WorldWideScience

Sample records for hypertension molecular pathways

  1. Decoding resistant hypertension signalling pathways.

    Science.gov (United States)

    Parreira, Ricardo Cambraia; Lacerda, Leandro Heleno Guimarães; Vasconcellos, Rebecca; Lima, Swiany Silveira; Santos, Anderson Kenedy; Fontana, Vanessa; Sandrim, Valéria Cristina; Resende, Rodrigo Ribeiro

    2017-12-01

    Resistant hypertension (RH) is a clinical condition in which the hypertensive patient has become resistant to drug therapy and is often associated with increased cardiovascular morbidity and mortality. Several signalling pathways have been studied and related to the development and progression of RH: modulation of sympathetic activity by leptin and aldosterone, primary aldosteronism, arterial stiffness, endothelial dysfunction and variations in the renin-angiotensin-aldosterone system (RAAS). miRNAs comprise a family of small non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. miRNAs are involved in the development of both cardiovascular damage and hypertension. Little is known of the molecular mechanisms that lead to development and progression of this condition. This review aims to cover the potential roles of miRNAs in the mechanisms associated with the development and consequences of RH, and explore the current state of the art of diagnostic and therapeutic tools based on miRNA approaches. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Molecular genetics of experimental hypertension and the metabolic syndrome: from gene pathways to new therapies

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Kurtz, T. W.

    2007-01-01

    Roč. 49, č. 5 (2007), s. 941-952 ISSN 0194-911X R&D Projects: GA MZd(CZ) NR8545; GA ČR(CZ) GA301/04/0390; GA ČR(CZ) GA301/06/0028 Grant - others:The Howard Hughes Institute(US) HHMI55005624 Institutional research plan: CEZ:AV0Z50110509 Keywords : SHR * CD36 * metabolic syndrome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.194, year: 2007

  3. Molecular Pathways

    Science.gov (United States)

    Lok, Benjamin H.; Powell, Simon N.

    2012-01-01

    The Rad52 protein was largely ignored in humans and other mammals when the mouse knockout revealed a largely “no-effect” phenotype. However, using synthetic lethal approaches to investigate context dependent function, new studies have shown that Rad52 plays a key survival role in cells lacking the function of the BRCA1-BRCA2 pathway of homologous recombination. Biochemical studies also showed significant differences between yeast and human Rad52, in which yeast Rad52 can promote strand invasion of RPA-coated single-stranded DNA in the presence of Rad51, but human Rad52 cannot. This results in the paradox of how is human Rad52 providing Rad51 function: presumably there is something missing in the biochemical assays that exists in-vivo, but the nature of this missing factor is currently unknown. Recent studies have suggested that Rad52 provides back-up Rad51 function for all members of the BRCA1-BRCA2 pathway, suggesting that Rad52 may be a target for therapy in BRCA pathway deficient cancers. Screening for ways to inhibit Rad52 would potentially provide a complementary strategy for targeting BRCA-deficient cancers in addition to PARP inhibitors. PMID:23071261

  4. Molecular pathways towards psychiatric disorders

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1987-07-01

    The observed fibrillar-neuronal organization of the cerebral cortex suggests that in the aetiology of certain psychiatric disorders the genomic response of the neuron to the challenge presented by stress or insults at various stages of development, is to set off a programmed chain of molecular events (or ''pathways''), as demonstrated in previous genetic studies. The understanding of these pathways is important in order to enhance our ability to influence these illnesses, and are hypothesized to be initiated by a nucleolar mechanism for inducing abnormal synthesis of the nerve growth factor (NGF). The hypothesis is used to approach tentatively the still open question regarding the pathogenesis of mental retardation (MR) and senile dementia (SD). (author). 25 refs

  5. HPV: Molecular pathways and targets.

    Science.gov (United States)

    Gupta, Shilpi; Kumar, Prabhat; Das, Bhudev C

    2018-04-05

    and maintenance of the malignant phenotype. Other efforts have been focused on antitumor immunotherapy strategies. It is known that during the development of cervical cancer, a cascade of abnormal events is induced, including disruption of cell cycle control, perturbation of antitumor immune response, alteration of gene expression, deregulation of microRNA and cancer stem cell and stemness related markers expression could serve as novel molecular targets for reliable diagnosis and treatment of HPV-positive cancers. However, the search for new proposals for disease control and prevention has brought new findings and approaches in the context of molecular biology indicating innovations and perspectives in the early detection and prevention of the disease. Thus, in this article, we discuss molecular signaling pathways activated by HPV and potential targets or biomarkers for early detection or prevention and the treatment of HPV-associated cancers. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Molecular mechanisms of FK506-induced hypertension in solid organ transplantation patients

    Institute of Scientific and Technical Information of China (English)

    Wang Jianglin; Guo Ren; Liu Shikun; Chen Qingjie; Zuo Shanru; Yang Meng; Zuo Xiaocong

    2014-01-01

    Objective Tacrolimus (FK506) is an immunosuppressive drug,which is widely used to prevent rejection of transplanted organs.However,chronic administration of FK506 leads to hypertension in solid organ transplantation patients,and its molecular mechanisms are much more complicated.In this review,we will discuss the above-mentioned molecular mechanisms of FK506-induced hypertension in solid organ transplantation subjects.Data sources The data analyzed in this review were mainly from relevant articles without restriction on the publication date reported in PubMed.The terms "FK506" or "tacrolimus" and "hypertension"were used for the literature search.Study selection Original articles with no limitation of research design and critical reviews containing data relevant to FK506-induced hypertension and its molecular mechanisms were retrieved,reviewed and analyzed.Results There are several molecular mechanisms attributed to FK506-induced hypertension in solid organ transplantation subjects.First,FK506 binds FK506 binding protein 12 and its related isoform 12.6 (FKBP12/12.6) and removes them from intracellular ryanodine receptors that induce a calcium ion leakage from the endoplasmic/sarcoplasmic reticulum.The conventional protein kinase C beta II (cPKCβⅡ)-mediated phosphorylation of endothelial nitric oxide (NO) synthase at Thr495,which reduces the production of NO,was activated by calcium ion leakage.Second,transforming growth factor receptor/SMAD2/3 signaling activation plays an important role in Treg/Th17 cell imbalance in T cells which toget converge to cause inflammation,endothelial dysfunction,and hypertension following tacrolimus treatment.Third,the activation of with-no-K(Lys) kinases/STE20/SPS1-related proline/alanine-rich kinase/thiazide-sensitive sodium chloride co-transporter (WNKs/SPAK/NCC) pathway has a central role in tacrolimus-induced hypertension.Finally,the enhanced activity of renal renin-angiotensin-aldosterone system seems to play a crucial role in

  7. Inflammatory pathways are central to posterior cerebrovascular artery remodelling prior to the onset of congenital hypertension.

    Science.gov (United States)

    Walas, Dawid; Nowicki-Osuch, Karol; Alibhai, Dominic; von Linstow Roloff, Eva; Coghill, Jane; Waterfall, Christy; Paton, Julian Fr

    2018-01-01

    Cerebral artery hypoperfusion may provide the basis for linking ischemic stroke with hypertension. Brain hypoperfusion may induce hypertension that may serve as an auto-protective mechanism to prevent ischemic stroke. We hypothesised that hypertension is caused by remodelling of the cerebral arteries, which is triggered by inflammation. We used a congenital rat model of hypertension and examined age-related changes in gene expression of the cerebral arteries using RNA sequencing. Prior to hypertension, we found changes in signalling pathways associated with the immune system and fibrosis. Validation studies using second harmonics generation microscopy revealed upregulation of collagen type I and IV in both tunica externa and media. These changes in the extracellular matrix of cerebral arteries pre-empted hypertension accounting for their increased stiffness and resistance, both potentially conducive to stroke. These data indicate that inflammatory driven cerebral artery remodelling occurs prior to the onset of hypertension and may be a trigger elevating systemic blood pressure in genetically programmed hypertension.

  8. The activation of the kynurenine pathway in a rat model with renovascular hypertension.

    Science.gov (United States)

    Bartosiewicz, Jacek; Kaminski, Tomasz; Pawlak, Krystyna; Karbowska, Malgorzata; Tankiewicz-Kwedlo, Anna; Pawlak, Dariusz

    2017-04-01

    Hypertension is a serious condition that can lead to many health problems. The mechanisms underlying this process are still not fully understood. The kynurenine pathway may be involved in the occurrence and progression of hypertension. The purpose of this study was to examine the activity of peripheral kynurenine pathway in rats with renovascular hypertension in Goldblatt 2K1C model. Hypertension was induced in the experimental groups by constricting the renal artery of the left kidney of the rats. Determination of tryptophan (Trp) and kynurenine pathway metabolites was assessed by high-performance liquid chromatography in plasma and tissues obtained at 4, 8, and 16 weeks after the surgical intervention or sham surgery. Levels of Ang II were evaluated using commercial immuno-enzymatic ELISA kits. Surgical treatment led to increased values of mean blood pressure and systolic blood pressure, whereas Trp concentrations were decreased in experimental animals compared to appropriate controls. Simultaneously, the considerable increment of kynurenine pathway components and a significant increase in the activity of tryptophan 2,3-dioxygenase were observed in rats with developed hypertension in comparison with controls. There were no differences between Ang II levels in controls and experimental groups. The inverse relationship was between plasma Trp and both SBP and Ang II values, and Trp independently affected Ang II concentrations in hypertensive rats. In contrast, tryptophan 2,3-dioxygenase activity and plasma kynurenine metabolites positively correlated with blood pressure values as well as with Ang II levels in these animals. Moreover, kynurenine was independently connected with MBP. Renovascular hypertension influences kynurenine pathway and leads to an imbalance in Trp and its metabolite levels. Tryptophan 2,3-dioxygenase and part of the kynurenine metabolites in plasma and tissues positively correlated with blood pressure values and Ang II levels. Although the

  9. Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension

    Directory of Open Access Journals (Sweden)

    Kaustav Majumder

    2014-12-01

    Full Text Available There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE, are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.

  10. N-Acetylcysteine Prevents Hypertension via Regulation of the ADMA-DDAH Pathway in Young Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Nai-Chia Fan

    2013-01-01

    Full Text Available Asymmetric dimethylarginine (ADMA reduces nitric oxide (NO, thus causing hypertension. ADMA is metabolized by dimethylarginine dimethylaminohydrolase (DDAH, which can be inhibited by oxidative stress. N-Acetylcysteine (NAC, an antioxidant, can facilitate glutathione (GSH synthesis. We aimed to determine whether NAC can prevent hypertension by regulating the ADMA-DDAH pathway in spontaneously hypertensive rats (SHR. Rats aged 4 weeks were assigned into 3 groups (n=8/group: control Wistar Kyoto rats (WKY, SHR, and SHR receiving 2% NAC in drinking water. All rats were sacrificed at 12 weeks of age. SHR had higher blood pressure than WKY, whereas NAC-treated animals did not. SHR had elevated plasma ADMA levels, which was prevented by NAC therapy. SHR had lower renal DDAH activity than WKY, whereas NAC-treated animals did not. Renal superoxide production was higher in SHR than in WKY, whereas NAC therapy prevented it. NAC therapy was also associated with higher GSH-to-oxidized GSH ratio in SHR kidneys. Moreover, NAC reduced oxidative stress damage in SHR. The observed antihypertensive effects of NAC in young SHR might be due to restoration of DDAH activity to reduce ADMA, leading to attenuation of oxidative stress. Our findings highlight the impact of NAC on the development of hypertension by regulating ADMA-DDAH pathway.

  11. Molecular mechanisms of circulatory dysfunction in cirrhotic portal hypertension

    Directory of Open Access Journals (Sweden)

    Hsin-Ling Ho

    2015-04-01

    Full Text Available Acute or chronic insults to the liver are usually followed by a tissue repairing process. Unfortunately, this action, in most cases, is not effective enough to restore the normal hepatic structure and function. Instead, fibrogenesis and regenerative nodules formation ensue, which are relatively nonfunctioning. The common final stage of the process is liver cirrhosis with increased intrahepatic resistance to portal venous blood flow. Throughout the entire course, the extrahepatic circulatory dysfunction, including increased splanchnic blood flow, elevated portal venous blood flow and pressure, decreased splanchnic and peripheral vascular resistance, tachycardia, and increased cardiac output, are noted and denoted as portal hypertension with hyperdynamic circulatory dysfunction. When such a condition is established, patients may suffer from fatal complications such as gastroesophageal variceal hemorrhage, hepatic encephalopathy, or hepatorenal syndrome. The cause of such a circulatory dysfunction is not fully elucidated. Nevertheless, clarification of the pathophysiology definitely contributes to the control of portal hypertension-related complications. Herein, the molecular mechanism of this intriguing disaster is reviewed and discussed.

  12. Hypertension

    Science.gov (United States)

    ... role in the start and continuation of primary hypertension. Secondary hypertension is due to other diseases such as kidney ... the body can greatly improve or even cure secondary hypertension. Obstructive sleep apnea is a potentially serious sleep ...

  13. Renal denervation therapy for hypertension: pathways for moving development forward.

    Science.gov (United States)

    White, William B; Galis, Zorina S; Henegar, Jeffrey; Kandzari, David E; Victor, Ronald; Sica, Domenic; Townsend, Raymond R; Turner, J Rick; Virmani, Renu; Mauri, Laura

    2015-05-01

    This scientific statement provides a summary of presentations and discussions at a cardiovascular Think Tank co-sponsored by the American Society of Hypertension (ASH), the United States Food and Drug Administration (FDA), and the National Heart, Lung, and Blood Institute (NHLBI) held in North Bethesda, Maryland, on June 26, 2014. Studies of device therapies for the treatment of hypertension are requested by regulators to evaluate their safety and efficacy during their development programs. Think Tank participants thought that important considerations in undertaking such studies were: (1) Preclinical assessment: how likely it is that both efficacy and safety data indicating benefit in humans will be obtained, and/or whether a plausible mechanism of action for efficacy can be identified; (2) Early human trial(s): the ability to determine that the device has an acceptable benefit-to-risk balance for its use in the intended patient population and without the influence of drug therapy during a short-term follow-up period; and (3) Pivotal Phase III trial(s): the ability to prove the effectiveness of the device in a broad population in which the trial can be made as non-confounded as possible while still allowing for the determination for benefits when added to antihypertensive therapies. Copyright © 2015 American Society of Hypertension. All rights reserved.

  14. Proteomic-Biostatistic Integrated Approach for Finding the Underlying Molecular Determinants of Hypertension in Human Plasma.

    Science.gov (United States)

    Gajjala, Prathibha R; Jankowski, Vera; Heinze, Georg; Bilo, Grzegorz; Zanchetti, Alberto; Noels, Heidi; Liehn, Elisa; Perco, Paul; Schulz, Anna; Delles, Christian; Kork, Felix; Biessen, Erik; Narkiewicz, Krzysztof; Kawecka-Jaszcz, Kalina; Floege, Juergen; Soranna, Davide; Zidek, Walter; Jankowski, Joachim

    2017-08-01

    Despite advancements in lowering blood pressure, the best approach to lower it remains controversial because of the lack of information on the molecular basis of hypertension. We, therefore, performed plasma proteomics of plasma from patients with hypertension to identify molecular determinants detectable in these subjects but not in controls and vice versa. Plasma samples from hypertensive subjects (cases; n=118) and controls (n=85) from the InGenious HyperCare cohort were used for this study and performed mass spectrometric analysis. Using biostatistical methods, plasma peptides specific for hypertension were identified, and a model was developed using least absolute shrinkage and selection operator logistic regression. The underlying peptides were identified and sequenced off-line using matrix-assisted laser desorption ionization orbitrap mass spectrometry. By comparison of the molecular composition of the plasma samples, 27 molecular determinants were identified differently expressed in cases from controls. Seventy percent of the molecular determinants selected were found to occur less likely in hypertensive patients. In cross-validation, the overall R 2 was 0.434, and the area under the curve was 0.891 with 95% confidence interval 0.8482 to 0.9349, P hypertensive patients were found to be -2.007±0.3568 and 3.383±0.2643, respectively, P hypertensives and normotensives. The identified molecular determinants may be the starting point for further studies to clarify the molecular causes of hypertension. © 2017 American Heart Association, Inc.

  15. Portal hypertension: Imaging of portosystemic collateral pathways and associated image-guided therapy.

    Science.gov (United States)

    Bandali, Murad Feroz; Mirakhur, Anirudh; Lee, Edward Wolfgang; Ferris, Mollie Clarke; Sadler, David James; Gray, Robin Ritchie; Wong, Jason Kam

    2017-03-14

    Portal hypertension is a common clinical syndrome, defined by a pathologic increase in the portal venous pressure. Increased resistance to portal blood flow, the primary factor in the pathophysiology of portal hypertension, is in part due to morphological changes occurring in chronic liver diseases. This results in rerouting of blood flow away from the liver through collateral pathways to low-pressure systemic veins. Through a variety of computed tomographic, sonographic, magnetic resonance imaging and angiographic examples, this article discusses the appearances and prevalence of both common and less common portosystemic collateral channels in the thorax and abdomen. A brief overview of established interventional radiologic techniques for treatment of portal hypertension will also be provided. Awareness of the various imaging manifestations of portal hypertension can be helpful for assessing overall prognosis and planning proper management.

  16. Molecular pathways underpinning ethanol-induced neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dan eGoldowitz*

    2014-07-01

    Full Text Available While genetics impacts the type and severity of damage following developmental ethanol exposure, little is currently known about the molecular pathways that mediate these effects. Traditionally, research in this area has used a candidate gene approach and evaluated effects on a gene-by-gene basis. Recent studies, however, have begun to use unbiased approaches and genetic reference populations to evaluate the roles of genotype and epigenetic modifications in phenotypic changes following developmental ethanol exposure, similar to studies that evaluated numerous alcohol-related phenotypes in adults. Here, we present work assessing the role of genetics and chromatin-based alterations in mediating ethanol-induced apoptosis in the developing nervous system. Utilizing the expanded family of BXD recombinant inbred mice, animals were exposed to ethanol at postnatal day 7 via subcutaneous injection (5.0 g/kg in 2 doses. Tissue was collected 7 hours after the initial ethanol treatment and analyzed by activated caspase-3 immunostaining to visualize dying cells in the cerebral cortex and hippocampus. In parallel, the levels of two histone modifications relevant to apoptosis, γH2AX and H3K14 acetylation, were examined in the cerebral cortex using protein blot analysis. Activated caspase-3 staining identified marked differences in cell death across brain regions between different mouse strains. Genetic analysis of ethanol susceptibility in the hippocampus led to the identification of a quantitative trait locus on chromosome 12, which mediates, at least in part, strain-specific differential vulnerability to ethanol-induced apoptosis. Furthermore, analysis of chromatin modifications in the cerebral cortex revealed a global increase in γH2AX levels following ethanol exposure, but did not show any change in H3K14 acetylation levels. Together, these findings provide new insights into the molecular mechanisms and genetic contributions underlying ethanol

  17. Molecular pathways associated with blood pressure and hexadecanedioate levels.

    Directory of Open Access Journals (Sweden)

    Cristina Menni

    Full Text Available The dicarboxylic acid hexadecanedioate is associated with increased blood pressure (BP and mortality in humans and feeding it to rats raises BP. Here we aim to characterise the molecular pathways that influence levels of hexadecanedioate linked to BP regulation, using genetic and transcriptomic studies. The top associations for hexadecanedioate in a genome-wide association scan (GWAS conducted on 6447 individuals from the TwinsUK and KORA cohorts were tested for association with BP and hypertension in the International Consortium for BP and in a GWAS of BP extremes. Transcriptomic analyses correlating hexadecanedioate with gene expression levels in adipose tissue in 740 TwinsUK participants were further performed. GWAS showed 242 SNPs mapping to two independent loci achieving genome-wide significance. In rs414056 in the SCLO1B1 gene (Beta(SE = -0.088(0.006P = 1.65 x 10-51, P < 1 x 10-51, the allele previously associated with increased risk of statin associated myopathy is associated with higher hexadecanedioate levels. However this SNP did not show association with BP or hypertension. The top SNP in the second locus rs6663731 mapped to the intronic region of CYP4Z2P on chromosome 1 (0.045(0.007, P = 5.49x10-11. Hexadecanedioate levels also correlate with adipose tissue gene-expression of the 3 out of 4 CYP4 probes (P<0.05 and of alcohol dehydrogenase probes (Beta(SE = 0.12(0.02; P = 6.04x10-11. High circulating levels of hexadecanedioate determine a significant effect of alcohol intake on BP (SBP: 1.12(0.34, P = 0.001; DBP: 0.70(0.22, P = 0.002, while no effect is seen in the lower hexadecanedioate level group. In conclusion, levels in fat of ADH1A, ADH1B and CYP4 encoding enzymes in the omega oxidation pathway, are correlated with hexadecanedioate levels. Hexadecanedioate appears to regulate the effect of alcohol on BP.

  18. [Benefits of spironolactone as the optimal treatment for drug resistant hypertension. Pathway-2 trial review].

    Science.gov (United States)

    Prado, J C; Ruilope, L M; Segura, J

    Pathway-2 is the first randomised, double-blind and crossover trial that compares spironolactone as a fourth drug with alfa-blocker, beta-blocker and placebo. This study shows that spironolactone is the drug with more possibilities of success for the management of patients with difficult-to-treat hypertension in patients with a combination of three drugs and poor control. The results validate the widespread treatment with mineralocorticoid receptor antagonists in resistant hypertension. Copyright © 2016 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension

    KAUST Repository

    Gordienko, Dmitri V.; Povstyan, Oleksandr V.; Sukhanova, Khrystyna Yu; Raphaë l, Maylis; Harhun, Maksym I.; Dyskina, Yulia; Lehen'Kyi, V'Yacheslav; Jama, Abdirahman Mahmoud; Lu, Zhiliang; Skryma, Roman N.; Prevarskaya, Natalia B.

    2014-01-01

    Aims P2X receptors (P2XRs) mediate sympathetic control and autoregulation of renal circulation triggering preglomerular vasoconstriction, which protects glomeruli from elevated pressures. Although previous studies established a casual link between glomerular susceptibility to hypertensive injury and decreased preglomerular vascular reactivity to P2XR activation, the mechanisms of attenuation of the P2XR signalling in hypertension remained unknown. We aimed to analyse molecular mechanisms of the impairment of P2XR signalling in renal vascular smooth muscle cells (RVSMCs) in genetic hypertension. Methods and results We compared the expression of pertinent genes and P2XR-linked Ca2+ entry and Ca2+ release mechanisms in RVSMCs of spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar Kyoto (WKY) rats. We found that, in SHR RVSMCs, P2XR-linked Ca2+ entry and Ca2+ release from the sarcoplasmic reticulum (SR) are both significantly reduced. The former is due to down-regulation of the P2X1 subunit. The latter is caused by a decrease of the SR Ca2+ load. The SR Ca2+ load reduction is caused by attenuated Ca2+ uptake via down-regulated sarco-/endoplasmic reticulum Ca2+-ATPase 2b and elevated Ca2+ leak from the SR via ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors. Spontaneous activity of these Ca2+-release channels is augmented due to up-regulation of RyR type 2 and elevated IP3 production by up-regulated phospholipase C-β1. Conclusions Our study unravels the cellular and molecular mechanisms of attenuation of P2XR-mediated preglomerular vasoconstriction that elevates glomerular susceptibility to harmful hypertensive pressures. This provides an important impetus towards understanding of the pathology of hypertensive renal injury.

  20. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension

    KAUST Repository

    Gordienko, Dmitri V.

    2014-12-16

    Aims P2X receptors (P2XRs) mediate sympathetic control and autoregulation of renal circulation triggering preglomerular vasoconstriction, which protects glomeruli from elevated pressures. Although previous studies established a casual link between glomerular susceptibility to hypertensive injury and decreased preglomerular vascular reactivity to P2XR activation, the mechanisms of attenuation of the P2XR signalling in hypertension remained unknown. We aimed to analyse molecular mechanisms of the impairment of P2XR signalling in renal vascular smooth muscle cells (RVSMCs) in genetic hypertension. Methods and results We compared the expression of pertinent genes and P2XR-linked Ca2+ entry and Ca2+ release mechanisms in RVSMCs of spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar Kyoto (WKY) rats. We found that, in SHR RVSMCs, P2XR-linked Ca2+ entry and Ca2+ release from the sarcoplasmic reticulum (SR) are both significantly reduced. The former is due to down-regulation of the P2X1 subunit. The latter is caused by a decrease of the SR Ca2+ load. The SR Ca2+ load reduction is caused by attenuated Ca2+ uptake via down-regulated sarco-/endoplasmic reticulum Ca2+-ATPase 2b and elevated Ca2+ leak from the SR via ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors. Spontaneous activity of these Ca2+-release channels is augmented due to up-regulation of RyR type 2 and elevated IP3 production by up-regulated phospholipase C-β1. Conclusions Our study unravels the cellular and molecular mechanisms of attenuation of P2XR-mediated preglomerular vasoconstriction that elevates glomerular susceptibility to harmful hypertensive pressures. This provides an important impetus towards understanding of the pathology of hypertensive renal injury.

  1. A pathway-based network analysis of hypertension-related genes

    Science.gov (United States)

    Wang, Huan; Hu, Jing-Bo; Xu, Chuan-Yun; Zhang, De-Hai; Yan, Qian; Xu, Ming; Cao, Ke-Fei; Zhang, Xu-Sheng

    2016-02-01

    Complex network approach has become an effective way to describe interrelationships among large amounts of biological data, which is especially useful in finding core functions and global behavior of biological systems. Hypertension is a complex disease caused by many reasons including genetic, physiological, psychological and even social factors. In this paper, based on the information of biological pathways, we construct a network model of hypertension-related genes of the salt-sensitive rat to explore the interrelationship between genes. Statistical and topological characteristics show that the network has the small-world but not scale-free property, and exhibits a modular structure, revealing compact and complex connections among these genes. By the threshold of integrated centrality larger than 0.71, seven key hub genes are found: Jun, Rps6kb1, Cycs, Creb312, Cdk4, Actg1 and RT1-Da. These genes should play an important role in hypertension, suggesting that the treatment of hypertension should focus on the combination of drugs on multiple genes.

  2. Molecular evolution of the lysine biosynthetic pathways.

    Science.gov (United States)

    Velasco, A M; Leguina, J I; Lazcano, A

    2002-10-01

    Among the different biosynthetic pathways found in extant organisms, lysine biosynthesis is peculiar because it has two different anabolic routes. One is the diaminopimelic acid pathway (DAP), and the other over the a-aminoadipic acid route (AAA). A variant of the AAA route that includes some enzymes involved in arginine and leucine biosyntheses has been recently reported in Thermus thermophilus (Nishida et al. 1999). Here we describe the results of a detailed genomic analysis of each of the sequences involved in the two lysine anabolic routes, as well as of genes from other routes related to them. No evidence was found of an evolutionary relationship between the DAP and AAA enzymes. Our results suggest that the DAP pathway is related to arginine metabolism, since the lysC, asd, dapC, dapE, and lysA genes from lysine biosynthesis are related to the argB, argC, argD, argE, and speAC genes, respectively, whose products catalyze different steps in arginine metabolism. This work supports previous reports on the relationship between AAA gene products and some enzymes involved in leucine biosynthesis and the tricarboxylic acid cycle (Irvin and Bhattacharjee 1998; Miyazaki et al. 2001). Here we discuss the significance of the recent finding that several genes involved in the arginine (Arg) and leucine (Leu) biosynthesis participate in a new alternative route of the AAA pathway (Miyazaki et al. 2001). Our results demonstrate a clear relationship between the DAP and Arg routes, and between the AAA and Leu pathways.

  3. hypertension

    Directory of Open Access Journals (Sweden)

    Emine Hatipoglu

    2013-05-01

    Full Text Available Hypertension is a common disease associated with important cardiovascular complications. Persistent blood pressure of 140/90 or higher despite combined use of a reninangiotensin system blocker, calcium channel blocker and a diuretic at highest tolerated doses constitutes resistant hypertension. Excess sympathetic activity plays an important pathogenic role in resistant hypertension in addition to contributing to the development of metabolic problems, in particular diabetes. Reduction of renal sympathetic activity by percutaneous catheter-based radiofrequency ablation via the renal arteries has been shown in several studies to decrease blood pressure in patients with resistant hypertension, and importantly is largely free of significant complications. However, longer term follow-up is required to confirm both long-term safety and efficacy.

  4. Hypertension

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — These datasets provide de-identified insurance data for hypertension hyperlipidemia. The data is provided by three managed care organizations in Allegheny County...

  5. Hypertension

    OpenAIRE

    Farrugia, Emanuel

    2004-01-01

    Hypertension is a rapidly moving clinical field with frequent developments in new pharmacologic agents and management strategies. Perhaps more importantly, there have been substantial improvements in our understanding of how best to use the drugs available to us. In this article, I will review some of the more important advances in our understanding of hypertension over the past two years, specifically by reviewing six important trials, one survey and two sets of guidelines, all published bet...

  6. Targeting the transsulfuration-H2S pathway by FXR and GPBAR1 ligands in the treatment of portal hypertension.

    Science.gov (United States)

    Fiorucci, Stefano; Distrutti, Eleonora

    2016-09-01

    Cirrhosis is a end-stage disease of the liver in which fibrogenesis, angiogenesis and distortion of intrahepatic microcirculation lead to increased intrahepatic resistance to portal blood flow, a condition known as portal hypertension. Portal hypertension is maintained by a variety of molecular mechanisms including sinusoidal endothelial cells (LSECs) hyporeactivity, activation of hepatic stellate cells (HSCs), reduction in hepatic endothelial nitric oxide synthase (eNOS) activity along with increased eNOS-derived NO generation in the splanchnic and systemic circulations. A reduction of the expression/function of the two major hydrogen sulfide (H2S)-producing enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), has also been demonstrated. A deficit in the transsulfuration pathway leading to the accumulation of homocysteine might contribute to defective generation of H2S and endothelial hyporeactivity. Bile acids are ligands for nuclear receptors, such as farnesoid X receptor (FXR), and G-protein-coupled receptors (GPCRs), such as the G-protein bile acid receptor 1 (GPBAR1). FXR and GPBAR1 ligands regulate the expression/activity of CSE by both genomic and non-genomic effects and have been proved effective in protecting against endothelial dysfunction observed in rodent models of cirrhosis. GPBAR1, a receptor for secondary bile acids, is selectively expressed by LSECs and its activation increases the expression of CSE and attenuates the production of endotelin-1, a potent vasoconstrictor agent. In vivo GPBAR1 ligand attenuates the imbalance between vasodilatory and vaso-constricting agents, making GPBAR1 a promising target in the treatment of portal hypertension. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Prominent porto-systemic collateral pathways in patients with portal hypertension: demonstration by gadolinium-enhanced magnetic resonance angiography

    International Nuclear Information System (INIS)

    Caldana, Rogerio Pedreschi; Bezerra, Alexandre Araujo Sergio; Cecin, Alexnadre Oliveira; Souza, Luis Ronan Marques Ferreira de; Goldman, Susan Menasce; D'Ippolito, Giuseppe; Szejnfeld, Jacob

    2003-01-01

    To demonstrate the usefulness of gadolinium-enhanced magnetic resonance angiography in the evaluation of prominent porto-systemic collateral pathways. We reviewed the images from 40 patients with portal hypertension studied with gadolinium-enhanced magnetic resonance angiography and selected illustrative cases of prominent porto-systemic collateral pathways. The scans were performed using high field equipment (1.5 Tesla) and a 3 D volume technique. Image were obtained after intravenous injection of paramagnetic contrast media using a power injector. Magnetic resonance angiography demonstrated with precision the porto-systemic collateral pathways, particularly when investigating extensive territories or large vessels. The cases presented show the potential of this method in the investigation of patients with portal hypertension. Gadolinium-enhanced magnetic resonance angiography is a useful method for the evaluation of patients with portal hypertension and prominent collateral pathways. (author)

  8. The toll of the gridiron: damage-associated molecular patterns and hypertension in American football

    Science.gov (United States)

    McCarthy, Cameron G.; Webb, R. Clinton

    2016-01-01

    American football has unequivocally been linked to elevations in blood pressure and hypertension, especially in linemen. However, the mechanisms of this increase cannot be attributed solely to increased body weight and associated cardiometabolic risk factors (e.g.,dyslipidemia or hyperglycemia). Therefore, understanding the etiology of football-associated hypertension is essential for improving the quality of life in this mostly young population, as well as for lowering the potential for chronic disease in the future. We propose that inflammatogenic damage–associated molecular patterns (DAMPs) released into the circulation from football-induced musculoskeletal trauma activate pattern-recognition receptors of the innate immune system—specifically, high mobility group box 1 protein (HMGB1) and mitochondrial (mt)DNA which activate Toll-like receptor (TLR)4 and -9, respectively. Previously, we observed that circulating levels of these 2 DAMPs are increased in hypertension, and activation of TLR4 and -9 causes endothelial dysfunction and hypertension. Therefore, our novel hypothesis is that musculoskeletal injury from repeated hits in football players, particularly in linemen, leads to elevated circulating HMGB1 and mtDNA to activate TLRs on endothelial cells leading to impaired endothelium-dependent vasodilation, increased vascular tone, and hypertension.—McCarthy, C. G., Webb, R. C. The toll of the gridiron: damage-associated molecular patterns and hypertension in American football. PMID:26316270

  9. Anticipated classes of new medications and molecular targets for pulmonary arterial hypertension

    Science.gov (United States)

    Morrell, Nicholas W.; Archer, Stephen L.; DeFelice, Albert; Evans, Steven; Fiszman, Monica; Martin, Thomas; Saulnier, Muriel; Rabinovitch, Marlene; Schermuly, Ralph; Stewart, Duncan; Truebel, Hubert; Walker, Gennyne; Stenmark, Kurt R.

