformin inhibited cell growth and HCV infection in vitro. In human hepatocytes, metformin increased cell-death markers. These findings suggest that M+S treatment could be useful in therapeutic prevention of HCV-related hepatocellular carcinoma.

  20. Estradiol-Induced Object Recognition Memory Consolidation Is Dependent on Activation of mTOR Signaling in the Dorsal Hippocampus

    Science.gov (United States)

    Fortress, Ashley M.; Fan, Lu; Orr, Patrick T.; Zhao, Zaorui; Frick, Karyn M.

    2013-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway is an important regulator of protein synthesis and is essential for various forms of hippocampal memory. Here, we asked whether the enhancement of object recognition memory consolidation produced by dorsal hippocampal infusion of 17[Beta]-estradiol (E[subscript 2]) is dependent on mTOR…

  1. The actions of exogenous leucine on mTOR signalling and amino acid transporters in human myotubes

    Directory of Open Access Journals (Sweden)

    Cameron-Smith David

    2011-06-01

    Full Text Available Abstract Background The branched-chain amino acid (BCAA leucine has been identified to be a key regulator of skeletal muscle anabolism. Activation of anabolic signalling occurs via the mammalian target of rapamycin (mTOR through an undefined mechanism. System A and L solute carriers transport essential amino acids across plasma membranes; however it remains unknown whether an exogenous supply of leucine regulates their gene expression. The aim of the present study was to investigate the effects of acute and chronic leucine stimulation of anabolic signalling and specific amino acid transporters, using cultured primary human skeletal muscle cells. Results Human myotubes were treated with leucine, insulin or co-treated with leucine and insulin for 30 min, 3 h or 24 h. Activation of mTOR signalling kinases were examined, together with putative nutrient sensor human vacuolar protein sorting 34 (hVps34 and gene expression of selected amino acid transporters. Phosphorylation of mTOR and p70S6K was transiently increased following leucine exposure, independently to insulin. hVps34 protein expression was also significantly increased. However, genes encoding amino acid transporters were differentially regulated by insulin and not leucine. Conclusions mTOR signalling is transiently activated by leucine within human myotubes independently of insulin stimulation. While this occurred in the absence of changes in gene expression of amino acid transporters, protein expression of hVps34 increased.

  2. A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation

    NARCIS (Netherlands)

    Dalle Pezze, Piero; Sonntag, Annika G; Thien, Antje; Prentzell, Mirja T; Gödel, Markus; Fischer, Sven; Neumann-Haefelin, Elke; Huber, Tobias B; Baumeister, Ralf; Shanley, Daryl P; Thedieck, Kathrin

    2012-01-01

    The kinase mammalian target of rapamycin (mTOR) exists in two multiprotein complexes (mTORC1 and mTORC2) and is a central regulator of growth and metabolism. Insulin activation of mTORC1, mediated by phosphoinositide 3-kinase (PI3K), Akt, and the inhibitory tuberous sclerosis complex 1/2

  3. Leucine Modulation of the mTOR Pathway for Cognition Modulation: Kinetic and In Vitro Studies and Model Development

    Science.gov (United States)

    2015-09-30

    ultimately at regional levels. In other words , the arrival of free leucine at a tissue site and taken up by the cells would impart a signal for...immunohistochemical techniques and immortalized rat hippocampal cells. Figure 2. Schematic of the Impact of Leucine on the mTOR Protein Synthesis Pathway

  4. Effective Therapeutic Intervention and Comprehensive Genetic Analysis of mTOR Signaling in PEComa : A Case Report

    NARCIS (Netherlands)

    Weeber, Fleur; Koudijs, Marco J; Hoogstraat, Marlous; Besselink, Nicolle J M; VAN Lieshout, Stef; Nijman, Isaac J; Cuppen, Edwin; Offerhaus, G Johan; Voest, Emile E

    BACKGROUND/AIM: Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal neoplasms. The exact genetic alterations underlying the pathophysiology of PEComas are largely unknown, although it has been shown that activation of the Mammalian target of rapamycin (mTOR) signaling pathway plays a

  5. Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis.

    Science.gov (United States)

    Hu, Fang; Xu, Yong; Liu, Feng

    2016-06-01

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight. mTOR integrates signals from a variety of "energy balancing" hormones such as leptin, insulin, and ghrelin, although its action varies in response to these distinct hormonal stimuli as well as across different neuronal populations. In this review, we summarize and highlight recent findings regarding the functional roles of mTOR complex 1 (mTORC1) in the hypothalamus specifically in its regulation of body weight, energy expenditure, and glucose/lipid homeostasis. Understanding the role and underlying mechanisms behind mTOR-related signaling in the brain will undoubtedly pave new avenues for future therapeutics and interventions that can combat obesity, insulin resistance, and diabetes. Copyright © 2016 the American Physiological Society.

  6. 25-Hydroxycholecalciferol Enhances Male Broiler Breast Meat Yield through the mTOR Pathway.

    Science.gov (United States)

    Vignale, Karen; Greene, Elizabeth S; Caldas, Justina V; England, Judith A; Boonsinchai, Nirun; Sodsee, Phiphob; Pollock, Erik D; Dridi, Sami; Coon, Craig N

    2015-05-01

    In recent years, there has been a growing body of evidence indicating that replacing cholecalciferol (vitamin D₃) with 25-hydroxycholecalciferol [25(OH)D₃] through dietary supplementation enhances breast meat yield in broiler chickens. However, the underlying molecular mechanisms are still unknown. We investigated the effect of 25(OH)D₃ on male broiler growth performance (body weight, feed intake, feed conversion ratio, and breast meat yield), muscle protein synthesis, and the potential underlying molecular mechanisms. Male Cobb 500 broiler chickens were divided into 4 body weight-matched groups and received a control diet with normal cholecalciferol (2760 IU/kg feed) for 42 d, a diet with high concentrations of cholecalciferol (5520 IU/kg feed) for 42 d, or a diet with 25(OH)D₃ (5520 IU/kg feed) for 42 d (HyD-42). A fourth group consumed the HyD-42 for 21 d and then control feed for 21 d (HyD-21) (n = 360 birds, 12 replicates/treatment). Food and clean water were available for ad libitum consumption. At the end of the 42-d experiment, protein turnover was measured by phenylalanine flooding dose. Breast muscle tissues were collected and protein synthesis-related gene and protein expression were measured by real time polymerase chain reaction and Western blot, respectively. Functional studies were performed in vitro with the use of a quail myoblast (QM7) cell line. QM7 cells were treated with 2 doses (1 nM and 10 nM) of cholecalciferol or 25(OH)D₃ alone or in combination with 100 nM rapamycin, and cell proliferation was determined by cell proliferation assay. Protein synthesis-related gene and protein expression were also determined. The HyD-42 increased 25(OH)D₃ circulating concentrations by 126% (P meat yield (P vitro functional studies showed that cells treated with 25(OH)D₃ for 24 h had increased VDR expression, and activated the mechanistic target of rapamycin (mTOR)/S6 kinase (S6K) pathway, enhanced Ki67 protein concentrations, and induced QM7

  7. Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling.

    Science.gov (United States)

    Neis, Vivian Binder; Moretti, Morgana; Bettio, Luis Eduardo B; Ribeiro, Camille M; Rosa, Priscila Batista; Gonçalves, Filipe Marques; Lopes, Mark William; Leal, Rodrigo Bainy; Rodrigues, Ana Lúcia S

    2016-06-01

    The activation of AMPA receptors and mTOR signaling has been reported as mechanisms underlying the antidepressant effects of fast-acting agents, specially the NMDA receptor antagonist ketamine. In the present study, oral administration of agmatine (0.1mg/kg), a neuromodulator that has been reported to modulate NMDA receptors, caused a significant reduction in the immobility time of mice submitted to the tail suspension test (TST), an effect prevented by the administration of DNQX (AMPA receptor antagonist, 2.5μg/site, i.c.v.), BDNF antibody (1μg/site, i.c.v.), K-252a (TrkB receptor antagonist, 1μg/site, i.c.v.), LY294002 (PI3K inhibitor, 10nmol/site, i.c.v.) or rapamycin (selective mTOR inhibitor, 0.2nmol/site, i.c.v.). Moreover, the administration of lithium chloride (non-selective GSK-3β inhibitor, 10mg/kg, p.o.) or AR-A014418 (selective GSK-3β inhibitor, 0.01μg/site, i.c.v.) in combination with a sub-effective dose of agmatine (0.0001mg/kg, p.o.) reduced the immobility time in the TST when compared with either drug alone. Furthermore, increased immunocontents of BDNF, PSD-95 and GluA1 were found in the prefrontal cortex of mice just 1h after agmatine administration. These results indicate that the antidepressant-like effect of agmatine in the TST may be dependent on the activation of AMPA and TrkB receptors, PI3K and mTOR signaling as well as inhibition of GSK-3β, and increase in synaptic proteins. The results contribute to elucidate the complex signaling pathways involved in the antidepressant effect of agmatine and reinforce the pivotal role of these molecular targets for antidepressant responses. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  8. Association of CAD, a multifunctional protein involved in pyrimidine synthesis, with mLST8, a component of the mTOR complexes

    Science.gov (United States)

    2013-01-01

    Background mTOR is a genetically conserved serine/threonine protein kinase, which controls cell growth, proliferation, and survival. A multifunctional protein CAD, catalyzing the initial three steps in de novo pyrimidine synthesis, is regulated by the phosphorylation reaction with different protein kinases, but the relationship with mTOR protein kinase has not been known. Results CAD was recovered as a binding protein with mLST8, a component of the mTOR complexes, from HEK293 cells transfected with the FLAG-mLST8 vector. Association of these two proteins was confirmed by the co-immuoprecipitaiton followed by immunoblot analysis of transfected myc-CAD and FLAG-mLST8 as well as that of the endogenous proteins in the cells. Analysis using mutant constructs suggested that CAD has more than one region for the binding with mLST8, and that mLST8 recognizes CAD and mTOR in distinct ways. The CAD enzymatic activity decreased in the cells depleted of amino acids and serum, in which the mTOR activity is suppressed. Conclusion The results obtained indicate that mLST8 bridges between CAD and mTOR, and plays a role in the signaling mechanism where CAD is regulated in the mTOR pathway through the association with mLST8. PMID:23594158

  9. Critical analysis of the potential for therapeutic targeting of mammalian target of rapamycin (mTOR in gastric cancer

    Directory of Open Access Journals (Sweden)

    Inokuchi M

    2014-04-01

    Full Text Available Mikito Inokuchi,1 Keiji Kato,1 Kazuyuki Kojima,2 Kenichi Sugihara1 1Department of Surgical Oncology, 2Department of Minimally Invasive Surgery, Tokyo Medical and Dental University, Tokyo, Japan Abstract: Multidisciplinary treatment including chemotherapy has become the global standard of care for patients with metastatic gastric cancer (mGC; nonetheless, survival remains poor. Although many molecular-targeted therapies have been developed for various cancers, only anti-HER2 treatment has produced promising results in patients with mGC. Mammalian target of rapamycin (mTOR plays a key role in cell proliferation, antiapoptosis, and metastasis in signaling pathways from the tyrosine kinase receptor, and its activation has been demonstrated in gastric cancer (GC cells. This review discusses the clinical relevance of mTOR in GC and examines its potential as a therapeutic target in patients with mGC. Preclinical studies in animal models suggest that suppression of the mTOR pathway inhibits the proliferation of GC cells and delays tumor progression. The mTOR inhibitor everolimus has been evaluated as second- or third-line treatment in clinical trials. Adverse events were well tolerated although the effectiveness of everolimus alone was limited. Everolimus is now being evaluated in combination with chemotherapy in Phase III clinical studies in this subgroup of patients. Two Phase III studies include exploratory biomarker research designed to evaluate the predictive value of the expression or mutation of molecules related to the Akt/mTOR signaling pathway. These biomarker studies may lead to the realization of targeted therapy for selected patients with mGC in the future. Keywords: gastric cancer, mTOR, everolimus

  10. FBXW7 mutations in patients with advanced cancers: clinical and molecular characteristics and outcomes with mTOR inhibitors.

    Directory of Open Access Journals (Sweden)

    Denis L Jardim

    Full Text Available FBXW7 is a tumor suppressor gene responsible for the degradation of several proto-oncogenes. Preclinical data suggest that FBXW7 mutations sensitize cells to mTOR inhibitors. Clinicopathologic characteristics of cancer patients with FBXW7 mutations and their responses to mTOR inhibitors remain unknown.Using multiplex gene panels we evaluated how the FBXW7 mutation affected the cancer phenotype of patients referred to a phase I clinic starting January 2012. Whenever possible patients positive for FBXW7 mutation were treated with regimens containing an mTOR inhibitors and their outcomes were reviewed.FBXW7 mutations were detected in 17 of 418 patients (4.0%. Among tumor types with more than 10 patients tested, FBXW7 mutations occurred in colorectal cancer (7/49; 14.3%, squamous cell cancer of head and neck (2/18; 11.1%, liver (1/13; 7.7%, and ovarian cancers (1/40; 2.5%. No one clinical, pathological or demographic feature was characteristic of the FBXW7-mutated patient population. The mutation occurred in isolation in only 2/17 (12% patients, and KRAS was frequently found as a concomitant mutation, especially in patients with colorectal cancer (6/7; 86%. Ten patients were treated on a protocol containing an mTOR inhibitor, with a median time to treatment failure of 2.8 months (range, 1.3-6.8. One patient with liver cancer (fibrolamellar subtype continues to have a prolonged stable disease for 6.8+ months.In patients with advanced cancers, somatic mutations in FBXW7 usually occur with other simultaneous molecular aberrations, which can contribute to limited therapeutic efficacy of mTOR inhibitors.

  11. Inflammatory stress increases hepatic CD36 translational efficiency via activation of the mTOR signalling pathway.

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    Full Text Available Inflammatory stress is an independent risk factor for the development of non-alcoholic fatty liver disease (NAFLD. Although CD36 is known to facilitate long-chain fatty acid uptake and contributes to NAFLD progression, the mechanisms that link inflammatory stress to hepatic CD36 expression and steatosis remain unclear. As the mammalian target of rapamycin (mTOR signalling pathway is involved in CD36 translational activation, this study was undertaken to investigate whether inflammatory stress enhances hepatic CD36 expression via mTOR signalling pathway and the underlying mechanisms. To induce inflammatory stress, we used tumour necrosis factor alpha (TNF-α and interleukin-6 (IL-6 stimulation of the human hepatoblastoma HepG2 cells in vitro and casein injection in C57BL/6J mice in vivo. The data showed that inflammatory stress increased hepatic CD36 protein levels but had no effect on mRNA expression. A protein degradation assay revealed that CD36 protein stability was not different between HepG2 cells treated with or without TNF-α or IL-6. A polysomal analysis indicated that CD36 translational efficiency was significantly increased by inflammatory stress. Additionally, inflammatory stress enhanced the phosphorylation of mTOR and its downstream translational regulators including p70S6K, 4E-BP1 and eIF4E. Rapamycin, an mTOR-specific inhibitor, reduced the phosphorylation of mTOR signalling pathway and decreased the CD36 translational efficiency and protein level even under inflammatory stress resulting in the alleviation of inflammatory stress-induced hepatic lipid accumulation. This study demonstrates that the activation of the mTOR signalling pathway increases hepatic CD36 translational efficiency, resulting in increased CD36 protein expression under inflammatory stress.

  12. Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation.

    Science.gov (United States)

    Kobayashi, Takashi; Shimizu, Yosuke; Terada, Naoki; Yamasaki, Toshinari; Nakamura, Eijiro; Toda, Yoshinobu; Nishiyama, Hiroyuki; Kamoto, Toshiyuki; Ogawa, Osamu; Inoue, Takahiro

    2010-06-01

    Ras homolog-enriched in brain (Rheb), a small GTP-binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer. Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi-quantitative and quantitative RT-PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST-1 assay were used to measure cell proliferation. Fluorescence-activated cell sorting was used to assess the cell cycle. Rheb mRNA and protein expression was higher in more aggressive, androgen-independent prostate cancer cell lines PC3, DU145, and C4-2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR. Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer.

  13. Fasting Increases Human Skeletal Muscle Net Phenylalanine Release and This Is Associated with Decreased mTOR Signaling

    Science.gov (United States)

    Vendelbo, Mikkel Holm; Møller, Andreas Buch; Christensen, Britt; Nellemann, Birgitte; Clasen, Berthil Frederik Forrest; Nair, K. Sreekumaran; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2014-01-01

    Aim Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth. Methods Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days. Results Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation. Conclusions Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth. PMID:25020061

  14. Role of the Phosphorylation of mTOR in the Differentiation of AML Cells Triggered with CD44 Antigen

    KAUST Repository

    Darwish, Manar M

    2013-05-01

    Acute myeloid leukemia (AML) is a hematological disorder characterized by blockage of differentiation of myeloblasts. To date, the main therapy for AML is chemotherapy. Yet, studies are seeking a better treatment to enhance the survival rate of patients and minimize the relapsing of the disease. Since the major problem in these cells is that they are arrested in cellular differentiation, drugs that could induce their differentiation have proven to be efficient and of major interest for AML therapy. CD44 triggering appeared as a promising target for AML therapy as it has been shown that specific monoclonal antibodies, such as A3D8 and H90, reversed the blockage of differentiation, inhibited the proliferation of all AML subtypes, and in some cases, induced cell apoptosis. Studies conducted in our laboratory have added strength to these antibodies as potential treatment for AML. Indeed, our laboratory found that treating HL60 cells with A3D8 shows a decrease in the phosphorylation of the mammalian target of Rapamycin (mTOR) kinase correlated with the inhibition of proliferation/induction of differentiation of AML cells.The relationship between the induction of differentiation and the inhibition of proliferation and the decrease of mTOR phosphorylation remains to be clarified. To study the importance of the de-phosphorylation of mTOR and the observed effect of CD44 triggering on differentiation and/or proliferation, we sought to prepare phospho-mimic mutants of the mTOR kinase that will code for a constitutively phosphorylated form of mTOR and used two main methods to express this mutant in HL60 cells: lentiviral and simple transfection (cationic-liposomal transfection).

  15. Systemic inhibition of mTOR kinase via rapamycin disrupts consolidation and reconsolidation of auditory fear memory.

    Science.gov (United States)

    Mac Callum, Phillip E; Hebert, Mark; Adamec, Robert E; Blundell, Jacqueline

    2014-07-01

    The mammalian target of rapamycin (mTOR) kinase is a critical regulator of mRNA translation and is known to be involved in various long lasting forms of synaptic and behavioural plasticity. However, information concerning the temporal pattern of mTOR activation and susceptibility to pharmacological intervention during both consolidation and reconsolidation of long-term memory (LTM) remains scant. Male C57BL/6 mice were injected systemically with rapamycin at various time points following conditioning or retrieval in an auditory fear conditioning paradigm, and compared to vehicle (and/or anisomycin) controls for subsequent memory recall. Systemic blockade of mTOR with rapamycin immediately or 12h after training or reactivation impairs both consolidation and reconsolidation of an auditory fear memory. Further behavioural analysis revealed that the enduring effects of rapamycin on reconsolidation are dependent upon reactivation of the memory trace. Rapamycin, however, has no effect on short-term memory or the ability to retrieve an established fear memory. Collectively, our data suggest that biphasic mTOR signalling is essential for both consolidation and reconsolidation-like activities that contribute to the formation, re-stabilization, and persistence of long term auditory-fear memories, while not influencing other aspects of the memory trace. These findings also provide evidence for a cogent treatment model for reducing the emotional strength of established, traumatic memories analogous to those observed in acquired anxiety disorders such as posttraumatic stress disorder (PTSD) and specific phobias, through pharmacologic blockade of mTOR using systemic rapamycin following reactivation. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling.

    Directory of Open Access Journals (Sweden)

    Mikkel Holm Vendelbo

    Full Text Available Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR, a key regulator of cell growth.Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days.Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation.Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth.

  17. mTOR Inhibition Induces EGFR Feedback Activation in Association with Its Resistance to Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-02-01

    Full Text Available The mammalian target of rapamycin (mTOR is dysregulated in diverse cancers and contributes to tumor progression and drug resistance. The first generation of mTOR inhibitors have failed to show clinical efficiency in treating pancreatic cancers due in part to the feedback relief of the insulin-like growth factor-1 receptor (IGF-1R-AKT signaling pathway. The second generation of mTOR inhibitors, such as AZD8055, could inhibit AKT activation upon mTOR complex 2 (mTORC2 inhibition. However, whether this generation of mTOR inhibitors can obtain satisfactory activities in pancreatic cancer therapy remains unclear. In this study, we found AZD8055 did not show great improvement compared with everolimus, AZD8055 induced a temporal inhibition of AKT kinase activities and AKT was then rephosphorylated. Additionally, we found that AZD8055-induced transient AKT inhibition increased the expression and activation of epidermal growth factor receptor (EGFR by releasing its transcriptional factors Fork-head box O 1/3a (FoxO1/3a, which might contribute to cell resistance to AZD8055. The in vitro and in vivo experiments further indicated the combination of AZD8055 and erlotinib synergistically inhibited the mTORC1/C2 signaling pathway, EGFR/AKT feedback activation, and cell growth, as well as suppressed the progression of pancreatic cancer in a xenograft model. This study provides a rationale and strategy for overcoming AZD8055 resistance by a combined treatment with the EGFR inhibitor erlotinib in pancreatic cancer therapy.

  18. M(o)TOR of aging: MTOR as a universal molecular hypothalamus.

    Science.gov (United States)

    Blagosklonny, Mikhail V

    2013-07-01

    A recent ground-breaking publication described hypothalamus-driven programmatic aging. As a Russian proverb goes "everything new is well-forgotten old". In 1958, Dilman proposed that aging and its related diseases are programmed by the hypothalamus. This theory, supported by beautiful experiments, remained unnoticed just to be re-discovered recently. Yet, it does not explain all manifestations of aging. And would organism age without hypothalamus? Do sensing pathways such as MTOR (mechanistic Target of Rapamycin) and IKK-beta play a role of a "molecular hypothalamus" in every cell? Are hypothalamus-driven alterations simply a part of quasi-programmed aging manifested by hyperfunction and secondary signal-resistance? Here are some answers.

