WorldWideScience

Sample records for hyperthermal atomic oxygen

  1. Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers

    Science.gov (United States)

    Banks, Bruce A.; Miller, Sharon K R.; Kneubel, Christian A.

    2014-01-01

    Experimental and analytical analysis of the atomic oxygen erosion of pyrolytic graphite as well as Monte Carlo computational modeling of the erosion of Kapton H (DuPont, Wilmington, DE) polyimide was performed to determine the hyperthermal energy of low frequency (30 to 35 kHz) plasma ashers operating on air. It was concluded that hyperthermal energies in the range of 0.3 to 0.9 eV are produced in the low frequency air plasmas which results in texturing similar to that in low Earth orbit (LEO). Monte Carlo computational modeling also indicated that such low energy directed ions are fully capable of producing the experimentally observed textured surfaces in low frequency plasmas.

  2. Oxidation of MoS2 by thermal and hyperthermal atomic oxygen

    International Nuclear Information System (INIS)

    Cross, J.B.; Martin, J.A.; Pope, L.E.; Koontz, S.L.

    1989-01-01

    The present study shows that, at 1.5 eV O-atom translational energy, SO 2 is generated and outgases from an anhydrous MoS 2 surface with a reactivity nearly that of kapton. The reaction of atomic oxygen with MoS 2 has little or no translational energy barrier; i.e., thermally generated atomic oxygen reacts as readily as that having 1.5 eV of translational energy. It is also shown that water present in the flowing afterglow apparatus used to study thermal O-atom reactivity formed sulfates on the MoS 2 surface and that the sulfate is most likely in the form of sulfuric acid. These results imply that water dumps or outgasing in low earth orbit have the potential of forming sulfuric acid covered surfaces on MoS 2 lubricants. Friction measurements show a high initial friction coefficient (0.2) for O-atom exposed MoS 2 surfaces which drops to the normal low value (0.05) after several cycles of operation

  3. Scattering of Hyperthermal Nitrogen Atoms from the Ag(111) Surface

    NARCIS (Netherlands)

    Ueta, H.; Gleeson, M. A.; Kleyn, A. W.

    2009-01-01

    Measurements on scattering of hyperthermal N atoms from the Ag(111) Surface at temperatures of 500, 600, and 730 K are presented. The scattered atoms have a two-component angular distribution. One of the N components is very broad. In contrast, scattered Ar atoms exhibit only a sharp,

  4. Production of hyperthermal hydrogen atoms by an arc discharge

    International Nuclear Information System (INIS)

    Samano, E.C.

    1993-01-01

    A magnetically confined thermal electric arc gas heater has been designed and built as a suitable source of heat for dissociating hydrogen molecules with energy in the range of a few eV. Specifically, the average beam kinetic energy is determined to be 1.5 eV, the dissociation rate is 0.5 atoms per molecule and the atom beam intensity in the forward direction is 1018 atoms/sr-sec. The working pressure in the arc discharge region is from 15 to 25 torr. This novel atom source has been successfully ignited and operated with pure hydrogen during several hours of continuous performance, maintaining its characteristics. The hyperthermal hydrogen atom beam, which is obtained from this source is analyzed and characterized in a high vacuum system, the characterization of the atom beam is accomplished by two different methods: calorimetry and surface ionization. Calorimetic sensor were used for detecting the atom beam by measuring the delivered power of the impinging atoms on the sensor surface. In the second approach an H-surface production backscattering experiment from a low work function surface was conducted. The validity of these two methods is discussed, and the results are compared. The different collision mechanisms to dissociate and ionize hydrogen molecules in the arch discharge are reviewed, as well as the physics of electric arcs. Finally, a Monte Carlo simulation program is used to calculate the ionization probability of low energy atoms perpendicularly reflected from a surface converter, as a model for atom surface ionization

  5. Scattering of hyperthermal argon atoms from clean and D-covered Ru surfaces

    NARCIS (Netherlands)

    Ueta, H.; Gleeson, M.A.; Kleyn, A.W.

    2011-01-01

    Hyperthermal Ar atoms were scattered from a Ru(0001) surface held at temperatures of 180, 400 and 600 K, and from a Ru(0001)-(1×1)D surface held at 114 and 180 K. The resultant angular intensity and energy distributions are complex. The in-plane angular distributions have narrow (FWHM ≤ 10°)

  6. Cerebral oxygenation is reduced during hyperthermic exercise in humans

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Nybo, Lars; Volianitis, S.

    2010-01-01

    Abstract Aim: Cerebral mitochondrial oxygen tension (P(mito)O(2)) is elevated during moderate exercise, while it is reduced when exercise becomes strenuous, reflecting an elevated cerebral metabolic rate for oxygen (CMRO(2)) combined with hyperventilation-induced attenuation of cerebral blood flo...

  7. Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers

    Science.gov (United States)

    Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.

    2016-01-01

    The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.

  8. Many-body theory of charge transfer in hyperthermal atomic scattering

    International Nuclear Information System (INIS)

    Marston, J.B.; Andersson, D.R.; Behringer, E.R.; Cooper, B.H.; DiRubio, C.A.; Kimmel, G.A.; Richardson, C.

    1993-01-01

    We use the Newns-Anderson Hamiltonian to describe many-body electronic processes that occur when hyperthermal alkali atoms scatter off metallic surfaces. Following Brako and Newns, we expand the electronic many-body wave function in the number of particle-hole pairs (we keep terms up to and including a single particle-hole pair). We extend their earlier work by including level crossings, excited neutrals, and negative ions. The full set of equations of motion is integrated numerically, without further approximations, to obtain the many-body amplitudes as a function of time. The velocity and work-function dependence of final-state quantities such as the distribution of ion charges and excited atomic occupancies are compared with experiment. In particular, experiments that scatter alkali ions off clean Cu(001) surfaces in the energy range 5--1600 eV constrain the theory quantitatively. The neutralization probability of Na + ions shows a minimum at intermediate velocity in agreement with the theory. This behavior contrasts with that of K + , which shows virtually no neutralization, and with Li + , which exhibits a monotonically increasing neutral fraction with decreasing velocity. Particle-hole excitations are left behind in the metal during a fraction of the collision events; this dissipated energy is predicted to be quite small (on the order of tenths of an electron volt). Indeed, classical trajectory simulations of the surface dynamics account well for the observed energy loss, and thus provide some justification for our truncation of the equations of motion at the single particle-hole pair level. Li + scattering experiments off low work-function surfaces provide qualitative information on the importance of many-body effects. At sufficiently low work function, the negative ions predicted to occur are in fact observed

  9. A quasi-classical study of energy transfer in collisions of hyperthermal H atoms with SO2 molecules.

    Science.gov (United States)

    da Silva, Ramon S; Garrido, Juan D; Ballester, Maikel Y

    2017-08-28

    A deep understanding of energy transfer processes in molecular collisions is at central attention in physical chemistry. Particularly vibrational excitation of small molecules colliding with hot light atoms, via a metastable complex formation, has shown to be an efficient manner of enhancing reactivity. A quasi-classical trajectory study of translation-to-vibration energy transfer (T-V ET) in collisions of hyperthermal H( 2 S) atoms with SO 2 (X̃ 1 A ' ) molecules is presented here. For such a study, a double many-body expansion potential energy surface previously reported for HSO 2 ( 2 A) is used. This work was motivated by recent experiments by Ma et al. studying collisions of H + SO 2 at the translational energy of 59 kcal/mol [J. Ma et al., Phys. Rev. A 93, 040702 (2016)]. Calculations reproduce the experimental evidence that during majority of inelastic non-reactive collision processes, there is a metastable intermediate formation (HOSO or HSO 2 ). Nevertheless, the analysis of the trajectories shows that there are two distinct mechanisms in the T-V ET process: direct and indirect. Direct T-V processes are responsible for the high population of SO 2 with relatively low vibrational excitation energy, while indirect ones dominate the conversion from translational energy to high values of the vibrational counterpart.

  10. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kroes, Geert-Jan, E-mail: g.j.kroes@chem.leidenuniv.nl; Pavanello, Michele [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Blanco-Rey, María [Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20080 Donostia-San Sebastián (Spain); Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Alducin, Maite [Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Auerbach, Daniel J. [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Max Planck Institute for Biophysical Chemistry, Göttingen (Germany); Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen (Germany)

    2014-08-07

    loss in the range 0.2-0.3 eV due to ehp excitation, which should be possible to observe. The average non-adiabatic energy losses for non-penetrative scattering exceed the adiabatic losses to phonons by 0.9-1.0 eV. This suggests that for scattering of hyperthermal H-atoms from coinage metals the dominant energy dissipation channel should be to ehp excitation. These predictions can be tested by experiments that combine techniques for generating H-atom beams that are well resolved in translational energy and for detecting the scattered atoms with high energy-resolution.

  11. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).

    Science.gov (United States)

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J

    2014-08-07

    range 0.2-0.3 eV due to ehp excitation, which should be possible to observe. The average non-adiabatic energy losses for non-penetrative scattering exceed the adiabatic losses to phonons by 0.9-1.0 eV. This suggests that for scattering of hyperthermal H-atoms from coinage metals the dominant energy dissipation channel should be to ehp excitation. These predictions can be tested by experiments that combine techniques for generating H-atom beams that are well resolved in translational energy and for detecting the scattered atoms with high energy-resolution.

  12. Autophagic cell death induced by reactive oxygen species is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Yuan, Guang-Jin; Deng, Jun-Jian; Cao, De-Dong; Shi, Lei; Chen, Xin; Lei, Jin-Ju; Xu, Xi-Ming

    2017-08-14

    To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism. Human hepatocellular carcinoma cells were treated with hyperthermia and ionizing radiation. MTT and clonogenic assays were performed to determine cell survival. Cell autophagy was detected using acridine orange staining and flow cytometric analysis, and the expression of autophagy-associated proteins, LC3 and p62, was determined by Western blot analysis. Intracellular reactive oxygen species (ROS) were quantified using the fluorescent probe DCFH-DA. Treatment with hyperthermia and ionizing radiation significantly decreased cell viability and surviving fraction as compared with hyperthermia or ionizing radiation alone. Cell autophagy was significantly increased after ionizing radiation combined with hyperthermia treatment, as evidenced by increased formation of acidic vesicular organelles, increased expression of LC3II and decreased expression of p62. Intracellular ROS were also increased after combined treatment with hyperthermia and ionizing radiation. Pretreatment with N-acetylcysteine, an ROS scavenger, markedly inhibited the cytotoxicity and cell autophagy induced by hyperthermia and ionizing radiation. Autophagic cell death is involved in hyperthermic sensitization of cancer cells to ionizing radiation, and its induction may be due to the increased intracellular ROS.

  13. Hot oxygen atoms: Their generation and chemistry

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Chu, Yung Y.; Wolf, A.P.

    1987-01-01

    Oxygen atoms with energies between 1 and 10 eV have been produced through ion beam sputtering from metal oxide targets. Argon ion beams were used on Ta 2 O 5 and V 2 O 5 . Results show that some control may be exerted over the atom's kinetic energy by changing the target. Reactions of the hot O( 3 P) with cis- and trans-butenes were investigated

  14. MISSE PEACE Polymers Atomic Oxygen Erosion Results

    Science.gov (United States)

    deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.

    2006-01-01

    Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.

  15. The Interaction between Graphene and Oxygen Atom

    Directory of Open Access Journals (Sweden)

    Hao Yifan

    2016-01-01

    Full Text Available Based on the density function theory (DFT method, the interaction between the graphene and oxygen atom is simulated by the B3LYP functional with the 6-31G basis set. Due to the symmetry of graphene (C54H18, D6h, a representative patch is put forward to represent the whole graphene to simplify the description. The representative patch on the surface is considered to gain the potential energy surface (PES. By the calculation of the PES, four possible stable isomers of the C54H18-O radical can be obtained. Meanwhile, the structures and energies of the four possible stable isomers, are further investigated thermodynamically, kinetically, and chemically. According to the transition states, the possible reaction mechanism between the graphene and oxygen atom is given.

  16. Absolute photoionization cross sections of atomic oxygen

    Science.gov (United States)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  17. Measuring oxidation processes: Atomic oxygen flux monitor

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Of the existing 95 high-energy accelerators in the world, the Stanford Linear Collider (SLC) at the Stanford Linear Accelerator Center (SLAC) is the only one of the linear-collider type, where electrons and positrons are smashed together at energies of 50 GeV using linear beams instead of beam rings for achieving interactions. Use of a collider eliminates energy losses in the form of x-rays due to the curved trajectory of the rings, a phenomena known as bremsstrauhlung. Because these losses are eliminated, higher interaction energies are reached. Consequently the SLC produced the first Z particle in quantities large enough to allow measurement of its physical properties with some accuracy. SLAC intends to probe still deeper into the structure of matter by next polarizing the electrons in the beam. The surface of the source for these polarized particles, typically gallium arsenide, must be kept clean of contaminants. One method for accomplishing this task requires the oxidation of the surface, from which the oxidized contaminants are later boiled off. The technique requires careful measurement of the oxidation process. SLAC researchers have developed a technique for measuring the atomic oxygen flux in this process. The method uses a silver film on a quartz-crystal, deposition-rate monitor. Measuring the initial oxidation rate of the silver, which is proportional to the atomic oxygen flux, determines a lower limit on that flux in the range of 10 13 to 10 17 atoms per square centimeter per second. Furthermore, the deposition is reversible by exposing the sensor to atomic hydrogen. This technique has wider applications to processes in solid-state and surface physics as well as surface chemistry. In semiconductor manufacturing where a precise thickness of oxide must be deposited, this technique could be used to monitor the critical flux of atomic oxygen in the process

  18. Working group written presentation: Atomic oxygen

    International Nuclear Information System (INIS)

    Leger, L.J.; Visentine, J.T.

    1989-01-01

    Earlier Shuttle flight experiments have shown NASA and SDIO spacecraft designed for operation in low-Earth orbit (LEO) must take into consideration the highly oxidative characteristics of the ambient flight environment. Materials most adversely affected by atomic oxygen interactions include organic films, advanced (carbon-based) composites, thermal control coatings, organic-based paints, optical coatings, and thermal control blankets commonly used in spacecraft applications. Earlier results of NASA flight experiments have shown prolonged exposure of sensitive spacecraft materials to the LEO environment will result in degraded systems performance or, more importantly, lead to requirements for excessive on-orbit maintenance, with both conditions contributing significantly to increased mission costs and reduced mission objectives. Flight data obtained from previous Space Shuttle missions and results of the Solar Max recovery mission are limited in terms of atomic oxygen exposure and accuracy of fluence estimates. The results of laboratory studies to investigate the long-term (15 to 30 yrs) effects of AO exposure on spacecraft surfaces are only recently available, and qualitative correlations of laboratory results with flight results have been obtained for only a limited number of materials. The working group recommended the most promising ground-based laboratories now under development be made operational as soon as possible to study the full-life effects of atomic oxygen exposure on spacecraft systems

  19. Non-penetrating states of atomic oxygen

    International Nuclear Information System (INIS)

    Chang, E.S.; Barowy, W.M.; Sakai, H.

    1988-01-01

    Atomic Rydberg transitions have been observed in the 1-5 μm emission spectrum of an oxygen discharge. Proper analysis of these lines requires reinterpretation of previous 3d-nf measurements by explicit inclusion of the theoretical F-level fine structure in the experimental line profiles. The revised triplet-quintet differences in the nF levels are now seen to vary smoothly with n, analogous to the polarization energy in an Edlen plot. The new levels, 5g, 6g, 7g, and 7h also form a straight line according to the polarization formula, thereby confirming the ionization limit to a higher accuracy. (orig.)

  20. Oxidation of ruthenium thin films using atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, A.P.; Bogan, J.; Brady, A.; Hughes, G.

    2015-12-31

    In this study, the use of atomic oxygen to oxidise ruthenium thin films is assessed. Atomic layer deposited (ALD) ruthenium thin films (~ 3 nm) were exposed to varying amounts of atomic oxygen and the results were compared to the impact of exposures to molecular oxygen. X-ray photoelectron spectroscopy studies reveal substantial oxidation of metallic ruthenium films to RuO{sub 2} at exposures as low as ~ 10{sup 2} L at 575 K when atomic oxygen was used. Higher exposures of molecular oxygen resulted in no metal oxidation highlighting the benefits of using atomic oxygen to form RuO{sub 2}. Additionally, the partial oxidation of these ruthenium films occurred at temperatures as low as 293 K (room temperature) in an atomic oxygen environment. - Highlights: • X-ray photoelectron spectroscopy study of the oxidation of Ru thin films • Oxidation of Ru thin films using atomic oxygen • Comparison between atomic oxygen and molecular oxygen treatments on Ru thin films • Fully oxidised RuO{sub 2} thin films formed with low exposures to atomic oxygen.

  1. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    International Nuclear Information System (INIS)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-01-01

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion

  2. Formation and properties of metal-oxygen atomic chains

    DEFF Research Database (Denmark)

    Thijssen, W.H.A.; Strange, Mikkel; de Brugh, J.M.J.A.

    2008-01-01

    of longer atomic chains. The mechanical and electrical properties of these diatomic chains have been investigated by determining local vibration modes of the chain and by measuring the dependence of the average chain-conductance on the length of the chain. Additionally, we have performed calculations......Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in the chain, which facilitates the creation...

  3. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    Science.gov (United States)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  4. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    Science.gov (United States)

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  5. Tailoring of materials by atomic oxygen from ECR plasma source

    International Nuclear Information System (INIS)

    Naddaf, Munzer; Bhoraskar, S.V.

    2002-01-01

    Full text: An intense source of oxygen finds important applications in many areas of science, technology and industry. It has been successfully used for surface activation and cleaning in the electronic, chemical and automotive industries. Atomic oxygen and interaction with materials have also a significant importance in space science and technology. This paper describes the detailed studies related to the surface modification and processing of different materials, which include metals and polymers by atomic oxygen produced in microwave assisted electron cyclotron resonance plasma. The energy distribution of ions was measured as a function of plasma parameters and density measurements were supplemented by catalytic probe using nickel and oxidation of silver surface

  6. Detection of atomic oxygen in flames by absorption spectroscopy

    International Nuclear Information System (INIS)

    Cheskis, S.; Kovalenko, S.A.

    1994-01-01

    The absolute concentration of atomic oxygen in an atmospheric pressure hydrogen/air flame has been measured using Intracavity Laser Spectroscopy (ICLS) based on a dye laser pumped by an argon-ion laser. Absorptions at the highly forbidden transitions at 630.030 nm and 636.380 nm were observed at an equivalent optical length of up to 10 km. The relatively low intensity of the dye laser avoids photochemical interferences that are inherent to some other methods for detecting atomic oxygen. The detection sensitivity is about 6x10 14 atom/cm 3 and can be improved with better flame and laser stabilization. (orig.)

  7. Resonances in Electron Impact on Atomic Oxygen

    International Nuclear Information System (INIS)

    Yang, Wang; Ya-Jun, Zhou; Li-Guang, Jiao; Ratnavelu, Kuru

    2008-01-01

    The momentum-space coupled-channels-optical (CCO) method is used to study the resonances in electron-oxygen collision in the energy region of 9–12eV. Present results have shown agreement with the available experimental and theoretical results, and new positions of resonances are found by the comparison of total cross sections. (fundamental areas of phenomenology (including applications))

  8. Production of pulsed atomic oxygen beams via laser vaporization methods

    International Nuclear Information System (INIS)

    Brinza, D.E.; Coulter, D.R.; Liang, R.H.; Gupta, A.

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P/sub J/) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus

  9. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    Science.gov (United States)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  10. Single Photon Double Ionization of Atomic Oxygen

    Science.gov (United States)

    Wickramarathna, Madhushani; Gorczyca, Thomas; Ballance, Connor; Stolte, Wayne

    2017-04-01

    Single photon double ionization cross sections are calculated using an R-matrix with pseudostates (RMPS) method which was recently applied by Gorczyca et al. for the double photoionization of helium. With the convergence of these theoretical calculations for the simple case of helium, we extend this methodology to consider the more complex case of oxygen double photoionization. We compare our calculated results with recent measurements at the Advanced Light Source, as well as earlier experimental measurements. Our RMPS results agree well, qualitatively, with the experimental measurements, but there exist outstanding discrepancies to be addressed. This project is supported by NASA APRA award NNX17AD41G.

  11. Proceedings of the NASA workshop on atomic oxygen effects

    International Nuclear Information System (INIS)

    Brinza, D.E.

    1987-06-01

    A workshop was held to address the scientific issues concerning the effects of atomic oxygen on materials in the low Earth orbital (LEO) environment. The program included 18 invited speakers plus contributed posters covering topics such as LEO spaceflight experiments, interaction mechanisms, and atomic oxygen source development. Discussion sessions were also held to organize a test program to evaluate atomic oxygen exposure facilities. The key issues raised in the workshop were: (1) the need to develop a reliable predictive model of the effects of long-term exposure of materials to the LEO environment; (2) the ability of ground-based exposure facilities to provide useful data for development of durable materials; and (3) accurate determination of the composition of the LEO environment. These proceedings include the invited papers, the abstracts for the contributed posters, and an account of the test program discussion sessions

  12. Cleaning of Fire Damaged Watercolor and Textiles Using Atomic Oxygen

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Chichernea, Virgil A.; Haytas, Christy A.

    2000-01-01

    A noncontact technique is described that uses atomic oxygen generated under low pressure in the presence of nitrogen to remove soot from the surface of a test watercolor panel and strips of cotton, wool and silk. The process, which involves surface oxidation, permits control of the amount of surface material removed. The effectiveness of soot removal from test panels of six basic watercolors (alizarin crimson, burnt sienna, lemon yellow, yellow ochre, cerulean blue and ultramarine blue) and strips of colored cotton, wool and silk was measured using reflectance spectroscopy. The atomic oxygen removed soot effectively from the treated areas and enabled partial recovery of charred watercolors. However, overexposure can result in removal of sizing, bleaching, and weakening of the structure. With the proper precautions, atomic oxygen treatment appears to have great potential to salvage heavily smoke damaged artworks which were previously considered unrestorable.

  13. Multi-functional magnesium alloys containing interstitial oxygen atoms.

    Science.gov (United States)

    Kang, H; Choi, H J; Kang, S W; Shin, S E; Choi, G S; Bae, D H

    2016-03-15

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (alloys are expected to open a new paradigm in commercial alloy design.

  14. Atomic oxygen-MoS sub 2 chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.B.; Martin, J.A. (Los Alamos National Lab., NM (USA)); Pope, L.E. (Sandia National Labs., Albuquerque, NM (USA)); Koontz, S.L. (National Aeronautics and Space Administration, Johnson Space Center, Houston, TX (USA))

    1990-10-01

    The present study shows that an O-atom translation energy of 1.5 eV, SO{sub 2} is generated and outgases from an anhydrous MoS{sub 2} surface with an initial reactivity nearly 50% that of kapton. The reaction of atomic oxygen with MoS{sub 2} has little or no translational energy barrier, i.e. thermally generated atomic oxygen reacts as readily as that having 1.5 eV of translational energy. For MoS{sub 2} films sputter-deposited at 50-70deg C, friction measurements showed a high initial friction coefficient (up to 0.25) for MoS{sub 2} surfaces exposed to atomic oxygen, which dropped to the normal low values after several cycles of operation in air and ultrahigh vacuum. For MoS{sub 2} films deposited at 200deg C, the friction coefficient was not affected by the O-atom exposure. (orig.).

  15. Photoionization cross section of atomic and molecular oxygen

    International Nuclear Information System (INIS)

    Pareek, P.N.

    1983-01-01

    Photoionization cross sections of atomic oxygen and dissociative photoionization cross sections of molecular oxygen were measured from their respective thresholds to 120 angstrom by use of a photoionization mass spectrometer in conjunction with a spark light source. The photoionization cross sections O 2 + parent ion and O + fragment ion from neutral O 2 were obtained by a technique that eliminated the serious problem of identifying the true abundances of O + ions. These ions are generally formed with considerable kinetic energy and, because most mass spectrometers discriminate against energetic ions, true O + abundances are difficult to obtain. In the present work the relative cross sections for producing O + ions are obtained and normalized against the total cross sections in a spectral region where dissociative ionization is not possible. The fragmentation cross sections for O + were then obtained by subtraction of O 2 + cross sections from the known total photoionization cross sections. The results are compared with the previously published measurements. The absolute photoionization cross section of atomic oxygen sigma 8 /sub +/ was measured at 304 A. The actual number density of oxygen atoms within the ionization region was obtained by measuring the fraction of 0 2 molecules dissociated. This sigma/sub +/ at 304 angstrom was used to convert the relative photoinization cross sections, measured as a function of wavelength using a calibrated photodiode, to absolute cross sections. The results are compared with previous measurements and calculated cross sections. angstrom Rydberg series converging to the OII 4 P state was observed

  16. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  17. Hypoxic responses in resting hyperthermic humans

    OpenAIRE

    Curtis, Andrew

    2005-01-01

    This thesis investigated the interaction between steady state hypoxia and passive hyperthermia on human ventilation and the influence of the PETCO2 on this interaction. On one of two days males twice breathed 12% oxygen for 20 min while either normothermic or hyperthermic with PETCO2 clamped -1 mm Hg above resting (iHVR). On the other day the same tests were performed except P&02 was uncontrolled (pHVR). Hyperthermia increased euoxic ventilation compared to normothermia (plO.OO1). During ...

  18. β-diketones containing oxygen atom in fluorinated radical

    International Nuclear Information System (INIS)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G.

    1981-01-01

    The synthesis of a number of new aliphatic fluorinated β- diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed [ru

  19. beta. -diketones containing oxygen atom in fluorinated radical

    Energy Technology Data Exchange (ETDEWEB)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G. (AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1981-10-01

    The synthesis of a number of new aliphatic fluorinated ..beta..-diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed.

  20. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    Science.gov (United States)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  1. Hyperthermal (10-500 eV) collisions of noble gases with Ni(100) surface. Comparison between light and heavy atom collisions

    International Nuclear Information System (INIS)

    Kim, C.

    1995-01-01

    Collisional events between 10-500 eV atomic beams (He, Ne, Ar, Kr, and Xe) and a Ni(100) surface are investigated by the classical trajectory method. The calculation employs a molecular dynamics approach combined with a Langevin method for treating energy dissipation to infinite solid. We find that low energy collisions of heavy atoms (Xe and Kr) are characterized by extensive many-body interactions with top layer surface atoms. On the other hand, light atom (Ne and He) collisions can be approximated as a sequence of binary collisions even at these energies. Such a difference in the collisional nature gives rise to the following consequences. Low energy heavy atoms transfer energy mostly to the surface atoms during 45 angle collision. They scatter from the surface with a narrow angular distribution centered in a supraspecular direction. The ratio of the scattered to incident particle energy rapidly decreases with increasing beam energy of heavy atoms. The sputtering yield for Ni atoms by heavy atom bombardment increases quite linearly with beam energy, which is attributed to a linear proportionality between the beam energy and the energy transfered to a surface. Near the threshold energy sputtering can occur more efficiently by light atom bombardment. The energy transfer ratio to solid continuously increases with beam energy for light atoms. For heavy projectiles, on the other hand, this ratio reaches a maximum at the energy of ca, 100 eV, above which it stays nearly constant but slightly decreases. ((orig.))

  2. Optical emissions from oxygen atom reactions with adsorbates

    Science.gov (United States)

    Oakes, David B.; Fraser, Mark E.; Gauthier-Beals, Mitzi; Holtzclaw, Karl W.; Malonson, Mark; Gelb, Alan H.

    1992-12-01

    Although most optical materials are inert to the ambient low earth orbit environment, high velocity oxygen atoms will react with adsorbates to produce optical emissions from the ultraviolet into the infrared. The adsorbates arise from chemical releases or outgassing from the spacecraft itself. We have been investigating kinetic and spectral aspects of these phenomenon by direct observation of the 0.2 to 13 micrometers chemiluminescence from the interaction of a fast atomic oxygen beam with a continuously dosed surface. The dosing gases include fuels, combustion products and outgassed species such as unsymmetrical dimethylhydrazine (UDMH), NO, H2O and CO. The surface studied include gold and magnesium fluoride. In order to relate the results to actual spacecraft conditions these phenomena have been explored as a function of O atom velocity, dosant flux and substrate temperature. UDMH dosed surfaces exhibit spectra typical (wavelength and intensity) of carbonaceous surfaces. The primary emitters are CO, CO2, and OH. H2O dosed surfaces are dominated by OH and /or H2O emission while CO dosed surfaces are dominated by CO and CO2 emissions. The nitric oxide dosed surface produces a glow from 0.4 to 5.4 micrometers due to NO2* continuum emission. The emission was observed to increase by a factor of two upon cooling the surface from 20 degree(s)C to -35 degree(s)C.

  3. An atomic oxygen device based on PIG oxygen negative ion source

    International Nuclear Information System (INIS)

    Yu Jinxiang; Cai Minghui; Han Jianwei

    2008-01-01

    It is an important research subject for the spaceflight countries to conduct equivalent simulation of 5 eV atomic oxygen effects for the spaceflight material in low earth orbit. This paper introduces an apparatus used for producing atomic oxygen, which consists of a PIG ion source with permanent magnet, two electrodes extraction system, an electron deflector, an einzel lens, an ion decelerating electrode and a sample bracket. At present it has been used on the small debris accelerator in the Center for Space Science and Applied Research, Chinese Academy of Sciences, and the producing experiments of O - are carried out. 200-300μA of O - ions are extracted at the extraction voltage of 2-3 kV. The experiments for decelerating of O - ions and erosion of kapton foil are carried out also. Because of the target room used for both the atomic oxygen device and the small debris accelerator, the facility can be used for small debris impinging and atomic erosion for spaceflight materials simultaneously. (authors)

  4. Atomic oxygen ions as ionospheric biomarkers on exoplanets

    Science.gov (United States)

    Mendillo, Michael; Withers, Paul; Dalba, Paul A.

    2018-04-01

    The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth's. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.

  5. K-shell auger decay of atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.C.; Lu, Y.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydberg analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.

  6. Atom interaction propensities of oxygenated chemical functions in crystal packings

    Directory of Open Access Journals (Sweden)

    Christian Jelsch

    2017-03-01

    Full Text Available The crystal contacts of several families of hydrocarbon compounds substituted with one or several types of oxygenated chemical groups were analyzed statistically using the Hirshfeld surface methodology. The propensity of contacts to occur between two chemical types is described with the contact enrichment descriptor. The systematic large enrichment ratios of some interactions like the O—H...O hydrogen bonds suggests that these contacts are a driving force in the crystal packing formation. The same statement holds for the weaker C—H...O hydrogen bonds in ethers, esters and ketones, in the absence of polar H atoms. The over-represented contacts in crystals of oxygenated hydrocarbons are generally of two types: electrostatic attractions (hydrogen bonds and hydrophobic interactions. While Cl...O interactions are generally avoided, in a minority of chloro-oxygenated hydrocarbons, significant halogen bonding does occur. General tendencies can often be derived for many contact types, but outlier compounds are instructive as they display peculiar or rare features. The methodology also allows the detection of outliers which can be structures with errors. For instance, a significant number of hydroxylated molecules displaying over-represented non-favorable oxygen–oxygen contacts turned out to have wrongly oriented hydroxyl groups. Beyond crystal packings with a single molecule in the asymmetric unit, the behavior of water in monohydrate compounds and of crystals with Z′ = 2 (dimers are also investigated. It was found in several cases that, in the presence of several oxygenated chemical groups, cross-interactions between different chemical groups (e.g. water/alcohols; alcohols/phenols are often favored in the crystal packings. While some trends in accordance with common chemical principles are retrieved, some unexpected results can however appear. For example, in crystals of alcohol–phenol compounds, the strong O—H...O hydrogen bonds between

  7. Characterization of atomic oxygen from an ECR plasma source

    International Nuclear Information System (INIS)

    Naddaf, M; Bhoraskar, V N; Mandale, A B; Sainkar, S R; Bhoraskar, S V

    2002-01-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ∼1x10 20 to ∼10x10 20 atom m -3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe

  8. Characterization of atomic oxygen from an ECR plasma source

    Science.gov (United States)

    Naddaf, M.; Bhoraskar, V. N.; Mandale, A. B.; Sainkar, S. R.; Bhoraskar, S. V.

    2002-11-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ~1×1020 to ~10×1020 atom m-3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.

  9. Characterization of atomic oxygen from an ECR plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Bhoraskar, V N [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Mandale, A B [National Chemical Laboratory, Pashan, Pune 411008 (India); Sainkar, S R [National Chemical Laboratory, Pashan, Pune 411008 (India); Bhoraskar, S V [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India)

    2002-11-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from {approx}1x10{sup 20} to {approx}10x10{sup 20} atom m{sup -3} as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.

  10. MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Mitchell, Gianna G.; Yi, Grace T.; Guo, Aobo; Ashmeade, Claire C.; Roberts, Lily M.; McCarthy, Catherine E.; Sechkar, Edward A.

    2013-01-01

    Polymers and other oxidizable materials used on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded away by reaction with atomic oxygen (AO). For spacecraft design, it is important to know the LEO AO erosion yield, Ey (volume loss per incident oxygen atom), of materials susceptible to AO erosion. The Stressed Polymers Experiment was developed and flown as part of the Materials International Space Station Experiment 6 (MISSE 6) to compare the AO erosion yields of stressed and non-stressed polymers to determine if erosion is dependent upon stress while in LEO. The experiment contained 36 thin film polymer samples that were exposed to ram AO for 1.45 years. This paper provides an overview of the Stressed Polymers Experiment with details on the polymers flown, the characterization techniques used, the AO fluence, and the erosion yield results. The MISSE 6 data are compared to data for similar samples flown on previous MISSE missions to determine fluence or solar radiation effects on erosion yield.

  11. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    Energy Technology Data Exchange (ETDEWEB)

    Hu Longfei [China Academy of Aerospace Aerodynamics, Beijing 100074 (China); Li Meishuan, E-mail: mshli@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu Caihong; Luo Yongming [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2011-11-30

    By using surface sol-gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO{sub 2} without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  12. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    International Nuclear Information System (INIS)

    Hu Longfei; Li Meishuan; Xu Caihong; Luo Yongming

    2011-01-01

    By using surface sol–gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO 2 without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  13. Thermal relaxation of molecular oxygen in collisions with nitrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Andrienko, Daniil A., E-mail: daniila@umich.edu; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor, Michigan 48108 (United States)

    2016-07-07

    Investigation of O{sub 2}–N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound–bound and bound–free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO{sub 2} complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systems with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N{sub 2}–O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.

  14. Effects of atomic oxygen on titanium dioxide thin film

    Science.gov (United States)

    Shimosako, Naoki; Hara, Yukihiro; Shimazaki, Kazunori; Miyazaki, Eiji; Sakama, Hiroshi

    2018-05-01

    In low earth orbit (LEO), atomic oxygen (AO) has shown to cause degradation of organic materials used in spacecrafts. Similar to other metal oxides such as SiO2, Al2O3 and ITO, TiO2 has potential to protect organic materials. In this study, the anatese-type TiO2 thin films were fabricated by a sol-gel method and irradiated with AO. The properties of TiO2 were compared using mass change, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmittance spectra and photocatalytic activity before and after AO irradiation. The results indicate that TiO2 film was hardly eroded and resistant against AO degradation. AO was shown to affects only the surface of a TiO2 film and not the bulk. Upon AO irradiation, the TiO2 films were slightly oxidized. However, these changes were very small. Photocatalytic activity of TiO2 was still maintained in spite of slight decrease upon AO irradiation, which demonstrated that TiO2 thin films are promising for elimination of contaminations outgassed from a spacecraft's materials.

  15. Reactions of atomic oxygen with the chlorate ion and the perchlorate ion

    Science.gov (United States)

    Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila

    2014-06-01

    The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.

  16. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Science.gov (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  17. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NARCIS (Netherlands)

    Marinov, D.; Drag, C.; Blondel, C.; Guaitella, O.; Golda, J.; Klarenaar, B.L.M.; Engeln, R.A.H.; Schulz-von der Gathen, V.; Booth, J.-P.

    2016-01-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was

  18. UV Observations of Atomic Oxygen in the Cusp Region

    Science.gov (United States)

    Fritz, B.; Lessard, M.; Dymond, K.; Kenward, D. R.; Lynch, K. A.; Clemmons, J. H.; Hecht, J. H.; Hysell, D. L.; Crowley, G.

    2017-12-01

    The Rocket Experiment for Neutral Upwelling (RENU) 2 launched into the dayside cusp on 13 December, 2015. The sounding rocket payload carried a comprehensive suite of particle, field, and remote sensing instruments to characterize the thermosphere in a region where pockets of enhanced neutral density have been detected [Lühr et al, 2004]. An ultraviolet photomultiplier tube (UV PMT) was oriented to look along the magnetic field line and remotely detect neutral atomic oxygen (OI) above the payload. The UV PMT measured a clear enhancement as the payload descended through a poleward moving auroral form, an indicator of structure in both altitude and latitude. Context for the UV PMT measurement is provided by the Special Sensor Ultraviolet Imager (SSULI) instrument on the Defense Meteorological Space Program (DMSP) satellite, which also measured OI as it passed through the cusp. UV tomography of SSULI observations produces a two-dimensional cross-section of volumetric emission rates in the high-latitude thermosphere prior to the RENU 2 flight. The volume emission rate may then be inverted to produce a profile of neutral density in the thermosphere. A similar technique is used to interpret the UV PMT measurement and determine structure in the thermosphere as RENU 2 descended through the cusp.

  19. An Atmospheric Atomic Oxygen Source for Cleaning Smoke Damaged Art Objects

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Norris, Mary Jo

    1998-01-01

    Soot and other carbonaceous combustion products deposited on the surfaces of porous ceramic, stone, ivory and paper can be difficult to remove and can have potentially unsatisfactory results using wet chemical and/or abrasive cleaning techniques. An atomic oxygen source which operates in air at atmospheric pressure, using a mixture of oxygen and helium, has been developed to produce an atomic oxygen beam which is highly effective in oxidizing soot deposited on surfaces by burning candles made of paraffin, oil or rendered animal fat. Atomic oxygen source operating conditions and the results of cleaning soot from paper, gesso, ivory, limestone and water color-painted limestone are presented,

  20. Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments

    Science.gov (United States)

    Sibener, S. J.; Buss, R. J.; Lee, Y. T.

    1978-05-01

    A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.

  1. Influence of Atomic Oxygen Exposure on Friction Behavior of 321 Stainless Steel

    Science.gov (United States)

    Liu, Y.; Yang, J.; Ye, Z.; Dong, S.; Zhang, L.; Zhang, Z.

    Atomic oxygen (AO) exposure testing has been conducted on a 321 stainless steel rolled 1 mm thick sheet to simulate the effect of AO environment on steel in low Earth orbit (LEO). An atomic oxygen exposure facility was employed to carry out AO experiments with the fluence up to ~1021 atom/cm2. The AO exposed specimens were evaluated in air at room temperature using a nanoindenter and a tribological system. The exposed surfaces were analyzed usign XPS technique.

  2. Vibrational Relaxation of Ground-State Oxygen Molecules With Atomic Oxygen and Carbon Dioxide

    Science.gov (United States)

    Saran, D. V.; Pejakovic, D. A.; Copeland, R. A.

    2008-12-01

    Vertical water vapor profiles are key to understanding the composition and energy budget in the mesosphere and lower thermosphere (MLT). The SABER instrument onboard NASA's TIMED satellite measures such profiles by detecting H2O(ν2) emission in the 6.8 μm region. Collisional deactivation of vibrationally excited O2, O2(X3Σ-g, υ = 1) + H2O ↔ O2(X3Σ-g, υ = 0) + H2O(ν2), is an important source of H2O(ν2). A recent study has identified two other processes involving excited O2 that control H2O(ν2) population in the MLT: (1) the vibrational-translational (V-T) relaxation of O2(X3Σ-g, υ = 1) level by atomic oxygen and (2) the V-V exchange between CO2 and excited O2 molecules [1]. Over the past few years SRI researchers have measured the atomic oxygen removal process mentioned above at room temperature [2] and 240 K [3]. These measurements have been incorporated into the models for H2O(ν2) emission [1]. Here we report laboratory studies of the collisional removal of O2(X3Σ-g, υ = 1) by O(3P) at room temperature and below, reaching temperatures relevant to mesopause and polar summer MLT (~150 K). Instead of directly detecting the O2(X3Σ-g, υ = 1) population, a technically simpler approach is used in which the υ = 1 level of the O2(a1Δg) state is monitored. A two-laser method is employed, in which the pulsed output of the first laser near 285 nm photodissociates ozone to produce atomic oxygen and O2(a1Δg, υ = 1), and the pulsed output of the second laser detects O2(a1Δg, υ = 1) via resonance-enhanced multiphoton ionization. With ground-state O2 present, owing to the rapid equilibration of the O2(X3Σ-g, υ = 1) and O2(a1Δg, υ = 1) populations via the processes O2(a1Δg, υ = 1) + O2(X3Σ-g, υ = 0) ↔ O2(a1Δg, υ = 0) + O2(X3Σ-g, υ = 1), the information on the O2(X3Σ-g, υ = 1) kinetics is extracted from the O2(a1Δg, υ = 1) temporal evolution. In addition, measurements of the removal of O2(X3Σ-g, υ = 1) by CO2 at room temperature will also

  3. Inactivation of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Raballand, V; Benedikt, J; Keudell, A von [Research Group Reactive Plasmas, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Wunderlich, J [Fraunhofer Institut for Process Engineering and Packaging, Giggenhauser Strasse 35, 85354 Freising (Germany)], E-mail: Achim.vonKeudell@rub.de

    2008-06-07

    The inactivation of spores of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms is studied. Thereby, the conditions occurring in oxygen containing low pressure plasmas are mimicked and fundamental inactivation mechanisms can be revealed. It is shown that the impact of O atoms has no effect on the viability of the spores and that no etching of the spore coat occurs up to an O atom fluence of 3.5 x 10{sup 19} cm{sup -2}. The impact of argon ions with an energy of 200 eV does not cause significant erosion for fluences up to 1.15 x 10{sup 18} cm{sup -2}. However, the combined impact of argon ions and oxygen molecules or atoms causes significant etching of the spores and significant inactivation. This is explained by the process of chemical sputtering, where an ion-induced defect at the surface of the spore reacts with either the incident bi-radical O{sub 2} or with an incident O atom. This leads to the formation of CO, CO{sub 2} and H{sub 2}O and thus to erosion.

  4. Atomic Oxygen Treatment and Its Effect on a Variety of Artist's Media

    Science.gov (United States)

    Miller, Sharon K. R.; Banks, Bruce A.; Waters, Deborah L.

    2005-01-01

    Atomic oxygen treatment has been investigated as an unconventional option for art restoration where conventional methods have not been effective. Exposure of surfaces to atomic oxygen was first performed to investigate the durability of materials in the low Earth orbit environment of space. The use of the ground based environmental simulation chambers, developed for atomic oxygen exposure testing, has been investigated in collaboration with conservators at a variety of institutions, as a method to clean the surfaces of works of art. The atomic oxygen treatment technique has been evaluated as a method to remove soot and char from the surface of oil paint (both varnished and unvarnished), watercolors, acrylic paint, and fabric as well as the removal of graffiti and other marks from surfaces which are too porous to lend themselves to conventional solvent removal techniques. This paper will discuss the treatment of these surfaces giving an example of each and a discussion of the treatment results.

  5. Characterization of a 5-eV neutral atomic oxygen beam facility

    Science.gov (United States)

    Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1991-01-01

    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.

  6. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a

  7. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    Science.gov (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  8. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable

  9. Isolated Pt Atoms Stabilized by Amorphous Tungstenic Acid for Metal-Support Synergistic Oxygen Activation.

    Science.gov (United States)

    Zhang, Qian; Qin, Xixi; Duanmu, Fanpeng; Ji, Huiming; Shen, Zhurui; Han, Xiaopeng; Hu, Wenbin

    2018-06-05

    Oxygen activation plays a crucial role in many important chemical reactions such as organics oxidation and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in-situ formed amorphous H2WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight on the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reaction mechanism of oxygen atoms with unsaturated hydrocarbons by the crossed molecular beams method

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.; Baseman, R.J.; Guozhong, H.; Lee, Y.T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  11. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  12. Passivation of CdZnTe surfaces by oxidation in low energy atomic oxygen

    International Nuclear Information System (INIS)

    Chen, H.; Chattopadhyay, K.; Chen, K.; Burger, A.; George, M.A.; Gregory, J.C.; Nag, P.K.; Weimer, J.J.; James, R.B.

    1999-01-01

    A method of surface passivation of Cd 1-x Zn x Te (CZT) x-ray and gamma ray detectors has been established by using microwave-assisted atomic oxygen bombardment. Detector performance is significantly enhanced due to the reduction of surface leakage current. CZT samples were exposed to an atomic oxygen environment at the University of Alabama in Huntsville close-quote s Thermal Atomic Oxygen Facility. This system generates neutral atomic oxygen species with kinetic energies of 0.1 - 0.2 eV. The surface chemical composition and its morphology modification due to atomic oxygen exposure were studied by x-ray photoelectron spectroscopy and atomic force microscopy and the results were correlated with current-voltage measurements and with room temperature spectral responses to 133 Ba and 241 Am radiation. A reduction of leakage current by about a factor of 2 is reported, together with significant improvement in the gamma-ray line resolution. copyright 1999 American Vacuum Society

  13. Oxygen-induced restructuring with release of gold atoms from Au(111)

    International Nuclear Information System (INIS)

    Min, B.K.; Deng, X.; Schalek, R.; Pinnaduwage, D.; Friend, C.M.

    2005-01-01

    Adsorption of oxygen atoms, achieved via electron-induced dissociation of nitrogen dioxide, induces restructuring of the 'herringbone' to a striped, soliton-wall structure accompanied by release of gold from the 'elbows' in the herringbone structure. The number density of 'elbows' (dislocations corresponding to a change in direction of the reconstruction) decreases as a function of increasing atomic oxygen coverage while the long range order observed in low energy electron diffraction (LEED) changes from (√(3)x22)-rec. to (1x22) in the limit of saturation coverage. Small islands and serrated step edges were formed due to the release of gold atoms from elbow sites of Au(111). The overall structural change of the Au(111) surface may result from the reduction of anisotropy related to the tensile stress relief of the Au(111) surface by oxygen atoms

  14. Fluorescence measurement of atomic oxygen concentration in a dielectric barrier discharge

    Science.gov (United States)

    Dvořák, P.; Mrkvičková, M.; Obrusník, A.; Kratzer, J.; Dědina, J.; Procházka, V.

    2017-06-01

    Concentration of atomic oxygen was measured in a volume dielectric barrier discharge (DBD) ignited in mixtures of Ar + O2(+ H2) at atmospheric pressure. Two-photon absorption laser induced fluorescence (TALIF) of atomic oxygen was used and this method was calibrated by TALIF of Xe in a mixture of argon and a trace of xenon. The calibration was performed at atmospheric pressure and it was shown that quenching by three-body collisions has negligible effect on the life time of excited Xe atoms. The concentration of atomic oxygen in the DBD was around 1021 m-3 and it was stable during the whole discharge period. The concentration did not depend much on the electric power delivered to the discharge provided that the power was sufficiently high so that the visible discharge filled the whole reactor volume. Both the addition of hydrogen or replacing of argon by helium led to a significant decrease of atomic oxygen concentration. The TALIF measurements of O concentration levels in the DBD plasma performed in this work are made use of e.g. in the field analytical chemistry. The results contribute to understanding the processes of analyte hydride preconcentration and subsequent atomization in the field of trace element analysis where DBD plasma atomizers are employed.

  15. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    Science.gov (United States)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1997-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  16. Locations of oxygen, nitrogen and carbon atoms in vanadium determined by neutron diffraction

    International Nuclear Information System (INIS)

    Hiraga, K.; Onozuka, T.; Hirabayashi, M.

    1977-01-01

    The occupation sites of oxygen, nitrogen, and carbon atoms dissolved interstitially in vanadium have been determined by means of neutron diffraction with use of single crystals of VOsub(0.032), VNsub(0.013) and VCsub(0.006). It is revealed that the interstitial atoms occupy, randomly, the octahedral sites in the b.c.c. host lattice of the three crystals. Neutron diffraction is advantageous for the present purpose, since the coherent scattering amplitudes of the solute atoms are much larger than that of the vanadium atom. (Auth.)

  17. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    Science.gov (United States)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  18. Behaviour of atomic oxygen in a pulsed dielectric barrier discharge measured by laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryo [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 227-8568 (Japan); Yamashita, Youta [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Takezawa, Kei [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2005-08-21

    Atomic oxygen is measured in a pulsed dielectric barrier discharge (DBD) using two-photon absorption laser-induced fluorescence (TALIF). The ground-level atomic oxygen is excited to the 3p {sup 3}P state by two-photon absorption at 226 nm. Negative (-40 kV) or positive (+30 kV) pulsed DBD occurs in an O{sub 2}-N{sub 2} mixture at atmospheric pressure. The pulse width of the DBD current is approximately 50 ns. The TALIF experiment shows that the decay rate of atomic oxygen increases linearly with O{sub 2} concentration. This result proves that atomic oxygen decays mainly by the third-body reaction, O + O{sub 2} + M {yields} O{sub 3} + M. The rate coefficient of the third-body reaction is estimated to be 2.2 x 10{sup -34} cm{sup 6} s{sup -1} in the negative DBD and 0.89 x 10{sup -34} cm{sup 6} s{sup -1} in the positive DBD. It is shown that the decay rate of atomic oxygen increases linearly with humidity. This can explain the well-known fact that ozone production in DBD is suppressed by increasing humidity.

  19. Behaviour of atomic oxygen in a pulsed dielectric barrier discharge measured by laser-induced fluorescence

    International Nuclear Information System (INIS)

    Ono, Ryo; Yamashita, Youta; Takezawa, Kei; Oda, Tetsuji

    2005-01-01

    Atomic oxygen is measured in a pulsed dielectric barrier discharge (DBD) using two-photon absorption laser-induced fluorescence (TALIF). The ground-level atomic oxygen is excited to the 3p 3 P state by two-photon absorption at 226 nm. Negative (-40 kV) or positive (+30 kV) pulsed DBD occurs in an O 2 -N 2 mixture at atmospheric pressure. The pulse width of the DBD current is approximately 50 ns. The TALIF experiment shows that the decay rate of atomic oxygen increases linearly with O 2 concentration. This result proves that atomic oxygen decays mainly by the third-body reaction, O + O 2 + M → O 3 + M. The rate coefficient of the third-body reaction is estimated to be 2.2 x 10 -34 cm 6 s -1 in the negative DBD and 0.89 x 10 -34 cm 6 s -1 in the positive DBD. It is shown that the decay rate of atomic oxygen increases linearly with humidity. This can explain the well-known fact that ozone production in DBD is suppressed by increasing humidity

  20. On non-binary nature of the collisions of heavy hyperthermal particles with solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ferleger, V.Kh. E-mail: root@ariel.tashkent.su; Wojciechowski, I.A

    2000-04-01

    The limits of applicability of the binary collision approximation for a description of scattering of atomic particles by a solid surface are discussed. The experimental data of energy losses of atoms of hyperthermal energies (HT) scattered by a solid surface were found to bring in evidence for the non-binary nature of collisions in the hyperthermal energy region (1-30 eV). The dependence of the energy losses on the initial energy of the particles and their angles of incidence was shown to be well described by the following model: the particle is being single-scattered by certain complex of surface atoms forming an effective mass. A contribution of the non-binary collisions to the processes of atomic and cluster sputtering is also discussed.

  1. Materials selection for long life in LEO: a critical evaluation of atomic oxygen testing with thermal atom systems

    International Nuclear Information System (INIS)

    Koontz, S.L.; Kuminecz, J.; Leger, L.; Nordine, P.

    1988-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material

  2. Behaviour of oxygen atoms near the surface of nanostructured Nb2O5

    International Nuclear Information System (INIS)

    Cvelbar, U; Mozetic, M

    2007-01-01

    Recombination of neutral oxygen atoms on oxidized niobium foil was studied. Three sets of samples have been prepared: a set of niobium foils with a film of polycrystalline niobium oxide with a thickness of 40 nm, another one with a film thickness of about 2 μm and a set of foils covered with dense bundles of single-crystal Nb 2 O 3 nanowires. All the samples were prepared by oxidation of a pure niobium foil. The samples with a thin oxide film were prepared by exposure of as-received foils to a flux of O-atoms, the samples with a thick polycrystalline niobium oxide were prepared by baking the foils in air at a temperature of 800 deg. C, while the samples covered with nanowires were prepared by oxidation in a highly reactive oxygen plasma. The samples were exposed to neutral oxygen atoms from a remote oxygen plasma source. Depending on discharge parameters, the O-atom density in the postglow chamber, as measured with a catalytic probe, was between 5 x 10 20 and 8 x 10 21 m -3 . The O-atom density in the chamber without the samples was found rather independent of the probe position. The presence of the samples caused a decrease in the O-atom density. Depending on the distance from the samples, the O-atom density was decreased up to 5 times. The O-atom density also depended on the surface morphology of the samples. The strongest decrease in the O-atom density was observed with the samples covered with dense bundles of nanowires. The results clearly showed that niobium oxide nanowires exhibit excellent catalytic behaviour for neutral radicals and can be used as catalysts of exhaust radicals found in many applications

  3. Study of the Dissociative Processes in O_2 Discharges. Development of an Atomic Oxygen Beam Source

    International Nuclear Information System (INIS)

    Pagnon, Daniel

    1992-01-01

    The first part of this work is devoted to the study of dissociative processes in an oxygen glow discharge at low pressure (0,1-5 Torr, 1-80 mA). The kinetics of oxygen atoms has been determined supported by the measurements of atomic concentrations by VUV absorption spectroscopy and actinometry. The reaction coefficients for dissociative excitation and direct excitation of oxygen atoms have been calculated using the cross sections of the literature and a previously calculated EEDF. It has been demonstrated that dissociative excitation is negligible in respect with direct excitation for dissociation rates smaller than 2,5 %. An upper limit of 20 % for dissociative rates is observed. This limit has been explained by the increase of the atomic recombination at the discharge wall with increasing wall temperature. Using all these results, we have designed and optimized a source of oxygen atoms which has then been adapted on a MBE device. The spatial distribution of the atomic density has been measured in molecular jet by laser induced fluorescence (LIF) and Resonant Multi-Photon Ionization (RMPI). A stimulated emission has been evidenced and the coefficient for this process evaluated. A model for the effusion of atoms has been developed from which the flow of atoms on the sample can be predicted. This source has already been used in industrial MBE devices for in-situ oxidation of copper films, superconductors, and substrates for VLSI high speed applications. The methodology of this work and the diagnostics developed can be applied to other kinds of discharges, of other molecular gases, to design sources of atoms for the treatment of large area samples. (author) [fr

  4. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the PEACE Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; de Groh, Kim K.; Banks, Bruce A.