    2013-01-01

    Pulmonary arterial hypertension (PAH) remains a life-limiting condition with a major impact on the ability to lead a normal life. Although existing therapies may improve the outlook in some patients there remains a major unmet need to develop more effective therapies in this condition. There have been significant advances in our understanding of the genetic, cell and molecular basis of PAH over the last few years. This research has identified important new targets that could be explored as potential therapies for PAH. In this review we discuss whether further exploitation of vasoactive agents could bring additional benefits over existing approaches. Approaches to enhance smooth muscle cell apotosis and the potential of receptor tyrosine kinase inhibition are summarised. We evaluate the role of inflammation, epigenetic changes and altered glycolytic metabolism as potential targets for therapy, and whether inherited genetic mutations in PAH have revealed druggable targets. The potential of cell based therapies and gene therapy are also discussed. Potential candidate pathways that could be explored in the context of experimental medicine are identified. PMID:23662201

  10. Molecular pathways and therapeutic targets in lung cancer

    Science.gov (United States)

    Shtivelman, Emma; Hensing, Thomas; Simon, George R.; Dennis, Phillip A.; Otterson, Gregory A.; Bueno, Raphael; Salgia, Ravi

    2014-01-01

    Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review. PMID:24722523

  11. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    Science.gov (United States)

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  12. Inherited dystonias: clinical features and molecular pathways.

    Science.gov (United States)

    Weisheit, Corinne E; Pappas, Samuel S; Dauer, William T

    2018-01-01

    Recent decades have witnessed dramatic increases in understanding of the genetics of dystonia - a movement disorder characterized by involuntary twisting and abnormal posture. Hampered by a lack of overt neuropathology, researchers are investigating isolated monogenic causes to pinpoint common molecular mechanisms in this heterogeneous disease. Evidence from imaging, cellular, and murine work implicates deficiencies in dopamine neurotransmission, transcriptional dysregulation, and selective vulnerability of distinct neuronal populations to disease mutations. Studies of genetic forms of dystonia are also illuminating the developmental dependence of disease symptoms that is typical of many forms of the disease. As understanding of monogenic forms of dystonia grows, a clearer picture will develop of the abnormal motor circuitry behind this relatively common phenomenology. This chapter focuses on the current data covering the etiology and epidemiology, clinical presentation, and pathogenesis of four monogenic forms of isolated dystonia: DYT-TOR1A, DYT-THAP1, DYT-GCH1, and DYT-GNAL. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Molecular-Based Mechanisms of Mendelian Forms of Salt-Dependent Hypertension Questioning the Prevailing Theory

    Czech Academy of Sciences Publication Activity Database

    Kurtz, T. W.; Dominiczak, A. F.; DiCarlo, S. E.; Pravenec, Michal; Morris Jr., R. C.

    2015-01-01

    Roč. 65, č. 5 (2015), s. 932-941 ISSN 0194-911X R&D Projects: GA ČR(CZ) GAP301/12/0696 Institutional support: RVO:67985823 Keywords : Mendelian * salt sensitive hypertension * vasodysfunction Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.350, year: 2015

  14. Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat.

    Directory of Open Access Journals (Sweden)

    Mitsunori Miyazaki

    Full Text Available It is well known that spontaneously hypertensive rats (SHR develop muscle pathologies with hypertension and heart failure, though the mechanism remains poorly understood. Woon et al. (2007 linked the circadian clock gene Bmal1 to hypertension and metabolic dysfunction in the SHR. Building on these findings, we compared the expression pattern of several core-clock genes in the gastrocnemius muscle of aged SHR (80 weeks; overt heart failure compared to aged-matched control WKY strain. Heart failure was associated with marked effects on the expression of Bmal1, Clock and Rora in addition to several non-circadian genes important in regulating skeletal muscle phenotype including Mck, Ttn and Mef2c. We next performed circadian time-course collections at a young age (8 weeks; pre-hypertensive and adult age (22 weeks; hypertensive to determine if clock gene expression was disrupted in gastrocnemius, heart and liver tissues prior to or after the rats became hypertensive. We found that hypertensive/hypertrophic SHR showed a dampening of peak Bmal1 and Rev-erb expression in the liver, and the clock-controlled gene Pgc1α in the gastrocnemius. In addition, the core-clock gene Clock and the muscle-specific, clock-controlled gene Myod1, no longer maintained a circadian pattern of expression in gastrocnemius from the hypertensive SHR. These findings provide a framework to suggest a mechanism whereby chronic heart failure leads to skeletal muscle pathologies; prolonged dysregulation of the molecular clock in skeletal muscle results in altered Clock, Pgc1α and Myod1 expression which in turn leads to the mis-regulation of target genes important for mechanical and metabolic function of skeletal muscle.

  15. Intragraft Molecular Pathways Associated with Tolerance Induction in Renal Transplantation.

    Science.gov (United States)

    Gallon, Lorenzo; Mathew, James M; Bontha, Sai Vineela; Dumur, Catherine I; Dalal, Pranav; Nadimpalli, Lakshmi; Maluf, Daniel G; Shetty, Aneesha A; Ildstad, Suzanne T; Leventhal, Joseph R; Mas, Valeria R

    2018-02-01

    The modern immunosuppression regimen has greatly improved short-term allograft outcomes but not long-term allograft survival. Complications associated with immunosuppression, specifically nephrotoxicity and infection risk, significantly affect graft and patient survival. Inducing and understanding pathways underlying clinical tolerance after transplantation are, therefore, necessary. We previously showed full donor chimerism and immunosuppression withdrawal in highly mismatched allograft recipients using a bioengineered stem cell product (FCRx). Here, we evaluated the gene expression and microRNA expression profiles in renal biopsy samples from tolerance-induced FCRx recipients, paired donor organs before implant, and subjects under standard immunosuppression (SIS) without rejection and with acute rejection. Unlike allograft samples showing acute rejection, samples from FCRx recipients did not show upregulation of T cell- and B cell-mediated rejection pathways. Gene expression pathways differed slightly between FCRx samples and the paired preimplantation donor organ samples, but most of the functional gene networks overlapped. Notably, compared with SIS samples, FCRx samples showed upregulation of genes involved in pathways, like B cell receptor signaling. Additionally, prediction analysis showed inhibition of proinflammatory regulators and activation of anti-inflammatory pathways in FCRx samples. Furthermore, integrative analyses (microRNA and gene expression profiling from the same biopsy sample) identified the induction of regulators with demonstrated roles in the downregulation of inflammatory pathways and maintenance of tissue homeostasis in tolerance-induced FCRx samples compared with SIS samples. This pilot study highlights the utility of molecular intragraft evaluation of pathways related to FCRx-induced tolerance and the use of integrative analyses for identifying upstream regulators of the affected downstream molecular pathways. Copyright © 2018 by the

  16. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  17. Free energy landscape and molecular pathways of gas hydrate nucleation

    International Nuclear Information System (INIS)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-01-01

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  18. Free energy landscape and molecular pathways of gas hydrate nucleation.

    Science.gov (United States)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  19. Free energy landscape and molecular pathways of gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu, E-mail: tsli@gwu.edu [Department of Civil and Environmental Engineering, George Washington University, Washington DC 20052 (United States)

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p{sub B} histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p{sub B} histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  20. Cellular and Molecular Pathways Leading to External Root Resorption

    Science.gov (United States)

    Iglesias-Linares, A.; Hartsfield, J.K.

    2016-01-01

    External apical root resorption during orthodontic treatment implicates specific molecular pathways that orchestrate nonphysiologic cellular activation. To date, a substantial number of in vitro and in vivo molecular, genomic, and proteomic studies have supplied data that provide new insights into root resorption. Recent mechanisms and developments reviewed here include the role of the cellular component—specifically, the balance of CD68+, iNOS+ M1- and CD68+, CD163+ M2-like macrophages associated with root resorption and root surface repair processes linked to the expression of the M1-associated proinflammatory cytokine tumor necrosis factor, inducible nitric oxide synthase, the M1 activator interferon γ, the M2 activator interleukin 4, and M2-associated anti-inflammatory interleukin 10 and arginase I. Insights into the role of mesenchymal dental pulp cells in attenuating dentin resorption in homeostasis are also reviewed. Data on recently deciphered molecular pathways are reviewed at the level of (1) clastic cell adhesion in the external apical root resorption process and the specific role of α/β integrins, osteopontin, and related extracellular matrix proteins; (2) clastic cell fusion and activation by the RANKL/RANK/OPG and ATP-P2RX7-IL1 pathways; and (3) regulatory mechanisms of root resorption repair by cementum at the proteomic and transcriptomic levels. PMID:27811065

  1. Antioxidant properties of glutamine and its role in VEGF-Akt pathways in portal hypertension gastropathy.

    Science.gov (United States)

    Marques, Camila; Licks, Francielli; Zattoni, Ingrid; Borges, Beatriz; de Souza, Luiz Eduardo Rizzo; Marroni, Claudio Augusto; Marroni, Norma Possa

    2013-07-28

    To investigate the effects of glutamine on oxidative/nitrosative stress and the vascular endothelial growth factor (VEGF)-Akt-endothelial nitric oxide synthase (eNOS) signaling pathway in an experimental model of portal hypertension induced by partial portal vein ligation (PPVL). Portal hypertension was induced by PPVL. The PPVL model consists of a partial obstruction of the portal vein, performed using a 20 G blunt needle as a guide, which is gently removed after the procedure. PPVL model was performed for 14 d beginning treatment with glutamine on the seventh day. On the fifteenth day, the mesenteric vein pressure was checked and the stomach was removed to test immunoreactivity and oxidative stress markers. We evaluated the expression and the immunoreactivity of proteins involved in the VEGF-Akt-eNOS pathway by Western blotting and immunohistochemical analysis. Oxidative stress was measured by quantification of the cytosolic concentration of thiobarbituric acid reactive substances (TBARS) as well as the levels of total glutathione (GSH), superoxide dismutase (SOD) activity, nitric oxide (NO) production and nitrotyrosine immunoreactivity. All data are presented as the mean ± SE. The production of TBARS and NO was significantly increased in PPVL animals. A reduction of SOD activity was detected in PPVL + G group. In the immunohistochemical analyses of nitrotyrosine, Akt and eNOS, the PPVL group exhibited significant increases, whereas decreases were observed in the PPVL + G group, but no difference in VEGF was detected between these groups. Western blotting analysis detected increased expression of phosphatidylinositol-3-kinase (PI3K), P-Akt and eNOS in the PPVL group compared with the PPVL + G group, which was not observed for the expression of VEGF when comparing these groups. Glutamine administration markedly alleviated oxidative/nitrosative stress, normalized SOD activity, increased levels of total GSH and blocked NO overproduction as well as the formation of

  2. MoCha: Molecular Characterization of Unknown Pathways.

    Science.gov (United States)

    Lobo, Daniel; Hammelman, Jennifer; Levin, Michael

    2016-04-01

    Automated methods for the reverse-engineering of complex regulatory networks are paving the way for the inference of mechanistic comprehensive models directly from experimental data. These novel methods can infer not only the relations and parameters of the known molecules defined in their input datasets, but also unknown components and pathways identified as necessary by the automated algorithms. Identifying the molecular nature of these unknown components is a crucial step for making testable predictions and experimentally validating the models, yet no specific and efficient tools exist to aid in this process. To this end, we present here MoCha (Molecular Characterization), a tool optimized for the search of unknown proteins and their pathways from a given set of known interacting proteins. MoCha uses the comprehensive dataset of protein-protein interactions provided by the STRING database, which currently includes more than a billion interactions from over 2,000 organisms. MoCha is highly optimized, performing typical searches within seconds. We demonstrate the use of MoCha with the characterization of unknown components from reverse-engineered models from the literature. MoCha is useful for working on network models by hand or as a downstream step of a model inference engine workflow and represents a valuable and efficient tool for the characterization of unknown pathways using known data from thousands of organisms. MoCha and its source code are freely available online under the GPLv3 license.

  3. Mitochondrial C4375T mutation might be a molecular risk factor in a maternal Chinese hypertensive family under haplotype C.

    Science.gov (United States)

    Chen, Hong; Sun, Min; Fan, Zhen; Tong, Maoqing; Chen, Guodong; Li, Danhui; Ye, Jihui; Yang, Yumin; Zhu, Yongding; Zhu, Jianhua

    2017-12-04

    Here, we reported a Han Chinese essential hypertensive pedigree based on clinical hereditary and molecular data. To know the molecular basis on this family, mitochondrial genome of one proband from the family was identified through direct sequencing analysis. The age of onset year and affected degree of patients are different in this family. And matrilineal family members carrying C4375T mutation and belong to Eastern Asian halopgroup C. Phylogenetic analysis shows 4375C is highly conservative in 17 species. It is suggested that these mutations might participate in the development of hypertension in this family. And halopgroup C might play a modifying role on the phenotype in this Chinese hypertensive family.

  4. Nasopharyngeal Carcinoma Signaling Pathway: An Update on Molecular Biomarkers

    Directory of Open Access Journals (Sweden)

    Warut Tulalamba

    2012-01-01

    Full Text Available Nasopharyngeal carcinoma (NPC is an uncommon cancer, which has a distinctive ethnic and geographic distribution. Etiology of NPC is considered to be related with a complex interaction of environmental and genetic factors as well as Epstein-Barr virus infection. Since NPC is located in the silent painless area, the disease is usually therefore diagnosed at the advanced stages; hence early detection of NPC is difficult. Furthermore, understanding in molecular pathogenesis is still lacking, pondering the identification of effective prognostic and diagnostic biomarkers. Dysregulation of signaling molecules in intracellular signal transduction, which regulate cell proliferation, apoptosis, and adhesion, underlines the basis of NPC pathogenesis. In this paper, the molecular signaling pathways in the NPC are discussed for the holistic view of NPC development and progression. The important insights toward NPC pathogenesis may offer strategies for identification of novel biomarkers for diagnosis and prognosis.

  5. Metabolic reprogramming of the urea cycle pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline.

    Science.gov (United States)

    Zheng, Hai-Kuo; Zhao, Jun-Han; Yan, Yi; Lian, Tian-Yu; Ye, Jue; Wang, Xiao-Jian; Wang, Zhe; Jing, Zhi-Cheng; He, Yang-Yang; Yang, Ping

    2018-05-11

    Pulmonary arterial hypertension (PAH) is a rare systemic disorder associated with considerable metabolic dysfunction. Although enormous metabolomic studies on PAH have been emerging, research remains lacking on metabolic reprogramming in experimental PAH models. We aim to evaluate the metabolic changes in PAH and provide new insight into endogenous metabolic disorders of PAH. A single subcutaneous injection of monocrotaline (MCT) (60 mg kg - 1 ) was used for rats to establish PAH model. Hemodynamics and right ventricular hypertrophy were adopted to evaluate the successful establishment of PAH model. Plasma samples were assessed through targeted metabolomic profiling platform to quantify 126 endogenous metabolites. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to discriminate between MCT-treated model and control groups. Metabolite Set Enrichment Analysis was adapted to exploit the most disturbed metabolic pathways. Endogenous metabolites of MCT treated PAH model and control group were well profiled using this platform. A total of 13 plasma metabolites were significantly altered between the two groups. Metabolite Set Enrichment Analysis highlighted that a disruption in the urea cycle pathway may contribute to PAH onset. Moreover, five novel potential biomarkers in the urea cycle, adenosine monophosphate, urea, 4-hydroxy-proline, ornithine, N-acetylornithine, and two candidate biomarkers, namely, O-acetylcarnitine and betaine, were found to be highly correlated with PAH. The present study suggests a new role of urea cycle disruption in the pathogenesis of PAH. We also found five urea cycle related biomarkers and another two candidate biomarkers to facilitate early diagnosis of PAH in metabolomic profile.

  6. Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway.

    Directory of Open Access Journals (Sweden)

    Tertia D Purves-Tyson

    Full Text Available Adolescent males have an increased risk of developing schizophrenia, implicating testosterone in the precipitation of dopamine-related psychopathology. Evidence from adult rodent brain indicates that testosterone can modulate nigrostriatal dopamine. However, studies are required to understand the role testosterone plays in maturation of dopamine pathways during adolescence and to elucidate the molecular mechanism(s by which testosterone exerts its effects. We hypothesized that molecular indices of dopamine neurotransmission [synthesis (tyrosine hydroxylase, breakdown (catechol-O-methyl transferase; monoamine oxygenase, transport [vesicular monoamine transporter (VMAT, dopamine transporter (DAT] and receptors (DRD1-D5] would be changed by testosterone or its metabolites, dihydrotestosterone and 17β-estradiol, in the nigrostriatal pathway of adolescent male rats. We found that testosterone and dihydrotestosterone increased DAT and VMAT mRNAs in the substantia nigra and that testosterone increased DAT protein at the region of the cell bodies, but not in target regions in the striatum. Dopamine receptor D2 mRNA was increased and D3 mRNA was decreased in substantia nigra and/or striatum by androgens. These data suggest that increased testosterone at adolescence may change dopamine responsivity of the nigrostriatal pathway by modulating, at a molecular level, the capacity of neurons to transport and respond to dopamine. Further, dopamine turnover was increased in the dorsal striatum following gonadectomy and this was prevented by testosterone replacement. Gene expression changes in the dopaminergic cell body region may serve to modulate both dendritic dopamine feedback inhibition and reuptake in the dopaminergic somatodendritic field as well as dopamine release and re-uptake dynamics at the presynaptic terminals in the striatum. These testosterone-induced changes of molecular indices of dopamine neurotransmission in males are primarily androgen

  7. HNF4alpha dysfunction as a molecular rational for cyclosporine induced hypertension.

    Science.gov (United States)

    Niehof, Monika; Borlak, Jürgen

    2011-01-27

    Induction of tolerance against grafted organs is achieved by the immunosuppressive agent cyclosporine, a prominent member of the calcineurin inhibitors. Unfortunately, its lifetime use is associated with hypertension and nephrotoxicity. Several mechanism for cyclosporine induced hypertension have been proposed, i.e. activation of the sympathetic nervous system, endothelin-mediated systemic vasoconstriction, impaired vasodilatation secondary to reduction in prostaglandin and nitric oxide, altered cytosolic calcium translocation, and activation of the renin-angiotensin system (RAS). In this regard the molecular basis for undue RAS activation and an increased signaling of the vasoactive oligopeptide angiotensin II (AngII) remain elusive. Notably, angiotensinogen (AGT) is the precursor of AngII and transcriptional regulation of AGT is controlled by the hepatic nuclear factor HNF4alpha. To better understand the molecular events associated with cyclosporine induced hypertension, we investigated the effect of cyclosporine on HNF4alpha expression and activity and searched for novel HNF4alpha target genes among members of the RAS cascade. Using bioinformatic algorithm and EMSA bandshift assays we identified angiotensin II receptor type 1 (AGTR1), angiotensin I converting enzyme (ACE), and angiotensin I converting enzyme 2 (ACE2) as genes targeted by HNF4alpha. Notably, cyclosporine represses HNF4alpha gene and protein expression and its DNA-binding activity at consensus sequences to AGT, AGTR1, ACE, and ACE2. Consequently, the gene expression of AGT, AGTR1, and ACE2 was significantly reduced as evidenced by quantitative real-time RT-PCR. While RAS is composed of a sophisticated interplay between multiple factors we propose a decrease of ACE2 to enforce AngII signaling via AGTR1 to ultimately result in vasoconstriction and hypertension. Taken collectively we demonstrate cyclosporine to repress HNF4alpha activity through calcineurin inhibitor mediated inhibition of nuclear

  8. HNF4alpha dysfunction as a molecular rational for cyclosporine induced hypertension.

    Directory of Open Access Journals (Sweden)

    Monika Niehof

    Full Text Available Induction of tolerance against grafted organs is achieved by the immunosuppressive agent cyclosporine, a prominent member of the calcineurin inhibitors. Unfortunately, its lifetime use is associated with hypertension and nephrotoxicity. Several mechanism for cyclosporine induced hypertension have been proposed, i.e. activation of the sympathetic nervous system, endothelin-mediated systemic vasoconstriction, impaired vasodilatation secondary to reduction in prostaglandin and nitric oxide, altered cytosolic calcium translocation, and activation of the renin-angiotensin system (RAS. In this regard the molecular basis for undue RAS activation and an increased signaling of the vasoactive oligopeptide angiotensin II (AngII remain elusive. Notably, angiotensinogen (AGT is the precursor of AngII and transcriptional regulation of AGT is controlled by the hepatic nuclear factor HNF4alpha. To better understand the molecular events associated with cyclosporine induced hypertension, we investigated the effect of cyclosporine on HNF4alpha expression and activity and searched for novel HNF4alpha target genes among members of the RAS cascade. Using bioinformatic algorithm and EMSA bandshift assays we identified angiotensin II receptor type 1 (AGTR1, angiotensin I converting enzyme (ACE, and angiotensin I converting enzyme 2 (ACE2 as genes targeted by HNF4alpha. Notably, cyclosporine represses HNF4alpha gene and protein expression and its DNA-binding activity at consensus sequences to AGT, AGTR1, ACE, and ACE2. Consequently, the gene expression of AGT, AGTR1, and ACE2 was significantly reduced as evidenced by quantitative real-time RT-PCR. While RAS is composed of a sophisticated interplay between multiple factors we propose a decrease of ACE2 to enforce AngII signaling via AGTR1 to ultimately result in vasoconstriction and hypertension. Taken collectively we demonstrate cyclosporine to repress HNF4alpha activity through calcineurin inhibitor mediated inhibition

  9. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    International Nuclear Information System (INIS)

    Jhanwar-Uniyal, Meena; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj

    2015-01-01

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM

  10. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Jhanwar-Uniyal, Meena, E-mail: meena_jhanwar@nymc.edu; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj [Department of Neurosurgery, New York Medical College, Valhalla, NY 10595 (United States)

    2015-03-25

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM.

  11. Portal hypertension: a review of portosystemic collateral pathways and endovascular interventions

    International Nuclear Information System (INIS)

    Pillai, A.K.; Andring, B.; Patel, A.; Trimmer, C.; Kalva, S.P.

    2015-01-01

    The portal vein is formed at the confluence of the splenic and superior mesenteric vein behind the head of the pancreas. Normal blood pressure within the portal system varies between 5 and 10 mmHg. Portal hypertension is defined when the gradient between the portal and systemic venous blood pressure exceeds 5 mmHg. The most common cause of portal hypertension is cirrhosis. In cirrhosis, portal hypertension develops due to extensive fibrosis within the liver parenchyma causing increased vascular resistance. In addition, the inability of the liver to metabolise certain vasodilators leads to hyperdynamic splanchnic circulation resulting in increased portal blood flow. Decompression of the portal pressure is achieved by formation of portosystemic collaterals. In this review, we will discuss the pathophysiology, anatomy, and imaging findings of spontaneous portosystemic collaterals and clinical manifestations of portal hypertension with emphasis on the role of interventional radiology in the management of complications related to portal hypertension

  12. Shift work and hypertension: Prevalence and analysis of disease pathways in a German car manufacturing company.

    Science.gov (United States)

    Ohlander, Johan; Keskin, Mekail-Cem; Stork, Joachim; Radon, Katja

    2015-05-01

    Hypertension and cardiovascular disease (CVD) may share a similar pathophysiology. Despite shift workers' CVD excess risk, studies on shift work and hypertension are inconclusive. Blood pressure and shift status for 25,343 autoworkers were obtained from medical check-ups and company registers. Cross-sectional associations modeling the total effect from shift work (day shifts, shift work without nights, rotating shift work with nights, and night shifts) on hypertension were assessed. By sequential adjustments, the influence of behavioral, psychosocial, and physiological factors on the total effect was examined, with subsequent mediation and moderation analyses. Adjusted for confounders, shift work without nights (vs. day shifts) was significantly associated with hypertension (OR 1.15, 95%CI 1.02-1.30). The total effect was mediated by BMI, physical inactivity, and sleep disorders. No moderation of the total effect by behaviors was found. The association between shift work and hypertension seems mainly attributable to behavioral mechanisms. © 2015 Wiley Periodicals, Inc.

  13. Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway.

    Science.gov (United States)

    Jin, Sheng; Teng, Xu; Xiao, Lin; Xue, Hongmei; Guo, Qi; Duan, Xiaocui; Chen, Yuhong; Wu, Yuming

    2017-12-01

    Reductions in hydrogen sulfide (H 2 S) production have been implicated in the pathogenesis of hypertension; however, no studies have examined the functional role of hydrogen sulfide in hypertensive heart disease. We hypothesized that the endogenous production of hydrogen sulfide would be reduced and exogenous hydrogen sulfide would ameliorate cardiac dysfunction in N ω -nitro- L-arginine methyl ester ( L-NAME)-induced hypertensive rats. Therefore, this study investigated the cardioprotective effects of hydrogen sulfide on L-NAME-induced hypertensive heart disease and explored potential mechanisms. The rats were randomly divided into five groups: Control, Control + sodium hydrosulfide (NaHS), L-NAME, L-NAME + NaHS, and L-NAME + NaHS + glibenclamide (Gli) groups. Systolic blood pressure was monitored each week. In Langendorff-isolated rat heart, cardiac function represented by ±LV dP/dt max and left ventricular developing pressure was recorded after five weeks of treatment. Hematoxylin and Eosin and Masson's trichrome staining and myocardium ultrastructure under transmission electron microscopy were used to evaluate cardiac remodeling. The plasma nitric oxide and hydrogen sulfide concentrations, as well as nitric oxide synthases and cystathionine-γ-lyase activity in left ventricle tissue were determined. The protein expression of p-Akt, Akt, p-eNOS, and eNOS in left ventricle tissue was analyzed using Western blot. After five weeks of L-NAME treatment, there was a time-dependent hypertension, cardiac remodeling, and dysfunction accompanied by a decrease in eNOS phosphorylation, nitric oxide synthase activity, and nitric oxide concentration. Meanwhile, cystathionine-γ-lyase activity and hydrogen sulfide concentration were also decreased. NaHS treatment significantly increased plasma hydrogen sulfide concentration and subsequently promoted the Akt/eNOS/NO pathway which inhibited the development of hypertension and attenuated cardiac remodeling and

  14. Signaling pathway deregulation and molecular alterations across pediatric medulloblastomas.

    Science.gov (United States)

    Lhermitte, B; Blandin, A F; Coca, A; Guerin, E; Durand, A; Entz-Werlé, N

    2018-05-15

    Medulloblastomas (MBs) account for 15% of brain tumors in children under the age of 15. To date, the overall 5-year survival rate for all children is only around 60%. Recent advances in cancer genomics have led to a fundamental change in medulloblastoma classification and is evolving along with the genomic discoveries, allowing to regularly reclassify this disease. The previous molecular classification defined 4 groups (WNT-activated MB, SHH-activated MB and the groups 3 and 4 characterized partially by NMYC and MYC driven MBs). This stratification moved forward recently to better define these groups and their correlation to outcome. This new stratification into 7 novel subgroups was helpful to lay foundations and complementary data on the understanding regarding molecular pathways and gene mutations underlying medulloblastoma biology. This review was aimed at answering the recent key questions on MB genomics and go further in the relevance of those genes in MB development as well as in their targeted therapies. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Three molecular pathways model colorectal carcinogenesis in Lynch syndrome.

    Science.gov (United States)

    Ahadova, Aysel; Gallon, Richard; Gebert, Johannes; Ballhausen, Alexej; Endris, Volker; Kirchner, Martina; Stenzinger, Albrecht; Burn, John; von Knebel Doeberitz, Magnus; Bläker, Hendrik; Kloor, Matthias

    2018-07-01

    Lynch syndrome is caused by germline mutations of DNA mismatch repair (MMR) genes. MMR deficiency has long been regarded as a secondary event in the pathogenesis of Lynch syndrome colorectal cancers. Recently, this concept has been challenged by the discovery of MMR-deficient crypt foci in the normal mucosa. We aimed to reconstruct colorectal carcinogenesis in Lynch syndrome by collecting molecular and histology evidence from Lynch syndrome adenomas and carcinomas. We determined the frequency of MMR deficiency in adenomas from Lynch syndrome mutation carriers by immunohistochemistry and by systematic literature analysis. To trace back the pathways of pathogenesis, histological growth patterns and mutational signatures were analyzed in Lynch syndrome colorectal cancers. Literature and immunohistochemistry analysis demonstrated MMR deficiency in 491 (76.7%) out of 640 adenomas (95% CI: 73.3% to 79.8%) from Lynch syndrome mutation carriers. Histologically normal MMR-deficient crypts were found directly adjacent to dysplastic adenoma tissue, proving their role as tumor precursors in Lynch syndrome. Accordingly, mutation signature analysis in Lynch colorectal cancers revealed that KRAS and APC mutations commonly occur after the onset of MMR deficiency. Tumors lacking evidence of polypous growth frequently presented with CTNNB1 and TP53 mutations. Our findings demonstrate that Lynch syndrome colorectal cancers can develop through three pathways, with MMR deficiency commonly representing an early and possibly initiating event. This underlines that targeting MMR-deficient cells by chemoprevention or vaccines against MMR deficiency-induced frameshift peptide neoantigens holds promise for tumor prevention in Lynch syndrome. © 2018 UICC.