  19. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes

    NARCIS (Netherlands)

    Zhong, Leilei; Huang, X; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole

    2015-01-01

    Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the

  20. Isolated papillary muscle hypertrophy: A gap in our knowledge of hypertrophic cardiomyopathy?

    Science.gov (United States)

    Ferreira, Catarina; Delgado, Carlos; Vázquez, María; Trinidad, Carmen; Vilar, Manuel

    2014-06-01

    Increased thickness of left ventricular walls is the predominant characteristic and one of the diagnostic criteria of hypertrophic cardiomyopathy (HCM). This case illustrates an uncommon but important finding of isolated hypertrophy of the papillary muscles (PMs), observed in a young woman in whom an abnormal electrocardiogram was initially detected. During the investigation isolated PM hypertrophy was identified. The structural characteristics of the PMs have received scant attention in this setting and there is little information in the literature on this entity, whose real prevalence and clinical significance remain to be determined. The available information relates solitary PM hypertrophy with an early form or a different pattern of HCM. In this case PM hypertrophy was only detected due to the finding of an abnormal electrocardiogram, which prompted further diagnostic tests and a search for possible etiologies. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  1. Impact of fasting glucose on electrocardiographic left ventricular hypertrophy in an elderly general population

    DEFF Research Database (Denmark)

    Diederichsen, Søren Z; Pareek, Manan; Nielsen, Mette L

    2015-01-01

    OBJECTIVE: To evaluate relationships between fasting plasma glucose (FPG), other cardiovascular risk markers and left ventricular hypertrophy (LVH) as detected by electrocardiography. METHODS: Subjects were selected randomly from groups defined by FPG. Traditional risk markers were assessed. LVH...

  2. Molecular and cellular characterization of cardiac overload-induced hypertrophy and failure

    NARCIS (Netherlands)

    Umar, Soban

    2009-01-01

    In neonatal rat ventricular cardiomyocytes (NRVCs), we activated integrins by RGD to test whether integrin stimulation produced hypertrophy. Effect of RGD was compared with pro-hypertrophic effects of phenylephrine (chapter 2). Ventricular failure is associated with disturbed collagen turnover.

  3. Solving the cardiac hypertrophy riddle: The angiotensin II-mechanical stress connection.

    Science.gov (United States)

    Zablocki, Daniela; Sadoshima, Junichi

    2013-11-08

    A series of studies conducted 20 years ago, documenting the cardiac hypertrophy phenotype and its underlying signaling mechanism induced by angiotensin II (Ang II) and mechanical stress, showed a remarkable similarity between the effect of the Gαq agonist and that of mechanical forces on cardiac hypertrophy. Subsequent studies confirmed the involvement of autocrine/paracrine mechanisms, including stretch-induced release of Ang II in load-induced cardiac hypertrophy. Recent studies showed that the Ang II type 1 (AT1) receptor is also directly activated by mechanical forces, suggesting that AT1 receptors play an important role in mediating load-induced cardiac hypertrophy through both ligand- and mechanical stress-dependent mechanisms.

  4. Angiotensin II type 2 receptors and cardiac hypertrophy in women with hypertrophic cardiomyopathy

    NARCIS (Netherlands)

    J. Deinum (Jacob); J.M. van Gool (Jeanette); M.J.M. Kofflard (Marcel); A.H.J. Danser (Jan); F.J. ten Cate (Folkert)

    2001-01-01

    textabstractThe development of left ventricular hypertrophy in subjects with hypertrophic cardiomyopathy (HCM) is variable, suggesting a role for modifying factors such as angiotensin II. Angiotensin II mediates both trophic and antitrophic effects, via angiotensin II type 1

  5. Heterogeneity of capillary spacing in the hypertrophied plantaris muscle from young-adult and old rats.

    NARCIS (Netherlands)

    Degens, H.; Morse, C.I.; Hopman, M.T.E.

    2009-01-01

    Heterogeneity of capillary spacing may affect tissue oxygenation. The determinants of heterogeneity of capillary spacing are, however, unknown. To investigate whether 1) impaired angiogenesis and increased heterogeneity of capillary spacing delays development of hypertrophy during aging and 2)

  6. Premature osteoarthritis of the knee associated with cartilage hypertrophy and phalangeal dysgenesis

    International Nuclear Information System (INIS)

    Vital, E.M.J.; Hutton, C.W.; Hughes, P.M.

    2005-01-01

    A woman presented with premature knee osteoarthritis associated with marked femoral cartilage hypertrophy. She also exhibited phalangeal dysgenesis, suggesting this may be an unrecognised syndrome that may predispose to knee osteoarthritis. (orig.)

  7. The Rapamycin-Binding Domain of the Protein Kinase mTOR is a Destabilizing Domain*

    Science.gov (United States)

    Edwards, Sarah R.; Wandless, Thomas J.

    2013-01-01

    Rapamycin is an immunosuppressive drug that binds simultaneously to the 12-kDa FK506- and rapamycin-binding protein (FKBP12, or FKBP) and the FKBP-rapamycin binding domain (FRB) of the mammalian target of rapamycin (mTOR) kinase. The resulting ternary complex has been used to conditionally perturb protein function, and one such method involves perturbation of a protein of interest through its mislocalization. We synthesized two rapamycin derivatives that possess large substituents at the C16 position within the FRB-binding interface, and these derivatives were screened against a library of FRB mutants using a three-hybrid assay in Saccharomyces cerevisiae. Several FRB mutants responded to one of the rapamycin derivatives, and twenty of these mutants were further characterized in mammalian cells. The mutants most responsive to the ligand were fused to yellow fluorescent protein, and fluorescence levels in the presence and absence of the ligand were measured to determine stability of the fusion proteins. Wild-type and mutant FRB domains were expressed at low levels in the absence of the rapamycin derivative, and expression levels rose up to ten-fold upon treatment with ligand. The synthetic rapamycin derivatives were further analyzed using quantitative mass spectrometry, and one of the compounds was found to contain contaminating rapamycin. Furthermore, uncontaminated analogs retain the ability to inhibit mTOR, albeit with diminished potency relative to rapamycin. The ligand-dependent stability displayed by wildtype FRB and FRB mutants as well as the inhibitory potential and purity of the rapamycin derivatives should be considered as potentially confounding experimental variables when using these systems. PMID:17350953

  8. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation.

    Science.gov (United States)

    Dhahri, Wahiba; Drolet, Marie-Claude; Roussel, Elise; Couet, Jacques; Arsenault, Marie

    2014-09-24

    The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.

  9. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo, E-mail: pompeo.volpe@unipd.it

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.

  10. Muscular and systemic correlates of resistance training-induced muscle hypertrophy.

    Science.gov (United States)

    Mitchell, Cameron J; Churchward-Venne, Tyler A; Bellamy, Leeann; Parise, Gianni; Baker, Steven K; Phillips, Stuart M

    2013-01-01

    To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH), insulin like grow factor 1 (IGF-1) and interleukin 6 (IL-6)], or intramuscular [skeletal muscle androgen receptor (AR) protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. Mean fiber area increased by 20% (range: -7 to 80%; P<0.001). Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19); however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023). Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007). There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019). Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.

  11. Left ventricular hypertrophy in children, adolescents and young adults with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Gustavo Baptista de Almeida Faro

    2015-10-01

    Full Text Available OBJECTIVE: The aims of this study were to estimate the frequency of left ventricular hypertrophy and to identify variables associated with this condition in under 25-year-old patients with sickle cell anemia.METHODS: A cross-sectional study was performed of children, adolescents and young adults with sickle cell anemia submitted to a transthoracic Doppler echocardiography. The mass of the left ventricle was determined by the formula of Devereux et al. with correction for height, and the percentile curves of gender and age were applied. Individuals with rheumatic and congenital heart disease were excluded. The patients were divided into two groups according to the presence or absence of left ventricular hypertrophy and compared according to clinical, echocardiographic and laboratory variables.RESULTS: A total of 37.6% of the patients had left ventricular hypertrophy in this sample. There was no difference between the groups of patients with and without hypertrophy according to pathological history or clinical characteristics, except possibly for the use of hydroxyurea, more often used in the group without left ventricular hypertrophy. Patients with left ventricular hypertrophy presented larger left atria and lower hemoglobin and hematocrit levels, reticulocyte index and a higher albumin:creatinine ratio in urine.CONCLUSION: Left ventricular hypertrophy was observed in more than one-third of the young patients with sickle cell anemia with this finding being inversely correlated to the hemoglobin and hematocrit levels, and reticulocyte index and directly associated to a higher albumin/creatinine ratio. It is possible that hydroxyurea had had a protective effect on the development of left ventricular hypertrophy.

  12. The metabolic and temporal basis of muscle hypertrophy in response to resistance exercise.

    Science.gov (United States)

    Brook, Matthew S; Wilkinson, Daniel J; Smith, Kenneth; Atherton, Philip J

    2016-09-01

    Constituting ∼40% of body mass, skeletal muscle has essential locomotory and metabolic functions. As such, an insight into the control of muscle mass is of great importance for maintaining health and quality-of-life into older age, under conditions of cachectic disease and with rehabilitation. In healthy weight-bearing individuals, muscle mass is maintained by the equilibrium between muscle protein synthesis (MPS) and muscle protein breakdown; when this balance tips in favour of MPS hypertrophy occurs. Despite considerable research into pharmacological/nutraceutical interventions, resistance exercise training (RE-T) remains the most potent stimulator of MPS and hypertrophy (in the majority of individuals). However, the mechanism(s) and time course of hypertrophic responses to RE-T remain poorly understood. We would suggest that available data are very much in favour of the notion that the majority of hypertrophy occurs in the early phases of RE-T (though still controversial to some) and that, for the most part, continued gains are hard to come by. Whilst the mechanisms of muscle hypertrophy represent the culmination of mechanical, auto/paracrine and endocrine events, the measurement of MPS remains a cornerstone for understanding the control of hypertrophy - mainly because it is the underlying driving force behind skeletal muscle hypertrophy. Development of sophisticated isotopic techniques (i.e. deuterium oxide) that lend to longer term insight into the control of hypertrophy by sustained RE-T will be paramount in providing insights into the metabolic and temporal regulation of hypertrophy. Such technologies will have broad application in muscle mass intervention for both athletes and for mitigating disease/age-related cachexia and sarcopenia, alike.

  13. Exercise-Induced Muscle Damage and Hypertrophy: A Closer Look Reveals the Jury is Still Out

    OpenAIRE

    Schoenfeld, Brad; Contreras, Bret

    2018-01-01

    This letter is a response to the paper by Damas et al (2017) titled, “The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis,” which, in part, endeavored to review the role of exercise-induced muscle damage on muscle hypertrophy. We feel there are a number of issues in interpretation of research and extrapolation that preclude drawing the inference expressed in the paper that muscle damage neither explains nor potenti...

  14. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    International Nuclear Information System (INIS)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo

    2013-01-01

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α 1 -adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy

  15. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy

    OpenAIRE

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    1999-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin–angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin–angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin–angiotensin system in Sprague–Dawley rats was fixed by chronic angiotensin II infusion (40 ng/ min, ...

  16. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

    Science.gov (United States)

    White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M

    2014-11-04

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.

  17. Systematic review of the synergist muscle ablation model for compensatory hypertrophy.

    Science.gov (United States)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Bussadori, Sandra Kalill; Deana, Alessandro Melo; Mesquita-Ferrari, Raquel Agnelli

    2017-02-01

    The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. This model differs from other overload models (exercise and training) regarding the characteristics involved in the hypertrophy process (acute) and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.

  18. Limited Relationship of Voltage Criteria for Electrocardiogram Left Ventricular Hypertrophy to Cardiovascular Mortality.

    Science.gov (United States)

    Ha, Le Dung; Elbadawi, Ayman; Froelicher, Victor F

    2018-01-01

    Numerous methods have been proposed for diagnosing left ventricular hypertrophy using the electrocardiogram. They have limited sensitivity for recognizing pathological hypertrophy, at least in part due to their inability to distinguish pathological from physiological hypertrophy. Our objective is to compare the major electrocardiogram-left ventricular hypertrophy criteria using cardiovascular mortality as a surrogate for pathological hypertrophy. This study was a retrospective analysis of 16,253 veterans electrocardiogram-left ventricular hypertrophy, and there were 744 cardiovascular deaths (annual cardiovascular mortality 0.25%). Receiver operating characteristic analysis demonstrated that the greatest area under the curve (AUC) for classification of cardiovascular death was obtained using the Romhilt-Estes score (0.63; 95% confidence interval, 0.61-0.65). Most of the voltage-only criteria had nondiagnostic area under the curves, with the Cornell being the best at 0.59 (95% confidence interval, 0.57-0.62). When the components of the Romhilt-Estes score were examined using step-wise Wald analysis, the voltage criteria dropped from the model. The Romhilt-Estes score ≥ 4, the Cornell, and the Peguero had the highest association with cardiovascular mortality (adjusted hazard ratios 2.2, 2.0, and 2.1, consecutively). None of the electrocardiogram leads with voltage criteria exhibited sufficient classification power for clinical use. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Systematic review of the synergist muscle ablation model for compensatory hypertrophy

    Directory of Open Access Journals (Sweden)

    Stella Maris Lins Terena

    Full Text Available Summary Objective: The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Method: Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. Results: The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. Conclusion: This model differs from other overload models (exercise and training regarding the characteristics involved in the hypertrophy process (acute and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.

  20. Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert T; Liu, Xuhui

    2014-01-01

    extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.

  1. Inhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Ji

    2015-07-01

    Full Text Available Background: Uncoupling protein 2 (UCP2 is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. Methods: Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC, and then received genipin (a UCP2 selective inhibitor; 25 mg/kg/d, ip or vehicle for three weeks prior to histologic assessment of myocardial hypertrophy. ATP concentration, ROS level, and myocardial apoptosis were also examined. A parallel set of experiments was also conducted in UCP2-/- mice. Results: TAC induced left ventricular hypertrophy, as reflected by increased ventricular weight/thickness and increased size of myocardial cell (vs. sham controls. ATP concentration was decreased; ROS level was increased. Apoptosis and fibrosis markers were increased. TAC increased mitochondrial UCP2 expression in the myocardium at both mRNA and protein levels. Genipin treatment attenuated cardiac hypertrophy and the histologic/biochemical changes described above. Hypertrophy and associated changes induced by TAC in UCP2-/- mice were much less pronounced than in WT mice. Conclusions: Blocking UCP2 expression attenuates cardiac hypertrophy induced by pressure overload.

  2. Left Ventricular Hypertrophy in Pediatric Hypertension: A Mini Review

    Directory of Open Access Journals (Sweden)

    Robert P. Woroniecki

    2017-05-01

    Full Text Available Adults with arterial hypertension (HTN have stroke, myocardial infarction, end-stage renal disease (ESRD, or die at higher rates than those without. In children, HTN leads to target organ damage, which includes kidney, brain, eye, blood vessels, and heart, which precedes “hard outcomes” observed in adults. Left ventricular hypertrophy (LVH or an anatomic and pathologic increase in left ventricular mass (LVM in response to the HTN is a pediatric surrogate marker for HTN-induced morbidity and mortality in adults. This mini review discusses current definitions, clinically relevant methods of LVM measurements and normalization methods, its epidemiology, management, and issue of reversibility in children with HTN. Pediatric definition of LVH and abnormal LVM is not uniformed. With multiple definitions, prevalence of pediatric HTN-induced LVH is difficult to ascertain. In addition while in adults cardiac magnetic resonance imaging is considered “the gold standard” for LVM and LVH determination, pediatric data are limited to “special populations”: ESRD, transplant, and obese children. We summarize available data on pediatric LVH treatment and reversibility and offer future directions in addressing LVH in children with HTN.

  3. Non-gated computed tomography of left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Harada, Junta

    1983-01-01

    Non-ECG gated computed tomography (CT) of the heart was carried out in 19 cases with cardiovascular diseases; 4 with mitral stenosis, 3 with aortic valve disease, 2 with combined valve disease, 8 with hypertrophic cardiomyopathy and one myocardial infarction and one aortic aneurysm. All cardiac diseases were studied by echocardiography and 13 of them further investigated by intracadiac catheterization. The interventricular septum and the apical and posterolateral wall of the left ventricle were segmentally evaluated as to relative wall thickness of myocardium on CT. The wall thickness was directly measured on left ventricular cine angiograms in 13 cases. O-G vector calculated by CT was compatible with the palne of vectorcardiography in evaluating left ventricular hypertorphy. Conclusion were as follows: 1) The degree and site of myocardial hypertrophy were detected by CT with satisfaction. 2) The area of ventricular myocardium increased in aortic valve disease and hypertrophic cardiomyopathy. 3) The direction and magnitude of O-G vector calculated by CT were well correlated to the half area of QRS loop in horizontal plane of vectorcardiography. (author)

  4. Ghrelin and its promoter variant associated with cardiac hypertrophy.

    Science.gov (United States)

    Ukkola, O; Pääkkö, T; Kesäniemi, Y A

    2012-07-01

    The roles of ghrelin, a peptide hormone that has a role in regulating food intake and energy homeostasis, in the cardiovascular system have not yet been unambiguously established. We evaluated the association between plasma ghrelin concentrations and -501A>C single-nucleotide polymorphism (SNP) in the ghrelin gene 5' flanking area and echocardiographic measurements in 1037 middle-aged subjects. Left ventricular mass index (LVMI) was calculated according to Devereux's method. The ambulatory blood pressure (BP) was recorded using the fully automatic SpaceLabs 90207 oscillometric unit. Results suggested that plasma ghrelin was not related to mean ambulatory BP values. However, the highest plasma ghrelin tertile was associated with increased intraventricular septum (P=0.043) and posterior ventricular wall (P=0.002) thicknesses as well as left ventricular mass (P=0.05). After adjustment for age, sex, body mass index and systolic BP, the association persisted between ghrelin tertiles and intraventricular septum (P=0.05) and posterior ventricular wall (P=0.001) thicknesses. The SNP -501A>C polymorphism was associated with LVMI after adjustments for age, sex and systolic BP. In conclusion, ghrelin and its promoter variant are associated with cardiac hypertrophy indexes independent of BP. Positive correlation between ghrelin levels and increased wall thickness parameters may reflect compensatory up-regulation of ghrelin concentrations or direct effects of ghrelin on myocardium. The effects of the SNP seem not to be mediated through its effects on ghrelin plasma levels.

  5. Cardiac hypertrophy in chick embryos induced by hypothermia

    International Nuclear Information System (INIS)

    Boehm, C.; Johnson, T.R.; Caston, J.D.; Przybylski, R.J.

    1987-01-01

    A decrease in incubation temperature from 38 to 32 0 C elicits a decrease in chicken embryo size and weight with concomitant heart enlargement if done after day 10 of incubation. When assayed at day 18 of incubation with the hypothermia started on day 11 or 14, evidence is presented that the heart enlargement is an hypertrophy with no detectable hyperplasia. Supporting data are presented for various physical parameters showing increases in heart wet and dry weight, volume, area, wall thickness, and cell size. There was little difference in DNA content and nuclear [ 3 H]thymidine labeling index between hearts of control and hypothermic embryos. Hearts of hypothermic embryos showed a slight increase in water content and considerable increases in RNA, protein, and glycogen content per unit DNA. The average size of polysomes isolated from hypothermic hearts was larger than that of polysomes isolated from controls. Microscopic studies showed no obvious increase in amount of capillary beds, connective tissue, and myocardial cells. Annulate lamellae were found only in myocardial cells of hypothermic embryos in sparse amounts and low frequency but always associated with large deposits of glycogen

  6. Relationship between obesity and left ventricular hypertrophy in children

    Directory of Open Access Journals (Sweden)

    Johnny Rompis

    2016-10-01

    Full Text Available Background Obesity is a chronic metabolic disorder associated with cardiovascular disease (CVD increasing morbidity-mortality rates. It is apparent that a variety of adaptations/alterations in cardiac structure and function occurs as excessive adipose tissue accumulates. This leads to a decrease in diastolic compliance, eventually resulting in an increase in left ventricular filling pressure and left ventricular enlargement. Objective To evaluate left ventricular hypertrophy (LVH among  obese using electrocardiographic (ECG criteria. Methods A cross-sectional study was conducted on 74 children aged 10-15 years from February 2009 to October 2009. The subjects were divided into obese and control groups. Physical examination and standard 12 lead electrocardiography (ECG were done in both groups. Results Of 37 obese children, LVH were featured in 3 subjects, while in control group, only 1 child had LVH (P= 0.304. We found that mean RV6 in obese and control group were 9.8446 (SD 3.5854 and 11.9662 (SD 3.2857, respectively (P=0.005. As an additional findings, we found that birth weight was related to obesity in children. Conclusion There is no relation between obesity and left ventricular using ECG criteria in obese children aged 10-15 years.

  7. PERIOPERATIVE PERIOD FOLLOWING HEART TRANSPLANTATION WITH SEVERE LEFT VENTRICULAR HYPERTROPHY

    Directory of Open Access Journals (Sweden)

    V. N. Poptsov

    2012-01-01

    Full Text Available Use donor hearts with left ventricular hypertrophy (LVH is controversial. This category of heart recipients has increasing risk of early graft failure. We proposed that heart transplantation (HT with LVH ≥1.5 cm may be successful if performed in selective category patients from alternate transplant list. This study included 10 pati- ents (2 female and 8 male at the age 26–62 (44 ± 3, who needed urgent HT. This study showed that recipients with LVH ≥1.5 cm demanded more high and long inotropic support with adrenalin and dopamine, more fre- quent use of levosimendan infusion (in 40% of cases and intraaortic balloon conterpulsation (in 50% of cases. However we didn’t observed any difference in survival rate (90.0% vs 89.0% and ICU time (4.8 ± 0.6 days vs 4.1 ± 0.4 days between HT recipients with and without LVH. Our study showed that HT from donor with LVH ≥1.5 cm may be performed in patients, demanding urgent HT, with acceptable early posttransplant results. 

  8. Intravenous maternal -arginine administration to twin-bearing ewes, during late pregnancy, is associated with increased fetal muscle mTOR abundance and postnatal growth in twin female lambs.

    Science.gov (United States)

    Sales, F; Sciascia, Q; van der Linden, D S; Wards, N J; Oliver, M H; McCoard, S A

    2016-06-01

    The aims of this study were to determine whether parenteral Arg administered to well-fed twin-bearing ewes from 100 to 140 d of pregnancy influences fetal skeletal muscle growth, the abundance and activation of mechanistic target of rapamycin (mTOR) protein, and postnatal muscle growth of the offspring. Ewes fed 100% of NRC-recommended nutrient requirements for twin-bearing ewes were administered an intravenous bolus of either 345 μmol Arg HCl/kg BW or saline solution (Control) 3 times per day. At 140 d of pregnancy (P140), a group of 11 Control and 9 Arg-treated ewes were euthanized and hind leg muscles and longissimus dorsi (LD) were excised and weighed. A sample of LD was snap frozen in liquid nitrogen for later analysis of free AA (FAA) concentration, mTOR abundance and phosphorylation, and biochemical indices (DNA, RNA, and protein content). For the remaining 25 ewes (Arg, = 13, and Control, = 12), Arg administration was continued until the initiation of parturition and ewes were allowed to lamb. Lambs were weaned at postnatal Day 82 and grazed on pasture until postnatal day 153 (PN153), when a subset of 20 lambs ( = 10 per group) was euthanized. At P140, only the psoas major was heavier in the Arg-administered group compared with the Control group. Female lambs from ewes supplemented with Arg (Arg-F) had increased abundance of total mTOR, RNA concentration, and RNA:DNA ratio in LD compared with female lambs from Control ewes (Con-F), whereas males did not differ. At PN153, Arg-F were heavier than Con-F and had heavier LD and plantaris and a trend for heavier psoas major muscles compared with Con-F. In contrast, BW and individual muscle weights did not differ in male lambs. Lambs from Arg-treated ewes had heavier semimembranosus and tended to have heavier biceps femoris compared with Control lambs. The RNA concentration in LD was greater in Arg-F compared with Con-F, and DNA concentration was greater in the Arg group compared with the Control group. In

  9. Dlx5 Is a cell autonomous regulator of chondrocyte hypertrophy in mice and functionally substitutes for Dlx6 during endochondral ossification.