    2009-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were forty-one different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although space flight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground-laboratory erosion yield values. Using the PEACE polymers' asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  5. Use of O2 airglow for calibrating direct atomic oxygen measurements from sounding rockets

    Directory of Open Access Journals (Sweden)

    G. Witt

    2009-12-01

    Full Text Available Accurate knowledge about the distribution of atomic oxygen is crucial for many studies of the mesosphere and lower thermosphere. Direct measurements of atomic oxygen by the resonance fluorescence technique at 130 nm have been made from many sounding rocket payloads in the past. This measurement technique yields atomic oxygen profiles with good sensitivity and altitude resolution. However, accuracy is a problem as calibration and aerodynamics make the quantitative analysis challenging. Most often, accuracies better than a factor 2 are not to be expected from direct atomic oxygen measurements. As an example, we present results from the NLTE (Non Local Thermodynamic Equilibrium sounding rocket campaign at Esrange, Sweden, in 1998, with simultaneous O2 airglow and O resonance fluorescence measurements. O number densities are found to be consistent with the nightglow analysis, but only within the uncertainty limits of the resonance fluorescence technique. Based on these results, we here describe how better atomic oxygen number densities can be obtained by calibrating direct techniques with complementary airglow photometer measurements and detailed aerodynamic analysis. Night-time direct O measurements can be complemented by photometric detection of the O2 (b1∑g+−X3∑g- Atmospheric Band at 762 nm, while during daytime the O2 (a1Δg−X3∑g- Infrared Atmospheric Band at 1.27 μm can be used. The combination of a photometer and a rather simple resonance fluorescence probe can provide atomic oxygen profiles with both good accuracy and good height resolution.

  6. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  7. Atomic hydrogen and oxygen adsorptions in single-walled zigzag silicon nanotubes

    International Nuclear Information System (INIS)

    Chen, Haoliang; Ray, Asok K.

    2013-01-01

    Ab initio calculations have been performed to study the electronic and geometric structure properties of zigzag silicon nanotubes. Full geometry and spin optimizations have been performed without any symmetry constraints with an all electron 3-21G* basis set and the B3LYP hybrid functional. The largest zigzag SiNT studied here, (12, 0), has a binding energy per atom of 3.584 eV. Atomic hydrogen and oxygen adsorptions on (9, 0) and (10, 0) nanotubes have also been studied by optimizing the distances of the adatoms from both inside and outside the tube. The adatom is initially placed in four adsorption sites-parallel bridge (PB), zigzag bridge (ZB), hollow, and on-top site. The on-top site is the most preferred site for hydrogen atom adsorbed on (9, 0), with an adsorption energy of 3.0 eV and an optimized distance of 1.49 Å from the adatom to the nearest silicon atom. For oxygen adsorption on (9, 0), the most preferred site is the ZB site, with an adsorption energy of 5.987 eV and an optimized distance of 1.72 Å. For atomic hydrogen adsorption on (10, 0), the most preferred site is also the on-top site with an adsorption energy of 3.174 eV and an optimized distance of 1.49 Å. For adsorption of atomic oxygen on (10, 0), the most preferred site is PB site, with an adsorption energy of 6.306 eV and an optimized distance of 1.71 Å. The HOMO–LUMO gaps of (9, 0) after adsorptions of hydrogen and oxygen atoms decrease while the HOMO–LUMO gaps of (10, 0) increase after adsorption of hydrogen and oxygen

  8. Laser diagnostics of atomic hydrogen and oxygen production in rf and microwave plasma discharges

    International Nuclear Information System (INIS)

    Preppernau, B.L.

    1993-01-01

    The research for this thesis involved the application of two-photon allowed laser-induced fluorescence (TALIF) to the study of atomic hydrogen and oxygen production in industrial scale radio-frequency and microwave plasma discharge apparatus. Absolute atomic hydrogen concentration profiles were measured in a Gaseous Electronics Conference Reference Cell installed at Wright-Patterson AFB, Ohio operating with a simple H 2 discharge. Two-dimensional atomic hydrogen concentration profiles were also measured in an ASTEX HPMM microwave plasma diamond deposition reactor during actual diamond growth. In addition absolute atomic oxygen concentrations were measured in the ASTEX system. Particular attention as paid to refining the concentration calibration technique and in determining a correction to account for the collisional quenching of excited state fluorescence in high pressure gases

  9. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  10. Hot oxygen atoms: Their generation and chemistry. [Production by sputtering; reaction with butenes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrieri, R.A.; Chu, Yung Y.; Wolf, A.P.

    1987-01-01

    Oxygen atoms with energies between 1 and 10 eV have been produced through ion beam sputtering from metal oxide targets. Argon ion beams were used on Ta/sub 2/O/sub 5/ and V/sub 2/O/sub 5/. Results show that some control may be exerted over the atom's kinetic energy by changing the target. Reactions of the hot O(/sup 3/P) with cis- and trans-butenes were investigated. (DLC)

  11. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Špalek, Otomar; Čenský, Miroslav; Picková, Irena; Kodymová, Jarmila; Jakubec, Ivo

    2007-01-01

    Roč. 334, - (2007), s. 167-174 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Grant - others:USAF European Office for Research and Development(XE) FA 8655-05-M-4027 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.805, year: 2007

  12. Mechanism and kinetics of Fe, Cr, Mo and Mn atom interaction with molecular oxygen

    International Nuclear Information System (INIS)

    Akhmadov, U.S.; Zaslonko, I.S.; Smirnov, V.N.

    1988-01-01

    Rate constants of atomic interaction of some transition metals (Fe, Cr, Mo, Mn) with molecular oxygen are measured in shock waves using the resonance atomic-absorption method. A new method for determination of the parameter γ in the modified Lambert-Beer law D=ε(lN)γ is suggested and applied. Bond strength in CrO and MoO molecules is estimated

  13. Chemical oxygen-iodine laser with atomic iodine generated via fluorine atoms

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila; Picková, Irena; Jakubec, Ivo

    2008-01-01

    Roč. 345, č. 1 (2008), 14-22 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen–iodine laser * COIL Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.961, year: 2008

  14. Energy transfers between N_2(A"3Σ) nitrogen metastable molecules and oxygen atoms and molecules

    International Nuclear Information System (INIS)

    De Souza, Antonio Rogerio

    1985-01-01

    This research thesis aims at determining reaction coefficients for energy transfers between nitrogen in its metastable status and oxygen atoms and molecules, the variation of these coefficients with respect to temperature (mainly in the 200-400 K range), products formed and more particularly branching rates of O("1S) oxygen and of NO_2. Reaction coefficients are experimentally determined by using the technique of post-discharge in flow. The experimental set-up is described and the study of the best operating conditions is reported. In the next part, the author reports the study of the energy transfer between nitrogen in its metastable status N_2(A) and oxygen molecules. Reaction coefficients are determined for the first three vibrational levels. The author then reports the study of the transfer of N_2(A) molecules on oxygen atoms in their fundamental status. Reactions coefficients and their variations are determined for the three first vibrational levels. The author describes the dissociation method and the method of detection of atomic oxygen. A kinetic model is proposed for the analysis of formed products during a post-discharge in flow, and the branching rate for the formation of O("1S) oxygen between 190 and 365 K is determined. The author finally discusses publications on the role of these reactions in the interpretation of some atmospheric phenomena

  15. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains

    Science.gov (United States)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-06-01

    Experiments designed to reveal the low-temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C=CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 and 100 K. After dosing the reactants on to the surface, temperature-programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C=C double bond, rather than involving the cyano(-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms, and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K), and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K), respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time-scale.

  16. Adsorption of atomic oxygen (N2O) on a clean Ge(001) surface

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.; Keim, Enrico G.; van Silfhout, Arend

    1990-01-01

    We present the results of a study concerning the interaction of atomic oxygen (as released by decomposition of N2O ) with the clean Ge(001)2×1 surface at 300 K. Ellipsometry in the photon energy range of 1.5–4 eV, surface conductance measurements and Auger electron spectroscopy(AES) have been used

  17. Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin

    1998-01-01

    Smoke damage, as a result of a fire, can be difficult to remove from some types of painting media without causing swelling, leaching or pigment movement or removal. A non-contact technique has been developed which can remove soot from the surface of a painting by use of a gently flowing gas containing atomic oxygen. The atomic oxygen chemically reacts with the soot on the surface creating gasses such as carbon monoxide and carbon dioxide which can be removed through the use of an exhaust system. The reaction is limited to the surface so that the process can be timed to stop when the paint layer is reached. Atomic oxygen is a primary component of the low Earth orbital environment, but can be generated on Earth through various methods. This paper will discuss the results of atomic oxygen treatment of soot exposed acrylic gesso, ink on paper, and a varnished oil painting. Reflectance measurements were used to characterize the surfaces before and after treatment.

  18. Rate of reaction of dimethylmercury with oxygen atoms in the gas phase

    DEFF Research Database (Denmark)

    Egsgaard, Helge

    1986-01-01

    The rate constant for the reaction of atomic oxygen (O(3P)) with dimethylmercury has been measured at room temperature at a pressure of about 1 Torr using a fast flow system with electron paramagnetic resonance and mass spectrometric detection. Some reaction products were identified. The rate...

  19. Energy variable monoenergetic positron beam study of oxygen atoms in Czochralski grown Si

    International Nuclear Information System (INIS)

    Tanigawa, S.; Wei, L.; Tabuki, Y.; Nagai, R.; Takeda, E.

    1992-01-01

    A monoenergetic positron beam has been used to investigate the state of interstitial oxygen in Czochralski-grown Si with the coverage of SiO 2 (100 nm) and poly-Si (200 nm)/SiO 2 (100 nm), respectively. It was found that (i) the growth of SiO 2 gives rise to a strong Doppler broadening of positron annihilation radiations in the bulk of Si, (ii) such a broadening can be recovered to the original level by annealing at 450degC, by the removal of overlayers using chemical etching and long-term aging at room temperature, (iii) the film stress over the CZ-grown Si is responsible for the rearrangement of oxygen atoms in S and (iv) only tensile stress gives rise to the clustering of oxygen atoms. The observed broadening was assigned to arise from the positron trapping by oxygen interstitial clusters. It was concluded that film stress is responsible for the rearrangement of oxygen atoms in CZ-grown Si. (author)

  20. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    Science.gov (United States)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  1. Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach

    Science.gov (United States)

    Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter

    2015-06-01

    Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.

  2. Molecular Ions in Ion Upflows and their Effects on Hot Atomic Oxygen Production

    Science.gov (United States)

    Foss, V.; Yau, A. W.; Shizgal, B.

    2017-12-01

    We present new direct ion composition observations of molecular ions in auroral ion upflows from the CASSIOPE Enhanced Polar Outflow Probe (e-POP). These observed molecular ions are N2+, NO+, and possibly O2+, and are found to occur at all e-POP altitudes starting at about 400 km, during auroral substorms and the different phases of magnetic storms, sometimes with upflow velocities exceeding a few hundred meters per second and abundances of 5-10%. The dissociative recombination of both O2+ and NO+ was previously proposed as an important source of hot oxygen atoms in the topside thermosphere [Hickey et al., 1995]. We investigate the possible effect of the observed molecular ions on the production of hot oxygen atoms in the storm and substorm-time auroral thermosphere. We present numerical solutions of the Boltzmann equation for the steady-state oxygen energy distribution function, taking into account both the production of the hot atoms and their subsequent collisional relaxation. Our result suggests the formation of a hot oxygen population with a characteristic temperature on the order of 0.3 eV and constituting 1-5% of the oxygen density near the exobase. We discuss the implication of this result in the context of magnetosphere-ionosphere-thermosphere coupling.

  3. Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Rongzhong, E-mail: rongzhong.jiang@us.army.mi [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States); Rong, Charles; Chu, Deryn [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2011-02-01

    The surface coverage of Pt atoms on PtCo nanoparticles and its effect on catalytic kinetics for oxygen reduction were investigated. The PtCo nanoparticles with different surface coverage of Pt atoms were synthesized with various methods, including normal chemical method, microemulsion synthesis, and ultrasound-assisted microemulsion. A model of Pt atoms filling into a spherical nanoparticle was proposed to explain the relationship of surface metal atoms and nanoparticle size. The catalytic activity of the PtCo nano-particles is highly dependent on the synthetic methods, even if they have the same chemical composition. The PtCo nano-particles synthesized with ultrasound-assisted microemulsion showed the highest activity, which is attributed to an increase of active surface coverage of Pt atoms on the metal nanoparticles. The rate of oxygen reduction at 0.5 V (vs. SCE) catalyzed by the PtCo synthesized with ultrasound-assisted micro-emulsion was about four times higher than that of the PtCo synthesized with normal chemical method. As demonstrated with rotating-ring disk electrode measurement, the PtCo nano-particles can catalyze oxygen 4-electron reduction to water without intermediate H{sub 2}O{sub 2} detected.

  4. Atomic structure of diamond {111} surfaces etched in oxygen water vapor

    International Nuclear Information System (INIS)

    Theije, F.K. de; Reedijk, M.F.; Arsic, J.; Enckevort, W.J.P. van; Vlieg, E.

    2001-01-01

    The atomic structure of the {111} diamond face after oxygen-water-vapor etching is determined using x-ray scattering. We find that a single dangling bond diamond {111} surface model, terminated by a full monolayer of -OH fits our data best. To explain the measurements it is necessary to add an ordered water layer on top of the -OH terminated surface. The vertical contraction of the surface cell and the distance between the oxygen atoms are generally in agreement with model calculations and results on similar systems. The OH termination is likely to be present during etching as well. This model experimentally confirms the atomic-scale mechanism we proposed previously for this etching system

  5. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  6. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    Energy Technology Data Exchange (ETDEWEB)

    López-Moreno, S., E-mail: sinlopez@uacam.mx [Centro de Investigación en Corrosión, Universidad Autónoma de Campeche, Av. Héroe de Nacozari 480, Campeche, Campeche 24029 (Mexico); Romero, A. H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O{sub 2} molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  7. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    Science.gov (United States)

    López-Moreno, S.; Romero, A. H.

    2015-04-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  8. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    International Nuclear Information System (INIS)

    López-Moreno, S.; Romero, A. H.

    2015-01-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O 2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered

  9. Oxidation of Ni(Pt)Si by molecular vs. atomic oxygen

    International Nuclear Information System (INIS)

    Manandhar, Sudha; Copp, Brian; Kelber, J.A.

    2008-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to characterize the oxidation of a clean Ni(Pt)Si surface under two distinct conditions: exposure to a mixed flux of atomic and molecular oxygen (O + O 2 ; P O+O 2 = 5 x 10 -6 Torr) and pure molecular oxygen (O 2 ; P O 2 = 10 -5 Torr) at ambient temperatures. Formation of the clean, stoichiometric (nickel monosilicide) phase under vacuum conditions results in the formation of a surface layer enriched in PtSi. Oxidation of this surface in the presence of atomic oxygen initially results in formation of a silicon oxide overlayer. At higher exposures, kinetically limited oxidation of Pt results in Pt silicate formation. No passivation of oxygen uptake of the sample is observed for total O + O 2 exposure 4 L, at which point the average oxide/silicate overlayer thickness is 23 (3) A (uncertainty in the last digit in parentheses). In contrast, exposure of the clean Ni(Pt)Si surface to molecular oxygen only (maximum exposure: 5 x 10 5 L) results in slow growth of a silicon oxide overlayer, without silicate formation, and eventual passivation at a total average oxide thickness of 8(1) A, compared to a oxide average thickness of 17(2) A (no silicate formation) for the as-received sample (i.e., exposed to ambient.) The aggressive silicon oxidation by atomic oxygen, results in Ni-rich silicide formation in the substrate and the kinetically limited oxidation of the Pt

  10. Ab initio atomic thermodynamics investigation on oxygen defects in the anatase TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhijun [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Liu, Tingyu, E-mail: liutyyxj@163.com [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Yang, Chenxing; Gan, Haixiu [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Jianyu [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, Feiwu [Nanochemistry Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer Three typical oxygen defects under the different annealing conditions have been studied. Black-Right-Pointing-Pointer The oxygen vacancy is easier to form at the surface than in the bulk. Black-Right-Pointing-Pointer The adsorption of O{sub 2} whose orientation is parallel to the surface should be more favorable. Black-Right-Pointing-Pointer The reduction reaction may firstly undertake at the surface during the annealing treatment. Black-Right-Pointing-Pointer The interstitial oxygen has important contribution to lead to the reduction of the band gap. - Abstract: In the framework of the ab initio atomic thermodynamics, the preliminary analysis of the oxygen defects in anatase TiO{sub 2} has been done by investigating the influence of the annealing treatment under representative conditions on three typical oxygen defects, that is, oxygen vacancy, oxygen adsorption and oxygen interstitial. Our results in this study agree well with the related experimental results. The molecular species of the adsorbed O{sub 2} is subject to the ratio of the number of the O{sub 2} to that of the vacancy, as well as to the initial orientation of O{sub 2} relative to the surface (101). Whatever the annealing condition is, the oxygen vacancy is easier to form at the surface than in the bulk indicating that the reduction reaction may firstly undertake at the surface during the annealing treatment, which is consistent with the phase transformation experiments. The molecular ion, peroxide species, caused by the interstitial oxygen has important contribution to the top of the valence band and lead to the reduction of the band gap.

  11. The Kinetics of Oxygen Atom Recombination in the Presence of Carbon Dioxide

    Science.gov (United States)

    Jamieson, C. S.; Garcia, R. M.; Pejakovic, D.; Kalogerakis, K.

    2009-12-01

    Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in the understanding of these processes and often the relevant input from laboratory measurements is missing or outdated. We are conducting laboratory experiments to measure the rate coefficient for O + O + CO2 recombination and investigating the O2 excited states produced following the recombination. These measurements will provide key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An excimer laser providing pulsed output at either 193 nm or 248 nm is employed to produce O atoms by dissociating carbon dioxide, nitrous oxide, or ozone. In an ambient-pressure background of CO2, O atoms recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal the recombination rate coefficient is extracted. Fluorescence spectroscopy is used to detect the products of O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation’s (NSF) Planetary Astronomy Program. Rosanne Garcia’s participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.

  12. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Jirasek, Vit; Spalek, Otomar; Censky, Miroslav; Pickova, Irena; Kodymova, Jarmila; Jakubec, Ivo

    2007-01-01

    A method of the chemical generation of atomic iodine for a chemical oxygen-iodine laser (COIL) using atomic fluorine as a reaction intermediate was studied experimentally. This method is based on the reaction between F 2 and NO providing F atoms, and the reaction of F with HI resulting in iodine atoms generation. Atomic iodine was produced with efficiency exceeding 40% relative to initial F 2 flow rate. This efficiency was nearly independent on pressure and total gas flow rate. The F atoms were stable in the reactor up to 2 ms. An optimum ratio of the reactants flow rates was F 2 :NO:HI = 1:1:1. A rate constant of the reaction of F 2 with HI was determined. The numerical modelling showed that remaining HI and IF were probably consumed in their mutual reaction. The reaction system was found suitable for employing in a generator of atomic iodine with its subsequent injection into a supersonic nozzle of a COIL

  13. Haemoglobin-mediated response to hyper-thermal stress in the keystone species Daphnia magna.

    Science.gov (United States)

    Cuenca Cambronero, Maria; Zeis, Bettina; Orsini, Luisa

    2018-01-01

    Anthropogenic global warming has become a major geological and environmental force driving drastic changes in natural ecosystems. Due to the high thermal conductivity of water and the effects of temperature on metabolic processes, freshwater ecosystems are among the most impacted by these changes. The ability to tolerate changes in temperature may determine species long-term survival and fitness. Therefore, it is critical to identify coping mechanisms to thermal and hyper-thermal stress in aquatic organisms. A central regulatory element compensating for changes in oxygen supply and ambient temperature is the respiratory protein haemoglobin (Hb). Here, we quantify Hb plastic and evolutionary response in Daphnia magna subpopulations resurrected from the sedimentary archive of a lake with known history of increase in average temperature and recurrence of heat waves. By measuring constitutive changes in crude Hb protein content among subpopulations, we assessed evolution of the Hb gene family in response to temperature increase. To quantify the contribution of plasticity in the response of this gene family to hyper-thermal stress, we quantified changes in Hb content in all subpopulations under hyper-thermal stress as compared to nonstressful temperature. Further, we tested competitive abilities of genotypes as a function of their Hb content, constitutive and induced. We found that Hb-rich genotypes have superior competitive abilities as compared to Hb-poor genotypes under hyper-thermal stress after a period of acclimation. These findings suggest that whereas long-term adjustment to higher occurrence of heat waves may require a combination of plasticity and genetic adaptation, plasticity is most likely the coping mechanism to hyper-thermal stress in the short term. Our study suggests that with higher occurrence of heat waves, Hb-rich genotypes may be favoured with potential long-term impact on population genetic diversity.

  14. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    International Nuclear Information System (INIS)

    Pei Xianqiang; Li Yan; Wang Qihua; Sun Xiaojun

    2009-01-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation

  15. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    Science.gov (United States)

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully

  16. Simulation of the Atomic and Electronic Structure of Oxygen Vacancies and Polyvacancies in ZrO2

    Science.gov (United States)

    Perevalov, T. V.

    2018-03-01

    Cubic, tetragonal, and monoclinic phases of zirconium oxide with oxygen vacancies and polyvacancies are studied by quantum chemical modeling of the atomic and electronic structure. It is demonstrated that an oxygen vacancy in ZrO2 may act as both an electron trap and a hole one. An electron added to the ZrO2 structure with an oxygen vacancy is distributed between two neighboring Zr atoms and is a bonding orbital by nature. It is advantageous for each subsequent O vacancy to form close to the already existing ones; notably, one Zr atom has no more than two removed O atoms related to it. Defect levels from oxygen polyvacancies are distributed in the bandgap with preferential localization in the vicinity of the oxygen monovacancy level.

  17. The Effect of Ash and Inorganic Pigment Fill on the Atomic Oxygen Erosion of Polymers and Paints (ISMSE-12)

    Science.gov (United States)

    Banks, Bruce A.; Simmons, Julie C.; de Groh, Kim K.; Miller, Sharon K.

    2012-01-01

    Low atomic oxygen fluence (below 1x10(exp 20) atoms/sq cm) exposure of polymers and paints that have a small ash content and/or inorganic pigment fill does not cause a significant difference in erosion yield compared to unfilled (neat) polymers or paints. However, if the ash and/or inorganic pigment content is increased, the surface population of the inorganic content will begin to occupy a significant fraction of the surface area as the atomic oxygen exposure increases because the ash is not volatile and remains as a loosely attached surface layer. This results in a reduction of the flux of atomic oxygen reacting with the polymer and a reduction in the rate of erosion of the polymer remaining. This paper presents the results of ground laboratory and low Earth orbital (LEO) investigations to evaluate the fluence dependence of atomic oxygen erosion yields of polymers and paints having inorganic fill content.

  18. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  19. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  20. Influence of driving frequency on oxygen atom density in O2 radio frequency capacitively coupled plasma

    International Nuclear Information System (INIS)

    Kitajima, Takeshi; Noro, Kouichi; Nakano, Toshiki; Makabe, Toshiaki

    2004-01-01

    The influence of the driving frequency on the absolute oxygen atom density in an O 2 radio frequency (RF) capacitively coupled plasma (CCP) was investigated using vacuum ultraviolet absorption spectroscopy with pulse modulation of the main plasma. A low-power operation of a compact inductively coupled plasma light source was enabled to avoid the significant measurement errors caused by self-absorption in the light source. The pulse modulation of the main plasma enabled accurate absorption measurement for high plasma density conditions by eliminating background signals due to light emission from the main plasma. As for the effects of the driving frequency, the effect of VHF (100 MHz) drive on oxygen atom production was small because of the modest increase in plasma density of electronegative O 2 in contrast to the significant increase in electron density previously observed for electropositive Ar. The recombination coefficient of oxygen atoms on the electrode surface was obtained from a decay rate in the afterglow by comparison with a diffusion model, and it showed agreement with previously reported values for several electrode materials

  1. Atomic resolution chemical bond analysis of oxygen in La2CuO4

    Science.gov (United States)

    Haruta, M.; Nagai, T.; Lugg, N. R.; Neish, M. J.; Nagao, M.; Kurashima, K.; Allen, L. J.; Mizoguchi, T.; Kimoto, K.

    2013-08-01

    The distorted CuO6 octahedron in La2CuO4 was studied using aberration-corrected scanning transmission electron microscopy at atomic resolution. The near-edge structure in the oxygen K-edge electron energy-loss spectrum was recorded as a function of the position of the electron probe. After background subtraction, the measured spectrum image was processed using a recently developed inversion process to remove the mixing of signals on the atomic columns due to elastic and thermal scattering. The spectra were then compared with first-principles band structure calculations based on the local-density approximation plus on-site Coulomb repulsion (LDA + U) approach. In this article, we describe in detail not only anisotropic chemical bonding of the oxygen 2p state with the Cu 3d state but also with the Cu 4p and La 5d/4f states. Furthermore, it was found that buckling of the CuO2 plane was also detectable at the atomic resolution oxygen K-edge. Lastly, it was found that the effects of core-hole in the O K-edge were strongly dependent on the nature of the local chemical bonding, in particular, whether it is ionic or covalent.

  2. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  3. Characterization of atomic oxygen in a Hollow Cathode Radio-Frequency Plasma and study its efficiency

    International Nuclear Information System (INIS)

    Naddaf, M.; Saloum, S.

    2011-01-01

    The atomic oxygen (AO) generated in the remote oxygen plasma of the HCD-L300 source, has been fully diagnosed by various conventional techniques. The density of AO was found to vary from (1-10)x10 1 9 m - 3 depending on the operating conditions and parameters. The interaction of the oxygen plasma with silver and gold thin films is investigated by gravimetric analysis, scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. The effect of AO on surface wetting and energy of polymeric materials is also investigated by using contact angle measurements and analysis technique. From applied point of view, production of super hydrophobic Teflon surface and the significant enhancement in the surface free energy of polyimide and polyamide are considered the most important obtained results in the present work. (author)

  4. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M; Williams, J S; Svensson, B G; Conway, M [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1994-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  5. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M.; Williams, J.S.; Svensson, B.G.; Conway, M. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1993-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  6. Study of atomic excitations in sputtering with targets partially covered with oxygen

    International Nuclear Information System (INIS)

    Weng, J.; Veje, E.

    1984-01-01

    We have bombarded pure, elemental targets of Be, B, Mg, Al, Si, Ti, and Au with 80 keV Ar + ions and studied excitation of sputtered atoms or ions under UHV conditions as well as with oxygen present at the target surface. The measurements on Mg, Al, Si, and Ti have been done at projectile incidence angles from 0 0 to 85 0 . Excitation probabilities for gold were found to be only very little influenced by oxygen, but for Be, B, Mg, Al, Si, and Ti, the excitation probabilities were in many, but not all, cases found to depend strongly on the oxygen pressure as well as on the beam current density. This indicates that the excitation mechanism is strongly dependent on the initial electronic conditions of the solid. (orig.)

  7. Determination of the neutral oxygen atom density in a plasma reactor loaded with metal samples

    Science.gov (United States)

    Mozetic, Miran; Cvelbar, Uros

    2009-08-01

    The density of neutral oxygen atoms was determined during processing of metal samples in a plasma reactor. The reactor was a Pyrex tube with an inner diameter of 11 cm and a length of 30 cm. Plasma was created by an inductively coupled radiofrequency generator operating at a frequency of 27.12 MHz and output power up to 500 W. The O density was measured at the edge of the glass tube with a copper fiber optics catalytic probe. The O atom density in the empty tube depended on pressure and was between 4 and 7 × 1021 m-3. The maximum O density was at a pressure of about 150 Pa, while the dissociation fraction of O2 molecules was maximal at the lowest pressure and decreased with increasing pressure. At about 300 Pa it dropped below 10%. The measurements were repeated in the chamber loaded with different metallic samples. In these cases, the density of oxygen atoms was lower than that in the empty chamber. The results were explained by a drain of O atoms caused by heterogeneous recombination on the samples.

  8. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    International Nuclear Information System (INIS)

    Cross, J.B.; Blais, N.C.

    1988-01-01

    A high intensity (10 19 O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 10 22 O-atoms/cm 2 in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO 2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3--8 atmospheres of rare gas/O 2 mixtures. Visible and infrared photon flux levels of 1 watt/cm 2 have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3 /times/ 10/sup /minus/24/ cm /+-/ 50%) has an activation energy of 0.8 Kcal/mole over the temperature range of 25/degree/C to 100/degree/C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H 2 O, NO, CO 2 ). Teflon reacts with ∼0.1--0.2 efficiency to that of kapton at 25/degree/C and both surfaces show a rug-like texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50% accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described. 9 figs

  9. Chemical reaction of atomic oxygen with evaporated films of copper, part 4

    Science.gov (United States)

    Fromhold, A. T.; Williams, J. R.

    1990-01-01

    Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).

  10. Automatic measuring device for atomic oxygen concentrations (1962); Dispositif de mesure automatique de concentrations d'oxygene atomique (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J; Deiss, M; Mercier, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Within the framework of the activities of the Autonomous Reactor Electronics Section we have developed a device, which renders automatic one type of measurement carried out in the Physical Chemistry Department at the Saclay Research Centre. We define here: - the physico-chemical principle of the apparatus which is adapted to the measurement of atomic oxygen concentrations; - the physical principle of the automatic measurement; - the properties, performance, constitution, use and maintenance of the automatic measurement device. It is concluded that the principle of the automatic device, whose tests have confirmed the estimation of the theoretical performance, could usefully be adapted to other types of measurement. (authors) [French] Dans le cadre des activites de la Section Autonome d'Electronique des Reacteurs, il a ete realise et mis au point un dispositif permettant de rendre automatique un type de mesures effectuees au Departement de Physico-Chimie du C.E.N. SACLAY. On definit ici: - le principe physico-chimique de l'appareillage, adapte a la mesure de concentrations de l'oxygene atomique; - le principe physique de la mesure automatique; - les qualites, performances, constitution, utilisation, et maintenance du dispositif de mesure automatique. Il est porte en conclusion, que le principe du dispositif automatique realise, dont les essais ont sensiblement confirme l'evaluation des performances theoriques, pourrait etre utilement adapte a d'autres types de mesures courantes. (auteurs)

  11. Adsorption of atomic oxygen on PdAg/Pd(111) surface alloys and coadsorption of CO

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Arnold P. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Reaction Kinetics Research Group, University of Szeged, Chemical Research Center of the Hungarian Academy of Sciences, H-6720 Szeged (Hungary); Bansmann, Joachim; Diemant, Thomas; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2011-07-01

    The interaction of dissociated oxygen with structurally well-defined PdAg/Pd(111) surface alloys and the coadsorption of CO was studied by high resolution electron energy loss spectroscopy (HREELS) and temperature-programmed desorption (TPD). After oxygen saturation of the non-modified Pd(111) surface at RT, we observed the formation of a prominent peak in the HREEL spectra at 60 meV corresponding to the perpendicular vibration of oxygen atoms adsorbed in threefold hollow sites. Deposition of small Ag amounts does not change the signal intensity of this peak; it decreases only above 20% Ag. Beyond this Ag content, the peak intensity steeply declines and disappears at around 55-60% Ag. CO coadsorption on the oxygen pre-covered surfaces at 120 K leads to the formation of additional features in HREELS. For a surface alloy with 29% Ag, three loss features due to CO adsorption in on-top, bridge, and threefold-hollow sites can be discriminated already after the lowest CO exposure. Annealing of the co-adsorbed layer to 200 K triggers a decrease of the oxygen concentration due to CO{sub 2} formation. These findings are corroborated by TPD spectra of the CO desorption and CO{sub 2} production.

  12. Atomic Oxygen Abundance in Molecular Clouds: Absorption Toward Sagittarius B2

    Science.gov (United States)

    Lis, D. C.; Keene, Jocelyn; Phillips, T. G.; Schilke, P.; Werner, M. W.; Zmuidzinas, J.

    2001-01-01

    We have obtained high-resolution (approximately 35 km/s) spectra toward the molecular cloud Sgr B2 at 63 micrometers, the wavelength of the ground-state fine-structure line of atomic oxygen (O(I)), using the ISO-LWS instrument. Four separate velocity components are seen in the deconvolved spectrum, in absorption against the dust continuum emission of Sgr B2. Three of these components, corresponding to foreground clouds, are used to study the O(I) content of the cool molecular gas along the line of sight. In principle, the atomic oxygen that produces a particular velocity component could exist in any, or all, of three physically distinct regions: inside a dense molecular cloud, in the UV illuminated surface layer (PDR) of a cloud, and in an atomic (H(I)) gas halo. For each of the three foreground clouds, we estimate, and subtract from the observed O(I) column density, the oxygen content of the H(I) halo gas, by scaling from a published high-resolution 21 cm spectrum. We find that the remaining O(I) column density is correlated with the observed (13)CO column density. From the slope of this correlation, an average [O(I)]/[(13)CO] ratio of 270 +/- 120 (3-sigma) is derived, which corresponds to [O(I)]/[(13)CO] = 9 for a CO to (13)CO abundance ratio of 30. Assuming a (13)CO abundance of 1x10(exp -6) with respect to H nuclei, we derive an atomic oxygen abundance of 2.7x10(exp -4) in the dense gas phase, corresponding to a 15% oxygen depletion compared to the diffuse ISM in our Galactic neighborhood. The presence of multiple, spectrally resolved velocity components in the Sgr B2 absorption spectrum allows, for the first time, a direct determination of the PDR contribution to the O(I) column density. The PDR regions should contain O(I) but not (13)CO, and would thus be expected to produce an offset in the O(I)-(13)CO correlation. Our data do not show such an offset, suggesting that within our beam O(I) is spatially coexistent with the molecular gas, as traced by (13)CO

  13. Irradiation induced defects containing oxygen atoms in germanium crystal as studied by deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Kambe, Yoshiyuki; Saito, Haruo; Matsuda, Koji.

    1984-05-01

    Deep level transient spectroscopy was applied to the electron trapping levels which are associated with the irradiation induced lattice defects in germanium crystals. The germanium crystals used in the study were doped with oxygen, antimony or arsenic and the defects were formed by electron irradiation of 1.5MeV or 10MeV. The nature of so called ''thermal defect'' formed by heat treatment at about 670K was also studied. The trapping levels at Esub(c)-0.13eV, Esub(c)-0.25eV and Esub(c)-0.29eV were found to be associated with defects containing oxygen atoms. From the experimental results the Esub(c)-0.25eV level was attributed to the germanium A-center (interstitial oxygen atom-vacancy pair). Another defect associated with the 715cm -1 infrared absorption band was found to have a trapping level at the same position at Esub(c)-0.25eV. The Esub(c)-0.23eV and Esub(c)-0.1eV levels were revealed to be associated with thermal donors formed by heat treatment at about 670K. Additional two peaks (levels) were observed in the DLTS spectrum. The annealing behavior of the levels suggests that the thermal donors originate from not a single type but several types of defects. (author)

  14. Carbon-hydrogen defects with a neighboring oxygen atom in n-type Si

    Science.gov (United States)

    Gwozdz, K.; Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2017-07-01

    We report on the electrical activation of neutral carbon-oxygen complexes in Si by wet-chemical etching at room temperature. Two deep levels, E65 and E75, are observed by deep level transient spectroscopy in n-type Czochralski Si. The activation enthalpies of E65 and E75 are obtained as EC-0.11 eV (E65) and EC-0.13 eV (E75). The electric field dependence of their emission rates relates both levels to single acceptor states. From the analysis of the depth profiles, we conclude that the levels belong to two different defects, which contain only one hydrogen atom. A configuration is proposed, where the CH1BC defect, with hydrogen in the bond-centered position between neighboring C and Si atoms, is disturbed by interstitial oxygen in the second nearest neighbor position to substitutional carbon. The significant reduction of the CH1BC concentration in samples with high oxygen concentrations limits the use of this defect for the determination of low concentrations of substitutional carbon in Si samples.

  15. On I(5577 Å and I (7620 Å auroral emissions and atomic oxygen densities

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    1996-07-01

    Full Text Available A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of η(3914 Å, η(5577 Å, η(7620 Å and η(N2VK. In particular, the roles played by energy transfer from N2(A3Σ+u and by other processes in the excitation of O(1S and O2(b1Σ+g were investigated in detail. It is concluded that the N2(A3Σ+u mechanism is dominant for the production of OI(5577 Å in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.

  16. Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition

    International Nuclear Information System (INIS)

    Tinck, S; Bogaerts, A

    2011-01-01

    In this paper, an O 2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al 2 O 3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O 2 , while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.

  17. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    Science.gov (United States)

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet

    Science.gov (United States)

    Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.

    2015-06-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8   ×   1015 to 2.0   ×   1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.

  19. Atomic scale study of the chemistry of oxygen, hydrogen and water at SiC surfaces

    International Nuclear Information System (INIS)

    Amy, Fabrice

    2007-01-01

    Understanding the achievable degree of homogeneity and the effect of surface structure on semiconductor surface chemistry is both academically challenging and of great practical interest to enable fabrication of future generations of devices. In that respect, silicon terminated SiC surfaces such as the cubic 3C-SiC(1 0 0) 3 x 2 and the hexagonal 6H-SiC(0 0 0 1) 3 x 3 are of special interest since they give a unique opportunity to investigate the role of surface morphology on oxygen or hydrogen incorporation into the surface. In contrast to silicon, the subsurface structure plays a major role in the reactivity, leading to unexpected consequences such as the initial oxidation starting several atomic planes below the top surface or the surface metallization by atomic hydrogen. (review article)

  20. Atomic oxygen adsorption and its effect on the oxidation behaviour of ZrB2-ZrC-SiC in air

    International Nuclear Information System (INIS)

    Gao Dong; Zhang Yue; Xu Chunlai; Song Yang; Shi Xiaobin

    2011-01-01

    Research highlights: → Atomic oxygen was adsorbed on the surface of ZrB 2 -ZrC-SiC ceramics. → Atomic oxygen was preferred reacted with borides according to XPS spectra. → The atomic oxygen adsorption is detrimental to the oxidation resistance. → The porosity should be the major reason which provides diffusion path for the atomic oxygen. → The structure evolution of the ceramics during oxidation is analyzed. - Abstract: Atomic oxygen is adsorbed on the surface of the hot-pressed ZrB 2 -ZrC-SiC ceramic composites, and then the ceramic composites are oxidized in air up to 1500 deg. C with the purpose of clarifying the effect of atomic oxygen adsorption on the oxidation behaviour of the ceramic composites. The XPS spectra are employed to identify the adsorption mechanism of atomic oxygen on the surface of the ceramic composites, and the formation of O-B, O-Zr, and O-Si bonds indicates that atomic oxygen is chemically adsorbed on the surface of the ceramic. In addition, atomic oxygen is preferred to be adsorbed on the surface of borides according to the Zr 3d core level spectrum. On the other hand, the atomic oxygen adsorption is detrimental to the oxidation resistance according to experimental results, and the porosity of the ceramic should be the major reason which provides diffusion path for the atomic oxygen. Furthermore, the structure evolution of the ceramic composites during oxidation process is analyzed.

  1. Use of an Atmospheric Atomic Oxygen Beam for Restoration of Defaced Paintings

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Karla, Margaret; Norris, Mary Jo; Real, William A.; Haytas, Christy A.

    1999-01-01

    An atmospheric atomic oxygen beam has been found to be effective in removing organic materials through oxidation that are typical of graffiti or other contaminant defacements which may occur to the surfaces of paintings. The technique, developed by the National Aeronautics and Space Administration, is portable and was successfully used at the Carnegie Museum of Art to remove a lipstick smudge from the surface of porous paint on the Andy Warhol painting "Bathtub." This process was also evaluated for suitability to remove felt tip and ball point ink graffiti from paper, gesso on canvas and cotton canvas.

  2. Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings. Revised

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin

    1999-01-01

    A noncontact technique is described that uses atomic oxygen, generated under low pressure in the presence of nitrogen, to remove soot and charred varnish from the surface of a painting. The process, which involves surface oxidation, permits control of the amount of surface material removed. The effectiveness of the process was evaluated by reflectance measurements from selected areas made during the removal of soot from acrylic gesso, ink on paper, and varnished oil paint substrates. For the latter substrate, treatment also involved the removal of damaged varnish and paint binder from the surface.

  3. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air

    Science.gov (United States)

    Porter, H. S.; Jackman, C. H.; Green, A. E. S.

    1976-01-01

    Relativistic electron and proton impact cross sections are obtained and represented by analytic forms which span the energy range from threshold to 1 GeV. For ionization processes, the Massey-Mohr continuum generalized oscillator strength surface is parameterized. Parameters are determined by simultaneous fitting to (1) empirical data, (2) the Bethe sum rule, and (3) doubly differential cross sections for ionization. Branching ratios for dissociation and predissociation from important states of N2 and O2 are determined. The efficiency for the production of atomic nitrogen and oxygen by protons with kinetic energy less than 1 GeV is determined using these branching ratio and cross section assignments.

  4. Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation

    Science.gov (United States)

    Zhang, Haijing; Ren, Siming; Pu, Jibin; Xue, Qunji

    2018-06-01

    Graphene has been demonstrated as a protective coating for Cu under ambient condition because of its high impermeability and light-weight oxidation barrier. However, it lacks the research of graphene as a protective coating in space environment. Here, we experimentally and theoretically study the oxidation behavior of graphene-coated Cu in vacuum atomic oxygen (AO) condition. After AO irradiation, the experimental results show multilayer graphene has better anti-oxidation than monolayer graphene. Meanwhile, the calculation results show the oxidation appeared on the graphene's grain boundaries or the film's vacancy defects for the monolayer graphene coated Cu foil. Moreover, the calculation results show the oxidation process proceeds slowly in multilayers because of the matched defects overlaps each other to form a steric hindrance to suppress the O atom diffusion in the vertical direction, and the mismatched defects generates potential energy barriers for interlayer to suppress the O atom diffusion in the horizontal direction. Hence, multilayer graphene films could serve as protection coatings to prevent diffusion of O atom.

  5. Accelerated Oxygen Atom Transfer and C-H Bond Oxygenation by Remote Redox Changes in Fe3 Mn-Iodosobenzene Adducts.

    Science.gov (United States)

    de Ruiter, Graham; Carsch, Kurtis M; Gul, Sheraz; Chatterjee, Ruchira; Thompson, Niklas B; Takase, Michael K; Yano, Junko; Agapie, Theodor

    2017-04-18

    We report the synthesis, characterization, and reactivity of [LFe 3 (PhPz) 3 OMn( s PhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene-metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57 Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2 Fe II Mn II vs. Fe III 3 Mn II ) influence oxygen atom transfer in tetranuclear Fe 3 Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study

    Science.gov (United States)

    Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.

    2018-06-01

    The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.

  7. MISSE 2 PEACE Polymers Experiment Atomic Oxygen Erosion Yield Error Analysis

    Science.gov (United States)

    McCarthy, Catherine E.; Banks, Bruce A.; deGroh, Kim, K.

    2010-01-01

    Atomic oxygen erosion of polymers in low Earth orbit (LEO) poses a serious threat to spacecraft performance and durability. To address this, 40 different polymer samples and a sample of pyrolytic graphite, collectively called the PEACE (Polymer Erosion and Contamination Experiment) Polymers, were exposed to the LEO space environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of the Materials International Space Station Experiment 1 & 2 (MISSE 1 & 2). The purpose of the PEACE Polymers experiment was to obtain accurate mass loss measurements in space to combine with ground measurements in order to accurately calculate the atomic oxygen erosion yields of a wide variety of polymeric materials exposed to the LEO space environment for a long period of time. Error calculations were performed in order to determine the accuracy of the mass measurements and therefore of the erosion yield values. The standard deviation, or error, of each factor was incorporated into the fractional uncertainty of the erosion yield for each of three different situations, depending on the post-flight weighing procedure. The resulting error calculations showed the erosion yield values to be very accurate, with an average error of 3.30 percent.

  8. Toward a New Capability for Upper Atmospheric Research using Atomic Oxygen Lidar

    Science.gov (United States)

    Clemmons, J. H.; Steinvurzel, P.; Mu, X.; Beck, S. M.; Lotshaw, W. T.; Rose, T. S.; Hecht, J. H.; Westberg, K. R.; Larsen, M. F.; Chu, X.; Fritts, D. C.

    2017-12-01

    Progress on development of a lidar system for probing the upper atmosphere based on atomic oxygen resonance is presented and discussed. The promise of a fully-developed atomic oxygen lidar system, which must be based in space to measure the upper atmosphere, for yielding comprehensive new insights is discussed in terms of its potential to deliver global, height-resolved measurements of winds, temperature, and density at a high cadence. An overview of the system is given, and its measurement principles are described, including its use of 1) a two-photon transition to keep the optical depth low; 2) laser tuning to provide the Doppler information needed to measure winds; and 3) laser tuning to provide a Boltzmann temperature measurement. The current development status is presented with a focus on what has been done to demonstrate capability in the laboratory and its evolution to a funded sounding rocket investigation designed to make measurements of three-dimensional turbulence in the upper mesosphere and lower thermosphere.

  9. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    Science.gov (United States)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.

    1992-11-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  10. On I(5577 Å and I (7620 Å auroral emissions and atomic oxygen densities

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    Full Text Available A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of η(3914 Å, η(5577 Å, η(7620 Å and η(N2VK. In particular, the roles played by energy transfer from N2(A3Σ+u and by other processes in the excitation of O(1S and O2(b1Σ+g were investigated in detail. It is concluded that the N2(A3Σ+u mechanism is dominant for the production of OI(5577 Å in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.

  11. Stability of V2O5 Supported on Titania in the Presence of Water, Bulk Oxygen Vacancies, and Adsorbed Oxygen Atoms

    DEFF Research Database (Denmark)

    Kristoffersen, Henrik Høgh; Neilson, Hunter L.; Buratto, Steven K.

    2017-01-01

    ). In the case of oxidative dehydrogenation of alkanes and methanol, the reaction produces water, oxygen vacancies, and hydrogen atoms bound to the surface. For this article we use density functional theory to examine how the presence of these species on the surface affects a V2O5 cluster, which we assume......A catalyst consisting of vanadium oxide submonolayers supported on rutile titanium dioxide is used for a variety of reactions. One important question is the difference between the activity of monomeric clusters (having one vanadium atom) and polymeric clusters (having more than one vanadium atom...

  12. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen

    Science.gov (United States)

    Barklem, P. S.

    2018-02-01

    Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data

  13. Two-photon absorption laser-induced fluorescence of atomic oxygen in the afterglow of pulsed positive corona discharge

    Science.gov (United States)

    Ono, Ryo; Takezawa, Kei; Oda, Tetsuji

    2009-08-01

    Atomic oxygen is measured in the afterglow of pulsed positive corona discharge using time-resolved two-photon absorption laser-induced fluorescence. The discharge occurs in a 14 mm point-to-plane gap in dry air. After the discharge pulse, the atomic oxygen density decreases at a rate of 5×104 s-1. Simultaneously, ozone density increases at almost the same rate, where the ozone density is measured using laser absorption method. This agreement between the increasing rate of atomic oxygen and decreasing rate of ozone proves that ozone is mainly produced by the well-known three-body reaction, O+O2+M→O3+M. No other process for ozone production such as O2(v)+O2→O3+O is observed. The spatial distribution of atomic oxygen density is in agreement with that of the secondary streamer luminous intensity. This agreement indicates that atomic oxygen is mainly produced in the secondary streamer channels, not in the primary streamer channels.

  14. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    Science.gov (United States)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  15. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  16. Influence of average ion energy and atomic oxygen flux per Si atom on the formation of silicon oxide permeation barrier coatings on PET

    Science.gov (United States)

    Mitschker, F.; Wißing, J.; Hoppe, Ch; de los Arcos, T.; Grundmeier, G.; Awakowicz, P.

    2018-04-01

    The respective effect of average incorporated ion energy and impinging atomic oxygen flux on the deposition of silicon oxide (SiO x ) barrier coatings for polymers is studied in a microwave driven low pressure discharge with additional variable RF bias. Under consideration of plasma parameters, bias voltage, film density, chemical composition and particle fluxes, both are determined relative to the effective flux of Si atoms contributing to film growth. Subsequently, a correlation with barrier performance and chemical structure is achieved by measuring the oxygen transmission rate (OTR) and by performing x-ray photoelectron spectroscopy. It is observed that an increase in incorporated energy to 160 eV per deposited Si atom result in an enhanced cross-linking of the SiO x network and, therefore, an improved barrier performance by almost two orders of magnitude. Furthermore, independently increasing the number of oxygen atoms to 10 500 per deposited Si atom also lead to a comparable barrier improvement by an enhanced cross-linking.

  17. Study of the metastable singlet of molecular nitrogen and of oxygen atoms in discharges and post-discharges

    International Nuclear Information System (INIS)

    Magne, Lionel

    1991-01-01

    Whereas discharges in nitrogen, in oxygen and in their mixtures are used in many different industrial processes (surface treatment, nitridation, oxidation, and so on), in order to get a better knowledge on nitrogen electronic states, this research thesis reports the study of the metastable singlet state of molecular nitrogen, and of oxygen atoms in their fundamental state. The molecular metastable has been observed by far-UV optical emission spectroscopy, in the positive column of a continuous discharge and in time post-discharge. As far as continuous discharge is concerned, the author measured the vibrational distribution of this state. A kinetic model has been developed, and calculated vibrational distributions are in good agreement with measurements. The density of oxygen atoms in fundamental state in time post-discharge has been measured by far-UV absorption optical spectroscopy. The probability of atom re-association of glass walls is deduced from the obtained results [fr

  18. The Dependence of Atomic Oxygen Undercutting of Protected Polyimide Kapton(tm) H upon Defect Size

    Science.gov (United States)

    Snyder, Aaron; deGroh, Kim K.

    2001-01-01

    Understanding the behavior of polymeric materials when exposed to the low-Earth-orbit (LEO) environment is important in predicting performance characteristics such as in-space durability. Atomic oxygen (AO) present in LEO is known to be the principal agent in causing undercutting erosion of SiO(x) protected polyimide Kapton(R) H film, which serves as a mechanically stable blanket material in solar arrays. The rate of undercutting is dependent on the rate of arrival, directionality and energy of the AO with respect to the film surface. The erosion rate also depends on the distribution of the size of defects existing in the protective coating. This paper presents results of experimental ground testing using low energy, isotropic AO flux together with numerical modeling to determine the dependence of undercutting erosion upon defect size.

  19. Atomic Oxygen Treatment Technique for Removal of Smoke Damage from Paintings

    Science.gov (United States)

    Rutledge, S. K.; Banks, B. A.

    1997-01-01

    Soot deposits that can accumulate on surfaces of a painting during a fire can be difficult to clean from some types of paintings without damaging the underlying paint layers. A non-contact technique has been developed which can remove the soot by allowing a gas containing atomic oxygen to flow over the surface and chemically react with the soot to form carbon monoxide and carbon dioxide. The reaction is limited to the surface, so the underlying paint is not touched. The process can be controlled so that the cleaning can be stopped once the paint surface is reached. This paper describes the smoke exposure and cleaning of untreated canvas, acrylic gesso, and sections of an oil painting using this technique. The samples were characterized by optical microscopy and reflectance spectroscopy.