  16. Molecular Signaling Pathways Mediating Osteoclastogenesis Induced by Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Rafiei, Shahrzad; Komarova, Svetlana V

    2013-01-01

    Advanced prostate cancer commonly metastasizes to bone leading to osteoblastic and osteolytic lesions. Although an osteolytic component governed by activation of bone resorbing osteoclasts is prominent in prostate cancer metastasis, the molecular mechanisms of prostate cancer-induced osteoclastogenesis are not well-understood. We studied the effect of soluble mediators released from human prostate carcinoma cells on osteoclast formation from mouse bone marrow and RAW 264.7 monocytes. Soluble factors released from human prostate carcinoma cells significantly increased viability of naïve bone marrow monocytes, as well as osteoclastogenesis from precursors primed with receptor activator of nuclear factor κ-B ligand (RANKL). The prostate cancer-induced osteoclastogenesis was not mediated by RANKL as it was not inhibited by osteoprotegerin (OPG). However inhibition of TGFβ receptor I (TβRI), or macrophage-colony stimulating factor (MCSF) resulted in attenuation of prostate cancer-induced osteoclastogenesis. We characterized the signaling pathways induced in osteoclast precursors by soluble mediators released from human prostate carcinoma cells. Prostate cancer factors increased basal calcium levels and calcium fluctuations, induced nuclear localization of nuclear factor of activated t-cells (NFAT)c1, and activated prolonged phosphorylation of ERK1/2 in RANKL-primed osteoclast precursors. Inhibition of calcium signaling, NFATc1 activation, and ERK1/2 phosphorylation significantly reduced the ability of prostate cancer mediators to stimulate osteoclastogenesis. This study reveals the molecular mechanisms underlying the direct osteoclastogenic effect of prostate cancer derived factors, which may be beneficial in developing novel osteoclast-targeting therapeutic approaches

  17. Portal hypertension: a review of portosystemic collateral pathways and endovascular interventions.

    Science.gov (United States)

    Pillai, A K; Andring, B; Patel, A; Trimmer, C; Kalva, S P

    2015-10-01

    The portal vein is formed at the confluence of the splenic and superior mesenteric vein behind the head of the pancreas. Normal blood pressure within the portal system varies between 5 and 10 mmHg. Portal hypertension is defined when the gradient between the portal and systemic venous blood pressure exceeds 5 mmHg. The most common cause of portal hypertension is cirrhosis. In cirrhosis, portal hypertension develops due to extensive fibrosis within the liver parenchyma causing increased vascular resistance. In addition, the inability of the liver to metabolise certain vasodilators leads to hyperdynamic splanchnic circulation resulting in increased portal blood flow. Decompression of the portal pressure is achieved by formation of portosystemic collaterals. In this review, we will discuss the pathophysiology, anatomy, and imaging findings of spontaneous portosystemic collaterals and clinical manifestations of portal hypertension with emphasis on the role of interventional radiology in the management of complications related to portal hypertension. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. Molecular pathways in non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Berlanga A

    2014-07-01

    synthesis is increased, but FAs are also taken up from the serum. Furthermore, a decrease in mitochondrial FA oxidation and secretion of very-low-density lipoproteins has been reported. This review discusses the molecular mechanisms that underlie the pathophysiological changes of hepatic lipid metabolism that contribute to NAFLD.Keywords: non-alcoholic fatty liver disease, molecular pathways, insulin resistance, fatty acid metabolism

  19. Solid State Pathways towards Molecular Complexity in Space

    Science.gov (United States)

    Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng

    2011-12-01

    It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.

  20. Signal Transduction Pathways of TNAP: Molecular Network Analyses.

    Science.gov (United States)

    Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp

    2015-01-01

    Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

  1. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies.

    Science.gov (United States)

    Williams, Bryan; MacDonald, Thomas M; Morant, Steve V; Webb, David J; Sever, Peter; McInnes, Gordon T; Ford, Ian; Cruickshank, J Kennedy; Caulfield, Mark J; Padmanabhan, Sandosh; Mackenzie, Isla S; Salsbury, Jackie; Brown, Morris J

    2018-04-11

    In the PATHWAY-2 study of resistant hypertension, spironolactone reduced blood pressure substantially more than conventional antihypertensive drugs. We did three substudies to assess the mechanisms underlying this superiority and the pathogenesis of resistant hypertension. PATHWAY-2 was a randomised, double-blind crossover trial done at 14 UK primary and secondary care sites in 314 patients with resistant hypertension. Patients were given 12 weeks of once daily treatment with each of placebo, spironolactone 25-50 mg, bisoprolol 5-10 mg, and doxazosin 4-8 mg and the change in home systolic blood pressure was assessed as the primary outcome. In our three substudies, we assessed plasma aldosterone, renin, and aldosterone-to-renin ratio (ARR) as predictors of home systolic blood pressure, and estimated prevalence of primary aldosteronism (substudy 1); assessed the effects of each drug in terms of thoracic fluid index, cardiac index, stroke index, and systemic vascular resistance at seven sites with haemodynamic monitoring facilities (substudy 2); and assessed the effect of amiloride 10-20 mg once daily on clinic systolic blood pressure during an optional 6-12 week open-label runout phase (substudy 3). The PATHWAY-2 trial is registered with EudraCT, number 2008-007149-30, and ClinicalTrials.gov, number NCT02369081. Of the 314 patients in PATHWAY-2, 269 participated in one or more of the three substudies: 126 in substudy 1, 226 in substudy 2, and 146 in substudy 3. Home systolic blood pressure reduction by spironolactone was predicted by ARR (r 2 =0·13, p<0·0001) and plasma renin (r 2 =0·11, p=0·00024). 42 patients had low renin concentrations (predefined as the lowest tertile of plasma renin), of which 31 had a plasma aldosterone concentration greater than the mean value for all 126 patients (250 pmol/L). Thus, 31 (25% [95% CI 17-33]) of 126 patients were deemed to have inappropriately high aldosterone concentrations. Thoracic fluid content was reduced by 6·8% from

  2. Cardiovascular reactivity patterns and pathways to hypertension: a multivariate cluster analysis

    NARCIS (Netherlands)

    Brindle, R. C.; Ginty, A. T.; Jones, A.; Phillips, A. C.; Roseboom, T. J.; Carroll, D.; Painter, R. C.; de Rooij, S. R.

    2016-01-01

    Substantial evidence links exaggerated mental stress induced blood pressure reactivity to future hypertension, but the results for heart rate reactivity are less clear. For this reason multivariate cluster analysis was carried out to examine the relationship between heart rate and blood pressure

  3. Synthetic lethality between gene defects affecting a single non-essential molecular pathway with reversible steps.

    Directory of Open Access Journals (Sweden)

    Andrei Zinovyev

    2013-04-01

    Full Text Available Systematic analysis of synthetic lethality (SL constitutes a critical tool for systems biology to decipher molecular pathways. The most accepted mechanistic explanation of SL is that the two genes function in parallel, mutually compensatory pathways, known as between-pathway SL. However, recent genome-wide analyses in yeast identified a significant number of within-pathway negative genetic interactions. The molecular mechanisms leading to within-pathway SL are not fully understood. Here, we propose a novel mechanism leading to within-pathway SL involving two genes functioning in a single non-essential pathway. This type of SL termed within-reversible-pathway SL involves reversible pathway steps, catalyzed by different enzymes in the forward and backward directions, and kinetic trapping of a potentially toxic intermediate. Experimental data with recombinational DNA repair genes validate the concept. Mathematical modeling recapitulates the possibility of kinetic trapping and revealed the potential contributions of synthetic, dosage-lethal interactions in such a genetic system as well as the possibility of within-pathway positive masking interactions. Analysis of yeast gene interaction and pathway data suggests broad applicability of this novel concept. These observations extend the canonical interpretation of synthetic-lethal or synthetic-sick interactions with direct implications to reconstruct molecular pathways and improve therapeutic approaches to diseases such as cancer.

  4. Focused Review of Perioperative Care of Patients with Pulmonary Hypertension and Proposal of a Perioperative Pathway.

    Science.gov (United States)

    Steppan, Jochen; Diaz-Rodriguez, Natalia; Barodka, Viachaslau M; Nyhan, Daniel; Pullins, Erica; Housten, Traci; Damico, Rachel L; Mathai, Stephen C; Hassoun, Paul M; Berkowitz, Dan E; Maxwell, Bryan G; Kolb, Todd M

    2018-01-15

    Morbidity and mortality risk increase considerably for patients with pulmonary hypertension (PH) undergoing non-cardiac surgery. Unfortunately, there are no comprehensive, evidence-based guidelines for perioperative evaluation and management of these patients. We present a brief review of the literature on perioperative outcomes for patients with PH and describe the implementation of a collaborative perioperative management program for these high-risk patients at a tertiary academic center.

  5. Propranolol modulates the collateral vascular responsiveness to vasopressin via a G(α)-mediated pathway in portal hypertensive rats.

    Science.gov (United States)

    Lee, Jing-Yi; Huo, Teh-Ia; Huang, Hui-Chun; Lee, Fa-Yauh; Lin, Han-Chieh; Chuang, Chiao-Lin; Chang, Ching-Chih; Wang, Sun-Sang; Lee, Shou-Dong

    2011-12-01

    pathway may be a therapeutic target to control variceal bleeding and PP in portal hypertension.

  6. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    Science.gov (United States)

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  7. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats.

    Directory of Open Access Journals (Sweden)

    Rebeca Caldeira Machado Berger

    Full Text Available Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%, low salt (LS: 0.03%, and high salt diet (HS: 3% until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm.

  8. Resistant Hypertension.

    Science.gov (United States)

    Doroszko, Adrian; Janus, Agnieszka; Szahidewicz-Krupska, Ewa; Mazur, Grzegorz; Derkacz, Arkadiusz

    2016-01-01

    Resistant hypertension is a severe medical condition which is estimated to appear in 9-18% of hypertensive patients. Due to higher cardiovascular risk, this disorder requires special diagnosis and treatment. The heterogeneous etiology, risk factors and comorbidities of resistant hypertension stand in need of sophisticated evaluation to confirm the diagnosis and select the best therapeutic options, which should consider lifestyle modifications as well as pharmacological and interventional treatment. After having excluded pseudohypertension, inappropriate blood pressure measurement and control as well as the white coat effect, suspicion of resistant hypertension requires an analysis of drugs which the hypertensive patient is treated with. According to one definition - ineffective treatment with 3 or more antihypertensive drugs including diuretics makes it possible to diagnose resistant hypertension. A multidrug therapy including angiotensin - converting enzyme inhibitors, angiotensin II receptor blockers, beta blockers, diuretics, long-acting calcium channel blockers and mineralocorticoid receptor antagonists has been demonstrated to be effective in resistant hypertension treatment. Nevertheless, optional, innovative therapies, e.g. a renal denervation or baroreflex activation, may create a novel pathway of blood pressure lowering procedures. The right diagnosis of this disease needs to eliminate the secondary causes of resistant hypertension e.g. obstructive sleep apnea, atherosclerosis and renal or hormonal disorders. This paper briefly summarizes the identification of the causes of resistant hypertension and therapeutic strategies, which may contribute to the proper diagnosis and an improvement of the long term management of resistant hypertension.

  9. Screening disrupted molecular functions and pathways associated with clear cell renal cell carcinoma using Gibbs sampling.

    Science.gov (United States)

    Nan, Ning; Chen, Qi; Wang, Yu; Zhai, Xu; Yang, Chuan-Ce; Cao, Bin; Chong, Tie

    2017-10-01

    To explore the disturbed molecular functions and pathways in clear cell renal cell carcinoma (ccRCC) using Gibbs sampling. Gene expression data of ccRCC samples and adjacent non-tumor renal tissues were recruited from public available database. Then, molecular functions of expression changed genes in ccRCC were classed to Gene Ontology (GO) project, and these molecular functions were converted into Markov chains. Markov chain Monte Carlo (MCMC) algorithm was implemented to perform posterior inference and identify probability distributions of molecular functions in Gibbs sampling. Differentially expressed molecular functions were selected under posterior value more than 0.95, and genes with the appeared times in differentially expressed molecular functions ≥5 were defined as pivotal genes. Functional analysis was employed to explore the pathways of pivotal genes and their strongly co-regulated genes. In this work, we obtained 396 molecular functions, and 13 of them were differentially expressed. Oxidoreductase activity showed the highest posterior value. Gene composition analysis identified 79 pivotal genes, and survival analysis indicated that these pivotal genes could be used as a strong independent predictor of poor prognosis in patients with ccRCC. Pathway analysis identified one pivotal pathway - oxidative phosphorylation. We identified the differentially expressed molecular functions and pivotal pathway in ccRCC using Gibbs sampling. The results could be considered as potential signatures for early detection and therapy of ccRCC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Molecular profile of 5-fluorouracil pathway genes in colorectal carcinoma

    Czech Academy of Sciences Publication Activity Database

    Kunická, T.; Procházka, Pavel; Krus, I.; Bendová, Petra; Protivová, M.; Susová, S.; Hlaváč, V.; Liška, V.; Novák, P.; Schneiderová, M.; Pitule, P.; Bruha, J.; Vyčítal, O.; Vodička, Pavel; Souček, P.

    2017-01-01

    Roč. 16, oct (2017), s. 795 ISSN 1471-2407 R&D Projects: GA MZd(CZ) NT14329; GA ČR(CZ) GAP304/12/1585 Institutional support: RVO:68378041 Keywords : colorectal carcinoma * 5-fluorouracil * methylation Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 3.288, year: 2016

  11. ACUTE CEREBROVASCULAR EVENTS IN PATIENTS WITH ARTERIAL HYPERTENSION: MOLECULAR GENETIC ASPECTS

    Directory of Open Access Journals (Sweden)

    M. A. Karpenko

    2008-01-01

    Full Text Available Aim. To study association between stroke and gene polymorphism of angeotensin converting enzyme (ACE, angeotensin II type 1 receptor (ATR1, apolipoprotein СIII (APO CIII, apoproteine Е (APO E, methylentetrahydrofolate reductase (MTHFR, fibrinogen (Fb, endothelial NO-synthase (NOS3 in arterial hypertension (HT.Material and methods. Molecular genetic analysis by polymerase chain reaction was done in 41 patients with HT, who experienced first episode of acute disturbances of cerebral blood circulation (ADCBC.Results. Stroke rate in patients with HT is associated with A1166C of ATR1 gene polymorphism, G-455A of Fb gene polymorphism and C677T of MTHFR gene polymorphism. The high risk markers are C-allele of ATR1 gene, -455А allele and AA genotype of Fb gene, 677T allele of MTHFR. The A-allele and genotype AA of ATR1 gene, G-445 allele of Fb gene, С677-allele and CC genotype of MTHFR gene play protective role against ADCBC in HT.Conclusion. It is established an association between gene polymorphism of some molecules and ADCBC in HT.

  12. Danshensu prevents hypoxic pulmonary hypertension in rats by inhibiting the proliferation of pulmonary artery smooth muscle cells via TGF-β-smad3-associated pathway.

    Science.gov (United States)

    Zhang, Ning; Dong, Mingqing; Luo, Ying; Zhao, Feng; Li, Yongjun

    2018-02-05

    Hypoxic pulmonary hypertension is characterized by the remodeling of pulmonary artery. Previously we showed that tanshinone IIA, one lipid-soluble component from the Chinese herb Danshen, ameliorated hypoxic pulmonary hypertension by inhibiting pulmonary artery remodeling. Here we explored the effects of danshensu, one water-soluble component of Danshen, on hypoxic pulmonary hypertension and its mechanism. Rats were exposed to hypobaric hypoxia for 4 weeks to develop hypoxic pulmonary hypertension along with administration of danshensu. Hemodynamics and pulmonary arterial remodeling index were measured. The effects of danshensu on the proliferation of primary pulmonary artery smooth muscle cells and transforming growth factor-β-smad3 pathway were assessed in vitro. Danshensu significantly decreased the right ventricle systolic pressure, the right ventricle hypertrophy and pulmonary vascular remodeling index in hypoxic pulmonary hypertension rats. Danshensu also reduced the increased expression of transforming growth factor-β and phosphorylation of smad3 in pulmonary arteries in hypoxic pulmonary hypertension rats. In vitro, danshensu inhibited the hypoxia- or transforming growth factor-β-induced proliferation of primary pulmonary artery smooth muscle cells. Moreover, danshensu decreased the hypoxia-induced expression and secretion of transforming growth factor in primary pulmonary adventitial fibroblasts and NR8383 cell line, inhibited the hypoxia or transforming growth factor-β-induced phosphorylation of smad3 in rat primary pulmonary artery smooth muscle cells. These results demonstrate that danshensu ameliorates hypoxic pulmonary hypertension in rats by inhibiting the hypoxia-induced proliferation of pulmonary artery smooth muscle cells, and the inhibition effects is associated with transforming growth factor-β-smad3 pathway. Therefore danshensu may be a potential treatment for hypoxic pulmonary hypertension. Copyright © 2017 Elsevier B.V. All rights

  13. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

    Science.gov (United States)

    Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego

    2018-02-01

    Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

  14. Aging: Molecular Pathways and Implications on the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Arthur José Pontes Oliveira de Almeida

    2017-01-01

    Full Text Available The world’s population over 60 years is growing rapidly, reaching 22% of the global population in the next decades. Despite the increase in global longevity, individual healthspan needs to follow this growth. Several diseases have their prevalence increased by age, such as cardiovascular diseases, the leading cause of morbidity and mortality worldwide. Understanding the aging biology mechanisms is fundamental to the pursuit of cardiovascular health. In this way, aging is characterized by a gradual decline in physiological functions, involving the increased number in senescent cells into the body. Several pathways lead to senescence, including oxidative stress and persistent inflammation, as well as energy failure such as mitochondrial dysfunction and deregulated autophagy, being ROS, AMPK, SIRTs, mTOR, IGF-1, and p53 key regulators of the metabolic control, connecting aging to the pathways which drive towards diseases. In addition, senescence can be induced by cellular replication, which resulted from telomere shortening. Taken together, it is possible to draw a common pathway unifying aging to cardiovascular diseases, and the central point of this process, senescence, can be the target for new therapies, which may result in the healthspan matching the lifespan.

  15. The CD147/MMP-2 signaling pathway may regulate early stage cardiac remodelling in spontaneously hypertensive rats.

    Science.gov (United States)

    Li, Bowei; Zhou, Wanxing; Yang, Xiaorong; Zhou, Yuliang; Tan, Yongjing; Yuan, Congcong; Song, Yulan; Chen, Xiao; Zhang, Wei

    2016-11-01

    Previous studies have reported that decreased matrix metalloproteinase-2 (MMP-2) is associated with early stage (age 8-16 weeks) ventricular remodelling in spontaneously hypertensive rats (SHR). We hypothesized that inhibited CD147/MMP-2 signalling might down-regulate MMP-2 expression and augment remodelling in spontaneously hypertensive rats. Twenty-nine male SHR (8 weeks) were randomly assigned to SHR, CD147, and CD147+DOX groups. The control group included eight age-matched WKY rats. CD147 and CD147+DOX groups received recombinant human CD147 (600 ng/kg in 1.5 mL saline, weekly). The SHR and WKY groups received the vehicle. The CD147+DOX group also received doxycycline, an inhibitor of MMPs (daily, 30 mg/kg in 1.5 mL saline, iG). On day 56 echocardiography and left ventricular mass index (LVWI) measurements were collected and histological sections were stained for cell and collagen content. Myocardium MMP-2, TIMP-1, CD147, and collagens types I and III were estimated by western blot. CD147 and the ratio of MMP-2/TIMP-1 were lower in SHR than WKY rats (PCD147 rats showed CD147, MMP-2 and MMP-2/TIMP-1 were increased (PCD147 levels did not differ between CD147+DOX and CD147 groups, CVF, collagens type I and III and partial fiber breaks were more abundant in CD147+DOX (PCD147/MMP-2 pathway was associated with early stage cardiac remodelling, and CD147 supplementation may attenuate this response. © 2016 John Wiley & Sons Australia, Ltd.

  16. Identification of molecular pathways facilitating glioma cell invasion in situ.

    Directory of Open Access Journals (Sweden)

    Ido Nevo

    Full Text Available Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion. In this study, we used a unique microarray profiling approach on a human glioma stem cell (GSC xenograft model to explore gene expression changes in situ in Invading Glioma Cells (IGCs compared to tumor core, as well as changes in host cells residing within the infiltrated microenvironment relative to the unaffected cortex. IGCs were found to have reduced expression of genes within the extracellular matrix compartment, and genes involved in cell adhesion, cell polarity and epithelial to mesenchymal transition (EMT processes. The infiltrated microenvironment showed activation of wound repair and tissue remodeling networks. We confirmed by protein analysis the downregulation of EMT and polarity related genes such as CD44 and PARD3 in IGCs, and EFNB3, a tissue-remodeling agent enriched at the infiltrated microenvironment. OLIG2, a proliferation regulator and glioma progenitor cell marker upregulated in IGCs was found to function in enhancing migration and stemness of GSCs. Overall, our results unveiled a more comprehensive picture of the complex and dynamic cell autonomous and tumor-host interactive pathways of glioma invasion than has been previously demonstrated. This suggests targeting of multiple pathways at the junction of invading tumor and microenvironment as a viable option for glioma therapy.

  17. Thrombin has biphasic effects on the nitric oxide-cGMP pathway in endothelial cells and contributes to experimental pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Katrin F Nickel

    Full Text Available BACKGROUND: A potential role for coagulation factors in pulmonary arterial hypertension has been recently described, but the mechanism of action is currently not known. Here, we investigated the interactions between thrombin and the nitric oxide-cGMP pathway in pulmonary endothelial cells and experimental pulmonary hypertension. PRINCIPAL FINDINGS: Chronic treatment with the selective thrombin inhibitor melagatran (0.9 mg/kg daily via implanted minipumps reduced right ventricular hypertrophy in the rat monocrotaline model of experimental pulmonary hypertension. In vitro, thrombin was found to have biphasic effects on key regulators of the nitric oxide-cGMP pathway in endothelial cells (HUVECs. Acute thrombin stimulation led to increased expression of the cGMP-elevating factors endothelial nitric oxide synthase (eNOS and soluble guanylate cyclase (sGC subunits, leading to increased cGMP levels. By contrast, prolonged exposition of pulmonary endothelial cells to thrombin revealed a characteristic pattern of differential expression of the key regulators of the nitric oxide-cGMP pathway, in which specifically the factors contributing to cGMP elevation (eNOS and sGC were reduced and the cGMP-hydrolyzing PDE5 was elevated (qPCR and Western blot. In line with the differential expression of key regulators of the nitric oxide-cGMP pathway, a reduction of cGMP by prolonged thrombin stimulation was found. The effects of prolonged thrombin exposure were confirmed in endothelial cells of pulmonary origin (HPAECs and HPMECs. Similar effects could be induced by activation of protease-activated receptor-1 (PAR-1. CONCLUSION: These findings suggest a link between thrombin generation and cGMP depletion in lung endothelial cells through negative regulation of the nitric oxide-cGMP pathway, possibly mediated via PAR-1, which could be of relevance in pulmonary arterial hypertension.

  18. Molecular stress response pathways as the basis of hormesis

    DEFF Research Database (Denmark)

    Demirovic, Dino; de Toda, Irene Martinez; Rattan, Suresh

    2014-01-01

    There is now a large amount of data available for human beings showing positive hormetic effects of mild stresses from physical, chemical, nutritional and mental sources. However, these data are dispersed in the literature and not always interpreted as hormetic effects, thus restricting their full...... apprehension and application. A comprehensive discussion of the research, this book is composed of four sections: (1) History and terminology; (2) Evidence for hormesis in humans; (3) Molecular mechanisms of hormesis; and (4) Ethical and legal aspects, and risk assessment....

  19. Molecular evolution of multiple-level control of heme biosynthesis pathway in animal kingdom.

    Science.gov (United States)

    Tzou, Wen-Shyong; Chu, Ying; Lin, Tzung-Yi; Hu, Chin-Hwa; Pai, Tun-Wen; Liu, Hsin-Fu; Lin, Han-Jia; Cases, Ildeofonso; Rojas, Ana; Sanchez, Mayka; You, Zong-Ye; Hsu, Ming-Wei

    2014-01-01

    Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5' untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway.

  20. Molecular Pathways Bridging Frontotemporal Lobar Degeneration and Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Roberta eZanardini

    2016-02-01

    Full Text Available The overlap of symptoms between neurodegenerative and psychiatric diseases has been reported. Neuropsychiatric alterations are commonly observed in dementia, especially in the behavioral variant of frontotemporal dementia (bvFTD, which is the most common clinical FTD subtype. At the same time, psychiatric disorders, like schizophrenia, can display symptoms of dementia, including features of frontal dysfunction with relative sparing of memory. In the present review we discuss common molecular features in these pathologies with a special focus on FTD. Molecules like Brain Derived Neurotrophic Factor (BDNF and progranulin are linked to the pathophysiology of both neurodegenerative and psychiatric diseases. In these brain-associated illnesses, the presence of disease-associated variants in BDNF and progranulin (GRN genes cause a reduction of circulating proteins levels, through alterations in proteins expression or secretion. For these reasons, we believe that prevention and therapy of psychiatric and neurological disorders could be achieved enhancing both BDNF and progranulin levels thanks to drug discovery efforts.

  1. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9

    Directory of Open Access Journals (Sweden)

    Shuangquan Yan

    2016-01-01

    Full Text Available Baicalin has a protective effect on hypoxia-induced pulmonary hypertension in rats, but the mechanism of this effect remains unclear. Thus, investigating the potential mechanism of this effect was the aim of the present study. Model rats that display hypoxic pulmonary hypertension and cor pulmonale under control conditions were successfully generated. We measured a series of indicators to observe the levels of pulmonary arterial hypertension, pulmonary arteriole remodeling, and right ventricular remodeling. We assessed the activation of p38 mitogen-activated protein kinase (MAPK in the pulmonary arteriole walls and pulmonary tissue homogenates using immunohistochemistry and western blot analyses, respectively. The matrix metalloproteinase- (MMP- 9 protein and mRNA levels in the pulmonary arteriole walls were measured using immunohistochemistry and in situ hybridization. Our results demonstrated that baicalin not only reduced p38 MAPK activation in both the pulmonary arteriole walls and tissue homogenates but also downregulated the protein and mRNA expression levels of MMP-9 in the pulmonary arteriole walls. This downregulation was accompanied by the attenuation of pulmonary hypertension, arteriole remodeling, and right ventricular remodeling. These results suggest that baicalin may attenuate pulmonary hypertension and cor pulmonale, which are induced by chronic hypoxia, by downregulating the p38 MAPK/MMP-9 pathway.

  2. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Payne CM

    2011-05-01

    Full Text Available Claire M Payne, Cheray Crowley-Skillicorn, Carol Bernstein, Hana Holubec, Harris BernsteinDepartment of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USAAbstract: Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the “hot spots” in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss.Keywords: chromosome 1p, colon carcinogenesis, molecular pathways, cellular pathways

  3. Usher syndrome: molecular links of pathogenesis, proteins and pathways.

    Science.gov (United States)

    Kremer, Hannie; van Wijk, Erwin; Märker, Tina; Wolfrum, Uwe; Roepman, Ronald

    2006-10-15

    Usher syndrome is the most common form of deaf-blindness. The syndrome is both clinically and genetically heterogeneous, and to date, eight causative genes have been identified. The proteins encoded by these genes are part of a dynamic protein complex that is present in hair cells of the inner ear and in photoreceptor cells of the retina. The localization of the Usher proteins and the phenotype in animal models indicate that the Usher protein complex is essential in the morphogenesis of the stereocilia bundle in hair cells and in the calycal processes of photoreceptor cells. In addition, the Usher proteins are important in the synaptic processes of both cell types. The association of other proteins with the complex indicates functional links to a number of basic cell-biological processes. Prominently present is the connection to the dynamics of the actin cytoskeleton, involved in cellular morphology, cell polarity and cell-cell interactions. The Usher protein complex can also be linked to the cadherins/catenins in the adherens junction-associated protein complexes, suggesting a role in cell polarity and tissue organization. A third link can be established to the integrin transmembrane signaling network. The Usher interactome, as outlined in this review, participates in pathways common in inner ear and retina that are disrupted in the Usher syndrome.

  4. Integrative pathway knowledge bases as a tool for systems molecular medicine.

    Science.gov (United States)

    Liang, Mingyu

    2007-08-20

    There exists a sense of urgency to begin to generate a cohesive assembly of biomedical knowledge as the pace of knowledge accumulation accelerates. The urgency is in part driven by the emergence of systems molecular medicine that emphasizes the combination of systems analysis and molecular dissection in the future of medical practice and research. A potentially powerful approach is to build integrative pathway knowledge bases that link organ systems function with molecules.

  5. Integrative Network Analysis Unveils Convergent Molecular Pathways in Parkinson's Disease and Diabetes

    OpenAIRE

    Santiago, Jose A.; Potashkin, Judith A.

    2013-01-01

    Background Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level. ...

  6. Locally advanced and metastatic basal cell carcinoma: molecular pathways, treatment options and new targeted therapies.

    Science.gov (United States)

    Ruiz Salas, Veronica; Alegre, Marta; Garcés, Joan Ramón; Puig, Lluis

    2014-06-01

    The hedgehog (Hh) signaling pathway has been identified as important to normal embryonic development in living organisms and it is implicated in processes including cell proliferation, differentiation and tissue patterning. Aberrant Hh pathway has been involved in the pathogenesis and chemotherapy resistance of different solid and hematologic malignancies. Basal cell carcinoma (BCC) and medulloblastoma are two well-recognized cancers with mutations in components of the Hh pathway. Vismodegib has recently approved as the first inhibitor of one of the components of the Hh pathway (smoothened). This review attempts to provide current data on the molecular pathways involved in the development of BCC and the therapeutic options available for the treatment of locally advanced and metastatic BCC, and the new targeted therapies in development.

  7. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases

    Science.gov (United States)

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087

  8. MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways

    Science.gov (United States)

    Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George

    2016-01-01

    Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the

  9. Endocrine-disrupting Chemicals: Review of Toxicological Mechanisms Using Molecular Pathway Analysis

    Science.gov (United States)

    Yang, Oneyeol; Kim, Hye Lim; Weon, Jong-Il; Seo, Young Rok

    2015-01-01

    Endocrine disruptors are known to cause harmful effects to human through various exposure routes. These chemicals mainly appear to interfere with the endocrine or hormone systems. As importantly, numerous studies have demonstrated that the accumulation of endocrine disruptors can induce fatal disorders including obesity and cancer. Using diverse biological tools, the potential molecular mechanisms related with these diseases by exposure of endocrine disruptors. Recently, pathway analysis, a bioinformatics tool, is being widely used to predict the potential mechanism or biological network of certain chemicals. In this review, we initially summarize the major molecular mechanisms involved in the induction of the above mentioned diseases by endocrine disruptors. Additionally, we provide the potential markers and signaling mechanisms discovered via pathway analysis under exposure to representative endocrine disruptors, bisphenol, diethylhexylphthalate, and nonylphenol. The review emphasizes the importance of pathway analysis using bioinformatics to finding the specific mechanisms of toxic chemicals, including endocrine disruptors. PMID:25853100

  10. Key role of the endothelial TGF-β/ALK1/endoglin signaling pathway in humans and rodents pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Benoît Gore

    Full Text Available Mutations affecting transforming growth factor-beta (TGF-β superfamily receptors, activin receptor-like kinase (ALK-1, and endoglin (ENG occur in patients with pulmonary arterial hypertension (PAH. To determine whether the TGF-β/ALK1/ENG pathway was involved in PAH, we investigated pulmonary TGF-β, ALK1, ALK5, and ENG expressions in human lung tissue and cultured pulmonary-artery smooth-muscle-cells (PA-SMCs and pulmonary endothelial cells (PECs from 14 patients with idiopathic PAH (iPAH and 15 controls. Seeing that ENG was highly expressed in PEC, we assessed the effects of TGF-β on Smad1/5/8 and Smad2/3 activation and on growth factor production by the cells. Finally, we studied the consequence of ENG deficiency on the chronic hypoxic-PH development by measuring right ventricular (RV systolic pressure (RVSP, RV hypertrophy, and pulmonary arteriolar remodeling in ENG-deficient (Eng+/- and wild-type (Eng+/+ mice. We also evaluated the pulmonary blood vessel density, macrophage infiltration, and cytokine expression in the lungs of the animals. Compared to controls, iPAH patients had higher serum and pulmonary TGF-β levels and increased ALK1 and ENG expressions in lung tissue, predominantly in PECs. Incubation of the cells with TGF-β led to Smad1/5/8 phosphorylation and to a production of FGF2, PDGFb and endothelin-inducing PA-SMC growth. Endoglin deficiency protected mice from hypoxic PH. As compared to wild-type, Eng+/- mice had a lower pulmonary vessel density, and no change in macrophage infiltration after exposure to chronic hypoxia despite the higher pulmonary expressions of interleukin-6 and monocyte chemoattractant protein-1. The TGF-β/ALK1/ENG signaling pathway plays a key role in iPAH and experimental hypoxic PH via a direct effect on PECs leading to production of growth factors and inflammatory cytokines involved in the pathogenesis of PAH.