    Directory of Open Access Journals (Sweden)

    Hui Zhu

    Full Text Available The axial and appendicular skeleton of vertebrates develops by endochondral ossification, in which skeletogenic tissue is initially cartilaginous and the differentiation of chondrocytes via the hypertrophic pathway precedes the differentiation of osteoblasts and the deposition of a definitive bone matrix. Results from both loss-of-function and misexpression studies have implicated the related homeobox genes Dlx5 and Dlx6 as partially redundant positive regulators of chondrocyte hypertrophy. However, experimental perturbations of Dlx expression have either not been cell type specific or have been done in the context of endogenous Dlx5 expression. Thus, it has not been possible to conclude whether the effects on chondrocyte differentiation are cell autonomous or whether they are mediated by Dlx expression in adjacent tissues, notably the perichondrium. To address this question we first engineered transgenic mice in which Dlx5 expression was specifically restricted to immature and differentiating chondrocytes and not the perichondrium. Col2a1-Dlx5 transgenic embryos and neonates displayed accelerated chondrocyte hypertrophy and mineralization throughout the endochondral skeleton. Furthermore, this transgene specifically rescued defects of chondrocyte differentiation characteristic of the Dlx5/6 null phenotype. Based on these results, we conclude that the role of Dlx5 in the hypertrophic pathway is cell autonomous. We further conclude that Dlx5 and Dlx6 are functionally equivalent in the endochondral skeleton, in that the requirement for Dlx5 and Dlx6 function during chondrocyte hypertrophy can be satisfied with Dlx5 alone.

  10. Selective hypertrophy of the lobus caudatus as a novel approach enabling extended right hepatectomy in the presence of a non-perfused left lateral liver lobe.

    Science.gov (United States)

    Atanasov, Georgi; Schmelzle, Moritz; Thelen, Armin; Wiltberger, Georg; Hau, Hans-Michael; Krenzien, Felix; Petersen, Tim-Ole; Moche, Michael; Jonas, Sven

    2014-08-01

    Portal vein embolization (PVE) is a well-established technique to enhance functional hepatic reserves of segments II and III before curative extended right hepatectomy for tumors of the right liver lobe. However, an adequate hepatopetal flow of the left lateral portal vein branches is required for a sufficient PVE-associated hypertrophy. Here, we report a 65-year old patient suffering from a locally advanced intrahepatic cholangiocarcinoma in the right liver lobe and segment IV. A curative extended right hepatectomy after preoperative PVE of liver segments IV-VIII was initially impossible because of partial thrombosis of the left lateral portal vein branches resulting in an ischemic-type atrophy of segments II and III. However, due to a massive hypertrophy of the caudate lobe following PVE of liver segments IV-VIII, subsequent extended right hepatectomy with intraoperative thrombectomy of segments II and III was made possible. To our knowledge this is the first case in which an extended right hepatectomy for a liver malignancy, in the presence of atrophic left lateral section, was made possible by a massive PVE-associated hypertrophy of the caudate lobe.

  11. Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3.

    Science.gov (United States)

    Pérez-Schindler, Joaquín; Esparza, Mary C; McKendry, James; Breen, Leigh; Philp, Andrew; Schenk, Simon

    2017-09-01

    Although the signal pathways mediating muscle protein synthesis and degradation are well characterized, the transcriptional processes modulating skeletal muscle mass and adaptive growth are poorly understood. Recently, studies in mouse models of muscle wasting or acutely exercised human muscle have suggested a potential role for the transcription factor signal transducer and activator of transcription 3 (STAT3), in adaptive growth. Hence, in the present study we sought to define the contribution of STAT3 to skeletal muscle adaptive growth. In contrast to previous work, two different resistance exercise protocols did not change STAT3 phosphorylation in human skeletal muscle. To directly address the role of STAT3 in load-induced (i.e., adaptive) growth, we studied the anabolic effects of 14 days of synergist ablation (SA) in skeletal muscle-specific STAT3 knockout (mKO) mice and their floxed, wild-type (WT) littermates. Plantaris muscle weight and fiber area in the nonoperated leg (control; CON) was comparable between genotypes. As expected, SA significantly increased plantaris weight, muscle fiber cross-sectional area, and anabolic signaling in WT mice, although interestingly, this induction was not impaired in STAT3 mKO mice. Collectively, these data demonstrate that STAT3 is not required for overload-mediated hypertrophy in mouse skeletal muscle. Copyright © 2017 the American Physiological Society.

  12. Thymosin Beta 4 protects mice from monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Pulmonary hypertension (PH is a progressive vascular disease of pulmonary arteries that impedes ejection of blood by the right ventricle. As a result there is an increase in pulmonary vascular resistance and pulmonary arterial pressure causing right ventricular hypertrophy (RVH and RV failure. The pathology of PAH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC dysfunction and pulmonary arterial smooth muscle cell (PASMC proliferation. Current therapies are limited to reverse the vascular remodeling. Investigating a key molecule is required for development of new therapeutic intervention. Thymosin beta-4 (Tβ4 is a ubiquitous G-actin sequestering protein with diverse biological function and promotes wound healing and modulates inflammatory responses. However, it remains unknown whether Tβ4 has any protective role in PH. The purpose of this study is to evaluate the whether Tβ4 can be used as a vascular-protective agent. In monocrotaline (MCT-induced PH mouse model, we showed that mice treated with Tβ4 significantly attenuated the systolic pressure and RVH, compared to the MCT treated mice. Our data revealed for the first time that Tβ4 selectively targets Notch3-Col 3A-CTGF gene axis in preventing MCT-induced PH and RVH. Our study may provide pre-clinical evidence for Tβ4 and may consider as vasculo-protective agent for the treatment of PH induced RVH.

  13. Renal ornithine decarboxylase activity, polyamines, and compensatory renal hypertrophy in the rat

    International Nuclear Information System (INIS)

    Humphreys, M.H.; Etheredge, S.B.; Lin, Shanyan; Ribstein, J.; Marton, L.J.

    1988-01-01

    The authors determined the role of ornithine decarboxylase (ODC) in compensatory renal hypertrophy (CRH) by relating renal ODC activity and polyamine content to kidney size, expressed as a percent of body weight, 1 wk after unilateral nephrectomy (UN). In normal rats, renal ODC activity increased after UN; 1 wk later the remaining kidney weight had increased. Renal concentration of putrescine, the product of ODC's decarboxylation of ornithine, was increased 3, 8, and 48 h after UN, but concentrations of polyamines synthesized later in the pathway, spermidine and spermine, were not appreciably affected. Pretreatment with difluoromethylornithine (DFMO), an irreversible inhibitor of ODC inhibited both base-line renal ODC activity and putrescine concentration as well as increases stimulated by UN, although concentrations of spermidine and spermine were not decreased. In hypophysectomized rats, both increased renal ODC activity and CRH occurred as well, indicating that these two consequences of UN do not require intact pituitary function. Thus stimulation of renal ODC activity and putrescine content do not appear critical to the process of CRH after UN

  14. Four-group classification of left ventricular hypertrophy based on ventricular concentricity and dilatation identifies a low-risk subset of eccentric hypertrophy in hypertensive patients

    DEFF Research Database (Denmark)

    Bang, Casper N; Gerdts, Eva; Aurigemma, Gerard P

    2014-01-01

    BACKGROUND: Left ventricular hypertrophy (LVH; high LV mass [LVM]) is traditionally classified as concentric or eccentric based on LV relative wall thickness. We evaluated the prediction of subsequent adverse events in a new 4-group LVH classification based on LV dilatation (high LV end...

  15. Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation

    OpenAIRE

    Takahashi, Hironobu; Wang, Yuwei; Grainger, David W.

    2010-01-01

    Fibrous encapsulation of surgically implant devices is associated with elevated proliferation and activation of fibroblasts in tissues surrounding these implants, frequently causing foreign body complications. Here we test the hypothesis that inhibition of the expression of mammalian target of rapamycin (mTOR) in fibroblasts can mitigate the soft tissue implant foreign body response by suppressing fibrotic responses around implants. In this study, mTOR was knocked down using small interfering...

  16. Factors influencing left ventricular hypertrophy in children and adolescents with or without family history of premature myocardial infarction

    Directory of Open Access Journals (Sweden)

    Seyyed Mohsen Hosseini

    2014-01-01

    Result : The results showed that among the studied variables, gender, age, body mass index, and blood pressure were associated with the left ventricular hypertrophy. Conclusion: Considering the results and previous studies in this field, it was observed that left ventricular hypertrophy exists at early ages, which is very dangerous and can lead to heart diseases at early ages. Factors such as being overweight, having high blood pressure, and being male cause left ventricular hypertrophy and lead to undiagnosable heart diseases.

  17. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    Science.gov (United States)

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  18. MicroRNA-1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid hormone.

    Science.gov (United States)

    Diniz, Gabriela Placoná; Lino, Caroline Antunes; Moreno, Camila Rodrigues; Senger, Nathalia; Barreto-Chaves, Maria Luiza Morais

    2017-12-01

    It is well-known that increased thyroid hormone (TH) levels induce cardiomyocyte growth. MicroRNAs (miRNAs) have been identified as key players in cardiomyocyte hypertrophy, which is associated with increased risk of heart failure. In this study, we evaluated the miR-1 expression in TH-induced cardiac hypertrophy, as well as the potential involvement of miR-1 in cardiomyocyte hypertrophy elicited by TH in vitro. The possible role of type 1 angiotensin II receptor (AT1R) in the effect promoted by TH in miR-1 expression was also evaluated. Neonatal rat cardiac myocytes (NRCMs) were treated with T 3 for 24 hr and Wistar rats were subjected to hyperthyroidism for 14 days combined or not with AT1R blocker. Real Time RT-PCR analysis indicated that miR-1 expression was decreased in cardiac hypertrophy in response to TH in vitro and in vivo, and this effect was unchanged by AT1R blocker. In addition, HDAC4, which is target of miR-1, was increased in NRCMs after T 3 treatment. A gain-of-function study revealed that overexpression of miR-1 prevented T 3 -induced cardiomyocyte hypertrophy and reduced HADC4 mRNA levels in NRCMs. In vivo experiments confirmed the downregulation of miR-1 in cardiac tissue from hyperthyroid animals, which was accompanied by increased HDAC4 mRNA levels. In addition, HDAC inhibitor prevented T 3 -induced cardiomyocyte hypertrophy. Our data reveal a new mechanistic insight into cardiomyocyte growth in response to TH, suggesting that miR-1 plays a role in cardiomyocyte hypertrophy induced by TH potentially via targeting HADC4. © 2017 Wiley Periodicals, Inc.

  19. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    Directory of Open Access Journals (Sweden)

    Chiaki Nagai-Okatani

    Full Text Available Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases.

  20. Association of breast cancer risk and the mTOR pathway in women of African ancestry in 'The Root' Consortium.

    Science.gov (United States)

    Wang, Shengfeng; Huo, Dezheng; Ogundiran, Temidayo O; Ojengbede, Oladosu; Zheng, Wei; Nathanson, Katherine L; Nemesure, Barbara; Ambs, Stefan; Olopade, Olufunmilayo I; Zheng, Yonglan

    2017-08-01

    Functional studies have elucidated the role of the mammalian target of rapamycin (mTOR) pathway in breast carcinogenesis, but to date, there is a paucity of data on its contribution to breast cancer risk in women of African ancestry. We examined 47628 SNPs in 61 mTOR pathway genes in the genome wide association study of breast cancer in the African Diaspora study (The Root consortium), which included 3686 participants (1657 cases). Pathway- and gene-level analyses were conducted using the adaptive rank truncated product (ARTP) test for 10994 SNPs that were not highly correlated (r2 studies of breast cancer in the African Diaspora. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A chemical genetic screen for mTOR pathway inhibitors based on 4E-BP-dependent nuclear accumulation of eIF4E.

    Science.gov (United States)

    Livingstone, Mark; Larsson, Ola; Sukarieh, Rami; Pelletier, Jerry; Sonenberg, Nahum

    2009-12-24

    The signal transduction pathway wherein mTOR regulates cellular growth and proliferation is an active target for drug discovery. The search for new mTOR inhibitors has recently yielded a handful of promising compounds that hold therapeutic potential. This search has been limited by the lack of a high-throughput assay to monitor the phosphorylation of a direct rapamycin-sensitive mTOR substrate in cells. Here we describe a novel cell-based chemical genetic screen useful for efficiently monitoring mTOR signaling to 4E-BPs in response to stimuli. The screen is based on the nuclear accumulation of eIF4E, which occurs in a 4E-BP-dependent manner specifically upon inhibition of mTOR signaling. Using this assay in a small-scale screen, we have identified several compounds not previously known to inhibit mTOR signaling, demonstrating that this method can be adapted to larger screens. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xue [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Li, Ling [Department of Brain Cognition Computing Lab, University of Kent, Kent CT2 7NZ (United Kingdom); Jiang, Hong; Jiang, Keping; Jin, Ye [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zheng, Jianhua, E-mail: zhengjianhua1115@126.com [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2014-02-14

    Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells.

  3. miR-199a Links MeCP2 with mTOR Signaling and Its Dysregulation Leads to Rett Syndrome Phenotypes

    Directory of Open Access Journals (Sweden)

    Keita Tsujimura

    2015-09-01

    Full Text Available Rett syndrome (RTT is a neurodevelopmental disorder caused by MECP2 mutations. Although emerging evidence suggests that MeCP2 deficiency is associated with dysregulation of mechanistic target of rapamycin (mTOR, which functions as a hub for various signaling pathways, the mechanism underlying this association and the molecular pathophysiology of RTT remain elusive. We show here that MeCP2 promotes the posttranscriptional processing of particular microRNAs (miRNAs as a component of the microprocessor Drosha complex. Among the MeCP2-regulated miRNAs, we found that miR-199a positively controls mTOR signaling by targeting inhibitors for mTOR signaling. miR-199a and its targets have opposite effects on mTOR activity, ameliorating and inducing RTT neuronal phenotypes, respectively. Furthermore, genetic deletion of miR-199a-2 led to a reduction of mTOR activity in the brain and recapitulated numerous RTT phenotypes in mice. Together, these findings establish miR-199a as a critical downstream target of MeCP2 in RTT pathogenesis by linking MeCP2 with mTOR signaling.

  4. Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection.

    Science.gov (United States)

    Salehi, Sahar; Sosa, Rebecca A; Jin, Yi-Ping; Kageyama, Shoichi; Fishbein, Michael C; Rozengurt, Enrique; Kupiec-Weglinski, Jerzy W; Reed, Elaine F

    2018-05-01

    Antibody-mediated rejection (AMR) resulting in transplant allograft vasculopathy (TAV) is the major obstacle for long-term survival of solid organ transplants. AMR is caused by donor-specific antibodies to HLA, which contribute to TAV by initiating outside-in signaling transduction pathways that elicit monocyte recruitment to activated endothelium. Mechanistic target of rapamycin (mTOR) inhibitors can attenuate TAV; therefore, we sought to understand the mechanistic underpinnings of mTOR signaling in HLA class I Ab-mediated endothelial cell activation and monocyte recruitment. We used an in vitro model to assess monocyte binding to HLA I Ab-activated endothelial cells and found mTOR inhibition reduced ezrin/radixin/moesin (ERM) phosphorylation, intercellular adhesion molecule 1 (ICAM-1) clustering, and monocyte firm adhesion to HLA I Ab-activated endothelium. Further, in a mouse model of AMR, in which C57BL/6. RAG1 -/- recipients of BALB/c cardiac allografts were passively transferred with donor-specific MHC I antibodies, mTOR inhibition significantly reduced vascular injury, ERM phosphorylation, and macrophage infiltration of the allograft. Taken together, these studies indicate mTOR inhibition suppresses ERM phosphorylation in endothelial cells, which impedes ICAM-1 clustering in response to HLA class I Ab and prevents macrophage infiltration into cardiac allografts. These findings indicate a novel therapeutic application for mTOR inhibitors to disrupt endothelial cell-monocyte interactions during AMR. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  5. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

    International Nuclear Information System (INIS)

    Feng, Xue; Li, Ling; Jiang, Hong; Jiang, Keping; Jin, Ye; Zheng, Jianhua

    2014-01-01

    Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells

  6. Cardiac arrhythmias and left ventricular hypertrophy in systemic hypertension

    International Nuclear Information System (INIS)

    Sultana, R.; Sultana, N.; Rashid, A.; Rasheed, S.Z.; Ahmed, M.; Ishaq, M.; Samad, A.

    2010-01-01

    Background: Hypertensive left ventricular hypertrophy (LVH) is associated with increased risk of arrhythmias and mortality. Objective was to investigate the prevalence of cardiac arrhythmias and LVH in systemic hypertension. Methods: In all subjects blood pressure was measured, electrocardiography and echocardiography was done. Holter monitoring and exercise test perform in certain cases. There were 500 hypertensive patients, 156 (31.2%) men and 344 (69%) women >30 years of age in the study. Among them 177 (35.4%) were diabetic, 224 (45%) were dyslipidemia, 188 (37.6%) were smokers, and 14 (3%) had homocysteinemia. Mean systolic BP (SBP) was 180 +- 20 mm Hg and diastolic BP (DBP) was 95 +- 12 in male and female patients. Left ventricular mass index (LVMI) was 119.2 +- 30 2 2gm/m in male while 103 +- 22 gm/m in female patients. Palpitation was seen in 126 (25%) male and 299 (59.8%) female patients. Atrial fibrillation was noted in 108 (21.6%) male and 125 (25%) female patients, 30 (6%) male and 82 (16.4%) female patients had atrial flutter. Ventricular tachycardia was noted in 37 (7.4%) male and 59 (11.8%) female patients. Holter monitoring showed significant premature ventricular contractions (PVC'S) in 109 (21.8%) male and 128 (25.69%) female patients while Holter showed atrial arrhythmias (APC'S) in 89 (17.8%) males and 119 (23.8%) females. Angiography findings diagnosed coronary artery disease in 119 (23.8%) with CAD male and 225 (45%) without CAD while 47 (9.4%) females presented with CAD and 109 (21.8%) without CAD. Conclusion: A significant association has been demonstrated between hypertension and arrhythmias. Diastolic dysfunction of the left ventricle, left atrial size and function, as well as LVH have been suggested as the underlying risk factors for supraventricular, ventricular arrhythmias and sudden death in hypertensives with LVH. (author)

  7. Cardiac arrhythmias and left ventricular hypertrophy in systemic hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Sultana, R; Sultana, N; Rashid, A; Rasheed, S Z; Ahmed, M; Ishaq, M; Samad, A [Karachi Institute of Heart Diseases, Karachi (Pakistan)

    2010-10-15

    Background: Hypertensive left ventricular hypertrophy (LVH) is associated with increased risk of arrhythmias and mortality. Objective was to investigate the prevalence of cardiac arrhythmias and LVH in systemic hypertension. Methods: In all subjects blood pressure was measured, electrocardiography and echocardiography was done. Holter monitoring and exercise test perform in certain cases. There were 500 hypertensive patients, 156 (31.2%) men and 344 (69%) women >30 years of age in the study. Among them 177 (35.4%) were diabetic, 224 (45%) were dyslipidemia, 188 (37.6%) were smokers, and 14 (3%) had homocysteinemia. Mean systolic BP (SBP) was 180 +- 20 mm Hg and diastolic BP (DBP) was 95 +- 12 in male and female patients. Left ventricular mass index (LVMI) was 119.2 +- 30 2 2gm/m in male while 103 +- 22 gm/m in female patients. Palpitation was seen in 126 (25%) male and 299 (59.8%) female patients. Atrial fibrillation was noted in 108 (21.6%) male and 125 (25%) female patients, 30 (6%) male and 82 (16.4%) female patients had atrial flutter. Ventricular tachycardia was noted in 37 (7.4%) male and 59 (11.8%) female patients. Holter monitoring showed significant premature ventricular contractions (PVC'S) in 109 (21.8%) male and 128 (25.69%) female patients while Holter showed atrial arrhythmias (APC'S) in 89 (17.8%) males and 119 (23.8%) females. Angiography findings diagnosed coronary artery disease in 119 (23.8%) with CAD male and 225 (45%) without CAD while 47 (9.4%) females presented with CAD and 109 (21.8%) without CAD. Conclusion: A significant association has been demonstrated between hypertension and arrhythmias. Diastolic dysfunction of the left ventricle, left atrial size and function, as well as LVH have been suggested as the underlying risk factors for supraventricular, ventricular arrhythmias and sudden death in hypertensives with LVH. (author)

  8. Alterations in NO/ROS ratio and expression of Trx1 and Prdx2 in isoproterenol-induced cardiac hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Hao Su; Marco Pistolozzi; Xingjuan Shi; Xiaoou Sun; Wen Tan

    2017-01-01

    The development of cardiac hypertrophy is a complicated process,which undergoes a transition from compensatory hypertrophy to heart failure,and the identification of new biomarkers and targets for this disease is greatly needed.Here we investigated the development of isoproterenol (ISO)-induced cardiac hypertrophy in an in vitro experimental model.After the induction of hypertrophy with ISO treatment in H9c2 cells,cell surface area,cell viability,cellular reactive oxygen species (ROS),and nitric oxide (NO) levels were tested.Our data showed that the cell viability,mitochondrial membrane potential,and NO/ROS balance varied during the development of cardiac hypertrophy in H9c2 cells.It was also found that the expression of thioredoxin1 (Trx1) and peroxiredoxin2 (Prdx2) was decreased during the cardiac hypertrophy of H9c2 cells.These results suggest a critical role for Trx1 and Prdx2 in the cardiac hypertrophy of H9c2 cells and in the transition from compensated hypertrophy to de-compensated hypertrophy in H9c2 cells,and our findings may have important implications for the management of this disease.