  20. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    Science.gov (United States)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  1. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  2. Dependence of atomic oxygen resistance and the tribological properties on microstructures of WS2 films

    International Nuclear Information System (INIS)

    Xu, Shusheng; Gao, Xiaoming; Hu, Ming; Sun, Jiayi; Jiang, Dong; Wang, Desheng; Zhou, Feng; Weng, Lijun; Liu, Weimin

    2014-01-01

    Graphical abstract: - Highlights: • Pure WS 2 and WS 2 -Al composite films with different structures were prepared. • The compactness of WS 2 film was significantly improved due to incorporation of Al. • Different mechanisms of atomic oxygen resistance of both the films were discussed. • Films before and after AO irradiation kept the unchanged tribological properties. • The composite films showed much better wear resistance than pure WS 2 film. - Abstract: To study the anti-oxidation mechanism of WS 2 films, the pure WS 2 , and Al doped WS 2 composite films were prepared via radio frequency sputtering and the atomic oxygen (AO) irradiation tests were conducted using a ground AO simulation facility. The tribological properties of both films before and after AO irradiation were evaluated using vacuum ball-on-disk tribo-tester. The incorporation of a small fraction of Al dopant resulted in microstructure change from loose columnar platelet with significant porosity for pure WS 2 film to very dense structure. In pure WS 2 film, WS 2 exists as crystalline phase with edge-plane preferential orientation, but nanocrystalline and amorphous phase coexists for the WS 2 -Al composite film. Even if large amount of AO transported into the interior through the longitudinal pores, the pure film showed good AO irradiation resistance owing to the basal plane of WS 2 crystal exhibiting much higher anti-oxidation capacity than the edge-plane. The composite film also had excellent AO irradiation resistance due to the formation of effective thinner WO 3 cladding layer in the sub-surface layer. Tribological results revealed that the composite films showed a significantly improved wear resistance, in comparison to the pure WS 2 film. Besides, due to the effective AO resistance, the tribological properties of WS 2 films remained almost unchanged before and after AO irradiation

  3. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Karakalos, Stavros; Luo, Langli; Qiao, Zhi; Xie, Xiaohong; Wang, Chongmin; Su, Dong; Shao, Yuyan; Wu, Gang (BNL); (Oregon State U.); (SC); (PNNL); (Buffalo)

    2017-09-26

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability

  4. Quartz-crystal microbalance study for characterizing atomic oxygen in plasma ash tools

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Sakthivel, P.

    2001-01-01

    This article discusses the measurement of atomic oxygen (AO) concentrations in an oxygen discharge using a quartz-crystal microbalance (QCM). This is a device that has been previously used for monitoring thin-film deposition, among several other applications. The sensor consists of a silver-coated quartz crystal that oscillates at its specific resonant frequency (typically, at about 6 MHz), which is dependent on the mass of the crystal. When exposed to AO, the silver oxidizes rapidly, resulting in a change in its mass, and a consequent change in this frequency. The frequency change is measured with a counter, and when plotted versus time, it may be fit to a standard diffusion-limited oxide-growth model. This model is then used to determine the specific AO flux to the crystal, and by inference, to the wafer. Initial results of QCM measurements in the FusionGemini Plasma Asher (GPL TM -standard downstream microwave asher) and FusionGemini Enhanced Strip (GES TM -fluorine compatible enhanced strip asher) are presented in this article. The results indicate AO densities of the order of 10 12 cm -3 on the wafer. There is a marked increase in AO concentration with addition of nitrogen into the plasma, and a decrease in AO concentration with increasing pressure at constant flow. Effects of increasing the total plasma volume in the enhanced strip tool on AO production are discussed

  5. Oxygen atom transfer reactions from Mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis.

    Science.gov (United States)

    González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson

    2014-08-07

    In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.

  6. Hyperthermal K--TeF6 molecular beam scattering

    International Nuclear Information System (INIS)

    Wagner, A.F.; Young, C.E.; Pobo, L.G.; Wexler, S.

    1982-01-01

    Angular distributions of K + product ions from collisions of a beam of hyperthermal K atoms with a cross beam of thermal TeF 6 molecules were determined at 13.7 and 23.7 eV (lab). The angular yields of K atom products from the same system were too low to permit measurement of angular distributions. From the integrated yields, the K + ion/K atom branching ratio was determined to be greater than 10 3 . In addition to the extremely large branching ratio, the differential cross sections exhibited several other unusual characteristics: (a) the lack of small angle scattering, corresponding to virtual absence of covalent scattering, (b) two peaks in the differential cross section with an outer rainbow feature at very large scattering angles (approx.275 eV deg). The observations are unexpected from previous experimental and theoretical studies of electron transfer reactions and from the electronic and structural properties of TeF 6 and TeF - 6 . A simplified dynamics model based on formation of electronically excited TeF - 6 in the initial electron transfer, followed by inner crossings leading to formation of electronically and vibrationally unexcited TeF - 6 or dissociation to TeF - 5 and other ionic products, has been developed which accounts for the experimental results. The model suggests that the observed two peaks in the differential cross section are due to the production of TeF - 6 (inner peak) or TeF - 5 and other ionic dissociation products (outer peak). The model also suggests that the observed branching ratio requires a vertical electron affinity of < or =1.9 eV, much lower than its adiabatic electron affinity of 3.3 eV

  7. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  8. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  9. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    Science.gov (United States)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  10. Electronic excitation of Ti atoms sputtered by energetic Ar+ and He+ from clean and monolayer oxygen covered surfaces

    International Nuclear Information System (INIS)

    Pellin, M.J.; Gruen, D.M.; Young, C.E.; Wiggins, M.D.; Argonne National Lab., IL

    1983-01-01

    Electronic excitation of Ti atoms ejected during energetic ion bombardment (Ar + , He + ) of well characterized clean and oxygen covered polycrystalline Ti metal surfaces has been determined. For states with 0 to 2 eV and 3 to 5.5 eV of electronic energy, static mode laser fluorescence spectroscopy (LFS) and static mode spontaneous fluorescence spectroscopy (SFS) were used respectively. These experiments which were carried out in a UHV ( -10 Torr) system equipped with an Auger spectrometer provide measurements of the correlation between oxygen coverage (0 to 3 monolayers) and the excited state distribution of sputtered Ti atoms. The experimentally determined electronic partition function of Ti atoms does not show an exponential dependence on energy (E) above the ground state but rather an E -2 or E -3 power law dependence. (orig.)

  11. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang [Department; Hwang, Sooyeon [Center; Wang, Maoyu [School; Feng, Zhenxing [School; Karakalos, Stavros [Department; Luo, Langli [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Qiao, Zhi [Department; Xie, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wang, Chongmin [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Su, Dong [Center; Shao, Yuyan [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wu, Gang [Department

    2017-09-26

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that is determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.

  12. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction.

    Science.gov (United States)

    Yang, Liu; Cheng, Daojian; Xu, Haoxiang; Zeng, Xiaofei; Wan, Xin; Shui, Jianglan; Xiang, Zhonghua; Cao, Dapeng

    2018-06-26

    It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The half-wave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm -2 Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.

  13. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    Science.gov (United States)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    In recent years, the emphasis in space research has been shifting from space exploration to commercialization of space. In order to utilize space for commercial purposes it is necessary to understand the low earth orbit (LEO) space environment where most of the activities will be carried out. The studies on the LEO environment are mainly focused towards understanding the effect of atomic oxygen (AO) on spacecraft materials. In the first few shuttle flights, materials looked frosty because they were actually being eroded and textured: AO reacts with organic materials on spacecraft exteriors, gradually damaging them. When a spacecraft travel in LEO (where crewed vehicles and the International Space Station fly), the AO formed from the residual atmosphere can react with the spacecraft surfaces, causing damage to the vehicle. Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The major degradation effects in polymers are due to their exposure to atomic oxygen, vacuum ultraviolet and synergistic effects, which result in different damaging effects by modification of the polymer's chemical properties. In hydrocarbon containing polymers the main AO effect is the surface erosion via chemical reactions and the release of volatile reaction products associated with the mass loss. The application of a thin protective coating to the base materials is one of the most commonly used methods of preventing AO degradation. The purpose is to provide a barrier between base material and AO environment or, in some cases, to alter AO reactions to inhibit its diffusion. The effectiveness of a coating depends on its continuity, porosity, degree of

  14. Effects of Atomic Oxygen and Grease on Outgassing and Adhesion of Silicone Elastomers for Space Applications

    Science.gov (United States)

    de Groh, Henry C.; Puleo, Bernadette J.; Steinetz, Bruce M.

    An investigation of silicone elastomers for seals used in docking and habitat systems for future space exploration vehicles is being conducted at NASA. For certain missions, NASA is considering androgynous docking systems where two vehicles each having a seal would be required to: dock for a period of time, seal effectively, and then separate with minimum push-off forces for undocking. Silicone materials are generally chosen for their wide operating temperatures and low leakage rates. However silicone materials are often sticky and usually exhibit considerable adhesion when mated against metals and silicone surfaces. This paper investigates the adhesion unit pressure for a space rated silicone material (S0383-70) for either seal-on-seal (SoS) or seal-on-aluminum (SoAl) operation modes in the following conditions: as-received, after ground-based atomic-oxygen (AO) pre-treatment, after application of a thin coating of a space-qualified grease (Braycote 601EF), and after a combination of AO pre-treatment and grease coating. In order of descending adhesion reduction, the AO treatment reduced seal adhesion the most, followed by the AO plus grease pre-treatment, followed by the grease treatment. The effects of various treatments on silicone (S0383-70 and ELA-SA-401) outgassing properties were also investigated. The leading adhesion AO pre-treatment reduction led to a slight decrease in outgassing for the S0383-70 material and virtually no change in ELA-SA-401 outgassing.

  15. Determination of diffusion coefficients of oxygen atoms in ZrO2 using first-principles calculations

    International Nuclear Information System (INIS)

    Segi, Takashi; Okuda, Takanari

    2014-01-01

    Density functional theory and nudged elastic band calculations were performed in order to determine the diffusion coefficient for oxygen from monoclinic ZrO 2 . The calculated values for monoclinic ZrO 2 at 1000 K and 1500 K were 5.88 × 10 -16 cm 2 s -1 and 2.91 × 10 -11 cm 2 s -1 , respectively, and agreed with previously determined experimental values. In addition, the results of the nudged elastic band calculations suggest that interstitial oxygen sites exist between stable oxygen sites, and if oxygen atoms occupy these sites, stable structures with values for the lattice angle β of greater than 80.53° may be obtained. (author)

  16. Launch Vehicle Performance for Bipropellant Propulsion Using Atomic Propellants With Oxygen

    Science.gov (United States)

    Palaszewski, Bryan

    2000-01-01

    Atomic propellants for bipropellant launch vehicles using atomic boron, carbon, and hydrogen were analyzed. The gross liftoff weights (GLOW) and dry masses of the vehicles were estimated, and the 'best' design points for atomic propellants were identified. Engine performance was estimated for a wide range of oxidizer to fuel (O/F) ratios, atom loadings in the solid hydrogen particles, and amounts of helium carrier fluid. Rocket vehicle GLOW was minimized by operating at an O/F ratio of 1.0 to 3.0 for the atomic boron and carbon cases. For the atomic hydrogen cases, a minimum GLOW occurred when using the fuel as a monopropellant (O/F = 0.0). The atomic vehicle dry masses are also presented, and these data exhibit minimum values at the same or similar O/F ratios as those for the vehicle GLOW. A technology assessment of atomic propellants has shown that atomic boron and carbon rocket analyses are considered to be much more near term options than the atomic hydrogen rockets. The technology for storing atomic boron and carbon has shown significant progress, while atomic hydrogen is not able to be stored at the high densities needed for effective propulsion. The GLOW and dry mass data can be used to estimate the cost of future vehicles and their atomic propellant production facilities. The lower the propellant's mass, the lower the overall investment for the specially manufactured atomic propellants.

  17. Influence of oxygen impurity atoms on defect clusters and radiation hardening in neutron-irradiated vanadium

    International Nuclear Information System (INIS)

    Bajaj, R.; Wechsler, M.S.

    1975-01-01

    Single crystal TEM samples and polycrystalline tensile samples of vanadium containing 60-640 wt ppm oxygen were irradiated at about 100 0 C to about 1.3 x 10 19 neutrons/cm 2 (E greater than 1 MeV) and post-irradiation annealed up to 800 0 C. The defect cluster density increased and the average size decreased with increasing oxygen concentration. Higher oxygen concentrations caused the radiation hardening and radiation-anneal hardening to increase. The observations are consistent with the nucleation of defect clusters by small oxygen or oxygen-point defect complexes and the trapping of oxygen at defect clusters upon post-irradiation annealing

  18. Hyper-thermal neutron irradiation field for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1994-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwell distribution higher than the room temperature of 300 K, has been studied in order to improve the thermal neutron flux distribution in a living body for a deep-seated tumor in neutron capture therapy (NCT). Simulation calculations using MCNP-V3 were carried out in order to investigate the characteristics of the hyper-thermal neutron irradiation field. From the results of simulation calculations, the following were confirmed: (i) The irradiation field of the hyper-thermal neutrons is feasible by using some scattering materials with high temperature, such as Be, BeO, C, SiC and ZrH 1.7 . Especially, ZrH 1.7 is thought to be the best material because of good characteristics of up-scattering for thermal neutrons. (ii) The ZrH 1.7 of 1200 K yields the hyper-thermal neutrons of a Maxwell-like distribution at about 2000 K and the treatable depth is about 1.5 cm larger comparing with the irradiation of the thermal neutrons of 300 K. (iii) The contamination by the secondary gamma-rays from the scattering materials can be sufficiently eliminated to the tolerance level for NCT through the bismuth layer, without the larger change of the energy spectrum of hyper-thermal neutrons. ((orig.))

  19. O-, N-Atoms-Coordinated Mn Cofactors within a Graphene Framework as Bioinspired Oxygen Reduction Reaction Electrocatalysts.

    Science.gov (United States)

    Yang, Yang; Mao, Kaitian; Gao, Shiqi; Huang, Hao; Xia, Guoliang; Lin, Zhiyu; Jiang, Peng; Wang, Changlai; Wang, Hui; Chen, Qianwang

    2018-05-28

    Manganese (Mn) is generally regarded as not being sufficiently active for the oxygen reduction reaction (ORR) compared to other transition metals such as Fe and Co. However, in biology, manganese-containing enzymes can catalyze oxygen-evolving reactions efficiently with a relative low onset potential. Here, atomically dispersed O and N atoms coordinated Mn active sites are incorporated within graphene frameworks to emulate both the structure and function of Mn cofactors in heme-copper oxidases superfamily. Unlike previous single-metal catalysts with general M-N-C structures, here, it is proved that a coordinated O atom can also play a significant role in tuning the intrinsic catalytic activities of transition metals. The biomimetic electrocatalyst exhibits superior performance for the ORR and zinc-air batteries under alkaline conditions, which is even better than that of commercial Pt/C. The excellent performance can be ascribed to the abundant atomically dispersed Mn cofactors in the graphene frameworks, confirmed by various characterization methods. Theoretical calculations reveal that the intrinsic catalytic activity of metal Mn can be significantly improved via changing local geometry of nearest coordinated O and N atoms. Especially, graphene frameworks containing the Mn-N 3 O 1 cofactor demonstrate the fastest ORR kinetics due to the tuning of the d electronic states to a reasonable state. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optical measurements of atomic oxygen concentration, temperature and nitric oxide production rate in flames

    Science.gov (United States)

    Myhr, Franklin Henry

    An optical method for measuring nitric oxide (NO) production rates in flames was developed and characterized in a series of steady, one-dimensional, atmospheric-pressure laminar flames of 0.700 Hsb2/0.199 Nsb2/0.101 COsb2 or 0.700 CHsb4/0.300 Nsb2 (by moles) with dry air, with equivalence ratios from 0.79 to 1.27. Oxygen atom concentration, (O), was measured by two-photon laser-induced fluorescence (LIF), temperature was measured by ultraviolet Rayleigh scattering, and nitrogen concentration was calculated from supplied reactant flows; together this information was used to calculate the NO production rate through the thermal (Zel'dovich) mechanism. Measurements by two other techniques were compared with results from the above method. In the first comparison, gas sampling was used to measure axial NO concentration profiles, the slopes of which were multiplied by velocity to obtain total NO production rates. In the second comparison, LIF measurements of hydroxyl radical (OH) were used with equilibrium water concentrations and a partial equilibrium assumption to find (O). Nitric oxide production rates from all three methods agreed reasonably well. Photolytic interference was observed during (O) LIF measurements in all of the flames; this is the major difficulty in applying the optical technique. Photolysis of molecular oxygen in lean flames has been well documented before, but the degree of interference observed in the rich flames suggests that some other molecule is also dissociating; the candidates are OH, CO, COsb2 and Hsb2O. An extrapolative technique for removing the effects of photolysis from (O) LIF measurements worked well in all flames where NO production was significant. Using the optical method to measure NO production rates in turbulent flames will involve a tradeoff among spatial resolution, systematic photolysis error, and random shot noise. With the conventional laser system used in this work, a single pulse with a resolution of 700 mum measured NO

  1. Anti-Adhesion Elastomer Seal Coatings for Ultraviolet and Atomic Oxygen Protection

    Science.gov (United States)

    De Groh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.; Miller, Sharon K.

    2015-01-01

    Radiation blocking sunscreen coatings have been developed for the protection of elastomer seals used in low-Earth-orbit (LEO). The coatings protect the seals from ultraviolet (UV) radiation and atomic oxygen (AO) damage. The coatings were developed for use on NASA docking seals. Docking seal damage from the UV and AO present in LEO can constrain mission time-line, flight mode options, and increases risk. A low level of adhesion is also required for docking seals so undocking push-off forces can be low. The coatings presented also mitigate this unwanted adhesion. Greases with low collected volatile condensable materials (CVCM) and low total mass loss (TML) were mixed with slippery and/or UV blocking powders to create the protective coatings. Coatings were applied at rates up to 2 milligrams per square centimeter. Coated seals were exposed to AO and UV in the NUV (near-UV) and UV-C wavelength ranges (300 to 400 nanometers and 254 nanometers, respectively). Ground based ashers were used to simulate the AO of space. The Sun's UV energy was mimicked assuming a nose forward flight mode, resulting in an exposure rate of 2.5 megajoules per square meter per day. Exposures between 0 and 147 megajoules per square meter (UV-C) and 245 megajoules per square meter (NUV) were accomplished. The protective coatings were durable, providing protection from UV after a simulated docking and undocking cycle. The level of protection begins to decline at coverage rates less than 0.9 milligrams per square centimeter. The leakage of seals coated with Braycote plus 20 percent Z-cote ZnO sunscreen increased by a factor of 40 after moderate AO exposure; indicating that this coating might not be suitable due to AO intolerance. Seals coated with DC-7-16.4 percent Z-cote ZnO sunscreen were not significantly affected by combined doses of 2 x 10 (sup 21) atoms per square AO with 73 megajoules per square meter UV-C. Unprotected seals were significantly damaged at UV-C exposures of 0.3 megajoules per

  2. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  3. Mechanism of pulse discharge production of iodine atoms from CF3I molecules for a chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2009-01-01

    The pulsed chemical oxygen-iodine laser (COIL) development is aimed at many new applications. Pulsed electric discharge is most effective in turning COIL operation into the pulse mode by instant production of iodine atoms. A numerical model is developed for simulations of the pulsed COIL initiated by an electric discharge. The model comprises a system of kinetic equations for neutral and charged species, electric circuit equation, gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are found by solving the electron Boltzmann equation, which is re-calculated in a course of computations when plasma parameters changed. The processes accounted for in the Boltzmann equation include excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions, second-kind collisions and stepwise excitation of molecules. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. Results of numerical simulations are compared with experimental laser pulse waveforms. It is concluded that there is satisfactory agreement between theory and the experiment. The prevailing mechanism of iodine atom formation from the CF 3 I donor in a very complex kinetic system of the COIL medium under pulse discharge conditions, based on their detailed numerical modelling and by comparing these results both with experimental results of other authors and their own experiments, is established. The dominant iodine atom production mechanism for conditions under study is the electron-impact dissociation of CF 3 I molecules. It was proved that in the conditions of the experiment the secondary chemical reactions with O atoms play an insignificant role.

  4. Oxygen-driving and atomized mucosolvan inhalation combined with holistic nursing in the treatment of children severe bronchial pneumonia.

    Science.gov (United States)

    Yang, Fang

    2015-07-01

    This paper aimed to discuss the method, effect and safety of oxygen-driving and atomized Mucosolvan inhalation combined with holistic nursing in the treatment of children severe bronchial pneumonia. Totally 90 children with severe bronchial pneumonia who were treated in our hospital from March 2013 to November 2013 were selected as the research objects. Based on randomized controlled principle, those children were divided into control group, test group I and test group II according to the time to enter the hospital, 30 in each group. Patients in control group was given conventional therapy; test group I was given holistic nursing combined with conventional therapy; test group II was given oxygen-driving and atomized Mucosolvan inhalation combined with holistic nursing on the basis of conventional therapy. After test, the difference of main symptoms in control group, test group I and II was of no statistical significance (P>0.05). Test group II was found with the best curative effect, secondary was test group I and control group was the last. It can be concluded that, oxygen-driving and atomized Mucosolvan inhalation combined with holistic nursing has certain effect in the treatment of children severe bronchial pneumonia and is better than holistic nursing only.

  5. Oxygen-atom transfer chemistry and thermolytic properties of a di-tert-butylphosphate-ligated Mn4O4 cubane.

    Science.gov (United States)

    Van Allsburg, Kurt M; Anzenberg, Eitan; Drisdell, Walter S; Yano, Junko; Tilley, T Don

    2015-03-16

    [Mn4O4{O2P(OtBu)2}6] (1), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen-evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen-atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O-atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X-ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to Mn(II) species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin = pinacolate) is described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ab initio R1 mechanism of photostimulated oxygen isotope exchange reaction on a defect TiO{sub 2} surface: The case of terminal oxygen atom exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan, E-mail: ruslan.kevorkyants@gmail.com; Sboev, Mikhail N.; Chizhov, Yuri V.

    2017-05-01

    Highlights: • DFT R1 mechanism of photostimulated oxygen isotope exchange between {sup 16}O{sup 18}O and terminal oxygen atom of a defect surface of nanocrystalline TiO{sub 2} is proposed. • The mechanism involves four adsorption intermediates and five transition states. • Activation energy of the reaction is 0.24 eV. • G-tensors of O{sub 3}{sup −} intermediates match EPR data on O{sub 2} adsorbed on UV-irradiated TiO{sub 2} surface. - Abstract: Based on density functional theory we propose R1 mechanism of photostimulated oxygen isotope exchange (POIEx) reaction between {sup 16}O{sup 18}O and terminal oxygen atom of a defect TiO{sub 2} surface, which is modeled by amorphous Ti{sub 8}O{sub 16} nanocluster in excited S{sup 1} electronic state. The proposed mechanism involves four adsorption intermediates and five transition states. The computed activation energy of the POIEx equals 0.24 eV. The computed g-tensors of the predicted ozonide O{sub 3}{sup −} chemisorption species match well EPR data on O{sub 2} adsorption on UV-irradiated nanocrystalline TiO{sub 2}. This match serves a mean of justification of the proposed R1 mechanism of the POIEx reaction. In addition, it is found that the proposed R1 POIEx reaction’s mechanism differs from R1 mechanism of thermo-assisted OIEx reaction on a surface of supported vanadium oxide catalyst VO{sub x}/TiO{sub 2} reported earlier.

  7. Role of N2 molecules in pulse discharge production of I atoms for a pulsed chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2011-01-01

    A pulsed electric discharge is the most effective means to turn chemical oxygen-iodine laser (COIL) operation into the pulse mode by fast production of iodine atoms. Experimental studies and numerical simulations are performed on a pulsed COIL initiated by an electric discharge in a mixture CF 3 I : N 2 : O 2 ( 3 X) : O 2 (a 1 Δ g ) flowing out of a chemical singlet oxygen generator. A transverse pulsed discharge is realized at various iodide pressures. The model comprises a system of kinetic equations for neutral and charged species, the electric circuit equation, the gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are repeatedly re-calculated by the electron Boltzmann equation solver when the plasma parameters are changed. The processes accounted for in the Boltzmann equation include direct and stepwise excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions and second-kind collisions. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. A conclusion is drawn about satisfactory agreement between the theory and the experiment.

  8. Epitaxial GaN films by hyperthermal ion-beam nitridation of Ga droplets

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, J. W.; Ivanov, T.; Neumann, L.; Hoeche, Th.; Hirsch, D.; Rauschenbach, B. [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), D-04318 Leipzig (Germany)

    2012-06-01

    Epitaxial GaN film formation on bare 6H-SiC(0001) substrates via the process of transformation of Ga droplets into a thin GaN film by applying hyperthermal nitrogen ions is investigated. Pre-deposited Ga atoms in well defined amounts form large droplets on the substrate surface which are subsequently nitridated at a substrate temperature of 630 Degree-Sign C by a low-energy nitrogen ion beam from a constricted glow-discharge ion source. The Ga deposition and ion-beam nitridation process steps are monitored in situ by reflection high-energy electron diffraction. Ex situ characterization by x-ray diffraction and reflectivity techniques, Rutherford backscattering spectrometry, and electron microscopy shows that the thickness of the resulting GaN films depends on the various amounts of pre-deposited gallium. The films are epitaxial to the substrate, exhibit a mosaic like, smooth surface topography and consist of coalesced large domains of low defect density. Possible transport mechanisms of reactive nitrogen species during hyperthermal nitridation are discussed and the formation of GaN films by an ion-beam assisted process is explained.

  9. High-fluence hyperthermal ion irradiation of gallium nitride surfaces at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Finzel, A.; Gerlach, J.W., E-mail: juergen.gerlach@iom-leipzig.de; Lorbeer, J.; Frost, F.; Rauschenbach, B.

    2014-10-30

    Highlights: • Irradiation of gallium nitride films with hyperthermal nitrogen ions. • Surface roughening at elevated sample temperatures was observed. • No thermal decomposition of gallium nitride films during irradiation. • Asymmetric surface diffusion processes cause local roughening. - Abstract: Wurtzitic GaN films deposited on 6H-SiC(0001) substrates by ion-beam assisted molecular-beam epitaxy were irradiated with hyperthermal nitrogen ions with different fluences at different substrate temperatures. In situ observations with reflection high energy electron diffraction showed that during the irradiation process the surface structure of the GaN films changed from two dimensional to three dimensional at elevated temperatures, but not at room temperature. Atomic force microscopy revealed an enhancement of nanometric holes and canyons upon the ion irradiation at higher temperatures. The roughness of the irradiated and heated GaN films was clearly increased by the ion irradiation in accordance with x-ray reflectivity measurements. A sole thermal decomposition of the films at the chosen temperatures could be excluded. The results are discussed taking into account temperature dependent sputtering and surface uphill adatom diffusion as a function of temperature.

  10. Ultrafast atomic layer-by-layer oxygen vacancy-exchange diffusion in double-perovskite LnBaCo2O5.5+δ thin films.

    Science.gov (United States)

    Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu

    2014-04-22

    Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.

  11. Oxygen atom transfer from a trans-dioxoruthenium(VI) complex to nitric oxide.

    Science.gov (United States)

    Man, Wai-Lun; Lam, William W Y; Ng, Siu-Mui; Tsang, Wenny Y K; Lau, Tai-Chu

    2012-01-02

    In aqueous acidic solutions trans-[Ru(VI)(L)(O)(2)](2+) (L=1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane) is rapidly reduced by excess NO to give trans-[Ru(L)(NO)(OH)](2+). When ≤1 mol equiv NO is used, the intermediate Ru(IV) species, trans-[Ru(IV)(L)(O)(OH(2))](2+), can be detected. The reaction of [Ru(VI)(L)(O)(2)](2+) with NO is first order with respect to [Ru(VI)] and [NO], k(2)=(4.13±0.21)×10(1) M(-1) s(-1) at 298.0 K. ΔH(≠) and ΔS(≠) are (12.0±0.3) kcal mol(-1) and -(11±1) cal mol(-1) K(-1), respectively. In CH(3)CN, ΔH(≠) and ΔS(≠) have the same values as in H(2)O; this suggests that the mechanism is the same in both solvents. In CH(3)CN, the reaction of [Ru(VI)(L)(O)(2)](2+) with NO produces a blue-green species with λ(max) at approximately 650 nm, which is characteristic of N(2)O(3). N(2)O(3) is formed by coupling of NO(2) with excess NO; it is relatively stable in CH(3)CN, but undergoes rapid hydrolysis in H(2)O. A mechanism that involves oxygen atom transfer from [Ru(VI)(L)(O)(2)](2+) to NO to produce NO(2) is proposed. The kinetics of the reaction of [Ru(IV)(L)(O)(OH(2))](2+) with NO has also been investigated. In this case, the data are consistent with initial one-electron O(-) transfer from Ru(IV) to NO to produce the nitrito species [Ru(III)(L)(ONO)(OH(2))](2+) (k(2)>10(6) M(-1) s(-1)), followed by a reaction with another molecule of NO to give [Ru(L)(NO)(OH)](2+) and NO(2)(-) (k(2)=54.7 M(-1) s(-1)). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2008-02-01

    Full Text Available Data from the Fabry-Perot Interferometers at KEOPS (Sweden, Sodankylä (Finland, and Svalbard (Norway, have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the waves that are present in the high latitude upper thermosphere to be determined. Comparisons were made between the different parameters: the atomic oxygen intensities, the thermospheric winds and temperatures, and for each parameter the distribution of frequencies of the waves was determined. No dependence on the number of waves on geomagnetic activity levels, or position in the solar cycle, was found. All the FPIs have had different detectors at various times, producing different time resolutions of the data, so comparisons between the different years, and between data from different sites, showed how the time resolution determines which waves are observed. In addition to the cutoff due to the Nyquist frequency, poor resolution observations significantly reduce the number of short-period waves (<1 h period that may be detected with confidence. The length of the dataset, which is usually determined by the length of the night, was the main factor influencing the number of long period waves (>5 h detected. Comparisons between the number of gravity waves detected at KEOPS and Sodankylä over all the seasons showed a similar proportion of waves to the number of nights used for both sites, as expected since the two sites are at similar latitudes and therefore locations with respect to the auroral oval, confirming this as a likely source region. Svalbard showed fewer waves with short periods than KEOPS data for a season when both had the same time resolution data

  13. Accurate Cross Sections for Excitation of Resonance Transitions in Atomic Oxygen

    Science.gov (United States)

    Tayal, S. S.

    2004-01-01

    Electron collision excitation cross sections for the resonance 2p(sup)4 (sup 3)P-2p(sup 3)3s (sup 3)S(sup 0), 2p(sup 4) (sup 3)P-2p(sup 3)3d (sup 3)D(sup 0), 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0), 2p(sup 4) (sup 3)P-2p(sup 3)3s (sup 3)P(sup 0) and 2p(sup 4) (sup 3)P-2s2p(sup 5) (sup 3)P(sup 0) transitions have been calculated by using the R matrix with a pseudostates approach for incident electron energies from near threshold to 100 eV. The excitation of these transition sgives rise to strong atomic oxygen emission features at 1304, 1027, 989, 878, and 792 Angstrom in the spectra of several planetary atmospheres. We included 22 spectroscopic bound and autoionizing states and 30 pseudostates in the close-coupling expansion. The target wave functions are chosen to properly account for the important correlation and relaxation effects. The effect of coupling to the continuum is included through the use of pseudostates. The contribution of the ionization continuum is significant for resonance transitions. Measured absolute direct excitation cross sections of 0 I are reported by experimental groups from the Jet Propulsion Laboratory and Johns Hopkins University. Good agreement is noted for the 2p(sup)4 (sup 3)P-2p(sup 3)3s (sup 3)S(sup 0) transition (lambda 1304 Ang) with measured cross sections from both groups that agree well with each other. There is disagreement between experiments for other transitions. Our results support the measured cross sections from the Johns Hopkins University for the 2p(sup 4) (sup 3)P-2p(sup 3)3d (sup 3)D(sup 0) and 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0) transitions, while for the 2p4 (sup 3)P-2p(sup 3)3s (sup 3)D(sup 0) transition the agreement is switched to the measured cross sections from the Jet Propulsion Laboratory.

  14. Numerical simulation of physicochemical interactions between oxygen atom and phosphatidylcholine due to direct irradiation of atmospheric pressure nonequilibrium plasma to biological membrane with quantum mechanical molecular dynamics

    Science.gov (United States)

    Uchida, Satoshi; Yoshida, Taketo; Tochikubo, Fumiyoshi

    2017-10-01

    Plasma medicine is one of the most attractive applications using atmospheric pressure nonequilibrium plasma. With respect to direct contact of the discharge plasma with a biological membrane, reactive oxygen species play an important role in induction of medical effects. However, complicated interactions between the plasma radicals and membrane have not been understood well. In the present work, we simulated elemental processes at the first stage of physicochemical interactions between oxygen atom and phosphatidylcholine using the quantum mechanical molecular dynamics code in a general software AMBER. The change in the above processes was classified according to the incident energy of oxygen atom. At an energy of 1 eV, the abstraction of a hydrogen atom and recombination to phosphatidylcholine were simultaneously occurred in chemical attachment of incident oxygen atom. The exothermal energy of the reaction was about 80% of estimated one based on the bond energies of ethane. An oxygen atom over 10 eV separated phosphatidylcholine partially. The behaviour became increasingly similar to physical sputtering. The reaction probability of oxygen atom was remarkably high in comparison with that of hydrogen peroxide. These results suggest that we can uniformly estimate various physicochemical dynamics of reactive oxygen species against membrane lipids.

  15. Denaturation of membrane proteins and hyperthermic cell killing

    NARCIS (Netherlands)

    Burgman, Paulus Wilhelmus Johannes Jozef

    1993-01-01

    Summarizing: heat induced denaturation of membrane proteins is probably related to hyperthermic cell killing. Induced resistance of heat sensitive proteins seems to be involved in the development of thermotolerance. Although many questions remain still to be answered, it appears that HSP72, when

  16. Selection of chemotherapy for hyperthermic intraperitoneal use in gastric cancer

    NARCIS (Netherlands)

    Braam, H. J.; Schellens, J. H.; Boot, H.; van Sandick, J. W.; Knibbe, C. A.; Boerma, D.; van Ramshorst, B.

    2015-01-01

    Purpose: Several studies have shown the potential benefit of cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) in gastric cancer patients. At present the most effective chemotherapeutic regime in HIPEC for gastric cancer is unknown. The aim of this review was to

  17. Adsorption Energies of Carbon, Nitrogen, and Oxygen Atoms on the Low-temperature Amorphous Water Ice: A Systematic Estimation from Quantum Chemistry Calculations

    Science.gov (United States)

    Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya

    2018-03-01

    We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.

  18. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  19. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  20. Early Triassic alternative ecological states driven by anoxia, hyperthermals, and erosional pulses following the end-Permian mass extinction

    Science.gov (United States)

    Pietsch, C.; Petsios, E.; Bottjer, D. J.

    2015-12-01

    The end-Permian mass extinction, 252 million years ago, was the most devastating loss of biodiversity in Earth's history. Massive volcanic eruptions of the Siberian Traps and the concurrent burning of coal, carbonate, and evaporite deposits emplaced greenhouse and toxic gasses. Hyperthermal events of the surface ocean, up to 40°C, led to reduced gradient-driven ocean circulation which yielded extensive equatorial oxygen minimum zones. Today, anthropogenic greenhouse gas production is outpacing carbon input modeled for the end-Permian mass extinction, which suggests that modern ecosystems may yet experience a severe biotic crisis. The Early Triassic records the 5 million year aftermath of the end-Permian mass extinction and is often perceived as an interval of delayed recovery. We combined a new, high resolution carbon isotope record, sedimentological analysis, and paleoecological collections from the Italian Werfen Formation to fully integrate paleoenvironmental change with the benthic ecological response. We find that the marine ecosystem experienced additional community restructuring events due to subsequent hyperthermal events and pulses of erosion. The benthic microfauna and macrofauna both contributed to disaster communities that initially rebounded in the earliest Triassic. 'Disaster fauna' including microbialites, microconchids, foraminifera, and "flat clams" took advantage of anoxic conditions in the first ~500,000 years, dominating the benthic fauna. Later, in the re-oxygenated water column, opportunistic disaster groups were supplanted by a more diverse, mollusc-dominated benthic fauna and a complex ichnofauna. An extreme temperature run-up beginning in the Late Dienerian led to an additional hyperthermal event in the Late-Smithian which co-occurred with increased humidity and terrestrial run-off. Massive siliciclastic deposits replaced carbonate deposition which corresponds to the infaunalization of the benthic fauna. The disaster taxa dominated

  1. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  2. Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.

    Science.gov (United States)

    Saito, Minoru; Okazaki, Isao

    2009-12-01

    The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.

  3. First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques

    International Nuclear Information System (INIS)

    Fang, H. Z.; Shang, S. L.; Wang, Y.; Liu, Z. K.; Alfonso, D.; Alman, D. E.; Shin, Y. K.; Zou, C. Y.; Duin, A. C. T. van; Lei, Y. K.; Wang, G. F.

    2014-01-01

    This paper is concerned with the prediction of oxygen diffusivities in fcc nickel from first-principles calculations and large-scale atomic simulations. Considering only the interstitial octahedral to tetrahedral to octahedral minimum energy pathway for oxygen diffusion in fcc lattice, greatly underestimates the migration barrier and overestimates the diffusivities by several orders of magnitude. The results indicate that vacancies in the Ni-lattice significantly impact the migration barrier of oxygen in nickel. Incorporation of the effect of vacancies results in predicted diffusivities consistent with available experimental data. First-principles calculations show that at high temperatures the vacancy concentration is comparable to the oxygen solubility, and there is a strong binding energy and a redistribution of charge density between the oxygen atom and vacancy. Consequently, there is a strong attraction between the oxygen and vacancy in the Ni lattice, which impacts diffusion

  4. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts.

    Science.gov (United States)

    Yin, Peiqun; Yao, Tao; Wu, Yuen; Zheng, Lirong; Lin, Yue; Liu, Wei; Ju, Huanxin; Zhu, Junfa; Hong, Xun; Deng, Zhaoxiang; Zhou, Gang; Wei, Shiqiang; Li, Yadong

    2016-08-26

    A new strategy for achieving stable Co single atoms (SAs) on nitrogen-doped porous carbon with high metal loading over 4 wt % is reported. The strategy is based on a pyrolysis process of predesigned bimetallic Zn/Co metal-organic frameworks, during which Co can be reduced by carbonization of the organic linker and Zn is selectively evaporated away at high temperatures above 800 °C. The spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements both confirm the atomic dispersion of Co atoms stabilized by as-generated N-doped porous carbon. Surprisingly, the obtained Co-Nx single sites exhibit superior ORR performance with a half-wave potential (0.881 V) that is more positive than commercial Pt/C (0.811 V) and most reported non-precious metal catalysts. Durability tests revealed that the Co single atoms exhibit outstanding chemical stability during electrocatalysis and thermal stability that resists sintering at 900 °C. Our findings open up a new routine for general and practical synthesis of a variety of materials bearing single atoms, which could facilitate new discoveries at the atomic scale in condensed materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Comparison of NO titration and fiber optics catalytic probes for determination of neutral oxygen atom concentration in plasmas and postglows

    International Nuclear Information System (INIS)

    Mozetic, Miran; Ricard, Andre; Babic, Dusan; Poberaj, Igor; Levaton, Jacque; Monna, Virginie; Cvelbar, Uros

    2003-01-01

    A comparative study of two different absolute methods NO titration and fiber optics catalytic probe (FOCP) for determination of neutral oxygen atom density is presented. Both methods were simultaneously applied for measurements of O density in a postglow of an Ar/O 2 plasma created by a surfatron microwave generator with the frequency of 2.45 GHz an adjustable output power between 30 and 160 W. It was found that the two methods gave similar results. The advantages of FOCP were found to be as follows: it is a nondestructive method, it enables real time measuring of the O density, it does not require any toxic gas, and it is much faster than NO titration. The advantage of NO titration was found to be the ability to measure O density in a large range of dissociation of oxygen molecules

  6. A Space Experiment to Measure the Atomic Oxygen Erosion of Polymers and Demonstrate a Technique to Identify Sources of Silicone Contamination

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn; hide

    1999-01-01

    A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.

  7. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-23

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  8. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M.; Callaghan, Susan; Flanagan, Keith J.; Wiesner, Thomas; Laquai, Fré dé ric; Senge, Mathias O.

    2018-01-01

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  9. Electron and Oxygen Atom Transfer Chemistry of Co(II) in a Proton Responsive, Redox Active Ligand Environment.

    Science.gov (United States)

    Cook, Brian J; Pink, Maren; Pal, Kuntal; Caulton, Kenneth G

    2018-05-21

    The bis-pyrazolato pyridine complex LCo(PEt 3 ) 2 serves as a masked form of three-coordinate Co II and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt 3 from LCo(PEt 3 ) 2 , but the final cobalt product is still divalent cobalt, in LCo(NMO) 2 . The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt 3 ) 2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt 3 ) 2 Cl(LiOTf) 2 ] 2 held together by Li + binding to very nucleophilic chloride on Co(III) and triflate binding to those Li + . In contrast, Cp 2 Fe + effects oxidation to trivalent cobalt, to form (HL)Co(PEt 3 ) 2 Cl + ; proton and the chloride originate from solvent in a rare example of CH 2 Cl 2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt 3 nucleophile on carbon of the 1e oxidant radical Cp 2 Fe + , forming a P-C bond and H + ; this reaction competes in the reaction of LCo(PEt 3 ) 2 with Cp 2 Fe + .

  10. Modelling of the heat transfer during oxygen atoms recombination on metallic surfaces in a plasma reactor

    NARCIS (Netherlands)

    Cavadias, S; Cauquot, P; Amouroux, J

    1997-01-01

    Space shuttle overheating during the re-entry phase, due to catalytic oxygen recombination on the thermal protection system, is a problem of practical and theoretical interest. The energy transfer is characterised by the product of the accommodation and the recombination coefficients. Previous

  11. Hyperthermic intraperitoneal chemotherapy for gastric and colorectal cancer in Mainland China

    OpenAIRE

    Suo, Tao; Mahteme, Haile; Qin, Xin-Yu

    2011-01-01

    AIM: To investigate the current status of peritoneal carcinomatosis (PC) management, as well as the usage of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) in mainland China.

  12. Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction.

    Science.gov (United States)

    Li, Qiheng; Chen, Wenxing; Xiao, Hai; Gong, Yue; Li, Zhi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Cheong, Weng-Chon; Shen, Rongan; Fu, Ninghua; Gu, Lin; Zhuang, Zhongbin; Chen, Chen; Wang, Dingsheng; Peng, Qing; Li, Jun; Li, Yadong

    2018-06-01

    Heteroatom-doped Fe-NC catalyst has emerged as one of the most promising candidates to replace noble metal-based catalysts for highly efficient oxygen reduction reaction (ORR). However, delicate controls over their structure parameters to optimize the catalytic efficiency and molecular-level understandings of the catalytic mechanism are still challenging. Herein, a novel pyrrole-thiophene copolymer pyrolysis strategy to synthesize Fe-isolated single atoms on sulfur and nitrogen-codoped carbon (Fe-ISA/SNC) with controllable S, N doping is rationally designed. The catalytic efficiency of Fe-ISA/SNC shows a volcano-type curve with the increase of sulfur doping. The optimized Fe-ISA/SNC exhibits a half-wave potential of 0.896 V (vs reversible hydrogen electrode (RHE)), which is more positive than those of Fe-isolated single atoms on nitrogen codoped carbon (Fe-ISA/NC, 0.839 V), commercial Pt/C (0.841 V), and most reported nonprecious metal catalysts. Fe-ISA/SNC is methanol tolerable and shows negligible activity decay in alkaline condition during 15 000 voltage cycles. X-ray absorption fine structure analysis and density functional theory calculations reveal that the incorporated sulfur engineers the charges on N atoms surrounding the Fe reactive center. The enriched charge facilitates the rate-limiting reductive release of OH* and therefore improved the overall ORR efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Single Molecule Atomic Force Microscopy Studies of Photosensitized Singlet Oxygen Behavior on a DNA Origami Template

    DEFF Research Database (Denmark)

    Helmig, Sarah Wendelboe; Rotaru, Alexandru; Arian, Dumitru

    2010-01-01

    DNA origami, the folding of a long single-stranded DNA sequence (scaffold strand) by hundreds of short synthetic oligonucleotides (staple strands) into parallel aligned helices, is a highly efficient method to form advanced self-assembled DNA-architectures. Since molecules and various materials can...... be conjugated to each of the short staple strands, the origami method offers a unique possibility of arranging molecules and materials in well-defined positions on a structured surface. Here we combine the action of light with AFM and DNA nanostructures to study the production of singlet oxygen from a single...... photosensitizer molecule conjugated to a selected DNA origami staple strand on an origami structure. We demonstrate a distance-dependent oxidation of organic moieties incorporated in specific positions on DNA origami by singlet oxygen produced from a single photosensitizer located at the center of each origami....

  14. Atomic-Oxygen-Durable and Electrically-Conductive CNT-POSS-Polyimide Flexible Films for Space Applications.

    Science.gov (United States)

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Murray, Vanessa J; Marshall, Brooks C; Qian, Min; Minton, Timothy K; Hanein, Yael

    2015-06-10

    In low Earth orbit (LEO), hazards such as atomic oxygen (AO) or electrostatic discharge (ESD) degrade polymeric materials, specifically, the extensively used polyimide (PI) Kapton. We prepared PI-based nanocomposite films that show both AO durability and ESD protection by incorporating polyhedral oligomeric silsesquioxane (POSS) and carbon nanotube (CNT) additives. The unique methods that are reported prevent CNT agglomeration and degradation of the CNT properties that are common in dispersion-based processes. The influence of the POSS content on the electrical, mechanical, and thermo-optical properties of the CNT-POSS-PI films was investigated and compared to those of control PI and CNT-PI films. CNT-POSS-PI films with 5 and 15 wt % POSS content exhibited sheet resistivities as low as 200 Ω/□, and these resistivities remained essentially unchanged after exposure to AO with a fluence of ∼2.3 × 10(20) O atoms cm(-2). CNT-POSS-PI films with 15 wt % POSS content exhibited an erosion yield of 4.8 × 10(-25) cm(3) O atom(-1) under 2.3 × 10(20) O atoms cm(-2) AO fluence, roughly one order of magnitude lower than that of pure PI films. The durability of the conductivity of the composite films was demonstrated by rolling film samples with a tight radius up to 300 times. The stability of the films to thermal cycling and ionizing radiation was also demonstrated. These properties make the prepared CNT-POSS-PI films with 15 wt % POSS content excellent candidates for applications where AO durability and electrical conductivity are required for flexible and thermally stable materials. Hence, they are suggested here for LEO applications such as the outer layers of spacecraft thermal blankets.

  15. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Ravi, E-mail: aerawat27@gmail.com; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  16. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Hefny, M.M.; Pattyn, C.; Lukeš, Petr; Benedikt, J.

    2016-01-01

    Roč. 49, č. 40 (2016), s. 404002 ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : atmospheric pressure plasma * transport of reactive species * reactive oxygen species * aqueous phase chemistry * plasma and liquids * phenol aqueous chemistry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/40/404002

  17. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    International Nuclear Information System (INIS)

    Hefny, Mohamed Mokhtar; Pattyn, Cedric; Benedikt, Jan; Lukes, Petr

    2016-01-01

    A remote microscale atmospheric pressure plasma jet ( µ APPJ) with He, He/H 2 O, He/O 2 , and He/O 2 /H 2 O gas mixtures was used to study the transport of reactive species from the gas phase into the liquid and the following aqueous phase chemistry. The effects induced by the µ APPJ in water were quantitatively studied using phenol as a chemical probe and by measuring H 2 O 2 concentration and pH values. These results were combined with the analysis of the absolute densities of the reactive species and the modeling of convective/diffusion transport and recombination reactions in the effluent of the plasma jet. Additionally, modified plasma jets were used to show that the role of emitted photons in aqueous chemistry is negligible for these plasma sources. The fastest phenol degradation was measured for the He/O 2 plasma, followed by He/H 2 O, He/O 2 /H 2 O, and He plasmas. The modeled quantitative flux of O atoms into the liquid in the He/O 2 plasma case was highly comparable with the phenol degradation rate and showed a very high transfer efficiency of reactive species from the plasma into the liquid, where more than half of the O atoms leaving the jet nozzle entered the liquid. The results indicate that the high oxidative effect of He/O 2 plasma was primarily due to solvated O atoms, whereas OH radicals dominated the oxidative effects induced in water by plasmas with other gas mixtures. These findings help to understand, in a quantitative way, the complex interaction of cold atmospheric plasmas with aqueous solutions and will allow a better understanding of the interaction of these plasmas with water or buffered solutions containing biological macromolecules, microorganisms, or even eukaryotic cells. Additionally, the µ APPJ He/O 2 plasma source seems to be an ideal tool for the generation of O atoms in aqueous solutions for any future studies of their reactivity. (paper)

  18. First-Principles Study on the Structural and Electronic Properties of N Atoms Doped-Rutile TiO2 of Oxygen Vacancies

    Directory of Open Access Journals (Sweden)

    Zhong-Liang Zeng

    2015-01-01

    Full Text Available For the propose of considering the actual situation of electronic neutral, a simulation has been down on the basis of choosing the position of dual N and researching the oxygen vacancy. It is found that the reason why crystal material gets smaller is due to the emergence of impurity levels. By introducing the oxygen vacancy to the structure, the results show that while the oxygen vacancy is near the two nitrogen atoms which have a back to back position, its energy gets the lowest level and its structure gets the most stable state. From its energy band structure and density, the author finds that the impurity elements do not affect the migration of Fermi level while the oxygen vacancy has been increased. Instead of that, the conduction band of metal atoms moves to the Fermi level and then forms the N-type semiconductor material, but the photocatalytic activity is not as good as the dual N-doping state.

  19. Mid-latitude empirical model of the height distribution of atomic oxygen in the MLT region for different solar and geophysical conditions

    Science.gov (United States)

    Semenov, A.; Shefov, N.; Fadel, Kh.

    The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.

  20. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Li, Min; Gu, Yizhuo; Wang, Shaokai, E-mail: wsk@buaa.edu.cn; Zhang, Zuoguang

    2017-04-30

    Highlights: • Hexagonal boron nitride nanosheets can be well exfoliated with the help of nanofibrillated cellulose. • A carpet-like rough surface and distortion in crystal structure of h-BN are found in both h-BN film and h-BN/epoxy film after AO exposure. • H-BN/epoxy film exhibits a higher mass loss and erosion yield, different element content changes and chemical oxidations compared with h-BN film. - Abstract: Space aircrafts circling in low earth orbit are suffered from highly reactive atomic oxygen (AO). To shield AO, a flexible thin film with 80 wt.% hexagonal boron nitride (h-BN) and h-BN/epoxy film were fabricated through vacuum filtration and adding nanofibrillated cellulose fibers. H-BN nanosheets were hydroxylated for enhancing interaction in the films. Mass loss and erosion yield at accumulated AO fluence about 3.04 × 10{sup 20} atoms/cm{sup 2} were adopted to evaluate the AO resistance properties of the films. A carpet-like rough surface, chemical oxidations and change in crystal structure of h-BN were found after AO treatment, and the degrading mechanism was proposed. The mass loss and erosion yield under AO attack were compared between h-BN film and h-BN/epoxy film, and the comparison was also done for various types of shielding AO materials. Excellent AO resistance property of h-BN film is shown, and the reasons are analyzed.

  1. Oxidation of nitrite by a trans-dioxoruthenium(VI) complex: direct evidence for reversible oxygen atom transfer.

    Science.gov (United States)

    Man, Wai-Lun; Lam, William W Y; Wong, Wai-Yeung; Lau, Tai-Chu

    2006-11-15

    Reaction of trans-[Ru(VI)(L)(O)(2)](2+) (1, L = 1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane, a tetradentate macrocyclic ligand with N(2)O(2) donor atoms) with nitrite in aqueous solution or in H(2)O/CH(3)CN produces the corresponding (nitrato)oxoruthenium(IV) species, trans-[Ru(IV)(L)(O)(ONO(2))](+) (2), which then undergoes relatively slow aquation to give trans-[Ru(IV)(L)(O)(OH(2))](2+). These processes have been monitored by both ESI/MS and UV/vis spectrophotometry. The structure of trans-[Ru(IV)(L)(O)(ONO(2))](+) (2) has been determined by X-ray crystallography. The ruthenium center adopts a distorted octahedral geometry with the oxo and the nitrato ligands trans to each other. The Ru=O distance is 1.735(3) A, the Ru-ONO(2) distance is 2.163(4) A, and the Ru-O-NO(2) angle is 138.46(35) degrees . Reaction of trans-[Ru(VI)(L)((18)O)(2)](2+) (1-(18)O(2)) with N(16)O(2)(-) in H(2)O/CH(3)CN produces the (18)O-enriched (nitrato)oxoruthenium(IV) species 2-(18)O(2). Analysis of the ESI/MS spectrum of 2-(18)O(2) suggests that scrambling of the (18)O atoms has occurred. A mechanism that involves linkage isomerization of the nitrato ligand and reversible oxygen atom transfer is proposed.

  2. Earth system feedback statistically extracted from the Indian Ocean deep-sea sediments recording Eocene hyperthermals.

    Science.gov (United States)

    Yasukawa, Kazutaka; Nakamura, Kentaro; Fujinaga, Koichiro; Ikehara, Minoru; Kato, Yasuhiro

    2017-09-12

    Multiple transient global warming events occurred during the early Palaeogene. Although these events, called hyperthermals, have been reported from around the globe, geologic records for the Indian Ocean are limited. In addition, the recovery processes from relatively modest hyperthermals are less constrained than those from the severest and well-studied hothouse called the Palaeocene-Eocene Thermal Maximum. In this study, we constructed a new and high-resolution geochemical dataset of deep-sea sediments clearly recording multiple Eocene hyperthermals in the Indian Ocean. We then statistically analysed the high-dimensional data matrix and extracted independent components corresponding to the biogeochemical responses to the hyperthermals. The productivity feedback commonly controls and efficiently sequesters the excess carbon in the recovery phases of the hyperthermals via an enhanced biological pump, regardless of the magnitude of the events. Meanwhile, this negative feedback is independent of nannoplankton assemblage changes generally recognised in relatively large environmental perturbations.