  11. SIRT1 regulates MAPK pathways in vitiligo skin: insight into the molecular pathways of cell survival

    Science.gov (United States)

    Becatti, Matteo; Fiorillo, Claudia; Barygina, Victoria; Cecchi, Cristina; Lotti, Torello; Prignano, Francesca; Silvestro, Agrippino; Nassi, Paolo; Taddei, Niccolò

    2014-01-01

    Vitiligo is an acquired and progressive hypomelanotic disease that manifests as circumscribed depigmented patches on the skin. The aetiology of vitiligo remains unclear, but recent experimental data underline the interactions between melanocytes and other typical skin cells, particularly keratinocytes. Our previous results indicate that keratinocytes from perilesional skin show the features of damaged cells. Sirtuins (silent mating type information regulation 2 homolog) 1, well-known modulators of lifespan in many species, have a role in gene repression, metabolic control, apoptosis and cell survival, DNA repair, development, inflammation, neuroprotection and healthy ageing. In the literature there is no evidence for SIRT1 signalling in vitiligo and its possible involvement in disease progression. Here, biopsies were taken from the perilesional skin of 16 patients suffering from non-segmental vitiligo and SIRT1 signalling was investigated in these cells. For the first time, a new SIRT1/Akt, also known as Protein Kinase B (PKB)/mitogen-activated protein kinase (MAPK) signalling has been revealed in vitiligo. SIRT1 regulates MAPK pathway via Akt-apoptosis signal-regulating kinase-1 and down-regulates pro-apoptotic molecules, leading to decreased oxidative stress and apoptotic cell death in perilesional vitiligo keratinocytes. We therefore propose SIRT1 activation as a novel way of protecting perilesional vitiligo keratinocytes from damage. PMID:24410795

  12. REM sleep deprivation induces endothelial dysfunction and hypertension in middle-aged rats: Roles of the eNOS/NO/cGMP pathway and supplementation with L-arginine.

    Science.gov (United States)

    Jiang, Jiaye; Gan, Zhongyuan; Li, Yuan; Zhao, Wenqi; Li, Hanqing; Zheng, Jian-Pu; Ke, Yan

    2017-01-01

    Sleep loss can induce or aggravate the development of cardiovascular and cerebrovascular diseases. However, the molecular mechanism underlying this phenomenon is poorly understood. The present study was designed to investigate the effects of REM sleep deprivation on blood pressure in rats and the underlying mechanisms of these effects. After Sprague-Dawley rats were subjected to REM sleep deprivation for 5 days, their blood pressures and endothelial function were measured. In addition, one group of rats was given continuous access to L-arginine supplementation (2% in distilled water) for the 5 days before and the 5 days of REM sleep deprivation to reverse sleep deprivation-induced pathological changes. The results showed that REM sleep deprivation decreased body weight, increased blood pressure, and impaired endothelial function of the aortas in middle-aged rats but not young rats. Moreover, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) concentrations as well as endothelial NO synthase (eNOS) phosphorylation in the aorta were decreased by REM sleep deprivation. Supplementation with L-arginine could protect against REM sleep deprivation-induced hypertension, endothelial dysfunction, and damage to the eNOS/NO/cGMP signaling pathway. The results of the present study suggested that REM sleep deprivation caused endothelial dysfunction and hypertension in middle-aged rats via the eNOS/NO/cGMP pathway and that these pathological changes could be inhibited via L-arginine supplementation. The present study provides a new strategy to inhibit the signaling pathways involved in insomnia-induced or insomnia-enhanced cardiovascular diseases.

  13. Bioinformatic Integration of Molecular Networks and Major Pathways Involved in Mice Cochlear and Vestibular Supporting Cells.

    Science.gov (United States)

    Requena, Teresa; Gallego-Martinez, Alvaro; Lopez-Escamez, Jose A

    2018-01-01

    Background : Cochlear and vestibular epithelial non-hair cells (ENHCs) are the supporting elements of the cellular architecture in the organ of Corti and the vestibular neuroepithelium in the inner ear. Intercellular and cell-extracellular matrix interactions are essential to prevent an abnormal ion redistribution leading to hearing and vestibular loss. The aim of this study is to define the main pathways and molecular networks in the mouse ENHCs. Methods : We retrieved microarray and RNA-seq datasets from mouse epithelial sensory and non-sensory cells from gEAR portal (http://umgear.org/index.html) and obtained gene expression fold-change between ENHCs and non-epithelial cells (NECs) against HCs for each gene. Differentially expressed genes (DEG) with a log2 fold change between 1 and -1 were discarded. The remaining genes were selected to search for interactions using Ingenuity Pathway Analysis and STRING platform. Specific molecular networks for ENHCs in the cochlea and the vestibular organs were generated and significant pathways were identified. Results : Between 1723 and 1559 DEG were found in the mouse cochlear and vestibular tissues, respectively. Six main pathways showed enrichment in the supporting cells in both tissues: (1) "Inhibition of Matrix Metalloproteases"; (2) "Calcium Transport I"; (3) "Calcium Signaling"; (4) "Leukocyte Extravasation Signaling"; (5) "Signaling by Rho Family GTPases"; and (6) "Axonal Guidance Si". In the mouse cochlea, ENHCs showed a significant enrichment in 18 pathways highlighting "axonal guidance signaling (AGS)" ( p = 4.37 × 10 -8 ) and "RhoGDI Signaling" ( p = 3.31 × 10 -8 ). In the vestibular dataset, there were 20 enriched pathways in ENHCs, the most significant being "Leukocyte Extravasation Signaling" ( p = 8.71 × 10 -6 ), "Signaling by Rho Family GTPases" ( p = 1.20 × 10 -5 ) and "Calcium Signaling" ( p = 1.20 × 10 -5 ). Among the top ranked networks, the most biologically significant network contained the

  14. Molecular pathways

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine Terra

    2014-01-01

    Pathologic organ fibrosis is a condition that can affect all major tissues and is typically ascribed to the excessive accumulation of extracellular matrix components, predominantly collagens. It typically leads to compromise of organ function and subsequent organ failure, and it is estimated...

  15. Associations between colorectal cancer molecular markers and pathways with clinicopathologic features in older women.

    Science.gov (United States)

    Samadder, N Jewel; Vierkant, Robert A; Tillmans, Lori S; Wang, Alice H; Weisenberger, Daniel J; Laird, Peter W; Lynch, Charles F; Anderson, Kristin E; French, Amy J; Haile, Robert W; Potter, John D; Slager, Susan L; Smyrk, Thomas C; Thibodeau, Stephen N; Cerhan, James R; Limburg, Paul J

    2013-08-01

    Colorectal tumors have a large degree of molecular heterogeneity. Three integrated pathways of carcinogenesis (ie, traditional, alternate, and serrated) have been proposed, based on specific combinations of microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and mutations in BRAF and KRAS. We used resources from the population-based Iowa Women's Health Study (n = 41,836) to associate markers of colorectal tumors, integrated pathways, and clinical and pathology characteristics, including survival times. We assessed archived specimens from 732 incident colorectal tumors and characterized them as microsatellite stable (MSS), MSI high or MSI low, CIMP high or CIMP low, CIMP negative, and positive or negative for BRAF and/or KRAS mutations. Informative marker data were collected from 563 tumors (77%), which were assigned to the following integrated pathways: traditional (MSS, CIMP negative, BRAF mutation negative, and KRAS mutation negative; n = 170), alternate (MSS, CIMP low, BRAF mutation negative, and KRAS mutation positive; n = 58), serrated (any MSI, CIMP high, BRAF mutation positive, and KRAS mutation negative; n = 142), or unassigned (n = 193). Multivariable-adjusted Cox proportional hazards regression models were used to assess the associations of interest. Patients' mean age (P = .03) and tumors' anatomic subsite (P = .0001) and grade (P = .0001) were significantly associated with integrated pathway assignment. Colorectal cancer (CRC) mortality was not associated with the traditional, alternate, or serrated pathways, but was associated with a subset of pathway-unassigned tumors (MSS or MSI low, CIMP negative, BRAF mutation negative, and KRAS mutation positive) (n = 96 cases; relative risk = 1.76; 95% confidence interval, 1.07-2.89, compared with the traditional pathway). We identified clinical and pathology features associated with molecularly defined CRC subtypes. However, additional studies are needed to determine how these features

  16. Regression of L-NAME - induced hypertension: the role of NO-pathway and endothelium-derived constricting factor

    Czech Academy of Sciences Publication Activity Database

    Paulis, Ĺudovít; Zicha, Josef; Kuneš, Jaroslav; Hojná, Silvie; Kojšová, S.; Pecháňová, O.; Šimko, F.

    2006-01-01

    Roč. 24, č. S4 (2006), S7-S7 ISSN 0263-6352. [European Meeting on Hypertension /16./. 12.06.2006-15.06.2006, Madrid] R&D Projects: GA MZd(CZ) NR7786; GA ČR(CZ) GA305/03/0769 Grant - others:VEGA(SK) 1/3429/0; APVT(SK) 51-02704 Keywords : L-NAME * hypertension * nitric oxide Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  17. Molecular pathways undergoing dramatic transcriptomic changes during tumor development in the human colon

    Directory of Open Access Journals (Sweden)

    Maglietta Rosalia

    2012-12-01

    Full Text Available Abstract Background The malignant transformation of precancerous colorectal lesions involves progressive alterations at both the molecular and morphologic levels, the latter consisting of increases in size and in the degree of cellular atypia. Analyzing preinvasive tumors of different sizes can therefore shed light on the sequence of these alterations. Methods We used a molecular pathway-based approach to analyze transcriptomic profiles of 59 colorectal tumors representing early and late preinvasive stages and the invasive stage of tumorigenesis. Random set analysis was used to identify biological pathways enriched for genes differentially regulated in tumors (compared with 59 samples of normal mucosa. Results Of the 880 canonical pathways we investigated, 112 displayed significant tumor-related upregulation or downregulation at one or more stages of tumorigenesis. This allowed us to distinguish between pathways whose dysregulation is probably necessary throughout tumorigenesis and those whose involvement specifically drives progression from one stage to the next. We were also able to pinpoint specific changes within each gene set that seem to play key roles at each transition. The early preinvasive stage was characterized by cell-cycle checkpoint activation triggered by DNA replication stress and dramatic downregulation of basic transmembrane signaling processes that maintain epithelial/stromal homeostasis in the normal mucosa. In late preinvasive lesions, there was also downregulation of signal transduction pathways (e.g., those mediated by G proteins and nuclear hormone receptors involved in cell differentiation and upregulation of pathways governing nuclear envelope dynamics and the G2>M transition in the cell cycle. The main features of the invasive stage were activation of the G1>S transition in the cell cycle, upregulated expression of tumor-promoting microenvironmental factors, and profound dysregulation of metabolic pathways (e

  18. Murine transgenic embryonic stem cell lines for the investigation of sinoatrial node-related molecular pathways

    Directory of Open Access Journals (Sweden)

    Stefanie Schmitteckert

    2017-12-01

    Full Text Available The elucidation of molecular mechanisms that restrict the potential of pluripotent stem cells and promote cardiac lineage differentiation is of crucial relevance, since embryonic stem cells (ESCs hold great potential for cell based heart therapies. The homeodomain transcription factor Shox2 is essential for the development and proper function of the native cardiac pacemaker, the sinoatrial node. This prompted us to develop a cardiac differentiation model using ESC lines isolated from blastocysts of Shox2-deficient mice. The established cell model provides a fundamental basis for the investigation of molecular pathways under physiological and pathophysiological conditions for evaluating novel therapeutic approaches.

  19. Preclinical renal cancer chemopreventive efficacy of geraniol by modulation of multiple molecular pathways

    International Nuclear Information System (INIS)

    Ahmad, Shiekh Tanveer; Arjumand, Wani; Seth, Amlesh; Nafees, Sana; Rashid, Summya; Ali, Nemat; Sultana, Sarwat

    2011-01-01

    Graphical abstract: Diagrammatic presentation of the hypothesis of the article in a concise manner. It reveals the chemopreventive efficacy of GOH possibly through the modulation of multiple molecular targets. GOH inhibits ROS generation, NFκB and PCNA expression thereby abrogating inflammation and proliferation of tubular cells of kidney. Whereas, GOH induces effector caspase-3 expression both through mitochondrial signalling pathway and death receptor signalling pathway. Highlights: → Geraniol modulates renal carcinogenesis in Wistar rats. → It abrogates Fe-NTA induced oxidative stress, inflammation and hyperproliferation. → Promotes apoptosis via induction of both mitochondrial and death receptor pathway. → Thus, inhibits renal carcinogenesis by modulating multiple molecular targets. -- Abstract: In the present study, we have evaluated the chemopreventive potential of geraniol (GOH), an acyclic monoterpene alcohol against ferric nitrilotriacetate (Fe-NTA) induced renal oxidative stress and carcinogenesis in Wistar rats. Chronic treatment of Fe-NTA induced oxidative stress, inflammation and cellular proliferation in Wistar rats. The chemopreventive efficacy of GOH was studied in terms of xenobiotic metabolizing enzyme activities, LPO, redox status, serum toxicity markers and the expression of putative nephrotoxicity biomarker Kim-1, tumor suppressor gene P53, inflammation, cell proliferation and apoptosis related genes in the kidney tissue. Oral administration of GOH at doses of 100 and 200 mg/kg b wt effectively suppressed renal oxidative stress and tumor incidence. Chemopreventive effects of GOH were associated with upregulation of xenobiotic metabolizing enzyme activities and down regulation of serum toxicity markers. GOH was able to down regulate expression of Kim-1, NFκB, PCNA, P53 along with induction of apoptosis. However, higher dose of GOH was more effective in modulating these multiple molecular targets both at transcriptional and protein

  20. Prominent porto-systemic collateral pathways in patients with portal hypertension: demonstration by gadolinium-enhanced magnetic resonance angiography; Vias colaterais porto-sistemicas exuberantes em portadores de hipertensao portal: demonstracao pela angiografia por ressonancia magnetica com gadolinio

    Energy Technology Data Exchange (ETDEWEB)

    Caldana, Rogerio Pedreschi; Bezerra, Alexandre Araujo Sergio; Cecin, Alexnadre Oliveira; Souza, Luis Ronan Marques Ferreira de; Goldman, Susan Menasce; D' Ippolito, Giuseppe; Szejnfeld, Jacob [Universidade Federal de Sao Paulo (UNIFESP/EPM), Sao Paulo, SP (Brazil). Dept. de Diagnostico por Imagem]. E-mail: rogercal@uol.com.br

    2003-03-01

    To demonstrate the usefulness of gadolinium-enhanced magnetic resonance angiography in the evaluation of prominent porto-systemic collateral pathways. We reviewed the images from 40 patients with portal hypertension studied with gadolinium-enhanced magnetic resonance angiography and selected illustrative cases of prominent porto-systemic collateral pathways. The scans were performed using high field equipment (1.5 Tesla) and a 3 D volume technique. Image were obtained after intravenous injection of paramagnetic contrast media using a power injector. Magnetic resonance angiography demonstrated with precision the porto-systemic collateral pathways, particularly when investigating extensive territories or large vessels. The cases presented show the potential of this method in the investigation of patients with portal hypertension. Gadolinium-enhanced magnetic resonance angiography is a useful method for the evaluation of patients with portal hypertension and prominent collateral pathways. (author)

  1. Alpha- and beta-adrenoceptors in hypertension: molecular biology and pharmacological studies

    NARCIS (Netherlands)

    Michel, M. C.; Philipp, T.; Brodde, O. E.

    1992-01-01

    Recent years have witnessed astonishing progress in our understanding of the molecular basis of adrenoceptor structure, function and regulation and revealed an unexpected heterogeneity of adrenoceptors demonstrating the existence of at least 11 subtypes. This paper discusses the implications of

  2. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities.

    Science.gov (United States)

    Jafri, Salema; Ormiston, Mark L

    2017-12-01

    Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4 + helper T cell populations, defined by excessive Th17 responses and impaired T reg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8 + T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders. Copyright © 2017 the American Physiological Society.

  3. Pathway and Molecular Mechanisms for Malachite Green Biodegradation in Exiguobacterium sp. MG2

    Science.gov (United States)

    Wang, Ji’ai; Gao, Feng; Liu, Zhongzhong; Qiao, Min; Niu, Xuemei; Zhang, Ke-Qin; Huang, Xiaowei

    2012-01-01

    Malachite green (MG), N-methylated diaminotriphenylmethane, is one of the most common dyes in textile industry and has also been used as an effective antifungal agent. However, due to its negative impact on the environment and carcinogenic effects to mammalian cells, there is a significant interest in developing microbial agents to degrade this type of recalcitrant molecules. Here, an Exiguobacterium sp. MG2 was isolated from a river in Yunnan Province of China as one of the best malachite green degraders. This strain had a high decolorization capability even at the concentration of 2500 mg/l and maintained its stable activity within the pH range from 5.0 to 9.0. High-pressure liquid chromatography, liquid chromatography-mass spectrometry and gas chromatography–mass spectrometry were employed to detect the catabolic pathway of MG. Six intermediate products were identified and a potential biodegradation pathway was proposed. This pathway involves a series of reactions of N-demethylation, reduction, benzene ring-removal, and oxidation, which eventually converted N-methylated diaminotriphenylmethane into N, N-dimethylaniline that is the key precursor to MG. Furthermore, our molecular biology experiments suggested that both triphenylmethane reductase gene tmr and cytochrome P450 participated in MG degradation, consistent with their roles in the proposed pathway. Collectively, our investigation is the first report on a biodegradation pathway of triphenylmethane dye MG in bacteria. PMID:23251629

  4. Genomic instability and radiation risk in molecular pathways to colon cancer.

    Directory of Open Access Journals (Sweden)

    Jan Christian Kaiser

    Full Text Available Colon cancer is caused by multiple genomic alterations which lead to genomic instability (GI. GI appears in molecular pathways of microsatellite instability (MSI and chromosomal instability (CIN with clinically observed case shares of about 15-20% and 80-85%. Radiation enhances the colon cancer risk by inducing GI, but little is known about different outcomes for MSI and CIN. Computer-based modelling can facilitate the understanding of the phenomena named above. Comprehensive biological models, which combine the two main molecular pathways to colon cancer, are fitted to incidence data of Japanese a-bomb survivors. The preferred model is selected according to statistical criteria and biological plausibility. Imprints of cell-based processes in the succession from adenoma to carcinoma are identified by the model from age dependences and secular trends of the incidence data. Model parameters show remarkable compliance with mutation rates and growth rates for adenoma, which has been reported over the last fifteen years. Model results suggest that CIN begins during fission of intestinal crypts. Chromosomal aberrations are generated at a markedly elevated rate which favors the accelerated growth of premalignant adenoma. Possibly driven by a trend of Westernization in the Japanese diet, incidence rates for the CIN pathway increased notably in subsequent birth cohorts, whereas rates pertaining to MSI remained constant. An imbalance between number of CIN and MSI cases began to emerge in the 1980s, whereas in previous decades the number of cases was almost equal. The CIN pathway exhibits a strong radio-sensitivity, probably more intensive in men. Among young birth cohorts of both sexes the excess absolute radiation risk related to CIN is larger by an order of magnitude compared to the MSI-related risk. Observance of pathway-specific risks improves the determination of the probability of causation for radiation-induced colon cancer in individual patients

  5. Spironolactone lowers portal hypertension by inhibiting liver fibrosis, ROCK-2 activity and activating NO/PKG pathway in the bile-duct-ligated rat.

    Directory of Open Access Journals (Sweden)

    Wei Luo

    Full Text Available OBJECTIVE: Aldosterone, one of the main peptides in renin angiotensin aldosterone system (RAAS, has been suggested to mediate liver fibrosis and portal hypertension. Spironolactone, an aldosterone antagonist, has beneficial effect on hyperdynamic circulation in clinical practice. However, the mechanisms remain unclear. The present study aimed to investigate the role of spionolactone on liver cirrhosis and portal hypertension. METHODS: Liver cirrhosis was induced by bile duct ligation (BDL. Spironolactone was administered orally (20 mg/kg/d after bile duct ligation was performed. Liver fibrosis was assessed by histology, Masson's trichrome staining, and the measurement of hydroxyproline and type I collagen content. The activation of HSC was determined by analysis of alpha smooth muscle actin (α-SMA expression. Protein expressions and protein phosphorylation were determined by immunohistochemical staining and Western blot analysis, Messenger RNA levels by quantitative real time polymerase chain reaction (Q-PCR. Portal pressure and intrahepatic resistance were examined in vivo. RESULTS: Treatment with spironolactone significantly lowered portal pressure. This was associated with attenuation of liver fibrosis, intrahepatic resistance and inhibition of HSC activation. In BDL rat liver, spironolactone suppressed up-regulation of proinflammatory cytokines (TNFα and IL-6. Additionally, spironolactone significantly decreased ROCK-2 activity without affecting expression of RhoA and Ras. Moreover, spironolactone markedly increased the levels of endothelial nitric oxide synthase (eNOS, phosphorylated eNOS and the activity of NO effector-protein kinase G (PKG in the liver. CONCLUSION: Spironolactone lowers portal hypertension by improvement of liver fibrosis and inhibition of intrahepatic vasoconstriction via down-regulating ROCK-2 activity and activating NO/PKG pathway. Thus, early spironolactone therapy might be the optional therapy in cirrhosis and

  6. Relaxin and atrial natriuretic peptide pathways participate in the anti-fibrotic effect of a melon concentrate in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Julie Carillon

    2016-04-01

    Full Text Available Background: In spontaneously hypertensive rats (SHR, a model of human essential hypertension, oxidative stress is involved in the development of cardiac hypertrophy and fibrosis associated with hypertension. Dietary supplementation with agents exhibiting antioxidant properties could have a beneficial effect in remodeling of the heart. We previously demonstrated a potent anti-hypertrophic effect of a specific melon (Cucumis melo L. concentrate with antioxidant properties in spontaneously hypertensive rats. Relaxin and atrial natriuretic peptide (ANP were reported to reduce collagen deposition and fibrosis progression in various experimental models. Objective: The aim of the present investigation was to test the hypothesis that, beside reduction in oxidative stress, the melon concentrate may act through relaxin, its receptor (relaxin/insulin-like family peptide receptor 1, RXFP1, and ANP in SHR. Design and results: The melon concentrate, given orally during 4 days, reduced cardiomyocyte size (by 25% and totally reversed cardiac collagen content (Sirius red staining in SHR but not in their normotensive controls. Treatment with the melon concentrate lowered cardiac nitrotyrosine-stained area (by 45% and increased by 17–19% the cardiac expression (Western blot of superoxide dismutase (SOD and glutathione peroxidase. In addition, plasma relaxin concentration was normalized while cardiac relaxin (Western blot was lowered in treated SHR. Cardiac relaxin receptor level determined by immunohistochemical analysis increased only in treated SHR. Similarly, the melon concentrate reversed the reduction of plasma ANP concentration and lowered its cardiac expression. Conclusions: The present results demonstrate that reversal of cardiac fibrosis by the melon concentrate involves antioxidant defenses, as well as relaxin and ANP pathways restoration. It is suggested that dietary SOD supplementation could be a useful additional strategy against cardiac hypertrophy

  7. CSF proteomics of secondary phase spinal cord injury in human subjects: perturbed molecular pathways post injury.

    Directory of Open Access Journals (Sweden)

    Mohor Biplab Sengupta

    Full Text Available Recovery of sensory and motor functions following traumatic spinal cord injury (SCI is dependent on injury severity. Here we identified 49 proteins from cerebrospinal fluid (CSF of SCI patients, eight of which were differentially abundant among two severity groups of SCI. It was observed that the abundance profiles of these proteins change over a time period of days to months post SCI. Statistical analysis revealed that these proteins take part in several molecular pathways including DNA repair, protein phosphorylation, tRNA transcription, iron transport, mRNA metabolism, immune response and lipid and ATP catabolism. These pathways reflect a set of mechanisms that the system may adopt to cope up with the assault depending on the injury severity, thus leading to observed physiological responses. Apart from putting forward a picture of the molecular scenario at the injury site in a human study, this finding further delineates consequent pathways and molecules that may be altered by external intervention to restrict neural degeneration.

  8. Block of the Mevalonate Pathway Triggers Oxidative and Inflammatory Molecular Mechanisms Modulated by Exogenous Isoprenoid Compounds

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2014-04-01

    Full Text Available Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD. One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines’ release. Moreover, it has been demonstrated that cellular death results from the balance between apoptosis and pyroptosis, both driven by mitochondrial damage and the molecular platform inflammasome. In order to rescue the deregulated pathway and decrease inflammatory markers, exogenous isoprenoid compounds were administered to a biochemical model of MKD obtained treating a murine monocytic cell line with a compound able to block the mevalonate pathway, plus an inflammatory stimulus. Our results show that isoprenoids acted in different ways, mainly increasing the expression of the evaluated markers [apoptosis, mitochondrial dysfunction, nucleotide-binding oligomerization-domain protein-like receptors 3 (NALP3, cytokines and nitric oxide (NO]. Our findings confirm the hypothesis that inflammation is triggered, at least partially, by the shortage of isoprenoids. Moreover, although further studies are necessary, the achieved results suggest a possible role for exogenous isoprenoids in the treatment of MKD.

  9. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes.

    Science.gov (United States)

    Santiago, Jose A; Potashkin, Judith A

    2013-01-01

    Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level. Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP), previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Prognostic Biomarker Study (PROBE), revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients. These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first time that

  10. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes.

    Directory of Open Access Journals (Sweden)

    Jose A Santiago

    Full Text Available Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level.Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP, previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS and the Prognostic Biomarker Study (PROBE, revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients.These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first

  11. Tuning complement activation and pathway through controlled molecular architecture of dextran chains in nanoparticle corona.

    Science.gov (United States)

    Coty, Jean-Baptiste; Eleamen Oliveira, Elquio; Vauthier, Christine

    2017-11-05

    The understanding of complement activation by nanomaterials is a key to a rational design of safe and efficient nanomedicines. This work proposed a systematic study investigating how molecular design of nanoparticle coronas made of dextran impacts on mechanisms that trigger complement activation. The nanoparticles used for this work consisted of dextran-coated poly(isobutylcyanoacrylate) (PIBCA) nanoparticles have already been thoroughly characterized. Their different capacity to trigger complement activation established on the cleavage of the protein C3 was also already described making these nanoparticles good models to investigate the relation between the molecular feature of their corona and the mechanism by which they triggered complement activation. Results of this new study show that complement activation pathways can be selected by distinct architectures formed by dextran chains composing the nanoparticle corona. Assumptions that explain the relation between complement activation mechanisms triggered by the nanoparticles and the nanoparticle corona molecular feature were proposed. These results are of interest to better understand how the design of dextran-coated nanomaterials will impact interactions with the complement system. It can open perspectives with regard to the selection of a preferential complement activation pathway or prevent the nanoparticles to activate the complement system, based on a rational choice of the corona configuration. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Elucidation of the glucose transport pathway in glucose transporter 4 via steered molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Aswathy Sheena

    Full Text Available BACKGROUND: GLUT4 is a predominant insulin regulated glucose transporter expressed in major glucose disposal tissues such as adipocytes and muscles. Under the unstimulated state, GLUT4 resides within intracellular vesicles. Various stimuli such as insulin translocate this protein to the plasma membrane for glucose transport. In the absence of a crystal structure for GLUT4, very little is known about the mechanism of glucose transport by this protein. Earlier we proposed a homology model for GLUT4 and performed a conventional molecular dynamics study revealing the conformational rearrangements during glucose and ATP binding. However, this study could not explain the transport of glucose through the permeation tunnel. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the molecular mechanism of glucose transport and its energetic, a steered molecular dynamics study (SMD was used. Glucose was pulled from the extracellular end of GLUT4 to the cytoplasm along the pathway using constant velocity pulling method. We identified several key residues within the tunnel that interact directly with either the backbone ring or the hydroxyl groups of glucose. A rotation of glucose molecule was seen near the sugar binding site facilitating the sugar recognition process at the QLS binding site. CONCLUSIONS/SIGNIFICANCE: This study proposes a possible glucose transport pathway and aids the identification of several residues that make direct interactions with glucose during glucose transport. Mutational studies are required to further validate the observation made in this study.

  13. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity

    International Nuclear Information System (INIS)

    Liu Yingshuai; Li Xuelian; Bao Shujuan; Lu Zhisong; Li Changming; Li Qing

    2013-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) (about 15 nm) were synthesized via a hydrothermal method and characterized by field emission scanning electron microscopy, transmission electron microscopy, dynamic light scattering, x-ray diffraction, and vibrating sample magnetometer. The molecular pathways of SPIONs-induced nanotoxicity was further investigated by protein microarrays on a plastic substrate from evaluation of cell viability, reactive oxygen species (ROS) generation and cell apoptosis. The experimental results reveal that 50 μg ml −1 or higher levels of SPIONs cause significant loss of cell viability, considerable generation of ROS and cell apoptosis. It is proposed that high level SPIONs could induce cell apoptosis via a mitochondria-mediated intrinsic pathway by activation of caspase 9 and caspase 3, an increase of the Bax/Bcl-2 ratio, and down-regulation of HSP70 and HSP90 survivor factors. (paper)

  14. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity

    Science.gov (United States)

    Liu, Yingshuai; Li, Xuelian; Bao, Shujuan; Lu, Zhisong; Li, Qing; Li, Chang Ming

    2013-05-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) (about 15 nm) were synthesized via a hydrothermal method and characterized by field emission scanning electron microscopy, transmission electron microscopy, dynamic light scattering, x-ray diffraction, and vibrating sample magnetometer. The molecular pathways of SPIONs-induced nanotoxicity was further investigated by protein microarrays on a plastic substrate from evaluation of cell viability, reactive oxygen species (ROS) generation and cell apoptosis. The experimental results reveal that 50 μg ml-1 or higher levels of SPIONs cause significant loss of cell viability, considerable generation of ROS and cell apoptosis. It is proposed that high level SPIONs could induce cell apoptosis via a mitochondria-mediated intrinsic pathway by activation of caspase 9 and caspase 3, an increase of the Bax/Bcl-2 ratio, and down-regulation of HSP70 and HSP90 survivor factors.