  9. Enhancement of Autophagy by Simvastatin through Inhibition of Rac1-mTOR Signaling Pathway in Coronary Arterial Myocytes

    Directory of Open Access Journals (Sweden)

    Yu-Miao Wei

    2013-06-01

    Full Text Available Background/Aims: In addition to their action of lowering blood cholesterol levels, statins modulate biological characteristics and functions of arterial myocytes such as viability, proliferation, apoptosis, survival and contraction. The present study tested whether simvastatin, as a prototype statin, enhances autophagy in coronary arterial myocytes (CAMs to thereby exert their beneficial effects in atherosclerosis. Methods and Results: Using flow cytometry, we demonstrated that simvastatin significantly increased the autophagsome formation in CAMs. Western blot analysis confirmed that simvastatin significantly increased protein expression of typical autophagy markers LC3B and Beclin1 in these CAMs. Confocal microscopy further demonstrated that simvastatin increased fusion of autophagosomes with lysosomes, which was blocked by autophagy inhibitor 3-methyladenine or silencing of Atg7 genes. Simvastatin reduced mammalian target of rapamycin (mTOR activity, which was reversed by Rac1-GTPase overexpression and the mTOR agonist phosphatidic acid. Moreover, both Rac1-GTPase overexpression and activation of mTOR by phosphatidic acid drastically blocked simvastatin-induced autophagosome formation in CAMs. Interestingly, simvastatin increased protein expression of a contractile phenotype marker calponin in CAMs, which was blocked by autophagy inhibitor 3-methyladenine. Simvastatin markedly reduced proliferation of CAMs under both control and proatherogenic stimulation. However, this inhibitory effect of simvastatin on CAM proliferation was blocked by by autophagy inhibitor 3-methyladenine or silencing of Atg7 genes. Lastly, animal experiments demonstrated that simvastatin increased protein expression of LC3B and calponin in mouse coronary arteries. Conclusion: Our results indicate that simvastatin inhibits the Rac1-mTOR pathway and thereby increases autophagy in CAMs which may stabilize CAMs in the contractile phenotype to prevent proliferation and growth

  10. Genetic variability of the mTOR pathway and prostate cancer risk in the European Prospective Investigation on Cancer (EPIC.

    Directory of Open Access Journals (Sweden)

    Daniele Campa

    2011-02-01

    Full Text Available The mTOR (mammalian target of rapamycin signal transduction pathway integrates various signals, regulating ribosome biogenesis and protein synthesis as a function of available energy and amino acids, and assuring an appropriate coupling of cellular proliferation with increases in cell size. In addition, recent evidence has pointed to an interplay between the mTOR and p53 pathways. We investigated the genetic variability of 67 key genes in the mTOR pathway and in genes of the p53 pathway which interact with mTOR. We tested the association of 1,084 tagging SNPs with prostate cancer risk in a study of 815 prostate cancer cases and 1,266 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC. We chose the SNPs (n = 11 with the strongest association with risk (p<0.01 and sought to replicate their association in an additional series of 838 prostate cancer cases and 943 controls from EPIC. In the joint analysis of first and second phase two SNPs of the PRKCI gene showed an association with risk of prostate cancer (OR(allele = 0.85, 95% CI 0.78-0.94, p = 1.3 x 10⁻³ for rs546950 and OR(allele = 0.84, 95% CI 0.76-0.93, p = 5.6 x 10⁻⁴ for rs4955720. We confirmed this in a meta-analysis using as replication set the data from the second phase of our study jointly with the first phase of the Cancer Genetic Markers of Susceptibility (CGEMS project. In conclusion, we found an association with prostate cancer risk for two SNPs belonging to PRKCI, a gene which is frequently overexpressed in various neoplasms, including prostate cancer.

  11. Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control.

    Directory of Open Access Journals (Sweden)

    Amélie Avet-Rochex

    2014-09-01

    Full Text Available Neuronal differentiation is exquisitely controlled both spatially and temporally during nervous system development. Defects in the spatiotemporal control of neurogenesis cause incorrect formation of neural networks and lead to neurological disorders such as epilepsy and autism. The mTOR kinase integrates signals from mitogens, nutrients and energy levels to regulate growth, autophagy and metabolism. We previously identified the insulin receptor (InR/mTOR pathway as a critical regulator of the timing of neuronal differentiation in the Drosophila melanogaster eye. Subsequently, this pathway has been shown to play a conserved role in regulating neurogenesis in vertebrates. However, the factors that mediate the neurogenic role of this pathway are completely unknown. To identify downstream effectors of the InR/mTOR pathway we screened transcriptional targets of mTOR for neuronal differentiation phenotypes in photoreceptor neurons. We identified the conserved gene unkempt (unk, which encodes a zinc finger/RING domain containing protein, as a negative regulator of the timing of photoreceptor differentiation. Loss of unk phenocopies InR/mTOR pathway activation and unk acts downstream of this pathway to regulate neurogenesis. In contrast to InR/mTOR signalling, unk does not regulate growth. unk therefore uncouples the role of the InR/mTOR pathway in neurogenesis from its role in growth control. We also identified the gene headcase (hdc as a second downstream regulator of the InR/mTOR pathway controlling the timing of neurogenesis. Unk forms a complex with Hdc, and Hdc expression is regulated by unk and InR/mTOR signalling. Co-overexpression of unk and hdc completely suppresses the precocious neuronal differentiation phenotype caused by loss of Tsc1. Thus, Unk and Hdc are the first neurogenic components of the InR/mTOR pathway to be identified. Finally, we show that Unkempt-like is expressed in the developing mouse retina and in neural stem

  12. CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability.

    Science.gov (United States)

    Horejsí, Zuzana; Takai, Hiroyuki; Adelman, Carrie A; Collis, Spencer J; Flynn, Helen; Maslen, Sarah; Skehel, J Mark; de Lange, Titia; Boulton, Simon J

    2010-09-24

    TEL2 interacts with and is essential for the stability of all phosphatidylinositol 3-kinase-related kinases (PIKKs), but its mechanism of action remains unclear. Here, we show that TEL2 is constitutively phosphorylated on conserved serines 487 and 491 by casein kinase 2 (CK2). Proteomic analyses establish that the CK2 phosphosite of TEL2 confers binding to the R2TP/prefoldin-like complex, which possesses chaperon/prefoldin activities required during protein complex assembly. The PIH1D1 subunit of the R2TP complex binds directly to the CK2 phosphosite of TEL2 in vitro and is required for the TEL2-R2TP/prefoldin-like complex interaction in vivo. Although the CK2 phosphosite mutant of TEL2 retains association with the PIKKs and HSP90 in cells, failure to interact with the R2TP/prefoldin-like complex results in instability of the PIKKs, principally mTOR and SMG1. We propose that TEL2 acts as a scaffold to coordinate the activities of R2TP/prefoldin-like and HSP90 chaperone complexes during the assembly of the PIKKs. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Nutrient-Deprived Retinal Progenitors Proliferate in Response to Hypoxia: Interaction of the HIF-1 and mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Helena Khaliullina

    2016-05-01

    Full Text Available At a cellular level, nutrients are sensed by the mechanistic Target of Rapamycin (mTOR. The response of cells to hypoxia is regulated via action of the oxygen sensor Hypoxia-Inducible Factor 1 (HIF-1. During development, injury and disease, tissues might face conditions of both low nutrient supply and low oxygen, yet it is not clear how cells adapt to both nutrient restriction and hypoxia, or how mTOR and HIF-1 interact in such conditions. Here we explore this question in vivo with respect to cell proliferation using the ciliary marginal zone (CMZ of Xenopus. We found that both nutrient-deprivation and hypoxia cause retinal progenitors to decrease their proliferation, yet when nutrient-deprived progenitors are exposed to hypoxia there is an unexpected rise in cell proliferation. This increase, mediated by HIF-1 signalling, is dependent on glutaminolysis and reactivation of the mTOR pathway. We discuss how these findings in non-transformed tissue may also shed light on the ability of cancer cells in poorly vascularised solid tumours to proliferate.

  14. Combination of mTOR and MAPK Inhibitors—A Potential Way to Treat Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ashutosh Chauhan

    2016-10-01

    Full Text Available Renal cell carcinoma (RCC is the most common neoplasm that occurs in the kidney and is marked by a unique biology, with a long history of poor response to conventional cancer treatments. In the past few years, there have been significant advancements to understand the biology of RCC. This has led to the introduction of novel targeted therapies in the management of patients with metastatic disease. Patients treated with targeted therapies for RCC had shown positive impact on overall survival, however, no cure is possible and patients need to undergo treatment for long periods of time, which raises challenges to manage the associated adverse events. Moreover, many patients may not respond to it and even response may not last long enough in the responders. Many inhibitors of the Mammalian target of Rapamycin (mTOR signaling pathway are currently being used in treatment of advanced RCC. Studies showed that inhibitions of mTOR pathways induce Mitogen-Activated Protein Kinase (MAPK escape cell death and cells become resistant to mTOR inhibitors. Because of this, there is a need to inhibit both pathways with their inhibitors comparatively for a better outcome and treatment of patients with RCC.

  15. Metabolic Symbiosis Enables Adaptive Resistance to Anti-angiogenic Therapy that Is Dependent on mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Elizabeth Allen

    2016-05-01

    Full Text Available Therapeutic targeting of tumor angiogenesis with VEGF inhibitors results in demonstrable, but transitory efficacy in certain human tumors and mouse models of cancer, limited by unconventional forms of adaptive/evasive resistance. In one such mouse model, potent angiogenesis inhibitors elicit compartmental reorganization of cancer cells around remaining blood vessels. The glucose and lactate transporters GLUT1 and MCT4 are induced in distal hypoxic cells in a HIF1α-dependent fashion, indicative of glycolysis. Tumor cells proximal to blood vessels instead express the lactate transporter MCT1, and p-S6, the latter reflecting mTOR signaling. Normoxic cancer cells import and metabolize lactate, resulting in upregulation of mTOR signaling via glutamine metabolism enhanced by lactate catabolism. Thus, metabolic symbiosis is established in the face of angiogenesis inhibition, whereby hypoxic cancer cells import glucose and export lactate, while normoxic cells import and catabolize lactate. mTOR signaling inhibition disrupts this metabolic symbiosis, associated with upregulation of the glucose transporter GLUT2.

  16. Treatment of post-transplantation lymphoproliferative disorders after kidney transplant with rituximab and conversion to m-TOR inhibitor.

    Science.gov (United States)

    Nieto-Rios, John Fredy; Gómez de Los Ríos, Sandra Milena; Serna-Higuita, Lina María; Ocampo-Kohn, Catalina; Aristizabal-Alzate, Arbey; Gálvez-Cárdenas, Kenny Mauricio; Zuluaga-Valencia, Gustavo Adolfo

    2016-12-30

    Post-transplantation lymphoproliferative disorders are serious complications of organ transplantation which treatment is not yet standardized. To describe the clinical response, overall and graft survival of patients in our center with this complication after kidney transplantation, which received rituximab as part of their treatment as well as conversion to m-TOR. Retrospective study, which included patients, diagnosed with post-transplant lymphoproliferative disorders after kidney transplantation from January 2011 to July 2014. Eight cases were found with a wide spectrum of clinical presentations. Most had monomorphic histology, 85% were associated with Epstein-Barr virus, 25% of patients had tumor involvement of the renal graft, and 12.5% ​​had primary central nervous system lymphoma. All patients were managed with reduction of immunosuppression, conversion to m-TOR (except one who lost the graft at diagnosis) and rituximab-based therapy. The overall response rate was 87.5% (62.5% complete response, 25% partial response). Survival was 87.5% with a median follow-up of 34 months. An additional patient lost the graft, with chronic nephropathy already known. All the remaining patients had stable renal function. There are no standardized treatment regimens for lymphoproliferative disorders after kidney transplantation, but these patients can be managed successfully with reduction of immunosuppression, conversion to m-TOR and rituximab-based schemes.

  17. [Interleukin-37 induces apoptosis and autophagy of SMMC-7721 cells by inhibiting phosphorylation of mTOR].

    Science.gov (United States)

    Li, Tingting; Zhu, Di; Mou, Tong; Guo, Zhen; Pu, Junliang; Wu, Zhongjun

    2017-04-01

    Objective To investigate the underlying mechanism by which interleukin-37 (IL-37) induces the apoptosis and autophagy in SMMC-7721 cells. Methods SMMC-7721 cells were incubated in vitro and divided into two groups, IL-37 treated group and control group. The cells were treated with (50, 100, 200) ng/mL of recombinant human interleukin-37 (rhIL-37). CCK-8 assay was used to detect the cell proliferation of SMMC-7721 cells. Cell apoptosis was measured by flow cytometry. Western blot analysis was performed to examine the expressions of apoptosis-related proteins, Bax, Bcl-2, and autophagy related proteins, microtubule-associated proteins 1 light chain 3 (LC3), beclin 1 and mammalian target of rapamycin (mTOR). Transmission electron microscopy (TEM) was used to observe the ultrastructures of autophagosomes. Results The rhIL-37 inhibited the proliferation of hepatocellular carcinoma SMMC-7721 cells. It induced the apoptosis and autophagy in SMMC-7721 cells. In the IL-37 treated group, the levels of Bax, LC3 and beclin 1 increased but Bcl-2 decreased. The phosphorylation of mTOR was inhibited in the IL-37 treated group. Autophagosome was obvious in the IL-37 treated group. Conclusion IL-37 induces the apoptosis and autophagy in SMMC-7721 cells, which may be related to the phosphorylation of mTOR.

  18. Plasticity and mTOR: Towards Restoration of Impaired Synaptic Plasticity in mTOR-Related Neurogenetic Disorders

    Directory of Open Access Journals (Sweden)

    Tanjala T. Gipson

    2012-01-01

    Full Text Available Objective. To review the recent literature on the clinical features, genetic mutations, neurobiology associated with dysregulation of mTOR (mammalian target of rapamycin, and clinical trials for tuberous sclerosis complex (TSC, neurofibromatosis-1 (NF1 and fragile X syndrome (FXS, and phosphatase and tensin homolog hamartoma syndromes (PTHS, which are neurogenetic disorders associated with abnormalities in synaptic plasticity and mTOR signaling. Methods. Pubmed and Clinicaltrials.gov were searched using specific search strategies. Results/Conclusions. Although traditionally thought of as irreversible disorders, significant scientific progress has been made in both humans and preclinical models to understand how pathologic features of these neurogenetic disorders can be reduced or reversed. This paper revealed significant similarities among the conditions. Not only do they share features of impaired synaptic plasticity and dysregulation of mTOR, but they also share clinical features—autism, intellectual disability, cutaneous lesions, and tumors. Although scientific advances towards discovery of effective treatment in some disorders have outpaced others, progress in understanding the signaling pathways that connect the entire group indicates that the lesser known disorders will become treatable as well.

  19. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    International Nuclear Information System (INIS)

    Guo, Haipeng; Zhang, Xin; Cui, Yuqian; Zhou, Heng; Xu, Dachun; Shan, Tichao; Zhang, Fan; Guo, Yuan; Chen, Yuguo; Wu, Dawei

    2015-01-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  20. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Haipeng; Zhang, Xin [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Cui, Yuqian [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Zhou, Heng [Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan (China); Xu, Dachun [Department of Cardiology, Shanghai Tenth People' s Hospital of Tongji University, Shanghai (China); Shan, Tichao; Zhang, Fan [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Guo, Yuan [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Chen, Yuguo, E-mail: chen919085@163.com [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Department of Emergency, Qilu Hospital of Shandong University, Jinan (China); Wu, Dawei, E-mail: wdwu55@163.com [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China)

    2015-09-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  1. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Leilei Zhong

    2015-08-01

    Full Text Available Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA. Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP/Transforming growth factor-β (TGFβ, Parathyroid hormone-related peptide (PTHrP, Indian hedgehog (IHH, Fibroblast growth factor (FGF, Insulin like growth factor (IGF and Hypoxia-inducible factor (HIF. This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.

  2. Experimental and clinical study of cardiac hypertrophy by thallium-201 myocardial scintigraphy

    International Nuclear Information System (INIS)

    Torii, Yukio

    1983-01-01

    I studied experimentally the myocardial uptake of 201 Tl in cardiac hypertrophy in rat, and clinically evaluated cardiac shape and dimension in the patients with various types of cardiac hypertrophy. Experimentally, both myocardial blood flow (MBF) and Tl uptake were increased with cardiac weight. There were negative correlations between the extraction fraction and MBF. Tl uptake in Hypertrophy is not always dependent on MBF and affected by the altered metabolism of hypertrophied myocardium. Clinical study was performed in 29 normal subjects and in 90 patients with heart disease. The measurements of left ventricular (LV) size by Tl scintigraphy were well correlated with them by echocardiography. Aortic stenosis and hypertensive heart disease showed thick wall and spherical shape. Both mitral (MR) and aortic (AR) regurgitation showed ventricular dilatation, spherical shape (in chronic MR) and ellipsoid shape (in acute MR and in AR). Decreased ventricular size but normal shape was observed in mitral stenosis and cor pulmonale. Hypertrophic cardiomyopathy showed thick wall with asymmetric septal hypertrophy, while congestive cardiomyopathy showed thin wall with marked ventricular dilatation and spherical shape. I conclude that heart disease has characteristic figures in dimension and shape which may be reflecting cardiac performance or compensating for the load to the heart, and that 201 Tl scintigraphy is useful evaluating cardiac morphology as well as in diagnosing myocardial ischemia. (J.P.N.)

  3. Curcumin Inhibits Chondrocyte Hypertrophy of Mesenchymal Stem Cells through IHH and Notch Signaling Pathways.

    Science.gov (United States)

    Cao, Zhen; Dou, Ce; Dong, Shiwu

    2017-01-01

    Using tissue engineering technique to repair cartilage damage caused by osteoarthritis is a promising strategy. However, the regenerated tissue usually is fibrous cartilage, which has poor mechanical characteristics compared to hyaline cartilage. Chondrocyte hypertrophy plays an important role in this process. Thus, it is very important to find out a suitable way to maintain the phenotype of chondrocytes and inhibit chondrocyte hypertrophy. Curcumin deriving from turmeric was reported with anti-inflammatory and anti-tumor pharmacological effects. However, the role of curcumin in metabolism of chondrocytes, especially in the chondrocyte hypertrophy remains unclear. Mesenchymal stem cells (MSCs) are widely used in cartilage tissue engineering as seed cells. So we investigated the effect of curcumin on chondrogenesis and chondrocyte hypertrophy in MSCs through examination of cell viability, glycosaminoglycan synthesis and specific gene expression. We found curcumin had no effect on expression of chondrogenic markers including Sox9 and Col2a1 while hypertrophic markers including Runx2 and Col10a1 were down-regulated. Further exploration showed that curcumin inhibited chondrocyte hypertrophy through Indian hedgehog homolog (IHH) and Notch signalings. Our results indicated curcumin was a potential agent in modulating cartilage homeostasis and maintaining chondrocyte phenotype.

  4. Population-specific left ventricular hypertrophy in three groups from the northeastern region of India.

    Science.gov (United States)

    Borah, P K; Hazarika, N C; Biswas, D; Kalita, H C; Mahanta, J

    2010-01-01

    People living in the hills are continuously exposed to strenuous physical activity for their day-to-day work. Besides hypertension, left ventricular hypertrophy in different populations may be related to continuous physical activity. Electrocardiogram, blood pressure and sociodemographic information of 12 252 subjects > or = 30 years of age from three different population groups living in Mizoram (hilly) and Assam (plain) were recorded. Of them, 8058 were from Mizoram and 3180 and 1014 were Indigenous Assamese and tea garden workers of Assam. Among the subjects from Mizoram the percentage of smokers (41.9%), mean (SD) BMI (21.9 [3.8]) and waist-hip ratio (0.87 [0.02]) were significantly higher than in those from other groups. Tea garden workers had a higher mean systolic blood pressure (145.2 [25.7]) and diastolic blood pressure (87.6 [13.6]). The prevalence of left ventricular hypertrophy was highest among tea garden workers (16.5%) followed by people from Mizoram (3.7%) and the indigenous Assamese (2%) people. In spite of a significantly higher prevalence of hypertension among the indigenous Assamese community than among those from Mizoram, left ventricular hypertrophy was found to be lower in the former. High prevalence of left ventricular hypertrophy among tea garden workers was possibly related to a higher prevalence of hypertension but the higher prevalence of left ventricular hypertrophy among people from Mizoram might be related to more physical activity.

  5. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow.

    Science.gov (United States)

    Xu, Shouyu; Liu, Xueyun; Chen, Zhenhuang; Li, Gaoquan; Chen, Qin; Zhou, Guoqing; Ma, Ruijie; Yao, Xinmiao; Huang, Xiao

    2016-12-15

    Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Science.gov (United States)

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (pmuscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  7. The characteristics of myocardial fatty acid metabolism in patients with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Isobe, Naoki; Toyama, Takuji; Hoshizaki, Hiroshi

    1999-01-01

    We evaluated the characteristics of myocardial fatty acid metabolism in patients with left ventricular hypertrophy (LVH). Myocardial imaging with 123 I-beta-methyl iodophenyl pentadecanoic acid (BMIPP) was performed in 28 patients with hypertrophic cardiomyopathy (HCM), 15 patients with hypertensive heart disease (HHD), 13 patients with aortic stenosis (AS) and 8 normal controls (NC). The patients with HCM consisted of 13 patients of asymmetric septal hypertrophy (ASH), 7 patients of diffuse hypertrophy (Diffuse-HCM) and 8 patients of apical hypertrophy (APH). Planar and SPECT images of BMIPP were acquired 15 minutes and 4 hours after tracer injection. Resting 201 Tl SPECT images and echocardiography were also performed on other days. We calculated heart/mediastinum count ratio and washout rate of BMIPP by using planar image. In patients with LVH, the incidence of reduced BMIPP uptake was more frequent than that of reduced 201 Tl uptake. In delayed images, more than 60% of patients with LVH reduced BMIPP uptake, especially remarkable for patients with ASH and APH. The washout rate of all cardiac hypertrophic disorders was tended to be higher than that of normal subjects. Reduced BMIPP uptake was frequently found in septal portion of anterior and inferior wall in patients with ASH, in inferior wall in patients with Diffuse-HCM and HHD, in apex in patients with APH and AS. These results suggest that BMIPP scintigraphy can differentiate three types of cardiac hypertrophy. (author)

  8. Lumbar radiculopathy due to unilateral facet hypertrophy following lumbar disc hernia operation: a case report.

    Science.gov (United States)

    Kökeş, Fatih; Günaydin, Ahmet; Aciduman, Ahmet; Kalan, Mehmet; Koçak, Halit

    2007-10-01

    To present a radiculopathy case due to unilateral facet hypertrophy developing three years after a lumbar disc hernia operation. A fifty two-year-old female patient, who had been operated on for a left L5-S1 herniated lumbar disc three years ago, was hospitalized and re-operated with a diagnosis of unilateral facet hypertrophy. She had complaints of left leg pain and walking restrictions for the last six months. Left Straight Leg Raising test was positive at 40 degrees , left ankle dorsiflexion muscle strength was 4/5, left Extensor Hallucis Longus muscle strength was 3/5, and left Achilles reflex was hypoactive. Lumbar spinal Magnetic Resonance Imaging revealed left L5-S1 facet hypertrophy. Lumbar radiculopathy due to lumbar facet hypertrophy is a well-known neurological condition. Radicular pain develops during the late postoperative period following lumbar disc hernia operations that are often related to recurrent disc herniation or to formation of post-operative scar tissue. In addition, it can be speculated that unilateral facet hypertrophy, which may develop after a disc hernia operation, might also be one of the causes of radiculopathy.