  3. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.

    Science.gov (United States)

    Chin, Ya-Huei Cathy; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-10-12

    barrierless. In the absence of O(2), alternate weaker oxidants, such as H(2)O or CO(2), lead to a final kinetic regime in which C-H bond dissociation on *-* pairs at bare cluster surfaces limit CH(4) conversion rates. Rates become first-order in CH(4) and independent of coreactant and normal CH(4)/CD(4) kinetic isotope effects are observed. In this case, turnover rates increase with increasing dispersion, because low-coordination Pt atoms stabilize the C-H bond activation transition states more effectively via stronger binding to CH(3) and H fragments. These findings and their mechanistic interpretations are consistent with all rate and isotopic data and with theoretical estimates of activation barriers and of cluster size effects on transition states. They serve to demonstrate the essential role of the coverage and reactivity of chemisorbed oxygen in determining the type and effectiveness of surface structures in CH(4) oxidation reactions using O(2), H(2)O, or CO(2) as oxidants, as well as the diversity of rate dependencies, activation energies and entropies, and cluster size effects that prevail in these reactions. These results also show how theory and experiments can unravel complex surface chemistries on realistic catalysts under practical conditions and provide through the resulting mechanistic insights specific predictions for the effects of cluster size and surface coordination on turnover rates, the trends and magnitude of which depend sensitively on the nature of the predominant adsorbed intermediates and the kinetically relevant steps.

  4. Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei, E-mail: cqglei@163.com [School of Material and Chemical Engieering, Tongren University, Tongren 554300 (China); Obot, Ime Bassey [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zheng, Xingwen [Material Corrosion and Protection Key Laboratory of Sichuan province, Zigong 643000 (China); Shen, Xun [School of Material and Chemical Engieering, Tongren University, Tongren 554300 (China); Qiang, Yujie [Material Corrosion and Protection Key Laboratory of Sichuan province, Zigong 643000 (China); Kaya, Savaş; Kaya, Cemal [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey)

    2017-06-01

    Highlights: • We obtained the habit information of α-Fe obtained by the “Morphology” module. • The adsorption of pyrrole, furan, and thiophene on Fe(110) surface were studied by DFT calculations. • Our DFT modeling provided a reasonable micro-explanation to the empirical rule. - Abstract: Steel is an important material in industry. Adding heterocyclic organic compounds have proved to be very efficient for steel protection. There exists an empirical rule that the general trend in the inhibition efficiencies of molecules containing heteroatoms is such that O < N < S. However, an atomic-level insight into the inhibition mechanism is still lacked. Thus, in this work, density functional theory calculations was used to investigate the adsorption of three typical heterocyclic molecules, i.e., pyrrole, furan, and thiophene, on Fe(110) surface. The approach is illustrated by carrying out geometric optimization of inhibitors on the stable and most exposed plane of α-Fe. Some salient features such as charge density difference, changes of work function, density of states were detailedly described. The present study is helpful to understand the afore-mentioned experiment rule.

  5. Solar photolysis of ozone to singlet D oxygen atoms, O(1D)

    International Nuclear Information System (INIS)

    Blackburn, T.E.

    1984-01-01

    Ground level solar photolysis rate coefficients (jO 3 ) were measured for the photolysis of ozone by sunlight, (O 3 + hnu( 2 + O( 1 D)). The O( 1 D) atoms produced react with nitrous oxide (N 2 O) carrier gas to form higher oxides of nitrogen (NOx). Computer model predictions show that these are mainly N 2 O 5 and NO 3 . Seventy five days of data were taken during the summer of 1983, at Ann Arbor, Michigan, and are presented in the appendix. Over 390 clear air jO 3 values are correlated with effective ozone column densities, and 500 nm aerosol optical depths. The solar direct beam component of ozone photolysis was measured for the different aerosol optical depths, over two entire days from sun-up to sun-down. Temperature dependence of jO 3 was measured from 10 0 C to 39 0 C with good agreement to models. Comparison of jO 3 versus global and ultraviolet radiation are made under various ozone column densities and aerosol optical depths. A jO 3 -photometer was built using an interference filter to pass only ozone photolyzing light. Improvements to instrumental parts are shown for balloon and aircraft flyable payloads

  6. High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2007-06-01

    Full Text Available Recent advances in the performance of CCD detectors have enabled a high time resolution study of the high latitude upper thermosphere with Fabry-Perot Interferometers (FPIs to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesosphere-lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere.

  7. Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions.

    Science.gov (United States)

    Mitra, Mainak; Nimir, Hassan; Demeshko, Serhiy; Bhat, Satish S; Malinkin, Sergey O; Haukka, Matti; Lloret-Fillol, Julio; Lisensky, George C; Meyer, Franc; Shteinman, Albert A; Browne, Wesley R; Hrovat, David A; Richmond, Michael G; Costas, Miquel; Nordlander, Ebbe

    2015-08-03

    Two new pentadentate {N5} donor ligands based on the N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework have been synthesized, viz. [N-(1-methyl-2-benzimidazolyl)methyl-N-(2-pyridyl)methyl-N-(bis-2-pyridyl methyl)amine] (L(1)) and [N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L(2)), where one or two pyridyl arms of N4Py have been replaced by corresponding (N-methyl)benzimidazolyl-containing arms. The complexes [Fe(II)(CH3CN)(L)](2+) (L = L(1) (1); L(2) (2)) were synthesized, and reaction of these ferrous complexes with iodosylbenzene led to the formation of the ferryl complexes [Fe(IV)(O)(L)](2+) (L = L(1) (3); L(2) (4)), which were characterized by UV-vis spectroscopy, high resolution mass spectrometry, and Mössbauer spectroscopy. Complexes 3 and 4 are relatively stable with half-lives at room temperature of 40 h (L = L(1)) and 2.5 h (L = L(2)). The redox potentials of 1 and 2, as well as the visible spectra of 3 and 4, indicate that the ligand field weakens as ligand pyridyl substituents are progressively substituted by (N-methyl)benzimidazolyl moieties. The reactivities of 3 and 4 in hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions show that both complexes exhibit enhanced reactivities when compared to the analogous N4Py complex ([Fe(IV)(O)(N4Py)](2+)), and that the normalized HAT rates increase by approximately 1 order of magnitude for each replacement of a pyridyl moiety; i.e., [Fe(IV)(O)(L(2))](2+) exhibits the highest rates. The second-order HAT rate constants can be directly related to the substrate C-H bond dissociation energies. Computational modeling of the HAT reactions indicates that the reaction proceeds via a high spin transition state.

  8. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    International Nuclear Information System (INIS)

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-01-01

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N 2 /O 2 (4:1) admixtures. A maximum in the O-atom concentration of (9.1 ± 0.7)×10 20 m −3 was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 ± 0.4)×10 19 m −3 at 0.1 vol. %

  9. Hyperthermic-induced hyperventilation and associated respiratory alkalosis in humans.

    Science.gov (United States)

    Abbiss, Chris R; Nosaka, Kazunori; Laursen, Paul B

    2007-05-01

    The purpose of this study was to determine if increased environmental heat leads to hyperthermic-induced hypocapnia and associated alkalosis during prolonged self-paced cycling. Nine male cyclists completed three 100 km stochastic time trials in hot (34 degrees C), neutral (22 degrees C) and cold (10 degrees C) environments. Intermittent measurements of rectal and skin temperature, expired gases, blood pH, PaCO(2), PaO(2), and bicarbonate were made throughout. Rectal temperature increased significantly throughout all trials (P respiratory alkalosis.

  10. A first-principles study of structure, orbital interactions and atomic oxygen and OH adsorption on Mo-, Sc- and Y-doped nickel bimetallic clusters

    International Nuclear Information System (INIS)

    Das, Nishith Kumar; Shoji, Tetsuo

    2013-01-01

    Highlights: •Mo-doped nickel clusters are energetically more stable than the Sc and Y-doped clusters (n ⩾ 10). •Mo atom exhibits center at the cluster rather than edge, while Sc and Y atom sit at the edge. •The metallic s, d orbitals are mainly dominated on the stability of nanoclusters. •The oxygen and OH adsorption energy of Mo-doped cluster are higher than those of other nanoclusters. •2p Orbitals are strongly bonds with Mo 4d, and a weakly interacts with Ni 3d, 4s and Mo 5s orbitals. -- Abstract: Density functional theory (DFT) has been used to study the stability, orbitals interactions and oxygen and hydroxyl chemisorption properties of Ni n M (1 ⩽ n ⩽ 12) clusters. A single atom doped-nickel clusters increase the stability, and icosahedral Ni 12 Mo cluster is the most stable structure. Molybdenum atom prefers to exhibit center at the cluster (n ⩾ 10) rather than edge, while Sc and Y atom remain at the edge. The Ni–Mo bond lengths are smaller than the Ni–Sc and Ni–Y. The pDOS results show that the d–d orbitals interactions are mainly dominating on the stability of clusters, while p orbitals have a small effect on the stability. The Mo-doped nanoclusters have the highest oxygen and OH chemisorption energy, and the most favorable adsorption site is on the top Mo site. The larger cluster distortion is found for the Sc- and Y-doped structures compared to other clusters. The oxygen 2p orbitals are strongly hybridizing with the Mo 4d orbitals (n < 9) and a little interaction between oxygen 2p and Ni 3d, 4s and Mo 5s orbitals. The Mo-doped clusters are significantly increased the chemisorption energies that might improve the passive film adherence of nanoalloys

  11. Hyperthermal surface ionization mass spectrometry of organic molecules: monoterpenes

    International Nuclear Information System (INIS)

    Kishi, Hiroshi; Fujii, Toshihiro.

    1997-01-01

    This paper describes an experimental study on the influence of kinetic energy of fast monoterpene molecules on the surface ionization efficiency and on the mass spectral patterns, using rhenium oxide (ReO 2 ) surface. Molecular kinetic energy, given to the molecules through the acceleration in the seeded supersonic molecular beam, ranged from 1 to 10 eV. Hyperthermal surface ionization mass spectra (HSIMS) were taken for various incident kinetic energies and surface temperatures. The observed mass spectra were interpreted in a purely empirical way, by means of evidence from the previous investigations, and they were compared with conventional EI techniques and with the thermal energy surface ionization technique (SIOMS; Surface Ionization Organic Mass Spectrometry). Ionization efficiency (β) was also studied. Under hyperthermal surface ionization (HSI) conditions, many kinds of fragment ions, including quite abundant odd electron ions (OE +· ) are observed. HSIMS patterns of monoterpenes are different among 6-isomers, contrary to those of SIOMS and EIMS, where very similar patterns for isomers are observed. HSIMS patterns are strongly dependent on the molecular kinetic energies. The surface temperature does not affect much the spectral patterns, but it controls the total amount of ion formation. We conclude from these mass spectral findings, HSI-mechanism contains an impulsive process of ion formation, followed by the fragmentation process as a results of the internal energies acquired through the collision processes. (author)

  12. Hyperthermic effect of magnetic nanoparticles under electromagnetic field

    Directory of Open Access Journals (Sweden)

    Giovanni Baldi

    2009-06-01

    Full Text Available Magnetic nanoparticles have attracted increasingly attention due to their potential applications in many industrial fields, even extending their use in biomedical applications. In the latter contest the main features of magnetic nanoparticles are the possibility to be driven by external magnetic fields, the ability to pass through capillaries without occluding them and to absorb and convert electromagnetic radiation in to heat (Magnetic Fluid Hyperthermia. The main challenges of the current works on hyperthermia deal with the achievement of highly efficiency magnetic nanoparticles, the surface grafting with ligands able to facilitate their specific internalisation in tumour cells and the design of stealth nanocomposites able to circulate in the blood compartment for a long time. This article presents the synthesis of cobalt ferrite nanoparticles dispersed in diethylene glycol via the so called polyol strategy and the crystal size control through successive synthesis steps. Preliminary heat dissipation evaluations on the prepared samples were carried out and the question of how particles sizes affect their magnetic and hyperthermic properties was addressed as well. Furthermore we will present how surface chemistry can be modified in order to change the dispersity of the product without affecting magnetic and hyperthermic properties.

  13. Dramatic Influence of an Anionic Donor on the Oxygen-Atom Transfer Reactivity of a MnV–Oxo Complex

    Science.gov (United States)

    Neu, Heather M; Quesne, Matthew G; Yang, Tzuhsiung; Prokop-Prigge, Katharine A; Lancaster, Kyle M; Donohoe, James; DeBeer, Serena; de Visser, Sam P; Goldberg, David P

    2014-01-01

    Addition of an anionic donor to an MnV(O) porphyrinoid complex causes a dramatic increase in 2-electron oxygen-atom-transfer (OAT) chemistry. The 6-coordinate [MnV(O)(TBP8Cz)(CN)]− was generated from addition of Bu4N+CN− to the 5-coordinate MnV(O) precursor. The cyanide-ligated complex was characterized for the first time by Mn K-edge X-ray absorption spectroscopy (XAS) and gives Mn–O=1.53 Å, Mn–CN=2.21 Å. In combination with computational studies these distances were shown to correlate with a singlet ground state. Reaction of the CN− complex with thioethers results in OAT to give the corresponding sulfoxide and a 2e−-reduced MnIII(CN)− complex. Kinetic measurements reveal a dramatic rate enhancement for OAT of approximately 24 000-fold versus the same reaction for the parent 5-coordinate complex. An Eyring analysis gives ΔH≠=14 kcal mol−1, ΔS≠=−10 cal mol−1 K−1. Computational studies fully support the structures, spin states, and relative reactivity of the 5- and 6-coordinate MnV(O) complexes. PMID:25256417

  14. Influence of crystal defects on the chemical reactivity of recoil atoms in oxygen-containing chromium compounds

    International Nuclear Information System (INIS)

    Costea, T.

    1969-01-01

    The influence of crystal defects on the chemical reactivity of recoil atoms produced by the reaction 50 Cr (n,γ) 51 Cr in oxygen-containing chromium compounds has been studied. Three methods have been used to introduce the defects: doping (K 2 CrO 4 doped with BaCrO 4 ), irradiation by ionizing radiation (K 2 CrO 4 irradiated in the presence of Li 2 CO 3 ) and non-stoichiometry (the semi-conducting oxides of the CrO 3 -Cr 2 O 3 series). The thermal annealing kinetics of the irradiated samples have been determined, and the activation energy has been calculated. In all cases it has been observed that there is a decrease in the activation energy for thermal annealing in the presence of the defects. In order to explain the annealing process, an electronic mechanism has been proposed based on the interaction between the recoil species and the charge-carriers (holes or electrons). (author) [fr

  15. Oxygen vacancy defect engineering using atomic layer deposited HfAlOx in multi-layered gate stack

    Science.gov (United States)

    Bhuyian, M. N.; Sengupta, R.; Vurikiti, P.; Misra, D.

    2016-05-01

    This work evaluates the defects in high quality atomic layer deposited (ALD) HfAlOx with extremely low Al (estimated by the high temperature current voltage measurement shows that the charged oxygen vacancies, V+/V2+, are the primary source of defects in these dielectrics. When Al is added in HfO2, the V+ type defects with a defect activation energy of Ea ˜ 0.2 eV modify to V2+ type to Ea ˜ 0.1 eV with reference to the Si conduction band. When devices were stressed in the gate injection mode for 1000 s, more V+ type defects are generated and Ea reverts back to ˜0.2 eV. Since Al has a less number of valence electrons than do Hf, the change in the co-ordination number due to Al incorporation seems to contribute to the defect level modifications. Additionally, the stress induced leakage current behavior observed at 20 °C and at 125 °C demonstrates that the addition of Al in HfO2 contributed to suppressed trap generation process. This further supports the defect engineering model as reduced flat-band voltage shifts were observed at 20 °C and at 125 °C.

  16. Simultaneous Laser-induced Fluorescence of Nitric Oxide and Atomic Oxygen in the Hypersonic Materials Environment Test System Arcjet Facility

    Science.gov (United States)

    Johansen, Craig; Lincoln, Daniel; Bathel, Brett; Inman, Jennifer; Danehy, Paul

    2014-01-01

    Simultaneous nitric oxide (NO) and atomic oxygen (O) laser induced fluorescence (LIF) experiments were performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at the NASA Langley Research Center. The data serves as an experimental database for validation for chemical and thermal nonequilibrium models used in hypersonic flows. Measurements were taken over a wide range of stagnation enthalpies (6.7 - 18.5 MJ/kg) using an Earth atmosphere simulant with a composition of 75% N2, 20% O2, and 5% Ar (by volume). These are the first simultaneous measurements of NO and O LIF to be reported in literature for the HYMETS facility. The maximum O LIF mean signal intensity was observed at a stagnation enthalpy of approximately 12 MJ/kg while the maximum NO LIF mean signal intensity was observed at a stagnation enthalpy of 6.7 MJ/kg. Experimental results were compared to simple fluorescence model that assumes equilibrium conditions in the plenum and frozen chemistry in the isentropic nozzle expansion (Mach 5). The equilibrium calculations were performed using CANTERA v2.1.1 with 16 species. The fluorescence model captured the correlation in mean O and NO LIF signal intensities over the entire range of stagnation enthalpies tested. Very weak correlations between single-shot O and NO LIF intensities were observed in the experiments at all of the stagnation enthalpy conditions.

  17. Determination of mercury in ash and soil samples by oxygen flask combustion method-Cold vapor atomic fluorescence spectrometry (CVAFS)

    International Nuclear Information System (INIS)

    Geng Wenhua; Nakajima, Tsunenori; Takanashi, Hirokazu; Ohki, Akira

    2008-01-01

    A simple method was developed for the determination of mercury (Hg) in coal fly ash (CFA), waste incineration ash (WIA), and soil by use of oxygen flask combustion (OFC) followed by cold vapor atomic fluorescence spectrometry (CVAFS). A KMnO 4 solution was used as an absorbent in the OFC method, and the sample containing a combustion agent and an ash or soil sample was combusted by the OFC method. By use of Hg-free graphite as the combustion agent, the determination of Hg in ash and soil was successfully carried out; the Hg-free graphite was prepared by use of a mild pyrolysis procedure at 500 deg. C. For six certified reference materials (three CFA samples and three soil samples), the values of Hg obtained by this method were in good agreement with the certified or reference values. In addition, real samples including nine CFAs collected from some coal-fired power plants, five WIAs collected from waste incineration plants, and two soils were analyzed by the present method, and the data were compared to those from microwave-acid digestion (MW-AD) method

  18. Study of apical oxygen atoms in a spin-ladder cuprate compound by X-ray absorption spectroscopy near the Cu K edge

    Energy Technology Data Exchange (ETDEWEB)

    Hatterer, C.J.; Eustache, B.; Collin, L.; Beuran, C.F.; Partiot, C.; Germain, P.; Xu, X.Z.; Lagues, M. [CNRS, Paris (France). Surfaces et Supraconducteurs; Michalowicz, A. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France)]|[LURE, Universite Paris Sud, 91405, Orsay Cedex (France); Moscovici, J. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France); Deville Cavellin, C. [CNRS, Paris (France). Surfaces et Supraconducteurs]|[Laboratoire d`Electronique, Universite Paris XII Val-de-Marne, 61 av. du general de Gaulle, 94010, Creteil Cedex (France); Traverse, A. [LURE, Universite Paris Sud, 91405, Orsay Cedex (France)

    1997-04-01

    The structure of high-T{sub c} superconducting cuprate compounds is based on CuO{sub 2} planes alternating with blocks that behave as charge reservoirs. The apical oxygen atoms which belong to these reservoirs are suspected to play a role in the mechanism of superconductivity. It thus seems necessary to measure the amount of apical oxygen atoms in various compounds, as a function of the superconducting properties. Polarisation dependent X-ray absorption spectroscopy (XAS) measurements were performed near the Cu K-edge on three types of phases. We collected information about the neighbourhood of the copper atom in the cuprate planes and in the direction perpendicular to these planes. Two of these phases have well known structures: Bi2212 in which copper atoms are on a pyramidal site and infinite layer phase, a square planar cuprate without apical oxygen. We used the obtained results as reference data to study a new copper-rich phase related to the spin-ladder series. (orig.)

  19. Study of the Dissociative Processes in O{sub 2} Discharges. Development of an Atomic Oxygen Beam Source; Etude de la dissociation de O{sub 2} dans les decharges d'oxygene. Application a la realisation de sources d'atomes

    Energy Technology Data Exchange (ETDEWEB)

    Pagnon, Daniel

    1992-09-24

    The first part of this work is devoted to the study of dissociative processes in an oxygen glow discharge at low pressure (0,1-5 Torr, 1-80 mA). The kinetics of oxygen atoms has been determined supported by the measurements of atomic concentrations by VUV absorption spectroscopy and actinometry. The reaction coefficients for dissociative excitation and direct excitation of oxygen atoms have been calculated using the cross sections of the literature and a previously calculated EEDF. It has been demonstrated that dissociative excitation is negligible in respect with direct excitation for dissociation rates smaller than 2,5 %. An upper limit of 20 % for dissociative rates is observed. This limit has been explained by the increase of the atomic recombination at the discharge wall with increasing wall temperature. Using all these results, we have designed and optimized a source of oxygen atoms which has then been adapted on a MBE device. The spatial distribution of the atomic density has been measured in molecular jet by laser induced fluorescence (LIF) and Resonant Multi-Photon Ionization (RMPI). A stimulated emission has been evidenced and the coefficient for this process evaluated. A model for the effusion of atoms has been developed from which the flow of atoms on the sample can be predicted. This source has already been used in industrial MBE devices for in-situ oxidation of copper films, superconductors, and substrates for VLSI high speed applications. The methodology of this work and the diagnostics developed can be applied to other kinds of discharges, of other molecular gases, to design sources of atoms for the treatment of large area samples. (author) [French] Ce travail debute par l'etude de la dissociation dans une decharge luminescente d'oxygene a basse pression (0,1-5 torr, 1-80 ma). La cinetique des atomes d'oxygene a ete etablie a partir de la mesure des concentrations atomiques par spectroscopie d'absorption vuv et par actinometrie. Les coefficients de

  20. Atomic-Level Co3O4 Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction.

    Science.gov (United States)

    Liu, Min; Liu, Jingjun; Li, Zhilin; Wang, Feng

    2018-02-28

    Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co 3 O 4 layers covered on Co nanoparticles through partial reduction of Co 3 O 4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co 3 O 4 nanoparticles, the synthesized Co 3 O 4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co 2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co 3 O 4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.

  1. Terrestrial floral change during the ETM2 hyperthermal

    Science.gov (United States)

    Wing, S. L.; Currano, E. D.

    2017-12-01

    Hyperthermal events during the Eocene are defined by negative shifts in carbon isotope composition, global temperature increase and carbonate dissolution in marine settings. These features suggest repeated releases of large amounts of carbon followed by increasing concentration of CO2in the atmosphere and ocean, climate change, and biotic responses such as rapid evolution and changes in geographic range and trophic relationships. The Paleocene-Eocene Thermal Maximum (PETM, 56.0 Ma) is the largest Eocene hyperthermal in terms of carbon cycle, climate and biotic effects, including dwarfing of mammalian lineages. Terrestrial floral turnover at the PETM documented in the Bighorn Basin, Wyoming, USA, is very high. Almost all late Paleocene species, most belonging to mesic, warm-temperate lineages, disappeared during the PETM. The PETM flora was composed of species belonging to dry tropical lineages present only during the body of the PETM. Most mesic, warm-temperate species returned to the area immediately after the PETM. Such extreme change in floral composition makes it difficult to assess how much floral turnover is associated with how much change in temperature. The ETM2 hyperthermal event ( 53.7 Ma) is characterized by a carbon isotope excursion and warming about half as great as during the PETM, and by half as much mammalian dwarfing. Here we report on a new fossil flora from ETM2 that demonstrates the magnitude of floral change was also less than during the PETM. Some characteristic PETM plant species reappeared in the Bighorn Basin during ETM2, including species of Fabaceae that dominate PETM assemblages but are less common during ETM2. Many stratigraphically long-ranging plant species that preferred mesic climates remain common in the ETM2 flora. We conclude that warm climate during ETM2 shifted ranges of plant species such that some PETM species returned to northern Wyoming, but was not so severe as to cause local extirpation of species preferring 'background

  2. Tuning the hydrophobicity of mica surfaces by hyperthermal Ar ion irradiation

    International Nuclear Information System (INIS)

    Keller, Adrian; Ogaki, Ryosuke; Bald, Ilko; Dong Mingdong; Kingshott, Peter; Fritzsche, Monika; Facsko, Stefan; Besenbacher, Flemming

    2011-01-01

    The hydrophobicity of surfaces has a strong influence on their interactions with biomolecules such as proteins. Therefore, for in vitro studies of bio-surface interactions model surfaces with tailored hydrophobicity are of utmost importance. Here, we present a method for tuning the hydrophobicity of atomically flat mica surfaces by hyperthermal Ar ion irradiation. Due to the sub-100 eV energies, only negligible roughening of the surface is observed at low ion fluences and also the chemical composition of the mica crystal remains almost undisturbed. However, the ion irradiation induces the preferential removal of the outermost layer of K + ions from the surface, leading to the exposure of the underlying aluminosilicate sheets which feature a large number of centers for C adsorption. The irradiated surface thus exhibits an enhanced chemical reactivity toward hydrocarbons, resulting in the adsorption of a thin hydrocarbon film from the environment. Aging these surfaces under ambient conditions leads to a continuous increase of their contact angle until a fully hydrophobic surface with a contact angle >80 deg. is obtained after a period of about 3 months. This method thus enables the fabrication of ultrasmooth biological model surfaces with precisely tailored hydrophobicity.

  3. Stability of oxaliplatin in chloride-containing carrier solutions used in hyperthermic intraperitoneal chemotherapy

    NARCIS (Netherlands)

    Mehta, A M; Van den Hoven, J M; Rosing, H; Hillebrand, M J X; Nuijen, B; Huitema, A D R; Beijnen, J H; Verwaal, V J

    2015-01-01

    PURPOSE: Oxaliplatin is increasingly becoming the chemotherapeutic drug of choice for the treatment of peritoneal malignancies using cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC). Oxaliplatin is unstable in chloride-containing media, resulting in the use of 5%

  4. A Low-Protein Diet Alters Rat Behavior and Neurotransmission in Normothermic and Hyperthermic Environments

    National Research Council Canada - National Science Library

    Lieberman, Harris R; Yeghiayan, Sylva K; Maher, Timothy J

    2005-01-01

    .... Therefore, the behavioral and neurochemical consequences of exposure to a brief (11 days), low-protein (4%) diet in animals exposed to normothermic and hyperthermic test conditions were examined...

  5. 248-NM Laser Photolysis of CHBr3/O-Atom Mixtures: Kinetic Evidence for UV CO(A)-Chemiluminescence in the Reaction of Methylidyne Radicals With Atomic Oxygen

    National Research Council Canada - National Science Library

    Vaghjiani, Ghanshyam L

    2005-01-01

    4TH Positive and Cameron band emissions from electronically excited CO have been observed for the first time in 248-nm pulsed laser photolysis of a trace amount of CHBr3 vapor in an excess of O-atoms...

  6. Magnetism, Spin Texture, and In-Gap States: Atomic Specialization at the Surface of Oxygen-Deficient SrTiO_{3}.

    Science.gov (United States)

    Altmeyer, Michaela; Jeschke, Harald O; Hijano-Cubelos, Oliver; Martins, Cyril; Lechermann, Frank; Koepernik, Klaus; Santander-Syro, Andrés F; Rozenberg, Marcelo J; Valentí, Roser; Gabay, Marc

    2016-04-15

    Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements of the two-dimensional electronic states confined near the (001) surface of oxygen-deficient SrTiO_{3}, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∼100  meV at the Γ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.

  7. Insights into thermal diffusion of germanium and oxygen atoms in HfO2/GeO2/Ge gate stacks and their suppressed reaction with atomically thin AlOx interlayers

    International Nuclear Information System (INIS)

    Ogawa, Shingo; Asahara, Ryohei; Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji; Sako, Hideki; Kawasaki, Naohiko; Yamada, Ichiko; Miyamoto, Takashi

    2015-01-01

    The thermal diffusion of germanium and oxygen atoms in HfO 2 /GeO 2 /Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that 18 O-tracers composing the GeO 2 underlayers diffuse within the HfO 2 overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO 2 also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO 2 surfaces, and the reaction was further enhanced at high temperatures with the assistance of GeO desorption. A technique to insert atomically thin AlO x interlayers between the HfO 2 and GeO 2 layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks

  8. Insights into thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks and their suppressed reaction with atomically thin AlO{sub x} interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shingo, E-mail: Shingo-Ogawa@trc.toray.co.jp [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Asahara, Ryohei; Minoura, Yuya; Hosoi, Takuji, E-mail: hosoi@mls.eng.osaka-u.ac.jp; Shimura, Takayoshi; Watanabe, Heiji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sako, Hideki; Kawasaki, Naohiko; Yamada, Ichiko; Miyamoto, Takashi [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan)

    2015-12-21

    The thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that {sup 18}O-tracers composing the GeO{sub 2} underlayers diffuse within the HfO{sub 2} overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO{sub 2} also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO{sub 2} surfaces, and the reaction was further enhanced at high temperatures with the assistance of GeO desorption. A technique to insert atomically thin AlO{sub x} interlayers between the HfO{sub 2} and GeO{sub 2} layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks.

  9. A design study on hyper-thermal neutron irradiation field for neutron capture therapy at Kyoto University Reactor

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2000-01-01

    A study about the installation of a hyper-thermal neutron converter to a clinical collimator was performed, as a series of the design study on a hyper-thermal neutron irradiation field at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. From the parametric-surveys by Monte Carlo calculation, it was confirmed that the practical irradiation field of hyper-thermal neutrons would be feasible by the modifications of the clinical collimator and the bismuth-layer structure. (author)

  10. Oxygen Atom Exchange between H2O and Non-Heme Oxoiron(IV) Complexes: Ligand Dependence and Mechanism.

    Science.gov (United States)

    Puri, Mayank; Company, Anna; Sabenya, Gerard; Costas, Miquel; Que, Lawrence

    2016-06-20

    Detailed studies of oxygen atom exchange (OAE) between H2(18)O and synthetic non-heme oxoiron(IV) complexes supported by tetradentate and pentadentate ligands provide evidence that they proceed by a common mechanism but within two different kinetic regimes, with OAE rates that span 2 orders of magnitude. The first kinetic regime involves initial reversible water association to the Fe(IV) complex, which is evidenced by OAE rates that are linearly dependent on [H2(18)O] and H2O/D2O KIEs of 1.6, while the second kinetic regime involves a subsequent rate determining proton-transfer step between the bound aqua and oxo ligands that is associated with saturation behavior with [H2(18)O] and much larger H2O/D2O KIEs of 5-6. [Fe(IV)(O)(TMC)(MeCN)](2+) (1) and [Fe(IV)(O)(MePy2TACN)](2+) (9) are examples of complexes that exhibit kinetic behavior in the first regime, while [Fe(IV)(O)(N4Py)](2+) (3), [Fe(IV)(O)(BnTPEN)](2+) (4), [Fe(IV)(O)(1Py-BnTPEN)](2+) (5), [Fe(IV)(O)(3Py-BnTPEN)](2+) (6), and [Fe(IV)(O)(Me2Py2TACN)](2+) (8) represent complexes that fall in the second kinetic regime. Interestingly, [Fe(IV)(O)(PyTACN)(MeCN)](2+) (7) exhibits a linear [H2(18)O] dependence below 0.6 M and saturation above 0.6 M. Analysis of the temperature dependence of the OAE rates shows that most of these complexes exhibit large and negative activation entropies, consistent with the proposed mechanism. One exception is complex 9, which has a near-zero activation entropy and is proposed to undergo ligand-arm dissociation during the RDS to accommodate H2(18)O binding. These results show that the observed OAE kinetic behavior is highly dependent on the nature of the supporting ligand and are of relevance to studies of non-heme oxoiron(IV) complexes in water or acetonitrile/water mixtures for applications in photocatalysis and water oxidation chemistry.

  11. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures.

    Science.gov (United States)

    Tashiro, Yukihiro; Tabata, Hanae; Itahara, Asuka; Shimizu, Natsuki; Tashiro, Kosuke; Sakai, Kenji

    2016-11-01

    A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. 11th conference of the European Society for Hyperthermic Oncology, Latina, Italy, September 17-20, 1990

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The 11th ESHO Conference reflects the recent developments and advances which have been made in different fields of hyperthermic oncology. The abstracts of the papers are presented in the journal. They cover fundamental experimental research as well as clinical application of hyperthermia. Concerning biological studies the interesting topics with high relevance for clinical hyperthermia were as follows: The problem of thermotolerance, the significance of tumor microenvironment, energy status and metabolic changes for an efficient heat treatment, enhancement of cell kill by combination of heat with irradiation, cytostatic drugs or bilogical response modifiers, effects of heat on normal tissues and immunological response. The main topics of physics and engineering were applicator design, phantom studies, thermometry including research on noninvasive temperature measurement, improvement of SAR (Specific Absorption Rate) distribution and treatment planning. With regard to clinical application hyperthermia in benigne and malignant lesions of prostate was the outstanding topic of this conference. As 'new' indications chemotherapy plus deep regional hyperthermia in children and even very young individuals as well as hyperthermic treatment in menorrhagia were presented. It is interesing to see that in the field of deep hyperthermia besides phase II studies also phase III protocols have been started. Further important investigations address to long term survival in superficial hyperthermia, intracavitary and interstitial heating, the problem of fractionation of heat. Finally it should be noted that clinicians have started to study blood flow and oxygen supply of the human tumor in situ. This is of concern as such biological parameters may have a predictive significance and predicition of tumor response provides a basis for an improved individual treatment disregarding whether therapy is palliative or curative. (orig./MG)

  13. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    Science.gov (United States)

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

  14. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    Science.gov (United States)

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Recovery of CHO cells from hyperthermic potentiation to x rays: repair of DNA and chromatin

    International Nuclear Information System (INIS)

    Clark, E.P.; Dewey, W.C.; Lett, J.T.

    1981-01-01

    Above the critical temperature, ca. 42.5 0 C, hyperthermic potentiation of Chinese hamster ovary (CHO) cells to x irradiation was accompanied by increased binding of nonhistone proteins to DNA and by reduced rates of rejoining of DNA strand breaks. These biochemical changes were reversed as the cells recovered from the hyperthermic exposures at 37 0 C. If the hyperthermically treated cells were incubated at 37 0 C before x irradiation, the ratio of nonhistone protein to DNA returned to normal in 12 h but the depressed rate of rejoining of DNA strand breaks and increased cell radiosensitivity remained unaltered. Cell radiosensitivity began to decrease after 12 h and recovery from hyperthermia-potentiated radiosensitivity was complete by 48 h. In the same interval, the rate of rejoining of DNA strand breaks also returned to normal. From this behavior, we conclude that the reduction in the rate of rejoining of DNA strand breaks involved changes in DNA structure which were restored only after the thermal enhancement of protein binding was reversed. These experiments provide support for the viewpoint that critical hyperthermic potentiation (i.e., above 42.5 0 C for CHO cells) may have logistical advantages over subcritical hyperthermic potentiation (i.e., below 42.5 0 C) in clinical situations

  16. Analog experiment of transarterial catheter hyperthermic infusion in vitro

    International Nuclear Information System (INIS)

    Fan Shufeng Li Zheng; Gu Weizhong; Ru Fuming

    2006-01-01

    Objective: To investigate the factors related to the heating effect by transarterial catheter hyperthermic infusion with the evaluation of the feasibility in controlling the tumor temperature. Methods: Infusing 55-68 degree C liquid at the speed of 10-40 ml/min through 6F, 5F or 3F catheter with different length respectively under the similar clinical condition. The liquid temperature at the terminal exit of the catheter was measured with a digital thermometer. The factors related to the liquid temperature at the exit of the catheter were analyzed by multiple regression analysis. Results: The infusion temperature , rate and the catheter length were the main related factors to the liquid temperature at the exit of the catheter as the condition similar in clinical use. When 60-65 degree C liquid was infused at the rate of 20-40 ml/min through 5F catheter with length of 80 cm, the mean and 95% confident interval of the liquid temperature at the catheter exit were (47.55±0.44) degree C and 44.61-48.49 degree C respectively. Conclusions: The liquid temperature at the exit of infusion catheter can be regulated and controlled through adjusting the liquid perfusion temperature and speed. (authors)

  17. Rate-limiting events in hyperthermic cell killing

    International Nuclear Information System (INIS)

    Landry, J.; Marceau, N.

    1978-01-01

    The inactivation rate of HeLa cells for temperatures ranging from 41 to 55 0 C and treatment durations varying from 2 to 300 min was analyzed in thermodynamic terms by considering the dependence of cell free energy (ΔG + ) on temperature. Within this temperature range the loss of proliferative capacity exhibits a complex temperature dependence which is characterized by entropy and enthalpy values that gradually decrease as temperature increases. This complex process of heat-induced cell killing was postulated to be the result of a series of reactions, each of them being alternatively rate limiting within a certain temperature range. From this kinetic scheme a mathematical model was derived and, in the case of HeLa cells, the use of a least-squares search parameter procedure (as applied to the derived survival regression function) demonstrated that three such sequential reactions were sufficient to explain all experimental data points obtained within the 41 to 55 0 C range. The proposed model was also shown to be adequate for explaining survival data of HeLa cells exposed to nanosecond heat pulses of infrared laser energy. Considerations of thermodynamic properties of known biochemical reactions suggest plausible rate-limiting events in hyperthermic cell killing

  18. Surface preparation of gold nanostructures on glass by ultraviolet ozone and oxygen plasma for thermal atomic layer deposition of Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, Cady A., E-mail: lancaster@chem.utah.edu; Shumaker-Parry, Jennifer S., E-mail: shumaker-parry@chem.utah.edu

    2016-08-01

    Thin film deposition to create robust plasmonic nanomaterials is a growing area of research. Plasmonic nanomaterials have tunable optical properties and can be used as substrates for surface-enhanced spectroscopies. Due to the surface sensitivity and the dependence of the near-field behavior on structural details, degradation from cleaning or spectroscopic interrogation causes plasmonic nanostructures to lose distinctive localized surface plasmon resonances or exhibit diminished optical near-field enhancements over time. To decrease degradation, conformal thin films of alumina are deposited on nanostructured substrates using atomic layer deposition. While film growth on homogenous surfaces has been studied extensively, atomic layer deposition-based film growth on heterogeneous nanostructured surfaces is not well characterized. In this report, we have evaluated the impact of oxygen plasma and ultraviolet ozone pre-treatments on Au nanoparticle substrates for thin film growth by monitoring changes in plasmonic response and nanostructure morphology. We have found that ultraviolet ozone is more effective than oxygen plasma for cleaning gold nanostructured surfaces, which is in contrast to bulk films of the same material. Our results show that oxygen plasma treatment negatively impacts the nanostructure and alumina coating based on both scanning electron microscopy analysis of morphology and changes in the plasmonic response. - Highlights: • Plasmonic response indicates oxygen plasma damages Au structures and Al{sub 2}O{sub 3} films. • Ultraviolet ozone (UVO) re-activates aged Al{sub 2}O{sub 3}-coated Au nanostructures. • UVO treatments do not damage Au or Al{sub 2}O{sub 3}-coated nanostructures.

  19. Self-organized formation of metal-carbon nanostructures by hyperthermal ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hannstein, I.K.

    2006-04-26

    The quasi-simultaneous deposition of mass-selected hyperthermal carbon and metal ions results in a variety of interesting film morphologies, depending on the metal used and the deposition conditions. The observed features are of the order of a few nanometres and are therefore interesting for future potential applications in the various fields of nanotechnology. The present study focuses on the structural analysis of amorphous carbon films containing either copper, silver, gold, or iron using amongst others Rutherford Backscattering Spectroscopy, High Resolution Transmission Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy. The film morphologies found are as follows: copper-containing films consist of copper nanoclusters with sizes ranging from about 3 to 9 nm uniformly distributed throughout the amorphous carbon matrix. The cluster size hereby rises with the copper content of the films. The silver containing films decompose into a pure amorphous carbon film with silver agglomerates at the surface. Both, the gold- and the iron-containing films show a multilayer structure of metal-rich layers with higher cluster density separated by metal-depleted amorphous carbon layers. The layer distances are of the order of up to 15 nm in the case of gold-carbon films and 7 nm in the case of iron-carbon films. The formation of theses different structures cannot be treated in the context of conventional self-organization mechanisms basing upon thermal diffusion and equilibrium thermodynamics. Instead, an ion-induced atomic transport, sputtering effects, and the stability of small metal clusters were taken into account in order to model the structure formation processes. A similar multilayer morphology was recently also reported in the literature for metal-carbon films grown by magnetron sputtering techniques. In order to investigate, whether the mechanisms are the same as in the case of the ion beam deposited films described above, first experiments were conducted

  20. New insight into multifunctional role of peroxiredoxin family protein: Determination of DNA protection properties of bacterioferritin comigratory protein under hyperthermal and oxidative stresses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmin, E-mail: taeinlee2011@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of); Chung, Jeong Min [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of); Yun, Hyung Joong; Won, Jonghan [Advanced Nano Surface Research Group, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon, 305-333 (Korea, Republic of); Jung, Hyun Suk, E-mail: hsjung@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of)

    2016-01-22

    Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16–1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stress by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions. - Highlights: • Bacterioferritin comigratory protein (BCP) protects DNA from oxidative stress by reducing ROS. • TkBCP does not only scavenge ROS, but also protect DNA from hyperthermal stress. • BCP potentially adopts the multi-functional role in DNA binding activities and anti-oxidant functions.

  1. New insight into multifunctional role of peroxiredoxin family protein: Determination of DNA protection properties of bacterioferritin comigratory protein under hyperthermal and oxidative stresses

    International Nuclear Information System (INIS)

    Lee, Sangmin; Chung, Jeong Min; Yun, Hyung Joong; Won, Jonghan; Jung, Hyun Suk

    2016-01-01

    Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16–1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stress by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions. - Highlights: • Bacterioferritin comigratory protein (BCP) protects DNA from oxidative stress by reducing ROS. • TkBCP does not only scavenge ROS, but also protect DNA from hyperthermal stress. • BCP potentially adopts the multi-functional role in DNA binding activities and anti-oxidant functions.

  2. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    International Nuclear Information System (INIS)

    Luan, P; Knoll, A J; Wang, H; Oehrlein, G S; Kondeti, V S S K; Bruggeman, P J

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O 2 and 1% air plasma and OH for Ar/1% H 2 O plasma, play an essential role for polymer etching. For O 2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10 −4 to 10 −3 is consistent with low pressure plasma research. We also find that adding O 2 and H 2 O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O 2 /H 2 O plasma. (letter)

  3. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Science.gov (United States)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  4. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    International Nuclear Information System (INIS)

    Bhardwaj, Anil; Raghuram, Susarla

    2012-01-01

    The green (5577 Å) and red-doublet (6300, 6364 Å) lines are prompt emissions of metastable oxygen atoms in the 1 S and 1 D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H 2 O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O( 1 S) and O( 1 D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H 2 O to the green (red) line emission is 30%-70% (60%-90%), while CO 2 and CO are the next potential sources contributing 25%-50% ( 1 S) to O( 1 D) would be around 0.03 (±0.01) if H 2 O is the main source of oxygen lines, whereas it is ∼0.6 if the parent is CO 2 . Our calculations suggest that the yield of O( 1 S) production in the photodissociation of H 2 O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  5. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Anil; Raghuram, Susarla, E-mail: bhardwaj_spl@yahoo.com, E-mail: anil_bhardwaj@vssc.gov.in, E-mail: raghuramsusarla@gmail.com [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695022 (India)

    2012-03-20

    The green (5577 Angstrom-Sign ) and red-doublet (6300, 6364 Angstrom-Sign ) lines are prompt emissions of metastable oxygen atoms in the {sup 1}S and {sup 1}D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H{sub 2}O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O({sup 1}S) and O({sup 1}D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H{sub 2}O to the green (red) line emission is 30%-70% (60%-90%), while CO{sub 2} and CO are the next potential sources contributing 25%-50% (<5%). The ratio of the photoproduction rate of O({sup 1} S) to O({sup 1} D) would be around 0.03 ({+-}0.01) if H{sub 2}O is the main source of oxygen lines, whereas it is {approx}0.6 if the parent is CO{sub 2}. Our calculations suggest that the yield of O({sup 1} S) production in the photodissociation of H{sub 2}O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  6. Angular distribution of atoms emitted from a SrZrO3 target by laser ablation under different laser fluences and oxygen pressures

    International Nuclear Information System (INIS)

    Konomi, I.; Motohiro, T.; Azuma, H.; Asaoka, T.; Nakazato, T.; Sato, E.; Shimizu, T.; Fujioka, S.; Sarukura, N.; Nishimura, H.

    2010-01-01

    Angular distributions of atoms emitted by laser ablation of perovskite-type oxide SrZrO 3 have been investigated using electron probe microanalysis with wavelength-dispersive spectroscopy and charge-coupled device photography with an interference filter. Each constituent element has been analyzed as a two-modal distribution composed of a broad cos m θ distribution and a narrow cos n θ distribution. The exponent n characterizes the component of laser ablation while the exponent m characterizes that of thermal evaporation, where a larger n or m means a narrower angular distribution. In vacuum, O (n=6) showed a broader distribution than those of Sr (n=16) and Zr (n=17), and Sr + exhibited a spatial distribution similar to that of Sr. As the laser fluence was increased from 1.1 to 4.4 J/cm 2 , the angular distribution of Sr became narrower. In the laser fluence range of 1.1-4.4 J/cm 2 , broadening of the angular distribution of Sr was observed only at the fluence of 1.1 J/cm 2 under the oxygen pressure of 10 Pa. Monte Carlo simulations were performed to estimate approximately the energy of emitted atoms, focusing on the broadening of the angular distribution under the oxygen pressure of 10 Pa. The energies of emitted atoms were estimated to be 1-20 eV for the laser fluence of 1.1 J/cm 2 , and more than 100 eV for 2.2 and 4.4 J/cm 2 .

  7. The double-well oscillating potential of oxygen atoms in perovskite system Ba(K)BiO sub 3 : EXAFS - analysis results

    CERN Document Server

    Menushenkov, A P; Konarev, P V; Meshkov, A A; Benazeth, S; Purans, J

    2000-01-01

    Temperature-dependent X-ray absorption investigations were made on the Bi L sub 3 -edge in Ba sub 1 sub - sub x K sub x BiO sub 3 with x=0.0, 0.4 and 0.5. For the superconducting samples (x=0.4 and 0.5) it has been found that the local structure differs from the ideal cubic in contrast to the neutron and X-ray diffraction data. The provided analysis of the EXAFS spectra indicates that the oxygen atoms move in double-well potential produced by the existence of two non-equivalent octahedral types of the oxygen environment of bismuth. The vibrations in such a potential lead to modulations of the Bi-O lengths with low frequency which is determined by the soft oxygen octahedron rotation mode frequency. This induces strong electron-phonon interaction and may be the reason for relatively high-temperature transition (T sub c approx 30 K) to the superconducting state.

  8. Mechanism of selenium hydride atomization, fate of free atoms and temperature distribution in an argon shielded, highly fuel-rich, hydrogen-oxygen diffusion micro-flame studied by atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří; Lampugnani, L.; Matoušek, Tomáš

    2002-01-01

    Roč. 17, č. 3 (2002), s. 253-257 ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453; GA ČR GA203/98/0754 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride atomization * hydride generation * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.250, year: 2002

  9. Oxygen vacancy defects in Ta{sub 2}O{sub 5} showing long-range atomic re-arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuzheng; Robertson, John [Engineering Department, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2014-03-17

    The structure, formation energy, and energy levels of the various oxygen vacancies in Ta{sub 2}O{sub 5} have been calculated using the λ phase model. The intra-layer vacancies give rise to unusual, long-range bonding rearrangements, which are different for each defect charge state. The 2-fold coordinated intra-layer vacancy is the lowest cost vacancy and forms a deep level 1.5 eV below the conduction band edge. The 3-fold intra-layer vacancy and the 2-fold inter-layer vacancy are higher cost defects, and form shallower levels. The unusual bonding rearrangements lead to low oxygen migration barriers, which are useful for resistive random access memory applications.

  10. Hot atom labeling of myoglobin and hemoglobin and biophysical studies of oxygen and CO binding to carp hemoglobin

    International Nuclear Information System (INIS)

    Astatke, M.

    1992-01-01

    Human Hb, the monomeric Hb of Glycera dibranchiata and horse Mb were modified by replacement of the protoheme with 2,4-dibromodeuteroheme. Following neutron capture by 79 Br and 81 Br, the locations of radioactive Br were determined. Although human Hb had approximately four times the mass and volume of the other proteins, about 9% of the activated Br was inserted into each of the three globins. These results suggest that the insertion is short-range (within 15 angstrom) and that this method could be used to label target sites in various proteins and other biological structures. Carp Hb's containing proto-, meso-, deutero- and dibromoheme were prepared. Kinetic and thermodynamic parameters for oxygen and CO binding were determined at Ph 6 (+IHP) (T-state, low-affinity protein) and Ph 9 (R-state, high-affinity protein). Parameters for the binding of oxygen and CO were related to the properties of the four hemes to estimate the inductive and steric factors in the ligation process. The results suggest that the steric factors are more important for the T-state than for the R-state. The T-state carp Hbs were very readily oxidized. Two new procedures were developed for the rapid determination of oxygen equilibrium isotherms for the T-state carp Hbs. The kinetic and thermodynamic parameters for ligation of oxygen and CO with the isolated carp α-chains were determined. Carp α-chains are the only hemoglobin chains isolated to date that can be classified as T-state. The secondary thermodynamic parameter (δH degrees) was found to be essential for classifying hemoglobins as T- or R-state

  11. A study on the utilization of hyper-thermal neutrons for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1993-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwellian distribution of a higher temperature than the room temperature of 300 K, was studied in order to improve the thermal neutron flux distribution at the deeper part in a living body for neutron capture therapy. Simulation calculations were carried out using MCNP-V3 in order to confirm the characteristics of hyper-thermal neutrons, i.e., (1) depth dependence of neutron energy spectrum, and (2) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that the hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper and wider area in a living body compared with the thermal neutron irradiation. Practically, by the incidence of the hyper-thermal neutrons with a 3000 K Maxwellian distribution, the thermal neutron flux at 5 cm depth can be given about four times larger than by the incidence of the thermal neutrons of 300 K. (author)

  12. Effect of retinol on the hyperthermal response of normal tissue in vivo

    International Nuclear Information System (INIS)

    Rogers, M.A.; Marigold, J.C.L.; Hume, S.P.

    1983-01-01

    The effect of prior administration of retinol, a membrane labilizer, on the in vivo hyperthermal response of lysosomes was investigated in the mouse spleen using a quantitative histochemical assay for the lysosomal enzyme acid phosphatase. A dose of retinol which had no effect when given alone enhanced the thermal response of the lysosome, causing an increase in lysosomal membrane permeability. In contrast, the same dose of retinol had no effect on the gross hyperthermal response of mouse intestine; a tissue which is relatively susceptible to hyperthermia. Thermal damage to intestine was assayed directly by crypt loss 1 day after treatment or assessed as thermal enhancement of x-ray damage by counting crypt microcolonies 4 days after a combined heat and x-ray treatment. Thus, although the hyperthermal response of the lysosome could be enhanced by the administration of retinol, thermal damage at a gross tissue level appeared to be unaffected, suggesting that lysosomal membrane injury is unlikely to be a primary event in hyperthermal cell killing

  13. Migration of methyl and phenyl radicals, oxygen and sulphur atoms in certain diphenylthiophosphorane derivatives under electron impact

    International Nuclear Information System (INIS)

    Cauquis, G.; Divisia, B.; Ulrich, J.

    The fragmentation of various diphenylthiophosphoranes (Ph 2 P(S)R) subjected to electron impact gives rise to rearrangements dependent on the nature of the radical R. Migrations of phenyl or methyl radicals from phosphorus towards sulphur were thus observed for R=Ph, CH 3 , CH 2 Ph and NH 2 . When an electrophilic centre is formed, during a fragmentation, on a carbon in the α-position of the diphenylthiophosphoranyl radical, migrations of sulphur atoms and phenyl radicals take place from the phosphorus towards the carbon. This is found to be the case with certain fragmentations of diazo 5 and 6 compounds [fr

  14. Water electrolysis plants for hydrogen and oxygen production. Shipped to Tsuruga Power Station Unit No.1, and Tokai No.2 power station, the Japan Atomic Power Co

    International Nuclear Information System (INIS)

    Ueno, Syuichi; Sato, Takao; Ishikawa, Nobuhide

    1997-01-01

    Ebara's water electrolysis plants have been shipped to Tsuruga Power Station Unit No.1, (H 2 generation rate: 11 Nm 3 /h), and Tokai No.2 Power Station (H 2 generation rate: 36 Nm 3 /h), Japan Atomic Power Co. An outcome of a business agreement between Nissho Iwai Corporation and Norsk Hydro Electrolysers (Norway), this was the first time that such water electrolysis plants were equipped in Japanese boiling water reactor power stations. Each plant included an electrolyser (for generating hydrogen and oxygen), an electric power supply, a gas compression system, a dehumidifier system, an instrumentation and control system, and an auxiliary system. The plant has been operating almost continuously, with excellent feedback, since March 1997. (author)

  15. Standard test method for the determination of uranium by ignition and the oxygen to uranium (O/U) atomic ratio of nuclear grade uranium dioxide powders and pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear grade uranium dioxide powder and pellets. 1.2 This test method does not include provisions for preventing criticality accidents or requirements for health and safety. Observance of this test method does not relieve the user of the obligation to be aware of and conform to all international, national, or federal, state and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.4 This test method also is applicable to UO3 and U3O8 powder.