  15. Existence of Inverted Profile in Chemically Responsive Molecular Pathways in the Zebrafish Liver

    Science.gov (United States)

    Zhang, Xun; Li, Hu; Ma, Jing; Zhang, Louxin; Li, Baowen; Gong, Zhiyuan

    2011-01-01

    How a living organism maintains its healthy equilibrium in response to endless exposure of potentially harmful chemicals is an important question in current biology. By transcriptomic analysis of zebrafish livers treated by various chemicals, we defined hubs as molecular pathways that are frequently perturbed by chemicals and have high degree of functional connectivity to other pathways. Our network analysis revealed that these hubs were organized into two groups showing inverted functionality with each other. Intriguingly, the inverted activity profiles in these two groups of hubs were observed to associate only with toxicopathological states but not with physiological changes. Furthermore, these inverted profiles were also present in rat, mouse, and human under certain toxicopathological conditions. Thus, toxicopathological-associated anti-correlated profiles in hubs not only indicate their potential use in diagnosis but also development of systems-based therapeutics to modulate gene expression by chemical approach in order to rewire the deregulated activities of hubs back to normal physiology. PMID:22140468

  16. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility.

    LENUS (Irish Health Repository)

    O'Dushlaine, C

    2011-03-01

    Susceptibility to schizophrenia and bipolar disorder may involve a substantial, shared contribution from thousands of common genetic variants, each of small effect. Identifying whether risk variants map to specific molecular pathways is potentially biologically informative. We report a molecular pathway analysis using the single-nucleotide polymorphism (SNP) ratio test, which compares the ratio of nominally significant (P<0.05) to nonsignificant SNPs in a given pathway to identify the \\'enrichment\\' for association signals. We applied this approach to the discovery (the International Schizophrenia Consortium (n=6909)) and validation (Genetic Association Information Network (n=2729)) of schizophrenia genome-wide association study (GWAS) data sets. We investigated each of the 212 experimentally validated pathways described in the Kyoto Encyclopaedia of Genes and Genomes in the discovery sample. Nominally significant pathways were tested in the validation sample, and five pathways were found to be significant (P=0.03-0.001); only the cell adhesion molecule (CAM) pathway withstood conservative correction for multiple testing. Interestingly, this pathway was also significantly associated with bipolar disorder (Wellcome Trust Case Control Consortium (n=4847)) (P=0.01). At a gene level, CAM genes associated in all three samples (NRXN1 and CNTNAP2), which were previously implicated in specific language disorder, autism and schizophrenia. The CAM pathway functions in neuronal cell adhesion, which is critical for synaptic formation and normal cell signaling. Similar pathways have also emerged from a pathway analysis of autism, suggesting that mechanisms involved in neuronal cell adhesion may contribute broadly to neurodevelopmental psychiatric phenotypes.

  17. Molecular imaging of the human pulmonary vascular endothelium in pulmonary hypertension: a phase II safety and proof of principle trial

    Energy Technology Data Exchange (ETDEWEB)

    Harel, Francois [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Universite de Montreal, Department of Nuclear Medicine, Montreal, Quebec (Canada); Langleben, David; Abikhzer, Gad [McGill University, Lady Davis Institute and Jewish General Hospital, Montreal, Quebec (Canada); Provencher, Steve; Guimond, Jean [Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Quebec (Canada); Fournier, Alain; Letourneau, Myriam [INRS-Institut Armand-Frappier, Laval, Quebec (Canada); Finnerty, Vincent; Nguyen, Quang T.; Levac, Xavier [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Mansour, Asmaa; Guertin, Marie-Claude [Montreal Health Innovation Coordination Center, Montreal, QC (Canada); Dupuis, Jocelyn [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Universite de Montreal, Department of Medicine, Montreal, Quebec (Canada)

    2017-07-15

    The adrenomedullin receptor is densely expressed in the pulmonary vascular endothelium. PulmoBind, an adrenomedullin receptor ligand, was developed for molecular diagnosis of pulmonary vascular disease. We evaluated the safety of PulmoBind SPECT imaging and its capacity to detect pulmonary vascular disease associated with pulmonary hypertension (PH) in a human phase II study. Thirty patients with pulmonary arterial hypertension (PAH, n = 23) or chronic thromboembolic PH (CTEPH, n = 7) in WHO functional class II (n = 26) or III (n = 4) were compared to 15 healthy controls. Lung SPECT was performed after injection of 15 mCi {sup 99m}Tc-PulmoBind in supine position. Qualitative and semi-quantitative analyses of lung uptake were performed. Reproducibility of repeated testing was evaluated in controls after 1 month. PulmoBind injection was well tolerated without any serious adverse event. Imaging was markedly abnormal in PH with ∝50% of subjects showing moderate to severe heterogeneity of moderate to severe extent. The abnormalities were unevenly distributed between the right and left lungs as well as within each lung. Segmental defects compatible with pulmonary embolism were present in 7/7 subjects with CTEPH and in 2/23 subjects with PAH. There were no segmental defects in controls. The PulmoBind activity distribution index, a parameter indicative of heterogeneity, was elevated in PH (65% ± 28%) vs. controls (41% ± 13%, p = 0.0003). In the only subject with vasodilator-responsive idiopathic PAH, PulmoBind lung SPECT was completely normal. Repeated testing 1 month later in healthy controls was well tolerated and showed no significant variability of PulmoBind distribution. In this phase II study, molecular SPECT imaging of the pulmonary vascular endothelium using {sup 99m}Tc-PulmoBind was safe. PulmoBind showed potential to detect both pulmonary embolism and abnormalities indicative of pulmonary vascular disease in PAH. Phase III studies with this novel tracer and

  18. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models.

    Science.gov (United States)

    Hannan, Shabab B; Dräger, Nina M; Rasse, Tobias M; Voigt, Aaron; Jahn, Thomas R

    2016-04-01

    Abnormal tau accumulations were observed and documented in post-mortem brains of patients affected by Alzheimer's disease (AD) long before the identification of mutations in the Microtubule-associated protein tau (MAPT) gene, encoding the tau protein, in a different neurodegenerative disease called Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). The discovery of mutations in the MAPT gene associated with FTDP-17 highlighted that dysfunctions in tau alone are sufficient to cause neurodegeneration. Invertebrate models have been diligently utilized in investigating tauopathies, contributing to the understanding of cellular and molecular pathways involved in disease etiology. An important discovery came with the demonstration that over-expression of human tau in Drosophila leads to premature mortality and neuronal dysfunction including neurodegeneration, recapitulating some key neuropathological features of the human disease. The simplicity of handling invertebrate models combined with the availability of a diverse range of experimental resources make these models, in particular Drosophila a powerful invertebrate screening tool. Consequently, several large-scale screens have been performed using Drosophila, to identify modifiers of tau toxicity. The screens have revealed not only common cellular and molecular pathways, but in some instances the same modifier has been independently identified in two or more screens suggesting a possible role for these modifiers in regulating tau toxicity. The purpose of this review is to discuss the genetic modifier screens on tauopathies performed in Drosophila and C. elegans models, and to highlight the common cellular and molecular pathways that have emerged from these studies. Here, we summarize results of tau toxicity screens providing mechanistic insights into pathological alterations in tauopathies. Key pathways or modifiers that have been identified are associated with a broad range of processes

  19. Programación fetal de la hipertensión arterial del adulto: mecanismos celulares y moleculares Fetal programming of adult arterial hypertension: cellular and molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Robinson Ramírez

    2013-02-01

    Full Text Available Cambios metabólicos in utero establecen patrones fisiológicos y estructurales a largo plazo que pueden "programar" la salud durante la vida adulta, teoría popularmente conocida como "hipótesis de Barker". La programación fetal implica que durante los períodos críticos del crecimiento prenatal, ciertos cambios en el entorno hormonal y nutricional del embrión, pueden alterar la expresión del genoma fetal, en tejidos con funciones fisiológicas y metabólicas en la etapa adulta. La evidencia sugiere que patologías como enfermedad vascular (por ejemplo, hipertensión, síndrome metabólico y diabetes mellitus tipo 2, pueden "programarse" durante las primeras etapas del desarrollo fetal y manifestarse en etapas tardías, al interactuar con el estilo de vida y otros factores de riesgo adquiridos convencionales con el medio ambiente. El objetivo de esta revisión es presentar evidencia adicional que apoye la asociación entre el bajo peso al nacer, con el aumento en la prevalencia de la hipertensión arterial en la edad adulta. Se revisan la función endotelial, el estrés oxidativo, la resistencia a la insulina y la función mitocondrial, como posibles mecanismos celulares y moleculares.Metabolic changes in utero establish long-term physiological and structural patterns which can "program" health in adulthood, theory popularly known as "Barker hypothesis". The fetal programming implies that during critical periods of prenatal growth, some changes in hormonal and nutritional environment of the embryo can alter fetal genome expression in tissues with physiological and metabolic functions in adulthood. Evidence suggests that pathologies like vascular disease (eg, hypertension, metabolic syndrome and type 2 diabetes mellitus, may "be programmed" during the early stages of fetal development and manifest in later stages, when interacting with lifestyle and other conventional acquired risk factors with the environment. The aim of this review is to

  20. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

    Science.gov (United States)

    van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B

    2015-01-01

    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.

  1. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

    Directory of Open Access Journals (Sweden)

    Miranda van Uitert

    Full Text Available Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite and protein-protein associations (STRING. This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome. The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300 and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.

  2. Study of gene expression alteration in male androgenetic alopecia: evidence of predominant molecular signalling pathways.

    Science.gov (United States)

    Michel, L; Reygagne, P; Benech, P; Jean-Louis, F; Scalvino, S; Ly Ka So, S; Hamidou, Z; Bianovici, S; Pouch, J; Ducos, B; Bonnet, M; Bensussan, A; Patatian, A; Lati, E; Wdzieczak-Bakala, J; Choulot, J-C; Loing, E; Hocquaux, M

    2017-11-01

    Male androgenetic alopecia (AGA) is the most common form of hair loss in men. It is characterized by a distinct pattern of progressive hair loss starting from the frontal area and the vertex of the scalp. Although several genetic risk loci have been identified, relevant genes for AGA remain to be defined. To identify biomarkers associated with AGA. Molecular biomarkers associated with premature AGA were identified through gene expression analysis using cDNA generated from scalp vertex biopsies of hairless or bald men with premature AGA, and healthy volunteers. This monocentric study reveals that genes encoding mast cell granule enzymes, inflammatory mediators and immunoglobulin-associated immune mediators were significantly overexpressed in AGA. In contrast, underexpressed genes appear to be associated with the Wnt/β-catenin and bone morphogenic protein/transforming growth factor-β signalling pathways. Although involvement of these pathways in hair follicle regeneration is well described, functional interpretation of the transcriptomic data highlights different events that account for their inhibition. In particular, one of these events depends on the dysregulated expression of proopiomelanocortin, as confirmed by polymerase chain reaction and immunohistochemistry. In addition, lower expression of CYP27B1 in patients with AGA supports the notion that changes in vitamin D metabolism contributes to hair loss. This study provides compelling evidence for distinct molecular events contributing to alopecia that may pave the way for new therapeutic approaches. © 2017 British Association of Dermatologists.

  3. Molecular Signaling Pathways Behind the Biological Effects of Salvia Species Diterpenes in Neuropharmacology and Cardiology.

    Science.gov (United States)

    Akaberi, M; Iranshahi, M; Mehri, S

    2016-06-01

    The genus Salvia, from the Lamiaceae family, has diverse biological properties that are primarily attributable to their diterpene contents. There is no comprehensive review on the molecular signaling pathways of these active components. In this review, we investigated the molecular targets of bioactive Salvia diterpenes responsible for the treatment of nervous and cardiovascular diseases. The effects on different pathways, including apoptosis signaling, oxidative stress phenomena, the accumulation of amyloid beta plaques, and tau phosphorylation, have all been considered to be mechanisms of the anti-Alzheimer properties of Salvia diterpenes. Additionally, effects on the benzodiazepine and kappa opioid receptors and neuroprotective effects are noted as neuropharmacological properties of Salvia diterpenes, including tanshinone IIA, salvinorin A, cryptotanshinone, and miltirone. Tanshinone IIA, as the primary diterpene of Salvia miltiorrhiza, has beneficial activities in heart diseases because of its ability to scavenge free radicals and its effects on transcription factors, such as nuclear transcription factor-kappa B (NF-κB) and the mitogen-activated protein kinases (MAPKs). Additionally, tanshinone IIA has also been proposed to have cardioprotective properties including antiarrhythmic activities and effects on myocardial infarction. With respect to the potential therapeutic effects of Salvia diterpenes, comprehensive clinical trials are warranted to evaluate these valuable molecules as lead compounds. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Transcriptome profiling in engrailed-2 mutant mice reveals common molecular pathways associated with autism spectrum disorders.

    Science.gov (United States)

    Sgadò, Paola; Provenzano, Giovanni; Dassi, Erik; Adami, Valentina; Zunino, Giulia; Genovesi, Sacha; Casarosa, Simona; Bozzi, Yuri

    2013-12-19

    Transcriptome analysis has been used in autism spectrum disorder (ASD) to unravel common pathogenic pathways based on the assumption that distinct rare genetic variants or epigenetic modifications affect common biological pathways. To unravel recurrent ASD-related neuropathological mechanisms, we took advantage of the En2-/- mouse model and performed transcriptome profiling on cerebellar and hippocampal adult tissues. Cerebellar and hippocampal tissue samples from three En2-/- and wild type (WT) littermate mice were assessed for differential gene expression using microarray hybridization followed by RankProd analysis. To identify functional categories overrepresented in the differentially expressed genes, we used integrated gene-network analysis, gene ontology enrichment and mouse phenotype ontology analysis. Furthermore, we performed direct enrichment analysis of ASD-associated genes from the SFARI repository in our differentially expressed genes. Given the limited number of animals used in the study, we used permissive criteria and identified 842 differentially expressed genes in En2-/- cerebellum and 862 in the En2-/- hippocampus. Our functional analysis revealed that the molecular signature of En2-/- cerebellum and hippocampus shares convergent pathological pathways with ASD, including abnormal synaptic transmission, altered developmental processes and increased immune response. Furthermore, when directly compared to the repository of the SFARI database, our differentially expressed genes in the hippocampus showed enrichment of ASD-associated genes significantly higher than previously reported. qPCR was performed for representative genes to confirm relative transcript levels compared to those detected in microarrays. Despite the limited number of animals used in the study, our bioinformatic analysis indicates the En2-/- mouse is a valuable tool for investigating molecular alterations related to ASD.

  5. Molecular Mechanisms Regulating the Vascular Prostacyclin Pathways and Their Adaptation during Pregnancy and in the Newborn

    Science.gov (United States)

    Majed, Batoule H.

    2012-01-01

    vascular disorders. The use of aspirin to decrease TXA2 synthesis has shown little benefit in preeclampsia, whereas indomethacin and ibuprofen are used effectively to close PDA in the premature newborn. PGI2 analogs have been used effectively in primary pulmonary hypertension in adults and have shown promise in PPHN. Careful examination of PGI2 metabolism and the complex interplay with other prostanoids will help design specific modulators of the PGI2-dependent pathways for the management of pregnancy-related and neonatal vascular disorders. PMID:22679221

  6. Oral keratinocyte stem/progenitor cells: specific markers, molecular signaling pathways and potential uses.

    Science.gov (United States)

    Calenic, Bogdan; Greabu, Maria; Caruntu, Constantin; Tanase, Cristiana; Battino, Maurizio

    2015-10-01

    Oral keratinocyte stem cells reside in the basal layers of the oral epithelium, representing a minor population of cells with a great potential to self-renew and proliferate over the course of their lifetime. As a result of the potential uses of oral keratinocyte stem cells in regenerative medicine and the key roles they play in tissue homeostasis, inflammatory conditions, wound healing and tumor initiation and progression, intense scientific efforts are currently being undertaken to identify, separate and reprogram these cells. Although currently there is no specific marker that can characterize and isolate oral keratinocyte stem cells, several suggestions have been made. Thus, different stem/progenitor-cell subpopulations have been categorized based on combinations of positive and/or negative membrane-surface markers, which include integrins, clusters of differentiation and cytokeratins. Important advances have also been made in understanding the molecular pathways that govern processes such as self-renewal, differentiation, proliferation, wound healing and programmed cell death. A thorough understanding of stem-cell biology and the molecular players that govern cellular fate is paramount in the quest for using stem-cell-derived therapies in the treatment of various oral pathologies. The current review focuses on recent advances in understanding the molecular signaling pathways coordinating the behavior of these cells and in identifying suitable markers used for their isolation and characterization. Special emphasis will also be placed on the roles played by oral keratinocyte stem and progenitor cells in normal and diseased oral tissues and on their potential uses in the fields of general medicine and dentistry. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Ocular Hypertension

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Ocular Hypertension Sections What Is Ocular Hypertension? Ocular Hypertension Causes ... Hypertension Diagnosis Ocular Hypertension Treatment What Is Ocular Hypertension? Leer en Español: ¿Qué es la hipertensión ocular? ...

  8. Lipid Biomarkers and Molecular Carbon Isotopes for Elucidating Carbon Cycling Pathways in Hydrothermal Vents

    Science.gov (United States)

    Zhang, C. L.; Dai, J.; Campbell, B.; Cary, C.; Sun, M.

    2003-12-01

    Increasing molecular evidence suggests that hydrothermal vents in mid-ocean ridges harbor large populations of free-living bacteria, particularly the epsilon Proteobacteria. However, pathways for carbon metabolism by these bacteria are poorly known. We are addressing this question by analyzing the lipid biomarkers and their isotope signatures in environments where the epsilon Proteobacteria are likely predominant. Solid materials were collected from hydrothermal vents in the East Pacific Rise and at the Guaymas Basin in the Gulf of California. Fatty acids extracted from these samples are dominated by 16:0 (27-41%), 18:0 (16-48%), 18:1 (11-42%), 16:1 (7-12%), and 14:0 (5-28%). In addition, 15:0 and anteiso-15:0 are significantly present (2-3%) in samples from the Guaymas Basin. The isotopic compositions of these fatty acids range from -15.0\\permil to -33.1\\permil with the most positive values occurring only in monounsaturated fatty acids (16:1 and 18:1). We are currently unable to assign these biomarkers to any of the epsilon Proteobacteria because biomarkers are poorly known for these organisms isolated from the vents. However, no polyunsaturated fatty acids were detected in these samples, which are consistent with the absence of vent animals at the sampling sites. Signature biomarkers of 20:1 and cy21:0, which are characteristic of the thermophilic chemolithoautotrophs such as Aquificales, are also absent in these samples. These results imply that the deeply branched Aquificales species do not constitute the major microbial community in these vent environments. The large range of molecular isotopic compositions suggests that these lipids are synthesized from various carbon sources with different isotopic compositions or through different biosynthetic pathways, or both. We are currently measuring the isotopic compositions of the total organic carbon in the bulk samples and will determine the fractionations between lipid biomarkers and the total organic carbon

  9. Melatonin prevents secondary intra-abdominal hypertension in rats possibly through inhibition of the p38 MAPK pathway.

    Science.gov (United States)

    Chang, Mingtao; Li, Yang; Liu, Dong; Zhang, Lianyang; Zhang, Hongguang; Tang, Hao; Zhang, Huayu

    2016-08-01

    Exogenous administration of melatonin has been demonstrated to down-regulate inflammatory responses and attenuate organ damage in various models. However, the salutary effect of melatonin against secondary intra-abdominal hypertension (IAH) remains unclear. This study sought to test the influence of melatonin on secondary IAH in a pathophysiological rat model and the underlying mechanisms involved. Before resuscitation, male rats underwent a combination of induced portal hypertension, applying an abdominal restraint device, and hemorrhaging to mean arterial pressure (MAP) of 40mmHg for 2h. After blood reinfusion, the rats were treated with lactated Ringer solution (LR) (30mL/h), melatonin (50mg/kg) +LR, and SB-203580 (10μmol/kg)+LR. LR was continuously infused for 6h. MAP, the inferior vena cava pressure and urine output were monitored. Histopathological examination, immunofluorescence of tight junction proteins, and transmission electron microscopy were administered. Intestinal permeability, myeloperoxidase activity, malondialdehyde, glutathione peroxidase, and levels of TNF-a, IL-2, and IL-6, were assessed. The expression of extracellular signal-regulated kinase, p38, c-Jun NH2-terminal kinase, translocation of nuclear factor kappa B subunit, signal transducers and activators of transcription and tight junction proteins were detected by Western blot. We found that melatonin inhibited the inflammatory responses, decreased expression of p38 MAPK, attenuated intestinal injury, and prevented secondary IAH. Moreover, administration of SB203580 abolished the increase in p38 MAPK and also attenuated intestinal injury. These data indicate that melatonin exerts a protective effect in intestine in secondary IAH primarily by attenuating the inflammatory responses which are in part attributable to p38 MAPK inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Electrostatics promotes molecular crowding and selects the aggregation pathway in fibril-forming protein solutions

    International Nuclear Information System (INIS)

    Raccosta, S.; Martorana, V.; Manno, M.; Blanco, M.; Roberts, C.J.

    2016-01-01

    The role of intermolecular interaction in fibril-forming protein solutions and its relation with molecular conformation are crucial aspects for the control and inhibition of amyloid structures. Here, we study the fibril formation and the protein-protein interactions for two proteins at acidic ph, lysozyme and α-chymotrypsinogen. By using light scattering experiments and the Kirkwood-Buff integral approach, we show how concentration fluctuations are damped even at moderate protein concentrations by the dominant long-ranged electrostatic repulsion, which determines an effective crowded environment. In denaturing conditions, electrostatic repulsion keeps the monomeric solution in a thermodynamically metastable state, which is escaped through kinetically populated conformational sub-states. This explains how electrostatics acts as a gatekeeper in selecting a specific aggregation pathway.

  11. Molecular Pathways: Cachexia Signaling-A Targeted Approach to Cancer Treatment.

    Science.gov (United States)

    Miyamoto, Yuji; Hanna, Diana L; Zhang, Wu; Baba, Hideo; Lenz, Heinz-Josef

    2016-08-15

    Cancer cachexia is a multifactorial syndrome characterized by an ongoing loss of skeletal muscle mass, which negatively affects quality of life and portends a poor prognosis. Numerous molecular substrates and mechanisms underlie the dysregulation of skeletal muscle synthesis and degradation observed in cancer cachexia, including proinflammatory cytokines (TNFα, IL1, and IL6), and the NF-κB, IGF1/AKT/mTOR, and myostatin/activin-SMAD pathways. Recent preclinical and clinical studies have demonstrated that anti-cachexia drugs (such as MABp1 and soluble receptor antagonist of myostatin/activin) not only prevent muscle wasting but also may prolong overall survival. In this review, we focus on the significance of cachexia signaling in patients with cancer and highlight promising drugs targeting tumor cachexia in clinical development. Clin Cancer Res; 22(16); 3999-4004. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.

    Science.gov (United States)

    Lu, Kai; Gordon, Richard; Cao, Tong

    2015-03-01

    The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three-dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self-organize into tissue-specific structures given a correct in vitro environment. This proposition is supported by the generation of neo-organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue-engineering strategies may be conceptualized for generating self-organizing transplants. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: from Molecular Bases to Pharmacological Interventions

    Directory of Open Access Journals (Sweden)

    Botond Penke

    2018-01-01

    Full Text Available Neurodegenerative diseases (NDDs such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease (HD, amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS, endoplasmic reticulum associated degradation (ERAD, and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy. The role of heat shock proteins (Hsps in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed.

  14. Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment.

    Science.gov (United States)

    Polireddy, Kishore; Chen, Qi

    2016-01-01

    Pancreatic cancer is one of the most lethal cancers among all malignances, with a median overall survival of cancers harbor a variety of genetic alternations that render it difficult to treat even with targeted therapy. Recent studies revealed that pancreatic cancers are highly enriched with a cancer stem cell (CSC) population, which is resistant to chemotherapeutic drugs, and therefore escapes chemotherapy and promotes tumor recurrence. Cancer cell epithelial to mesenchymal transition (EMT) is highly associated with metastasis, generation of CSCs, and treatment resistance in pancreatic cancer. Reviewed here are the molecular biology of pancreatic cancer, the major signaling pathways regulating pancreatic cancer EMT and CSCs, and the advancement in current clinical and experimental treatments for pancreatic cancer.

  15. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    International Nuclear Information System (INIS)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro; Uehara, Takeki; Kato, Yuki; Kono, Hiroshi; Bataller, Ramon; Rusyn, Ivan

    2016-01-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl 4 )-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl 4 (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl 4 . We observed that combined treatment with CCl 4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis

  16. The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways.

    Science.gov (United States)

    Vajjhala, Parimala R; Ve, Thomas; Bentham, Adam; Stacey, Katryn J; Kobe, Bostjan

    2017-06-01

    The innate immune system is the first line of defense against infection and responses are initiated by pattern recognition receptors (PRRs) that detect pathogen-associated molecular patterns (PAMPs). PRRs also detect endogenous danger-associated molecular patterns (DAMPs) that are released by damaged or dying cells. The major PRRs include the Toll-like receptor (TLR) family members, the nucleotide binding and oligomerization domain, leucine-rich repeat containing (NLR) family, the PYHIN (ALR) family, the RIG-1-like receptors (RLRs), C-type lectin receptors (CLRs) and the oligoadenylate synthase (OAS)-like receptors and the related protein cyclic GMP-AMP synthase (cGAS). The different PRRs activate specific signaling pathways to collectively elicit responses including the induction of cytokine expression, processing of pro-inflammatory cytokines and cell-death responses. These responses control a pathogenic infection, initiate tissue repair and stimulate the adaptive immune system. A central theme of many innate immune signaling pathways is the clustering of activated PRRs followed by sequential recruitment and oligomerization of adaptors and downstream effector enzymes, to form higher-order arrangements that amplify the response and provide a scaffold for proximity-induced activation of the effector enzymes. Underlying the formation of these complexes are co-operative assembly mechanisms, whereby association of preceding components increases the affinity for downstream components. This ensures a rapid immune response to a low-level stimulus. Structural and biochemical studies have given key insights into the assembly of these complexes. Here we review the current understanding of assembly of immune signaling complexes, including inflammasomes initiated by NLR and PYHIN receptors, the myddosomes initiated by TLRs, and the MAVS CARD filament initiated by RIG-1. We highlight the co-operative assembly mechanisms during assembly of each of these complexes. Copyright

  17. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States); Uehara, Takeki; Kato, Yuki [Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka (Japan); Kono, Hiroshi [First Department of Surgery, University of Yamanashi, Yamanashi (Japan); Bataller, Ramon [Division of Gastroenterology & Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC (United States); Rusyn, Ivan, E-mail: irusyn@tamu.edu [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States)

    2016-11-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl{sub 4})-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl{sub 4} (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl{sub 4}. We observed that combined treatment with CCl{sub 4} and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis.

  18. Molecular pathways: the role of NR4A orphan nuclear receptors in cancer.

    LENUS (Irish Health Repository)

    Mohan, Helen M

    2012-06-15

    Nuclear receptors are of integral importance in carcinogenesis. Manipulation of classic ligand-activated nuclear receptors, such as estrogen receptor blockade in breast cancer, is an important established cancer therapy. Orphan nuclear receptors, such as nuclear family 4 subgroup A (NR4A) receptors, have no known natural ligand(s). These elusive receptors are increasingly recognized as molecular switches in cell survival and a molecular link between inflammation and cancer. NR4A receptors act as transcription factors, altering expression of downstream genes in apoptosis (Fas-ligand, TRAIL), proliferation, DNA repair, metabolism, cell migration, inflammation (interleukin-8), and angiogenesis (VEGF). NR4A receptors are modulated by multiple cell-signaling pathways, including protein kinase A\\/CREB, NF-κB, phosphoinositide 3-kinase\\/AKT, c-jun-NH(2)-kinase, Wnt, and mitogen-activated protein kinase pathways. NR4A receptor effects are context and tissue specific, influenced by their levels of expression, posttranslational modification, and interaction with other transcription factors (RXR, PPAR-Υ). The subcellular location of NR4A "nuclear receptors" is also important functionally; novel roles have been described in the cytoplasm where NR4A proteins act both indirectly and directly on the mitochondria to promote apoptosis via Bcl-2. NR4A receptors are implicated in a wide variety of malignancies, including breast, lung, colon, bladder, and prostate cancer; glioblastoma multiforme; sarcoma; and acute and\\/or chronic myeloid leukemia. NR4A receptors modulate response to conventional chemotherapy and represent an exciting frontier for chemotherapeutic intervention, as novel agents targeting NR4A receptors have now been developed. This review provides a concise clinical overview of current knowledge of NR4A signaling in cancer and the potential for therapeutic manipulation.

  19. Molecular evolutionary patterns of NAD+/Sirtuin aging signaling pathway across taxa.

    Directory of Open Access Journals (Sweden)

    Uma Gaur

    Full Text Available A deeper understanding of the conserved molecular mechanisms in different taxa have been made possible only because of the evolutionary conservation of crucial signaling pathways. In the present study, we explored the molecular evolutionary pattern of selection signatures in 51 species for 10 genes which are important components of NAD+/Sirtuin pathway and have already been directly linked to lifespan extension in worms and mice. Selection pressure analysis using PAML program revealed that MRPS5 and PPARGC1A were under significant constraints because of their functional significance. FOXO3a also displayed strong purifying selection. All three sirtuins, which were SIRT1, SIRT2 and SIRT6, displayed a great degree of conservation between taxa, which is consistent with the previous report. A significant evolutionary constraint is seen on the anti-oxidant gene, SOD3. As expected, TP53 gene was under significant selection pressure in mammals, owing to its major role in tumor progression. Poly-ADP-ribose polymerase (PARP genes displayed the most sites under positive selection. Further 3D structural analysis of PARP1 and PARP2 protein revealed that some of these positively selected sites caused a change in the electrostatic potential of the protein structure, which may allow a change in its interaction with other proteins and molecules ultimately leading to difference in the function. Although the functional significance of the positively selected sites could not be established in the variants databases, yet it will be interesting to see if these sites actually affect the function of PARP1 and PARP2.