  9. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus).

    Science.gov (United States)

    Slay, Christopher E; Enok, Sanne; Hicks, James W; Wang, Tobias

    2014-05-15

    Physiological cardiac hypertrophy is characterized by reversible enlargement of cardiomyocytes and changes in chamber architecture, which increase stroke volume and via augmented convective oxygen transport. Cardiac hypertrophy is known to occur in response to repeated elevations of O2 demand and/or reduced O2 supply in several species of vertebrate ectotherms, including postprandial Burmese pythons (Python bivittatus). Recent data suggest postprandial cardiac hypertrophy in P. bivittatus is a facultative rather than obligatory response to digestion, though the triggers of this response are unknown. Here, we hypothesized that an O2 supply-demand mismatch stimulates postprandial cardiac enlargement in Burmese pythons. To test this hypothesis, we rendered animals anemic prior to feeding, essentially halving blood oxygen content during the postprandial period. Fed anemic animals had heart rates 126% higher than those of fasted controls, which, coupled with a 71% increase in mean arterial pressure, suggests fed anemic animals were experiencing significantly elevated cardiac work. We found significant cardiac hypertrophy in fed anemic animals, which exhibited ventricles 39% larger than those of fasted controls and 28% larger than in fed controls. These findings support our hypothesis that those animals with a greater magnitude of O2 supply-demand mismatch exhibit the largest hearts. The 'low O2 signal' stimulating postprandial cardiac hypertrophy is likely mediated by elevated ventricular wall stress associated with postprandial hemodynamics. © 2014. Published by The Company of Biologists Ltd.

  10. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR.

    Science.gov (United States)

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor(+/+) MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor(-/-) MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.

  11. Place of mTOR inhibitors in management of BKV infection after kidney transplantation.

    Science.gov (United States)

    Jouve, Thomas; Rostaing, Lionel; Malvezzi, Paolo

    2016-01-01

    BK virus (BKV) viremia and BKV-associated nephropathy (BKVAN) have become a serious nuisance to kidney transplant (KT) patients since the mid-nineties, when the incidence of this disease has increased significantly. Directory of open access journals (DOAJ), EMBASE, Google Scholar, PubMed, EBSCO, and Web of Science have been searched. Many hypothesis have been made as to why this phenomenon has developed; it is of general opinion that a more potent immunosuppression is at the core of the problem. The use of the association of tacrolimus (TAC) with mycophenolic acid (MPA) has gained momentum in the same years as the increase in BKV viremia incidence making it seem to be the most likely culprit. m-TOR inhibitors (m-TORIs) have been shown to have antiviral properties in vitro and this fact has encouraged different transplant teams to use these agents when confronted with BKV infection (viremia or nephropathy). However, the results are mitigated. There had been conflicting results for example when converting from TAC-to sirolimus-based immunosuppression in the setting of established BKVAN. In order to prevent BKV infection we have to minimize to some extent immunosuppression, but it is not always possible, e.g. in high immunological risk patients. Conversely, we could use m-TORIs associated with low-dose calcineurin inhibitors (CNIs). This could be actually the key to a safe immunosuppression regimen both from the immunological stand point and from the viral one.

  12. mTOR complex 1: a key player in neuroadaptations induced by drugs of abuse.

    Science.gov (United States)

    Neasta, Jeremie; Barak, Segev; Hamida, Sami Ben; Ron, Dorit

    2014-07-01

    The mammalian (or mechanistic) target of rapamycin (mTOR) complex 1 (mTORC1) is a serine and threonine kinase that regulates cell growth, survival, and proliferation. mTORC1 is a master controller of the translation of a subset of mRNAs. In the central nervous system mTORC1 plays a crucial role in mechanisms underlying learning and memory by controlling synaptic protein synthesis. Here, we review recent evidence suggesting that the mTORC1 signaling pathway promotes neuroadaptations following exposure to a diverse group of drugs of abuse including stimulants, cannabinoids, opiates, and alcohol. We further describe potential molecular mechanisms by which drug-induced mTORC1 activation may alter brain functions. Finally, we propose that mTORC1 is a focal point shared by drugs of abuse to mediate drug-related behaviors such as reward seeking and excessive drug intake, and offer future directions to decipher the contribution of the kinase to mechanisms underlying addiction. Recent studies suggesting that exposure to diverse classes of drugs of abuse as well as exposure to drug-associated memories lead to mTORC1 kinase activation in the limbic system. In turn, mTORC1 controls the onset and the maintenance of pathological neuroadaptions that underlie several features of drug addiction such as drug seeking and relapse. Therefore, we propose that targeting mTORC1 and its effectors is a promising strategy to treat drug disorders. © 2014 International Society for Neurochemistry.

  13. Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment

    Directory of Open Access Journals (Sweden)

    Duncan eHowie

    2014-08-01

    Full Text Available We have proposed that tolerance can be maintained by the induction, by Treg cells, of a tolerogenic microenvironment within tolerated tissues that inhibits effector cell activity but which supports the generation of further Treg cells by infectious tolerance. Two important components of this tolerogenic microenvironment depend on metabolism and nutrient sensing. The first is due to the up-regulation of multiple enzymes that consume essential amino acids (EAAs, which are sensed in naive T cells primarily via inhibition of the mTOR pathway, which in turn encourages their further differentiation into foxp3+ Treg cells. The second mechanism is the metabolism of extracellular ATP to adenosine by the ectoenzymes CD39 and CD73. These two enzymes are constitutively co-expressed on Treg cells, but can also be induced on a wide variety of cell types by TGFbeta and the adenosine generated can be shown to be a potent inhibitor of T cell proliferation. This review will focus on mechanisms of nutrient sensing in T cells, how these are integrated with TCR and cytokine signals via the mnTOR pathway, and what impact this has on intracellular metabolism and subsequently the control of differentiation into different effector or regulatory T cell subsets.

  14. mTOR inhibitors in the treatment of advanced renal cell carcinoma

    International Nuclear Information System (INIS)

    Barilla, R.; Sycova-Mila, Z.

    2009-01-01

    Renal Cell Carcinoma (RCC) accounts for approximately 4 % of all malignancies. Much is known about the pathogenesis of RCC because of studies examining its close relationship with dysfunction of the Von Hippel-Lindau gene (VHL) and hypoxia inducible factor (HIF). Mammalian target of rapamycin (mTOR) regulates nutritional needs, cell growth, and angiogenesisi in cells by down regulating or up regulating a variety of proteins including HIF. Until 2005, only a single agent high dose interleukin 2 was approved by Food and Drug Administration (FDA) for treatment of advanced renal cell carcinoma. More recently thanks to better knowledge in the field of molecular biology new treatment options appeared. Sunitinib and bevacizumab are currently considered to be treatment of first choice for patients in good and intermediate prognostic group and sorafenib is preferred second line treatment in the same patient population pretreated with cytokines after disease progression. Temsirolimus and everolimus, rapamycin analouges, have recently been tested in III trials in first and second line treatment in patients with advanced metastatic clear cell renal cell carcinoma. (author)

  15. Systemic and Nonrenal Adverse Effects Occurring in Renal Transplant Patients Treated with mTOR Inhibitors

    Directory of Open Access Journals (Sweden)

    Gianluigi Zaza

    2013-01-01

    Full Text Available The mammalian target of rapamycin inhibitors (mTOR-I, sirolimus and everolimus, are immunosuppressive drugs largely used in renal transplantation. The main mechanism of action of these drugs is the inhibition of the mammalian target of rapamycin (mTOR, a regulatory protein kinase involved in lymphocyte proliferation. Additionally, the inhibition of the crosstalk among mTORC1, mTORC2, and PI3K confers the antineoplastic activities of these drugs. Because of their specific pharmacological characteristics and their relative lack of nephrotoxicity, these inhibitors are valid option to calcineurine inhibitors (CNIs for maintenance immunosuppression in renal transplant recipients with chronic allograft nephropathy. However, as other immunosuppressive drugs, mTOR-I may induce the development of several adverse effects that need to be early recognized and treated to avoid severe illness in renal transplant patients. In particular, mTOR-I may induce systemic nonnephrological side effects including pulmonary toxicity, hematological disorders, dysmetabolism, lymphedema, stomatitis, cutaneous adverse effects, and fertility/gonadic toxicity. Although most of the adverse effects are dose related, it is extremely important for clinicians to early recognize them in order to reduce dosage or discontinue mTOR-I treatment avoiding the onset and development of severe clinical complications.

  16. Optimising the use of mTOR inhibitors in renal transplantation.

    Science.gov (United States)

    Russ, Graeme R

    2013-11-20

    Renal transplantation is the treatment of choice for end-stage renal failure. Although advances in immunosuppression have led to improvements in short-term outcomes, graft survival beyond 5 to 10 years has not improved. One of the major causes of late renal allograft failure is chronic allograft nephropathy, a component of which is nephrotoxicity from the use of calcineurin inhibitors (CNIs). In addition, premature patient death is a major limitation of renal transplantation and the major causes are cancer, cardiovascular disease and infection. CNI-free immunosuppressive regimens based on mammalian target of rapamycin (mTOR) inhibitors have been trial led over the last few years and have defined the rational use of these agents. Conversion from a CNI-based to an mTOR-inhibitor-based regimen has been successful at improving renal function for a number of years after conversion, although long-term survival outcomes are still awaited. The studies suggest that the safest and most effective time to convert is between 1 and 6 months after transplant. In addition, mTOR-inhibitor-based regimens have been shown to be associated with lower rates of post-transplant malignancy and less cytomegalovirus infection, which may add further to the appeal of this approach.

  17. mTOR inhibition elicits a dramatic response in PI3K-dependent colon cancers.

    Directory of Open Access Journals (Sweden)

    Dustin A Deming

    Full Text Available The phosphatidylinositide-3-kinase (PI3K signaling pathway is critical for multiple cellular functions including metabolism, proliferation, angiogenesis, and apoptosis, and is the most commonly altered pathway in human cancers. Recently, we developed a novel mouse model of colon cancer in which tumors are initiated by a dominant active PI3K (FC PIK3ca. The cancers in these mice are moderately differentiated invasive mucinous adenocarcinomas of the proximal colon that develop by 50 days of age. Interestingly, these cancers form without a benign intermediary or aberrant WNT signaling, indicating a non-canonical mechanism of tumorigenesis. Since these tumors are dependent upon the PI3K pathway, we investigated the potential for tumor response by the targeting of this pathway with rapamycin, an mTOR inhibitor. A cohort of FC PIK3ca mice were treated with rapamycin at a dose of 6 mg/kg/day or placebo for 14 days. FDG dual hybrid PET/CT imaging demonstrated a dramatic tumor response in the rapamycin arm and this was confirmed on necropsy. The tumor tissue remaining after treatment with rapamycin demonstrated increased pERK1/2 or persistent phosphorylated ribosomal protein S6 (pS6, indicating potential resistance mechanisms. This unique model will further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification.

  18. mTOR signaling promotes foam cell formation and inhibits foam cell egress through suppressing the SIRT1 signaling pathway.

    Science.gov (United States)

    Zheng, Haixiang; Fu, Yucai; Huang, Yusheng; Zheng, Xinde; Yu, Wei; Wang, Wei

    2017-09-01

    Atherosclerosis (AS) is a chronic immuno‑inflammatory disease accompanied by dyslipidemia. The authors previously demonstrated that sirtuin 1 (SIRT1) may prevent atherogenesis through influencing the liver X receptor/C‑C chemokine receptor type 7/nuclear factor‑κB (LXR‑CCR7/NF‑κB) signaling pathway. Previous studies have suggested a role for mammalian target of rapamycin (mTOR) signaling in the pathogenesis of cardiovascular diseases. The present study investigated the potential association between mTOR signaling and SIRT1‑LXR‑CCR7/NF‑κB signaling (SIRT1 signaling) in AS pathogenesis. To induce foam cell formation, U937 cells were differentiated into macrophages by exposure to phorbol 12‑myristate 13‑acetate (PMA) for 24 h, followed by treatment with palmitate and oxidized low density lipoprotein for a further 24 h. Oil red O staining revealed a large accumulation of lipid droplets present in foam cells. Western blot analysis demonstrated increased protein levels of phosphorylated (p)‑mTOR and its downstream factor p‑ribosomal protein S6 kinase (p70S6K). Reverse transcription‑quantitative polymerase chain reaction and western blot analyses additionally revealed decreased expression of SIRT1, LXRα and CCR7 and increased expression of NF‑κB and its downstream factor tumor necrosis factor‑α (TNF‑α) in an atherogenetic condition induced by lysophosphatidic acid (LPA). In addition, abundant lipid droplets accumulated in U937‑LPA‑treated foam cells. Rapamycin, an mTOR inhibitor, suppressed the expression and activity of mTOR and p70S6K, however enhanced expression of SIRT1, LXRα, and CCR7. Conversely, rapamycin deceased TNF‑α and NF‑κB activity, the latter of which was further confirmed by immunofluorescence analysis demonstrating increased levels of NF‑κB present in the cytoplasm compared with the nucleus. The findings of the present study suggest that mTOR signaling promotes foam cell formation and inhibits foam

  19. Sodium bicarbonate supplementation improves hypertrophy-type resistance exercise performance.

    Science.gov (United States)

    Carr, Benjamin M; Webster, Michael J; Boyd, Joseph C; Hudson, Geoffrey M; Scheett, Timothy P

    2013-03-01

    The aim of the present study was to examine the effects of sodium bicarbonate (NaHCO(3)) administration on lower-body, hypertrophy-type resistance exercise (HRE). Using a double-blind randomized counterbalanced design, 12 resistance-trained male participants (mean ± SD; age = 20.3 ± 2 years, mass = 88.3 ± 13.2 kg, height = 1.80 ± 0.07 m) ingested 0.3 g kg(-1) of NaHCO(3) or placebo 60 min before initiation of an HRE regimen. The protocol employed multiple exercises: squat, leg press, and knee extension, utilizing four sets each, with 10-12 repetition-maximum loads and short rest periods between sets. Exercise performance was determined by total repetitions generated during each exercise, total accumulated repetitions, and a performance test involving a fifth set of knee extensions to failure. Arterialized capillary blood was collected via fingertip puncture at four time points and analyzed for pH, [HCO(3)(-)], base excess (BE), and lactate [Lac(-)]. NaHCO(3) supplementation induced a significant alkaline state (pH: NaHCO(3): 7.49 ± 0.02, placebo: 7.42 ± 0.02, P < 0.05; [HCO(3)(-)]: NaHCO(3): 31.50 ± 2.59, placebo: 25.38 ± 1.78 mEq L(-1), P < 0.05; BE: NaHCO(3): 7.92 ± 2.57, placebo: 1.08 ± 2.11 mEq L(-1), P < 0.05). NaHCO(3) administration resulted in significantly more total repetitions than placebo (NaHCO(3): 139.8 ± 13.2, placebo: 134.4 ± 13.5), as well as significantly greater blood [Lac(-)] after the exercise protocol (NaHCO(3): 17.92 ± 2.08, placebo: 15.55 ± 2.50 mM, P < 0.05). These findings demonstrate ergogenic efficacy for NaHCO(3) during HRE and warrant further investigation into chronic training applications.

  20. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, S K; Vendelbo, M H

    2014-01-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohy......In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD...... or contraction mode effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training – irrespective of contraction mode....

  1. Unilateral hypertrophy of tensor fascia lata: a soft tissue tumor simulator

    Energy Technology Data Exchange (ETDEWEB)

    Ilaslan, H. [Department of Radiology, Mayo Clinic, 200 First Street, 55905, SW Rochester, MN (United States); Department of Radiology A21, Cleveland Clinic, Cleveland, OH (United States); Wenger, D.E. [Department of Radiology, Mayo Clinic, 200 First Street, 55905, SW Rochester, MN (United States); Shives, T.C. [Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN (United States); Unni, K.K. [Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN (United States)

    2003-11-01

    To describe the imaging findings in eight cases of unilateral tensor fascia lata (TFL) hypertrophy presenting as soft tissue masses. Imaging studies and medical charts of eight patients were reviewed retrospectively. The imaging studies included five radiographs, five computed tomography (CT) and six magnetic resonance imaging (MRI) examinations. The majority of patients (seven of eight) presented with a palpable proximal anterior thigh mass. One patient was asymptomatic and incidentally diagnosed. There were six females and two males. Ages ranged from 27 to 86 years old (mean 61). MRI and CT showed unilateral enlargement of the TFL muscle in all cases. TFL muscle hypertrophy is an uncommon clinical entity, which can simulate a soft tissue tumor. The characteristic appearance on CT or MRI allows a confident diagnosis of muscle hypertrophy to be made, avoiding unnecessary biopsy or surgical intervention. (orig.)

  2. Unilateral hypoplasia with contralateral hypertrophy of anterior belly of digastric muscle: a case report.

    Science.gov (United States)

    Ochoa-Escudero, Martin; Juliano, Amy F

    2016-10-01

    Anomalies of the anterior belly of the digastric muscle (DM) are uncommon. We present a case of hypoplasia of the anterior belly of the left DM with hypertrophy of the anterior belly of the contralateral DM. The importance of recognizing this finding is to differentiate hypoplasia of the anterior belly of the DM from denervation atrophy, and not to confuse contralateral hypertrophy with a submental mass or lymphadenopathy. In denervation atrophy of the anterior belly of the DM, associated atrophy of the ipsilateral mylohyoid muscle is present. Hypertrophy of the anterior belly of the contralateral DM can be differentiated from a submental mass or lymphadenopathy by recognizing its isodensity on computed tomography and isointensity on magnetic resonance imaging to other muscles, without abnormal contrast enhancement.

  3. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2.

    Science.gov (United States)

    Witting, N; Duno, M; Vissing, J

    2013-01-01

    Becker muscular dystrophy features progressive proximal weakness, wasting and often focal hypertrophy. We present a patient with pain and cramps from adolescence. Widespread muscle hypertrophy, preserved muscle strength and a 10-20-fold raised CPK were noted. Muscle biopsy was dystrophic, and Western blot showed a 95% reduction of dystrophin levels. Genetic analyses revealed a non-sense mutation in exon 2 of the dystrophin gene. This mutation is predicted to result in a Duchenne phenotype, but resulted in a mild Becker muscular dystrophy with widespread muscle hypertrophy. We suggest that this unusual phenotype is caused by translation re-initiation downstream from the mutation site. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Unilateral hypertrophy of tensor fascia lata: a soft tissue tumor simulator

    International Nuclear Information System (INIS)

    Ilaslan, H.; Wenger, D.E.; Shives, T.C.; Unni, K.K.

    2003-01-01

    To describe the imaging findings in eight cases of unilateral tensor fascia lata (TFL) hypertrophy presenting as soft tissue masses. Imaging studies and medical charts of eight patients were reviewed retrospectively. The imaging studies included five radiographs, five computed tomography (CT) and six magnetic resonance imaging (MRI) examinations. The majority of patients (seven of eight) presented with a palpable proximal anterior thigh mass. One patient was asymptomatic and incidentally diagnosed. There were six females and two males. Ages ranged from 27 to 86 years old (mean 61). MRI and CT showed unilateral enlargement of the TFL muscle in all cases. TFL muscle hypertrophy is an uncommon clinical entity, which can simulate a soft tissue tumor. The characteristic appearance on CT or MRI allows a confident diagnosis of muscle hypertrophy to be made, avoiding unnecessary biopsy or surgical intervention. (orig.)

  5. Longitudinal strain bull's eye plot patterns in patients with cardiomyopathy and concentric left ventricular hypertrophy.

    Science.gov (United States)

    Liu, Dan; Hu, Kai; Nordbeck, Peter; Ertl, Georg; Störk, Stefan; Weidemann, Frank

    2016-05-10

    Despite substantial advances in the imaging techniques and pathophysiological understanding over the last decades, identification of the underlying causes of left ventricular hypertrophy by means of echocardiographic examination remains a challenge in current clinical practice. The longitudinal strain bull's eye plot derived from 2D speckle tracking imaging offers an intuitive visual overview of the global and regional left ventricular myocardial function in a single diagram. The bull's eye mapping is clinically feasible and the plot patterns could provide clues to the etiology of cardiomyopathies. The present review summarizes the longitudinal strain, bull's eye plot features in patients with various cardiomyopathies and concentric left ventricular hypertrophy and the bull's eye plot features might serve as one of the cardiac workup steps on evaluating patients with left ventricular hypertrophy.

  6. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    Science.gov (United States)

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidization and hypertrophy. Furthermore, the hypertrophic agent angiotensin II induced VSMC polyploidization in an Akt1-dependent manner. These results demonstrate that Akt1 regulates ploidy levels in VSMCs and contributes to vascular smooth muscle polyploidization and hypertrophy during hypertension. PMID:11032861

  7. A clinical study of thallium-201 scintigraphy in hypertensive patients with and without left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Ouyang Wei; He Guorong; Liu Jinhua; Huang Yuying; Qian Xuexian

    2001-01-01

    Objective: Based on coronary angiography, thallium-201 myocardial scintigraphy was evaluated in hypertensive patients with and without left ventricular hypertrophy, and the causes of its perfusion abnormalities were discussed. Methods: Thallium-201 myocardial scintigraphy was performed on 85 patients with clinically suspected coronary artery disease. Coronary angiography was performed on patients with perfusion abnormalities in one month after scintigraphy. Results: The rate of 201 Tl perfusion abnormalities in hypertensive patients with hypertrophy (85.7%) was higher than normal blood pressure (39.3%, P 201 Tl perfusion abnormalities occur in hypertensive patients with hypertrophy. The perfusion abnormalities may be caused not only by coronary large vessel disease, but also by coronary microvascular disease

  8. Investigating β-adrenergic-induced cardiac hypertrophy through computational approach: classical and non-classical pathways.

    Science.gov (United States)

    Khalilimeybodi, Ali; Daneshmehr, Alireza; Sharif-Kashani, Babak

    2018-07-01

    The chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of β-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of β-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of β2 receptors out of total cardiac β-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of β-adrenergic-induced hypertrophy is noticeable and variations in β1/β2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3β deactivation after β-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in β-adrenergic signaling.