  16. Mechanistic insights into dioxygen activation, oxygen atom exchange and substrate epoxidation by AsqJ dioxygenase from quantum mechanical/molecular mechanical calculations.

    Science.gov (United States)

    Song, Xudan; Lu, Jiarui; Lai, Wenzhen

    2017-08-02

    Herein, we use in-protein quantum mechanical/molecular mechanical (QM/MM) calculations to elucidate the mechanism of dioxygen activation, oxygen atom exchange and substrate epoxidation processes by AsqJ, an Fe II /α-ketoglutarate-dependent dioxygenase (α-KGD) using a 2-His-1-Asp facial triad. Our results demonstrated that the whole reaction proceeds through a quintet surface. The dioxygen activation by AsqJ leads to a quintet penta-coordinated Fe IV -oxo species, which has a square pyramidal geometry with the oxo group trans to His134. This penta-coordinated Fe IV -oxo species is not the reactive one in the substrate epoxidation reaction since its oxo group is pointing away from the target C[double bond, length as m-dash]C bond. Instead, it can undergo the oxo group isomerization followed by water binding or the water binding followed by oxygen atom exchange to form the reactive hexa-coordinated Fe IV -oxo species with the oxo group trans to His211. The calculated parameters of Mössbauer spectra for this hexa-coordinated Fe IV -oxo intermediate are in excellent agreement with the experimental values, suggesting that it is most likely the experimentally trapped species. The calculated energetics indicated that the rate-limiting step is the substrate C[double bond, length as m-dash]C bond activation. This work improves our understanding of the dioxygen activation by α-KGD and provides important structural information about the reactive Fe IV -oxo species.

  17. Disordering of two-dimensional oxyxgen lattices on Mo(011) initiated by electron transitions in oxygen and molybdenum atoms

    International Nuclear Information System (INIS)

    Zasimovich, I.N.; Klimenko, E.V.; Naumovets, A.G.

    1988-01-01

    The first observation of electron-induced disordering (EID) of the submonolayer film of heavier adsorbate-oxygen is reported. The investigation of energy dependence of the effective cross section of this process, which points to the fact that EID can be initiated by the electron transitions not only in adatoms, but in the substrate, is also presented. When irradiating by electrons, the sample surface cooled up to 77 K, intensity of diffraction reflects of the (2x2) and (6x2) structures decreases rather quickly, but the reflects of more dense (6x1) lattice do not practically attenuate. The conclusions are made that the knowledge of physical factors, determining the probability of radiation defect formation in an adfilm, gives the possibility either to avoid disordering, if it is undesirable, or to use it to control the surface properties

  18. Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo{sub 2}O{sub 5.5+δ} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin, E-mail: cl.chen@utsa.edu [Department of Physics and Astronomy, University of Texas, San Antonio, Texas 78249 (United States); Zhang, Yamei [Department of Physics, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Whangbo, Myung-Hwan [North Carolina State University, Raleigh, North Carolina 27695-8204 (United States); Dong, Chuang; Zhang, Qinyu [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China)

    2015-12-14

    Single-crystalline epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+δ} (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200–800 °C. During the oxidation cycle under O{sub 2}, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co{sup 2+}/Co{sup 3+} → Co{sup 3+} and Co{sup 3+} → Co{sup 3+}/Co{sup 4+}, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO{sub 2})(PrO)(CoO{sub 2}) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.

  19. Remote sensing of atomic oxygen: Some observational difficulties in the use of the forbidden O I λ 1173-angstrom and O I λ 1641-angstrom transitions

    International Nuclear Information System (INIS)

    Erdman, P.W.; Zipf, E.C.

    1987-01-01

    Recent sounding rocket and satellite studies suggest that simultaneous measurements of the O I λ989-angstrom and λ1,304-angstrom resonance lines and of the forbidden λ1,172.6-angstrom and λ1641.3-angstrom transitions which also originate from the 3s'3D degree and 3s 3S degree states would form the basis of a useful remote sensing technique for measuring the O I density and optical of a planetary or stellar atmosphere. Because the λ1,172.6-angstrom and λ1641.3-angstrom emissions are weak lines and are emitted in a wavelength region rich in spectral features, it is important to determine whether typical flight instruments can make measurements with sufficient spectral purity so that the remote sensing observations will yield accurate results. We have made a detailed, high-resolution study of the far ultraviolet emission features in the regions surrounding the atomic oxygen transitions at λ1,172.6-angstrom and λ1,641.3-angstrom. These spectra, which were excited by electron impact on O 2 and N 2 , are presented in an attempt to display some potential sources of interference in aeronomical measurements of these O I lines. Both atomic and molecular emissions are found, and the spectral resolution necessary to make unambiguous measurements is discussed

  20. Nuclear energy - Uranium dioxide powder and sintered pellets - Determination of oxygen/uranium atomic ratio by the amperometric method. 2. ed.

    International Nuclear Information System (INIS)

    2007-01-01

    This International Standard specifies an analytical method for the determination of the oxygen/uranium atomic ratio in uranium dioxide powder and sintered pellets. The method is applicable to reactor grade samples of hyper-stoichiometric uranium dioxide powder and pellets. The presence of reducing agents or residual organic additives invalidates the procedure. The test sample is dissolved in orthophosphoric acid, which does not oxidize the uranium(IV) from UO 2 molecules. Thus, the uranium(VI) that is present in the dissolved solution is from UO 3 and/or U 3 O 8 molecules only, and is proportional to the excess oxygen in these molecules. The uranium(VI) content of the solution is determined by titration with a previously standardized solution of ammonium iron(II) sulfate hexahydrate in orthophosphoric acid. The end-point of the titration is determined amperometrically using a pair of polarized platinum electrodes. The oxygen/uranium ratio is calculated from the uranium(VI) content. A portion, weighing about 1 g, of the test sample is dissolved in orthophosphoric acid. The dissolution is performed in an atmosphere of nitrogen or carbon dioxide when sintered material is being analysed. When highly sintered material is being analysed, the dissolution is performed at a higher temperature in purified phosphoric acid from which the water has been partly removed. The cooled solution is titrated with an orthophosphoric acid solution of ammonium iron(II) sulfate, which has previously been standardized against potassium dichromate. The end-point of the titration is detected by the sudden increase of current between a pair of polarized platinum electrodes on the addition of an excess of ammonium iron(II) sulfate solution. The paper provides information about scope, principle, reactions, reagents, apparatus, preparation of test sample, procedure (uranium dioxide powder, sintered pellets of uranium dioxide, highly sintered pellets of uranium dioxide and determination

  1. Laboratory Studies of Stratospheric Bromine Chemistry: Kinetics of the Reactions of Bromine Monoxide with Nitrogen Dioxide and Atomic Oxygen.

    Science.gov (United States)

    Thorn, Robert Peyton, Jr.

    A laser flash photolysis - long path absorption technique has been employed to study the kinetics of the reaction rm BrO + NO_2 + M{k _{16}atopto} products as a function of temperature (248-346 K), pressure (16 -800 Torr), and buffer gas identity (rm N _2,CF_4). 351 nm photolysis of rm NO_2/Br_2/N_2 mixtures generated BrO. The BrO decay in the presence of excess NO_2 was followed by UV absorption at 338.3 nm. The reaction is in the falloff regime between third and second order over the entire range of conditions investigated. This is the first study where temperature dependent measurements of k_{16} (P,T) have been reported at pressures greater than 12 Torr; hence, these results help constrain choices of k_{16}(P,T) for use in modeling stratospheric BrO_{rm x} chemistry. The kinetics of the important stratospheric reaction rm BrO+O(^3P)_sp{to }{k_{14}}Br+O_2 in N_2 buffer gas have been studied as a function of temperature (233-328 K) and pressure (25 -150 Torr) using a novel dual laser flash photolysis/long path absorption/resonance fluorescence technique. 248 nm pulsed laser photolysis of rm Br_2/O _3/N_2 mixtures produces O atoms in excess over Br_2. After a delay sufficient for BrO to be generated, a 532 nm laser pulse photolyses a small fraction of the O_3 to generate O(^3P). The decay of O(^3P) in the presence of an excess, known concentration of BrO, as determined by UV absorption at 338.3 nm and by numerical simulation, is then followed by time-resolved atomic resonance fluorescence spectroscopy. The experimental results have shown the reaction kinetics to be independent of pressure, to increase with decreasing temperature, and to be faster than suggested by the only previous (indirect) measurement. The resulting Anhenius expression for k_{14}(T) is given below.rm k_{14 }(T) = 1.64times 10^{-11} exp (263/T) cm^3 molecule ^{-1} s^{-1} The absolute accuracy of k_{14 }(T) at any temperature within the range studied is estimated to be +/-25%. Possible kinetic

  2. Growth models of coexisting p(2 × 1) and c(6 × 2) phases on an oxygen-terminated Cu(110) surface studied by noncontact atomic force microscopy at 78 K

    International Nuclear Information System (INIS)

    Li, Yan Jun; Lee, Seung Hwan; Kinoshita, Yukinori; Wen, Huanfei; Naitoh, Yoshitaka; Sugawara, Yasuhiro; Ma, Zong Min; Nomura, Hikaru

    2016-01-01

    We present an experimental study of coexisting p(2 × 1) and c(6 × 2) phases on an oxygen-terminated Cu(110) surface by noncontact atomic force microscopy (NC-AFM) at 78 K. Ball models of the growth processes of coexisting p(2 × 1)/c(6 × 2) phases on a terrace and near a step are proposed. We found that the p(2 × 1) and c(6 × 2) phases are grown from the super Cu atoms on both sides of O–Cu–O rows of an atomic spacing. In this paper, we summarize our investigations of an oxygen-terminated Cu(110) surface by NC-AFM employing O- and Cu-terminated tips. Also, we state several problems and issues for future investigation. (paper)

  3. Reactive oxygen species-based measurement of the dependence of the Coulomb nanoradiator effect on proton energy and atomic Z value.

    Science.gov (United States)

    Seo, Seung-Jun; Jeon, Jae-Kun; Han, Sung-Mi; Kim, Jong-Ki

    2017-11-01

    The Coulomb nanoradiator (CNR) effect produces the dose enhancement effects from high-Z nanoparticles under irradiation with a high-energy ion beam. To gain insight into the radiation dose and biological significance of the CNR effect, the enhancement of reactive oxygen species (ROS) production from iron oxide or gold NPs (IONs or AuNPs, respectively) in water was investigated using traversing proton beams. The dependence of nanoradiator-enhanced ROS production on the atomic Z value and proton energy was investigated. Two biologically important ROS species were measured using fluorescent probes specific to •OH or [Formula: see text] in a series of water phantoms containing either AuNPs or IONs under irradiation with a 45- or 100-MeV proton beam. The enhanced generation of hydroxyl radicals (•OH) and superoxide anions ([Formula: see text]) was determined to be caused by the dependence on the NP concentration and proton energy. The proton-induced Au or iron oxide nanoradiators exhibited different ROS enhancement rates depending on the proton energy, suggesting that the CNR radiation varied. The curve of the superoxide anion production from the Au-nanoradiator showed strong non-linearity, unlike the linear behavior observed for hydroxyl radical production and the X-ray photoelectric nanoradiator. In addition, the 45-MeV proton-induced Au nanoradiator exhibited an ROS enhancement ratio of 8.54/1.50 ([Formula: see text] / •OH), similar to that of the 100-KeV X-ray photoelectric Au nanoradiator (7.68/1.46). The ROS-based detection of the CNR effect revealed its dependence on the proton beam energy, dose and atomic Z value and provided insight into the low-linear energy transfer (LET) CNR radiation, suggesting that these factors may influence the therapeutic efficacy via chemical reactivities, transport behaviors, and intracellular oxidative stress.

  4. Comparison of hemodynamics during hyperthermal immersion and exercise testing in apparently healthy females aged 50-60 years.

    Science.gov (United States)

    Lietava, Jan; Vohnout, Branislav; Valent, Denis; Celko, Juraj

    2004-07-01

    Owing to excessive worries regarding adverse cardiac events, hyperthermal balneotherapy for patients with coronary artery disease is underprescribed. However, very few cardiac events occur in similar heat stress during Finnish sauna bathing. Exercise testing has proven to be a safe diagnostic procedure even in survivors of myocardial infarction. We compared the effects of hyperthermal immersion and exercise testing on cardiac hemodynamics in 21 apparently healthy women aged 50-60 years. The maximal symptom-limited bicycle exercise test was performed according to the modified protocol of Wasserman. Hyperthermal immersion was carried out in 40 degrees C water and was completed by increasing the core temperature by about 2 degrees C. The left ventricular function was evaluated using continuous measurement of thoracic electric bioimpedance during both tests. The blood pressure, index of contractility and heart rate were measured directly, whereas the cardiac index, left cardiac work index and systemic vascular resistance index were calculated. The hemodynamic response, as assessed at continuous non-invasive monitoring, showed substantial differences between hyperthermal immersion and exercise testing. Overall, we found a significantly lower hemodynamic load during hyperthermal immersion in comparison with exercise testing. Entering the bath, there was a significant decrease in the left cardiac work, contractility and blood pressure. We recorded a slight increase in the heart rate towards peak hyperthermal immersion. However, other modulators such as the mean arterial pressure, index of contractility, cardiac index and left cardiac work index decreased even below resting values. Excessive hyperthermal immersion induced a lower hemodynamic load in apparently healthy women than standard maximal exercise testing.

  5. Deviation from normal Boltzmann distribution of high-lying energy levels of iron atom excited by Okamoto-cavity microwave-induced plasmas using pure nitrogen and nitrogen–oxygen gases

    International Nuclear Information System (INIS)

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen–oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen

  6. Influence of Oxygen Pressure on the Domain Dynamics and Local Electrical Properties of BiFe0.95Mn0.05O3 Thin Films Studied by Piezoresponse Force Microscopy and Conductive Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Kunyu Zhao

    2017-11-01

    Full Text Available In this work, we have studied the microstructures, nanodomains, polarization preservation behaviors, and electrical properties of BiFe0.95Mn0.05O3 (BFMO multiferroic thin films, which have been epitaxially created on the substrates of SrRuO3, SrTiO3, and TiN-buffered (001-oriented Si at different oxygen pressures via piezoresponse force microscopy and conductive atomic force microscopy. We found that the pure phase state, inhomogeneous piezoresponse force microscopy (PFM response, low leakage current with unidirectional diode-like properties, and orientation-dependent polarization reversal properties were found in BFMO thin films deposited at low oxygen pressure. Meanwhile, these films under high oxygen pressures resulted in impurities in the secondary phase in BFMO films, which caused a greater leakage that hindered the polarization preservation capability. Thus, this shows the important impact of the oxygen pressure on modulating the physical effects of BFMO films.

  7. Design of hyper-thermal neutron irradiation fields for neutron capture therapy in KUR-heavy water neutron irradiation facility. Mounting of hyper-thermal neutron converter in therapeutic collimator

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2001-01-01

    Neutron capture therapy (NCP) using thermal neutron needs to improve of depth dose distribution in a living body. Epi-thermal neutron following moderation of fast neutron is usually used for improving of the depth dose distribution. The moderation method of fast neutron, however, gets mixed some of high energy neutron which give some of serious effects to a living body, and involves the difficulty for collimation of thermal neutron to the diseased part. Hyper-thermal neutrons, which are in an energy range of 0.1-3 eV at high temperature side of thermal neutron, are under consideration for application to the NCP. The hyper-thermal neutrons can be produced by up-scattering of thermal neutron in a high temperature material. Fast neutron components in collimator for the NCP reduce on application of the up-scattering method. Graphite at high temperature (>1000k) is used as a hyper-thermal neutron converter. The hyper-thermal neutron converter is planted to mount on therapeutic collimator which is located at the nearest side of patient for the NCP. Total neutron flux, ratio of hyper-thermal neutron to total neutron, and ratio of gamma-ray dose to neutron flux are calculated as a function of thickness of the graphite converter using monte carlo code MCNP-V4B. (M. Suetake)

  8. Generation of Free Oxygen Atoms O(3P) in Solution by Photolysis of 4-Benzoylpyridine N-Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Carraher, Jack M. [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Bakac, Andreja [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2014-08-04

    Laser flash photolysis of 4-benzoylpyridine N-oxide (BPyO) at 308 nm in aqueous solutions generates a triplet excited state 3BPyO* that absorbs strongly in the visible, λmax 490 and 380 nm. 3BPyO* decays with the rate law kdecay/s-1 = (3.3 ± 0.9) × 104 + (1.5 ± 0.2) × 109 [BPyO] to generate a mixture of isomeric hydroxylated benzoylpyridines, BPy(OH), in addition to small amounts of oxygen atoms, O(3P). Molecular oxygen quenches 3BPyO*, kQ = 1.4 × 109 M-1 s-1, but the yields of O(3P) increase in O2-saturated solutions to 36%. Other triplet quenchers have a similar effect, which rules out the observed 3BPyO* as a source of O(3P). It is concluded that O(3P) is produced from either 1BPyO* or a short-lived, unobserved, higher energy triplet generated directly from 1BPyO*. 3BPyO* is reduced by Fe2+ and by ABTS2- to the radical anion BPyO.- which exhibits a maximum at 510 nm, ε = 2200 M-1 cm-1. The anion engages in back electron transfer with ABTS.- with k = 1.7 × 109 M-1 s-1. The same species can be generated by reducing ground state BPyO with .C(CH3)2OH. The photochemistry of BPyO in acetonitrile is similar to that in aqueous solutions.

  9. Clinical features of pulmonary emboli in patients following cytoreductive surgery (peritonectomy) and hyperthermic intraperitoneal chemotherapy (hipec), a single centre experience.

    Science.gov (United States)

    Vukadinovic, V; Chiou, J D; Morris, D L

    2015-05-01

    Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) can be complicated by pulmonary emboli (PE). Patients are at high risk due to surgery, underlying malignancy, immobility and indwelling lines. This paper aims to identify clinically significant signs and symptoms preceding acute PE in post CRS-HIPEC patients, assess the PE investigative approach in this population and the significance of PE on patient management. 25 cases with a positive and 50 controls with a negative CTPA for PE were isolated from the peritonectomy database at St George Hospital Sydney, January 2006 to July 2013. Vital signs, patient symptoms, adjunct investigation findings and patient outcomes were collected and graphed in Microsoft Excel. P values and 95% confidence intervals were calculated using GraphPad Prism version 6. 25 of 562 (4.4%) CRS-HIPEC patients were diagnosed with acute PE. Raised body temperature was the only statistically significant clinical finding that differentiated cases from controls (p value 0.02). Arterial blood gas results did not correlate with PE (p values 0.62; 0.29; 0.55, 0.84). Troponin, ECG and CXR were not routinely conducted. CXR and CTPA findings were similar between cases and controls (Table 4). PE patients required lower supplementary oxygen and escalation of care. Body temperature is the only statistically significant clinical finding observed with PE. We recommend a standardised investigative approach consisting of troponin, ECG and CXR. PE in CRS-HIPEC does not cause significant cardio-respiratory dysfunction, or escalation of care. PE rates are higher than other major surgeries, thus we propose a trial with increased chemical prophylaxis in CRS-HIPEC patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Estimates of eddy turbulence consistent with seasonal variations of atomic oxygen and its possible role in the seasonal cycle of mesopause temperature

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2010-11-01

    Full Text Available According to current understanding, adiabatic cooling and heating induced by the meridional circulation driven by gravity waves is the major process for the cold summer and warm winter polar upper mesosphere. However, our calculations show that the upward/downward motion needed for adiabatic cooling/heating of the summer/winter polar mesopause simultaneously induces a seasonal variation in both the O maximum density and the altitude of the [O] peak that is opposite to the observed variables generalized by the MSISE-90 model. It is usually accepted that eddy turbulence can produce the [O] seasonal variations. Using this approach, we can infer the eddy diffusion coefficient for the different seasons. Taking these results and experimental data on the eddy diffusion coefficient, we consider in detail and estimate the heating and cooling caused by eddy turbulence in the summer and winter polar upper mesosphere. The seasonal variations of these processes are similar to the seasonal variations of the temperature and mesopause. These results lead to the conclusion that heating/cooling by eddy turbulence is an important component in the energy budget and that adiabatic cooling/heating induced by upward/downward motion cannot dominate in the mesopause region. Our study shows that the impact of the dynamic process, induced by gravity waves, on [O] distributions must be included in models of thermal balance in the upper mesosphere and lower thermosphere (MLT for a consistent description because (a the [O] distribution is very sensitive to dynamic processes, and (b atomic oxygen plays a very important role in chemical heating and infrared cooling in the MLT. To our knowledge, this is the first attempt to consider this aspect of the problem.

  11. Role of atomic oxygen in the low-temperature growth of YBa2Cu3O/sub 7-//sub δ/ thin films by laser ablation deposition

    International Nuclear Information System (INIS)

    Koren, G.; Gupta, A.; Baseman, R.J.

    1989-01-01

    Thin films of YBa 2 Cu 3 O/sub 7-//sub δ/ were deposited on (100) SrTiO 3 substrates held at 600 and 700 0 C in N 2 O and O 2 ambients using 355 nm Nd-YAG laser pulses for ablation of the target. The experiments were done either in the presence or absence of 193 nm excimer laser irradiation of the ambient gas between the target and the substrate. Results without the excimer irradiation show that in 0.2 Torr of both N 2 O and O 2 , at 700 0 C substrate surface temperature, excellent smooth films with T/sub c/ (R = 0) of 93 K and J/sub c/ (88 K) of 1.3 x 10 6 A/cm 2 were obtained. At 600 0 C, semiconducting films with no superconducting transition were obtained in O 2 ambient, whereas in N 2 O, semiconducting normal state behavior with broad superconducting transition was found. With the 193 nm irradiation, no change was observed in the electrical properties of the films deposited in O 2 at 600 0 C, whereas in N 2 O reasonably good superconducting films with normal metallic behavior and T/sub c/ (R = 0) of 84 K were found. Since the 193 nm photons hardly dissociate O 2 molecules, but very efficiently photodissociate the N 2 O molecules to form N 2 and O( 1 D), it is concluded that the atomic oxygen produced by photodissociation of N 2 O is responsible for the superconducting film deposition at 600 0 C

  12. Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange.

    Science.gov (United States)

    Ramírez-Solís, A; Zicovich-Wilson, C M; Hernández-Lamoneda, R; Ochoa-Calle, A J

    2017-01-25

    The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε 1 phase and a higher pressure NM ε 0 phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O 2 molecules in the (O 2 ) 4 unit cell were studied. Full enthalpy-driven geometry optimizations of the (O 2 ) 4 unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O 2 ) 4 unit cell for the low-pressure regime of the ε phase.

  13. Synthesis, Properties, Calculations and Applications of Small Molecular Host Materials Containing Oxadiazole Units with Different Nitrogen and Oxygen Atom Orientations for Solution-Processable Blue Phosphorescent OLEDs

    Science.gov (United States)

    Ye, Hua; Wu, Hongyu; Chen, Liangyuan; Ma, Songhua; Zhou, Kaifeng; Yan, Guobing; Shen, Jiazhong; Chen, Dongcheng; Su, Shi-Jian

    2018-03-01

    A series of new small molecules based on symmetric electron-acceptor of 1,3,4-oxadiazole moiety or its asymmetric isomer of 1,2,4-oxadiazole unit were successfully synthesized and applied to solution-processable blue phosphorescent organic light-emitting diodes for the first time, and their thermal, photophysical, electrochemical properties and density functional theory calculations were studied thoroughly. Due to the high triplet energy levels ( E T, 2.82-2.85 eV), the energy from phosphorescent emitter of iridium(III) bis[(4,6-difluorophenyl)-pyridinate- N,C2']picolinate (FIrpic) transfer to the host molecules could be effectively suppressed and thus assuring the emission of devices was all from FIrpic. In comparison with the para-mode conjugation in substitution of five-membered 1,3,4-oxadiazole in 134OXD, the meta-linkages of 1,2,4-isomer appending with two phenyl rings cause the worse conjugation degree and the electron delocalization as well as the lower electron-withdrawing ability for the other 1,2,4-oxadiazole-based materials. Noting that the solution-processed device based on 134OXD containing 1,3,4-oxadiazole units without extra vacuum thermal-deposited hole/exciton-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 8.75 cd/A due to the excellent charge transporting ability of 134OXD, which far surpassed the similar devices based on other host materials containing 1,2,4-oxadiazole units. Moreover, the device based on 134OXD presented small efficiency roll-off with current efficiency (CE) of 6.26 cd/A at high brightness up to 100 cd/m2. This work demonstrates different nitrogen and oxygen atom orientations of the oxadiazole-based host materials produce major impact on the optoelectronic characteristics of the solution-processable devices.

  14. Environmental forcing of terrestrial carbon isotope excursion amplification across five Eocene hyperthermals

    Science.gov (United States)

    Bowen, G. J.; Abels, H.

    2015-12-01

    Abrupt changes in the isotope composition of exogenic carbon pools accompany many major episodes of global change in the geologic record. The global expression of this change in substrates that reflect multiple carbon pools provides important evidence that many events reflect persistent, global redistribution of carbon between reduced and oxidized stocks. As the diversity of records documenting any event grows, however, discrepancies in the expression of carbon isotope change among substrates are almost always revealed. These differences in magnitude, pace, and pattern of change can complicate interpretations of global carbon redistribution, but under ideal circumstances can also provide additional information on changes in specific environmental and biogeochemical systems that accompanied the global events. Here we evaluate possible environmental influences on new terrestrial records of the negative carbon isotope excursions (CIEs) associated with multiple hyperthermals of the Early Eocene, which show a common pattern of amplified carbon isotope change in terrestrial paleosol carbonate records relative to that recorded in marine substrates. Scaling relationships between climate and carbon-cycle proxies suggest that that the climatic (temperature) impact of each event scaled proportionally with the magnitude of its marine CIE, likely implying that all events involved release of reduced carbon with a similar isotopic composition. Amplification of the terrestrial CIEs, however, does not scale with event magnitude, being proportionally less for the first, largest event (the PETM). We conduct a sensitivity test of a coupled plant-soil carbon isotope model to identify conditions that could account for the observed CIE scaling. At least two possibilities consistent with independent lines of evidence emerge: first, varying effects of pCO2 change on photosynthetic carbon isotope discrimination under changing background pCO2, and second, contrasting changes in regional

  15. [Cytostatic hyperthermic isolated limb perfusion (HILP) in VFN (General Faculty Hospital in Prague)].

    Science.gov (United States)

    Spacek, M; Mitás, P; Lacina, L; Krajsová, I; Hodková, G; Salmay, M; Spunda, R; Brlicová, L; Lindner, J

    2011-01-01

    Hyperthermic isolated limb perfusion (HILP) is a standardized method of treatment in selected patients with in-transient locoregional recurrence/methastasis of melanoma or, some other soft tissue tumors (incl. sarcoma etc.) Authors present history and current status of this treatment modality in General University Hospital in Prague. During one year period (7/2009-6/2010) 10 patients were indicated for this procedure. We performed 13 procedures (3x redo), 11 in lower extremity and 2 in upper extremity. There was no serious complication in this cohort of patiens. Multidisciplinar approach is indicated in melanoma patients care.

  16. [The system design of an intraperitoneal perfusion machine for hyperthermic chemotherapy based on single chip microcomputer].

    Science.gov (United States)

    Zhang, Zhiyong; Yang, Xuandong; Li, Kaiyang

    2005-06-01

    A new kind of method for intraperitoneal hyperthermic chemotherapy has been proved to be very effective for the therapy of gastrointestinal cancer. In this article is reported an intraperitoneal perfusion machine which is designed for instituting the treatment. The liquor of the chemotherapy drug is infused into the abdomen after being heated by heating system; the liquor flows out of the abdomen is abandoned. The temperature of heating and the velocity of flow are controlled by MCU, thus the temperature of the liquor of the chemotherapy drug in the abdomen can be adjusted to the most favarable temperature.

  17. Agmatine attenuates the discriminative stimulus and hyperthermic effects of methamphetamine in male rats.

    Science.gov (United States)

    Thorn, David A; Li, Jiuzhou; Qiu, Yanyan; Li, Jun-Xu

    2016-09-01

    Methamphetamine abuse remains an alarming public heath challenge, with no approved pharmacotherapies available. Agmatine is a naturally occurring cationic polyamine that has previously been shown to attenuate the rewarding and psychomotor-sensitizing effects of methamphetamine. This study examined the effects of agmatine on the discriminative stimulus and hyperthermic effects of methamphetamine. Adult male rats were trained to discriminate 0.32 mg/kg methamphetamine from saline. Methamphetamine dose dependently increased drug-associated lever responding. The nonselective dopamine receptor antagonist haloperidol (0.1 mg/kg) significantly attenuated the discriminative stimulus effects of methamphetamine (5.9-fold rightward shift). Agmatine (10-100 mg/kg) did not substitute for methamphetamine, but significantly attenuated the stimulus effects of methamphetamine, leading to a maximum of a 3.5-fold rightward shift. Acute 10 mg/kg methamphetamine increased the rectal temperature by a maximum of 1.96±0.17°C. Agmatine (10-32 mg/kg) pretreatment significantly attenuated the hyperthermic effect of methamphetamine. Agmatine (10 mg/kg) also significantly reversed methamphetamine-induced temperature increase. Together, these results support further exploration of the value that agmatine may have for the treatment of methamphetamine abuse and overdose.

  18. Current status and future prospects of hyperthermic intraoperative intraperitoneal chemotherapy (HIPEC) clinical trials in ovarian cancer.

    Science.gov (United States)

    Cowan, Renee A; O'Cearbhaill, Roisin E; Zivanovic, Oliver; Chi, Dennis S

    2017-08-01

    The natural history of advanced-stage epithelial ovarian cancer is one of clinical remission after surgery and platinum/taxane-based intravenous (IV) and/or intraperitoneal (IP) chemotherapy followed by early or late recurrence in the majority of patients. Prevention of progression and recurrence remains a major hurdle in the management of ovarian cancer. Recently, many investigators have evaluated the use of normothermic and hyperthermic intraoperative IP drug delivery as a management strategy. This is a narrative review of the current status of clinical trials of hyperthermic intraoperative intraperitoneal chemotherapy (HIPEC) in ovarian cancer and the future directions for this treatment strategy. The existing studies on HIPEC in patients with epithelial ovarian cancer are mostly retrospective in nature, are heterogeneous with regards to combined inclusion of primary and recurrent disease and lack unbiased data. Until data are available from evidence-based trials, it is reasonable to conclude that surgical cytoreduction and HIPEC is a rational and interesting, though still investigative, approach in the management of epithelial ovarian cancer, whose use should be employed within prospective clinical trials.

  19. Comparison of auricular and rectal temperature measurement in normothermic, hypothermic, and hyperthermic dogs.

    Science.gov (United States)

    Konietschke, U; Kruse, B D; Müller, R; Stockhaus, C; Hartmann, K; Wehner, A

    2014-01-01

    Measurement of rectal temperature is the most common method and considered gold standard for obtaining body temperature in dogs. So far, no study has been performed comparing agreement between rectal and auricular measurements in a large case series. The purpose of the study was to assess agreement between rectal and auricular temperature measurement in normothermic, hypothermic, and hyperthermic dogs with consideration of different environmental conditions and ear conformations. Reference values for both methods were established using 62 healthy dogs. Three hundred dogs with various diseases (220 normothermic, 32 hypothermic, 48 hyperthermic) were enrolled in this prospective study. Rectal temperature was compared to auricular temperature and differences in agreement with regard to environmental temperature, relative humidity, and different ear conformations (pendulous versus prick ears) were evaluated using Pearson's correlation coefficient and Bland-Altman analysis. Correlation between rec- tal and auricular temperature was significant (r: 0.892; p  temperature did not. Variation between the two methods of measuring body temperature was clinically unacceptable. Although measurement of auricular temperature is fast, simple, and well tolerated, this method provides a clinically unacceptable difference to the rectal measurement.

  20. Radiation exposure to surgical staff during hyperthermic isolated limb perfusion with 99m Technetium labeled red blood cells

    DEFF Research Database (Denmark)

    Kristoffersen, Ulrik Sloth; Straalman, Kristina; Schmidt, Grethe

    2009-01-01

    PURPOSE: Hyperthermic isolated limb perfusion (HILP) is an effective method in the treatment of recurrent melanomas and soft tissue sarcomas. To avoid systemic toxicity, leakage from the limb perfusate into the systemic circulation is real-time monitored by administration of a radioactive agent...

  1. HYPERTHERMIC ISOLATED REGIONAL PERFUSION WITH CISPLATIN IN THE LOCAL TREATMENT OF SPONTANEOUS CANINE OSTEOSARCOMA - ASSESSMENT OF SHORT-TERM EFFECTS

    NARCIS (Netherlands)

    VANGINKEL, RJ; HOEKSTRA, HJ; MEUTSTEGE, FJ; OOSTERHUIS, JW; UGES, DRA; KOOPS, HS

    To increase the effect of cisplatin on locoregional osteosarcoma, the short-term effect of hyperthermic isolated regional perfusion (HIRP) with cisplatin (30 mg/L extremity volume) was studied in 28 dogs with spontaneous osteogenic sarcoma, using clinical, radiological, and histological parameters.

  2. Work Environment in the Operating Room during Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy : Factors Influencing Choice of Protective Equipment

    OpenAIRE

    Näslund Andréasson, Sara

    2011-01-01

    Peritoneal carcinomatosis (PC) is a common metastatic manifestation of both gastrointestinal and gynecological malignancies. Curative modes of treatment are cytoreductive surgery (CRS) combined with intraoperative hyperthermic intraperitoneal chemotherapy (HIPEC). Surgeons and operating room (OR) staff attending these procedures are exposed to chemotherapy and electrocautery smoke. Heated chemotherapy (HIPEC) may vaporize and become inhaled by those administering it and, moreover, large quant...

  3. Kinetics of an oxygen – iodine active medium with iodine atoms optically pumped on the {sup 2}P{sub 1/2} – {sup 2}P{sub 3/2} transition

    Energy Technology Data Exchange (ETDEWEB)

    Zagidullin, M V; Azyazov, V N [Samara Branch of the P.N. Lebedev Physical Institute, Russian Academy of Sciences, Samara (Russian Federation); Malyshev, M S [S.P. Korolev Samara State Aerospace University, Samara (Russian Federation)

    2015-08-31

    The kinetics of the processes occurring in an O{sub 2} – I{sub 2} – He – H{sub 2}O gas flow in which photodissociation of molecular iodine at a wavelength close to 500 nm and excitation of atomic iodine on the {sup 2}P{sub 1/2} – {sup 2}P{sub 3/2} transition by narrow-band radiation near 1315 nm are implemented successively has been analysed. It is shown that implementation of these processes allows one to form an oxygen – iodine medium with a high degree of dissociation of molecular iodine and a relative content of singlet oxygen O{sub 2}(a{sup 1}Δ) exceeding 10%. Having formed a supersonic gas flow with a temperature ∼100 K from this medium, one can reach a small-signal gain of about 10{sup -2} cm{sup -1} on the {sup 2}P{sub 1/2} – {sup 2}P{sub 3/2} transition in iodine atoms. The specific power per unit flow cross section in the oxygen – iodine laser with this active medium may reach ∼100 W cm{sup -2}. (active media)

  4. Atomic oxygen effect on the in situ growth of stoichiometric YBa2Cu3O7 - delta epitaxial films by facing targets 90° off-axis radiofrequency magnetron sputtering

    Science.gov (United States)

    Oya, Gin-ichiro; Diao, Chien Chen; Imai, Syozo; Uzawa, Takaaki; Sawada, Yasuji; Sugai, Tokuko; Nakajima, Kensuke; Yamashita, Tsutomu

    1995-06-01

    (110)- and (103)-oriented almost stoichiometric YBa2Cu3O7-δ (YBCO) films have been grown epitaxially on hot SrTiO3 (110) substrates using a 90° off-axis rf magnetron sputtering technique, for fabrication of vertical sandwich-type YBCO/insulator/YBCO or YBCO/normal metal/YBCO Josephson junctions utilizing the high-quality YBCO films. The YBCO epitaxial films with high transition temperatures Tc of ˜90 K have been deposited in situ only under the conditions of substrate temperatures Ts of ˜650-˜700 °C and oxygen partial pressure PO2 of ˜5×10-3-˜10×10-3 Torr, which are in close proximity to the critical stability/decomposition line for YBa2Cu3O6 in the ordinary Y-Ba-Cu-O phase diagram. Using a quadrupole mass spectrometer, a high density of atomic oxygen has directly been observed to be efficiently produced in the sputter glow discharge under the above optimum conditions of PO2. This atomic oxygen has played a key role in promoting the formation of the perovskite structure and the epitaxial growth of the YBCO films. Furthermore, Shapiro steps have successfully been observed for a Nb-YBCO point-contact junction, which is made by pressing a Nb needle on a surface-etched YBCO epitaxial film, under 525.4 GHz submillimeter-wave irradiation.

  5. Hyperthermal (1-100 eV) nitrogen ion scattering damage to D-ribose and 2-deoxy-D-ribose films.

    Science.gov (United States)

    Deng, Zongwu; Bald, Ilko; Illenberger, Eugen; Huels, Michael A

    2007-10-14

    Highly charged heavy ion traversal of a biological medium can produce energetic secondary fragment ions. These fragment ions can in turn cause collisional and reactive scattering damage to DNA. Here we report hyperthermal (1-100 eV) scattering of one such fragment ion (N(+)) from biologically relevant sugar molecules D-ribose and 2-deoxy-D-ribose condensed on polycrystalline Pt substrate. The results indicate that N(+) ion scattering at kinetic energies down to 10 eV induces effective decomposition of both sugar molecules and leads to the desorption of abundant cation and anion fragments. Use of isotope-labeled molecules (5-(13)C D-ribose and 1-D D-ribose) partly reveals some site specificity of the fragment origin. Several scattering reactions are also observed. Both ionic and neutral nitrogen atoms abstract carbon from the molecules to form CN(-) anion at energies down to approximately 5 eV. N(+) ions also abstract hydrogen from hydroxyl groups of the molecules to form NH(-) and NH(2) (-) anions. A fraction of OO(-) fragments abstract hydrogen to form OH(-). The formation of H(3)O(+) ions also involves hydrogen abstraction as well as intramolecular proton transfer. These findings suggest a variety of severe damaging pathways to DNA molecules which occur on the picosecond time scale following heavy ion irradiation of a cell, and prior to the late diffusion-limited homogeneous chemical processes.

  6. Hyperthermal and low-energy Ne{sup +} scattering from Au and Pt surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tolstogouzov, A. E-mail: alexander@ipelp.pd.cnr.it; Daolio, S.; Pagura, C

    2001-07-01

    Energy spectra of Ne{sup +} ions scattered off Au and Pt polycrystalline targets at low (200-1400 eV) and hyperthermal (down to 40 eV) energies were studied by mass-resolved ion-scattering spectrometry. Two scattering peaks with presumably different nature were revealed and their characteristics, namely, the relative energy position, the full-width at half-maximum (FWHM) and the normalized intensity, as a function of the primary energy were investigated. One of these peaks, named as the binary collision approximation (BCA)-peak, was interpreted using the BCA model. Another one, the so-called high-energy (HE)-peak, was situated at an energy position near to the primary energy, and we explain its origins in terms of non-binary (collective) interactions.

  7. Is Palliative Laparoscopic Hyperthermic Intraperitoneal Chemotherapy Effective in Patients with Malignant Hemorrhagic Ascites?

    Science.gov (United States)

    de Mestier, Louis; Volet, Julien; Scaglia, Elodie; Msika, Simon; Kianmanesh, Reza; Bouché, Olivier

    2012-01-01

    Malignant hemorrhagic ascites may complicate the terminal evolution of digestive cancers with peritoneal carcinomatosis. It has a bad influence on prognosis and may severely impair patients’ quality of life. Palliative laparoscopic hyperthermic intraperitoneal chemotherapy (HIPEC) has been proposed to treat debilitating malignant ascites. Two cases of peritoneal carcinomatosis causing hemorrhagic ascites and severe anemia that needed iterative blood transfusions are reported. These patients were treated by laparoscopic HIPEC (mitomycin C and cisplatin with an inflow temperature of 43°C), resulting in cessation of peritoneal bleeding. No postoperative complication or relapse of ascites occurred during the following months. No more blood transfusion was needed. Laparoscopic HIPEC might be an effective and safe therapeutic option to consider in patients with malignant hemorrhagic ascites. PMID:22679405

  8. Formation of magnetic aluminium oxyhydroxide nanorods and use for hyperthermal effects

    International Nuclear Information System (INIS)

    Jha, Himendra; Schmidt-Stein, Felix; Shrestha, Nabeen K; Schmuki, Patrik; Kettering, Melanie; Hilger, Ingrid

    2011-01-01

    In the present work, we show that a porous alumina template can easily be filled with magnetic nanoparticles and then be sealed by a hot water treatment (by forming an aluminium oxyhydroxide (AlOOH) sealant layer). The porous layer then can be separated from the substrate by an etch to form free magnetic AlOOH nano-capsules. The process allows for a straightforward and highly defined size control of the magnetic units and can easily be scaled up. Furthermore, as AlOOH is biocompatible and has been used as a drug adjuvant for human use, the nanorod shaped capsules are highly promising for biomedical applications such as hyperthermal effects (heating in alternating magnetic fields).

  9. Correlation between melphalan pharmacokinetics and hepatic toxicity following hyperthermic isolated liver perfusion for unresectable metastatic disease.

    Science.gov (United States)

    Mocellin, Simone; Pilati, Pierluigi; Da Pian, Pierpaolo; Forlin, Marco; Corazzina, Susanna; Rossi, Carlo Riccardo; Innocente, Federico; Ori, Carlo; Casara, Dario; Ujka, Francesca; Nitti, Donato; Lise, Mario

    2007-02-01

    In the present work, we report on the results of our pilot study of hyperthermic isolated hepatic perfusion (IHP) with melphalan alone for patients with unresectable metastatic liver tumors refractory to conventional treatments, with particular regard to the correlation between pharmacokinetic findings and hepatic toxicity. Inclusion criteria were unresectable liver metastases, hepatic parenchyma replacement hyperthermic conditions with melphalan (1.5 mg/kg body weight). Completeness of vascular isolation of the liver and drug distribution volumes of the perfusion circuit were assessed by a radiolabeled albumin-based method. Drug concentrations in perfusate and plasma were measured by means of high-performance liquid chromatography (HPLC). Twenty patients with unresectable liver metastases underwent IHP. No intraoperative mortality occurred. Treatment-related systemic toxicity was minimal and reversible. Three patients (15%) experienced grade 4 hepatic toxicity and died due to liver failure and subsequent multiorgan failure. Other six patients had significant (grade 3-4) but transitory hepatic toxicity. Complete and partial responses were observed in three and nine out of 17 evaluable patients, respectively (overall response rate = 70%). The pharmacokinetics study showed a 3% mean perfusate-to-plasma drug leakage (range 1-6%). Logistic regression analysis showed that drug concentration in the perfusate circuit, but not preoperative tests, significantly and independently correlated with hepatic toxicity (P = 0.028). Following melphalan-based IHP, objective tumor regression could be observed in a remarkable percentage of patients refractory to standard treatments. However, hepatic toxicity and related mortality were significant. Our findings suggest that drug dosage personalization based on the measurement of drug distribution volumes might minimize

  10. Magnetostratigraphy in the Lodo Formation, CA: An Attempt to Locate Hyperthermals of the Early Eocene

    Science.gov (United States)

    Aldrich, N. C.; Pluhar, C. J.; Gibbs, S.; Rieth, J. A.

    2015-12-01

    The Lodo Formation in the California Coast Range, Fresno County records the Paleocene Eocene Thermal Maximum (PETM) and possibly other Early Eocene hyperthermal events. The Eocene Thermal Maximum 2 (ETM2, ELMO, or H1) represents a hyperthermal event that occurred approximately 2 million years after the PETM and just prior to the C24r - C24n magnetic reversal (≈ 53.9 Ma) in the Ypresian. While the ETM2 event has been located in offshore samples, it has been more difficult to locate in a terrestrial section. This project attempts to locate the ETM2 magnetostratigraphically by finding the paleomagnetic reversal at C24r-C24n.3n, provide geochronological framework, and assess sedimentation rate changes during this time. This area is known to have had a high rate of deposition (16.8 cm/kyr ) during the PETM, which is found lower in the section. We collected 36 new samples from a 13.44m section spanning stratigraphy thought to cover the ETM2 along with 31 previous samples spanning the PETM, and prepared them for paleomagnetic and paleontological analysis. We analyzed samples using standard paleomagnetic methods including low-temperature and thermal demagnetization. Preliminary results suggest that the magnetostratigraphy spans the C24r-C24n boundary, while the micropaleontology shows the NP10-NP11 boundary, which occurs near the ETM2 as well as the NP11-NP12 boundary. The data indicate an order-of-magnitude drop in sedimentation rate in the lower Eocene at this site, concomitant with a drop in grain size, compared with the PETM.

  11. Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Lei; Mei, Donghai; Xiong, Haifeng; Peng, Bo; Ren, Zhibo; Pereira Hernandez, Xavier I.; DelaRiva, Andrew; Wang, Meng; Engelhard, Mark H.; Kovarik, Libor; Datye, Abhaya K.; Wang, Yong

    2017-12-14

    While single-atom catalysts can provide high catalytic activity and selectivity, application in industrial catalysts demands long term performance and the ability to regenerate the catalysts. We have investigated the factors that lead to improved catalytic activity of a Pt/CeO2 catalyst for low temperature CO oxidation. Single-atom Pt/CeO2 becomes active for CO oxidation under lean condition only at elevated temperatures, because CO is strongly bound to ionic Pt sites. Reducing the catalyst, even under mild conditions, leads to onset of CO oxidation activity even at room temperature. This high activity state involves the transformation of mononuclear Pt species to sub-nanometer sized Pt particles. Under oxidizing conditions, the Pt can be restored to its stable, single-atom state. The key to facile regeneration is the ability to create mobile Pt species and suitable trapping sites on the support, making this a prototypical catalyst system for industrial application of single-atom catalysis.

  12. Determination of production biology of cladocera in a reservoir receiving hyperthermal effluents from a nuclear production reactor

    International Nuclear Information System (INIS)

    Vigerstad, T.J.

    1980-01-01

    The effects on zooplankton of residence in a cooling reservoir receiving hyperthermal effluents directly from a nuclear-production-reactor were studied. Rates of cladoceran population production were compared at two stations in the winter and summer of 1976 on Par Pond located on the Savannah River Plant, Aiken, SC. One station was located in an area of the reservoir directly receiving hyperthermal effluent (Station MAS) and the second was located about 4 km away in an area where surface temperatures were normal for reservoirs in the general geographical region (Station CAS). A non-parametric comparison between stations of standing stock and fecundity data for Bosmina longirostris, taken for the egg ratio model, was used to observe potential hyperthermal effluent effects. There was a statistically higher incidence of deformed eggs in the Bosmina population at Station MAS in the summer. Bosmina standing stock underwent two large oscillations in the winter and three large oscillations in the summer at Station MAS compared with two in the winter and one in the summer at Station CAS. These results are consistent with almost all other Par Pond studies which have found the two stations to be essentially similar in spectra composition but with some statistically significant differences in various aspects of the biology of the species

  13. Atomic geometry and STM simulations of a TiO.sub.2./sub.(110) surface upon formation of an oxygen vacancy and hydroxyl group

    Czech Academy of Sciences Publication Activity Database

    Mutombo, Pingo; Kiss, A.M.; Berkó, A.; Cháb, Vladimír

    2008-01-01

    Roč. 16, - (2008), 025007/1-025007/9 ISSN 0965-0393 R&D Projects: GA AV ČR IAA1010413 Grant - others:MŠMT(CZ) 9/2004 KONTAKT Institutional research plan: CEZ:AV0Z10100521 Source of funding: V - iné verejné zdroje Keywords : vacance * Oxygen * OH group * STM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.388, year: 2008

  14. Examining the rudimentary steps of the oxygen reduction reaction on single-atomic Pt using Ti-based non-oxide supports

    DEFF Research Database (Denmark)

    Tak, Young Joo; Yang, Sungeun; Lee, Hyunjoo

    2018-01-01

    C(100)-supported single Pt atoms. The O2 and OOH* dissociation processes on Pt/TiN(100) are determined to be non-activated (i.e. "barrier-less" dissociation) while an activation energy barrier of 0.19 and 0.51eV is found for these dissociation processes on Pt/TiC(100), respectively. Moreover, the series...

  15. TRPV1 deletion exacerbates hyperthermic seizures in an age-dependent manner in mice.

    Science.gov (United States)

    Barrett, Karlene T; Wilson, Richard J A; Scantlebury, Morris H

    2016-12-01

    Febrile seizures (FS) are the most common seizure disorder to affect children. Although there is mounting evidence to support that FS occur when children have fever-induced hyperventilation leading to respiratory alkalosis, the underlying mechanisms of hyperthermia-induced hyperventilation and links to FS remain poorly understood. As transient receptor potential vanilloid-1 (TRPV1) receptors are heat-sensitive, play an important role in adult thermoregulation and modulate respiratory chemoreceptors, we hypothesize that TRPV1 activation is important for hyperthermia-induced hyperventilation leading to respiratory alkalosis and decreased FS thresholds, and consequently, TRPV1 KO mice will be relatively protected from hyperthermic seizures. To test our hypothesis we subjected postnatal (P) day 8-20 TRPV1 KO and C57BL/6 control mice to heated dry air. Seizure threshold temperature, latency and the rate of rise of body temperature during hyperthermia were assessed. At ages where differences in seizure thresholds were identified, head-out plethysmography was used to assess breathing and the rate of expired CO 2 in response to hyperthermia, to determine if the changes in seizure thresholds were related to respiratory alkalosis. Paradoxically, we observed a pro-convulsant effect of TRPV1 deletion (∼4min decrease in seizure latency), and increased ventilation in response to hyperthermia in TRPV1 KO compared to control mice at P20. This pro-convulsant effect of TRPV1 absence was not associated with an increased rate of expired CO 2 , however, these mice had a more rapid rise in body temperature following exposure to hyperthermia than controls, and the expected linear relationship between body weight and seizure latency was absent. Based on these findings, we conclude that deletion of the TRPV1 receptor prevents reduction in hyperthermic seizure susceptibility in older mouse pups, via a mechanism that is independent of hyperthermia-induced respiratory alkalosis, but

  16. Proton and electron impact on molecular and atomic oxygen: I. High resolution fluorescence spectra in the visible and VUV spectral range and emission cross-sections for dissociative ionisation and excitation of O2

    International Nuclear Information System (INIS)

    Wilhelmi, O.; Schartner, K.H.

    2000-01-01

    For pt.II see ibid., vol.11, p.45-58, 2000. Molecular oxygen O 2 was dissociated in collisions with protons and electrons in the intermediate velocity range (p + -energies: 17-800 keV, e - -energies: 0.2-2 keV). Fluorescence from excited atomic and singly ionised fragments and from singly ionised molecules was detected in the VUV and in the visible and near UV spectral range. Highly resolved spectra are presented for the VUV (46-131 nm) and the near UV/visible (340-605 nm) spectral range. Absolute emission cross-sections have been determined for dissociative ionisation and excitation leading to fluorescence in the VUV. Results are compared with published data. (orig.)

  17. Analytic study of the chain dark decomposition reaction of iodides - atomic iodine donors - in the active medium of a pulsed chemical oxygen-iodine laser: 1. Criteria for the development of the branching chain dark decomposition reaction of iodides

    International Nuclear Information System (INIS)

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, Aleksandr I; Sorokin, Vadim N

    2009-01-01

    The scheme of chemical processes proceeding in the active medium of a pulsed chemical oxygen-iodine laser (COIL) is analysed. Based on the analysis performed, the complete system of differential equations corresponding to this scheme is replaced by a simplified system of equations describing in dimensionless variables the chain dark decomposition of iodides - atomic iodine donors, in the COIL active medium. The procedure solving this system is described, the basic parameters determining the development of the chain reaction are found and its specific time intervals are determined. The initial stage of the reaction is analysed and criteria for the development of the branching chain decomposition reaction of iodide in the COIL active medium are determined. (active media)

  18. Factors associated with thromboembolic events following cytoreductive surgery and hyperthermic intraperitoneal chemotherapy.

    Science.gov (United States)

    Rottenstreich, Amihai; Kalish, Yosef; Kleinstern, Geffen; Yaacov, Almog Ben; Dux, Joseph; Nissan, Aviram

    2017-12-01

    We investigated the risk factors, incidence, and role of thromboprophylaxis in the development of thrombosis following cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (CRS/HIPEC). We reviewed data of patients with CRS/HIPEC in three hospitals. Overall, 192 patients underwent CRS/HIPEC during 2007-2016. Mechanical (thigh-length pneumatic compression stockings) and pharmacologic thromboprophylaxis (40 mg enoxaparin daily, starting 12 h before surgery until discharge) was provided for all patients; and 116 (60.4%) also received an extended course of enoxaparin for 2-4 weeks after discharge. Twenty-six patients experienced thrombotic complications (13.5%) including portal-splenic-mesenteric venous thrombosis (n = 11, 5.7%), pulmonary embolism (n = 10, 5.2%), and deep vein thrombosis (n = 5, 2.6%); most (n = 21, 80.8%) occurred after hospital discharge. Univariate analysis identified Peritoneal Cancer Index, intraoperative transfusion requirement, operative blood loss, operative time, lengths of hospital, and intensive care unit stay, and lack of administration of anticoagulation at discharge as significantly associated with thrombosis. With multivariate analysis, only the lack of anticoagulation therapy at discharge remained significantly associated with thrombosis (P = 0.0001). Thromboembolic complications are common following CRS/HIPEC. As significantly lower rates of thrombosis were found in patients who received an extended course of anticoagulation, we support its use for at least 2 weeks after discharge. © 2017 Wiley Periodicals, Inc.