  20. Integrative pathway dissection of molecular mechanisms of moxLDL-induced vascular smooth muscle phenotype transformation

    Directory of Open Access Journals (Sweden)

    Karagiannis George S

    2013-01-01

    Full Text Available Abstract Background Atherosclerosis (AT is a chronic inflammatory disease characterized by the accumulation of inflammatory cells, lipoproteins and fibrous tissue in the walls of arteries. AT is the primary cause of heart attacks and stroke and is the leading cause of death in Western countries. To date, the pathogenesis of AT is not well-defined. Studies have shown that the dedifferentiation of contractile and quiescent vascular smooth muscle cells (SMC to the proliferative, migratory and synthetic phenotype in the intima is pivotal for the onset and progression of AT. To further delineate the mechanisms underlying the pathogenesis of AT, we analyzed the early molecular pathways and networks involved in the SMC phenotype transformation. Methods Quiescent human coronary artery SMCs were treated with minimally-oxidized LDL (moxLDL, for 3 hours and 21 hours, respectively. Transcriptomic data was generated for both time-points using microarrays and was subjected to pathway analysis using Gene Set Enrichment Analysis, GeneMANIA and Ingenuity software tools. Gene expression heat maps and pathways enriched in differentially expressed genes were compared to identify functional biological themes to elucidate early and late molecular mechanisms of moxLDL-induced SMC dedifferentiation. Results Differentially expressed genes were found to be enriched in cholesterol biosynthesis, inflammatory cytokines, chemokines, growth factors, cell cycle control and myogenic contraction themes. These pathways are consistent with inflammatory responses, cell proliferation, migration and ECM production, which are characteristic of SMC dedifferentiation. Furthermore, up-regulation of cholesterol synthesis and dysregulation of cholesterol metabolism was observed in moxLDL-induced SMC. These observations are consistent with the accumulation of cholesterol and oxidized cholesterol esters, which induce proinflammatory reactions during atherogenesis. Our data implicate for the

  1. Direct molecular interactions between Beclin 1 and the canonical NFκB activation pathway.

    Science.gov (United States)

    Niso-Santano, Mireia; Criollo, Alfredo; Malik, Shoaib Ahmad; Michaud, Michael; Morselli, Eugenia; Mariño, Guillermo; Lachkar, Sylvie; Galluzzi, Lorenzo; Maiuri, Maria Chaira; Kroemer, Guido

    2012-02-01

    General (macro)autophagy and the activation of NFκB constitute prominent responses to a large array of intracellular and extracellular stress conditions. The depletion of any of the three subunits of the inhibitor of NFκB (IκB) kinase (IKKα, IKKβ, IKKγ/NEMO), each of which is essential for the canonical NFκB activation pathway, limits autophagy induction by physiological or pharmacological triggers, while constitutive active IKK subunits suffice to stimulate autophagy. The activation of IKK usually relies on TGFβ-activated kinase 1 (TAK1), which is also necessary for the optimal induction of autophagy in multiple settings. TAK1 interacts with two structurally similar co-activators, TAK1-binding proteins 2 and 3 (TAB2 and TAB3). Importantly, in resting conditions both TAB2 and TAB3 bind the essential autophagic factor Beclin 1, but not TAK1. In response to pro-autophagic stimuli, TAB2 and TAB3 dissociate from Beclin 1 and engage in stimulatory interactions with TAK1. The inhibitory interaction between TABs and Beclin 1 is mediated by their coiled-coil domains (CCDs). Accordingly, the overexpression of either TAB2 or TAB3 CCD stimulates Beclin 1- and TAK1-dependent autophagy. These results point to the existence of a direct molecular crosstalk between the canonical NFκB activation pathway and the autophagic core machinery that guarantees the coordinated induction of these processes in response to stress.

  2. Defining molecular initiating events in the adverse outcome pathway framework for risk assessment.

    Science.gov (United States)

    Allen, Timothy E H; Goodman, Jonathan M; Gutsell, Steve; Russell, Paul J

    2014-12-15

    Consumer and environmental safety decisions are based on exposure and hazard data, interpreted using risk assessment approaches. The adverse outcome pathway (AOP) conceptual framework has been presented as a logical sequence of events or processes within biological systems which can be used to understand adverse effects and refine current risk assessment practices in ecotoxicology. This framework can also be applied to human toxicology and is explored on the basis of investigating the molecular initiating events (MIEs) of compounds. The precise definition of the MIE has yet to reach general acceptance. In this work we present a unified MIE definition: an MIE is the initial interaction between a molecule and a biomolecule or biosystem that can be causally linked to an outcome via a pathway. Case studies are presented, and issues with current definitions are addressed. With the development of a unified MIE definition, the field can look toward defining, classifying, and characterizing more MIEs and using knowledge of the chemistry of these processes to aid AOP research and toxicity risk assessment. We also present the role of MIE research in the development of in vitro and in silico toxicology and suggest how, by using a combination of biological and chemical approaches, MIEs can be identified and characterized despite a lack of detailed reports, even for some of the most studied molecules in toxicology.

  3. Molecular Characterization and the Function of Argonaute3 in RNAi Pathway of Plutella xylostella.

    Science.gov (United States)

    Hameed, Muhammad Salman; Wang, Zhengbing; Vasseur, Liette; Yang, Guang

    2018-04-20

    Argonaute (Ago) protein family plays a key role in the RNA interference (RNAi) process in different insects including Lepidopteran. However, the role of Ago proteins in the RNAi pathway of Plutella xylostella is still unknown. We cloned an Argonaute3 gene in P. xylostella ( PxAgo3 ) with the complete coding sequence of 2832 bp. The encoded protein had 935 amino acids with an expected molecular weight of 108.9 kDa and an isoelectric point of 9.29. It contained a PAZ (PIWI/Argonaute/Zwile) domain and PIWI (P-element-induced whimpy testes) domain. PxAgo3 was classified into the Piwi subfamily of Ago proteins with a high similarity of 93.0% with Bombyx mori Ago3 (BmAgo3). The suppression of PxAgo3 by dsPxAgo3 was observed 3 h after treatment and was maintained until 24 h. Knockdown of PxAgo3 decreased the suppression level of PxActin by dsPxActin in P. xylostella cells, while overexpression of PxAgo3 increased the RNAi efficiency. Our results suggest that PxAgo3 play a key role in the double stranded RNA (dsRNA)-regulated RNAi pathway in P. xylostella .

  4. Molecular Characterization and the Function of Argonaute3 in RNAi Pathway of Plutella xylostella

    Directory of Open Access Journals (Sweden)

    Muhammad Salman Hameed

    2018-04-01

    Full Text Available Argonaute (Ago protein family plays a key role in the RNA interference (RNAi process in different insects including Lepidopteran. However, the role of Ago proteins in the RNAi pathway of Plutella xylostella is still unknown. We cloned an Argonaute3 gene in P. xylostella (PxAgo3 with the complete coding sequence of 2832 bp. The encoded protein had 935 amino acids with an expected molecular weight of 108.9 kDa and an isoelectric point of 9.29. It contained a PAZ (PIWI/Argonaute/Zwile domain and PIWI (P-element-induced whimpy testes domain. PxAgo3 was classified into the Piwi subfamily of Ago proteins with a high similarity of 93.0% with Bombyx mori Ago3 (BmAgo3. The suppression of PxAgo3 by dsPxAgo3 was observed 3 h after treatment and was maintained until 24 h. Knockdown of PxAgo3 decreased the suppression level of PxActin by dsPxActin in P. xylostella cells, while overexpression of PxAgo3 increased the RNAi efficiency. Our results suggest that PxAgo3 play a key role in the double stranded RNA (dsRNA-regulated RNAi pathway in P. xylostella.

  5. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms.

    Science.gov (United States)

    Tartaglia, Marco; Gelb, Bruce D

    2010-12-01

    RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway-the first identified mitogen-associated protein kinase (MAPK) cascade-mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity, and growth. Signaling through the RAS-MAPK cascade is tightly controlled; and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits, and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors, or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging toward the dysregulation of this signaling cascade, and major genotype-phenotype correlations. © 2010 New York Academy of Sciences.

  6. Varicose Veins: Role of Mechanotransduction of Venous Hypertension

    Science.gov (United States)

    Atta, Hussein M.

    2012-01-01

    Varicose veins affect approximately one-third of the adult population and result in significant psychological, physical, and financial burden. Nevertheless, the molecular pathogenesis of varicose vein formation remains unidentified. Venous hypertension exerted on veins of the lower extremity is considered the principal factor in varicose vein formation. The role of mechanotransduction of the high venous pressure in the pathogenesis of varicose vein formation has not been adequately investigated despite a good progress in understanding the mechanomolecular mechanisms involved in transduction of high blood pressure in the arterial wall. Understanding the nature of the mechanical forces, the mechanosensors and mechanotransducers in the vein wall, and the downstream signaling pathways will provide new molecular targets for the prevention and treatment of varicose veins. This paper summarized the current understanding of mechano-molecular pathways involved in transduction of hemodynamic forces induced by blood pressure and tries to relate this information to setting of venous hypertension in varicose veins. PMID:22489273

  7. Molecular interaction between K-Ras and H-REV107 in the Ras signaling pathway.

    Science.gov (United States)

    Han, Chang Woo; Jeong, Mi Suk; Jang, Se Bok

    2017-09-16

    Ras proteins are small GTPases that serve as master moderators of a large number of signaling pathways involved in various cellular processes. Activating mutations in Ras are found in about one-third of cancers. H-REV107, a K-Ras binding protein, plays an important role in determining K-Ras function. H-REV107 is a member of the HREV107 family of class II tumor suppressor genes and a growth inhibitory Ras target gene that suppresses cellular growth, differentiation, and apoptosis. Expression of H-REV107 was strongly reduced in about 50% of human carcinoma cell lines. However, the specific molecular mechanism by which H-REV107 inhibits Ras is still unknown. In the present study, we suggest that H-REV107 forms a strong complex with activating oncogenic mutation Q61H K-Ras from various biochemical binding assays and modeled structures. In addition, the interaction sites between K-Ras and H-REV107 were predicted based on homology modeling. Here, we found that some structure-based mutants of the K-Ras disrupted the complex formation with H-REV107. Finally, a novel molecular mechanism describing K-Ras and H-REV107 binding is suggested and insights into new K-Ras effector target drugs are provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Obesity, metabolic dysfunction and cardiac fibrosis: pathophysiologic pathways, molecular mechanisms and therapeutic opportunities

    Science.gov (United States)

    Cavalera, Michele; Wang, Junhong; Frangogiannis, Nikolaos G

    2014-01-01

    Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias and sudden cardiac death in obese subjects. Our review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiologic alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiologic alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the Renin-Angiotensin-Aldosterone System, induction of Transforming Growth Factor-β, oxidative stress, advanced glycation end-products (AGEs), endothelin-1, Rho-kinase signaling, leptin-mediated actions and upregulation of matricellular proteins (such as thrombospondin-1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response following cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to development of novel therapies to prevent heart failure and to attenuate post-infarction cardiac remodeling in obese patients. PMID:24880146

  9. Possible distinct molecular carcinogenic pathways for bladder cancer in Ukraine, before and after the Chernobyl disaster.

    Science.gov (United States)

    Morimura, Keiichirou; Romanenko, Alina; Min, Wei; Salim, Elsayed I; Kinoshita, Anna; Wanibuchi, Hideki; Vozianov, Alexander; Fukushima, Shoji

    2004-04-01

    After the Chernobyl accident in 1986, the incidence of urinary bladder cancers in the Ukraine increased gradually from 26.2 to 43.3 per 100,000 people between 1986 and 2001. In the areas of low level but persistent cesium-137 (137Cs) radio-contamination, a unique atypical radiation-related urinary bladder cystitis named 'Chernobyl cystitis', a possible pre-neoplastic condition in humans, has been detected. We have previously documented high incidences of bladder lesions, including severe dysplasias and/or carcinoma in situ, in association with this cystitis and correlating with oxidative DNA damage. To further investigate the molecular mechanisms underlying bladder carcinogenesis with this specific etiology, mutation analysis of p53 gene (exon 5-8) was performed for 11 and 18 paraffin-embedded bladder cancers in Ukrainians, respectively collected before and after the Chernobyl disaster. DNAs were extracted and subjected to nested PCR-single-strand conformational polymorphism analysis followed by direct DNA sequencing, as well as p53 immunohistochemistry (IHC). The incidences of p53 gene mutation were 54.5 and 16.7% for before and after the Chernobyl disaster, respectively, the difference being statistically significant. Also a tendency for higher p53 IHC score was apparent in the earlier group of lesions. No significant difference was noted for the proportions of historical types. These results point to possible distinct molecular carcinogenic pathways of bladder cancer formation, before and after the Chernobyl disaster, on the basis of variation in p53 gene alteration.

  10. Upregulation of Klotho potentially inhibits pulmonary vascular remodeling by blocking the activation of the Wnt signaling pathway in rats with PM2.5-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Cong, Lu-Hong; Du, Shi-Yu; Wu, Yi-Na; Liu, Ying; Li, Tao; Wang, Hui; Li, Gang; Duan, Jun

    2018-01-30

    We evaluated the effects of Klotho on pulmonary vascular remodeling and cell proliferation and apoptosis in rat models with PM2.5-induced pulmonary arterial hypertension (PAH) via the Wnt signaling pathway. After establishing rat models of PM2.5-induced PAH, these Sprague-Dawley male rats were randomized into control and model groups. Cells extracted from the model rats were sub-categorized into different groups. Activation of Wnt/β-catenin signaling transcription factor was detected by a TOPFlash/FOPFlash assay. A serial of experiment was conducted to identify the mechanism of Klotho on PHA via the Wnt signaling pathway. VEGF levels and PaCO 2 content were higher in the model group, while PaO 2, NO 2 - /NO 3 - content and Klotho level was lower compared to the control group. In comparison to the control group, the model group had decreased Klotho and Bax levels, and elevated Wnt-1, β-catenin, bcl-2, survivin, and PCNA expression, VEGF, IL-6, TNF-α, TNF-β1, and bFGF levels, as well as the percentage of pulmonary artery ring contraction. The Klotho vector, DKK-1 and DKK-1 + Klotho vector groups exhibited reduced cell proliferation, luciferase activity, and the expression of Wnt-1, β-catenin, bcl-2, survivin, and PCNA, as well as shortened S phase compared with the blank and NC groups. Compared with the Klotho vector and DKK-1 groups, the DKK-1 + Klotho vector groups had reduced cell proliferation, luciferase activity, and the expression of Wnt-1, β-catenin, bcl-2, survivin, and PCNA, as well as a shortened S phase. Conclusively, Klotho inhibits pulmonary vascular remodeling by inactivation of Wnt signaling pathway. © 2018 Wiley Periodicals, Inc.

  11. Paracrine effects of bone marrow-derived endothelial progenitor cells: cyclooxygenase-2/prostacyclin pathway in pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Dong-Mei Jiang

    Full Text Available BACKGROUND: Endothelial dysfunction is the pathophysiological characteristic of pulmonary arterial hypertension (PAH. Some paracrine factors secreted by bone marrow-derived endothelial progenitor cells (BMEPCs have the potential to strengthen endothelial integrity and function. This study investigated whether BMEPCs have the therapeutic potential to improve monocrotaline (MCT-induced PAH via producing vasoprotective substances in a paracrine fashion. METHODS AND RESULTS: Bone marrow-derived mononuclear cells were cultured for 7 days to yield BMEPCs. 24 hours or 3 weeks after exposure to BMEPCs in vitro or in vivo, the vascular reactivity, cyclooxygenase-2 (COX-2 expression, prostacyclin (PGI2 and cAMP release in isolated pulmonary arteries were examined respectively. Treatment with BMEPCs could improve the relaxation of pulmonary arteries in MCT-induced PAH and BMEPCs were grafted into the pulmonary bed. The COX-2/prostacyclin synthase (PGIS and its progenies PGI2/cAMP were found to be significantly increased in BMEPCs treated pulmonary arteries, and this action was reversed by a selective COX-2 inhibitor, NS398. Moreover, the same effect was also observed in conditioned medium obtained from BMEPCs culture. CONCLUSIONS: Implantation of BMEPCs effectively ameliorates MCT-induced PAH. Factors secreted in a paracrine fashion from BMEPCs promote vasoprotection by increasing the release of PGI2 and level of cAMP.

  12. Effects of 17β-estradiol and 2-methoxyestradiol on the oxidative stress-hypoxia inducible factor-1 pathway in hypoxic pulmonary hypertensive rats.

    Science.gov (United States)

    Wang, Li; Zheng, Quan; Yuan, Yadong; Li, Yanpeng; Gong, Xiaowei

    2017-05-01

    The present study aimed to investigate the effects of 17β-estradiol (E2) and 2-methoxyestradiol (2ME) on the oxidative stress-hypoxia inducible factor-1 (OS-HIF-1) pathway in hypoxic pulmonary hypertensive rats. Female Sprague-Dawley rats were divided randomly into 4 groups, as follows: i) Control (Group A); ii) ovariectomy (OVX) + hypoxia (Group B); iii) OVX + hypoxia + E2 injection (Group C); and iv) 2ME injection (Group D). The rats were maintained under hypoxic conditions for 8 weeks, and mean pulmonary artery pressure (mPAP) and pulmonary arteriole morphology were measured. The reactive oxygen species, superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (Cu/ZnSOD) levels in serum were also measured. MnSOD and HIF-1α expression levels in lung tissue were determined by western blotting and reverse transcription-quantitative polymerase chain reaction. The mPAP and arterial remodeling index were significantly elevated following chronic hypoxia exposure; however, experimental data revealed a reduced response in E2 and 2ME intervention rats. Compared with Group A, Group B had significantly elevated oxidative stress levels, as illustrated by increased serum ROS levels, decreased serum SOD and MnSOD levels and decreased MnSOD mRNA and protein expression levels in lung tissue. Furthermore, HIF-1α mRNA and protein expression in Group B was significantly elevated compared with Group A. E2 and 2ME intervention significantly attenuated the aforementioned parameter changes, suggesting that E2 and 2ME partially ameliorate hypoxic pulmonary hypertension. The underlying mechanism of this may be associated with the increase in MnSOD activity and expression and reduction in ROS level, which reduces the levels of transcription and translation of HIF-1α.

  13. Integrated GWAS and Pathway profiling for feed efficiency traits in pigs leads to novel genes and their molecular pathways

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Ostersen, Tage; Strathe, Anders Bjerring

    2013-01-01

    Genome wide association studies (GWAS) are being extensively used in revealing genetic architecture of complex traits. However, GWAS offer limited understanding of the biological role of significant single nucleotide polymorphisms (SNPs) affecting complex traits. Pathway analysis using GWAS results...... is an important step where we firstly detect genes located near GWAS-detected SNPs and subsequently we detect enrichment of these genes in various biological processes and pathways. The objective of this study was to apply these steps to identify relevant pathways involved in residual feed intake (RFI) in pigs....... Residual feed intake is a feed efficiency measure and is highly economically important in animal production. In our study, a total of 596 Yorkshire boars had phenotypic and genotypic records. After quality control, 37,915 SNPs were available for GWAS which was implemented in the DMU software package...

  14. Acanthopanax divaricatus var. chiisanensis reduces blood pressure via the endothelial nitric oxide synthase pathway in the spontaneously hypertensive rat model.

    Science.gov (United States)

    Park, Soo-Yeon; Do, Gyeong-Min; Lee, Sena; Lim, Yeni; Shin, Jae-Ho; Kwon, Oran

    2014-09-01

    In this study, we investigated the antihypertensive effects of Acanthopanax divaricatus var. chiisanensis extract (AE) and its active compound, acanthoside D (AD), on arterial blood pressure (BP) in vivo and endothelial function in vitro. We hypothesized that AE has antihypertensive effects, which is attributed to enhancement of endothelial function via the improvement of nitric oxide synthesis or the angiotensin II (Ang II) response. Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were randomly divided into 7 groups and then fed the following diets for 14 weeks: WKY fed a normal diet (WN); SHR fed a normal diet (SN); SHR fed a high-cholesterol (HC) diet (SH); SHR fed a HC diet with AE of 150, 300, 600 mg/kg body weight (SH-L, SH-M, SH-H); and SHR fed an HC diet with AD of 600 μg/kg body weight (SH-D). Blood pressure was significantly reduced in the SH-H compared with the SH from week 10 until week 14; BP was also significantly decreased in the SHR fed a HC diet with AE of 300 at week 14. Aortic wall thickness showed a tendency to decrease by AE and AD treatment. The SH-H showed increased endothelial nitric oxide synthase (eNOS) expression in the intima and media, compared with the SH. Furthermore, a significant increase in intracellular nitric oxide production was induced by AE and AD treatment in human umbilical vein endothelial cells. A significant increase of phospho-eNOS was found with a high dose of AE in human umbilical vein endothelial cells but not with AD. These results suggest that AE can regulate BP and improve endothelial function via eNOS-dependent vasodilation. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Transcriptome Profiling and Molecular Pathway Analysis of Genes in Association with Salinity Adaptation in Nile Tilapia Oreochromis niloticus.

    Directory of Open Access Journals (Sweden)

    Zhixin Xu

    Full Text Available Nile tilapia Oreochromis niloticus is a freshwater fish but can tolerate a wide range of salinities. The mechanism of salinity adaptation at the molecular level was studied using RNA-Seq to explore the molecular pathways in fish exposed to 0, 8, or 16 (practical salinity unit, psu. Based on the change of gene expressions, the differential genes unions from freshwater to saline water were classified into three categories. In the constant change category (1, steroid biosynthesis, steroid hormone biosynthesis, fat digestion and absorption, complement and coagulation cascades were significantly affected by salinity indicating the pivotal roles of sterol-related pathways in response to salinity stress. In the change-then-stable category (2, ribosomes, oxidative phosphorylation, signaling pathways for peroxisome proliferator activated receptors, and fat digestion and absorption changed significantly with increasing salinity, showing sensitivity to salinity variation in the environment and a responding threshold to salinity change. In the stable-then-change category (3, protein export, protein processing in endoplasmic reticulum, tight junction, thyroid hormone synthesis, antigen processing and presentation, glycolysis/gluconeogenesis and glycosaminoglycan biosynthesis-keratan sulfate were the significantly changed pathways, suggesting that these pathways were less sensitive to salinity variation. This study reveals fundamental mechanism of the molecular response to salinity adaptation in O. niloticus, and provides a general guidance to understand saline acclimation in O. niloticus.

  16. Combined quantum mechanical and molecular mechanical reaction pathway calculation for aromatic hydroxylation by p-hydroxybenzoate-3-hydroxylase

    NARCIS (Netherlands)

    Ridder, L.; Mulholland, A.; Rietjens, I.M.C.M.; Vervoort, J.

    1999-01-01

    The reaction pathway for the aromatic 3-hydroxylation of p-hydroxybenzoate by the reactive C4a-hydroperoxyflavin cofactor intermediate in p-hydroxybenzoate hydroxylase (PHBH) has been investigated by a combined quantum mechanical and molecular mechanical (QM/MM) method. A structural model for the

  17. Molecular pathways in the bystander response of cells exposed to very low fluences of alpha particles

    International Nuclear Information System (INIS)

    Little, J.B.

    2000-01-01

    Full text: We have examined biological effects in cell populations exposed to very low mean doses of alpha radiation by which only a small fraction of the cells are actually traversed by an alpha particle. We showed earlier that an enhanced frequency of sister chromatid exchanges and HPRT mutations occur in the non-irradiated, 'bystander' cells. The frequency of mutations induced by a single alpha particle traversing the nucleus of a cell was increased nearly fivefold at the lowest fluence studied, a result of mutations occurring in bystander cells. This was associated with a similar increase in the induction of micronuclei, indicating the induction of DNA damage in bystander cells. In order to gain information concerning molecular pathways, we studied changes in gene expression in bystander cells in confluent cultures of human diploid fibroblasts or mouse embryo-derived fibroblasts (MEFs) by western analysis and in-situ immunofluorescence. The expression levels of p53, p21 Waf1 and p34 cdc2 were significantly modulated in bystander cells. The upregulation of p53 and p21 Waf1 did not occur in cultures irradiated at low density, and was markedly reduced in the presence of the gap junction inhibitor lindane. The importance of gap-junction mediated intercellular communication was confirmed in connexin-43 knockout MEFs. Western blot analyses and electrophoretic mobility shift assays indicate that the bystander response is suppressed by incubation with superoxide dismutase as well as an inhibitor of NADPH oxidase, and is associated with the induction of NFKB, suggesting the effect is mediated by oxidative stress. The stress-activated protein kinase p38 and its downstream effector ATF2 are also induced in bystander cells independent of oxidative stress. These results will be discussed in terms of whether activation of the p53 damage response pathway is the direct result of signaling from irradiated cells, or rather is a consequence of DNA induced damage in the bystander

  18. Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol

    Directory of Open Access Journals (Sweden)

    Duke Stephen O

    2008-03-01

    Full Text Available Abstract Background Pterostilbene, a naturally occurring phenolic compound produced by agronomically important plant genera such as Vitis and Vacciunium, is a phytoalexin exhibiting potent antifungal activity. Additionally, recent studies have demonstrated several important pharmacological properties associated with pterostilbene. Despite this, a systematic study of the effects of pterostilbene on eukaryotic cells at the molecular level has not been previously reported. Thus, the aim of the present study was to identify the cellular pathways affected by pterostilbene by performing transcript profiling studies, employing the model yeast Saccharomyces cerevisiae. Methods S. cerevisiae strain S288C was exposed to pterostilbene at the IC50 concentration (70 μM for one generation (3 h. Transcript profiling experiments were performed on three biological replicate samples using the Affymetrix GeneChip Yeast Genome S98 Array. The data were analyzed using the statistical methods available in the GeneSifter microarray data analysis system. To validate the results, eleven differentially expressed genes were further examined by quantitative real-time RT-PCR, and S. cerevisiae mutant strains with deletions in these genes were analyzed for altered sensitivity to pterostilbene. Results Transcript profiling studies revealed that pterostilbene exposure significantly down-regulated the expression of genes involved in methionine metabolism, while the expression of genes involved in mitochondrial functions, drug detoxification, and transcription factor activity were significantly up-regulated. Additional analyses revealed that a large number of genes involved in lipid metabolism were also affected by pterostilbene treatment. Conclusion Using transcript profiling, we have identified the cellular pathways targeted by pterostilbene, an analog of resveratrol. The observed response in lipid metabolism genes is consistent with its known hypolipidemic properties, and the

  19. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma.

    Science.gov (United States)

    Weiser, Keith C; Liu, Bin; Hansen, Gwenn M; Skapura, Darlene; Hentges, Kathryn E; Yarlagadda, Sujatha; Morse Iii, Herbert C; Justice, Monica J

    2007-10-01

    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFkappaB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision .

  20. Portal Hypertension

    Science.gov (United States)

    ... Overview of Gallbladder Cancer Additional Content Medical News Portal Hypertension By Steven K. Herrine, MD, Professor of Medicine, ... Liver Hepatic Encephalopathy Jaundice in Adults Liver Failure Portal Hypertension Portal hypertension is abnormally high blood pressure in ...

  1. [Secondary hypertension].

    Science.gov (United States)

    Yoshida, Yuichi; Shibata, Hirotaka

    2015-11-01

    Hypertension is a common disease and a crucial predisposing factor of cardiovascular diseases. Approximately 10% of hypertensive patients are secondary hypertension, a pathogenetic factor of which can be identified. Secondary hypertension consists of endocrine, renal, and other diseases. Primary aldosteronism, Cushing's syndrome, pheochromocytoma, hyperthyroidism, and hypothyroidism result in endocrine hypertension. Renal parenchymal hypertension and renovascular hypertension result in renal hypertension. Other diseases such as obstructive sleep apnea syndrome are also very prevalent in secondary hypertension. It is very crucial to find and treat secondary hypertension at earlier stages since most secondary hypertension is curable or can be dramatically improved by specific treatment. One should keep in mind that screening of secondary hypertension should be done at least once in a daily clinical practice.

  2. Secondary Hypertension

    Science.gov (United States)

    Secondary hypertension Overview Secondary hypertension (secondary high blood pressure) is high blood pressure that's caused by another medical condition. Secondary hypertension can be caused by conditions that affect your kidneys, ...

  3. Subtypes of the Type II Pit Pattern Reflect Distinct Molecular Subclasses in the Serrated Neoplastic Pathway.

    Science.gov (United States)

    Aoki, Hironori; Yamamoto, Eiichiro; Yamano, Hiro-O; Sugai, Tamotsu; Kimura, Tomoaki; Tanaka, Yoshihito; Matsushita, Hiro-O; Yoshikawa, Kenjiro; Takagi, Ryo; Harada, Eiji; Nakaoka, Michiko; Yoshida, Yuko; Harada, Taku; Sudo, Gota; Eizuka, Makoto; Yorozu, Akira; Kitajima, Hiroshi; Niinuma, Takeshi; Kai, Masahiro; Nojima, Masanori; Suzuki, Hiromu; Nakase, Hiroshi

    2018-03-15

    Colorectal serrated lesions (SLs) are important premalignant lesions whose clinical and biological features are not fully understood. We aimed to establish accurate colonoscopic diagnosis and treatment of SLs through evaluation of associations among the morphological, pathological, and molecular characteristics of SLs. A total of 388 premalignant and 18 malignant colorectal lesions were studied. Using magnifying colonoscopy, microsurface structures were assessed based on Kudo's pit pattern classification system, and the Type II pit pattern was subcategorized into classical Type II, Type II-Open (Type II-O) and Type II-Long (Type II-L). BRAF/KRAS mutations and DNA methylation of CpG island methylator phenotype (CIMP) markers (MINT1, - 2, - 12, - 31, p16, and MLH1) were analyzed through pyrosequencing. Type II-O was tightly associated with sessile serrated adenoma/polyps (SSA/Ps) with BRAF mutation and CIMP-high. Most lesions with simple Type II or Type II-L were hyperplastic polyps, while mixtures of Type II or Type II-L plus more advanced pit patterns (III/IV) were characteristic of traditional serrated adenomas (TSAs). Type II-positive TSAs frequently exhibited BRAF mutation and CIMP-low, while Type II-L-positive TSAs were tightly associated with KRAS mutation and CIMP-low. Analysis of lesions containing both premalignant and cancerous components suggested Type II-L-positive TSAs may develop into KRAS-mutated/CIMP-low/microsatellite stable cancers, while Type II-O-positive SSA/Ps develop into BRAF-mutated/CIMP-high/microsatellite unstable cancers. These results suggest that Type II subtypes reflect distinct molecular subclasses in the serrated neoplasia pathway and that they could be useful hallmarks for identifying SLs at high risk of developing into CRC.

  4. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures.

    Science.gov (United States)

    Saeidi, Nima; Karmelek, Kathryn P; Paten, Jeffrey A; Zareian, Ramin; DiMasi, Elaine; Ruberti, Jeffrey W

    2012-10-01

    Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale

  5. Pulmonary Hypertension

    Science.gov (United States)

    Kim, John S.; McSweeney, Julia; Lee, Joanne; Ivy, Dunbar

    2015-01-01

    Objective Review the pharmacologic treatment options for pulmonary arterial hypertension (PAH) in the cardiac intensive care setting and summarize the most-recent literature supporting these therapies. Data Sources and Study Selection Literature search for prospective studies, retrospective analyses, and case reports evaluating the safety and efficacy of PAH therapies. Data Extraction Mechanisms of action and pharmacokinetics, treatment recommendations, safety considerations, and outcomes for specific medical therapies. Data Synthesis Specific targeted therapies developed for the treatment of adult patients with PAH have been applied for the benefit of children with PAH. With the exception of inhaled nitric oxide, there are no PAH medications approved for children in the US by the FDA. Unfortunately, data on treatment strategies in children with PAH are limited by the small number of randomized controlled clinical trials evaluating the safety and efficacy of specific treatments. The treatment options for PAH in children focus on endothelial-based pathways. Calcium channel blockers are recommended for use in a very small, select group of children who are responsive to vasoreactivity testing at cardiac catheterization. Phosphodiesterase type 5 inhibitor therapy is the most-commonly recommended oral treatment option in children with PAH. Prostacyclins provide adjunctive therapy for the treatment of PAH as infusions (intravenous and subcutaneous) and inhalation agents. Inhaled nitric oxide is the first line vasodilator therapy in persistent pulmonary hypertension of the newborn, and is commonly used in the treatment of PAH in the Intensive Care Unit (ICU). Endothelin receptor antagonists have been shown to improve exercise tolerance and survival in adult patients with PAH. Soluble Guanylate Cyclase Stimulators are the first drug class to be FDA approved for the treatment of chronic thromboembolic pulmonary hypertension. Conclusions Literature and data supporting the

  6. 7A.06: MATERNAL OBESITY AND THE DEVELOPMENTAL PROGRAMMING OF HYPERTENSION: ALTERED LEPTIN SIGNALLING PATHWAY IN THE CENTRAL NERVOUS SYSTEM.