  9. Characteristic mTOR activity in Hodgkin-lymphomas offers a potential therapeutic target in high risk disease – a combined tissue microarray, in vitro and in vivo study

    International Nuclear Information System (INIS)

    Márk, Ágnes; Kopper, László; Sebestyén, Anna; Hajdu, Melinda; Váradi, Zsófia; Sticz, Tamás Béla; Nagy, Noémi; Csomor, Judit; Berczi, Lajos; Varga, Viktória; Csóka, Monika

    2013-01-01

    Targeting signaling pathways is an attractive approach in many malignancies. The PI3K/Akt/mTOR pathway is activated in a number of human neoplasms, accompanied by lower overall and/or disease free survival. mTOR kinase inhibitors have been introduced in the therapy of renal cell carcinoma and mantle cell lymphoma, and several trials are currently underway. However, the pathological characterization of mTOR activity in lymphomas is still incomplete. mTOR activity and the elements of mTOR complexes were investigated by immunohistochemistry on tissue microarrays representing different human non-Hodgkin-lymphomas (81 cases) and Hodgkin-lymphomas (87 cases). The expression of phospho-mTOR, phospho-4EBP1, phospho-p70S6K, phospho-S6, Rictor, Raptor and Bcl-2, Bcl-xL, Survivin and NF-kappaB-p50 were evaluated, and mTOR activity was statistically analyzed along with 5-year survival data. The in vitro and in vivo effect of the mTOR inhibitor rapamycin was also examined in human Hodgkin-lymphoma cell lines. The majority (>50%) of mantle cell lymphoma, Burkitt lymphoma, diffuse large B-cell lymphoma, anaplastic large-cell lymphoma and Hodgkin-lymphoma cases showed higher mTOR activity compared to normal lymphoid tissues. Hodgkin-lymphoma was characterized by high mTOR activity in 93% of the cases, and Bcl-xL and NF-kappaB expression correlated with this mTOR activity. High mTOR activity was observed in the case of both favorable and unfavorable clinical response. Low mTOR activity was accompanied by complete remission and at least 5-year disease free survival in Hodgkin-lymphoma patients. However, statistical analysis did not identify correlation beetween mTOR activity and different clinical data of HL patients, such as survival. We also found that Rictor (mTORC2) was not overexpressed in Hodgkin-lymphoma biopsies and cell lines. Rapamycin inhibited proliferation and induced apoptosis in Hodgkin-lymphoma cells both in vitro and in vivo, moreover, it increased the apoptotic

  10. mTOR pathway is activated in endothelial cells from patients with Takayasu arteritis and is modulated by serum immunoglobulin G.

    Science.gov (United States)

    Hadjadj, Jérôme; Canaud, Guillaume; Mirault, Tristan; Samson, Maxime; Bruneval, Patrick; Régent, Alexis; Goulvestre, Claire; Witko-Sarsat, Véronique; Costedoat-Chalumeau, Nathalie; Guillevin, Loïc; Mouthon, Luc; Terrier, Benjamin

    2018-06-01

    Takayasu arteritis (TA) and GCA are large-vessel vasculitides characterized by vascular remodelling involving endothelial cells (ECs) and vascular smooth muscle cells. Mammalian target of rapamycin (mTOR) pathway has been involved in vascular remodelling. We hypothesized that the mTOR pathway was involved in the pathogenesis of large-vessel vasculitis. We used IF analysis on aortic and temporal artery biopsies from patients with TA and GCA to assess the involvement of the mTOR pathway and searched for antibodies targeting ECs in serum by IIF and cellular ELISA. We evaluated in vitro the effect of purified IgG from patients on mTOR pathway activation and cell proliferation. IF analyses on tissues revealed that both mTORC1 and mTORC2 are activated specifically in ECs from TA patients but not in ECs from GCA patients and healthy controls (HCs). Using IIF and ELISA, we observed higher levels of antibodies binding to ECs in TA patients compared with GCA patients and HCs. Using western blot, we demonstrated that purified IgG from TA patients caused mTORC1 activation in ECs, whereas this effect was not observed with purified IgG from GCA patients or HCs. Purified IgG from TA patients induced a significant EC proliferation compared with to GCA and HC IgG, and this effect was decreased after EC exposure with sirolimus, a specific mTOR inhibitor and PI3K inhibitor. Our results suggest that antibodies targeting ECs drive endothelial remodelling in TA through activation of the mTOR pathway, but not in GCA. Inhibition of the mTOR pathway could represent a therapeutic option in TA.

  11. mTOR inhibition in macrophages of asymptomatic HIV+ persons reverses the decrease in TLR4-mediated TNFα release through prolongation of MAPK pathway activation1

    Science.gov (United States)

    Li, Xin; Han, Xinbing; Llano, Juliana; Bole, Medhavi; Zhou, Xiuqin; Swan, Katharine; Anandaiah, Asha; Nelson, Benjamin; Patel, Naimish R.; Reinach, Peter S.; Koziel, Henry; Tachado, Souvenir D.

    2011-01-01

    Toll-like receptor 4 (TLR4) mediated signaling is significantly impaired in macrophages from HIV+ persons predominantly due to altered MyD88-dependent pathway signaling caused in part by constitutive activation of PI3K. Here we assessed in these macrophages if the blunted increase in TLR4-mediated TNFα release induced by lipid A are associated with PI3K-induced upregulation of mammalian target of rapamycin (mTOR) activity. mTOR inhibition with rapamycin enhanced TLR4-mediated TNFα release, but instead suppressed anti-inflammatory IL-10 release. Targeted gene silencing of mTOR in macrophages resulted in lipid A-induced TNFα and IL-10 release patterns similar to those induced by rapamycin. Rapamycin restored MyD88-IRAK interaction in a dose-dependent manner. Targeted gene silencing of MyD88 (shRNA) and mTOR (RNAi) inhibition resulted in TLR4-mediated p70s6K activation and enhanced TNFα release, whereas IL-10 release was inhibited in both silenced and non-silenced HIV+ macrophages. Furthermore, mTOR inhibition augmented lipid A-induced TNFα release through enhanced and prolonged phosphorylation of ERK1/2 and JNK1/2 MAP kinases, which was associated with time-dependent MKP-1 destabilization. Taken together, impaired TLR4-mediated TNFα release in HIV+ macrophages is attributable in part to mTOR activation by constitutive PI3K expression in a MyD88-dependent signaling pathway. These changes result in MKP-1 stabilization, which shortens and blunts MAP kinase activation. mTOR inhibition may serve as a potential therapeutic target to upregulate macrophage innate immune host defense responsiveness in HIV+ persons. PMID:22025552

  12. The 4th Report of the Working Group on ECG diagnosis of Left Ventricular Hypertrophy

    DEFF Research Database (Denmark)

    Bacharova, Ljuba; Estes, Harvey E; Schocken, Douglas D

    2016-01-01

    The 4th Report provides a brief review of publications focused on the electrocardiographic diagnosis of left ventricular hypertrophy published during the period of 2010 to 2016 by the members of the Working Group on ECG diagnosis of Left Ventricular Hypertrophy. The Working Group recommended...... that ECG research and clinical attention be redirected from the estimation of LVM to the identification of electrical remodeling, to better understanding the sequence of events connecting electrical remodeling to outcomes. The need for a re-definition of terms and for a new paradigm is also stressed....

  13. Muscular and systemic correlates of resistance training-induced muscle hypertrophy.

    Directory of Open Access Journals (Sweden)

    Cameron J Mitchell

    Full Text Available PURPOSE: To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH, insulin like grow factor 1 (IGF-1 and interleukin 6 (IL-6], or intramuscular [skeletal muscle androgen receptor (AR protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. METHODS: Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. RESULTS: Mean fiber area increased by 20% (range: -7 to 80%; P<0.001. Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19; however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023. Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007. There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019. CONCLUSION: Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.

  14. Bilateral idiopathic calf muscle hypertrophy: an exceptional cause of unsightly leg curvature.

    Science.gov (United States)

    Herlin, C; Chaput, B; Rivier, F; Doucet, J C; Bigorre, M; Captier, G

    2015-04-01

    The authors present the management of a young female patient who presented with longstanding bilateral calf muscle hypertrophy, with no known cause. Taking into account the patient's wishes and the fact that the hypertrophy was mainly located in the posteromedial compartment, we chose to carry out a subtotal bilateral resection of medial gastrocnemius muscles. This procedure was performed with an harmonic scalpel, permitting a excellent cosmetic result while avoiding complications or functional impairment. After a reviewing of the commonly used techniques, the authors discuss the chosen surgical approach taking into account its clinical particularity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Hypertension and left ventricular hypertrophy in liquidators of consequences of the Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Shal'nova, S.A.; Smolenskij, A.V.; Shamarin, V.M.; Ehktova, T.V.; Berzak, N.V.; Zemtsova, N.A.; Timofeeva, S.G.; Zhavoronkova, E.A.; Muromtseva, G.A.; Arkad'eva, M.A.; Deev, A.D.

    1998-01-01

    Echocardiography was used for the study of prevalence of left ventricular hypertrophy in 839 liquidators of consequences of the Chernobyl accident. Prevalence of left ventricular hypertrophy (left ventricular myocardial mass 134 g/m 2 ) was 10.3, 13.4 and 22.5 % in liquidators with normal blood pressure, borderline hypertension and hypertension, respectively. Liquidators with normal blood pressure had significantly greater left ventricular myocardial mass than normotensive men from general population while liquidators and non liquidators with hypertension had equal values of this parameter [ru

  16. Apical hypertrophy associated with rapid T wave inversion on the electrocardiogram.

    Science.gov (United States)

    Yamanari, H; Saito, D; Mikio, K; Nakamura, K; Nanba, T; Morita, H; Mizuo, K; Sato, T; Ohe, T

    1995-01-01

    A 53-year-old man who had no chest pain and no family history of heart disease demonstrated a rapid T wave change on an electrocardiogram, from a positive T wave to a giant negative T wave, within 1 year. Echocardiography showed no left ventricular hypertrophy before or after the T wave change. Cine-magnetic resonance imaging revealed focal apical hypertrophy after the appearance of the giant negative T wave. Although T wave inversions sometimes develop within a short period in patients with hypertrophic cardiomyopathy, they are rare in a patient without hypertension or chest pain.

  17. Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy

    NARCIS (Netherlands)

    Hoffmann, S.; Krause, T.; van Geel, P. P.; Willenbrock, R.; Pagel, I.; Pinto, Y. M.; Buikema, H.; van Gilst, W. H.; Lindschau, C.; Paul, M.; Inagami, T.; Ganten, D.; Urata, H.

    2001-01-01

    Angiotensin II is known to stimulate cardiac hypertrophy and contractility. Most angiotensin II effects are mediated via membrane bound AT1 receptors. However, the role of myocardial AT1 receptors in cardiac hypertrophy and contractility is still rarely defined. To address the hypothesis that

  18. Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy

    NARCIS (Netherlands)

    Hoffmann, S; van Geel, PP; Willenbrock, R; Pagel, [No Value; Pinto, YM; Buikema, H; van Gilst, WH; Lindschau, C; Paul, M; Inagami, T; Ganten, D; Urata, H

    2001-01-01

    Angiotensin II is known to stimulate cardiac hypertrophy and contractility. Most angiotensin II effects are mediated via membrane bound AT(1) receptors. However, the role of myocardial AT(1) receptors in cardiac hypertrophy and contractility is still rarely defined. To address the hypothesis that

  19. Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Chang

    Full Text Available Left atrial enlargement in mitral regurgitation (MR predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown.This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD, and 6 purchased samples from normal subjects (NC. We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that "NFAT in cardiac hypertrophy" pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1 were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC.Differentially expressed genes in the "NFAT in cardiac hypertrophy" pathway may play a critical role in the atrial myocyte hypertrophy of MR patients.

  20. Hypertrophy-Promoting Effects of Leucine Supplementation and Moderate Intensity Aerobic Exercise in Pre-Senescent Mice

    Directory of Open Access Journals (Sweden)

    Zhi Xia

    2016-05-01

    Full Text Available Several studies have indicated a positive influence of leucine supplementation and aerobic training on the aging skeletal muscle signaling pathways that control muscle protein balance and muscle remodeling. However, the effect of a combined intervention requires further clarification. Thirteen month old CD-1® mice were subjected to moderate aerobic exercise (45 min swimming per day with 3% body weight workload and fed a chow diet with 5% leucine or 3.4% alanine for 8 weeks. Serum and plasma were prepared for glucose, urea nitrogen, insulin and amino acid profile analysis. The white gastrocnemius muscles were used for determination of muscle size and signaling proteins involved in protein synthesis and degradation. The results show that both 8 weeks of leucine supplementation and aerobic training elevated the activity of mTOR (mammalian target of rapamycin and its downstream target p70S6K and 4E-BP1, inhibited the ubiquitin-proteasome system, and increased fiber cross-sectional area (CSA in white gastrocnemius muscle. Moreover, leucine supplementation in combination with exercise demonstrated more significant effects, such as greater CSA, protein content and altered phosphorylation (suggestive of increased activity of protein synthesis signaling proteins, in addition to lower expression of proteins involved in protein degradation compared to leucine or exercise alone. The current study shows moderate aerobic training combined with 5% leucine supplementation has the potential to increase muscle size in fast-twitch skeletal muscle during aging, potentially through increased protein synthesis and decreased protein breakdown.

  1. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy and reduction in sudden cardiac death: the LIFE Study

    DEFF Research Database (Denmark)

    Wachtell, Kristian; Okin, Peter M; Olsen, Michael H

    2007-01-01

    BACKGROUND: Sudden cardiac death (SCD) occurs more often in patients with ECG left ventricular (LV) hypertrophy. However, whether LV hypertrophy regression is associated with a reduced risk of SCD remains unclear. METHODS AND RESULTS: The Losartan Intervention for End Point Reduction in Hypertens......BACKGROUND: Sudden cardiac death (SCD) occurs more often in patients with ECG left ventricular (LV) hypertrophy. However, whether LV hypertrophy regression is associated with a reduced risk of SCD remains unclear. METHODS AND RESULTS: The Losartan Intervention for End Point Reduction...... risk of SCD independently of treatment modality, blood pressure reduction, prevalent coronary heart disease, and other cardiovascular risk factors in hypertensive patients with LV hypertrophy. Udgivelsesdato: 2007-Aug-14...

  2. PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent.

    Directory of Open Access Journals (Sweden)

    Chantal Ethier

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is widely involved in cell death responses. Depending on the degree of injury and on cell type, PARP activation may lead to autophagy, apoptosis or necrosis. In HEK293 cells exposed to the alkylating agent N-methyl-N'-nitro-N'-nitrosoguanine (MNNG, we show that PARP-1 activation triggers a necrotic cell death response. The massive poly(ADP-ribose (PAR synthesis following PARP-1 activation leads to the modulation of mTORC1 pathway. Shortly after MNNG exposure, NAD⁺ and ATP levels decrease, while AMP levels drastically increase. We characterized at the molecular level the consequences of these altered nucleotide levels. First, AMP-activated protein kinase (AMPK is activated and the mTORC1 pathway is inhibited by the phosphorylation of Raptor, in an attempt to preserve cellular energy. Phosphorylation of the mTORC1 target S6 is decreased as well as the phosphorylation of the mTORC2 component Rictor on Thr1135. Finally, Akt phosphorylation on Ser473 is lost and then, cell death by necrosis occurs. Inhibition of PARP-1 with the potent PARP inhibitor AG14361 prevents all of these events. Moreover, the antioxidant N-acetyl-L-cysteine (NAC can also abrogate all the signaling events caused by MNNG exposure suggesting that reactive oxygen species (ROS production is involved in PARP-1 activation and modulation of mTOR signaling. In this study, we show that PARP-1 activation and PAR synthesis affect the energetic status of cells, inhibit the mTORC1 signaling pathway and possibly modulate the mTORC2 complex affecting cell fate. These results provide new evidence that cell death by necrosis is orchestrated by the balance between several signaling pathways, and that PARP-1 and PAR take part in these events.

  3. AMP-Activated Protein Kinase Alleviates Extracellular Matrix Accumulation in High Glucose-Induced Renal Fibroblasts through mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xia Luo

    2015-01-01

    Full Text Available Background/Aims: Extracellular matrix accumulation contributes significantly to the pathogenesis of diabetic nephropathy. Although AMP-activated protein kinase (AMPK has been found to inhibit extracellular matrix synthesis by experiments in vivo and vitro, its role in alleviating the deposition of extracellular matrix in renal interstitial fibroblasts has not been well defined. Methods: Currently, we conducted this study to investigate the effects of AMPK on high glucose-induced extracellular matrix synthesis and involved intracellular signaling pathway by using western blot in the kidney fibroblast cell line (NRK-49f. Results: Collagen IV protein levels were significantly increased by high glucose in a time-dependent manner. This was associated with a decrease in Thr72 phosphorylation of AMPK and an increase in phosphorylation of mTOR on Ser2448. High glucose-induced extracellular matrix accumulation and mTOR activation were significantly inhibited by the co-treatment of rAAV-AMPKα1312 (encoding constitutively active AMPKα1 whereas activated by r-AAV-AMPKα1D157A (encoding dominant negative AMPKα1. In cultured renal fibroblasts, overexpression of AMPKα1D157A upregulated mTOR signaling and matrix synthesis, which were ameliorated by co-treatment with the inhibitor of mTOR, rapamycin. Conclusion: Collectively, these findings indicate that AMPK exerts renoprotective effects by inhibiting the accumulation of extracellular matrix through mTOR signaling pathway.

  4. Treatment of Advanced Malignant Uterine Perivascular Epithelioid Cell Tumor with mTOR Inhibitors: Single-institution Experience and Review of the Literature.

    Science.gov (United States)

    Starbuck, Kristen D; Drake, Richard D; Budd, G Thomas; Rose, Peter G

    2016-11-01

    Uterine perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors. Many have malignant behavior, and no successful treatment strategy has been established. Identification of mutations in the tuberous sclerosis 1 (TSC1) and TSC2 genes producing constitutive activation of the mammalian target of rapamycin (mTOR) pathway presents an opportunity for targeted therapy. Patients with advanced malignant uterine PEComa treated with mTOR inhibitors were identified and records were retrospectively reviewed for treatment response based on radiographic assessment. Three patients with advanced uterine PEComas underwent debulking surgery followed by mTOR inhibitor therapy; two had a complete response to therapy and disease in one patient progressed. Given the absence of effective therapies for malignant uterine PEComas, targeting the mTOR pathway is a logical strategy to pursue given the known pathobiology involving the Tuberous Sclerosis complex. Treatment of malignant uterine PEComas with mTOR inhibitors was effective in two out of three patients after surgical resection, with durable response. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mTOR pathway activation.

    Science.gov (United States)

    Romine, Jennifer; Gao, Xiang; Xu, Xiao-Ming; So, Kwok Fai; Chen, Jinhui

    2015-04-01

    A decrease in neurogenesis in the aged brain has been correlated with cognitive decline. The molecular signaling that regulates age-related decline in neurogenesis is still not fully understood. We found that different subtypes of neural stem cells (NSCs) in the hippocampus were differentially impaired by aging. The quiescent NSCs decreased slowly, although the active NSCs exhibited a sharp and dramatic decline from the ages of 6-9 months and became more quiescent at an early stage during the aging process. The activity of the mammalian target of rapamycin (mTOR) signal pathway is compromised in the NSCs of the aged brain. Activating the mTOR signaling pathway increased NSC proliferation and promoted neurogenesis in aged mice. In contrast, inhibiting the mTOR signaling pathway decreased NSCs proliferation. These results indicate that an age-associated decline in neurogenesis is mainly because of the reduction in proliferation of active NSCs, at least partially because of the compromise in the mTOR signaling activity. Stimulating the mTOR signaling revitalizes the NSCs, restores their proliferation, and enhances neurogenesis in the hippocampus of the aged brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. L-Arginine Enhances Protein Synthesis by Phosphorylating mTOR (Thr 2446 in a Nitric Oxide-Dependent Manner in C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Ruxia Wang

    2018-01-01

    Full Text Available Muscle atrophy may arise from many factors such as inactivity, malnutrition, and inflammation. In the present study, we investigated the stimulatory effect of nitric oxide (NO on muscle protein synthesis. Primarily, C2C12 cells were supplied with extra L-arginine (L-Arg in the culture media. L-Arg supplementation increased the activity of inducible nitric oxide synthase (iNOS, the rate of protein synthesis, and the phosphorylation of mTOR (Thr 2446 and p70S6K (Thr 389. L-NAME, an NOS inhibitor, decreased NO concentrations within cells and abolished the stimulatory effect of L-Arg on protein synthesis and the phosphorylation of mTOR and p70S6K. In contrast, SNP (sodium nitroprusside, an NO donor, increased NO concentrations, enhanced protein synthesis, and upregulated mTOR and p70S6K phosphorylation, regardless of L-NAME treatment. Blocking mTOR with rapamycin abolished the stimulatory effect of both L-Arg and SNP on protein synthesis and p70S6K phosphorylation. These results indicate that L-Arg stimulates protein synthesis via the activation of the mTOR (Thr 2446/p70S6K signaling pathway in an NO-dependent manner.

  7. Insights into significance of combined inhibition of MEK and m-TOR signalling output in KRAS mutant non-small-cell lung cancer.

    Science.gov (United States)

    Broutin, Sophie; Stewart, Adam; Thavasu, Parames; Paci, Angelo; Bidart, Jean-Michel; Banerji, Udai

    2016-08-23

    We aimed to understand the dependence of MEK and m-TOR inhibition in EGFR(WT)/ALK(non-rearranged) NSCLC cell lines. In a panel of KRAS(M) and KRAS(WT) NSCLC cell lines, we determined growth inhibition (GI) following maximal reduction in p-ERK and p-S6RP caused by trametinib (MEK inhibitor) and AZD2014 (m-TOR inhibitor), respectively. GI caused by maximal m-TOR inhibition was significantly greater than GI caused by maximal MEK inhibition in the cell line panel (52% vs 18%, PTOR compared with maximal m-TOR+MEK inhibition. However, GI caused by the combination was significantly greater in the KRAS(M) cell lines (79% vs 61%, P=0.017). m-TOR inhibition was more critical to GI than MEK inhibition in EGFR(WT)/ALK(non-rearranged) NSCLC cells. The combination of MEK and m-TOR inhibition was most effective in KRAS(M) cells.

  8. Cardiac hypertrophy and IGF-1 response to testosterone propionate treatment in trained male rats

    Directory of Open Access Journals (Sweden)

    Żebrowska Aleksandra

    2017-04-01

    Full Text Available Several studies have suggested that testosterone exerts a growth-promoting effect in the heart. Limited data are available regarding interactions between possible endocrine/paracrine effects in response to exercise training. Therefore, we examined supraphysiological testosterone-induced heart hypertrophy and cardiac insulin-like growth factor (IGF-1 content in sedentary and exercise-trained rats.