  19. Effects of hyperthermal proton bombardment on alkanethiol self-assembled monolayer on Au(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Xi Luan [Surface Science Western, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Zheng Zhi; Lam, N.-S. [Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong (China); Grizzi, Oscar [Centro Atomico Bariloche, 8400 San Carlos de Bariloche, Rio Negro (Argentina); Lau, W.-M. [Surface Science Western, University of Western Ontario, London, Ontario N6A 5B7 (Canada)], E-mail: llau22@uwo.ca

    2007-10-31

    The effects of hyperthermal proton bombardment on alkanethiol self-assembled monolayer (SAM) on Au(1 1 1) are studied with scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS). The STM and XPS results show that proton bombardment with proton energy as low as 2 eV can induce cross-linking of the adsorbed alkanethiols and transform the original ordered SAM lattice to an array of nanoclusters of the cross-linked alkanethiols. For a bombardment at 3 eV with a fluence of 3x10{sup 15} cm{sup -2}, the typical cluster size is about 5 nm. In addition, the cluster size distribution is narrow, with no cluster larger than 8 nm. The cluster growth can be promoted by increasing the fluence at a fixed bombardment energy or increasing the energy at a fixed fluence. This indicates that surface diffusion of alkanethiols and cluster growth can be harnessed by the control of the bombardment energy and fluence.

  20. Effects of hyperthermal proton bombardment on alkanethiol self-assembled monolayer on Au(1 1 1)

    International Nuclear Information System (INIS)

    Xi Luan; Zheng Zhi; Lam, N.-S.; Grizzi, Oscar; Lau, W.-M.

    2007-01-01

    The effects of hyperthermal proton bombardment on alkanethiol self-assembled monolayer (SAM) on Au(1 1 1) are studied with scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS). The STM and XPS results show that proton bombardment with proton energy as low as 2 eV can induce cross-linking of the adsorbed alkanethiols and transform the original ordered SAM lattice to an array of nanoclusters of the cross-linked alkanethiols. For a bombardment at 3 eV with a fluence of 3x10 15 cm -2 , the typical cluster size is about 5 nm. In addition, the cluster size distribution is narrow, with no cluster larger than 8 nm. The cluster growth can be promoted by increasing the fluence at a fixed bombardment energy or increasing the energy at a fixed fluence. This indicates that surface diffusion of alkanethiols and cluster growth can be harnessed by the control of the bombardment energy and fluence

  1. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals.

    Science.gov (United States)

    Archibald, S Bruce; Johnson, Kirk R; Mathewes, Rolf W; Greenwood, David R

    2011-12-22

    Early Eocene land bridges allowed numerous plant and animal species to cross between Europe and North America via the Arctic. While many species suited to prevailing cool Arctic climates would have been able to cross throughout much of this period, others would have found dispersal opportunities only during limited intervals when their requirements for higher temperatures were met. Here, we present Titanomyrma lubei gen. et sp. nov. from Wyoming, USA, a new giant (greater than 5 cm long) formiciine ant from the early Eocene (approx. 49.5 Ma) Green River Formation. We show that the extinct ant subfamily Formiciinae is only known from localities with an estimated mean annual temperature of about 20°C or greater, consistent with the tropical ranges of almost all of the largest living ant species. This is, to our knowledge, the first known formiciine of gigantic size in the Western Hemisphere and the first reported cross-Arctic dispersal by a thermophilic insect group. This implies intercontinental migration during one or more brief high-temperature episodes (hyperthermals) sometime between the latest Palaeocene establishment of intercontinental land connections and the presence of giant formiciines in Europe and North America by the early middle Eocene.

  2. Peritoneal metastases of colorectal origin - cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC). The financial aspect.

    Science.gov (United States)

    Jastrzębski, Tomasz; Bębenek, Marek

    2017-12-30

    The incidence of peritoneal carcinomatosis of colorectal cancer amounts to 5%-15% for synchronous metastases and as much as 40% in cases of local recurrence. Best results are obtained for cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC). This treatment offers much better outcomes, leading to 5-year survival rates of as much as 30%-50%. The procedures require significant experience in abdominal surgery, are time-consuming (mean duration of the procedure ranging from 6 to 8 hours) and are burdened by complications that are due not only to the procedure itself but also to the intraperitoneal administration of the cytostatic drug at elevated temperature (41.5 °C). After the procedure, patients are required to be admitted to intensive care units due to potential complications associated with the extent and duration of the procedure as well as chemotherapy administered in hyperthermia. Postoperative management of these patients requires appropriate experience of the entire medical and nursing team. Cytoreductive surgeries combined with HIPEC as highly specialized medical procedures should be assessed for their potential long-term benefits and their costs should be appropriately calculated with consideration to realistic reimbursement rates. Realistic valuation and reimbursement covering the overall average cost of the procedure is recommended by the National Consultant in Surgical Oncology as well as the ESMO consensus guidelines.

  3. Incidence and predictors of postoperative delirium after cytoreduction surgery-hyperthermic intraperitoneal chemotherapy.

    Science.gov (United States)

    Plas, Matthijs; Hemmer, Patrick H J; Been, Lukas B; van Ginkel, Robert J; de Bock, Geertruida H; van Leeuwen, Barbara L

    2018-02-01

    Incidence of, and baseline characteristics associated with delirium in patients after cytoreduction surgery-hyperthermic intraperitoneal chemotherapy (CRS-HIPEC), were subject of investigation. The study was conducted among a consecutive series of prospectively included patients who underwent CRS-HIPEC at the University Medical Center Groningen, Groningen, the Netherlands, between February 2006 and January 2015. A chart-based instrument for delirium during hospitalization was used to identify patients with symptoms of delirium who were not diagnosed by a psychiatrist during admission. Uni- and multivariate logistic regression analyses were performed. Data of 136 patients were included in the analysis. Median age was 60 years (range: 18-76) and 50 (37%) patients were male. During hospitalization, 38 (28%) patients were diagnosed with delirium. Factors that differed significantly between the patients with and without delirium by univariate analysis were included in multivariate analysis. Multivariate analysis showed that after adjustment for age and complications other than delirium, having three or more organs resected and the CRP serum levels were independent predictors for delirium (OR: 3.97; 95% 1.24-12.76; OR: 1.01; 95% 1-1.01, respectively). This report shows an incidence of 28% of delirium, occurring after CRS-HIPEC and suggests a role for systemic inflammation in the development of postoperative delirium. © 2017 Wiley Periodicals, Inc.

  4. Intercontinental dispersal of giant thermophilic ants across the Arctic during early Eocene hyperthermals

    Science.gov (United States)

    Archibald, S. Bruce; Johnson, Kirk R.; Mathewes, Rolf W.; Greenwood, David R.

    2011-01-01

    Early Eocene land bridges allowed numerous plant and animal species to cross between Europe and North America via the Arctic. While many species suited to prevailing cool Arctic climates would have been able to cross throughout much of this period, others would have found dispersal opportunities only during limited intervals when their requirements for higher temperatures were met. Here, we present Titanomyrma lubei gen. et sp. nov. from Wyoming, USA, a new giant (greater than 5 cm long) formiciine ant from the early Eocene (approx. 49.5 Ma) Green River Formation. We show that the extinct ant subfamily Formiciinae is only known from localities with an estimated mean annual temperature of about 20°C or greater, consistent with the tropical ranges of almost all of the largest living ant species. This is, to our knowledge, the first known formiciine of gigantic size in the Western Hemisphere and the first reported cross-Arctic dispersal by a thermophilic insect group. This implies intercontinental migration during one or more brief high-temperature episodes (hyperthermals) sometime between the latest Palaeocene establishment of intercontinental land connections and the presence of giant formiciines in Europe and North America by the early middle Eocene. PMID:21543354

  5. Chinese expert consensus on cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal malignancies

    Science.gov (United States)

    Li, Yan; Zhou, Yun-Feng; Liang, Han; Wang, Hua-Qing; Hao, Ji-Hui; Zhu, Zheng-Gang; Wan, De-Seng; Qin, Lun-Xiu; Cui, Shu-Zhong; Ji, Jia-Fu; Xu, Hui-Mian; Wei, Shao-Zhong; Xu, Hong-Bin; Suo, Tao; Yang, Shu-Jun; Xie, Cong-Hua; Yang, Xiao-Jun; Yang, Guo-Liang

    2016-01-01

    Locoregional spread of abdominopelvic malignant tumors frequently results in peritoneal carcinomatosis (PC). The prognosis of PC patients treated by conventional systemic chemotherapy is poor, with a median survival of < 6 mo. However, over the past three decades, an integrated treatment strategy of cytoreductive surgery (CRS) + hyperthermic intraperitoneal chemotherapy (HIPEC) has been developed by the pioneering oncologists, with proved efficacy and safety in selected patients. Supported by several lines of clinical evidence from phases I, II and III clinical trials, CRS + HIPEC has been regarded as the standard treatment for selected patients with PC in many established cancer centers worldwide. In China, an expert consensus on CRS + HIPEC has been reached by the leading surgical and medical oncologists, under the framework of the China Anti-Cancer Association. This expert consensus has summarized the progress in PC clinical studies and systematically evaluated the CRS + HIPEC procedures in China as well as across the world, so as to lay the foundation for formulating PC treatment guidelines specific to the national conditions of China. PMID:27570426

  6. Time-temperature relationships for hyperthermal radiosensitisation in mouse intestine: influence of thermotolerance

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.L.

    1985-01-01

    Thermal enhancement of radiation injury to the crypt compartment of mouse small intestinal mucosa has been measured as a function of heating time for temperatures in the range 41.0-44.0 0 C. All the hyperthermal treatments used were themselves subthreshold for gross tissue injury. With this limitation, thermoradiosensitisation increased linearly with duration of hyperthermia for temperatures in the range 42.3-44.0 0 C. Using temperatures below 42.0 0 C, there was a saturation in effect for treatments longer than approximately 40-90 min. For temperatures above the transition, a 1 0 C change was equivalent to a factor of 2.6 in heating time; below the transition, a 1 0 C change was equivalent to a factor of 5.4. Time-temperature relationships for thermoradiosensitisation in other rodent tissues are reviewed and compared with the general relationships for direct thermal injury, previously derived from experimental studies. The results are discussed with relevance to the interpretation of in vivo thermal enhancement of radiation injury. (Auth.)

  7. The role of p53 molecule in radiation and hyperthermic therapies

    International Nuclear Information System (INIS)

    Yasumoto, Jun-ichi; Takahashi, Akihisa; Ohnishi, Ken; Ohnishi, Takeo

    2003-01-01

    In recent years, cancer-related genes have been analyzed at the molecular level as predictive indicators for cancer therapy. Among those genes, the tumor suppressor gene p53 is worthy of notice in cancer therapy, because the p53 molecule prevents the malignant degeneration of non-cancer cells by regulating cell-cycle arrest, apoptosis, and DNA repair. An abnormality of the p53 gene introduces a genetic instability and increases the incidence of carcinogenesis and teratogenesis. Therefore, p53 is called a guardian of the genome. Mutations of p53 are observed at a high frequency in human tumors, and are recognized in about half of all malignant tumors in human head and neck cancers. We previously reported that radio- and heat-sensitivities of human cultured tongue squamous cell carcinoma cells are p53-dependent, and are closely correlated with the induction of apoptosis. In a human cell culture system, the interactive hyperthermic enhancement of radiosensitivity was observed in wild-type p53 cells, but not in mutated p53 cells. In a transplanted tumor system, the combination therapies of radiation and hyperthermia induced efficient tumor growth depression and apoptosis in the wild-type p53 tumors. In this review, we discuss the p53 activation signaling pathways through the modification of p53 molecules, such as phosphorylation after radiation and hyperthermia treatments. (author)

  8. In-Situ Resource Utilization: Oxygen Production

    Data.gov (United States)

    National Aeronautics and Space Administration — The leading option for extracting oxygen from the Mars atmospheric carbon dioxide is to use a solid oxide electrolyzer, which removes one oxygen atom from the CO2...

  9. Online time-differential perturbed angular correlation study with an 19O beam - Residence sites of oxygen atoms in highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Sato, W.; Ueno, H.; Watanabe, H.; Miyoshi, H.; Yoshimi, A.; Kameda, D.; Ito, T.; Shimada, K.; Kaihara, J.; Suda, S.; Kobayashi, Y.; Shinohara, A.; Ohkubo, Y.; Asahi, K.

    2008-01-01

    The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19 F, the β - decay product of 19 O (t 1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, |V zz | = 2.91(17) x 10 22 V m -2 , suggests that the incident 19 O atoms are stabilized at an interlayer position with point group C 3v . Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19 O beam

  10. Online time-differential perturbed angular correlation study with an 19O beam - Residence sites of oxygen atoms in highly oriented pyrolytic graphite

    Science.gov (United States)

    Sato, W.; Ueno, H.; Watanabe, H.; Miyoshi, H.; Yoshimi, A.; Kameda, D.; Ito, T.; Shimada, K.; Kaihara, J.; Suda, S.; Kobayashi, Y.; Shinohara, A.; Ohkubo, Y.; Asahi, K.

    2008-01-01

    The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19F, the β- decay product of 19O (t1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, ∣Vzz∣ = 2.91(17) × 1022 V m-2, suggests that the incident 19O atoms are stabilized at an interlayer position with point group C3v. Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19O beam.

  11. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    Science.gov (United States)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  12. Probing the Influence of the Conjugated Structure and Halogen Atoms of Poly-Iron-Phthalocyanine on the Oxygen Reduction Reaction by X-ray Absorption Spectroscopy and Density Functional Theory

    International Nuclear Information System (INIS)

    Peng, Yingxiang; Cui, Lufang; Yang, Shifeng; Fu, Jingjing; Zheng, Lirong; Liao, Yi; Li, Kai; Zuo, Xia; Xia, Dingguo

    2015-01-01

    Metal-phthalocyanine (MPc) macrocyclic catalysts have been perceived as promising alternatives to Pt and Pt-based catalysts for the oxygen reduction reaction (ORR). However, the effect of different MPc molecular structures on the ORR has rarely been reported in depth. Herein, iron-phthalocyanine polymers (poly-FePcs) and multi-walled carbon nanotubes (MWCNTs) composites with different structures were synthesized using microwave method. The relationship between their molecular structure and electrocatalytic activity was fully revealed by density functional theory (DFT) and X-ray fine absorption spectroscopy (XAFS). DFT calculations revealed that the introduction of halogen atoms can increase the ion potential (IP) and the dioxo-binding energy () of the poly-FePcs. Meanwhile, their conjugated structure not only facilitates electronic transmission, but also significantly increases . XAFS analysis indicated that the poly-FePc/MWCNTs composites had a square planar structure and a smaller of phthalocyanine ring (Fe-N 4 structure) skeleton structure radius when a larger conjugated structure or introduced halogen atoms was present. The experimental results suggest that the these changes in properties arising from the different structures of the MPc macrocyclic compounds led to a huge effect on their ORR electrochemical activities, and provide a guide to obtaining promising electrochemical catalysts

  13. Promising monolayer membranes for CO{sub 2}/N{sub 2}/CH{sub 4} separation: Graphdiynes modified respectively with hydrogen, fluorine, and oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lianming, E-mail: lmzhao@upc.edu.cn; Sang, Pengpeng; Guo, Sheng; Liu, Xiuping; Li, Jing; Zhu, Houyu; Guo, Wenyue, E-mail: wyguo@upc.edu.cn

    2017-05-31

    Graphical abstract: Graphdiyne monolayer membrane modified by fluorine or oxygen can effectively separate CO{sub 2}/N{sub 2}/CH{sub 4} mixtures. - Highlights: • Three graphdiyne-like membranes were designed and their stabilities were confirmed. • The DFT and MD results claimed a tunable gas separation property of the membranes. • Graphdiyne modified with F or O can effectively separate CO{sub 2}/N{sub 2}/CH{sub 4} mixtures. - Abstract: Three graphdiyne-like monolayers were designed by substituting one-third diacetylenic linkages with heteroatoms hydrogen, fluorine, and oxygen (GDY-X, X = H, F, and O), respectively. The CO{sub 2}/N{sub 2}/CH{sub 4} separation performance of the designed graphdiyne-like monolayers was investigated by using both first-principle density functional theory (DFT) and molecular dynamic (MD) simulations. The stabilities of GDY-X monolayers were confirmed by the calculated cohesive energies and phonon dispersion spectra. Both the DFT and MD calculations demonstrated that although the GDY-H membrane has poor selectivity for CO{sub 2}/N{sub 2}/CH{sub 4} gases, the GDY-F and GDY-O membranes can excellently separate CO{sub 2} and N{sub 2} from CH{sub 4} in a wide temperature range. Moreover, the CO{sub 2}/N{sub 2} mixture can be effectively separated by GDY-O at temperatures lower than 300 K. Based on the kinetic theory, extremely high permeances were found for CO{sub 2} and N{sub 2} passing through the GDY-X membranes (10{sup −4}–10{sup −2} mol/m{sup 2} s Pa at 298 K). In addition, the influence of relative concentration on selectivity was also investigated for gases in the binary mixtures. This work provides an effective way to modify graphdiyne for the separation of large molecular gases, which is quite crucial in the gas separation industry.

  14. Determination of production biology of Cladocera in a reservoir receiving hyperthermal effluents from a nuclear production reactor

    International Nuclear Information System (INIS)

    Vigerstad, T.J.

    1980-01-01

    The effects on zooplankton of residence in a cooling reservoir receiving hyperthermal effluents directly from a nuclear-production-reactor were examined. The design of the study was to compare rates of cladoceran population production at two stations in the winter and summer of 1976 on Par Pond, the cooling reservoir located on the Savannah River Plant, Aiken, SC. One station was located in an area of the reservoir directly receiving hyperthermal effluent (Station MAS), and the second was located about 4 km away in an area where surface temperatures were normal for reservoirs in the general geographical region (Station CAS). The statistical properties of the Edmondson egg ratio model (Edmondson, 1960) were examined to determine if it would be a suitable method for calculating cladoceran production rates for comparison between stations. Based on an examination of the variance associated with standing stock and fecundity measurements and other consideratios, the use of the egg ratio model was abandoned. Instead, a non-parametric comparison between stations of standing stock and fecundity data for Bosmina longirostris, taken for the egg ratio model, were used to observe potential hyperthermal effluent effects. There was a statistically higher incidence of deformed eggs in the Bosmina population at Station MAS in the summer. Bosmina standing stock underwent two large oscillations in the winter and three large oscillations in the summer at Station MAS compared with two in the winter and one in the summer at Station CAS. These results are consistent with almost all other Par Pond studies which have found the two stations to be essentially similar in species composition but with some statistically significant differences in various aspects of the biology of the species

  15. Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods

    Directory of Open Access Journals (Sweden)

    Fernandez Cabada T

    2012-03-01

    Full Text Available Tamara Fernandez Cabada1,2,*, Cristina Sanchez Lopez de Pablo1,3,*, Alberto Martinez Serrano2, Francisco del Pozo Guerrero1,3, Jose Javier Serrano Olmedo1,3,*, Milagros Ramos Gomez1–3,* 1Centre for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain; 2Centre for Molecular Biology, "Severo Ochoa" Universidad Autonoma de Madrid, Madrid, Spain; 3Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-bbn, Zaragoza, Spain.*These authors contributed equally to this workBackground: Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells.Methods: The procedure used was based on irradiation of gold nanorods with a continuous wave laser. This kind of nanoparticle converts absorbed light into localized heat within a short period of time due to the surface plasmon resonance effect. The effectiveness of the method was determined by measuring changes in cell viability after laser irradiation of glioblastoma cells in the presence of gold nanorods.Results: Laser irradiation in the presence of gold nanorods induced a significant decrease in cell viability, while no decrease in cell viability was observed with laser irradiation or incubation with gold nanorods alone. The mechanism of cell death mediated by gold nanorods during photothermal ablation was analyzed, indicating that treatment compromised the integrity of the cell membrane instead of initiating the process of programmed cell death.Conclusion: The use of gold nanorods in hyperthermal therapies is very effective in eliminating glioblastoma cells, and therefore represents an important area of research for therapeutic development.Keywords: laser irradiation, photothermal therapy, surface plasmon resonance, cancer

  16. Calculating regional tissue volume for hyperthermic isolated limb perfusion: Four methods compared.

    Science.gov (United States)

    Cecchin, D; Negri, A; Frigo, A C; Bui, F; Zucchetta, P; Bodanza, V; Gregianin, M; Campana, L G; Rossi, C R; Rastrelli, M

    2016-12-01

    Hyperthermic isolated limb perfusion (HILP) can be performed as an alternative to amputation for soft tissue sarcomas and melanomas of the extremities. Melphalan and tumor necrosis factor-alpha are used at a dosage that depends on the volume of the limb. Regional tissue volume is traditionally measured for the purposes of HILP using water displacement volumetry (WDV). Although this technique is considered the gold standard, it is time-consuming and complicated to implement, especially in obese and elderly patients. The aim of the present study was to compare the different methods described in the literature for calculating regional tissue volume in the HILP setting, and to validate an open source software. We reviewed the charts of 22 patients (11 males and 11 females) who had non-disseminated melanoma with in-transit metastases or sarcoma of the lower limb. We calculated the volume of the limb using four different methods: WDV, tape measurements and segmentation of computed tomography images using Osirix and Oncentra Masterplan softwares. The overall comparison provided a concordance correlation coefficient (CCC) of 0.92 for the calculations of whole limb volume. In particular, when Osirix was compared with Oncentra (validated for volume measures and used in radiotherapy), the concordance was near-perfect for the calculation of the whole limb volume (CCC = 0.99). With methods based on CT the user can choose a reliable plane for segmentation purposes. CT-based methods also provides the opportunity to separate the whole limb volume into defined tissue volumes (cortical bone, fat and water). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Importance of Absent Neoplastic Epithelium in Patients Treated With Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy.

    Science.gov (United States)

    Enblad, Malin; Birgisson, Helgi; Wanders, Alkwin; Sköldberg, Filip; Ghanipour, Lana; Graf, Wilhelm

    2016-04-01

    The importance of absent neoplastic epithelium in specimens from cytoreductive surgery (CRS) is unknown. This study aimed to investigate the prevalence and prognostic value of histopathology without neoplastic epithelium in patients treated with CRS and hyperthermic intraperitoneal chemotherapy (HIPEC). Data were extracted from medical records and histopathology reports for patients treated with initial CRS and HIPEC at Uppsala University Hospital, Sweden, between 2004 and 2012. Patients with inoperable disease and patients undergoing palliative non-CRS surgery were excluded from the study. Patients lacking neoplastic epithelium in surgical specimens from CRS, with or without mucin, were classified as "neoplastic epithelium absent" (NEA), and patients with neoplastic epithelium were classified as "neoplastic epithelium present" (NEP). The study observed NEA in 78 of 353 patients (22 %). Mucin was found in 28 of the patients with NEA. For low-grade appendiceal mucinous neoplasms and adenomas, the 5-year overall survival rate was 100 % for NEA and 84 % for NEP, and the 5-year recurrence-free survival rate was 100 % for NEA and 59 % for NEP. For appendiceal/colorectal adenocarcinomas (including tumors of the small intestine), the 5-year overall survival rate was 61 % for NEA and 38 % for NEP, and the 5-year recurrence-free survival rate was 60 % for NEA and 14 % for NEP. Carcinoembryonic antigen level, peritoneal cancer index, and completeness of the cytoreduction score were lower in patients with NEA. A substantial proportion of patients undergoing CRS and HIPEC have NEA. These patients have a favorable prognosis and a decreased risk of recurrence. Differences in patient selection can affect the proportion of NEA and hence explain differences in survival rates between reported series.

  18. Molecular pathology of vertebral deformities in hyperthermic Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Hjelde Kirsti

    2010-07-01

    Full Text Available Abstract Background Hyperthermia has been shown in a number of organisms to induce developmental defects as a result of changes in cell proliferation, differentiation and gene expression. In spite of this, salmon aquaculture commonly uses high water temperature to speed up developmental rate in intensive production systems, resulting in an increased frequency of skeletal deformities. In order to study the molecular pathology of vertebral deformities, Atlantic salmon was subjected to hyperthermic conditions from fertilization until after the juvenile stage. Results Fish exposed to the high temperature regime showed a markedly higher growth rate and a significant higher percentage of deformities in the spinal column than fish reared at low temperatures. By analyzing phenotypically normal spinal columns from the two temperature regimes, we found that the increased risk of developing vertebral deformities was linked to an altered gene transcription. In particular, down-regulation of extracellular matrix (ECM genes such as col1a1, osteocalcin, osteonectin and decorin, indicated that maturation and mineralization of osteoblasts were restrained. Moreover, histological staining and in situ hybridization visualized areas with distorted chondrocytes and an increased population of hypertrophic cells. These findings were further confirmed by an up-regulation of mef2c and col10a, genes involved in chondrocyte hypertrophy. Conclusion The presented data strongly indicates that temperature induced fast growth is severely affecting gene transcription in osteoblasts and chondrocytes; hence change in the vertebral tissue structure and composition. A disrupted bone and cartilage production was detected, which most likely is involved in the higher rate of deformities developed in the high intensive group. Our results are of basic interest for bone metabolism and contribute to the understanding of the mechanisms involved in development of temperature induced

  19. The Boltysh crater record of rapid vegetation change during the Dan-C2 hyperthermal event.

    Science.gov (United States)

    Jolley, D. W.; Daly, R.; Gilmour, I.; Gilmour, M.; Kelley, S. P.

    2012-04-01

    Analysis of a cored borehole drilled through the sedimentary fill of the 24km wide Boltysh meteorite crater, Ukraine has yielded a unique, high resolution record spanning algae records. These records reflect environmental change from the K/Pg1 to the post Dan-C2 Danian. Leading into the CIE, warm temperate gymnosperm - angiosperm - fern communities are replaced by precipitation limited (winterwet) plant communities within the negative CIE. Winterwet plant communities dominate the negative CIE, but are replaced within the isotope recovery stage by warm temperate floras. These in turn give way to cooler temperate floras in the post positive CIE section of the uppermost crater fill. The distribution of temperate taxa about the negative CIE represents the broadest scale of oscillatory variation in the palynofloras. Shorter frequency oscillations are evident from diversity and botanical group distributions reflecting changes in moisture availability over several thousand years. Detailed analysis of variability within one of these oscillations records plant community cyclicity across the inception of the negative CIE. This short term cyclicity provides evidence that the replacement of warm termperate by winterwet floras occurred in a stepwise manner at the negative CIE suggesting cumulative atmospheric forcing. At <1mm scale, lamination within the negative CIE showed no obvious lithological or colour differences, and are not seasonal couplets. However, palynofloral analysis of laminations from within the negative CIE has yielded evidence of annual variation identifying the potential for recoding changes in 'paleoweather' across a major hyperthermal event. [1] Jolley, D. W. et al. (2010) Geology 38, 835-838.

  20. Anaesthetic management and perioperative outcomes of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy: A retrospective analysis

    Directory of Open Access Journals (Sweden)

    Kalpana P Balakrishnan

    2018-01-01

    Full Text Available Background and Aims: Cytoreductive surgery (CRS combined with hyperthermic intraperitoneal chemotherapy (HIPEC is becoming the standard treatment option for peritoneal carcinomatosis but is associated with high rates of morbidity and mortality. Our aim was to retrospectively analyse and evaluate intra-operative factors associated with morbidity and mortality of CRS and HIPEC. Methods: Intra-operative data were collected for cases done over 1 year (24 cases and analysed for the primary outcome of post-operative ventilation >24 h, and secondary outcome of length of the Intensive Care Unit (ICU stay >5 days. Statistical analysis was carried out in STATA 11 software. Results: Higher peritoneal carcinoma index (PCI, (P = 0.0047, longer duration of surgery (P = 0.0016, higher delta temperatures (P = 0.0119, increased estimated blood loss (EBL (P = 0.0054, high intraoperative fluid requirement (P = 0.0038, lower mean arterial pressure (MAP (P = 0.0021 and higher blood products requirement were associated with >24 h ventilation. These factors were also associated with longer ICU stay. All these factors associated with >24 h ventilation and prolonged ICU stay are related to the PCI which is an indicator of the extent of surgery. Conclusion: Higher PCI, longer duration of surgery, higher delta temperatures, increased EBL, high intraoperative fluid requirement, lower mean arterial pressure and higher blood products requirement were associated with >24 h postoperative ventilation as well as ICU stay >5 days. All these factors are related to the PCI, which is a major predictor of post-operative morbidity.

  1. Splenectomy Increases Postoperative Complications Following Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy.

    Science.gov (United States)

    Dagbert, Francois; Thievenaz, Remy; Decullier, Evelyne; Bakrin, Naoual; Cotte, Eddy; Rousset, Pascal; Vaudoyer, Delphine; Passot, Guillaume; Glehen, Olivier

    2016-06-01

    Complete cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (CRS + HIPEC) is increasingly performed on patients with peritoneal carcinomatosis of various origins. Splenectomy often is required in these patients to achieve complete tumor removal. Although splenectomy has been associated with increased morbidity in many major abdominal surgeries, its effect in patients undergoing CRS + HIPEC is unknown. The purpose of this study was to evaluate the impact of splenectomy during CRS + HIPEC on postoperative outcomes. We retrospectively identified 39 patients who underwent CRS + HIPEC with splenectomy during a 3-year study period from a prospective database. We compared them to case controls (CRS + HIPEC without splenectomy) that were matched for the complexity of the procedure. We evaluated the complication rate and outcomes of patients in each group. During the study period, splenectomy was performed in 32 % of patients undergoing CRS + HIPEC procedure. Patients in the splenectomy group experienced more grade 3-4 complications than patients in the control group (59 vs. 35.9 %, p = 0.041) as well as more pulmonary complications (41 vs. 7.7 %, p = 0.0006). Multivariate analysis identified splenectomy as the only predictor of overall major complications (odds ratio = 2.57, 95 % confidence interval = 1.03-6.40). Mortality was similar in both groups. Splenectomy increases major complication rate in patients undergoing CRS + HIPEC and efforts should be made to preserve the spleen during the surgery.

  2. Laparoscopic hyperthermic intraperitoneal chemotherapy (HIPEC) for refractory malignant ascites in patients unsuitable for cytoreductive surgery.

    Science.gov (United States)

    Valle, S J; Alzahrani, N A; Alzahrani, S E; Liauw, W; Morris, D L

    2015-11-01

    Malignant ascites (MA) is the abnormal accumulation of fluid in the peritoneal cavity of patients with intraperitoneal dissemination of their disease and is associated with a short life expectancy. The most common clinical feature is a progressive increase of abdominal distention resulting in pain, discomfort, anorexia and dyspnoea. Currently, no treatment is established standard of care due to limited efficacy or considerable toxicity. The objective was to examine the efficacy of laparoscopic hyperthermic intraperitoneal chemotherapy (HIPEC) in the palliation of refractory MA in patients who were unsuitable for cytoreductive surgery. From May 2009 to June 2015, 12 patients with MA due to their peritoneal malignancy were treated with laparoscopic HIPEC. The time between operation and repeat paracentesis, in-hospital data, and the proportion of patients that did not require repeat paracentesis was analyzed. One patient (8%) was admitted to ICU for 1 day. The mean operating time and hospital stay was 149.3 min (range 79-185) and 4.6 days (range 2-11) respectively. Neither high-grade morbidity nor mortality was observed. The median OS was 57 days. In our experience, a complete and definitive disappearance of MA was observed in 83% of patients. Two patients (17%) developed recurrent MA 124 days and 283 days post-HIPEC. Laparoscopic HIPEC is a beneficial treatment for the management and palliation of refractory MA and results in an excellent clinical and radiological resolution in patients with a complete resolution observed in selected patients. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  3. Determination, through titration with NO, of the concentration of oxygen atoms in the flowing afterglow of Ar-O2 and N2-O2 plasmas used for sterilization purposes

    Science.gov (United States)

    Ricard, A.; Moisan, M.; Moreau, S.

    2001-04-01

    Les méthodes existantes de titrage de N et O d'une post-décharge au moyen de l'intensité d'émission de la molécule NO excitée ne permettant pas d'aller au-delà de x = 5% dans un mélange xO2-(100%-x)N2, nous présentons une démarche valable pour x≤20%. Cette technique est fondée sur la mesure de l'intensité d'émission de NO2(A), en fonction du débit de NO introduit, en relation avec une dérivation analytique des équations des concentrations [N] et [O]. La concentration d'oxygène atomique obtenue par cette méthode est validée de façon indépendante à partir de la mesure du rapport des intensités d'émission de NO(B) et de N2(B, 11) (celle-ci détectable pour x≤8%). Enfin, la méthode proposée est mise en oeuvre pour apprécier l'influence de la valeur de la concentration d'oxygène atomique sur le temps de stérilisation dans une post-décharge en flux à partir d'un plasma de N2-O2. \\engabstract Existing titration methods of N and O in an afterglow based on the emission intensity of the excited NO molecule cannot be used at x values exceeding 5% in the xO2-(100%-x)N2 mixture. Our technique extends the x range to 20%. It utilizes the emission intensity measurement of NO2(A), as a function of the introduced NO flow, in relation with analytically derived equations for the O and N concentrations. The atomic oxygen concentration obtained in this way is validated independently through measurements of the emission intensity ratio of NO(B) and N2(B, 11) (detectable for x≤8%). Finally, the proposed method is used to assess the influence of the oxygen atom concentration on the sterilization time in the flowing afterglow of an N2-O2 plasma.

  4. A new survival model for hyperthermic intraperitoneal chemotherapy (HIPEC) in tumor-bearing rats in the treatment of peritoneal carcinomatosis

    International Nuclear Information System (INIS)

    Pelz, Joerg OW; Doerfer, Joerg; Hohenberger, Werner; Meyer, Thomas

    2005-01-01

    Cytoreduction followed by hyperthermic intraperitoneal chemotherapy (HIPEC) improves survival in patients with peritoneal carcinomatosis of colorectal origin. Animal models are important in the evaluation of new treatment modalities. The purpose of this study was to devise an experimental setting which can be routinely used for the investigation of HIPEC in peritoneal carcinomatosis. A new peritoneal perfusion system in tumor bearing rats were tested. For this purpose CC531 colon carcinoma cells were implanted intraperitoneally in Wag/Rija rats. After 10 days of tumor growth the animals were randomized into three groups of six animals each: group 1: control (n = 6), group 2: HIPEC with mitomycin C in a concentration of 15 mg/m 2 (n = 6), group III: mitomycin C i.p. as monotherapy in a concentration of 10 mg/m 2 (n = 6). After 10 days, total tumor weight and the extent of tumor spread, as classified by the modified Peritoneal Cancer Index (PCI), were assessed by autopsy of the animals. No postoperative deaths were observed. Conjunctivitis, lethargy and loss of appetite were the main side effects in the HIPEC group. No severe locoregional or systemic toxity was observed. All control animals developed massive tumor growth. Tumor load was significantly reduced in the treatment group and was lowest in group II. The combination of hyperthermia with MMC resulted in an increased tumoricidal effect in the rat model. The presented model provides an opportunity to study the mechanism and effect of hyperthermic intraperitoneal chemotherapy and new drugs for this treatment modality

  5. The Efficacy of Dextran-40 as a Venous Thromboembolism Prophylaxis Strategy in Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy.

    Science.gov (United States)

    Foster, Jason M; Sleightholm, Richard; Watley, Duncan; Wahlmeier, Steven; Patel, Asish

    2017-02-01

    The incidence of venous thromboembolism (VTE) in peritoneal malignancies can approach 30 to 50 per cent without prophylaxis. Prophylaxis in cytoreductive surgeries (CRS) presents a challenge to preoperative heparin-based therapy because of an increased risk of coagulopathy and potential for bleeding. Herein, we report the large series of CRS and hyperthermic intraperitoneal chemotherapy receiving dextran-40 prophylaxis. Retrospective chart review of peritoneal malignancies patients undergoing CRS at University of Nebraska Medical Center identified 69 individuals who received dextran-40 between 2010 and 2013. The incidences of VTEs, perioperative bleeding, complications, morbidity, and mortality were determined in-hospital and at 90 days. Of the 69 patients treated, the 30-day VTE rate was 8.7 per cent, and no pulmonary embolisms, bleeding, anaphylactoid reaction, or mortality were observed with dextran usage. The specific VTE events included three upper extremity and three lower extremity VTEs. No additional VTE events were identified between 30 and 90 days. In conclusion, dextran-40 prophylaxis was not associated with any perioperative bleeding events, and the observed incidence of VTE was comparable to reported heparin-based prophylaxis in CRS/hyperthermic intraperitoneal chemotherapy patients. This data supports further exploration of dextran-40 as a VTE prophylactic agent in complex surgical oncology cases.

  6. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  7. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  8. A test-type hyper-thermal neutron generator for neutron capture therapy - estimation of neutron energy spectrum by simulation calculations and TOF experiments

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kobayashi, Katsuhei

    1999-01-01

    In order to clarify the irradiation characteristics of hyper-thermal neutrons and the feasibility of a hyper-thermal neutron irradiation field for neutron capture therapy, a 'test-type' hyper-thermal neutron generator was designed and made. Graphite of 6 cm thickness and 21 cm diameter was selected as the high temperature scatterer. The scatterer is heated up to 1200 deg. C maximum using molybdenum heaters. The radiation heat is shielded by reflectors of molybdenum and stainless steel. The temperature is measured using three R-type thermo-couples and controlled by a program controller. The total thickness of the generator is designed to be as thin as possible, 20 cm in maximum, in the standing point of the neutron beam intensity. The thermal stability, controllability and safety of the generator at high temperature employment were confirmed by the heating tests. As one of the experiments for the characteristics estimation, the neutron energy spectrum dependent on the scatterer temperature was measured by the TOF (time of flight) method using the LINAC neutron generator. The estimations by simulation calculations were also performed. From the experiment and calculation results, it was confirmed that the neutron temperature shifted higher as the scatterer temperature was higher. The prospect of the feasibility of the 'hyper-thermal neutron irradiation field for NCT' was opened from the estimation results of the generator characteristics by the simulation calculations and experiments

  9. Successful in vivo hyperthermal therapy toward breast cancer by Chinese medicine shikonin-loaded thermosensitive micelle

    Directory of Open Access Journals (Sweden)

    Su Y

    2017-05-01

    intravenous injection is administered to the BALB/c nude mice bearing breast cancer, the intra-tumor accumulation of STNs is significantly increased as T > VPTT, which is regulated by the in-house developed heating device. The in vivo antitumor assays against breast cancer further confirm the synergistically enhanced therapeutic efficiency. The findings of this study indicate that STN is a potential effective nanoformulation in clinical cancer therapy. Keywords: thermosensitive micelle, shikonin, breast cancer, intra-tumor accumulation, critical micelle concentration, hyperthermal therapy, in vivo

  10. Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Surface Malignancy: Experience with 1,000 Patients

    Science.gov (United States)

    Levine, Edward A.; Stewart, John H.; Shen, Perry; Russell, Gregory B.; Loggie, Brian L.; Votanopoulos, Konstantinos I

    2014-01-01

    Background Peritoneal dissemination of abdominal malignancy (carcinomatosis) has a clinical course marked by bowel obstruction and death; it traditionally does not respond well to systemic therapy and has been approached with nihilism. To treat carcinomatosis, we utilize cytoreductive surgery (CS) with hyperthermic intraperitoneal chemotherapy (HIPEC). Methods A prospective database of patients has been maintained since 1992. Patients with biopsy proven peritoneal surface disease (PSD) were uniformly evaluated for, and treated with, CS and HIPEC. Patient demographics, performance status (ECOG), resection status (R), PSD was classified according to primary site. Univariate and multivariate analysis were performed. The experience was divided into quintiles and compared with outcomes. Results Between 1991 and 2013, 1,000 patients underwent 1,097 HIPEC procedures. Average age was 52.9 years and 53.1% were female. Primary tumor sites were: appendix 472(47.2%), colorectal 248(24.8%), mesothelioma 72(7.2%), ovary 69(6.9%), gastric 46(4.6%), others 97(9.7%). Thirty day mortality rate was 3.8% and median hospital stay was 8 days. Median overall survival (OS) was 29.4 months, with a 5 year survival of 32.5%. Factors correlating with improved survival on univariate and multivariate analysis (p≤.0001 for each) were preoperative performance status, primary tumor type, resection status, and experience quintile (p=.04). Over the 5 quintiles, the 1 and 5 year survival, as well as the complete cytoreduction score (R0,R1,R2a) have increased, while transfusions, stoma creations, and complications have all significantly decreased (p<.001 for all). Conclusions This largest reported single center experience with CS and HIPEC demonstrates that prognostic factors include primary site, performance status, completeness of resection, and institutional experience. The data shows that outcomes have improved over time with more complete cytoreduction and fewer serious complications

  11. Mephedrone (4-Methylmethcathinone: Acute Behavioral Effects, Hyperthermic, and Pharmacokinetic Profile in Rats

    Directory of Open Access Journals (Sweden)

    Klára Šíchová

    2018-01-01

    likely synergistic stimulatory effect of both drugs which corresponded to brain pharmacokinetics. The dissociation between the duration of behavioral and hyperthermic effects is indicative of the possible contribution of nor-MEPH or other biologically active metabolites. This temporal dissociation may be related to the risk of prolonged somatic toxicity when stimulatory effects are no longer present.

  12. Pharmacokinetic, Ambulatory, and Hyperthermic Effects of 3,4-Methylenedioxy-N-Methylcathinone (Methylone in Rats

    Directory of Open Access Journals (Sweden)

    Kristýna Štefková

    2017-11-01

    Full Text Available Methylone (3,4-methylenedioxy-N-methylcathinone is a synthetic cathinone analog of the recreational drug ecstasy. Although it is marketed to recreational users as relatively safe, fatalities due to hyperthermia, serotonin syndrome, and multi-organ system failure have been reported. Since psychopharmacological data remain scarce, we have focused our research on pharmacokinetics, and on a detailed evaluation of temporal effects of methylone and its metabolite nor-methylone on behavior and body temperature in rats. Methylone [5, 10, 20, and 40 mg/kg subcutaneously (s.c.] and nor-methylone (10 mg/kg s.c. were used in adolescent male Wistar rats across three behavioral/physiological procedures and in two temporal windows from administration (15 and 60 min in order to test: locomotor effects in the open field, sensorimotor gating in the test of prepulse inhibition (PPI, and effects on rectal temperature in individually and group-housed rats. Serum and brain pharmacokinetics after 10 mg/kg s.c. over 8 h were analyzed using liquid chromatography mass spectrometry. Serum and brain levels of methylone and nor-methylone peaked at 30 min after administration, both drugs readily penetrated the brain with serum: brain ratio 1:7.97. Methylone dose-dependently increased overall locomotion. It also decrease the amount of time spent in the center of open field arena in dose 20 mg/kg and additionally this dose induced stereotyped circling around the arena walls. The maximum of effects corresponded to the peak of its brain concentrations. Nor-methylone had approximately the same behavioral potency. Methylone also has weak potency to disturb PPI. Behavioral testing was not performed with 40 mg/kg, because it was surprisingly lethal to some animals. Methylone 10 and 20 mg/kg s.c. induced hyperthermic reaction which was more pronounced in group-housed condition relative to individually housed rats. To conclude, methylone increased exploration and

  13. Temperate-Water Immersion as a Treatment for Hyperthermic Humans Wearing American Football Uniforms.

    Science.gov (United States)

    Miller, Kevin C; Truxton, Tyler; Long, Blaine

    2017-08-01

      Cold-water immersion (CWI; 10°C) can effectively reduce body core temperature even if a hyperthermic human is wearing a full American football uniform (PADS) during treatment. Temperate-water immersion (TWI; 21°C) may be an effective alternative to CWI if resources for the latter (eg, ice) are unavailable.   To measure rectal temperature (T rec ) cooling rates, thermal sensation, and Environmental Symptoms Questionnaire (ESQ) scores of participants wearing PADS or shorts, undergarments, and socks (NO pads ) before, during, and after TWI.   Crossover study.   Laboratory.   Thirteen physically active, unacclimatized men (age = 22 ± 2 years, height = 182.3 ± 5.2 cm, mass = 82.5 ± 13.4 kg, body fat = 10% ± 4%, body surface area = 2.04 ± 0.16 m 2 ).   Participants exercised in the heat (40°C, 50% relative humidity) on 2 days while wearing PADS until T rec reached 39.5°C. Participants then underwent TWI while wearing either NO pads or PADS until T rec reached 38°C. Thermal sensation and ESQ responses were collected at various times before and after exercise.   Temperate-water immersion duration (minutes), T rec cooling rates (°C/min), thermal sensation, and ESQ scores.   Participants had similar exercise times (NO pads = 38.1 ± 8.1 minutes, PADS = 38.1 ± 8.5 minutes), hypohydration levels (NO pads = 1.1% ± 0.2%, PADS = 1.2% ± 0.2%), and thermal sensation ratings (NO pads = 7.1 ± 0.4, PADS = 7.3 ± 0.4) before TWI. Rectal temperature cooling rates were similar between conditions (NO pads = 0.12°C/min ± 0.05°C/min, PADS = 0.13°C/min ± 0.05°C/min; t 12 = 0.82, P = .79). Thermal sensation and ESQ scores were unremarkable between conditions over time.   Temperate-water immersion produced acceptable (ie, >0.08°C/min), though not ideal, cooling rates regardless of whether PADS or NO pads were worn. If a football uniform is difficult to remove or the patient is noncompliant, clinicians should begin water-immersion treatment with the

  14. Complex comprised of dextran magnetite and conjugated cisplatin exhibiting selective hyperthermic and controlled-release potential

    Directory of Open Access Journals (Sweden)

    Akinaga Sonoda

    2010-07-01

    magnetically-accumulated anticancer drug with hyperthermic effects.Keywords: magnetic nanoparticle-conjugated anticancer agents, DM, portable induction ­heating device, carboxyl group, rat

  15. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  16. Enhancing photocatalytic CO{sub 2} reduction by coating an ultrathin Al{sub 2}O{sub 3} layer on oxygen deficient TiO{sub 2} nanorods through atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Huilei; Chen, Jiatang; Rao, Guiying; Deng, Wei; Li, Ying, E-mail: yingli@tamu.edu

    2017-05-15

    Highlights: • Oxygen deficient TiO{sub 2} anatase nanorods are coated with an ultrathin Al{sub 2}O{sub 3} layer by ALD. • Exposed {100} facets and oxygen vacancies promote CO{sub 2} photoreduction to CO and CH{sub 4}. • Al{sub 2}O{sub 3} overlayer passivates surface states and mitigates surface charge recombination. • Two cycles of ALD coating lead to maximum photocatalytic CO{sub 2} reduction. • More than five cycles of ALD coating prohibits electron transfer to the surface. - Abstract: In this work, anatase nanorods (ANR) of TiO{sub 2} with active facet {100} as the major facet were successfully synthesized, and reducing the ANR by NaBH{sub 4} led to the formation of gray colored oxygen deficient TiO{sub 2-x} (ReANR). On the surface of ReANR, a thin layer of Al{sub 2}O{sub 3} was deposited using atomic layer deposition (ALD), and the thickness of Al{sub 2}O{sub 3} varied by the number of ALD cycles (1, 2, 5, 10, 50, 100, or 200). The growth rate of Al{sub 2}O{sub 3} was determined to be 0.25 Å per cycle based on high-resolution TEM analysis, and the XRD result showed the amorphous structure of Al{sub 2}O{sub 3}. All the synthesized photocatalysts (ANR, ReANR, and Al{sub 2}O{sub 3} coated ReANR) were tested for CO{sub 2} photocatalytic reduction in the presence of water vapor, with CO detected as the major reduction product and CH{sub 4} as the minor product. Compared with ANR, ReANR had more than 50% higher CO production and more than ten times higher CH{sub 4} production due to the oxygen vacancies that possibly enhanced CO{sub 2} adsorption and activation. By applying less than 5 cycles of ALD, the Al{sub 2}O{sub 3} coated ReANR had enhanced overall production of CO and CH{sub 4} than uncoated ReANR, with 2 cycles being the optimum, about 40% higher overall production than ReANR. Whereas, both CO and CH{sub 4} production decreased with increasing number of ALD cycles when more than 5 cycles were applied. Photoluminescence (PL) analysis showed an

  17. Towards hot electron mediated charge exchange in hyperthermal energy ion-surface interactions

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Thomsen, Lasse Bjørchmar

    2010-01-01

    shows that the primary energy loss mechanism is the atomic displacement of Au atoms in the thin film of the metal–oxide–semiconductor device. We propose that neutral particle detection of the scattered flux from a biased device could be a route to hot electron mediated charge exchange.......We have made Na + and He + ions incident on the surface of solid state tunnel junctions and measured the energy loss due to atomic displacement and electronic excitations. Each tunnel junction consists of an ultrathin film metal–oxide–semiconductor device which can be biased to create a band of hot...

  18. Oxygen Therapy

    Science.gov (United States)

    ... their breathing to dangerously low levels. Will I need oxygen when I sleep? Usually if you use supplemental oxygen during the ... your health care provider tells you you only need to use oxygen for exercise or sleep. Even if you feel “fine” off of your ...

  19. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  20. Ninth international symposium on hot atom chemistry. Abstracts

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts of the papers presented at the Symposium are compiled. The topics considered were chemical dynamics of high energy reactions, hot atom chemistry in organic compounds of tritium, nitrogen, oxygen, and halogens, theory and chemical dynamics of hot atom reactions as determined by beam studies, solid state reactions of recoil atoms and implanted ions, hot atom chemistry in energy-related research, hot atom chemistry in inorganic compounds of oxygen and tritium, hot positronium chemistry, applied hot atom chemistry in labelling, chemical effects of radioactive decay, decay-induced reactions and excitation labelling, physical methods in hot atom chemistry, and hot atom reactions in radiation and stratospheric chemistry

  1. Peritoneal carcinomatosis: patients selection, perioperative complications and quality of life related to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy

    Directory of Open Access Journals (Sweden)

    Schlitt Hans J

    2009-01-01

    Full Text Available Abstract Background Peritoneal tumor dissemination arising from colorectal cancer, appendiceal cancer, gastric cancer, gynecologic malignancies or peritoneal mesothelioma is a common sign of advanced tumor stage or disease recurrence and mostly associated with poor prognosis. Methods and results In the present review article preoperative workup, surgical technique, postoperative morbidity and mortality rates, oncological outcome and quality of life after CRS and HIPEC are reported regarding the different tumor entities. Conclusion Cytoreductive surgery (CRS and hyperthermic intraperitoneal chemotherapy (HIPEC provide a promising combined treatment strategy for selected patients with peritoneal carcinomatosis that can improve patient survival and quality of life. The extent of intraperitoneal tumor dissemination and the completeness of cytoreduction are the leading predictors of postoperative patient outcome. Thus, consistent preoperative diagnostics and patient selection are crucial to obtain a complete macroscopic cytoreduction (CCR-0/1.

  2. Radionuclide leakage monitoring during hyperthermic isolated limb perfusion for treatment of local melanoma metastasis in an extremity

    DEFF Research Database (Denmark)

    Paulsen, Ida F; Chakera, Annette Hougaard; Schmidt, Grethe

    2015-01-01

    (99m) Tc-labelled tracer infused into the isolated limb circulation. RESULTS: One hundred and sixteen of 131 procedures were completed. In 13%, a leakage of ≥10% was detected; in 6% (n = 8), the cytotoxic drug was never infused because of constant leakage; in 7% (n = 9), leakage ≥10% was measured......INTRODUCTION: The aim is to describe the importance of leakage monitoring in hyperthermic isolated limb perfusion (ILP). It is generally recommended that leakage should not exceed 10% because of risk of systemic toxicity. MATERIAL AND METHODS: Data retrieved by retrospective analysis of 131...... were observed in 14%. Three of the patients with leakage ≥10% were successfully treated in a repeated procedure. CONCLUSION: Leakage monitoring using a threshold of 10% during ILP saves the patients from systemic toxicity, however, at the expense of early termination or cancellation of ILP treatment...

  3. Aperture-time of oxygen-precursor for minimum silicon incorporation into the interface-layer in atomic layer deposition-grown HfO{sub 2}/Si nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Mani-Gonzalez, Pierre Giovanni [CINVESTAV-Unidad Querétaro, Querétaro 76230, Querétaro, Mexico and Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro 450, Cd. Juárez C.P. 32310, Chihuahua (Mexico); Vazquez-Lepe, Milton Oswaldo [CINVESTAV-Unidad Querétaro, Querétaro 76230, Querétaro, Mexico and Departamento de Ingeniería de Proyectos, Universidad de Guadalajara, Guadalajara 45100, Jalisco (Mexico); Herrera-Gomez, Alberto, E-mail: aherrera@qro.cinvestav.mx [CINVESTAV-Unidad Querétaro, Querétaro 76230, Querétaro (Mexico)

    2015-01-15

    Hafnium oxide nanofilms were grown with atomic layer deposition on H-terminated Si (001) wafers employing tetrakis dimethyl amino hafnium (TDMA-Hf) and water as precursors. While the number of cycles (30) and the aperture-time for TDMA-Hf (0.08 s) were kept constant, the aperture-time (τ{sub H{sub 2O}}) for the oxidant-agent (H{sub 2}O) was varied from 0 to 0.10 s. The structure of the films was characterized with robust analysis employing angle-resolved x-ray photoelectron spectroscopy. In addition to a ∼1 nm hafnium oxide layer, a hafnium silicate interface layer, also ∼1 nm thick, is formed for τ{sub H{sub 2O}} > 0. The incorporation degree of silicon into the interface layer (i.e., the value of 1 − x in Hf{sub x}Si{sub 1−x}O{sub y}) shows a minimum of 0.32 for τ{sub H{sub 2O}} = 0.04 s. By employing the simultaneous method during peak-fitting analysis, it was possible to clearly resolve the contribution from the silicate and from oxide to the O 1s spectra, allowing for the assessment of the oxygen composition of each layer as a function of oxidant aperture time. The uncertainties of the peak areas and on the thickness and composition of the layers were calculated employing a rigorous approach.