    Science.gov (United States)

    Lim, J; Burke, S; Head, G A

    2015-06-01

    The prevalence of obesity in women among child baring age is increasing and this has been parallel to the increase in obesity in general population around the world. We investigated the trans-generational 'programming' of leptin signalling in the central nervous system (CNS) to increase blood pressure (BP), heart rate (HR) and renal sympathetic nerve activity (RSNA) following a high fat diet (HFD)feeding in mothers. Female New Zealand White rabbits were fed a high fat (13%) diet (mHFD) or a control diet (mCD) prior mating and during pregnancy. Kittens from mCD rabbits were subdivided and fed HFD for 10days (mCD10dHFD) at 15 weeks of age. All rabbits received an intracerebroventricular (ICV) catheter into the lateral ventricle and a recording electrode on the left renal nerve. Experiments were conducted in conscious rabbits and BP, HR and RSNA was measured. Rabbits received an increasing doses of ICV Melanocortin receptor antagonist (SHU9119),alpha-Melanocortin stimulating hormone (alpha-MSH) and a single dose of Leptin antagonist. ICV SHU9119 reduced BP (-5.8 ± 0.7mmHg and -4.1 ± 0.9mmHg) and RSNA (-2.4 ± 0.3 nu and -0.7 ± 0.3 nu) in mHFD and mCD10dHFD rabbits (P fat was increased (50%) in all rabbits that had HFD. Obesity during pregnancy 'programs' leptin signalling pathway in the CNS of the offspring during development. Leptin via activation of melanocirtin pathway plays a key role in the CNS contributing to the pressor and tachycardic effects as well as renal sympathetic nerve activity in the pathophysiology of obesity.

  7. Mycophenolic acid inhibits migration and invasion of gastric cancer cells via multiple molecular pathways.

    Directory of Open Access Journals (Sweden)

    Boying Dun

    Full Text Available Mycophenolic acid (MPA is the metabolized product and active element of mycophenolate mofetil (MMF that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA's antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA and proteins (PRKCA, AKT, SRC, CD147 and MMP1 with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1. However, a few genes that may promote migration (CYR61 and NOS3 were up-regulated. Therefore, MPA's overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment.

  8. Clinical translation of photobiomodulation therapy using evidences from precision molecular pathway analyses (Conference Presentation)

    Science.gov (United States)

    Arany, Praveen

    2017-02-01

    Can `light' be a Drug? To satisfy this definition as a pharmaceutical agent, light must be absorbed and change bodily function. Much evidence from our understanding of our visual cycle and Vitamin D metabolism have all noted this phenomenon. Advances in optophotonic technologies along with a better understanding of light-tissue interactions, especially in in vivo optical imaging and optogenetics, are spearheading the popularity of biophotonics in biology and medicine. The use of lasers and light devices at high doses in dermatology, ophthalmology, oncology and dentistry are now considered mainstream for certain clinical applications such as surgery, skin rejuvenation, ocular and soft tissue recontouring, anti-tumor and anti-microbial photodynamic therapy. In contrast, therapeutic use of low dose biophotonics devices is called Low Level Light / Laser Therapy (LLLT), now termed Photobiomodulation (PBM) Therapy. This therapy is defined as a non-thermal use of non-ionizing forms of electromagnetic radiation to alleviate pain, inflammation, modulating the immune responses and promoting wound healing and tissue regeneration. Surprisingly, despite vast volumes of scientific literature from both clinical and laboratory studies noting the phenomenological evidences for this innovative therapy, limited mechanistic insights have prevented the development of rigorous, reproducible clinical protocols. This presentation will outline our current efforts at ongoing efforts in our group to assess molecular pathways and precisely define clinical treatment variables to enable clinical translation with PBM therapies.

  9. Catestatin Gly364Ser Variant Alters Systemic Blood Pressure and the Risk for Hypertension in Human Populations via Endothelial Nitric Oxide Pathway.

    Science.gov (United States)

    Kiranmayi, Malapaka; Chirasani, Venkat R; Allu, Prasanna K R; Subramanian, Lakshmi; Martelli, Elizabeth E; Sahu, Bhavani S; Vishnuprabu, Durairajpandian; Kumaragurubaran, Rathnakumar; Sharma, Saurabh; Bodhini, Dhanasekaran; Dixit, Madhulika; Munirajan, Arasambattu K; Khullar, Madhu; Radha, Venkatesan; Mohan, Viswanathan; Mullasari, Ajit S; Naga Prasad, Sathyamangla V; Senapati, Sanjib; Mahapatra, Nitish R

    2016-08-01

    Catestatin (CST), an endogenous antihypertensive/antiadrenergic peptide, is a novel regulator of cardiovascular physiology. Here, we report case-control studies in 2 geographically/ethnically distinct Indian populations (n≈4000) that showed association of the naturally-occurring human CST-Gly364Ser variant with increased risk for hypertension (age-adjusted odds ratios: 1.483; P=0.009 and 2.951; P=0.005). Consistently, 364Ser allele carriers displayed elevated systolic (up to ≈8 mm Hg; P=0.004) and diastolic (up to ≈6 mm Hg; P=0.001) blood pressure. The variant allele was also found to be in linkage disequilibrium with other functional single-nucleotide polymorphisms in the CHGA promoter and nearby coding region. Functional characterization of the Gly364Ser variant was performed using cellular/molecular biological experiments (viz peptide-receptor binding assays, nitric oxide [NO], phosphorylated extracellular regulated kinase, and phosphorylated endothelial NO synthase estimations) and computational approaches (molecular dynamics simulations for structural analysis of wild-type [CST-WT] and variant [CST-364Ser] peptides and docking of peptide/ligand with β-adrenergic receptors [ADRB1/2]). CST-WT and CST-364Ser peptides differed profoundly in their secondary structures and showed differential interactions with ADRB2; although CST-WT displaced the ligand bound to ADRB2, CST-364Ser failed to do the same. Furthermore, CST-WT significantly inhibited ADRB2-stimulated extracellular regulated kinase activation, suggesting an antagonistic role towards ADRB2 unlike CST-364Ser. Consequently, CST-WT was more potent in NO production in human umbilical vein endothelial cells as compared with CST-364Ser. This NO-producing ability of CST-WT was abrogated by ADRB2 antagonist ICI 118551. In conclusion, CST-364Ser allele enhanced the risk for hypertension in human populations, possibly via diminished endothelial NO production because of altered interactions of CST-364Ser

  10. DMPD: Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cellularsaboteurs. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9287290 Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cell...ml) Show Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cellularsaboteurs. PubmedID ...9287290 Title Lipoprotein trafficking in vascular cells. Molecular Trojan horses

  11. Molecular pathways reflecting poor intrauterine growth are found in Wharton's jelly-derived mesenchymal stem cells.

    Science.gov (United States)

    Sukarieh, Rami; Joseph, Roy; Leow, Shi Chi; Li, Ying; Löffler, Mona; Aris, Izzuddin M; Tan, Jun Hao; Teh, Ai Ling; Chen, Li; Holbrook, Joanna D; Ng, Kai Lyn; Lee, Yung Seng; Chong, Yap Seng; Summers, Scott A; Gluckman, Peter D; Stünkel, Walter

    2014-10-10

    Are molecular pathways reflecting the biology of small for gestational age (SGA) neonates preserved in umbilical cord-derived mesenchymal stem cells (MSCs)? MSCs from SGA newborns were found to express an altered EGR-1-dependent gene network involved in the regulation of cell proliferation and oxidative stress. Individuals with suboptimal intrauterine development are at greater risk of metabolic diseases such as type II diabetes, obesity and cardiovascular disease. Umbilical cords (n = 283) from the GUSTO (growing up in Singapore towards healthy outcomes) birth cohort study, and primary MSC isolates established from SGA and matched control cases (n = 6 per group), were subjected to gene expression analysis and candidate genes were studied for functional validation. Umbilical cord specimens were derived from babies born at the National University Hospital (NUH) in Singapore. Local ethical approval was obtained. MSC isolates were established in Wharton's jelly and molecular analysis was conducted by gene expression microarrays and RT-PCR. Cells from SGA and control groups were compared in the presence and absence of insulin and candidate gene function was studied via siRNA-mediated gene knockdown and over-expression experiments in MSCs. Using repeated measure ANOVAs, proliferation rates of MSCs isolated from SGA neonates were found to be significantly increased (P < 0.01). In the absence of insulin, EGR-1 levels were found to be significantly reduced in the group of SGA-derived MSCs, whereas EGR-1 expression was found to be up-regulated in the same group in the presence of insulin (P < 0.01). EGR-1 was found to induce expression of COX-2 in the SGA group (P < 0.01) and both, EGR-1 and COX-2 stimulated glucose uptake in MSCs (P < 0.01). EGR-1 and COX-2 levels were associated in whole umbilical cords (n = 283, P < 0.01) and EGR-1 positively correlated with abdominal circumference and birthweight (n = 91, P < 0.01 and n = 91, P < 0.01). Cell models may not entirely

  12. Data driven linear algebraic methods for analysis of molecular pathways: application to disease progression in shock/trauma.

    Science.gov (United States)

    McGuire, Mary F; Sriram Iyengar, M; Mercer, David W

    2012-04-01

    Although trauma is the leading cause of death for those below 45years of age, there is a dearth of information about the temporal behavior of the underlying biological mechanisms in those who survive the initial trauma only to later suffer from syndromes such as multiple organ failure. Levels of serum cytokines potentially affect the clinical outcomes of trauma; understanding how cytokine levels modulate intra-cellular signaling pathways can yield insights into molecular mechanisms of disease progression and help to identify targeted therapies. However, developing such analyses is challenging since it necessitates the integration and interpretation of large amounts of heterogeneous, quantitative and qualitative data. Here we present the Pathway Semantics Algorithm (PSA), an algebraic process of node and edge analyses of evoked biological pathways over time for in silico discovery of biomedical hypotheses, using data from a prospective controlled clinical study of the role of cytokines in multiple organ failure (MOF) at a major US trauma center. A matrix algebra approach was used in both the PSA node and PSA edge analyses with different matrix configurations and computations based on the biomedical questions to be examined. In the edge analysis, a percentage measure of crosstalk called XTALK was also developed to assess cross-pathway interference. In the node/molecular analysis of the first 24h from trauma, PSA uncovered seven molecules evoked computationally that differentiated outcomes of MOF or non-MOF (NMOF), of which three molecules had not been previously associated with any shock/trauma syndrome. In the edge/molecular interaction analysis, PSA examined four categories of functional molecular interaction relationships--activation, expression, inhibition, and transcription--and found that the interaction patterns and crosstalk changed over time and outcome. The PSA edge analysis suggests that a diagnosis, prognosis or therapy based on molecular interaction

  13. Inhibition of the JAK2/STAT3/SOSC1 Signaling Pathway Improves Secretion Function of Vascular Endothelial Cells in a Rat Model of Pregnancy-Induced Hypertension

    Directory of Open Access Journals (Sweden)

    Jian-Ying Luo

    2016-11-01

    Full Text Available Background/Aims: The present study aimed to investigate the effects of the JAK2/STAT3/SOSC1 signaling pathway on the secretion function of vascular endothelial cells (VECs in a rat model of pregnancy-induced hypertension (PIH. Methods: A PIH rat model was established. Forty-eight pregnant Sprague-Dawley female rats were selected and assigned into four groups: the normal group (normal non-pregnant rats, the non-PIH group (pregnant rats without PIH, the PIH group (pregnant rats with PIH and the AG490 group (pregnant rats with PIH treated with AG490. Systolic blood pressure (SBP and urinary protein (UP were measured. The expressions of JAK2/STAT3/SOSC1 signaling pathway-related proteins in placenta tissues were detect by Western blotting. Radioimmunoassay was applied to detect serum levels of nitric oxide (NO, super oxide dismutase (SOD, placental growth factor (PGF, thromboxane B2 (TXB2 and endothelin (ET. Enzyme-linked immunosorbent assay (ELISA was used to determine serum levels of interleukin-6 (IL-6, interleukin-10 (IL-10 and tumor necrosis factor-α (TNF-α. Results: Compared with the normal and non-PIH groups, the PIH and AG490 groups had higher SBP and UP levels at 17th and 25th day of pregnancy. The expressions of p/t-JAK2, p/t-STAT3 and SOSC1 in the PIH and AG490 groups were higher than those in the non-PIH group, while the expressions of p/t-JAK2, p/t-STAT3 and SOSC1 in the AG490 group were lower than those in the PIH group. Compared with the non-PIH group, serum levels of ET, TXB2, IL-6 and TNF-α were increased in the PIH and AG490 groups, while serum levels of NO, SOD, 6-keto-PGF1a and IL-10 levels were reduced. Furthermore, the AG490 had lower serum levels of ET, TXB2, IL-6 and TNF-α and higher serum levels of NO, SOD, 6-keto-PGF1a and IL-10 than those in the PIH group. Conclusion: Our study provides evidence that inhibition of the JAK2/STAT3/SOSC1 signaling pathway could improve the secretion function of VECs in PIH rats.

  14. Experimental Studies of the Molecular Pathways Regulated by Exercise and Resveratrol in Heart, Skeletal Muscle and the Vasculature

    Directory of Open Access Journals (Sweden)

    Vernon W. Dolinsky

    2014-09-01

    Full Text Available Regular exercise contributes to healthy aging and the prevention of chronic disease. Recent research has focused on the development of molecules, such as resveratrol, that activate similar metabolic and stress response pathways as exercise training. In this review, we describe the effects of exercise training and resveratrol on some of the organs and tissues that act in concert to transport oxygen throughout the body. In particular, we focus on animal studies that investigate the molecular signaling pathways induced by these interventions. We also compare and contrast the effects of exercise and resveratrol in diseased states.

  15. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines.

    Science.gov (United States)

    Alonso, Carlos Agustín I; Osycka-Salut, Claudia E; Castellano, Luciana; Cesari, Andreína; Di Siervi, Nicolás; Mutto, Adrián; Johannisson, Anders; Morrell, Jane M; Davio, Carlos; Perez-Martinez, Silvina

    2017-08-01

    Is extracellular cAMP involved in the regulation of signalling pathways in bovine sperm capacitation? Extracellular cAMP induces sperm capacitation through the activation of different signalling pathways that involve phospholipase C (PLC), PKC/ERK1-2 signalling and an increase in sperm Ca2+ levels, as well as soluble AC and cAMP/protein kinase A (PKA) signalling. In order to fertilize the oocyte, ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, known as capacitation. This correlates with a number of membrane and metabolic modifications that include an increased influx of bicarbonate and Ca2+, activation of a soluble adenylyl cyclase (sAC) to produce cAMP, PKA activation, protein tyrosine phosphorylation and the development of hyperactivated motility. We previously reported that cAMP efflux by Multidrug Resistance Protein 4 (MRP4) occurs during sperm capacitation and the pharmacological blockade of this inhibits the process. Moreover, the supplementation of incubation media with cAMP abolishes the inhibition and leads to sperm capacitation, suggesting that extracellular cAMP regulates crucial signalling cascades involved in this process. Bovine sperm were selected by the wool glass column method, and washed by centrifugation in BSA-Free Tyrode's Albumin Lactate Pyruvate (sp-TALP). Pellets were resuspended then diluted for each treatment. For in vitro capacitation, 10 to 15 × 106 SPZ/ml were incubated in 0.3% BSA sp-TALP at 38.5°C for 45 min under different experimental conditions. To evaluate the role of extracellular cAMP on different events associated with sperm capacitation, 10 nM cAMP was added to the incubation medium as well as different inhibitors of enzymes associated with signalling transduction pathways: U73122 (PLC inhibitor, 10 μM), Gö6983 (PKC inhibitor, 10 μM), PD98059 (ERK-1/2 inhibitor, 30 μM), H89 and KT (PKA inhibitors, 50 μM and 100 nM, respectively), KH7 (sAC inhibitor, 10 μM), BAPTA

  16. Current update on established and novel biomarkers in salivary gland carcinoma pathology and the molecular pathways involved.

    Science.gov (United States)

    Stenner, Markus; Klussmann, J Peter

    2009-03-01

    This review aims to take stock of the new information that has accumulated over the past decade on the molecular pathology of salivary gland cancer. Emphasis will be placed on established and novel immunohistochemical markers, the pathways involved, and on findings of prognostic importance as well as new therapeutic concepts. Whenever reasonable, analogies to tumors of better explored, histologically related glandular organs such as pancreas and breast are established.

  17. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling

    Science.gov (United States)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.

    2009-01-01

    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  18. The inherent dynamics of a molecular liquid: Geodesic pathways through the potential energy landscape of a liquid of linear molecules

    Science.gov (United States)

    Jacobson, Daniel; Stratt, Richard M.

    2014-05-01

    Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation—molecules largely thread their way through narrow channels available in the potential energy landscape.

  19. Benazepril, an angiotensin-converting enzyme inhibitor, alleviates renal injury in spontaneously hypertensive rats by inhibiting advanced glycation end-product-mediated pathways.

    Science.gov (United States)

    Liu, Xue-Ping; Pang, Yue-Jiu; Zhu, Wei-Wei; Zhao, Ting-Ting; Zheng, Min; Wang, Yi-Bing; Sun, Zhi-Jian; Sun, Siao-Jing

    2009-03-01

    1. Advanced glycation end-products (AGE) and their receptors (RAGE) have been implicated in renal damage in diabetes. The aim of the present study was to investigate the effects of benazepril, an angiotensin-converting enzyme inhibitor (ACEI), on the formation of AGE, the expression RAGE and other associated components in the oxidative stress pathway in spontaneously hypertensive rats (SHR). 2. Groups of SHR were treated with or without 10 mg/kg per day benazepril for 12 weeks. Systolic blood pressure (SBP) and angiotensin (Ang) II levels were evaluated in SHR and control Wistar-Kyoto (WKY) rats. Renal function was investigated by determining levels of proteinuria and glomerulosclerosis. Furthermore, reactive oxygen species (ROS) in the rat renal cortex were analysed using an H(2)O(2)-based hydroxyl radical-detection assay and the renal content of AGE, RAGE, NADPH oxidase p47phox, nuclear factor (NF)-kappaB p65, phosphorylated (p-) NF-kappaB p65, vascular cell adhesion molecule (VCAM)-1 and transforming growth factor (TGF)-beta1 was determined by immunohistochemistry, quantitative real-time polymerase chain reaction and western blot analysis. 3. Treatment with benazepril inhibited the formation of AngII, reduced SBP and alleviated renal lesions in SHR compared with both untreated SHR and control WKY rats. Benazepril treatment significantly suppressed the accumulation of AGE and expression of RAGE in the kidney of SHR. In addition, benazepril treatment reduced the upregulation of NADPH oxidase p47phox, ROS generation and NF-kappaB p65, p-NF-kappaB p65, VCAM-1 and TGF-beta1 expression in the kidney of SHR compared with both untreated SHR and control WKY rats. 4. The results of the present study provide new insights into the regulation by the renin-angiotensin system of AGE-RAGE, oxidative stress and nephropathy, increasing our understanding of the role of the RAS in nephropathy.

  20. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions.

    Science.gov (United States)

    Roy, Raktim; Shilpa, P Phani; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.

  1. DMPD: Molecular mechanisms of the anti-inflammatory functions of interferons. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18086388 Molecular mechanisms of the anti-inflammatory functions of interferons. Ko....csml) Show Molecular mechanisms of the anti-inflammatory functions of interferons. PubmedID 18086388 Title ...Molecular mechanisms of the anti-inflammatory functions of interferons. Authors K

  2. Molecular mechanism of protein assembly on DNA double-strand breaks in the non-homologous end-joining pathway

    International Nuclear Information System (INIS)

    Yano, Ken-ichi; Morotomi-Yano, Keiko; Adachi, Noritaka; Akiyama, Hidenori

    2009-01-01

    Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks (DSBs) in mammalian species. Upon DSB induction, a living cell quickly activates the NHEJ pathway comprising of multiple molecular events. However, it has been difficult to analyze the initial phase of DSB responses in living cells, primarily due to technical limitations. Recent advances in real-time imaging and site-directed DSB induction using laser microbeam allow us to monitor the spatiotemporal dynamics of NHEJ factors in the immediate-early phase after DSB induction. These new approaches, together with the use of cell lines deficient in each essential NHEJ factor, provide novel mechanistic insights into DSB recognition and protein assembly on DSBs in the NHEJ pathway. In this review, we provide an overview of recent progresses in the imaging analyses of the NHEJ core factors. These studies strongly suggest that the NHEJ core factors are pre-assembled into a large complex on DSBs prior to the progression of the biochemical reactions in the NHEJ pathway. Instead of the traditional step-by-step assembly model from the static view of NHEJ, a novel model for dynamic protein assembly in the NHEJ pathway is proposed. This new model provides important mechanistic insights into the protein assembly at DSBs and the regulation of DSB repair. (author)

  3. Pathways and mechanisms for product release in the engineered haloalkane dehalogenases explored using classical and random acceleration molecular dynamics simulations.

    Science.gov (United States)

    Klvana, Martin; Pavlova, Martina; Koudelakova, Tana; Chaloupkova, Radka; Dvorak, Pavel; Prokop, Zbynek; Stsiapanava, Alena; Kuty, Michal; Kuta-Smatanova, Ivana; Dohnalek, Jan; Kulhanek, Petr; Wade, Rebecca C; Damborsky, Jiri

    2009-10-09

    Eight mutants of the DhaA haloalkane dehalogenase carrying mutations at the residues lining two tunnels, previously observed by protein X-ray crystallography, were constructed and biochemically characterized. The mutants showed distinct catalytic efficiencies with the halogenated substrate 1,2,3-trichloropropane. Release pathways for the two dehalogenation products, 2,3-dichloropropane-1-ol and the chloride ion, and exchange pathways for water molecules, were studied using classical and random acceleration molecular dynamics simulations. Five different pathways, denoted p1, p2a, p2b, p2c, and p3, were identified. The individual pathways showed differing selectivity for the products: the chloride ion releases solely through p1, whereas the alcohol releases through all five pathways. Water molecules play a crucial role for release of both products by breakage of their hydrogen-bonding interactions with the active-site residues and shielding the charged chloride ion during its passage through a hydrophobic tunnel. Exchange of the chloride ions, the alcohol product, and the waters between the buried active site and the bulk solvent can be realized by three different mechanisms: (i) passage through a permanent tunnel, (ii) passage through a transient tunnel, and (iii) migration through a protein matrix. We demonstrate that the accessibility of the pathways and the mechanisms of ligand exchange were modified by mutations. Insertion of bulky aromatic residues in the tunnel corresponding to pathway p1 leads to reduced accessibility to the ligands and a change in mechanism of opening from permanent to transient. We propose that engineering the accessibility of tunnels and the mechanisms of ligand exchange is a powerful strategy for modification of the functional properties of enzymes with buried active sites.

  4. Hypertensive Crisis

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Hypertensive Crisis: When You Should Call 9-1-1 for ... Nov 13,2017 A hypertensive ( high blood pressure ) crisis is when blood pressure rises quickly and severely ...

  5. Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes

    OpenAIRE

    Lee, Erinna F.; Clarke, Oliver B.; Evangelista, Marco; Feng, Zhiping; Speed, Terence P.; Tchoubrieva, Elissaveta B.; Strasser, Andreas; Kalinna, Bernd H.; Colman, Peter M.; Fairlie, W. Douglas

    2011-01-01

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2–regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2–like molecules, and Bax/Bak-like proteins that facilitate mitochondrial ou...

  6. Exploration of molecular pathways mediating electric field-directed Schwann cell migration by RNA-Seq

    Science.gov (United States)

    Yao, Li; Li, Yongchao; Knapp, Jennifer; Smith, Peter

    2015-01-01

    In peripheral nervous systems, Schwann cells wrap around axons of motor and sensory neurons to form the myelin sheath. Following spinal cord injury, Schwann cells regenerate and migrate to the lesion and are involved in the spinal cord regeneration process. Transplantation of Schwann cells into injured neural tissue results in enhanced spinal axonal regeneration. Effective directional migration of Schwann cells is critical in the neural regeneration process. In this study, we report that Schwann cells migrate anodally in an applied electric field (EF). The directedness and displacement of anodal migration increased significantly when the strength of the EF increased from 50 mV/mm to 200 mV/mm. The EF did not significantly affect the cell migration speed. To explore the genes and signaling pathways that regulate cell migration in EFs, we performed a comparative analysis of differential gene expression between cells stimulated with an EF (100 mV/mm) and those without using next-generation RNA sequencing, verified by RT-qPCR. Based on the cut-off criteria (FC > 1.2, q cells versus EF-stimulated cells. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that compared to the control group, 21 pathways are down-regulated, while 10 pathways are up-regulated. Differentially expressed genes participate in multiple cellular signaling pathways involved in the regulation of cell migration, including pathways of regulation of actin cytoskeleton, focal adhesion, and PI3K-Akt. PMID:25557037

  7. Primary Pediatric Hypertension: Current Understanding and Emerging Concepts.

    Science.gov (United States)

    Tiu, Andrew C; Bishop, Michael D; Asico, Laureano D; Jose, Pedro A; Villar, Van Anthony M

    2017-09-01

    The rising prevalence of primary pediatric hypertension and its tracking into adult hypertension point to the importance of determining its pathogenesis to gain insights into its current and emerging management. Considering that the intricate control of BP is governed by a myriad of anatomical, molecular biological, biochemical, and physiological systems, multiple genes are likely to influence an individual's BP and susceptibility to develop hypertension. The long-term regulation of BP rests on renal and non-renal mechanisms. One renal mechanism relates to sodium transport. The impaired renal sodium handling in primary hypertension and salt sensitivity may be caused by aberrant counter-regulatory natriuretic and anti-natriuretic pathways. The sympathetic nervous and renin-angiotensin-aldosterone systems are examples of antinatriuretic pathways. An important counter-regulatory natriuretic pathway is afforded by the renal autocrine/paracrine dopamine system, aberrations of which are involved in the pathogenesis of hypertension, including that associated with obesity. We present updates on the complex interactions of these two systems with dietary salt intake in relation to obesity, insulin resistance, inflammation, and oxidative stress. We review how insults during pregnancy such as maternal and paternal malnutrition, glucocorticoid exposure, infection, placental insufficiency, and treatments during the neonatal period have long-lasting effects in the regulation of renal function and BP. Moreover, these effects have sex differences. There is a need for early diagnosis, frequent monitoring, and timely management due to increasing evidence of premature target organ damage. Large controlled studies are needed to evaluate the long-term consequences of the treatment of elevated BP during childhood, especially to establish the validity of the current definition and treatment of pediatric hypertension.

  8. Comparison of single and combination diuretics on glucose tolerance (PATHWAY-3): protocol for a randomised double-blind trial in patients with essential hypertension.

    Science.gov (United States)

    Brown, Morris J; Williams, Bryan; MacDonald, Thomas M; Caulfield, Mark; Cruickshank, J Kennedy; McInnes, Gordon; Sever, Peter; Webb, David J; Salsbury, Jackie; Morant, Steve; Ford, Ian

    2015-08-07

    Thiazide diuretics are associated with increased risk of diabetes mellitus. This risk may arise from K(+)-depletion. We hypothesised that a K(+)-sparing diuretic will improve glucose tolerance, and that combination of low-dose thiazide with K(+)-sparing diuretic will improve both blood pressure reduction and glucose tolerance, compared to a high-dose thiazide. This is a parallel-group, randomised, double-blind, multicentre trial, comparing hydrochlorothiazide 25-50 mg, amiloride 10-20 mg and combination of both diuretics at half these doses. A single-blind placebo run-in of 1 month is followed by 24 weeks of blinded active treatment. There is forced dose-doubling after 3 months. The Primary end point is the blood glucose 2 h after oral ingestion of a 75 g glucose drink (OGTT), following overnight fasting. The primary outcome is the difference between 2 h glucose at weeks 0, 12 and 24. Secondary outcomes include the changes in home systolic blood pressure (BP) and glycated haemoglobin and prediction of response by baseline plasma renin. Eligibility criteria are: age 18-79, systolic BP on permitted background treatment ≥ 140 mm Hg and home BP ≥ 130 mm Hg and one component of the metabolic syndrome additional to hypertension. Principal exclusions are diabetes, estimated-glomerular filtration rate 200 mm Hg or DBP >120 mm Hg (box 2). The sample size calculation indicates that 486 patients will give 80% power at α=0.01 to detect a difference in means of 1 mmol/L (SD=2.2) between 2 h glucose on hydrochlorothiazide and comparators. PATHWAY-3 was approved by Cambridge South Ethics Committee, number 09/H035/19. The trial results will be published in a peer-reviewed scientific journal. Eudract number 2009-010068-41 and clinical trials registration number: NCT02351973. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. The Protective Effects of Κ-Opioid Receptor Stimulation in Hypoxic Pulmonary Hypertension Involve Inhibition of Autophagy Through the AMPK-MTOR Pathway

    Directory of Open Access Journals (Sweden)

    Yaguang Zhou

    2017-12-01

    Full Text Available Background/Aims: In a previous study, we showed that κ-opioid receptor stimulation with the selective agonist U50,488H ameliorated hypoxic pulmonary hypertension (HPH. However, the roles that pulmonary arterial smooth muscle cell (PASMC proliferation, apoptosis, and autophagy play in κ-opioid receptor-mediated protection against HPH are still unknown. The goal of the present study was to investigate the role of autophagy in U50,488H-induced HPH protection and the underlying mechanisms. Methods: Rats were exposed to 10% oxygen for three weeks to induce HPH. After hypoxia, the mean pulmonary arterial pressure (mPAP and the right ventricular pressure (RVP were measured. Cell viability was monitored using the Cell Counting Kit-8 (CCK-8 assay. Cell apoptosis was detected by flow cytometry and Western blot. Autophagy was assessed by means of the mRFP-GFP-LC3 adenovirus transfection assay and by Western blot. Results: Inhibition of autophagy by the administration of chloroquine prevented the development of HPH in the rat model, as evidenced by significantly reduced mPAP and RVP, as well as decreased autophagy. U50,488H mimicked the effects of chloroquine, and the effects of U50,488H were blocked by nor-BNI, a selective κ-opioid receptor antagonist. In vitro experiments showed that the inhibition of autophagy by chloroquine was associated with decreased proliferation and increased apoptosis of PASMCs. Under hypoxia, U50,488H also significantly inhibited autophagy, reduced proliferation and increased apoptosis of PASMCs. These effects of U50,488H were blocked by nor-BNI. Moreover, exposure to hypoxic conditions significantly increased AMPK phosphorylation and reduced mTOR phosphorylation, and these effects were abrogated by U50,488H. The effects of U50,488H on PASMC autophagy were inhibited by AICAR, a selective AMPK agonist, or by rapamycin, a selective mTOR inhibitor. Conclusion: Our data provide evidence for the first time that κ-opioid receptor

  10. Expression Profiling of Differentiating Emerin-Null Myogenic Progenitor Identifies Molecular Pathways Implicated in Their Impaired Differentiation

    Directory of Open Access Journals (Sweden)

    Ashvin Iyer

    2017-10-01

    Full Text Available Mutations in the gene encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD, a disorder causing progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. RNA sequencing was performed on differentiating wildtype and emerin-null myogenic progenitors to identify molecular pathways implicated in EDMD, 340 genes were uniquely differentially expressed during the transition from day 0 to day 1 in wildtype cells. 1605 genes were uniquely expressed in emerin-null cells; 1706 genes were shared among both wildtype and emerin-null cells. One thousand and forty-seven transcripts showed differential expression during the transition from day 1 to day 2. Four hundred and thirty-one transcripts showed altered expression in both wildtype and emerin-null cells. Two hundred and ninety-five transcripts were differentially expressed only in emerin-null cells and 321 transcripts were differentially expressed only in wildtype cells. DAVID, STRING and Ingenuity Pathway Analysis identified pathways implicated in impaired emerin-null differentiation, including cell signaling, cell cycle checkpoints, integrin signaling, YAP/TAZ signaling, stem cell differentiation, and multiple muscle development and myogenic differentiation pathways. Functional enrichment analysis showed biological functions associated with the growth of muscle tissue and myogenesis of skeletal muscle were inhibited. The large number of differentially expressed transcripts upon differentiation induction suggests emerin functions during transcriptional reprograming of progenitors to committed myoblasts.