  9. Airway evaluation by indirect laryngoscopy in patients with lingual tonsillar hypertrophy.

    Science.gov (United States)

    Sánchez-Morillo, Jorge; Gómez-Diago, Lorena; Rodríguez-Gimillo, Pablo; Herrera-Collado, Raúl; Puchol-Castillo, Jorge; Mompó-Romero, Luis

    2013-01-01

    Prevalence of the lingual tonsillar hypertrophy is unknown but it is believed that its presence is associated with the difficult airway. To investigate this, indirect laryngoscopy was performed on patients in the preoperative evaluation and this pathology was diagnosed. The relationship with difficulty of viewing the larynx, intubation and ventilation, under general anaesthesia and using direct laryngoscopy, was then studied. We performed the demographic variable checks and tests for predicting difficult intubation (mouth opening, thyromental distance, cervical flexion-extension, neck thickness and Mallampati test), in the preoperative step on 300 patients who were going to be submitted to general anaesthesia. We then performed indirect laryngoscopy on them using a 70° rigid laryngoscope to ascertain the frequency of appearance of lingual tonsillar hypertrophy. Next, under general anaesthesia, we carried out direct laryngoscopy to verify whether there was difficulty in viewing the larynx and intubation and ventilation. We then investigated the association of demographic predictors of difficult intubation, including indirect laryngoscopy, with the presence of this condition. Prevalence of lingual tonsillar hypertrophy was 2%. No relationship between the appearance of this entity and the difficulty of viewing the larynx, intubation and ventilation was found. Only indirect laryngoscopy was linked to the appearance of this pathology. Lingual tonsillar hypertrophy is a relatively frequent disorder, whose presence is not usually associated with difficult airway. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  10. Intermolecular failure of L-type Ca2+ channel and ryanodine receptor signaling in hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2007-02-01

    Full Text Available Pressure overload-induced hypertrophy is a key step leading to heart failure. The Ca(2+-induced Ca(2+ release (CICR process that governs cardiac contractility is defective in hypertrophy/heart failure, but the molecular mechanisms remain elusive. To examine the intermolecular aspects of CICR during hypertrophy, we utilized loose-patch confocal imaging to visualize the signaling between a single L-type Ca(2+ channel (LCC and ryanodine receptors (RyRs in aortic stenosis rat models of compensated (CHT and decompensated (DHT hypertrophy. We found that the LCC-RyR intermolecular coupling showed a 49% prolongation in coupling latency, a 47% decrease in chance of hit, and a 72% increase in chance of miss in DHT, demonstrating a state of "intermolecular failure." Unexpectedly, these modifications also occurred robustly in CHT due at least partially to decreased expression of junctophilin, indicating that intermolecular failure occurs prior to cellular manifestations. As a result, cell-wide Ca(2+ release, visualized as "Ca(2+ spikes," became desynchronized, which contrasted sharply with unaltered spike integrals and whole-cell Ca(2+ transients in CHT. These data suggested that, within a certain limit, termed the "stability margin," mild intermolecular failure does not damage the cellular integrity of excitation-contraction coupling. Only when the modification steps beyond the stability margin does global failure occur. The discovery of "hidden" intermolecular failure in CHT has important clinical implications.

  11. Exobasidium ferrugineae sp. nov., associated with hypertrophied flowers of Lyonia ferruginea in the southeastern USA

    Science.gov (United States)

    Aaron H. Kennedy; Nisse A. Goldberg; Anderw M. Minnis

    2012-01-01

    Exobasidium ferrugineae, associated with hypertrophied flowers and less commonly leaves of Lyonia ferruginea (rusty staggerbush), is formally described here as a new species. Morphological and DNA sequence (ITS, nLSU) data are provided. Phylogenetic analyses confirm that it is not conspecific with any species of ...

  12. Ventricular premature contraction in hypertrophic cardiomyopathy and essential hypertension with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Kobiki, Naoki

    1989-01-01

    In order to investigate the relationship of different morbid states of the hypertrophied myocardium to the appearance of ventricular premature contraction (VPC), we compared the VPC findings from Holter ECG with those of UCG and stress thallium-201 myocardial SPECT scintigraphy (stress scinti) in 31 patients with hypertrophic cardiomyopathy (HCM) and 20 with essential hypertension (HT). The HCM patients consisted of 21 with asymmetric hypertrophy (ASH), 3 with symmetric hypertrophy (SH), and 7 with apical hypertrophy (APH). We recognized positive findings on the stress scinti such as fixed perfusion defect (FD) or reversible perfusion defect (RD) in 11 patients (ASH 10, APH 1) out of 31 patients with HCM (35%). Positive findings were observed in only one patient out of 20 with HT (5%). We recognized a high grade VPC (grade 4a and 4b of Lown's criteria) in 8 of 11 scinti positive patients with HCM (ASH 7, APH 1)(73%), while high grade VPC appeared in 5 (all of them are ASH) out of 20 scinti negative patients with HCM (25%). Therefore, these findings suggest that high grade VPCs in HCM occur in relation to a myocardial perfusion defect. (author)

  13. Cinnamaldehyde impairs high glucose-induced hypertrophy in renal interstitial fibroblasts

    International Nuclear Information System (INIS)

    Chao, Louis Kuoping; Chang, W.-T.; Shih, Y.-W.; Huang, J.-S.

    2010-01-01

    Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. To explore whether cinnamaldehyde was linked to altered high glucose (HG)-mediated renal tubulointerstitial fibrosis in diabetic nephropathy (DN), the molecular mechanisms of cinnamaldehyde responsible for inhibition of HG-induced hypertrophy in renal interstitial fibroblasts were examined. We found that cinnamaldehyde caused inhibition of HG-induced cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, cleaved poly(ADP-ribose) polymerase (PARP) protein expression, and mitochondrial cytochrome c release in HG or cinnamaldehyde treatments in these cells. HG-induced extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) (but not the Janus kinase 2/signal transducers and activators of transcription) activation was markedly blocked by cinnamaldehyde. The ability of cinnamaldehyde to inhibit HG-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of collagen IV, fibronectin, and α-smooth muscle actin (α-SMA). The results obtained in this study suggest that cinnamaldehyde treatment of renal interstitial fibroblasts that have been stimulated by HG reduces their ability to proliferate and hypertrophy through mechanisms that may be dependent on inactivation of the ERK/JNK/p38 MAPK pathway.

  14. On the origin of pain in patients with stable essential hypertension and asymmetrical myocardial hypertrophy

    International Nuclear Information System (INIS)

    Shkhvatsabaya, I.K.; Yurenev, A.P.; Dubov, P.B.; Ostroumov, E.N.

    1987-01-01

    A study of 230 patients with essential hypertension, stage 2B, asymmetrical myocardial hypertrophy and chest pains has suggested that the pain syndrome, presenting as ''possible angina'', positive functional tests and reduced label accumulation around the ventricular septum may be indicative of coronary insufficiency

  15. Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone.

    Science.gov (United States)

    Parr, Maria Kristina; Zhao, Piwen; Haupt, Oliver; Ngueu, Sandrine Tchoukouegno; Hengevoss, Jonas; Fritzemeier, Karl Heinrich; Piechotta, Marion; Schlörer, Nils; Muhn, Peter; Zheng, Wen-Ya; Xie, Ming-Yong; Diel, Patrick

    2014-09-01

    The phytoectysteroid ecdysterone (Ecdy) was reported to stimulate protein synthesis and enhance physical performance. The aim of this study was to investigate underlying molecular mechanisms particularly the role of ER beta (ERβ). In male rats, Ecdy treatment increased muscle fiber size, serum IGF-1 increased, and corticosteron and 17β-estradiol (E2) decreased. In differentiated C2C12 myoblastoma cells, treatment with Ecdy, dihydrotestosterone, IGF-1 but also E2 results in hypertrophy. Hypertrophy induced by E2 and Ecdy could be antagonized with an antiestrogen but not by an antiandrogen. In HEK293 cells transfected with ER alpha (ERα) or ERβ, Ecdy treatment transactivated a reporter gene. To elucidate the role of ERβ in Ecdy-mediated muscle hypertrophy, C2C12 myotubes were treated with ERα (ALPHA) and ERβ (BETA) selective ligands. Ecdy and BETA treatment but not ALPHA induced hypertrophy. The effect of Ecdy, E2, and BETA could be antagonized by an ERβ-selective antagonist (ANTIBETA). In summary, our results indicate that ERβ is involved in the mediation of the anabolic activity of the Ecdy. These findings provide new therapeutic perspectives for the treatment of muscle injuries, sarcopenia, and cachectic disease, but also imply that such a substance could be abused for doping purposes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. [A swollen, painless calf caused by neurogenic muscle (pseudo)-hypertrophy

    NARCIS (Netherlands)

    Warrenburg, B.P.C. van de; Zwarts, M.J.; Engelen, B.G.M. van

    2003-01-01

    Neurogenic muscle (pseudo) hypertrophy of the calf was diagnosed in a 60-year-old man, who presented with chronic, painless and unilateral calf enlargement caused by a chronic S1 radiculopathy due to a lumbar disc hernia in the L5-S1 interspace. The differential diagnosis of a swelling of the calf

  17. 123I-MIBG myocardial imaging in hypertensive patients. Abnormality progresses with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Mitani, Isao; Sumita, Shinichi; Takahashi, Nobukazu; Ochiai, Hisao; Ishii, Masao

    1996-01-01

    Twenty-seven patients with essential hypertension were prospectively studied with 123 I-labeled metaiodobenzyl-guanidine ( 123 I-MIBG) to assess the presence and location of impaired sympathetic innervation in hypertrophied myocardium. Thirteen patients had left ventricular hypertrophy on echocardiography, and 14 had normal echocardiograms. The wash-out ratio of 123 I-MIBG in these two groups did not differ significantly (35.3±6.1 and 35.4±5.1) but was higher than in control subjects (29.4±6.7). The delayed heart-to-mediastinum count ratio was lower in the patients with hypertrophy than in the patients without hypertrophy (1.93±0.28 and 2.22±0.21; p<0.05) and the control subjects (1.93±0.28 and 2.33±0.25; p<0.05). On SPECT imaging, abnormalities in segmental uptake were frequent at the posterior and postero-lateral wall in both groups, although the hypertrophic group had more significant impairment. Our results lead to the hypothesis that hypertension in more advanced stages may be associated not only with hypertrophic changes but also with more advanced regional impairment of cardiac sympathetic innervation. (author)

  18. Over-expression of angiotensin converting enzyme-1 augments cardiac hypertrophy in transgenic rats

    NARCIS (Netherlands)

    Tian, Xiao-Li; Pinto, Yigal Martin; Costerousse, Olivier; Franz, Wolfgang M.; Lippoldt, Andrea; Hoffmann, Sigrid; Unger, Thomas; Paul, Martin

    2004-01-01

    Increased cardiac angiotensin converting enzyme-1 (ACE1) is found in individuals who carry a deletion in intron 16 of ACE1 gene or in individuals who suffer from cardiac disorders, such as hypertrophy. However, whether a single increase in ACE1 expression leads to spontaneous cardiac defects remains

  19. Masseter Muscle Hypertrophy and Pericardial Effusion in Kocher-Debre-Semelaigne Syndrome Child

    Directory of Open Access Journals (Sweden)

    Taksande AM

    2015-10-01

    Full Text Available Muscular pseudohypertrophy associated with severe congenital hypothyroidism has been described as Kocher Debre Semelaigne syndrome, which is a rare disorder. We report a case of 9year old female child with hypothyroidism, limb muscular pseudo-hypertrophy with involvement of masseter muscle along with pericardial effusion in Kocher-Debré-Semelaigne syndrome.

  20. Classification of Hypertrophy of Labia Minora: Consideration of a Multiple Component Approach.

    Science.gov (United States)

    González, Pablo I

    2015-11-01

    Labia minora hypertrophy of unknown and under-reported incidence in the general population is considered a variant of normal anatomy. Its origin is multi-factorial including genetic, hormonal, and infectious factors, and voluntary elongation of the labiae minorae in some cultures. Consults with patients bothered by this condition have been increasing with patients complaining of poor aesthetics and symptoms such as difficulty with vaginal secretions, vulvovaginitis, chronic irritation, and superficial dyspareunia, all of which can have a negative effect on these patients' sexuality and self esteem. Surgical management of labial hypertrophy is an option for women with these physical complaints or aesthetic issues. Labia minora hypertrophy can consist of multiple components, including the clitoral hood, lateral prepuce, frenulum, and the body of the labia minora. To date, there is not a consensus in the literature with respect to the classification and definition of varying grades of hypertrophy, aside from measurement of the length in centimeters. In order to offer patients the most appropriate surgical technique, an objective and understandable classification that can be used as part of the preoperative evaluation is necessary. Such a classification should have the aim of offering patients the best cosmetic and functional results with the fewest complications.

  1. Importance of Thrombocytes for the Hypertrophy Response after Portal Vein Embolization

    NARCIS (Netherlands)

    Sturesson, Christian; Hoekstra, Lisette; Andersson, Roland; van Gulik, Thomas M.

    2015-01-01

    Background/Aims: Thrombocytes have proved to be important for liver regeneration after liver resection in the experimental setting. The aim of our study is to examine the effects of thrombocytes on liver hypertrophy after portal vein embolization (PVE). Methodology: This retrospective cohort study

  2. Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy

    DEFF Research Database (Denmark)

    Hinrichsen, Rebecca; Hansen, A.H.; Haunsø, S.

    2008-01-01

    /6-phosphorylated retinoblastoma protein (pRb) during hypertrophy and expression of an unphosphorylatable pRb mutant impaired hypertrophic growth in cardiomyocytes. Transcription factor E2F was activated by hypertrophic elicitors but activation was impaired by pharmacological inhibition of cyclin D-cdk4...

  3. VO(2peak), myocardial hypertrophy, and myocardial blood flow in endurance-trained men.

    Science.gov (United States)

    Laaksonen, Marko S; Heinonen, Ilkka; Luotolahti, Matti; Knuuti, Juhani; Kalliokoski, Kari K

    2014-08-01

    Endurance training induces cardiovascular and metabolic adaptations, leading to enhanced endurance capacity and exercise performance. Previous human studies have shown contradictory results in functional myocardial vascular adaptations to exercise training, and we hypothesized that this may be related to different degrees of hypertrophy in the trained heart. We studied the interrelationships between peak aerobic power (V˙O2peak), myocardial blood flow (MBF) at rest and during adenosine-induced vasodilation, and parameters of myocardial hypertrophy in endurance-trained (ET, n = 31) and untrained (n = 17) subjects. MBF and myocardial hypertrophy were studied using positron emission tomography and echocardiography, respectively. Both V˙O2peak (P negatively with adenosine-stimulated MBF, but when LV mass was taken into account as a partial correlate, this correlation disappeared. The present results show that increased LV mass in ET subjects explains the reduced hyperemic myocardial perfusion in this subject population and suggests that excessive LV hypertrophy has negative effect on cardiac blood flow capacity.

  4. Hypertrophy in port-wine stains: Prevalence and patient characteristics in a large patient cohort

    NARCIS (Netherlands)

    van Drooge, Anne Margreet; Beek, Johan F.; van der Veen, J. P. Wietze; van der Horst, Chantal M. A. M.; Wolkerstorfer, Albert

    2012-01-01

    Background: Port-wine stains (PWS) may thicken and darken with age. Little is known about the pathogenesis and epidemiology of PWS hypertrophy because of the lack of large studies. Objective: We sought to assess the prevalence and characteristics of patients with hypertrophic PWS. Methods: Medical

  5. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Huang, J.-S.; Chuang, L.-Y.; Guh, J.-Y.; Yang, Y.-L.; Hsu, M.-S.

    2008-01-01

    Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE, or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27 Kip1 , collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells

  6. TISSUE POLYPEPTIDE-SPECIFIC ANTIGEN - A DISCRIMINATIVE PARAMETER BETWEEN PROSTATE-CANCER AND BENIGN PROSTATIC HYPERTROPHY

    NARCIS (Netherlands)

    MARRINK, J; OOSTEROM, R; BONFRER, HMG; SCHRODER, FH; MENSINK, HJA

    1993-01-01

    The serum concentration of the cell proliferation marker TPS (tissue polypeptide-specific antigen) was compared with the tumour marker PSA (prostate specific antigen). PSA was found elevated in 50% of the benign prostatic hypertrophy (BPH) patients, in 88% of the patients with active prostate cancer

  7. [Obstructive sleep apnea-hypopnea syndrome in children: beyond adenotonsillar hypertrophy].

    Science.gov (United States)

    Esteller, Eduard

    2015-01-01

    The prevalence of obstructive sleep apnea-hypopnea syndrome in the general childhood population is 1-2% and the most common cause is adenotonsillar hypertrophy. However, beyond adenotonsillar hypertrophy, there are other highly prevalent causes of this syndrome in children. The causes are often multifactorial and include muscular hypotonia, dentofacial abnormalities, soft tissue hypertrophy of the airway, and neurological disorders). Collaboration between different specialties involved in the care of these children is essential, given the wide variability of conditions and how frequently different factors are involved in their genesis, as well as the different treatments to be applied. We carried out a wide literature review of other causes of obstructive sleep apnea-hypopnea syndrome in children, beyond adenotonsillar hypertrophy. We organised the prevalence of this syndrome in each pathology and the reasons that cause it, as well as their interactions and management, in a consistent manner. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  8. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets.

    Science.gov (United States)

    Tham, Yow Keat; Bernardo, Bianca C; Ooi, Jenny Y Y; Weeks, Kate L; McMullen, Julie R

    2015-09-01

    The onset of heart failure is typically preceded by cardiac hypertrophy, a response of the heart to increased workload, a cardiac insult such as a heart attack or genetic mutation. Cardiac hypertrophy is usually characterized by an increase in cardiomyocyte size and thickening of ventricular walls. Initially, such growth is an adaptive response to maintain cardiac function; however, in settings of sustained stress and as time progresses, these changes become maladaptive and the heart ultimately fails. In this review, we discuss the key features of pathological cardiac hypertrophy and the numerous mediators that have been found to be involved in the pathogenesis of cardiac hypertrophy affecting gene transcription, calcium handling, protein synthesis, metabolism, autophagy, oxidative stress and inflammation. We also discuss new mediators including signaling proteins, microRNAs, long noncoding RNAs and new findings related to the role of calcineurin and calcium-/calmodulin-dependent protein kinases. We also highlight mediators and processes which contribute to the transition from adaptive cardiac remodeling to maladaptive remodeling and heart failure. Treatment strategies for heart failure commonly include diuretics, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers and β-blockers; however, mortality rates remain high. Here, we discuss new therapeutic approaches (e.g., RNA-based therapies, dietary supplementation, small molecules) either entering clinical trials or in preclinical development. Finally, we address the challenges that remain in translating these discoveries to new and approved therapies for heart failure.

  9. TRANSURETHRAL RADIOFREQUENCY HEATING OR THERMOTHERAPY FOR BENIGN PROSTATIC HYPERTROPHY - A PROSPECTIVE TRIAL ON 65 CONSECUTIVE CASES

    NARCIS (Netherlands)

    MEIER, AHP; WEIL, EHJ; VANDOORN, ESCV; VERHAEGH, GTCM; JANKNEGT, RA

    1992-01-01

    65 consecutive cases with symptomatic benign prostate hypertrophy were treated with transurethral radiowave thermotherapy (TURF) using the Thermex-II at a temperature of 44.5-degrees-C. We report uroflowmetry and symptom scores after a follow-up of 6 months. The mean age was 63 years, the mean

  10. Short-Term Caloric Restriction Suppresses Cardiac Oxidative Stress and Hypertrophy Caused by Chronic Pressure Overload.

    Science.gov (United States)

    Kobara, Miyuki; Furumori-Yukiya, Akiko; Kitamura, Miho; Matsumura, Mihoko; Ohigashi, Makoto; Toba, Hiroe; Nakata, Tetsuo

    2015-08-01

    Caloric restriction (CR) prevents senescent changes, in which reactive oxygen species (ROS) have a critical role. Left ventricular (LV) hypertrophy is a risk factor for cardiovascular diseases. We examined whether CR alters cardiac redox state and hypertrophy from chronic pressure overload. Male c57BL6 mice were subjected to ascending aortic constriction (AAC) with ad libitum caloric intake (AL + AAC group) or 40% restricted caloric intake (CR + AAC group). CR was initiated 2 weeks before AAC and was continued for 4 weeks. Two weeks after constriction, AAC increased LV wall thickness, impaired transmitral flow velocity, and augmented myocyte hypertrophy and fibrosis, in association with enhancement of BNP and collagen III expressions in the AL + AAC group. In the AL + AAC group, oxidative stress in cardiac tissue and mitochondria were enhanced, and NADPH oxidase activity and mitochondrial ROS production were elevated. These changes were significantly attenuated in the CR + AAC group. Additionally, in antioxidant systems, myocardial glutathione peroxidase and superoxide dismutase activities were enhanced in the CR + AAC group. Chronic pressure overload increased cardiac oxidative damage, in association with cardiac hypertrophy and fibrosis. Short-term CR suppressed oxidative stress and improved cardiac function, suggesting that short-term CR could be a useful strategy to prevent pressure overload-induced cardiac injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Electrocardiographic left ventricular hypertrophy in GUSTO IV ACS: an important risk marker of mortality in women

    DEFF Research Database (Denmark)

    Westerhout, Cynthia M; Lauer, Michael S; Fu, Yuling

    2007-01-01

    AIM: To examine the association of left ventricular hypertrophy (LVH) on admission electrocardiography with adverse outcomes in acute coronary syndrome (ACS) patients. METHODS AND RESULTS: A total of 7443 non-ST-elevation ACS patients in Global Utilization of STrategies to Open occluded arteries ...

  12. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test.

    Science.gov (United States)

    Yang, Chun; Hu, Yi-Min; Zhou, Zhi-Qiang; Zhang, Guang-Fen; Yang, Jian-Jun

    2013-03-01

    Previous studies have shown that a single sub-anesthetic dose of ketamine exerts fast-acting antidepressant effects in patients and in animal models of depression. However, the underlying mechanisms are not totally understood. This study aims to investigate the effects of acute administration of different doses of ketamine on the immobility time of rats in the forced swimming test (FST) and to determine levels of hippocampal brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR). Forty male Wistar rats weighing 180-220 g were randomly divided into four groups (n = 10 each): group saline and groups ketamine 5, 10, and 15 mg/kg. On the first day, all animals were forced to swim for 15 min. On the second day ketamine (5, 10, and 15 mg/kg, respectively) was given intraperitoneally, at 30 min before the second episode of the forced swimming test. Immobility times of the rats during the forced swimming test were recorded. The animals were then decapitated. The hippocampus was harvested for determination of BDNF and mTOR levels. Compared with group saline, administration of ketamine at a dose of 5, 10, and 15 mg/kg decreased the duration of immobility (P < 0.05 for all doses). Ketamine at doses of both 10 and 15 mg/kg showed a significant increase in the expression of hippocampal BDNF (P < 0.05 for both doses). Ketamine given at doses of 5, 10, and 15 mg/kg showed significant increases in relative levels of hippocampal p-mTOR (P < 0.05 for all doses) The antidepressant effect of ketamine might be related to the increased expression of BDNF and mTOR in the hippocampus of rats.