  4. Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV-Vis spectral features.

    Science.gov (United States)

    Tabbì, Giovanni; Giuffrida, Alessandro; Bonomo, Raffaele P

    2013-11-01

    Formal redox potentials in aqueous solution were determined for copper(II) complexes with ligands having oxygen and nitrogen as donor atoms. All the chosen copper(II) complexes have well-known stereochemistries (pseudo-octahedral, square planar, square-based pyramidal, trigonal bipyramidal or tetrahedral) as witnessed by their reported spectroscopic, EPR and UV-visible (UV-Vis) features, so that a rough correlation between the measured redox potential and the typical geometrical arrangement of the copper(II) complex could be established. Negative values have been obtained for copper(II) complexes in tetragonally elongated pseudo-octahedral geometries, when measured against Ag/AgCl reference electrode. Copper(II) complexes in tetrahedral environments (or flattened tetrahedral geometries) show positive redox potential values. There is a region, always in the field of negative redox potentials which groups the copper(II) complexes exhibiting square-based pyramidal arrangements. Therefore, it is suggested that a measurement of the formal redox potential could be of great help, when some ambiguities might appear in the interpretation of spectroscopic (EPR and UV-Vis) data. Unfortunately, when the comparison is made between copper(II) complexes in square-based pyramidal geometries and those in square planar environments (or a pseudo-octahedral) a little perturbed by an equatorial tetrahedral distortion, their redox potentials could fall in the same intermediate region. In this case spectroscopic data have to be handled with great care in order to have an answer about a copper complex geometrical characteristics. © 2013.

  5. Observation of atomic oxygen O(1S) green-line emission in the summer polar upper mesosphere associated with high-energy (≥30 keV) electron precipitation during high-speed solar wind streams

    Science.gov (United States)

    Lee, Young-Sook; Kwak, Young-Sil; Kim, Kyung-Chan; Solheim, Brian; Lee, Regina; Lee, Jaejin

    2017-01-01

    The auroral green-line emission at 557.7 nm wavelength as arising from the atomic oxygen O(1S → 1D) transition typically peaks at an altitude of 100 km specifically in the nightside oval, induced by auroral electrons within an energy range of 100 eV-30 keV. Intense aurora is known as being suppressed by sunlight in summer daytime but usually occurs in low electrical background conductivity. However, in the present study in summer (July) sunlit condition, enhancements of O(1S) emission rates observed by using the Wind Imaging Interferometer/UARS were frequently observed at low altitudes below 90 km, where ice particles are created initially as subvisible and detected as polar mesosphere summer echoes, emerging to be an optical phenomenon of polar mesospheric clouds. The intense O(1S) emission occurring in summer exceeds those occurring in the daytime in other seasons both in occurrence and in intensity, frequently accompanied by occurrences of supersonic neutral velocity (300-1500 m s-1). In the mesosphere, ion motion is controlled by electric field and the momentum is transferred to neutrals. The intense O(1S) emission is well associated with high-energy electron precipitation as observed during an event of high-speed solar wind streams. Meanwhile, since the minimum occurrences of O(1S) emission and supersonic velocity are maintained even in the low precipitation flux, the mechanism responsible is not only related to high-energy electron precipitation but also presumably to the local conditions, including the composition of meteoric-charged ice particles and charge separation expected in extremely low temperatures (<150 K).

  6. Oxygen Therapy

    Directory of Open Access Journals (Sweden)

    Bonnie Solmes

    2000-01-01

    Full Text Available LTOT is prescribed for people with chronic lung disease in whom there is a decrease in the ability of the lungs to supply enough oxygen to the body. The heart is obliged to pump faster to meet the body's oxygen requirements. This may place undue stress on the heart, resulting in palpitations, dizziness and fatigue. A low oxygen level in arterial blood is also harmful to the heart, the brain and the pulmonary blood vessels. Oxygen therapy is used to break this cycle. A person with low blood oxygen will often be able to accomplish more with less fatigue with the help of supplemental oxygen therapy. Shortness of breath is a mechanical problem resulting from the effects of chronic obstructive pulmonary disease. Oxygen therapy may or may not reduce shortness of breath, but it will help the lungs and heart to function with less stress.

  7. Factors influencing the oxidation of cysteamine and other thiols: implications for hyperthermic sensitization and radiation protection

    International Nuclear Information System (INIS)

    Biaglow, J.E.; Issels, R.W.; Gerweck, L.E.; Varnes, M.E.; Jacobson, B.; Mittchell, J.B.; Russo, A.

    1984-01-01

    Some of the factors influencing the oxygen uptake and peroxide formation for cysteamine (MEA) and other thiols in serum-supplemented modified McCoy's 5A, a well-known medium used to cultivate a variety of cells in vitro, have been studied. The oxidation of MEA and cysteine in modified McCoy's 5A has been compared with that in Ham's F-12, MEM, and phosphate-buffered saline. The ability to produce peroxide is dependent upon the temperature, the concentration of thiol, the presence of copper ions, and pH of the medium. Catalase also reduces the oxygen uptake for all thiols. Superoxide dismutase (SOD) was found to stimulate the oxygen uptake in the case of MEA and cysteine, but had little or no effect with DTT and glutathione. The combined presence of SOD and catalase resulted in less inhibition of oxygen uptake than that obtained by catalase alone. Alkaline pH was found to enhance the oxidation of cysteine and MEA. The results indicate that many problems may arise when thiols are added to various media. A major consideration is concerned with the production of peroxide, superoxide, and reduced trace metal intermediates. The presence of these intermediates may result in the production of hydroxyl radical intermediates as well as the eventual oxygen depletion from the medium

  8. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  9. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  10. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  11. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  12. Temporal dynamics of black band disease affecting pillar coral ( Dendrogyra cylindrus) following two consecutive hyperthermal events on the Florida Reef Tract

    Science.gov (United States)

    Lewis, Cynthia L.; Neely, Karen L.; Richardson, Laurie L.; Rodriguez-Lanetty, Mauricio

    2017-06-01

    Black band disease (BBD) affects many coral species worldwide and is considered a major contributor to the decline of reef-building coral. On the Florida Reef Tract BBD is most prevalent during summer and early fall when water temperatures exceed 29 °C. BBD is rarely reported in pillar coral ( Dendrogyra cylindrus) throughout the Caribbean, and here we document for the first time the appearance of the disease in this species on Florida reefs. The highest monthly BBD prevalence in the D. cylindrus population were 4.7% in 2014 and 6.8% in 2015. In each year, BBD appeared immediately following a hyperthermal bleaching event, which raises concern as hyperthermal seawater anomalies become more frequent.

  13. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  14. Human neuroblastoma SH-SY5Y cells show increased resistance to hyperthermic stress after differentiation, associated with elevated levels of Hsp72.

    Science.gov (United States)

    Cheng, Lesley; Smith, Danielle J; Anderson, Robin L; Nagley, Phillip

    2011-01-01

    Terminally differentiated neurones in the central nervous system need to be protected from stress. We ask here whether differentiation of progenitor cells to neurones is accompanied by up-regulation of Hsp72, with acquisition of enhanced thermotolerance. Human neuroblastoma SH-SY5Y cells were propagated in an undifferentiated form and subsequently differentiated into neurone-like cells. Thermotolerance tests were carried out by exposure of cells to various temperatures, monitoring nuclear morphology as index of cell death. Abundance of Hsp72 was measured in cell lysates by western immunoblotting. The differentiation of SH-SY5Y cells was accompanied by increased expression of Hsp72. Further, in both cell states, exposure to mild hyperthermic stress (43°C for 30 min) increased Hsp72 expression. After differentiation, SH-SY5Y cells were more resistant to hyperthermic stress compared to their undifferentiated state, correlating with levels of Hsp72. Stable exogenous expression of Hsp72 in SH-SY5Y cells (transfected line 5YHSP72.1, containing mildly elevated levels of Hsp72), led to enhanced resistance to hyperthermic stress. Hsp72 was found to be inducible in undifferentiated 5YHSP72.1 cells; such heat-treated cells displayed enhanced thermotolerance. Treatment of cells with KNK437, a suppressor of Hsp72 induction, resulted in acute thermosensitisation of all cell types tested here. Hsp72 has a major role in the enhanced hyperthermic resistance acquired during neuronal differentiation of SH-SY5Y cells. These findings model the requirement in intact organisms for highly differentiated neurones to be specially protected against thermal stress.

  15. Oxygen diffusion in cuprate superconductors

    International Nuclear Information System (INIS)

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La 2-x Sr x CuO 4 , YBa 2 Cu 3 O 7- δ, YBa 2 Cu 4 O 8 , and the Bi 2 Sr 2 Ca n-1 Cu n O 2+4 (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible

  16. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  17. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  18. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  19. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  20. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  1. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  2. Hyperthermic responses to central injections of some peptide and non-peptide opioids in the guinea-pig

    Science.gov (United States)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl normetazocine and an agonist at both kappa and sigma receptors, pentazocine, was found to induce hyperthermia in guinea pigs. The similar administration of peptide opioids like beta endorphin, methionine endkephalin, leucine endkephaline, and several of their synthetic analogues was also found to cause hyperthermia. Only the liver-like transport system of the three anion transport systems (iodide, hippurate, and liver-like) present in the choroid plexus was determined to be important to the central inactivation of beta-endorphin and two synthetic analogues. Prostaglandins and norepinephrine (NE) as well as cAMP were not involved in peptide and nonpeptide opioid-induced hyperthermia. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine and beta-endorphin, while hyperthermic responses to ketocyclazocine, N-allyl normetazocine, pentazocine, Met-enkephalin, Leu-enkephalin, and two of the synthetic analogues were not antagonized by nalozone. The lack of antagonism of naloxone on pyrogen, arachidonic acid, PGE2, dibutyryl cAMP, and NE-induced hyperthermia shows that endogenous opioid peptides are not likely to be central mediators of the hyperthermia induced by these agents.

  3. Peritoneal Carcinomatosis of Urachus Origin Treated by Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy (HIPEC): An International Registry of 36 Patients.

    Science.gov (United States)

    Mercier, Frederic; Passot, Guillaume; Villeneuve, Laurent; Levine, Edward A; Yonemura, Yutaka; Goéré, Diane; Sugarbaker, Paul H; Marolho, Christelle; Bartlett, David L; Glehen, Olivier

    2018-04-01

    Peritoneal carcinomatosis or pseudomyxoma peritonei from urachus is a rare form of presentation, often diagnosed at an advanced state of tumor burden. Because of its rarity, little is known about its natural history, prognosis, or optimal treatment. We searched a large international multicenter database of peritoneal surface disease to identify cases of peritoneal carcinomatosis of urachus that were treated with cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) at expert centers. The aim is to improve knowledge and understanding of the disease and standardize its treatment. A prospective multicenter international database was retrospectively searched to identify all patients with urachus tumor and peritoneal metastases who underwent CRS and HIPEC through the Peritoneal Surface Oncology Group International (PSOGI). Postoperative complications, long-term results, and principal prognostic factors were analyzed. The analysis included 36 patients. After median follow-up of 48 months, median overall survival (OS) was 58.5 months. Three- and 5-year OS was 55.4 and 46.2%, respectively. Patients who underwent complete macroscopic CRS had significantly better survival than those treated with incomplete CRS, with median OS not achieved and of 20.1 months, respectively [95% confidence interval (CI) 4.4-30.5, p < 0.001]. There were no postoperative deaths, and 37.9% of patients had major complications. CRS and HIPEC may increase long-term survival in selected patients with peritoneal metastases of urachus origin, especially when complete CRS is achieved.

  4. Preparation of protein- and cell-resistant surfaces by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide).

    Science.gov (United States)

    Bonduelle, Colin V; Lau, Woon M; Gillies, Elizabeth R

    2011-05-01

    The functionalization of surfaces with poly(ethylene oxide) (PEO) is an effective means of imparting resistance to the adsorption of proteins and the attachment and growth of cells, properties that are critical for many biomedical applications. In this work, a new hyperthermal hydrogen induced cross-linking (HHIC) method was explored as a simple one-step approach for attaching PEO to surfaces through the selective cleavage of C-H bonds and subsequent cross-linking of the resulting carbon radicals. In order to study the effects of the process on the polymer, PEO-coated silicon wafers were prepared and the effects of different treatment times were investigated. Subsequently, using an optimized treatment time and a modified butyl polymer with increased affinity for PEO, the technique was applied to butyl rubber surfaces. All of the treated surfaces exhibited significantly reduced protein adsorption and cell growth relative to control surfaces and compared favorably with surfaces that were functionalized with PEO using conventional chemical methods. Thus HHIC is a simple and effective means of attaching PEO to non-functional polymer surfaces.

  5. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for the treatment of advanced epithelial and recurrent ovarian carcinoma: a single center experience.

    Science.gov (United States)

    Pavlov, Maja J; Ceranic, Miljan S; Latincic, Stojan M; Sabljak, Predrag V; Kecmanovic, Dragutin M; Sugarbaker, Paul H

    2017-09-07

    With standard treatment of epithelial ovarian cancer (EOC), prognosis is very poor. The aim of this study is to show early and late results in patients who underwent cytoreductive surgery and intraperitoneal chemotherapy. This was a retrospective single centre study. All patients with advanced and recurrent ovarian cancer treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) or modified early postoperative intraperitoneal chemotherapy (EPIC) were included in the study. In the period 1995-2014, 116 patients were treated, 55 with primary EOC and 61 with recurrent EOC. The mean age was 59 years (26-74). Statistically, median survival time was significantly longer in the group with primary advanced cancer of the ovary (41.3 months) compared to relapsed ovarian cancer (27.3 months). Survival for the primary EOC was 65 and 24% at 3 and 5 years, respectively. Survival for recurrent EOC was 33 and 16% at 3 and 5 years, respectively. Mortality was 1/116 (0.8%). Morbidity was 11/116 (9.5%). Peritoneal cancer index (PCI) was ≤20 in 59 (51%) patients and statistically, their average survival was significantly longer than in the group of 57 (49%) patients with PCI >20 (p = 0.014). In advanced or recurrent EOC, a curative therapeutic approach was pursued that combined optimal cytoreductive surgery and intraperitoneal chemotherapy. PCI and timing of the intervention (primary or recurrent) were the strongest independent prognostic factors.

  6. Cytoreductive surgery with a hyperthermic intraperitoneal chemotherapy program: Safe after 40 cases, but only controlled after 140 cases.

    Science.gov (United States)

    Voron, T; Eveno, C; Jouvin, I; Beaugerie, A; Lo Dico, R; Dagois, S; Soyer, P; Pocard, M

    2015-12-01

    Cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC), used to treat peritoneal surface malignancies (PSM), is a complex procedure with significant major morbidity (MM). To investigate the learning curve (LC) of CRS with HIPEC in a new specialized surgical unit with a fully trained senior surgeon and individualize the variables associated with morbidity and oncological results. A total of 290 consecutive patients with PSM were included. Complete CRS with HIPEC was performed in 204 patients. A risk-adjusted sequential probability ratio test was used to assess the LC on the basis of rates of incomplete cytoreduction (IC) and MM. Complete CRS, MM, and mortality rates were 70.4%, 30.4%, and 2.5%, respectively. Tumor histotype, a high peritoneal cancer index (PCI) and the invaded region were the major independent risk factors for IC, whereas previous surgery, high PCI, stomia realization and blood transfusion were predictors of MM. RA-SPRT showed that 140 and 40 cases were needed to achieve the lowest risk of IC and MM, respectively. CRS with HIPEC to treat PSM has a steep LC. Drastic selection has to be made at the beginning, excluding high PCI, rare peritoneal disease and patients previously operated on. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  8. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  9. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  10. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  11. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  12. Marine Export Production and Remineralization During Early Eocene Hyperthermal Events at ODP Site 1263, Walvis Ridge, ODP Site 1209, Shatsky Rise and ODP Site 1215, Equatorial Pacific Ocean

    Science.gov (United States)

    Lewis, A.; Griffith, E. M.; Thomas, E.; Winguth, A. M. E.

    2017-12-01

    Understanding the impacts of global hyperthermal events on marine productivity and remineralization is important for understanding the reaction of the ocean to major climate change. Marine export production and remineralization was reconstructed using marine (pelagic) barite accumulation rates (BAR) coupled with records of benthic foraminiferal assemblages across the Paleocene - Eocene Thermal Maximum (PETM) at 55.3 Ma, Eocene Thermal Maximum 2 (ETM2) 2 Ma later, and ETM3 3.1 Ma after the PETM. Marine barite accumulates in deep sea sediment precipitating in the overlying water column during degradation of organic matter exported from the photic zone. Foraminiferal data indicate the amount of organic matter reaching the seafloor. We use the difference between these records to infer changes in rates of remineralization. We present data from ODP Site on Walvis Ridge, Southeastern Atlantic; ODP Site 1209 on Shatsky Rise, North Pacific; and ODP Site 1215, equatorial Pacific. Sites 1263 and 1215 had maximum BAR roughly centered over the maximum negative PETM CIE, whereas at Site 1209 the maximum was before the PETM. The maximum BAR across ETM2 and ETM3 (0.5 and 0.25 of that at the PETM, respectively) was centered over the maximum negative CIE at Site 1263. At Site 1209, the BAR (0.5 the maximum value before the PETM) peaked before ETM2. Barite concentration at Site 1215 was low across at the smaller hyperthermals, but the onset of ETM2 had a maximum value food arrival at the seafloor during elevated BAR, thus indicating enhanced remineralization. During the PETM, at all 3 sites, increases in barite coincided with reduced BFAR. Similar trends were observed during ETM2 at Sites 1263 and 1215, suggesting dramatic changes in remineralization over all hyperthermal events at these sites. Increased remineralization rates could partly account for differences in planktonic and benthic extinction, as observed during the PETM.

  13. Persistence of a hyperthermic sign-reversal during nitrous oxide inhalation despite cue-exposure treatment with and without a drug-onset cue.

    Science.gov (United States)

    Kaiyala, Karl J; Woods, Stephen C; Ramsay, Douglas S

    2014-01-01

    We asked whether chronic tolerance and the hyperthermic sign-reversal induced by repeated 60% N 2 O exposures could be extinguished using a cue-exposure paradigm. Rats received 18 N 2 O administrations in a total calorimetry system that simultaneously measures core temperature (Tc), metabolic heat production (HP), and body heat loss (HL). Each exposure entailed a 2-h baseline period followed by a 1.5-h N 2 O exposure. The 18 drug exposures induced a robust intra-administration hyperthermia in which the initial hypothermic effect of N 2 O inverted to a significant hyperthermic sign-reversal during N 2 O inhalation due primarily to an acquired robust increase in HP. The rats were then randomized to one of three extinction procedures (n=8/procedure) over a 20-d interval: 1) a N 2 O-abstinent home-cage group (HC) that received only the usual animal care; 2) a cue-exposure group (CEXP) in which the animals were placed in the calorimeter 8 times but received no N 2 O; and 3) a drug-onset-cue group (DOC) in which animals received a brief N 2 O exposure in the calorimeter that mimicked the first 3 min of an actual 60% N 2 O trial. Following the extinction sessions, all rats received a 60% N 2 O test trial and Tc, HP and HL were assessed. The hyperthermic sign-reversal remained fully intact during the test trial, with no significant differences observed among groups in any post-baseline change in any thermal outcome. These data suggest that cue exposure may not be an efficacious strategy to reduce sign-reversals that develop with chronic drug use.

  14. Analysis of the crystalline characteristics of nc-Si:H thin film using a hyperthermal neutral beam generated by an inclined slot-excited antenna

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-Bae; Kim, Young-Woo; Kim, Dae Chul; Kim, Jongsik; Hong, Seung Pyo; Yoo, Suk Jae; Oh, Kyoung Suk, E-mail: ksoh@nfri.re.kr

    2013-11-29

    The deposition of hydrogenated nano-crystal silicon (nc-Si:H) thin film for manufacturing quantum dot solar cells, which has received attention due to the use of this film third-generation solar cells, is studied here. A hyperthermal neutral beam (HNB) generated by an inclined slot-excited antenna plasma source is used to reduce damage to the silicon thin film and deposition of the crystalline thin film is carried out on a substrate at a low temperature (< 200 °C). The size and the crystalline fraction of the nc-Si:H of the deposited thin film were analyzed by scanning transmission electron microscopy and a Raman microscope. As a result, silicon crystals 1–10 nm in size were observed in the amorphous silicon matrix. According to previous studies, the size and the crystalline fraction of nc-Si:H in deposited thin films increase as the hydrogen flow rate is increased. However, the increment of hydrogen flow rate decreases the deposition rate rapidly. The size and the crystalline fraction of nc-Si:H are adjustable by varying the substrate temperature and HNB energy without a change of the hydrogen flow rate. There are optimum conditions between the HNB energy and the substrate temperature for an appropriate amount of nc-Si:H in silicon thin film. - Highlights: • The appropriate hyperthermal neutral beam energy seems to assist film formation. • The Si crystal size can be adjusted by varying hyperthermal neutral beam energy. • The nc-Si:H 1 ∼ 10 in nm size was observed in the amorphous silicon matrix.

  15. Oxygen safety

    Science.gov (United States)

    ... sure you have working smoke detectors and a working fire extinguisher in your home. If you move around the house with your oxygen, you may need more than one fire extinguisher in different locations. Smoking can be very dangerous. No one should smoke ...

  16. Oxygen therapy - infants

    Science.gov (United States)

    ... breathe increased amounts of oxygen to get normal levels of oxygen in their blood. Oxygen therapy provides babies with the extra oxygen. Information Oxygen is a gas that the cells in your body need to work properly. The ...

  17. A vascular mechanism to explain thermally mediated variations in deep-body cooling rates during the immersion of profoundly hyperthermic individuals.

    Science.gov (United States)

    Caldwell, Joanne N; van den Heuvel, Anne M J; Kerry, Pete; Clark, Mitchell J; Peoples, Gregory E; Taylor, Nigel A S

    2018-04-01

    What is the central question of this study? Does the cold-water immersion (14°C) of profoundly hyperthermic individuals induce reductions in cutaneous and limb blood flow of sufficient magnitude to impair heat loss relative to the size of the thermal gradient? What is the main finding and its importance? The temperate-water cooling (26°C) of profoundly hyperthermic individuals was found to be rapid and reproducible. A vascular mechanism accounted for that outcome, with temperature-dependent differences in cutaneous and limb blood flows observed during cooling. Decisions relating to cooling strategies must be based upon deep-body temperature measurements that have response dynamics consistent with the urgency for cooling. Physiologically trivial time differences for cooling the intrathoracic viscera of hyperthermic individuals have been reported between cold- and temperate-water immersion treatments. One explanation for that observation is reduced convective heat delivery to the skin during cold immersion, and this study was designed to test both the validity of that observation, and its underlying hypothesis. Eight healthy men participated in four head-out water immersions: two when normothermic, and two after exercise-induced, moderate-to-profound hyperthermia. Two water temperatures were used within each thermal state: temperate (26°C) and cold (14°C). Tissue temperatures were measured at three deep-body sites (oesophagus, auditory canal and rectum) and eight skin surfaces, with cutaneous vascular responses simultaneously evaluated from both forearms (laser-Doppler flowmetry and venous-occlusion plethysmography). During the cold immersion of normothermic individuals, oesophageal temperature decreased relative to baseline (-0.31°C over 20 min; P immersed in cold rather than in temperate water (P immersion, whereas pronounced constriction was evident during both immersions when subjects were hyperthermic, with the colder water eliciting a greater vascular

  18. Atomic secrecy

    International Nuclear Information System (INIS)

    Sweet, W.

    1979-01-01

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  19. Mechanism of formation and spatial distribution of lead atoms in quartz tube atomizers

    Science.gov (United States)

    Johansson, M.; Baxter, D. C.; Ohlsson, K. E. A.; Frech, W.

    1997-05-01

    The cross-sectional and longitudinal spatial distributions of lead atoms in a quartz tube (QT) atomizers coupled to a gas chromatograph have been investigated. A uniform analyte atom distribution over the cross-section was found in a QT having an inner diameter (i.d.) of 7 mm, whereas a 10 mm i.d. QT showed an inhomogeneous distribution. These results accentuate the importance of using QTs with i.d.s below 10 mm to fulfil the prerequirement of the Beer—Lambert law to avoid bent calibration curves. The influence of the make up gas on the formation of lead atoms from alkyllead compounds has been studied, and carbon monoxide was found equally efficient in promoting free atom formation as hydrogen. This suggests that hydrogen radicals are not essential for mediating the atomization of alkyllead in QT atomizers at ˜ 1200 K. Furthermore, thermodynamic equilibrium calculations describing the investigated system were performed supporting the experimental results. Based on the presented data, a mechanism for free lead atom formation in continuously heated QT atomizers is proposed; thermal atomization occurs under thermodynamic equilibrium conditions in a reducing gas. The longitudinal atom distribution has been further investigated applying other make up gases, N 2 and He. These results show the effect of the influx of atmospheric oxygen on the free lead atom formation. Calculations of the partial pressure of oxygen in the atomizer gas phase assuming thermodynamic equilibrium have been undertaken using a convective-diffusional model.

  20. Changes in Hepatic Blood Flow and Liver Function during Closed Abdominal Hyperthermic Intraperitoneal Chemotherapy following Cytoreduction Surgery

    Directory of Open Access Journals (Sweden)

    Stéphanie Dupont

    2018-01-01

    Full Text Available Background. The increase in intra-abdominal pressure (IAP during closed abdominal hyperthermic intraperitoneal chemotherapy (HIPEC leads to major haemodynamic changes and potential organ dysfunction. We investigated these effects on hepatic blood flow (HBF and liver function in patients undergoing HIPEC following cytoreductive surgery and fluid management guided by dynamic preload indices. Methods. In this prospective observational clinical study including 15 consecutive patients, we evaluated HBF by transesophageal echocardiography and liver function by determination of the indocyanine green plasma disappearance rate (ICG-PDR. Friedman’s two-way analysis of variance by ranks and Wilcoxon signed-rank test were performed for statistical analysis. Results. During HIPEC, HBF was markedly reduced, resulting in the loss of any pulsatile Doppler flow signal in all but one patient. The ICG-PDR, expressed as median (interquartile 25–75, decreased from 23 (20–30 %/min to 18 (12.5–19 %/min (p<0.001. Despite a generous crystalloid infusion rate (27 (22–35 ml/kg/h, cardiac index decreased during the increased IAP period, inferior vena cava diameter decreased, stroke volume variation and pulse pressure variation increased, lung compliance dropped, and there was an augmentation in plateau pressure. All changes were significant (p<0.001 and reversed to baseline values post HIPEC. Conclusion. Despite optimizing intravenous fluids during closed abdominal HIPEC, we observed a marked decrease in HBF and liver function. Both effects were transient and limited to the period of HIPEC but could influence the choice between closed or open abdominal cavity procedure for HIPEC and should be considered in similar clinical situations of increased IAP.

  1. Frequency modulation reveals the phasing of orbital eccentricity during Cretaceous Oceanic Anoxic Event II and the Eocene hyperthermals

    Science.gov (United States)

    Laurin, Jiří; Meyers, Stephen R.; Galeotti, Simone; Lanci, Luca

    2016-05-01

    Major advances in our understanding of paleoclimate change derive from a precise reconstruction of the periods, amplitudes and phases of the 'Milankovitch cycles' of precession, obliquity and eccentricity. While numerous quantitative approaches exist for the identification of these astronomical cycles in stratigraphic data, limitations in radioisotopic dating, and instability of the theoretical astronomical solutions beyond ∼50 Myr ago, can challenge identification of the phase relationships needed to constrain climate response and anchor floating astrochronologies. Here we demonstrate that interference patterns accompanying frequency modulation (FM) of short eccentricity provide a robust basis for identifying the phase of long eccentricity forcing in stratigraphic data. One- and two-dimensional models of sedimentary distortion of the astronomical signal are used to evaluate the veracity of the FM method, and indicate that pristine eccentricity FM can be readily distinguished in paleo-records. Apart from paleoclimatic implications, the FM approach provides a quantitative technique for testing and calibrating theoretical astronomical solutions, and for refining chronologies for the deep past. We present two case studies that use the FM approach to evaluate major carbon-cycle perturbations of the Eocene and Late Cretaceous. Interference patterns in the short-eccentricity band reveal that Eocene hyperthermals ETM2 ('Elmo'), H2, I1 and ETM3 (X; ∼52-54 Myr ago) were associated with maxima in the 405-kyr cycle of orbital eccentricity. The same eccentricity configuration favored regional anoxic episodes in the Mediterranean during the Middle and Late Cenomanian (∼94.5-97 Myr ago). The initial phase of the global Oceanic Anoxic Event II (OAE II; ∼93.9-94.5 Myr ago) coincides with maximum and falling 405-kyr eccentricity, and the recovery phase occurs during minimum and rising 405-kyr eccentricity. On a Myr scale, the event overlaps with a node in eccentricity

  2. The use of cardiac output monitoring to guide the administration of intravenous fluid during hyperthermic intraperitoneal chemotherapy.

    Science.gov (United States)

    Thanigaimani, K; Mohamed, F; Cecil, T; Moran, B J; Bell, J

    2013-12-01

    The optimal strategy for intravenous (IV) fluid management during administration of hyperthermic intraperitoneal chemotherapy (HIPEC) is unclear. In this prospective study we describe the use of a LiDCOrapid™ (LiDCO, Cambridge, UK) cardiac output monitor to guide IV fluid management during cytoreductive surgery (CRS) with HIPEC. The aim of this study was to determine whether cardiac output monitoring will allow close maintenance of physiological parameters during the HIPEC phase. Twenty-five patients who underwent CRS combined with HIPEC were included in the study. Intra-operative IV fluid boluses were titrated using parameters measured by the LiDCOrapid™ monitor. Stroke volume variation was maintained below 10% with fluid boluses and mean arterial pressure was maintained within 20% of the baseline figure with vasopressors. There was no significant change in heart rate and cardiac output. The systemic vascular resistance dropped from an average of 966 dyn.s/cm-5 to 797 dyn s/cm(5) at 60 min during the HIPEC phase (P = 0.62) despite an increase in the dose of phenylepherine. The average total volume of fluid given was 748 ml in the first 30 min and 630 ml in the second 30 min with an average urine output of 307 and 445 ml, respectively. The change in lactate levels was not statistically or clinically significant. LiDCOrapid™ is an effective noninvasive tool for guiding fluid management in this population. It allows the anaesthesiologist to maintain tight control of essential physiological parameters during a phase of the procedure in which there is a risk of renal injury. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  3. Hyperthermic survival of Chinese hamster ovary cells as a function of cellular population density at the time of plating

    International Nuclear Information System (INIS)

    Highfield, D.P.; Holahan, E.V.; Holahan, P.K.; Dewey, W.C.

    1984-01-01

    The survival of synchronous G 1 or asynchronous Chinese hamster ovary cells in vitro to heat treatment may depend on the cellular population density at the time of heating and/or as the cells are cultured after heating. The addition of lethally irradiated feeder cells may increase survival at 10 -3 by as much as 10- to 100-fold for a variety of conditions when cells are heated either in suspension culture or as monolayers with or without trypsinization. The protective effect associated with feeder cells appears to be associated with close cell-to-cell proximity. However, when cells are heated without trypsinization about 24 hr or later after plating, when adaptation to monolayer has occurred, the protective effect is reduced; i.e., addition of feeder cells enhances survival much less, for example, about 2- to 3-fold at 10 -2 -10 -3 survival. Also, the survival of a cell to heat is independent of whether the neighboring cell in a microcolony is destined to live or die. Finally, if protective effects associated with cell density do occur and are not controlled, serious artifacts can result as the interaction of heat and radiation is studied; for example, survival curves can be moved upward, and thus changed in shape as the number of cells plated is increased with an increase in the hyperthermic treatment or radiation dose following hyperthermia. Therefore, to understand mechanisms and to obtain information relevant to populations of cells in close proximity, such as those in vivo, these cellular population density effects should be considered and understood

  4. Diaphragm and lung-preserving surgery with hyperthermic chemotherapy for malignant pleural mesothelioma: A 10-year experience.

    Science.gov (United States)

    Ambrogi, Marcello Carlo; Bertoglio, Pietro; Aprile, Vittorio; Chella, Antonio; Korasidis, Stylianos; Fontanini, Gabriella; Fanucchi, Olivia; Lucchi, Marco; Mussi, Alfredo

    2018-04-01

    The best surgical treatment for malignant pleural mesothelioma is still under a debate, but recent evidence points toward a less-invasive approach to reduce morbidity and mortality. We reported our 10-year experience of a limited surgical approach associated with hyperthermic intrathoracic chemotherapy (HITHOC). Between 2005 and 2014, patients with epithelioid or biphasic malignant pleural mesothelioma were treated with lung-diaphragm-pericardium-sparing pleurectomy associated with double-drug HITHOC; at least 3 cycles of adjuvant chemotherapy were then administered. The primary outcome examined was the feasibility of the procedure, whereas secondary outcomes were overall survival and disease-free interval. Among 49 patients, 41 were male. Median age was 68 years (35-76 years). Histology was epithelioid in 43 cases. Pathologic stage I, II, III, and IV occurred in 12, 14, 20, and 3 cases, respectively. No intraoperative complications or postoperative mortality occurred, whereas morbidity rate was 46.9%. Median hospital stay was 8 days (5-45 days). Actuarial median overall survival was 22 months and a 1-, 2-, and 5-year survival accounted for 79.6%, 45.7%, and 9.9%, respectively. Disease-free survival after surgery was 62%, 37.5%, and 18.5% at 1, 2, and 5 years, respectively. Risk factors analysis for overall survival confirmed a significant role for early stages, epithelioid histology, and fibrinogen serum levels. Cytoreductive surgery associated with HITHOC and adjuvant chemotherapy appears feasible and safe, with no mortality and low morbidity. Preserving lung and diaphragmatic function might warrant an acceptable long-term outcome. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  5. Effect of Hyperthermic Intraperitoneal Perfusion Chemotherapy in Combination with Intravenous Chemotherapy as Postoperative Adjuvant Therapy for Advanced Gastric Cancer.

    Science.gov (United States)

    Wu, Zhibing; Ma, Shenglin; Jing, Saisai; Deng, Qinghua; Zheng, Zhishuang; Wu, Kan; Li, Juan; Chen, Sumei; Tang, Rongjun; Li, Xiadong

    2014-06-01

    The aim is to evaluate the preliminary efficacy and side effects of paclitaxel, 5-fluorouracil, and leucovorin intravenous chemotherapy in combination with cisplatin hyperthermic intraperitoneal perfusion chemotherapy (HIPEC) as postoperative adjuvant therapy for patients of locally advanced gastric cancer (GC) at high risk for recurrence after curative resection. Four GC patients who underwent radical gastrectomy with D2 lymphadenectomy were enrolled. All patients received paclitaxel 135 mg/m2 on day 1, 5-FU 500 mg/m2 on days 1-5, LV 200 mg/m2 on days 1-5 intravenous chemotherapy, cisplatin 75 mg/m2 on day 5, and HIPEC one month after surgery. It was repeated at 3 weeks intervals and at least two cycles administered. A total of 181 cycles of chemotherapy were administered (median, 4 cycles). The median disease free survival time of patients was 40.8 months. The median overall survival time was 48.0 months. The one-, two-, and three-year recurrence rates were 14.6%, 26.8%, and 46.3%, respectively. The main relapse patterns were remnant GC and metastases of retroperitoneal lymph nodes. The morbidity of grade 3 and 4 toxicities of myelosuppression, nausea/ vomiting were less than 10%. The side effects of grade 1 and 2 of hematologic toxicity, nausea and vomiting, abnormal function of liver, kidney or cardiac, fatigue and neurotoxicity were well tolerated. Cisplatin HIPEC combined with paclitaxel, 5-fluorouracil, and leucovorin intravenous chemotherapy regimen could improve the survival rate and decrease the postoperative recurrence of locally advanced GC.

  6. Nucleation of diindenoperylene and pentacene at thermal and hyperthermal incident kinetic energies

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Edward R.; Desai, Tushar V.; Greer, Douglas R.; Engstrom, James R., E-mail: jre7@cornell.edu [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 (United States); Woll, Arthur R. [Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853 (United States)

    2015-05-15

    The authors have examined the nucleation of diindenoperylene (DIP) on SiO{sub 2} employing primarily atomic force microscopy and focusing on the effect of incident kinetic energy employing both thermal and supersonic sources. For all incident kinetic energies examined (E{sub i} = 0.09–11.3 eV), the nucleation of DIP is homogeneous and the dependence of the maximum island density on the growth rate is described by a power law. A critical nucleus of approximately two molecules is implicated by our data. A re-examination of the nucleation of pentacene on SiO{sub 2} gives the same major result that the maximum island density is determined by the growth rate, and it is independent of the incident kinetic energy. These observations are readily understood by factoring in the size of the critical nucleus in each case, and the island density, which indicates that diffusive transport of molecules to the growing islands dominate the dynamics of growth in the submonolayer regime.

  7. Impurities of oxygen in silicon

    International Nuclear Information System (INIS)

    Gomes, V.M.S.

    1985-01-01

    The electronic structure of oxygen complex defects in silicon, using molecular cluster model with saturation by watson sphere into the formalism of Xα multiple scattering method is studied. A systematic study of the simulation of perfect silicon crystal and an analysis of the increasing of atom number in the clusters are done to choose the suitable cluster for the calculations. The divacancy in three charge states (Si:V 2 + , Si:V 2 0 , Si:V 2 - ), of the oxygen pair (Si:O 2 ) and the oxygen-vacancy pair (Si:O.V) neighbours in the silicon lattice, is studied. Distortions for the symmetry were included in the Si:V 2 + and Si:O 2 systems. The behavior of defect levels related to the cluster size of Si:V 2 0 and Si:O 2 systems, the insulated oxygen impurity of silicon in interstitial position (Si:O i ), and the complexes involving four oxygen atoms are analysed. (M.C.K.) [pt

  8. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  9. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  10. Atoms stories

    International Nuclear Information System (INIS)

    Radvanyi, P.; Bordry, M.

    1988-01-01

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  11. Atomic physics

    International Nuclear Information System (INIS)

    Held, B.

    1991-01-01

    This general book describes the change from classical physics to quantum physics. The first part presents atom evolution since antiquity and introduces fundamental quantities and elements of relativity. Experiments which have contributed to the evolution of knowledge on matter are analyzed in the second part. Applications of wave mechanics to the study of matter properties are presented in the third part [fr

  12. Late Paleocene-middle Eocene benthic foraminifera on a Pacific seamount (Allison Guyot, ODP Site 865): Greenhouse climate and superimposed hyperthermal events

    Science.gov (United States)

    Arreguín-Rodríguez, Gabriela J.; Alegret, Laia; Thomas, Ellen

    2016-03-01

    We investigated the response of late Paleocene-middle Eocene (~60-37.5 Ma) benthic foraminiferal assemblages to long-term climate change and hyperthermal events including the Paleocene-Eocene Thermal Maximum (PETM) at Ocean Drilling Program (ODP) Site 865 on Allison Guyot, a seamount in the Mid-Pacific Mountains. Seamounts are isolated deep-sea environments where enhanced current systems interrupt bentho-pelagic coupling, and fossil assemblages from such settings have been little evaluated. Assemblages at Site 865 are diverse and dominated by cylindrical calcareous taxa with complex apertures, an extinct group which probably lived infaunally. Dominance of an infaunal morphogroup is unexpected in a highly oligotrophic setting, but these forms may have been shallow infaunal suspension feeders, which were ecologically successful on the current-swept seamount. The magnitude of the PETM extinction at Site 865 was similar to other sites globally, but lower diversity postextinction faunas at this location were affected by ocean acidification as well as changes in current regime, which might have led to increased nutrient supply through trophic focusing. A minor hyperthermal saw less severe effects of changes in current regime, with no evidence for carbonate dissolution. Although the relative abundance of infaunal benthic foraminifera has been used as a proxy for surface productivity through bentho-pelagic coupling, we argue that this proxy can be used only in the absence of changes in carbonate saturation and current-driven biophysical linking.

  13. Atomic spectroscopy with diode lasers

    International Nuclear Information System (INIS)

    Tino, G.M.

    1994-01-01

    Some applications of semiconductor diode lasers in atomic spectroscopy are discussed by describing different experiments performed with lasers emitting in the visible and in the near-infrared region. I illustrate the results obtained in the investigation of near-infrared transitions of atomic oxygen and of the visible intercombination line of strontium. I also describe how two offset-frequency-locked diode lasers can be used to excite velocity selective Raman transitions in Cs. I discuss the spectral resolution, the accuracy of frequency measurements, and the detection sensitivity achievable with diode lasers. (orig.)

  14. Atomic and molecular beams production and collimation

    CERN Document Server

    Lucas, Cyril Bernard

    2013-01-01

    Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens.The book not only provides the basic expressions essential to beam design but also offers

  15. Sub-Angstrom Atomic-Resolution Imaging of Heavy Atoms to Light Atoms

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Shao-Horn, Yang

    2003-05-23

    Three decades ago John Cowley and his group at ASU achieved high-resolution electron microscope images showing the crystal unit cell contents at better than 4Angstrom resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with Cs-corrected lenses and monochromated electron beams.

  16. Surface interaction of polyimide with oxygen ECR plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P.S.; Bhoraskar, V.N.; Mandle, A.B.; Ganeshan, V.; Bhoraskar, S.V.

    2004-01-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis

  17. Surface interaction of polyimide with oxygen ECR plasma

    Science.gov (United States)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.

    2004-07-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.

  18. Obesity and Peritoneal Surface Disease: Outcomes after Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy for Appendiceal and Colon Primary Tumors

    Science.gov (United States)

    Votanopoulos, Konstantinos I.; Swords, Douglas S.; Swett, Katrina R.; Randle, Reese W.; Shen, Perry; Stewart, John H.; Levine, Edward A.

    2014-01-01

    Background It is estimated that 37 % of the U.S. population is obese. It is unknown how obesity influences the operative and survival outcomes of cytoreductive surgery (CRS)/hyperthermic intraperitoneal chemotherapy (HIPEC) procedures. Methods A retrospective analysis of a prospective database of 1,000 procedures was performed. Type of malignancy, performance status, resection status, hospital and intensive care unit stay, comorbidities, morbidity, mortality, and survival were reviewed. Results A total of 246 patients with body mass index (BMI) of >30 kg/m2 underwent 272 CRS/HIPEC procedures. Ninety-five (38.6 %) were severely obese (BMI > 35 kg/m2). A total of 135 (49.6 %) procedures were performed for appendiceal and 60 (22.1 %) for colon cancer. Median follow-up was 52 months. Both major and minor morbidity were similar for obese and non-obese patients. The 30-day mortality rates for obese and nonobese patients were 1.5 and 2.5 %, respectively. Median intensive care unit and hospital stay were 1 and 9 days, regardless of BMI. The 30-day readmission rate was similar between obese and non-obese patients (24.8 vs. 19.4 %, p = 0.11). Median survival for low-grade appendiceal cancer (LGA) was 76 months for obese patients and 107 months for non-obese patients (p = 0.32). Survival was worse for severely obese patients (median survival 54 months) versus non-obese patients with LGA (p = 0.04). Survival was similar for obese and non-obese patients with peritoneal surface disease (PSD) from colon cancer or high-grade appendiceal cancer. Conclusions Obesity does not influence postoperative morbidity or mortality of patients with PSD, regardless of primary tumor. Severe obesity is associated with decreased long-term survival only in patients with LGA primary disease; however, application of CRS/HIPEC still offers meaningful prolongation of life. Obesity should not be considered a contraindication for CRS/HIPEC procedures. PMID:23800899

  19. Oxygen diffusion in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La{sub 2}{sub {minus}}{sub {times}}Sr{sub {times}}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7}{sub {minus}}{delta}, YBa{sub 2}Cu{sub 4}O{sub 8}, and the Bi{sub 2}Sr{sub 2}Ca{sub n}{sub {minus}}{sub 1}Cu{sub n}O{sub 2}{sub +}{sub 4} (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible.

  20. Clarifying atomic weights: A 2016 four-figure table of standard and conventional atomic weights

    Science.gov (United States)

    Coplen, Tyler B.; Meyers, Fabienne; Holden, Norman E.

    2017-01-01

    To indicate that atomic weights of many elements are not constants of nature, in 2009 and 2011 the Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) replaced single-value standard atomic weight values with atomic weight intervals for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium); for example, the standard atomic weight of nitrogen became the interval [14.00643, 14.00728]. CIAAW recognized that some users of atomic weight data only need representative values for these 12 elements, such as for trade and commerce. For this purpose, CIAAW provided conventional atomic weight values, such as 14.007 for nitrogen, and these values can serve in education when a single representative value is needed, such as for molecular weight calculations. Because atomic weight values abridged to four figures are preferred by many educational users and are no longer provided by CIAAW as of 2015, we provide a table containing both standard atomic weight values and conventional atomic weight values abridged to four figures for the chemical elements. A retrospective review of changes in four-digit atomic weights since 1961 indicates that changes in these values are due to more accurate measurements over time or to the recognition of the impact of natural isotopic fractionation in normal terrestrial materials upon atomic weight values of many elements. Use of the unit “u” (unified atomic mass unit on the carbon mass scale) with atomic weight is incorrect because the quantity atomic weight is dimensionless, and the unit “amu” (atomic mass unit on the oxygen scale) is an obsolete term: Both should be avoided.

  1. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  2. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Science.gov (United States)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  3. Exotic atoms

    International Nuclear Information System (INIS)

    Kunselman, R.

    1993-01-01

    The experiments use a solid hydrogen layer to form muonic hydrogen isotopes that escape into vacuum. The method relies on transfer of the muon from protium to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections, and may be emitted from the surface of the layer. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes. A target has been constructed which exploits muonic atom emission in order to learn more about the energy dependence of transfer and muon molecular formation

  4. Redox-neutral rhodium-catalyzed C-H functionalization of arylamine N-oxides with diazo compounds: primary C(sp(3))-H/C(sp(2))-H activation and oxygen-atom transfer.

    Science.gov (United States)

    Zhou, Bing; Chen, Zhaoqiang; Yang, Yaxi; Ai, Wen; Tang, Huanyu; Wu, Yunxiang; Zhu, Weiliang; Li, Yuanchao

    2015-10-05

    An unprecedented rhodium(III)-catalyzed regioselective redox-neutral annulation reaction of 1-naphthylamine N-oxides with diazo compounds was developed to afford various biologically important 1H-benzo[g]indolines. This coupling reaction proceeds under mild reaction conditions and does not require external oxidants. The only by-products are dinitrogen and water. More significantly, this reaction represents the first example of dual functiaonalization of unactivated a primary C(sp(3) )H bond and C(sp(2) )H bond with diazocarbonyl compounds. DFT calculations revealed that an intermediate iminium is most likely involved in the catalytic cycle. Moreover, a rhodium(III)-catalyzed coupling of readily available tertiary aniline N-oxides with α-diazomalonates was also developed under external oxidant-free conditions to access various aminomandelic acid derivatives by an O-atom-transfer reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  6. Evaluation of Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Carcinomatosis of Colorectal Origin in the Era of Value-Based Medicine.

    Science.gov (United States)

    Vanounou, Tsafrir; Garfinkle, Richard

    2016-08-01

    Peritoneal spread from colorectal cancer is second only to the liver as a site for metastasis. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) is a well-established treatment option for patients with peritoneal carcinomatosis (PC) of colorectal origin. However, due to concerns regarding both its clinical benefit and high cost, its universal adoption as the standard of care for patients with limited peritoneal dissemination has been slow. The purpose of this review was to clarify the clinical utility and cost effectiveness of CRS-HIPEC in the treatment of colorectal PC using the framework of value-based medicine, which attempts to combine both benefit and cost into a single quantifiable metric. Our comprehensive review of the clinical outcomes and cost effectiveness of CRS-HIPEC demonstrate that it is a highly valuable oncologic therapy and a good use of healthcare resources.

  7. The relationship between baseline nutritional status with subsequent parenteral nutrition and clinical outcomes in cancer patients undergoing hyperthermic intraperitoneal chemotherapy.

    Science.gov (United States)

    Vashi, Pankaj G; Gupta, Digant; Lammersfeld, Carolyn A; Braun, Donald P; Popiel, Brenten; Misra, Subhasis; Brown, Komen C

    2013-08-14

    The combination of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) is a promising treatment option for selected patients with peritoneal carcinomatosis. This retrospective study investigated the relationship between baseline nutritional assessment with subsequent parenteral nutritional (PN) and clinical outcomes in cancer patients undergoing CRS and HIPEC. A consecutive series of 60 patients undergoing CRS and HIPEC at our institution between January 2009 and May 2011. Subjective Global Assessment (SGA) was used to assess nutritional status. Patients were classified preoperatively as: well nourished (SGA-A), mildly-moderately malnourished (SGA-B), and severely malnourished (SGA-C). For PN, patients were divided into 2 groups: those who received PN (PN+) and those who did not receive PN (PN-). The primary outcomes of interest were length of stay (LOS), postoperative complications, ECOG performance status (PS) and survival. LOS was calculated as the number of days in the hospital post surgery. Performance status was measured on a scale of 0-4. Survival was calculated from the date of first visit to the date of death/last contact. Of 60 patients, 19 were males and 41 females. The mean age at presentation was 50.3 years. The most common cancer types were colorectal (n = 24) and gynecologic (n = 19) with the majority of patients (n = 47) treated previously before coming to our institution. 33 patients were SGA-A, 22 SGA-B and 5 SGA-C prior to surgery. Of a total of 60 patients, 31 received PN. Mean LOS for the entire cohort was 16.2 days (SD = 9.8). Mean LOS for preoperative SGA-A, SGA-B and SGA-C were 15.0, 15.2 and 27.8 days respectively (ANOVA p = 0.02). Overall incidence of complications was 26.7% (16/60). Complications were recorded in 9 of 33 (27.3%) preoperative SGA-A patients and 7 of 27 (25.9%) SGA-B + C patients (p = 0.91). The median overall survival was 17.5 months (95% CI = 13.0 to 22

  8. Expression of multidrug resistance genes MVP, MDR1, and MRP1 determined sequentially before, during, and after hyperthermic isolated limb perfusion of soft tissue sarcoma and melanoma patients.

    Science.gov (United States)

    Stein, Ulrike; Jürchott, Karsten; Schläfke, Matthias; Hohenberger, Peter

    2002-08-01

    Isolated, hyperthermic limb perfusion (ILP) with recombinant human tumor necrosis factor alpha and melphalan is a highly effective treatment for advanced soft tissue sarcoma (STS) and locoregional metastatic malignant melanoma. Multidrug resistance (MDR)-associated genes are known to be inducible by heat and drugs; expression levels of the major vault protein (MVP), MDR1, and MDR-associated protein 1 (MRP1) were determined sequentially before, during, and after ILP of patients. Twenty-one STS or malignant melanoma patients were treated by ILP. Tumor tissue temperatures were recorded continuously and ranged from 33.4 degrees C initially to peak values of 40.4 degrees C during ILP. Serial true-cut biopsy specimens from tumor tissues were routinely microdissected. Expression analyses for MDR genes were performed by real-time reverse transcriptase polymerase chain reaction and immunohistochemistry. In 83% of the patients, MVP expression was induced during hyperthermic ILP. MVP-mRNA inductions often paralleled the increase in temperature during ILP. Increased MVP protein expressions either were observed simultaneously with the MVP-mRNA induction or were delayed until after the induction at the transcriptional level. Inductions of MDR1 and MRP1 were observed in only 13% and 27% of the specimens analyzed. Temperatures and drugs applied preferentially led to an induction of MVP and were not sufficient to induce MDR1 and MRP1 in the majority of tumors. This study is the first to analyze the expression of MDR-associated genes sequentially during ILP of patients and demonstrates that treatment might lead to increased levels of MVP, whereas enhanced levels of MDR1 and MRP1 remain rare events.