  13. The anti-hepatocellular carcinoma cell activity by a novel mTOR kinase inhibitor CZ415

    International Nuclear Information System (INIS)

    Zhang, Wei; Chen, Bingyu; Zhang, Yu; Li, Kaiqiang; Hao, Ke; Jiang, Luxi; Wang, Ying; Mou, Xiaozhou; Xu, Xiaodong; Wang, Zhen

    2017-01-01

    Dysregulation of mammalian target of rapamycin (mTOR) in hepatocellular carcinoma (HCC) represents a valuable treatment target. Recent studies have developed a highly-selective and potent mTOR kinase inhibitor, CZ415. Here, we showed that nM concentrations of CZ415 efficiently inhibited survival and induced apoptosis in HCC cell lines (HepG2 and Huh-7) and primary-cultured human HCC cells. Meanwhile, CZ415 inhibited proliferation of HCC cells, more potently than mTORC1 inhibitors (rapamycin and RAD001). CZ415 was yet non-cytotoxic to the L02 human hepatocytes. Mechanistic studies showed that CZ415 disrupted assembly of mTOR complex 1 (mTORC1) and mTORC2 in HepG2 cells. Meanwhile, activation of mTORC1 (p-S6K1) and mTORC2 (p-AKT, Ser-473) was almost blocked by CZ415. In vivo studies revealed that oral administration of CZ415 significantly suppressed HepG2 xenograft tumor growth in severe combined immuno-deficient (SCID) mice. Activation of mTORC1/2 was also largely inhibited in CZ415-treated HepG2 tumor tissue. Together, these results show that CZ415 blocks mTORC1/2 activation and efficiently inhibits HCC cell growth in vitro and in vivo. - Highlights: • CZ415 is anti-survival and pro-apoptotic to hepatocellular carcinoma (HCC) cells. • CZ415 inhibits HCC cell proliferation, more efficiently than mTORC1 inhibitors. • CZ415 blocks assembly and activation of both mTORC1 and mTORC2 in HCC cells. • CZ415 oral administration inhibits HepG2 tumor growth in SCID mice. • mTORC1/2 activation in HepG2 tumor is inhibited with CZ415 administration.

  14. Anti-lymphangiogenic properties of mTOR inhibitors in head and neck squamous cell carcinoma experimental models

    International Nuclear Information System (INIS)

    Ekshyyan, Oleksandr; Moore-Medlin, Tara N; Raley, Matthew C; Sonavane, Kunal; Rong, Xiaohua; Brodt, Michael A; Abreo, Fleurette; Alexander, Jonathan Steven; Nathan, Cherie-Ann O

    2013-01-01

    Tumor dissemination to cervical lymph nodes via lymphatics represents the first step in the metastasis of head and neck squamous cell carcinoma (HNSCC) and is the most significant predictor of tumor recurrence decreasing survival by 50%. The lymphatic suppressing properties of mTOR inhibitors are not yet well understood. Lymphatic inhibiting effects of rapamycin were evaluated in vitro using two lymphatic endothelial cell (LEC) lines. An orthotopic mouse model of HNSCC (OSC-19 cells) was used to evaluate anti-lymphangiogenic effects of rapamycin in vivo. The incidence of cervical lymph node metastases, numbers of tumor-free lymphatic vessels and those invaded by tumor cells in mouse lingual tissue, and expression of pro-lymphangiogenic markers were assessed. Rapamycin significantly decreased lymphatic vascular density (p = 0.027), reduced the fraction of lymphatic vessels invaded by tumor cells in tongue tissue (p = 0.013) and decreased metastasis-positive lymph nodes (p = 0.04). Rapamycin also significantly attenuated the extent of metastatic tumor cell spread within lymph nodes (p < 0.0001). We found that rapamycin significantly reduced LEC proliferation and was correlated with decreased VEGFR-3 expression in both LEC, and in some HNSCC cell lines. The results of this study demonstrate anti-lymphangiogenic properties of mTOR inhibitors in HNSCC. mTOR inhibitors suppress autocrine and paracrine growth stimulation of tumor and lymphatic endothelial cells by impairing VEGF-C/VEGFR-3 axis and release of soluble VEGFR-2. In a murine HNSCC orthotopic model rapamycin significantly suppressed lymphovascular invasion, decreased cervical lymph node metastasis and delayed the spread of metastatic tumor cells within the lymph nodes

  15. Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR

    Directory of Open Access Journals (Sweden)

    Haohan Wang

    2016-03-01

    Full Text Available Abstract As a critical transcription factor, Six1 plays an important role in the regulation of myogenesis and muscle development. However, little is known about its regulatory mechanism associated with muscular protein synthesis. The objective of this study was to investigate the effects of overexpression ofSix1 on the expression of key protein metabolism-related genes in duck myoblasts. Through an experimental model where duck myoblasts were transfected with a pEGFP-duSix1 construct, we found that overexpression of duckSix1 could enhance cell proliferation activity and increase mRNA expression levels of key genes involved in the PI3K/Akt/mTOR signaling pathway, while the expression of FOXO1, MuRF1and MAFbx was not significantly altered, indicating thatSix1 could promote protein synthesis in myoblasts through up-regulating the expression of several related genes. Additionally, in duck myoblasts treated with LY294002 and rapamycin, the specific inhibitors ofPI3K and mTOR, respectively, the overexpression of Six1 could significantly ameliorate inhibitive effects of these inhibitors on protein synthesis. Especially, the mRNA expression levels of mTOR and S6K1 were observed to undergo a visible change, and a significant increase in protein expression of S6K1 was seen. These data suggested that Six1plays an important role in protein synthesis, which may be mainly due to activation of the mTOR signaling pathway.

  16. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin [Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Hospital, Second Military Medical Universisty, 225 Changhai Road, Shanghai 200438 (China)

    2007-11-12

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  17. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    International Nuclear Information System (INIS)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin

    2007-01-01

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis

  18. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Wu Mengchao

    2007-11-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. Methods This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu. We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Results Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. Conclusion These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  19. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Javier Duran

    Full Text Available Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis. Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results

  20. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy.

    Science.gov (United States)

    Luckey, Stephen W; Haines, Chris D; Konhilas, John P; Luczak, Elizabeth D; Messmer-Kratzsch, Antke; Leinwand, Leslie A

    2017-12-01

    A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1 -/- ), and mice deficient in cyclin D2 (cyclin D2 -/- ). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2 -/- mice. Cardiac function was not impacted in the cyclin D2 -/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2 -/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise

  1. Discrete functions of mTOR signaling in iNKT cell development and NKT17 fate decision

    OpenAIRE

    Wei, Jun; Yang, Kai; Chi, Hongbo

    2014-01-01

    Invariant natural killer T (iNKT) cells have been recently classified into NKT1, NKT2 and NKT17 lineages with distinct transcription factor and cytokine profiles, but mechanisms underlying such fate decisions remain elusive. Here, we report crucial roles of mTOR signaling especially mTORC2 in iNKT cell development and fate determination of NKT17 cells. Loss of Rictor, an obligatory component of mTORC2, decreased thymic and peripheral iNKT cells, associated with defective survival. Strikingly,...

  2. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Sylow, Lykke; Fazakerley, Daniel J.

    2014-01-01

    , but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT4 translocation in muscle cells. AZD8055 inhibited glycolysis in MEF cells. Abrogation of mTORC2 activity by SIN1 deletion impaired glycolysis and AZD8055 had no effect in SIN1 KO MEFs. Re-expression of wildtype...... SIN1 rescued glycolysis. Glucose intolerance following AZD8055 administration was absent in mice lacking the mTORC2 subunit Rictor in muscle, and in vivo glucose uptake into Rictor-deficient muscle was reduced despite normal Akt activity. Taken together, acute mTOR inhibition is detrimental to glucose...

  3. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines

    Czech Academy of Sciences Publication Activity Database

    Lunova, Mariia; Prokhorov, Andriy; Jirsa, M.; Hof, Martin; Olžyńska, Agnieszka; Jurkiewicz, Piotr; Kubinová, Šárka; Lunov, Oleg; Dejneka, Alexandr

    2017-01-01

    Roč. 7, Nov (2017), s. 1-16, č. článku 16049. ISSN 2045-2322 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 ; RVO:61388955 Keywords : nanoparticle core stability * surface functionalization drive * mTOR signaling pathway * hepatocellular cell lines Subject RIV: BO - Biophysics; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Biophysics; Physical chemistry (UFCH-W) Impact factor: 4.259, year: 2016

  4. Accessory papillary muscles and papillary muscle hypertrophy are associated with sudden cardiac arrest of unknown cause.

    Science.gov (United States)

    Uhm, Jae-Sun; Youn, Jong-Chan; Lee, Hye-Jeong; Park, Junbeom; Park, Jin-Kyu; Shim, Chi Young; Hong, Geu-Ru; Joung, Boyoung; Pak, Hui-Nam; Lee, Moon-Hyoung

    2015-10-15

    The present study was performed for elucidating the associations between the morphology of the papillary muscles (PMs) and sudden cardiac arrest (SCA). We retrospectively reviewed history, laboratory data, electrocardiography, echocardiography, coronary angiography, and cardiac CT/MRI for 190 patients with SCA. The prevalence of accessory PMs and PM hypertrophy in patients with SCA of unknown cause was compared with that in patients with SCA of known causes and 98 age- and sex-matched patients without SCA. An accessory PM was defined as a PM with origins separated from the anterolateral and posteromedial PMs, or a PM that branched into two or three bellies at the base of the anterolateral or posteromedial PM. PM hypertrophy was defined as at least one of the two PMs having a diameter of ≥1.1cm. In 49 patients (age 49.9±15.9years; 38 men) the cause of SCA was unknown, whereas 141 (age 54.2±16.6years; 121 men) had a known cause. The prevalence of accessory PMs was significantly higher in the unknown-cause group than in the known-cause group (24.5% and 7.8%, respectively; p=0.002) or the no-SCA group (7.1%, p=0.003). The same was true for PM hypertrophy (unknown-cause 12.2%, known-cause 2.1%, p=0.010; no SCA group 1.0%, p=0.006). By logistic regression, accessory PM and PM hypertrophy were independently associated with sudden cardiac arrest of unknown cause. An accessory PM and PM hypertrophy are associated with SCA of unknown cause. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Effect of Thymol on Serum Antioxidant Capacity of Rats Following Myocardial Hypertrophy

    Directory of Open Access Journals (Sweden)

    Mohabbat Jamhiri

    2017-07-01

    Full Text Available Abstract Background: Oxidative stress plays an important role in the pathogenesis of hypertension- induced cardiac hypertrophy. Plants are a rich source of antioxidant compounds. Thymol is a natural monoterpen phenol which is plentiful in some plants and shows many biological effects. The aim of the present study was to assess the effects of thymol on activity of antioxidant enzyme catalase, malondialdehyde (MDA level and the activity of the inhibition of free radical DPPH (2,2-Diphenyl-1-picryl-hydrazyl, following left ventricular hypertrophy in rats. Materials and Methods: In this experimental study, rats were divided into hypertrophied group without any treatment (H group and rats pretreated with 25 and 50 mg/kg/day of thymol (Thy25+H and Thy50+H groups, respectively. Intact animals were served as control (Ctl. Animal model of left ventricular hypertrophy was induced by abdominal aortic banding. Serum catalase (CAT activity, malondialdehyde (MDA level and the activity of inhibition of free radicals DPPH were determined by the biochemical methods. Results: In Thy25+H and Thy50+H groups, the CAT activity was increased significantly in serum (p<0.01, vs. Ctl. Also, serum level of MDA was decreased significantly compared to the group H in Thy25+H and Thy50+H groups (p<0.05 and p<0.001, respectively. The effect of inhibiting DPPH free radicals was increased significantly in Thy25+H and Thy50+H groups compared to the group H (p<0.001 and p<0.05, respectively. Conclusion: The findings of this study suggest that thymol as an antioxidant causes cardioprotective effects and as well as prevents left ventricular hypertrophy via augmentation of serum antioxidant capacity.

  6. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis.

    Directory of Open Access Journals (Sweden)

    Liming Pan

    Full Text Available This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418 on cardiac hypertrophy caused by aortic banding (AB, phenylephrine (PE or angiotensin II (Ang II in vivo and in vitro.The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM or hypertrophic cardiomyopathy (HCM and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting.ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro.ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1.

  7. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Michael eMutlak

    2015-07-01

    Full Text Available Cardiac hypertrophy results from increased mechanical load on the heart and through the actions of local and systemic neuro-humoral factors, cytokines and growth factors. These mechanical and neuroendocrine effectors act through stretch, G protein-coupled receptors and tyrosine kinases to induce the activation of a myriad of intracellular signaling pathways including the extracellular signal-regulated kinases 1/2 (ERK1/2. Since most stimuli that provoke myocardial hypertrophy also elicit an acute phosphorylation of the threonine-glutamate-tyrosine (TEY motif within the activation loops of ERK1 and ERK2 kinases, resulting in their activation, ERKs have long been considered promotors of cardiac hypertrophy. Several mouse models were generated in order to directly understand the causal role of ERK1/2 activation in the heart. These models include direct manipulation of ERK1/2 such as overexpression, mutagenesis or knockout models, manipulations of upstream kinases such as MEK1 and manipulations of the phosphatases that depohosphorylate ERK1/2 such as DUSP6. The emerging understanding from these studies, as will be discussed here, is more complex than originally considered. While there is little doubt that ERK1/2 activation or the lack of it modulates the hypertrophic process or the type of hypertrophy that develops, it appears that not all ERK1/2 activation events are the same. While much has been learned, some questions remain regarding the exact role of ERK1/2 in the heart, the upstream events that result in ERK1/2 activation and the downstream effector in hypertrophy.

  8. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Ana, E-mail: baptista-ana@hotmail.com; Magalhães, Pedro; Leão, Sílvia; Carvalho, Sofia; Mateus, Pedro; Moreira, Ilídio [Centro Hospitalar de Trás-os-Montes e Alto Douro, Unidade de Vila Real (Portugal)

    2015-08-15

    Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m{sup 2} for women or ≥ 116 g/m{sup 2} for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. A total of 47 patients with a mean left ventricular mass index of 141.1 g/m{sup 2} (± 28.5; 99.2 to 228.5 g/m{sup 2}] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5)

  9. Early dystrophin loss is coincident with the transition of compensated cardiac hypertrophy to heart failure.

    Directory of Open Access Journals (Sweden)

    Fernanda P Prado

    Full Text Available Hypertension causes cardiac hypertrophy, one of the most important risk factors for heart failure (HF. Despite the importance of cardiac hypertrophy as a risk factor for the development of HF, not all hypertrophied hearts will ultimately fail. Alterations of cytoskeletal and sarcolemma-associated proteins are considered markers cardiac remodeling during HF. Dystrophin provides mechanical stability to the plasma membrane through its interactions with the actin cytoskeleton and, indirectly, to extracellular matrix proteins. This study was undertaken to evaluate dystrophin and calpain-1 in the transition from compensated cardiac hypertrophy to HF. Wistar rats were subjected to abdominal aorta constriction and killed at 30, 60 and 90 days post surgery (dps. Cardiac function and blood pressure were evaluated. The hearts were collected and Western blotting and immunofluorescence performed for dystrophin, calpain-1, alpha-fodrin and calpastatin. Statistical analyses were performed and considered significant when p<0.05. After 90 dps, 70% of the animals showed hypertrophic hearts (HH and 30% hypertrophic+dilated hearts (HD. Systolic and diastolic functions were preserved at 30 and 60 dps, however, decreased in the HD group. Blood pressure, cardiomyocyte diameter and collagen content were increased at all time points. Dystrophin expression was lightly increased at 30 and 60 dps and HH group. HD group showed decreased expression of dystrophin and calpastatin and increased expression of calpain-1 and alpha-fodrin fragments. The first signals of dystrophin reduction were observed as early as 60 dps. In conclusion, some hearts present a distinct molecular pattern at an early stage of the disease; this pattern could provide an opportunity to identify these failure-prone hearts during the development of the cardiac disease. We showed that decreased expression of dystrophin and increased expression of calpains are coincident and could work as possible

  10. Amlodipine decreases fibrosis and cardiac hypertrophy in spontaneously hypertensive rats: persistent effects after withdrawal.

    Science.gov (United States)

    Sevilla, María A; Voces, Felipe; Carrón, Rosalía; Guerrero, Estela I; Ardanaz, Noelia; San Román, Luis; Arévalo, Miguel A; Montero, María J

    2004-07-02

    Our objective was to examine the effect of chronic treatment with amlodipine on blood pressure, left ventricular hypertrophy, and fibrosis in spontaneously hypertensive rats and the persistence of such an effect after drug withdrawal. We investigated the effects of treatment with 2, 8 and 20 mg/kg/day of amlodipine given orally for six months and at three months after drug withdrawal. Systolic blood pressure was measured using the tail-cuff method. At the end of the study period, the heart was excised, the left ventricle was isolated, and the left ventricle weight/body weight ratio was calculated as a left ventricular hypertrophy index. Fibrosis, expressed as collagen volume fraction, was evaluated using an automated image-analysis system on sections stained with Sirius red. Age-matched untreated Wistar-Kyoto and SHR were used as normotensive and hypertensive controls, respectively. Systolic blood pressure was reduced in the treated SHR in a dose-dependent way and after amlodipine withdrawal it increased progressively, without reaching the values of the hypertensive controls. Cardiac hypertrophy was reduced by 8 and 20 mg/kg/day amlodipine, but when treatment was withdrawn only the group treated with 8 mg/kg/day maintained significant differences versus the hypertensive controls. All three doses of amlodipine reduced cardiac fibrosis and this regression persisted with the two highest doses after three months without treatment. We concluded that antihypertensive treatment with amlodipine is accompanied by a reduction in left ventricular hypertrophy and regression in collagen deposition. Treatment was more effective in preventing fibrosis than in preventing ventricular hypertrophy after drug withdrawal. Copyright 2004 Elsevier Inc.

  11. Ameliorative role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Randhir; Krishan, Pawan

    2015-04-01

    Fibrates are peroxisome proliferator-activated receptor-α agonists and are clinically used for treatment of dyslipidemia and hypertriglyceridemia. Fenofibrate is reported as a cardioprotective agent in various models of cardiac dysfunction; however, limited literature is available regarding the role of gemfibrozil as a possible cardioprotective agent, especially in a non-obese model of cardiac remodelling. The present study investigated the role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats. Cardiac hypertrophy was induced by partial abdominal aortic constriction in rats and they survived for 4 weeks. The cardiac hypertrophy was assessed by measuring left ventricular weight to body weight ratio, left ventricular wall thickness, and protein and collagen content. The oxidative stress in the cardiac tissues was assessed by measuring thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The haematoxylin-eosin and picrosirius red staining was used to observe cardiomyocyte diameter and collagen deposition, respectively. Moreover, serum levels of cholesterol, high-density lipoproteins, triglycerides, and glucose were also measured. Gemfibrozil (30 mg/kg, p.o.) was administered since the first day of partial abdominal aortic constriction and continued for 4 weeks. The partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy are indicated by significant change in various parameters used in the present study that were ameliorated with gemfibrozil treatment in rats. No significant change in serum parameters was observed between various groups used in the present study. It is concluded that gemfibrozil ameliorates partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy and in rats.

  12. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    International Nuclear Information System (INIS)

    Baptista, Ana; Magalhães, Pedro; Leão, Sílvia; Carvalho, Sofia; Mateus, Pedro; Moreira, Ilídio

    2015-01-01

    Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m 2 for women or ≥ 116 g/m 2 for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. A total of 47 patients with a mean left ventricular mass index of 141.1 g/m 2 (± 28.5; 99.2 to 228.5 g/m 2 ] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5)

  13. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    Directory of Open Access Journals (Sweden)

    Ana Baptista

    2015-01-01

    Full Text Available Abstract Background: Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. Objective: To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. Methods: The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m2 for women or ≥ 116 g/m2 for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. Results: A total of 47 patients with a mean left ventricular mass index of 141.1 g/m2 (± 28.5; 99.2 to 228.5 g/m2] were included. Most of the patients were females (51.1%. Nine (19.1% showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5, a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. Conclusion: In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5.

  14. Myocardial hypertrophy and intracardial hemodynamics in children with bicuspid aortic valve

    Directory of Open Access Journals (Sweden)

    А. V. Kamenshchyk

    2017-08-01

    Full Text Available Bicuspid aortic valve is one of the most common congenital heart diseases with low manifestation in childhood and severe consequences in adults that determines the importance in early diagnostics of myocardial changes in this anomaly. According to the literature the polymorphisms in the genes of NFATC family could result both in impaired embriogenetic valves formation and development of postnatal myocardial hypertrophy. The aim of the study was to detect the early changes of intracardial hemodynamics at aortic valve in children with bicuspid aortic valve (BAV and establish their interrelations to the signs of myocardial hypertrophy in these children. Materials and methods: Dopplerograhphic study of basic intracardiac hemodynamics parameters in 38 children with BAV and in 28 children of control group was conducted. The results were processed statistically by Student’s t-test, correlation analysis and multiple regression. Results: In the result of study the moderate concentric left ventricle myocardial hypertrophy development was detected in 62 % of children with BAV which is accompanying to significant increasing of blood flow velocity and pressure gradient at aortic valve. There were not established significant correlations between the parameters of hemodynamics at valve and left ventricle’s posterior wall depth and septum depth whereas the highest inputs of these values were obtained in the left ventricle systolic dimension and volume and less in the hypertrophic signs. Conclusions: In children with BAV the moderate concentric myocardial hypertrophy with significant changes of intracardial hemodynamics at aortic valve takes place with the highest inputs in left ventricle volumetric values The obtained data serves as a substantiation for the treatment and prevention of it further development. bicuspid aortic valve; children; heart hypertrophy; dopplerechocardiography; hemodynamics; regression analysis

  15. Hormone resistance in two MCF-7 breast cancer cell lines is associated with reduced mTOR signaling, decreased glycolysis and increased sensitivity to cytotoxic drugs

    Directory of Open Access Journals (Sweden)

    Euphemia Yee Leung

    2014-09-01

    Full Text Available The mTOR pathway is a key regulator of multiple cellular signaling pathways and is a potential target for therapy. We have previously developed two hormone-resistant sub-lines of the MCF-7 human breast cancer line, designated TamC3 and TamR3, which were characterized by reduced mTOR signaling, reduced cell volume and resistance to mTOR inhibition. Here we show that these lines exhibit increased sensitivity to carboplatin, oxaliplatin, 5-fluorouracil, camptothecin, doxorubicin, paclitaxel, docetaxel and hydrogen peroxide. The mechanisms underlying these changes have not yet been characterized but may include a shift from glycolysis to mitochondrial respiration. If this phenotype is found in clinical hormone-resistant breast cancers, conventional cytotoxic therapy may be a preferred option for treatment.

  16. Inhibition of DNA nanotube-conjugated mTOR siRNA on the growth of pulmonary arterial smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Zaichun You

    2015-12-01

    Full Text Available Here we provide raw and processed data and methods behind mTOR siRNA loaded DNA nanotubes (siRNA-DNA-NTs in the growth of pulmonary arterial smooth muscle cells (PASMCs under both normoxic and hypoxic condition, and also related to (You et al., Biomaterials, 2015, 67:137–150, [1]. The MTT analysis, Semi-quantitative RT-PCR data presented here were used to probe cytotoxicity of mTOR siRNA-DNA-NT complex in its