  9. In vivo anticancer evaluation of the hyperthermic efficacy of anti-human epidermal growth factor receptor-targeted PEG-based nanocarrier containing magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Baldi G

    2014-06-01

    Full Text Available Giovanni Baldi,1 Costanza Ravagli,1 Filippo Mazzantini,1 George Loudos,2 Jaume Adan,3 Marc Masa,3 Dimitrios Psimadas,2 Eirini A Fragogeorgi,2 Erica Locatelli,4 Claudia Innocenti,5,6 Claudio Sangregorio,5,7 Mauro Comes Franchini4 1CERICOL, Sovigliana-Vinci, Italy; 2Technological Educational Institute of Athens, Athens, Greece; 3Leitat Technological Center, Barcelona, Spain; 4Department of Industrial Chemistry Toso Montanari, University of Bologna, Bologna, 5Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM, 6Dipartimento di Chimica U Schiff, Università di Firenze, Firenze, 7Centro Nazionale delle Ricerche (ICCOM – CNR, Firenze, Italy Abstract: Polymeric nanoparticles with targeting moieties containing magnetic nanoparticles as theranostic agents have considerable potential for the treatment of cancer. Here we report the chemical synthesis and characterization of a poly(D,L-lactide-co-glycolide-b-poly(ethylene glycol-based nanocarrier containing iron oxide nanoparticles and human epithelial growth factor receptor on the outer shell. The nanocarrier was also radiolabeled with 99mTc and tested as a theranostic nanomedicine, ie, it was investigated for both its diagnostic ability in vivo and its therapeutic hyperthermic effects in a standard A431 human tumor cell line. Following radiolabeling with 99mTc, the biodistribution and therapeutic hyperthermic effects of the nanosystem were studied noninvasively in vivo in tumor-bearing mice. A substantial decrease in tumor size correlated with an increase in both nanoparticle concentration and local temperature was achieved, confirming the possibility of using this multifunctional nanosystem as a therapeutic tool for epidermoid carcinoma. Keywords: magnetic nanoparticles, polymeric nanocarriers, skin cancer, hyperthermia, single-photon emission computed tomography, imaging

  10. Probing the influence of the center atom coordination structure in iron phthalocyanine multi-walled carbon nanotube-based oxygen reduction reaction catalysts by X-ray absorption fine structure spectroscopy

    Science.gov (United States)

    Peng, Yingxiang; Li, Zhipan; Xia, Dingguo; Zheng, Lirong; Liao, Yi; Li, Kai; Zuo, Xia

    2015-09-01

    Three different pentacoordinate iron phthalocyanine (FePc) electrocatalysts with an axial ligand (pyridyl group, Py) anchored to multi-walled carbon nanotubes (MWCNTs) are prepared by a microwave method as high performance composite electrocatalysts (FePc-Py/MWCNTs) for the oxygen reduction reaction (ORR). For comparison, tetracoordinate FePc electrocatalysts without an axial ligand anchored to MWCNTs (FePc/MWCNTs) are assembled in the same way. Ultraviolet-visible spectrophotometry (UV-Vis), Raman spectroscopy (RS), and high-resolution transmission electron microscopy (HRTEM) are used to characterize the obtained electrocatalysts. The electrocatalytic activity of the samples is measured by linear sweep voltammetry (LSV), and the onset potential of all of the FePc-Py/MWCNTs electrocatalysts is found to be more positive than that of their FePc/MWCNTs counterparts. X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy are employed to elucidate the relationship between molecular structure and electrocatalytic activity. XPS indicates that higher concentrations of Fe3+ and pyridine-type nitrogen play critical roles in determining the electrocatalytic ORR activity of the samples. XAFS spectroscopy reveals that the FePc-Py/MWCNTs electrocatalysts have a coordination geometry around Fe that is closer to the square pyramidal structure, a higher concentration of Fe3+, and a smaller phthalocyanine ring radius compared with those of FePc/MWCNTs.

  11. Atomization of volatile compounds for atomic absorption and atomic fluorescence spectrometry: On the way towards the ideal atomizer

    International Nuclear Information System (INIS)

    Dedina, Jiri

    2007-01-01

    approach, trapping on quartz surfaces in an excess of oxygen with subsequent atomization in multiatomizer or in conventional quartz tubes, is very promising. It requires only simple and cheap equipment. The potential to reach very low detection limits is even better than for in-situ trapping in GF. However, it is a novel method which will have to be tested more extensively before it can considered to be a tool for routine analysis. Almost all the applications of AFS employ a miniature diffusion flame for the atomization. The alternative, the flame-in-gas-shield atomizer, is more complicated but it offers a substantially better signal to noise ratio. The current state-of-the-art of all individual atomizers, including advantages, drawbacks and perspectives, is recapitulated in detail. Also the most recent knowledge of the mechanism of processes taking place in the atomizers is treated

  12. Oxygen Atom Transfer Using an Iron(IV)-Oxo Embedded in a Tetracyclic N-Heterocyclic Carbene System: How Does the Reactivity Compare to Cytochrome P450 Compound I?

    Science.gov (United States)

    Cantú Reinhard, Fabián G; de Visser, Sam P

    2017-02-24

    N-Heterocyclic carbenes (NHC) are commonly featured as ligands in transition metal catalysis. Recently, a cyclic system containing four NHC groups with a central iron atom was synthesized and its iron(IV)-oxo species, [Fe IV (O)(cNHC 4 )] 2+ , was characterized. This tetracyclic NHC ligand system may give the iron(IV)-oxo species unique catalytic properties as compared to traditional non-heme and heme iron ligand systems. Therefore, we performed a computational study on the structure and reactivity of the [Fe IV (O)(cNHC 4 )] 2+ complex in substrate hydroxylation and epoxidation reactions. The reactivity patterns are compared with cytochrome P450 Compound I and non-heme iron(IV)-oxo models and it is shown that the [Fe IV (O)(cNHC 4 )] 2+ system is an effective oxidant with oxidative power analogous to P450 Compound I. Unfortunately, in polar solvents, a solvent molecule will bind to the sixth ligand position and decrease the catalytic activity of the oxidant. A molecular orbital and valence bond analysis provides insight into the origin of the reactivity differences and makes predictions of how to further exploit these systems in chemical catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Atomic reactor thermal engineering

    International Nuclear Information System (INIS)

    Kim, Gwang Ryong

    1983-02-01

    This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.

  14. Atomic energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1978-01-01

    Development of nuclear science in India, particularly the research and development work at the Bhabha Atomic Research Centre (BARC), Bombay, is described. Among the wide range of materials developed for specific functions under rigorous conditions are nuclear pure grade uranium, zirconium and beryllium, and conventional materials like aluminium, carbon steel and stainless steels. Radioisotopes are produced and used for tracer studies in various fields. Various types of nuclear gauges and nuclear instruments are produced. Radiations have been used to develop new high yielding groundnut mutants with large kernals. The sterile male technique for pest control and radiosterilization technique to process potatoes, onions and marine foods for storage are ready for exploitation. Processes and equipment have been developed for production of electrolytic hydrogen, electrothermal phosphorus and desalinated water. Indigenously manufactured components and materials are now being used for the nuclear energy programme. Indian nuclear power programme strategy is to build heavy water reactors and to utilise their byproduct plutonium and depleted uranium to feed fast breeder reactors which will produce more fissile material than burnt. Finally a special mention has been made of the manpower development programme of the BARC. BARC has established a training school in 1957 giving advanced training in physics, chemistry and various branches of engineering and metallurgy

  15. Preface: Special Topic on Atomic and Molecular Layer Processing: Deposition, Patterning, and Etching

    Science.gov (United States)

    Engstrom, James R.; Kummel, Andrew C.

    2017-02-01

    Thin film processing technologies that promise atomic and molecular scale control have received increasing interest in the past several years, as traditional methods for fabrication begin to reach their fundamental limits. Many of these technologies involve at their heart phenomena occurring at or near surfaces, including adsorption, gas-surface reactions, diffusion, desorption, and re-organization of near-surface layers. Moreover many of these phenomena involve not just reactions occurring under conditions of local thermodynamic equilibrium but also the action of energetic species including electrons, ions, and hyperthermal neutrals. There is a rich landscape of atomic and molecular scale interactions occurring in these systems that is still not well understood. In this Special Topic Issue of The Journal of Chemical Physics, we have collected recent representative examples of work that is directed at unraveling the mechanistic details concerning atomic and molecular layer processing, which will provide an important framework from which these fields can continue to develop. These studies range from the application of theory and computation to these systems to the use of powerful experimental probes, such as X-ray synchrotron radiation, probe microscopies, and photoelectron and infrared spectroscopies. The work presented here helps in identifying some of the major challenges and direct future activities in this exciting area of research involving atomic and molecular layer manipulation and fabrication.

  16. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  17. Radiative lifetime measurements of the singlet-G states of H2 and the 4p35p and 4d5D0 states of neutral oxygen atom

    International Nuclear Information System (INIS)

    Day, R.L.

    1981-01-01

    The present work reports measurements of the mean radiative lifetime for the G 1 μ/sub g/ + (v' = 0,1,2,3) and l 1 II/sub g/ + (v' = 0) Rydberg states and the K 1 μ/sub g/ + (v' = 0,1,2),M 1 μ/sub g/ + (v' = 0) and N 1 μ/sub g/ + (v' - 1,2) doubly excited of the H 2 molecule. In particular, the resulting radiative transitions G 1 μ/sub g/ + (v' = 0,1,2,3) → B 1 μ/sub u/ + (v'' = 0,1,3,5,7), l 1 II/sub g/ + (v' = 0) → B 1 μ/sub u/ + (v'' = 0), K 1 μ/sub g/ + (v' = 0,1,2) → B 1 μ/sub u/ + (v'' = 0,1), M 1 μ/sub g/ + (v' = 0) → B 1 μ/sub u/ + (v'' = 0) and N 1 μ/sub g/ + (v' = 1,2) → B 1 μ/sub u/ + (v'' = 0,2) are observed using time-resolved techniques. Radiative lifetime measurements in the range approx. 21 to 70 ns are obtained at 50 eV incident electron energy and approx. 30 mtorr H 2 gas pressure. In addition, H 2 - H 2 * quenching rate data are obtained for several rovibronic levels of the singlet-g states over the pressure range approx. 10 to 400 mtorr. In addition, time-resolved techniques are also used to observe the 4p 5 P → 3s 5 S 0 , 4p 3 P → 3s 3 S 0 , and 4d 5 D 0 → 3p 3 P multiplet transitions of the Ol spectrum occurring at lambda = 3947 A, lambda = 4368 A, and lambda = 6157 A, respectively. The excited atomic states are produced through dissociative-excitation of O 2 target gas by a pulsed electron beam of approx. 0.5 and 2 μs pulse width and 100 eV incident energy. The mean radiative lifetimes of the 4p 5 P, 4p 3 P and 4d 5 D 0 multiplets are obtained from analysis of the resulting radiative decay over the pressure range approx. 20 - 100 mtorr, and are reported as 194 ns, 161 ns, and 95 ns, respectively. The corresponding collisional deactivation cross sections for the multiplets are also obtained from the lifetime versus pressure measurements and are reported as 3.2 x 10 - 15 cm 2 , 7.7 x 10 - 15 cm 2 , and 1.6 x 10 - 15 cm 2 , respectively

  18. Spin transport in oxygen adsorbed graphene nanoribbon

    Science.gov (United States)

    Kumar, Vipin

    2018-04-01

    The spin transport properties of pristine graphene nanoribbons (GNRs) have been most widely studied using theoretical and experimental tools. The possibilities of oxidation of fabricated graphene based nano electronic devices may change the device characteristics, which motivates to further explore the properties of graphene oxide nanoribbons (GONRs). Therefore, we present a systematic computational study on the spin polarized transport in surface oxidized GNR in antiferromagnetic (AFM) spin configuration using density functional theory combined with non-equilibrium Green's function (NEGF) method. It is found that the conductance in oxidized GNRs is significantly suppressed in the valance band and the conduction band. A further reduction in the conductance profile is seen in presence of two oxygen atoms on the ribbon plane. This change in the conductance may be attributed to change in the surface topology of the ribbon basal plane due to presence of the oxygen adatoms, where the charge transfer take place between the ribbon basal plane and the oxygen atoms.

  19. Grain Formation Processes in Oxygen-Rich Circumstellar Outflows: Testing the Metastable Eutectic Condensation Hypothesis and Measuring Atom-Grain & Grain-Grain Sticking Coefficients (A Sub-orbital Investigation)

    Science.gov (United States)

    Nuth, Joseph

    An experimentally-based model of grain formation in oxygen-rich circumstellar outflows that includes vapor-solid nucleation, grain growth, thermal annealing and grain aggregation in sufficient detail to predict the spectral energy distribution (SED) of the shells for comparison with observations of a wide range of stellar sources still lacks critical data. In order to gather this data we propose to conduct a series of laboratory experiments using our proven experimental system and microgravity condensation, growth and grain aggregation experiments on sounding rockets with a flight-proven payload provided by Dr. Yuki Kimura of Hokkaido University. We have proposed that solids from a hydrogen-rich, supersaturated, Fe-Mg-SiO vapor condense at metastable eutectic points in this ternary phase diagram. Because the FeOMgO system is totally miscible (has no eutectic or metastable eutectic compositions), this predicts that condensates will be pure Mg-silicate or Fe-silicate grains and that no primary condensate will be a mixed Fe-Mg-silicate. We have shown that this observation leads to a logical explanation as to why pure magnesium olivine and enstatite minerals are detected in circumstellar winds rather than the mixed Mg-Fe-silicate grains that might otherwise be expected (Rietmeijer, Nuth & Karner, 1999). This simplifying hypothesis has been built into our models of circumstellar condensation and growth. However, these experimental results require confirmation and testing since they should apply to other, quite similar condensable systems. We propose to test this hypothesis by condensing solids from the Fe-Mg-AlO ternary vapor system. Since FeO-MgO miscibility also applies to this system, the primary condensates from such a vapor should consist of pure amorphous Fe-aluminates and Mg-aluminates. No mixed Fe-Mg-spinels should be detected as primary condensates if this hypothesis is correct, just as none were detected for the FeO-MgO-SiO system. Confirmation of this

  20. Electron scattering by molecular oxygen

    International Nuclear Information System (INIS)

    Duddy, P.E.

    1999-03-01

    Collisions of electrons with molecules is one of the fundamental processes which occur both in atomic and molecular physics and also in chemistry. These collisions are vital in determining the energy balance and transport properties of electrons in gases and plasmas at low temperatures. There are many important applications for the basic understanding of these collision processes. For example, the study of planetary atmospheres and the interstellar medium involves electron collisions with both molecules and molecular ions. In particular, two of the major cooling mechanisms of electrons in the Earth's ionosphere are (i) the fine structure changing transitions of oxygen atoms by electron impact and (ii) the resonant electron-impact vibrational excitation of N 2 . Other applications include magnetohydrodynamic power generation and laser physics. A molecule, by definition, will contain more than one nucleus and consequently the effect of nuclear motion in the molecule leads to many extra processes in electron scattering by molecules which cannot occur in electron-atom scattering. As for atoms, both elastic and inelastic scattering occur, but in the case of inelastic electron scattering by molecules, the target molecule is excited to a different state by the process. The excitation may be one, or some combination, of rotational, vibrational and electronic transitions. Other reactions which may occur include dissociation of the molecule into its constituent atoms or ionisation. Another difficulty arises when considering the interactions between the electron and the molecule, This interaction, which considerably complicates the calculation, is non-spherical and various methods have been developed over the years to represent this interaction. This thesis considers electron scattering by molecular oxygen in the low energy range i.e. 0-15eV. These collisions are of considerable interest in atmospheric physics and chemistry where the electron impact excitation of O 2 has

  1. Oxygen negative glow: reactive species and emissivity

    International Nuclear Information System (INIS)

    Sahli, Khaled

    1991-01-01

    This research thesis addresses the study of a specific type of oxygen plasma created by electron beams (1 keV, 20 mA/cm"2), negative glow of a luminescent discharge in abnormal regime. The objective is to test the qualities of this plasma as source of two 'active' species of oxygen (singlet molecular oxygen and atomic oxygen) which are useful in applications. The experiment mainly bears on the use of VUV (120 to 150 nm) absorption spectroscopy measurements of concentrations of these both species, and on the recording of plasma emissivity space profiles in the visible region (450 to 850 nm). It appears that low concentrations of singlet oxygen definitely exclude this type of discharge for iodine laser applications. On the contrary, concentrations measured for atomic oxygen show it is a good candidate for the oxidation of large surfaces by sheets of beams. The satisfying comparison of emissivity results with a published model confirm the prevailing role of fast electrons, and gives evidence of an important effect of temperature: temperature can reach 1000 K, and this is in agreement with the presented measurement [fr

  2. Atomic weight versus atomic mass controversy

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    A problem for the Atomic Weights Commission for the past decade has been the controversial battle over the names ''atomic weight'' and ''atomic mass''. The Commission has considered the arguments on both sides over the years and it appears that this meeting will see more of the same discussion taking place. In this paper, I review the situation and offer some alternatives

  3. Quantum yield and translational energy of hydrogen atoms

    Indian Academy of Sciences (India)

    TECS

    erage kinetic energy of H atoms calculated from Doppler profiles was found to be ET(lab) = (50 ± 3) kJ/mol. The ... in this wavelength range H atoms are produced by ... tral hydrogen. 1,9 ... a spectral window of molecular oxygen, solar radia-.

  4. Artificial oxygen transport protein

    Science.gov (United States)

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  5. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  6. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  7. Development of Silicon-Coated Superparamagnetic Iron Oxide Nanoparticles for Targeted Molecular Imaging and Hyperthermic Therapy of Prostate Cancer

    Science.gov (United States)

    2016-07-01

    David Schmulbach Graduate Teaching Assistant Award (2007) SIU Dept. of Chemistry Summer Research Undergraduate Fellowship (2004) Jim and Jean ...average mean diame- ter ~2 μ m) were commercially sourced (CAS No. 7440-21-3) and used as received (99.9985% elemental purity; 29Si isotopic natural...breeding colony. These normal mice were anesthetized with 2% isoflurane (in 0.75 l/min oxygen ) administered by an MR-compatible nose cone while the mouse

  8. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  9. Adjuvant hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with colon cancer at high risk of peritoneal carcinomatosis; the COLOPEC randomized multicentre trial

    International Nuclear Information System (INIS)

    Klaver, Charlotte E L; Musters, Gijsbert D; Bemelman, Willem A; Punt, Cornelis J A; Verwaal, Victor J

    2015-01-01

    The peritoneum is the second most common site of recurrence in colorectal cancer. Early detection of peritoneal carcinomatosis (PC) by imaging is difficult. Patients eventually presenting with clinically apparent PC have a poor prognosis. Median survival is only about five months if untreated and the benefit of palliative systemic chemotherapy is limited. Only a quarter of patients are eligible for curative treatment, consisting of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CR/HIPEC). However, the effectiveness depends highly on the extent of disease and the treatment is associated with a considerable complication rate. These clinical problems underline the need for effective adjuvant therapy in high-risk patients to minimize the risk of outgrowth of peritoneal micro metastases. Adjuvant hyperthermic intraperitoneal chemotherapy (HIPEC) seems to be suitable for this purpose. Without the need for cytoreductive surgery, adjuvant HIPEC can be performed with a low complication rate and short hospital stay. The aim of this study is to determine the effectiveness of adjuvant HIPEC in preventing the development of PC in patients with colon cancer at high risk of peritoneal recurrence. This study will be performed in the nine Dutch HIPEC centres, starting in April 2015. Eligible for inclusion are patients who underwent curative resection for T4 or intra-abdominally perforated cM0 stage colon cancer. After resection of the primary tumour, 176 patients will be randomized to adjuvant HIPEC followed by routine adjuvant systemic chemotherapy in the experimental arm, or to systemic chemotherapy only in the control arm. Adjuvant HIPEC will be performed simultaneously or shortly after the primary resection. Oxaliplatin will be used as chemotherapeutic agent, for 30 min at 42-43 °C. Just before HIPEC, 5-fluorouracil and leucovorin will be administered intravenously. Primary endpoint is peritoneal disease-free survival at 18 months. Diagnostic laparoscopy

  10. Alkali ion scattering from Ag(0 0 1) and Ag thin films at low and hyperthermal energies

    Energy Technology Data Exchange (ETDEWEB)

    Ray, M.P.; Lake, R.E. [Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, South Carolina 29634 (United States); Sosolik, C.E. [Department of Physics and Astronomy, Clemson University, 118 Kinard Laboratory, Clemson, South Carolina 29634 (United States)], E-mail: sosolik@clemson.edu

    2009-02-15

    We have investigated the scattering of K{sup +} and Cs{sup +} ions from a single crystal Ag(0 0 1) surface and from a Ag-Si(1 0 0) Schottky diode structure. For the K{sup +} ions, incident energies of 25 eV to 1 keV were used to obtain energy-resolved spectra of scattered ions at {theta}{sub i} = {theta}{sub f} = 45 deg. These results are compared to the classical trajectory simulation SAFARI and show features indicative of light atom-surface scattering where sequential binary collisions can describe the observed energy loss spectra. Energy-resolved spectra obtained for Cs{sup +} ions at incident energies of 75 eV and 200 eV also show features consistent with binary collisions. However, for this heavy atom-surface scattering system, the dominant trajectory type involves at least two surface atoms, as large angular deflections are not classically allowed for any single scattering event. In addition, a significant deviation from the classical double-collision prediction is observed for incident energies around 100 eV, and molecular dynamics studies are proposed to investigate the role of collective lattice effects. Data are also presented for the scattering of K{sup +} ions from a Schottky diode structure, which is a prototype device for the development of active targets to probe energy loss at a surface.

  11. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free analyte atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    D'Ulivo, Alessandro; Dedina, Jiri

    2002-01-01

    The mechanism at the origin of double peaks formation in quartz hydride atomizers were investigated by continuous flow hydride generation atomic absorption spectrometry. Arsenic and selenium were used as model analytes. The effect of atomization mode (flame-in-gas-shield (FIGS), miniature diffusion flame and double flame (DF)) and some experimental parameters as oxygen supply rate for microflame and the distance from atomization to free atoms detection point, were investigated on the shape of both analytical signals and calibration graphs. Rollover of calibration graphs and double peak formation are strictly related each to the other and could be observed only in FIGS atomizer mode under some particular conditions. A mechanism based on incomplete atomization of hydrides cannot explain the collected experimental evidences because the microflame of FIGS is able to produce quantitative atomization of large amount of hydrides even at supply rate of oxygen close to extinction threshold of microflame. The heterogeneous gas-solid reactions between finely dispersed particles, formed by free atom recombination, and the free atoms in the gaseous phase are at the origin of double peak formation

  12. Oxygen mobility in alkali feldspars; Etude de la mobilite de l'oxygene dans les feldspaths alcalins

    Energy Technology Data Exchange (ETDEWEB)

    Merigoux, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-03-15

    The oxygen mobility is shown from oxygen atoms exchange between potassic and sodic feldspars and 18 oxygen enriched water. Exchanges are carried out in autoclaves between 400 and 800 deg. C under a water pressure between 300 and 800 bars. The oxygen is extracted from silicate by a ClF{sub 3} attack. Two distinct mechanisms may be found. The first one is auto-diffusion; for adularia we have: D = 9.10{sup -7} exp(-32000/RT) (cm{sup 2}.s{sup -1}), for albite: D 4.5.10{sup -5} exp(-37000/RT) (cm{sup 2}.s{sup -1}). The second one, more rapid, is associated with alkali atoms exchanges. These results are applied to the order-disorder problem in feldspars and to the oxygen geochemistry. (author) [French] La mobilite de l'oxygene est mise en evidence a partir d'echanges d'atomes d'oxygene entre des feldspaths potassiques et sodiques en presence d'une eau enrichie en oxygene 18. Les echanges sont effectues en autoclave entre 400 et 800 deg. C sous des pressions de vapeur d'eau comprises entre 300 et 800 bars. L'oxygene est extrait du silicate par attaque au ClF{sub 3}. Deux mecanismes, bien distincts, peuvent se rencontrer. Le premier correspond a l'autodiffusion de l'oxygene; dans le domaine etudie on trouve pour l'adulaire: D = 9,10{sup -7} exp(-32000/RT) (cm{sup 2}.s{sup -1}), et pour l'albite: D 4,5.10{sup -5} exp(-37000/RT) (cm{sup 2}.s{sup -1}). Le second, beaucoup plus rapide, est associe a l'echange des atomes alcalins avec la solution. Ces resultats sont appliques au probleme du passage ordre-desordre dans les feldspaths et a la geochimie de l'oxygene. (auteur)

  13. Cell micro-patterning by atom beam exposure

    International Nuclear Information System (INIS)

    Adachi, Taiji; Kajita, Fumiaki; Sato, Katsuya; Matsumoto, Koshi; Tagawa, Masahiro

    2003-01-01

    This study aimed to develop a new cell micro-patterning method by controlling material surface affinity of the cell using atomic oxygen beam exposure. Surfaces of low-density polyethylene (LDPE) and tetrafluoroethylene-hexafluoropropylene (FEP) were exposed to the atomic oxygen beam. On the LDPE surface, the roughness measured by atomic force microscopy (AFM) did not change much, however, the oxygen concentration on the surface measured by X-ray photoelectron spectroscopy (XPS) significantly increased that resulted in increase in wettability. Contrary to this, on the FEP surface, the oxygen concentration showed no significant change, but roughness of the surface remarkably increased and the wettability decreased. As a result of the surface modification, affinity of the osteoblastic cells on the FEP surface increased, which was also confirmed by increase in the cell area. Finally, cell micro-patterning on the FEP surface was carried out based on difference in the affinity between modified and unmodified surfaces patterned by masking method. (author)

  14. Atomic fountain and applications

    International Nuclear Information System (INIS)

    Rawat, H.S.

    2000-01-01

    An overview of the development of working of MOT along with the basic principle of laser atom cooling and trapping is given. A technique to separate the cooled and trapped atoms from the MOT using atomic fountain technique will also be covered. The widely used technique for atomic fountain is, first to cool and trap the neutral atoms in MOT and then launch them in the vertical direction, using moving molasses technique. Using 133 Cs atomic fountain clock, time improvement of 2 to 3 order of magnitude over a conventional 133 Cs atomic clock has been observed

  15. Interferometry with atoms

    International Nuclear Information System (INIS)

    Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.

    1992-01-01

    Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)

  16. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    Science.gov (United States)

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  17. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    -ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...

  18. Singlet oxygen production and quenching mechanisms in travelling microwave discharges

    International Nuclear Information System (INIS)

    Savin, Yu V; Goryachev, L V; Adamenkov, Yu A; Rakhimova, T V; Mankelevich, Yu A; Popov, N A; Adamenkov, A A; Egorov, V V; Ilyin, S P; Kolobyanin, Yu V; Kudryashov, E A; Rogozhnikov, G S; Vyskubenko, B A

    2004-01-01

    Experimental and theoretical studies of singlet oxygen excitation in travelling microwave (TMW) discharges are presented. Singlet oxygen O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fraction have been measured for different pressures, input powers and distances from the MW resonator. It was shown that a steady-state TMW discharge with a coaxial cavity resonator could provide a maximal O 2 (a 1 Δ g ) yield of 22% for 2 Torr of pure oxygen and 27-30% for He : O 2 = 1 : 1 mixture. The two-dimensional (r, z) model developed for calculations of plasma-chemical kinetics, heat and mass transfer was used for simulation of processes in the TMW discharge under study. Effects of gas pressure, gas flow rate and input power are studied and compared with experimental measurements of O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fractions

  19. Incorporation of oxygen into abscisic acid and phaseic acid for molecular oxygen

    International Nuclear Information System (INIS)

    Creelman, R.A.; Zeevaart, J.A.D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumariu. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18 O 2 and 80% N 2 indicates that one atom of 18 O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18 O 2 indicates that one atom of 18 O is presented in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-streesed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggest that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. 17 references, 2 figures, 1 tables

  20. Incorporation of Oxygen into Abscisic Acid and Phaseic Acid from Molecular Oxygen 1

    Science.gov (United States)

    Creelman, Robert A.; Zeevaart, Jan A. D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18O2 and 80% N2 indicates that one atom of 18O is incorporated in the 6′-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18O2 indicates that one atom of 18O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1′-, 4′-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1′- and 4′-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. PMID:16663564

  1. Incorporation of oxygen into abscisic Acid and phaseic Acid from molecular oxygen.

    Science.gov (United States)

    Creelman, R A; Zeevaart, J A

    1984-05-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% (18)O(2) and 80% N(2) indicates that one atom of (18)O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing (18)O(2) indicates that one atom of (18)O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

  2. Three-atom clusters

    International Nuclear Information System (INIS)

    Pen'kov, F.M.

    1998-01-01

    The Born-Oppenheimer approximation is used to obtain an equation for the effective interaction in three atoms bound by a single electron. For low binding energies in an 'electron + atom' pair, long-range forces arise between the atoms, leading to bound states when the size of the three-atom cluster is a few tens of angstrom. A system made of alkali-metal atoms is considered as an example

  3. Accuracy of MDCT in the preoperative definition of Peritoneal Cancer Index (PCI) in patients with advanced ovarian cancer who underwent peritonectomy and hyperthermic intraperitoneal chemotherapy (HIPEC).

    Science.gov (United States)

    Mazzei, Maria Antonietta; Khader, Leila; Cirigliano, Alfredo; Cioffi Squitieri, Nevada; Guerrini, Susanna; Forzoni, Beatrice; Marrelli, Daniele; Roviello, Franco; Mazzei, Francesco Giuseppe; Volterrani, Luca

    2013-12-01

    To evaluate the accuracy of MDCT in the preoperative definition of Peritoneal Cancer Index (PCI) in patients with advanced ovarian cancer who underwent a peritonectomy and hyperthermic intraperitoneal chemotherapy (HIPEC) after neoadjuvant chemotherapy to obtain a pre-surgery prognostic evaluation and a prediction of optimal cytoreduction surgery. Pre-HIPEC CT examinations of 43 patients with advanced ovarian cancer after neoadjuvant chemotherapy were analyzed by two radiologists. The PCI was scored according to the Sugarbaker classification, based on lesion size and distribution. The results were compared with macroscopic and histologic data after peritonectomy and HIPEC. To evaluate the accuracy of MDCT to detect and localize peritoneal carcinomatosis, both patient-level and regional-level analyses were conducted. A correlation between PCI CT and histologic values for each patient was searched according to the PCI grading. Considering the patient-level analysis, CT shows a sensitivity, specificity, PPV, NPV, and an accuracy in detecting the peritoneal carcinomatosis of 100 %, 40 %, 93 % 100 %, and 93 %, respectively. Considering the regional level analysis, a sensitivity, specificity, PPV, NPV, and diagnostic accuracy of 72 %, 80 %, 66 %, 84 %, and 77 %, respectively were obtained for the correlation between CT and histology. Our results encourage the use of MDCT as the only technique sufficient to select patients with peritoneal carcinomatosis for cytoreductive surgery and HIPEC on the condition that a CT examination will be performed using a dedicated protocol optimized to detect minimal peritoneal disease and CT images will be analyzed by an experienced reader.

  4. Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control.

    Science.gov (United States)

    Ra, Chae Hun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2017-03-01

    Optimal hyper-thermal (HT) acid hydrolysis conditions for Gelidium amansii were determined to be 12% (w/v) seaweed slurry content and 144 mM H 2 SO 4 at 150 °C for 10 min. HT acid hydrolysis-treated G. amansii hydrolysates produced low concentrations of inhibitory compounds and adsorption treatment using 3% activated carbon. An adsorption time of 5 min was subsequently used to remove the inhibitory 5-hydroxymethylfurfural from the medium. A final maximum monosaccharide concentration of 44.6 g/L and 79.1% conversion from 56.4 g/L total fermentable monosaccharides with 120 g dw/L G. amansii slurry was obtained from HT acid hydrolysis, enzymatic saccharification, and adsorption treatment. This study demonstrates the potential for butyric acid production from G. amansii hydrolysates under non-pH-controlled as well as pH-controlled fermentation using Clostridium acetobutylicum KCTC 1790. The activated carbon treatment and pH-controlled fermentation showed synergistic effects and produced butyric acid at a concentration of 11.2 g/L after 9 days of fermentation.

  5. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  6. Biogeochemistry: Oxygen burrowed away

    NARCIS (Netherlands)

    Meysman, F.J.R.

    2014-01-01

    Multicellular animals probably evolved at the seafloor after a rise in oceanic oxygen levels. Biogeochemical model simulations suggest that as these animals started to rework the seafloor, they triggered a negative feedback that reduced global oxygen.

  7. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  8. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  9. Oxygen evolution reaction catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  10. Crossed-molecular-beams reactive scattering of oxygen atoms

    International Nuclear Information System (INIS)

    Baseman, R.J.

    1982-11-01

    The reactions of O( 3 P) with six prototypical unsaturated hydrocarbons, and the reaction of O( 1 D) with HD, have been studied in high-resolution crossed-molecular-beams scattering experiments with mass-spectrometric detection. The observed laboratory-product angular and velocity distributions unambiguously identify parent-daughter ion pairs, distinguish different neutral sources of the same ion, and have been used to identify the primary products of the reactions. The derived center-of-mass product angular and translational energy distributions have been used to elucidate the detailed reaction dynamics. These results demonstrate that O( 3 P)-unsaturated hydrocarbon chemistry is dominated by single bond cleavages, leading to radical products exclusively

  11. Molecular Beam Chemistry: Reactions of Oxygen Atoms with Halogen Molecules.

    Science.gov (United States)

    1982-10-15

    nonlinear one has s = 3, r = 1, and n = 3/2. In the "loose" complex the bending modes go over to free rotation of the product diatomit molecule; thus s...contains no adjustable parameters. All observable properties *l of the reaction may be predicted including product velocity and angular dis- tributions...example, P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill Book Co., New York, 1969). 65. Equation (3) is strictly

  12. Crossed-molecular-beams reactive scattering of oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Baseman, R.J.

    1982-11-01

    The reactions of O(/sup 3/P) with six prototypical unsaturated hydrocarbons, and the reaction of O(/sup 1/D) with HD, have been studied in high-resolution crossed-molecular-beams scattering experiments with mass-spectrometric detection. The observed laboratory-product angular and velocity distributions unambiguously identify parent-daughter ion pairs, distinguish different neutral sources of the same ion, and have been used to identify the primary products of the reactions. The derived center-of-mass product angular and translational energy distributions have been used to elucidate the detailed reaction dynamics. These results demonstrate that O(/sup 3/P)-unsaturated hydrocarbon chemistry is dominated by single bond cleavages, leading to radical products exclusively.

  13. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    NARCIS (Netherlands)

    Gorzyca, T.W.; Bautista, M.A.; Hasoglu, M.F.; García, J.; Gatuzz, E.; Kaastra, J.S.; Kallman, T.R.; Manson, S.T.; Mendoza, C.; Raassen, A.J.J.; de Vries, C.P.; Zatsarinny, O.

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of O I for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects,

  14. Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Xiaopeng [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH+3- and mechanisms of ligand displacement and oxidation were proposed.

  15. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  16. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  17. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  18. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  19. Stability of gas atomized reactive powders through multiple step in-situ passivation

    Science.gov (United States)

    Anderson, Iver E.; Steinmetz, Andrew D.; Byrd, David J.

    2017-05-16

    A method for gas atomization of oxygen-reactive reactive metals and alloys wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a protective reaction film on the atomized particles. The present invention is especially useful for making highly pyrophoric reactive metal or alloy atomized powders, such as atomized magnesium and magnesium alloy powders. The gaseous reactive species (agents) are introduced into the atomization spray chamber at locations downstream of a gas atomizing nozzle as determined by the desired powder or particle temperature for the reactions and the desired thickness of the reaction film.

  20. [Domiciliary oxygen therapy].

    Science.gov (United States)

    Abdel Kafi, S

    2010-09-01

    In Belgium, oxygen therapy is becoming more and more accessible. When oxygen is needed for short periods or for special indications as palliative care, an agreement between mutual insurance companies and pharmacists allows the practitioner the home installation of gazeous oxygen cylinder or of oxygen concentrator. When long term oxygen therapy (LTOT) is indicated for patients with respiratory insufficiency, the pneumologist must first ask the INAMI the authorization to install one of the following modalities: oxygen concentrator with or without demand oxygen delivery cylinder and liquid oxygen. The goal of LTOT is to increase survival and quality of life. The principal and well accepted indication for LTOT is severe hypoxemia. The beneficial effects of oxygen therapy limited at night or on exertion are controversial. In order to increase patient's autonomy, oxygen can be prescribed for ambulation, respecting prescription's rules. At each step of oxygen therapy implementing (indication, choice of the device and follow-up) the patient under oxygen may benefit from a joint approach between the general practitioner and the chest specialist.

  1. Aircraft Oxygen Generation

    Science.gov (United States)

    2012-02-01

    An Oxygen Enriched Air System for the AV-8A Harrier (NADC-81198-60).” 70 Horch , T., et. al. “The F-16 Onboard Oxygen Generating System: Performance...Only and Safety Privileged). Horch , T., Miller, R., Bomar, J., Tedor, J., Holden, R., Ikels, K., & Lozano, P. (1983). The F-16 Onboard Oxygen

  2. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    International Nuclear Information System (INIS)

    Azyazov, V.N.; Torbin, A.P.; Pershin, A.A.; Mikheyev, P.A.; Heaven, M.C.

    2015-01-01

    Highlights: • Vibrational excitation of O_3 increases the rate constant for O_3 + O_2(a) → 2O_2(X) + O. • Vibrationally excited O_3 is produced by the O + O_2(X) + M → O_3 + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O_3. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O_3(υ) formed in O + O_2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O_2(a"1Δ), oxygen atom removal and ozone formation. It is shown that the process O_3(υ ⩾ 2) + O_2(a"1Δ) → 2O_2 + O is the main O_2(a"1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O_2(a"1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  3. Atomic Fisher information versus atomic number

    International Nuclear Information System (INIS)

    Nagy, A.; Sen, K.D.

    2006-01-01

    It is shown that the Thomas-Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gaspar provides a qualitatively correct expression for the Fisher information: Gaspar's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number

  4. Dislocation behavior of surface-oxygen-concentration controlled Si wafers

    International Nuclear Information System (INIS)

    Asazu, Hirotada; Takeuchi, Shotaro; Sannai, Hiroya; Sudo, Haruo; Araki, Koji; Nakamura, Yoshiaki; Izunome, Koji; Sakai, Akira

    2014-01-01

    We have investigated dislocation behavior in the surface area of surface-oxygen-concentration controlled Si wafers treated by a high temperature rapid thermal oxidation (HT-RTO). The HT-RTO process allows us to precisely control the interstitial oxygen concentration ([O i ]) in the surface area of the Si wafers. Sizes of rosette patterns, generated by nano-indentation and subsequent thermal annealing at 900 °C for 1 h, were measured for the Si wafers with various [O i ]. It was found that the rosette size decreases in proportion to the − 0.25 power of [O i ] in the surface area of the Si wafers, which were higher than [O i ] of 1 × 10 17 atoms/cm 3 . On the other hand, [O i ] of lower than 1 × 10 17 atoms/cm 3 did not affect the rosette size very much. These experimental results demonstrate the ability of the HT-RTO process to suppress the dislocation movements in the surface area of the Si wafer. - Highlights: • Surface-oxygen-concentration controlled Si wafers have been made. • The oxygen concentration was controlled by high temperature rapid thermal oxidation. • Dislocation behavior in the surface area of the Si wafers has been investigated. • Rosette size decreased with increasing of interstitial oxygen atoms. • The interstitial oxygen atoms have a pinning effect of dislocations at the surface

  5. Atomic-fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Bakhturova, N.F.; Yudelevich, I.G.

    1975-01-01

    Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given

  6. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  7. Influence of oxygen concentration on ethylene removal using dielectric barrier discharge

    Science.gov (United States)

    Takahashi, Katsuyuki; Motodate, Takuma; Takaki, Koichi; Koide, Shoji

    2018-01-01

    Ethylene gas is decomposed using a dielectric barrier discharge plasma reactor for long-period preservation of fruits and vegetables. The oxygen concentration in ambient gas is varied from 2 to 20% to simulate the fruit and vegetable transport container. The experimental results show that the efficiency of ethylene gas decomposition increases with decreasing oxygen concentration. The reactions of ethylene molecules with ozone are analyzed by Fourier transform infrared spectrometry. The analysis results show that the oxidization process by ozone is later than that by oxygen atoms. The amount of oxygen atoms that contribute to ethylene removal increases with decreasing oxygen concentration because the reaction between oxygen radicals and oxygen molecules is suppressed at low oxygen concentrations. Ozone is completely removed and the energy efficiency of C2H4 removal is increased using manganese dioxide as a catalyst.

  8. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  9. A first-principles study of oxygen adsorption on Ir(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hengjiao, E-mail: gaohengjiao@163.com; Xiong, Yuqing, E-mail: xiongyq@hotmail.com; Liu, Xiaoli, E-mail: shantianzi@126.com; Zhao, Dongcai, E-mail: zhaodongc@163.com; Feng, Yudong, E-mail: yudong_feng@sina.com; Wang, Lanxi, E-mail: wanglanxi@live.com; Wang, Jinxiao, E-mail: coldwind716@gmail.com

    2016-12-15

    Highlights: • Adsorption of oxygen on Ir(111) surface was studied by density functional theory. • The most stable adsorption site was determined by adsorption energy calculation. • Adsorption of oxygen at bridge and top site on Ir surface was the most stable ones. • Interaction of O 2p and Ir 5d orbits is relatively strong and formed hybridization. - Abstract: In order to understand deposition mechanism of iridium thin film by atomic layer deposition, the adsorption of oxygen on Ir(111) surface was studied by use of density functional theory and a periodical slab model. By calculating the adsorption energy and structure of oxygen at four adsorption sites (top, bridge, fcc-hollow and hcp-hollow) on Ir(111) surface, the most stable adsorption site was determined. On this basis, the banding mechanism of O and Ir atoms was studied by density of states of oxygen and iridium atoms. Oxygen adsorbed at hcp(parallel) site on Ir(111) surface was the most stable one according to the adsorption energy calculation results. Orbital charge analysis indicate that charge transferred from 5p and 5d orbit to 2p orbit of adsorbed O atoms, and 6s orbit of iridium atoms. Meanwhile, density of state study indicated that adsorption of oxygen on Ir(111) surface is mainly due to the interaction between 2p orbit of O atoms and 5d orbit of iridium atoms.

  10. Evidence of sub-10 nm aluminum-oxygen precipitates in silicon

    International Nuclear Information System (INIS)

    Moutanabbir, Oussama; Isheim, Dieter; Mao, Zugang; Seidman, David N

    2016-01-01

    In this research, ultraviolet laser-assisted atom-probe tomography (APT) was utilized to investigate precisely the behavior at the atomistic level of aluminum impurities in ultrathin epitaxial silicon layers. Aluminum atoms were incorporated in situ during the growth process. The measured average aluminum concentration in the grown layers exceeds by several orders of magnitude the equilibrium bulk solubility. Three-dimensional atom-by-atom mapping demonstrates that aluminum atoms precipitate in the silicon matrix and form nanoscopic precipitates with lateral dimensions in the 1.3 to 6.2 nm range. These precipitates were found to form only in the presence of oxygen impurity atoms, thus providing clear evidence of the long-hypothesized role of oxygen and aluminum-oxygen complexes in facilitating the precipitation of aluminum in a silicon lattice. The measured average aluminum and oxygen concentrations in the precipitates are ∼10 ± 0.5 at.% and ∼4.4 ± 0.5 at.%, respectively. This synergistic interaction is supported by first-principles calculations of the binding energies of aluminum-oxygen dimers in silicon. The calculations demonstrate that there is a strong binding between aluminum and oxygen atoms, with Al-O-Al and O-Al-Al as the energetically favorable sequences corresponding to precipitates in which the concentration of aluminum is twice as large as the oxygen concentration in agreement with APT data. (paper)

  11. Atom chips: mesoscopic physics with cold atoms

    International Nuclear Information System (INIS)

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  12. The research on the influences of hyperthermal perfusion chemotherapy combined with immunologic therapy on the immunologic function and levels of circulating tumor cells of the advanced colorectal cancer patients with liver metastasis.

    Science.gov (United States)

    Sun, J-J; Fan, G-L; Wang, X-G; Xu, K

    2017-07-01

    To investigated the influence of hyperthermal perfusion chemotherapy combined with immunologic therapy on the immunologic function and levels of circulating tumor cells of the advanced colorectal cancer patients with liver metastasis. We enrolled 98 advanced colorectal cancer patients with liver metastasis that were admitted to this hospital for treatment and were randomly divided into two groups, the observation group (n = 49) and the control group (n = 49). We administered systemic vein chemotherapy for patients in the control group, and hyperthermal perfusion chemotherapy for the patients in the observation group in order to compare the subgroup levels of T lymphocytes, NK cells and immunoglobulin (IgG, IgA, and IgM) in the immune system of patients in both groups. We also assayed the circulating tumor cells (CTC) in the peripheral blood of patients in both groups using the cell search method, and compared the efficacy using response evaluation criteria in solid tumors and the survival rates of patients in both groups using the Kaplan-Meier method. After two treatment courses, the levels of CD3+, CD4+ and CD4+/CD8+ of the patients in the observation group were significantly higher than those of the control group, but the levels of CD8+ of patients in the observation group was lower than that in the control group (pfunctions of patients for the indirect anti-tumor effect, a significant decrease in CTC of patients, and a higher long-term survival rate have been achieved in the treatment with hyperthermal perfusion chemotherapy combined with immunologic therapy for the advanced colorectal cancer patients with liver metastasis. Thus, it can serve as the preferable drug for the treatment of advanced colorectal cancer with liver metastasis.

  13. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  14. Atomic Energy Control Act

    International Nuclear Information System (INIS)

    1970-01-01

    This act provides for the establishment of the Atomic Energy Control Board. The board is responsible for the control and supervision of the development, application and use of atomic energy. The board is also considered necessary to enable Canada to participate effectively in measures of international control of atomic energy

  15. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  16. Atom location using recoil ion spectroscopy

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1985-01-01

    Low energy ion scattering (LEIS) using inert gas and alkali ions is widely used in studies of the surface atomic layer. The extreme surface sensitivity of this technique ensures that it yields both compositional and structural information on clean and adsorbate covered surfaces. Low Energy Negative recoil Spectroscopy (LENRS) has been applied to a study of oxygen on Ni(110) to gauge the sensitivity to coverage and site location

  17. Hospital readmission rates and risk factors for readmission following cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal surface malignancies.

    Science.gov (United States)

    Dreznik, Yael; Hoffman, Aviad; Hamburger, Tamar; Ben-Yaacov, Almog; Dux, Yossi; Jacoby, Harel; Berger, Yaniv; Nissan, Aviram; Gutman, Mordechai

    2018-02-08

    Cytoreductive surgery and Hyperthermic intra-peritoneal chemotherapy (CRS/HIPEC) for peritoneal surface malignancies is associated with high morbidity. The increased numbers of patients undergoing CRS/HIPEC in recent years mandates risk analysis and quality assurance. However, only scarce data exist regarding causative parameters for readmission. The aim of this study was to assess readmission rates and risk factors associated with readmission. A retrospective-cohort study including patients from two high-volume centers who underwent CRS/HIPEC surgery between the years 2007-2016 was performed. Patients' demographics, peri-operative data and readmission rates were recorded. 223 patients were included in the study. The 7 and 30-day readmission rates were 3.5% (n = 8) and 11% (n = 25), respectively. Late readmission rates (up to 90 days) were 11% (n = 25). The most common causes of readmission were surgical related infections (35%), small bowel obstruction (17.5%) and dehydration (14%). Post-operative complications were associated with higher readmission rates (p = 0.0001). PCI score was not associated with higher rates of readmission. Readmissions following CRS/HIPEC occur mainly due to infectious complications and dehydrations. Patients following CRS/HIPEC should be discharged after careful investigation to a community based continuing care with access for IV fluid replacement or antibiotics administration when required. Copyright © 2018 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  18. Diagnostic value of contrast-enhanced CT combined with 18-FDG PET in patients selected for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC).

    Science.gov (United States)

    Sommariva, Antonio; Evangelista, Laura; Pintacuda, Giovanna; Cervino, Anna Rita; Ramondo, Gaetano; Rossi, Carlo Riccardo

    2018-05-01

    Aim of the study is to assess the reliability and correlation with surgical peritoneal cancer index (PCI) of combined PET/CT and ceCT scans (PET/ceCT) performed in a session in patients with peritoneal carcinomatosis candidates for cytoreductive surgery (CS) and hyperthermic intraperitoneal chemotherapy (HIPEC). We retrospectively analyzed data collected from 27 patients with different types of peritoneal carcinomatosis candidates to CS + HIPEC who underwent FDG PET/ceCT in a single session. Two nuclear medicine physicians and two radiologists independently and blindly evaluated PET/CT and ceCT imaging, respectively. In the case of discordance, the consensus was reached by a discussion between the specialists. Moreover, the combined images were evaluated by all the specialists in consensus. The PCIs obtained from surgical look, PET/CT, ceCT, and PET/ceCT were compared with each other. The coefficients of correlation (r) were calculated. The study was conducted after approval of local ethics committee. Surgical PCI was available in 21 patients. The coefficient of correlation between PCI of PET/CT and surgery was 0.528, while it resulted higher between PET/ceCT and surgery (r = 0.878), very similar to ceCT and surgery (r = 0.876). The r coefficient between surgical PCI and PET/CT was higher in patients with a non-mucinous cancer (n = 12) than the counterpart (0.601 vs. 0.303) and the addition of ceCT significantly increases the correlation (r = 0.863), which is anyway similar to ceCT alone (r = 0.856). PET/ceCT as single examination is more accurate than PET/CT but not than ceCT alone for the definition of PCI in a selected group of patients candidates to CS + HIPEC.

  19. Does Intraoperative Systematic Bacterial Sampling During Complete Cytoreductive Surgery (CRS) with Hyperthermic Intraoperative Peritoneal Chemotherapy (HIPEC) Influence Postoperative Treatment? A New Predictive Factor for Postoperative Abdominal Infectious Complications.

    Science.gov (United States)

    Dazza, Marie; Schwarz, Lilian; Coget, Julien; Frebourg, Noelle; Wood, Gregory; Huet, Emmanuel; Bridoux, Valérie; Veber, Benoit; Tuech, Jean-Jacques

    2016-12-01

    Cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) is an emerging curative treatment option for patients with peritoneal carcinomatosis. It has a long-term survival benefit but is associated with high rates of morbidity, ranging from 12 % to 65 %, mainly due to infectious complications. We sought to evaluate the clinical relevance of routine intraoperative bacteriological sampling following CRS/HIPEC. Between November 2010 and December 2014, every patients receiving CRS/HIPEC were included. Three samples were routinely collected from standardized locations for intraperitoneal rinsing liquid bacteriological analysis (RLBA) after completion of HIPEC. The clinical and surgical features, bacteriological results, and short-term outcomes were retrospectively reviewed. The overall mortality and morbidity rates were 5 and 45 %, respectively. Among the 75 included patients, 40 % (n = 30) had at least one positive bacterial culture. Risk factors for a positive culture were colorectal resection (adjusted hazard ratio [HR] = 3.072, 95 % CI 1.843-8.004; p = 0.009) and blood loss >1000 mL (HR = 4.272, 95 % CI 1.080-18.141; p = 0.031). Among 26 (35 %) patients with abdominal infectious complications, 13 (17 %) experienced isolated complications. A positive RLBA result was independently associated with abdominal infectious complications (HR = 5.108, 95 % CI 1.220-16.336; p = 0.024) and isolated abdominal infectious complications (HR = 4.199, 95 % CI 1.064-15.961; p = 0.04). Forty percent of the RLBA samples obtained following CRS/HIPEC tested positive for bacteria. Bacterial sampling of rinsing liquid should be systematically performed. An aggressive and immediate antibiotic strategy needs to be evaluated.

  20. Randomized multicenter trial of hyperthermic isolated limb perfusion with melphalan alone compared with melphalan plus tumor necrosis factor: American College of Surgeons Oncology Group Trial Z0020.

    Science.gov (United States)

    Cornett, Wendy R; McCall, Linda M; Petersen, Rebecca P; Ross, Merrick I; Briele, Henry A; Noyes, R Dirk; Sussman, Jeffrey J; Kraybill, William G; Kane, John M; Alexander, H Richard; Lee, Jeffrey E; Mansfield, Paul F; Pingpank, James F; Winchester, David J; White, Richard L; Chadaram, Vijaya; Herndon, James E; Fraker, Douglas L; Tyler, Douglas S

    2006-09-01

    To determine in a randomized prospective multi-institutional trial whether the addition of tumor necrosis factor alpha (TNF-alpha) to a melphalan-based hyperthermic isolated limb perfusion (HILP) treatment would improve the complete response rate for locally advanced extremity melanoma. Patients with locally advanced extremity melanoma were randomly assigned to receive melphalan or melphalan plus TNF-alpha during standard HILP. Patient randomization was stratified according to disease/treatment status and regional nodal disease status. The intervention was completed in 124 patients of the 133 enrolled. Grade 4 adverse events were observed in 14 (12%) of 129 patients, with three (4%) of 64 in the melphalan-alone arm and 11 (16%) of 65 in the melphalan-plus-TNF-alpha arm (P = .0436). There were two toxicity-related lower extremity amputations in the melphalan-plus-TNF-alpha arm, and one disease progression-related upper extremity amputation in the melphalan-alone arm. There was no treatment-related mortality in either arm of the study. One hundred sixteen patients were assessable at 3 months postoperatively. Sixty-four percent of patients (36 of 58) in the melphalan-alone arm and 69% of patients (40 of 58) in the melphalan-plus-TNF-alpha arm showed a response to treatment at 3 months, with a complete response rate of 25% (14 of 58 patients) in the melphalan-alone arm and 26% (15 of 58 patients) in the melphalan-plus-TNF-alpha arm (P = .435 and P = .890, respectively). In locally advanced extremity melanoma treated with HILP, the addition of TNF-alpha to melphalan did not demonstrate a significant enhancement of short-term response rates over melphalan alone by the 3-month follow-up, and TNF-alpha plus melphalan was associated with a higher complication rate.