  11. Bosutinib, dasatinib, imatinib, nilotinib, and ponatinib differentially affect the vascular molecular pathways and functionality of human endothelial cells.

    Science.gov (United States)

    Gover-Proaktor, Ayala; Granot, Galit; Pasmanik-Chor, Metsada; Pasvolsky, Oren; Shapira, Saar; Raz, Oshrat; Raanani, Pia; Leader, Avi

    2018-05-09

    The tyrosine kinase inhibitors (TKIs), nilotinib, ponatinib, and dasatinib (but not bosutinib or imatinib), are associated with vascular adverse events (VAEs) in chronic myeloid leukemia (CML). Though the mechanism is inadequately understood, an effect on vascular cells has been suggested. We investigated the effect of imatinib, nilotinib, dasatinib, bosutinib, and ponatinib on tube formation, cell viability, and gene expression of human vascular endothelial cells (HUVECs). We found a distinct genetic profile in HUVECs treated with dasatinib, ponatinib, and nilotinib compared to bosutinib and imatinib, who resembled untreated samples. However, unique gene expression and molecular pathway alterations were detected between dasatinib, ponatinib, and nilotinib. Angiogenesis/blood vessel-related pathways and HUVEC function (tube formation/viability) were adversely affected by dasatinib, ponatinib, and nilotinib but not by imatinib or bosutinib. These results correspond to the differences in VAE profiles of these TKIs, support a direct effect on vascular cells, and provide direction for future research.

  12. Adrenal Mass Causing Secondary Hypertension.

    Science.gov (United States)

    Robinson, Darlene Y

    2015-11-01

    Most hypertensive patients have essential (primary) hypertension; only 5% to 10% have a secondary cause. Two clinical characteristics suggestive of secondary hypertension are early onset (hypertension (>180/110 mm Hg). When faced with these findings, clinicians should consider a secondary cause of hypertension. A 22-year-old woman being evaluated for asthma exacerbation in the emergency department was noted to have severe persistent hypertension. Additional evaluation revealed severe hypokalemia, metabolic alkalosis, and hypernatremia. The patient was admitted to the hospital for blood pressure management, electrolyte replacement, and further evaluation of presumed hyperaldosteronism. Diagnostic imaging revealed a large adrenal mass. Surgical resection was performed, leading to a diagnosis of hyperaldosteronism caused by adrenal carcinoma. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Secondary hypertension is far less common than essential hypertension; however, considering the large volume of patients seen in emergency departments, it is likely that some will have secondary hypertension. Emergency physicians should be aware of the clinical characteristics that suggest secondary hypertension so that the appropriate diagnostic and treatment pathways can be pursued. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Androgens and Hypertension in Men and Women: a Unifying View.

    Science.gov (United States)

    Moretti, Costanzo; Lanzolla, Giulia; Moretti, Marta; Gnessi, Lucio; Carmina, Enrico

    2017-05-01

    This review was designed to revaluate the androgen role on the mechanisms of hypertension and cardiovascular risks in both men and women. Sex steroids are involved in the regulation of blood pressure, but pathophysiological mechanism is not well understood. Androgens have an important effect on metabolism, adipose and endothelial cell function, and cardiovascular risk in both men and women. A focal point in this contest is represented by the possible gender-specific regulation of different tissues and in particular of the adipose cell. Available data confirm that androgen deficiency is linked to increased prevalence of hypertension and cardiovascular diseases. Adipocyte dysfunction seems to be the main involved mechanism. Androgen replacement reduces inflammation state in man, protecting by metabolic syndrome progression. In women, androgen excess has been considered as promoting factor of cardiovascular risk. However, recent data suggest that excessive androgen production has little effect per se in inducing hypertension in young women of reproductive age. Also in postmenopausal women, data on relative androgen excess and hypertension are missing, while adrenal androgen deficiency has been associated to increased mortality. Molecular mechanisms linking androgen dysregulation to hypertension are almost Unknown, but they seem to be related to increased visceral fat, promoting a chronic inflammatory state through different mechanisms. One of these may involve the recruitment and over-activation of NF-kB, a ubiquitous transcription factor also expressed in adipose cells, where it may cause the production of cytokines and other immune factors. The NF-kB signalling pathway may also influence brown adipogenesis leading to the preferential enlargement of visceral adipocytes. Chronic inflammation and adipocyte dysfunction may alter endothelial function leading to hypertension. Both in men and in women, particularly in the post-menopausal period, hypoandrogenism seems to be

  14. Advances in the Molecular Analysis of Breast Cancer: Pathway Toward Personalized Medicine.

    Science.gov (United States)

    Rosa, Marilin

    2015-04-01

    Breast cancer is a heterogeneous disease that encompasses a wide range of clinical behaviors and histological and molecular variants. It is the most common type of cancer affecting women worldwide and is the second leading cause of cancer death. A comprehensive literature search was performed to explore the advances in molecular medicine related to the diagnosis and treatment of breast cancer. During the last few decades, advances in molecular medicine have changed the landscape of cancer treatment as new molecular tests complement and, in many instances, exceed traditional methods for determining patient prognosis and response to treatment options. Personalized medicine is becoming the standard of care around the world. Developments in molecular profiling, genomic analysis, and the discovery of targeted drug therapies have significantly improved patient survival rates and quality of life. This review highlights what pathologists need to know about current molecular tests for classification and prognostic/ predictive assessment of breast carcinoma as well as their role as part of the medical team.

  15. MelanomaDB: a Web Tool for Integrative Analysis of Melanoma Genomic Information to Identify Disease-Associated Molecular Pathways

    Directory of Open Access Journals (Sweden)

    Alexander Joseph Trevarton

    2013-07-01

    Full Text Available Despite on-going research, metastatic melanoma survival rates remain low and treatment options are limited. Researchers can now access a rapidly growing amount of molecular and clinical information about melanoma. This information is becoming difficult to assemble and interpret due to its dispersed nature, yet as it grows it becomes increasingly valuable for understanding melanoma. Integration of this information into a comprehensive resource to aid rational experimental design and patient stratification is needed. As an initial step in this direction, we have assembled a web-accessible melanoma database, MelanomaDB, which incorporates clinical and molecular data from publically available sources, which will be regularly updated as new information becomes available. This database allows complex links to be drawn between many different aspects of melanoma biology: genetic changes (e.g. mutations in individual melanomas revealed by DNA sequencing, associations between gene expression and patient survival, data concerning drug targets, biomarkers, druggability and clinical trials, as well as our own statistical analysis of relationships between molecular pathways and clinical parameters that have been produced using these data sets. The database is freely available at http://genesetdb.auckland.ac.nz/melanomadb/about.html . A subset of the information in the database can also be accessed through a freely available web application in the Illumina genomic cloud computing platform BaseSpace at http://www.biomatters.com/apps/melanoma-profiler-for-research . This illustrates dysregulation of specific signalling pathways, both across 310 exome-sequenced melanomas and in individual tumours and identifies novel features about the distribution of somatic variants in melanoma. We suggest that this database can provide a context in which to interpret the tumour molecular profiles of individual melanoma patients relative to biological information and available

  16. Shared molecular pathways and gene networks for cardiovascular disease and type 2 diabetes mellitus in women across diverse ethnicities.

    Science.gov (United States)

    Chan, Kei Hang K; Huang, Yen-Tsung; Meng, Qingying; Wu, Chunyuan; Reiner, Alexander; Sobel, Eric M; Tinker, Lesley; Lusis, Aldons J; Yang, Xia; Liu, Simin

    2014-12-01

    Although cardiovascular disease (CVD) and type 2 diabetes mellitus (T2D) share many common risk factors, potential molecular mechanisms that may also be shared for these 2 disorders remain unknown. Using an integrative pathway and network analysis, we performed genome-wide association studies in 8155 blacks, 3494 Hispanic American, and 3697 Caucasian American women who participated in the national Women's Health Initiative single-nucleotide polymorphism (SNP) Health Association Resource and the Genomics and Randomized Trials Network. Eight top pathways and gene networks related to cardiomyopathy, calcium signaling, axon guidance, cell adhesion, and extracellular matrix seemed to be commonly shared between CVD and T2D across all 3 ethnic groups. We also identified ethnicity-specific pathways, such as cell cycle (specific for Hispanic American and Caucasian American) and tight junction (CVD and combined CVD and T2D in Hispanic American). In network analysis of gene-gene or protein-protein interactions, we identified key drivers that included COL1A1, COL3A1, and ELN in the shared pathways for both CVD and T2D. These key driver genes were cross-validated in multiple mouse models of diabetes mellitus and atherosclerosis. Our integrative analysis of American women of 3 ethnicities identified multiple shared biological pathways and key regulatory genes for the development of CVD and T2D. These prospective findings also support the notion that ethnicity-specific susceptibility genes and process are involved in the pathogenesis of CVD and T2D. © 2014 American Heart Association, Inc.

  17. Molecular Pathways: Targeting the Stimulator of Interferon Genes (STING) in the Immunotherapy of Cancer.

    Science.gov (United States)

    Corrales, Leticia; Gajewski, Thomas F

    2015-11-01

    Novel immunotherapy approaches are transforming the treatment of cancer, yet many patients remain refractory to these agents. One hypothesis is that immunotherapy fails because of a tumor microenvironment that fails to support recruitment of immune cells, including CD8(+) T cells. Therefore, new approaches designed to initiate a de novo antitumor immune response from within the tumor microenvironment are being pursued. Recent evidence has indicated that spontaneous activation of the Stimulator of Interferon Genes (STING) pathway within tumor-resident dendritic cells leads to type I IFN production and adaptive immune responses against tumors. This pathway is activated in the presence of cytosolic DNA that is detected by the sensor cyclic GMP-AMP synthase (cGAS) and generates cyclic GMP-AMP (cGAMP), which binds and activates STING. As a therapeutic approach, intratumoral injection of STING agonists has demonstrated profound therapeutic effects in multiple mouse tumor models, including melanoma, colon, breast, prostate, and fibrosarcoma. Better characterization of the STING pathway in human tumor recognition, and the development of new pharmacologic approaches to engage this pathway within the tumor microenvironment in patients, are important areas for clinical translation. ©2015 American Association for Cancer Research.

  18. Amygdala-Dependent Molecular Mechanisms of the Tac2 Pathway in Fear Learning.

    Science.gov (United States)

    Andero, Raül; Daniel, Sarah; Guo, Ji-Dong; Bruner, Robert C; Seth, Shivani; Marvar, Paul J; Rainnie, Donald; Ressler, Kerry J

    2016-10-01

    Recently we determined that activation of the tachykinin 2 (Tac2) pathway in the central amygdala (CeA) is necessary and sufficient for the modulation of fear memories. The Tac2 pathway includes the Tac2 gene, which encodes the neuropeptide neurokinin B and its corresponding receptor neurokinin 3 receptor (NK3R). In this study, using Tac2-cre and Tac2-GFP mice, we applied a combination of in vivo (optogenetics) and multiple in vitro techniques to further explore the mechanisms of action within the Tac2 pathway. In transgenic mice that express ChR2 solely in Tac2 neurons, in vivo optogenetic stimulation of CeA Tac2-expressing neurons during fear acquisition enhanced fear memory consolidation and drove action potential firing in vitro. In addition, Tac2-CeA neurons were shown to co-express striatal-enriched protein tyrosine phosphatase, which may have an important role in regulating Nk3R signaling during fear conditioning. These data extend our current understanding for the underlying mechanism(s) for the role of the Tac2 pathway in the regulation of fear memory, which may serve as a new therapeutic target in the treatment of fear-related disorders.

  19. Amygdala-Dependent Molecular Mechanisms of the Tac2 Pathway in Fear Learning

    Science.gov (United States)

    Andero, Raül; Daniel, Sarah; Guo, Ji-Dong; Bruner, Robert C; Seth, Shivani; Marvar, Paul J; Rainnie, Donald; Ressler, Kerry J

    2016-01-01

    Recently we determined that activation of the tachykinin 2 (Tac2) pathway in the central amygdala (CeA) is necessary and sufficient for the modulation of fear memories. The Tac2 pathway includes the Tac2 gene, which encodes the neuropeptide neurokinin B and its corresponding receptor neurokinin 3 receptor (NK3R). In this study, using Tac2–cre and Tac2–GFP mice, we applied a combination of in vivo (optogenetics) and multiple in vitro techniques to further explore the mechanisms of action within the Tac2 pathway. In transgenic mice that express ChR2 solely in Tac2 neurons, in vivo optogenetic stimulation of CeA Tac2-expressing neurons during fear acquisition enhanced fear memory consolidation and drove action potential firing in vitro. In addition, Tac2–CeA neurons were shown to co-express striatal-enriched protein tyrosine phosphatase, which may have an important role in regulating Nk3R signaling during fear conditioning. These data extend our current understanding for the underlying mechanism(s) for the role of the Tac2 pathway in the regulation of fear memory, which may serve as a new therapeutic target in the treatment of fear-related disorders. PMID:27238620

  20. Taste and hypertension in humans

    DEFF Research Database (Denmark)

    Roura, Eugeni; Foster, Simon; Winklebach, Anja

    2016-01-01

    The association between salty taste and NaCl intake with hypertension is well-established, although it is far from completely understood. Other taste types such as sweet, umami or bitter have also been related to alterations in blood pressure. Here, we review the mutual relationship between taste...... and hypertension to identify potential avenues to better control blood pressure. This review focuses on published data involving humans, with the exception of a section on molecular mechanisms. There is compelling evidence to suggest that changes in salty taste sensitivity can be used to predict the onset...... of hypertension. This goes hand in hand with the medical concept of sodium sensitivity, which also increases with age, particularly in hypertensive patients. The association of hypertension with the loss of taste acuity less definitive with some data/conclusions masked by the use of anti-hypertensive drugs...

  1. Developing an Integrated Treatment Pathway for a Post-Coronary Artery Bypass Grating (CABG) Geriatric Patient with Comorbid Hypertension and Type 1 Diabetes Mellitus for Treating Acute Hypoglycemia and Electrolyte Imbalance.

    Science.gov (United States)

    Naqvi, Atta Abbas; Shah, Amna; Ahmad, Rizwan; Ahmad, Niyaz

    2017-01-01

    The ailments afflicting the elderly population is a well-defined specialty of medicine. It calls for an immaculately designed health-care plan to treat diseases in geriatrics. For chronic illnesses such as diabetes mellitus (DM), coronary heart disease, and hypertension (HTN), they require proper management throughout the rest of patient's life. An integrated treatment pathway helps in treatment decision-making and improving standards of health care for the patient. This case describes an exclusive clinical pharmacist-driven designing of an integrated treatment pathway for a post-coronary artery bypass grafting (CABG) geriatric male patient with DM type I and HTN for the treatment of hypoglycemia and electrolyte imbalance. The treatment begins addressing the chief complaints which were vomiting and unconsciousness. Biochemical screening is essential to establish a diagnosis of electrolyte imbalance along with blood glucose level after which the integrated pathway defines the treatment course. This individualized treatment pathway provides an outline of the course of treatment of acute hypoglycemia, electrolyte imbalance as well as some unconfirmed diagnosis, namely, acute coronary syndrome and respiratory tract infection for a post-CABG geriatric patient with HTN and type 1 DM. The eligibility criterion for patients to be treated according to treatment pathway is to fall in the defined category.

  2. Metabolic Disorder, Inflammation, and Deregulated Molecular Pathways Converging in Pancreatic Cancer Development: Implications for New Therapeutic Strategies

    International Nuclear Information System (INIS)

    Motoo, Yoshiharu; Shimasaki, Takeo; Ishigaki, Yasuhito; Nakajima, Hideo; Kawakami, Kazuyuki; Minamoto, Toshinari

    2011-01-01

    Pancreatic cancer develops and progresses through complex, cumulative biological processes involving metabolic disorder, local inflammation, and deregulated molecular pathways. The resulting tumor aggressiveness hampers surgical intervention and renders pancreatic cancer resistant to standard chemotherapy and radiation therapy. Based on these pathologic properties, several therapeutic strategies are being developed to reverse refractory pancreatic cancer. Here, we outline molecular targeting therapies, which are primarily directed against growth factor receptor-type tyrosine kinases deregulated in tumors, but have failed to improve the survival of pancreatic cancer patients. Glycogen synthase kinase-3β (GSK3β) is a member of a serine/threonine protein kinase family that plays a critical role in various cellular pathways. GSK3β has also emerged as a mediator of pathological states, including glucose intolerance, inflammation, and various cancers (e.g., pancreatic cancer). We review recent studies that demonstrate the anti-tumor effects of GSK3β inhibition alone or in combination with chemotherapy and radiation. GSK3β inhibition may exert indirect anti-tumor actions in pancreatic cancer by modulating metabolic disorder and inflammation

  3. Metabolic Disorder, Inflammation, and Deregulated Molecular Pathways Converging in Pancreatic Cancer Development: Implications for New Therapeutic Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Motoo, Yoshiharu, E-mail: motoo@kanazawa-med.ac.jp [Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Shimasaki, Takeo [Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Division of Translational & Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa (Japan); Ishigaki, Yasuhito [Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Nakajima, Hideo [Department of Medical Oncology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Kawakami, Kazuyuki; Minamoto, Toshinari [Division of Translational & Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa (Japan)

    2011-01-24

    Pancreatic cancer develops and progresses through complex, cumulative biological processes involving metabolic disorder, local inflammation, and deregulated molecular pathways. The resulting tumor aggressiveness hampers surgical intervention and renders pancreatic cancer resistant to standard chemotherapy and radiation therapy. Based on these pathologic properties, several therapeutic strategies are being developed to reverse refractory pancreatic cancer. Here, we outline molecular targeting therapies, which are primarily directed against growth factor receptor-type tyrosine kinases deregulated in tumors, but have failed to improve the survival of pancreatic cancer patients. Glycogen synthase kinase-3β (GSK3β) is a member of a serine/threonine protein kinase family that plays a critical role in various cellular pathways. GSK3β has also emerged as a mediator of pathological states, including glucose intolerance, inflammation, and various cancers (e.g., pancreatic cancer). We review recent studies that demonstrate the anti-tumor effects of GSK3β inhibition alone or in combination with chemotherapy and radiation. GSK3β inhibition may exert indirect anti-tumor actions in pancreatic cancer by modulating metabolic disorder and inflammation.

  4. Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida

    International Nuclear Information System (INIS)

    Novo, Marta; Lahive, Elma; Díez-Ortiz, María; Matzke, Marianne; Morgan, Andrew J.; Spurgeon, David J.; Svendsen, Claus; Kille, Peter

    2015-01-01

    Use of nanotechnology products is increasing; with silver (Ag) nanoparticles particularly widely used. A key uncertainty surrounding the risk assessment of AgNPs is whether their effects are driven through the same mechanism of action that underlies the toxic effects of Ag ions. We present the first full transcriptome study of the effects of Ag ions and NPs in an ecotoxicological model soil invertebrate, the earthworm Eisenia fetida. Gene expression analyses indicated similar mechanisms for both silver forms with toxicity being exerted through pathways related to ribosome function, sugar and protein metabolism, molecular stress, disruption of energy production and histones. The main difference seen between Ag ions and NPs was associated with potential toxicokinetic effects related to cellular internalisation and communication, with pathways related to endocytosis and cilia being significantly enriched. These results point to a common final toxicodynamic response, but initial internalisation driven by different exposure routes and toxicokinetic mechanisms. - Highlights: • Molecular effects underlying Ag ions and NPs exposure were studied in Eisenia fetida. • Full transcriptomic study of a genetically characterised lineage. • NPs and ions presented a similar toxicodynamic response. • Internalisation of the two Ag forms by different toxicokinetic mechanisms. - Transcriptomic analyses after exposure of earthworms to silver NPs or ions showed a final common toxicodynamic response, but internalisation by different toxicokinetic mechanisms

  5. Metabolic Disorder, Inflammation, and Deregulated Molecular Pathways Converging in Pancreatic Cancer Development: Implications for New Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Toshinari Minamoto

    2011-01-01

    Full Text Available Pancreatic cancer develops and progresses through complex, cumulative biological processes involving metabolic disorder, local inflammation, and deregulated molecular pathways. The resulting tumor aggressiveness hampers surgical intervention and renders pancreatic cancer resistant to standard chemotherapy and radiation therapy. Based on these pathologic properties, several therapeutic strategies are being developed to reverse refractory pancreatic cancer. Here, we outline molecular targeting therapies, which are primarily directed against growth factor receptor-type tyrosine kinases deregulated in tumors, but have failed to improve the survival of pancreatic cancer patients. Glycogen synthase kinase-3β (GSK3β is a member of a serine/threonine protein kinase family that plays a critical role in various cellular pathways. GSK3β has also emerged as a mediator of pathological states, including glucose intolerance, inflammation, and various cancers (e.g., pancreatic cancer. We review recent studies that demonstrate the anti-tumor effects of GSK3β inhibition alone or in combination with chemotherapy and radiation. GSK3β inhibition may exert indirect anti-tumor actions in pancreatic cancer by modulating metabolic disorder and inflammation.

  6. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast.

    Science.gov (United States)

    Belew, Ashton T; Advani, Vivek M; Dinman, Jonathan D

    2011-04-01

    Although first discovered in viruses, previous studies have identified operational -1 ribosomal frameshifting (-1 RF) signals in eukaryotic genomic sequences, and suggested a role in mRNA stability. Here, four yeast -1 RF signals are shown to promote significant mRNA destabilization through the nonsense mediated mRNA decay pathway (NMD), and genetic evidence is presented suggesting that they may also operate through the no-go decay pathway (NGD) as well. Yeast EST2 mRNA is highly unstable and contains up to five -1 RF signals. Ablation of the -1 RF signals or of NMD stabilizes this mRNA, and changes in -1 RF efficiency have opposing effects on the steady-state abundance of the EST2 mRNA. These results demonstrate that endogenous -1 RF signals function as mRNA destabilizing elements through at least two molecular pathways in yeast. Consistent with current evolutionary theory, phylogenetic analyses suggest that -1 RF signals are rapidly evolving cis-acting regulatory elements. Identification of high confidence -1 RF signals in ∼10% of genes in all eukaryotic genomes surveyed suggests that -1 RF is a broadly used post-transcriptional regulator of gene expression.

  7. Susceptible genes and molecular pathways related to heavy ion irradiation in oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Fushimi, Kazuaki; Uzawa, Katsuhiro; Ishigami, Takashi; Yamamoto, Nobuharu; Kawata, Tetsuya; Shibahara, Takahiko; Ito, Hisao; Mizoe, Jun-etsu; Tsujii, Hirohiko; Tanzawa, Hideki

    2008-01-01

    Background and purpose: Heavy ion beams are high linear energy transfer (LET) radiation characterized by a higher relative biologic effectiveness than low LET radiation. The aim of the current study was to determine the difference of gene expression between heavy ion beams and X-rays in oral squamous cell carcinoma (OSCC)-derived cells. Materials and methods: The OSCC cells were irradiated with accelerated carbon or neon ion irradiation or X-rays using three different doses. We sought to identify genes the expression of which is affected by carbon and neon ion irradiation using Affymetrix GeneChip analysis. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Results: The microarray analysis identified 84 genes that were modulated by carbon and neon ion irradiation at all doses in OSCC cells. Among the genes, three genes (TGFBR2, SMURF2, and BMP7) and two genes (CCND1 and E2F3), respectively, were found to be involved in the transforming growth factor β-signaling pathway and cell cycle:G1/S checkpoint regulation pathway. The qRT-PCR data from the five genes after heavy ion irradiation were consistent with the microarray data (P < 0.01). Conclusion: Our findings should serve as a basis for global characterization of radiation-regulated genes and pathways in heavy ion-irradiated OSCC

  8. Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes.

    Science.gov (United States)

    Lee, Erinna F; Clarke, Oliver B; Evangelista, Marco; Feng, Zhiping; Speed, Terence P; Tchoubrieva, Elissaveta B; Strasser, Andreas; Kalinna, Bernd H; Colman, Peter M; Fairlie, W Douglas

    2011-04-26

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2-regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2-like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with "BH3 mimetic" drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment.

  9. Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes

    Science.gov (United States)

    Lee, Erinna F.; Clarke, Oliver B.; Evangelista, Marco; Feng, Zhiping; Speed, Terence P.; Tchoubrieva, Elissaveta B.; Strasser, Andreas; Kalinna, Bernd H.; Colman, Peter M.; Fairlie, W. Douglas

    2011-01-01

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2–regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2–like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with “BH3 mimetic” drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment. PMID:21444803

  10. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study.

    Science.gov (United States)

    Li, Shixin; Luo, Zhen; Xu, Yan; Ren, Hao; Deng, Li; Zhang, Xianren; Huang, Fang; Yue, Tongtao

    2017-10-01

    Lipid nanodisc, a model membrane platform originally synthesized for study of membrane proteins, has recently been used as the carrier to deliver amphiphilic drugs into target tumor cells. However, the central question of how cells interact with such emerging nanomaterials remains unclear and deserves our research for both improving the delivery efficiency and reducing the side effect. In this work, a binary lipid nanodisc is designed as the minimum model to investigate its interactions with plasma membranes by using the dissipative particle dynamics method. Three typical interaction pathways, including the membrane attachment with lipid domain exchange of nanodiscs, the partial membrane wrapping with nanodisc vesiculation, and the receptor-mediated endocytosis, are discovered. For the first pathway, the boundary normal lipids acting as ligands diffuse along the nanodisc rim to gather at the membrane interface, repelling the central bola lipids to reach a stable membrane attachment. If bola lipids are positioned at the periphery and act as ligands, they diffuse to form a large aggregate being wrapped by the membrane, leaving the normal lipids exposed on the membrane exterior by assembling into a vesicle. Finally, by setting both central normal lipids and boundary bola lipids as ligands, the receptor-mediated endocytosis occurs via both deformation and self-rotation of the nanodiscs. All above pathways for soft lipid nanodiscs are quite different from those for rigid nanoparticles, which may provide useful guidelines for design of soft lipid nanodiscs in widespread biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma

    Science.gov (United States)

    Ceccarelli, Michele; Barthel, Floris P.; Malta, Tathiane M.; Sabedot, Thais S.; Salama, Sofie R.; Murray, Bradley A.; Morozova, Olena; Newton, Yulia; Radenbaugh, Amie; Pagnotta, Stefano M.; Anjum, Samreen; Wang, Jiguang; Manyam, Ganiraju; Zoppoli, Pietro; Ling, Shiyung; Rao, Arjun A.; Grifford, Mia; Cherniack, Andrew D.; Zhang, Hailei; Poisson, Laila; Carlotti, Carlos Gilberto; Pretti da Cunha Tirapelli, Daniela; Rao, Arvind; Mikkelsen, Tom; Lau, Ching C.; Yung, W.K. Alfred; Rabadan, Raul; Huse, Jason; Brat, Daniel J.; Lehman, Norman L.; Barnholtz-Sloan, Jill S.; Zheng, Siyuan; Hess, Kenneth; Rao, Ganesh; Meyerson, Matthew; Beroukhim, Rameen; Cooper, Lee; Akbani, Rehan; Wrensch, Margaret; Haussler, David; Aldape, Kenneth D.; Laird, Peter W.; Gutmann, David H.; Noushmehr, Houtan; Iavarone, Antonio; Verhaak, Roel G.W.

    2015-01-01

    SUMMARY Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH-mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wildtype diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes. PMID:26824661

  12. INVESTIGATIONS INTO MOLECULAR PATHWAYS IN THE POST GENOME ERA: CROSS SPECIES COMPARATIVE GENOMICS APPROACH

    Science.gov (United States)

    Genome sequencing efforts in the past decade were aimed at generating draft sequences of many prokaryotic and eukaryotic model organisms. Successful completion of unicellular eukaryotes, worm, fly and human genome have opened up the new field of molecular biology and function...

  13. Mineralocorticoid hypertension

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2011-01-01

    Full Text Available Hypertension affects about 10 - 25% of the population and is an important risk factor for cardiovascular and renal disease. The renin-angiotensin system is frequently implicated in the pathophysiology of hypertension, be it primary or secondary. The prevalence of primary aldosteronism increases with the severity of hypertension, from 2% in patients with grade 1 hypertension to 20% among resistant hypertensives. Mineralcorticoid hypertension includes a spectrum of disorders ranging from renin-producing pathologies (renin-secreting tumors, malignant hypertension, coarctation of aorta, aldosterone-producing pathologies (primary aldosteronism - Conns syndrome, familial hyperaldosteronism 1, 2, and 3, non-aldosterone mineralocorticoid producing pathologies (apparent mineralocorticoid excess syndrome, Liddle syndrome, deoxycorticosterone-secreting tumors, ectopic adrenocorticotropic hormones (ACTH syndrome, congenitalvadrenal hyperplasia, and drugs with mineraocorticoid activity (locorice, carbenoxole therapy to glucocorticoid receptor resistance syndromes. Clinical presentation includes hypertension with varying severity, hypokalemia, and alkalosis. Ratio of plasma aldosterone concentraion to plasma renin activity remains the best screening tool. Bilateral adrenal venous sampling is the best diagnostic test coupled with a CT scan. Treatment is either surgical (adrenelectomy for unilateral adrenal disease versus medical therapy for idiopathic, ambiguous, or bilateral disease. Medical therapy focuses on blood pressure control and correction of hypokalemia using a combination of anti-hypertensives (calcium channel blockers, angiotensin converting enzyme inhibitors, or angiotensin receptor blockers and potassium-raising therapies (mineralcorticoid receptor antagonist or potassium sparing diuretics. Direct aldosterone synthetase antagonists represent a promising future therapy.

  14. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (edited by Gerhard Michal)

    Science.gov (United States)

    Voige, Reviewed By William H.

    2000-02-01

    For decades, a wall chart detailing living organisms' metabolic pathways has been a fixture in many classrooms and laboratories where biochemistry is taught. One of the most popular of those charts first appeared 30 years ago. Now its editor, Gerhard Michal, has produced a book that summarizes metabolism (broadly defined) in graphical and textual formats. The book retains the elegance of the chart. Names of molecules are printed in a crisp, easy-to-read font, and structural formulas are shown with exemplary clarity. Color coding serves multiple purposes: to differentiate enzymes, substrates, cofactors, and effector molecules; to indicate in which group or groups of organisms a reaction has been observed; and to distinguish enzymatic reactions from regulatory effects. The primary advantage of presenting this information in book format is immediately apparent. A typical metabolic chart covers about 2 m2; the book has a total surface area nearly 10 times greater. The extra space is used to add explanatory text to the figures and to include many topics not covered by the traditional definition of metabolism. Examples include replication, transcription, translation, reaction mechanisms for proteolytic enzymes, and the role of chaperones in protein folding. Illustrating these topics is not as straightforward as delineating a metabolic pathway, but the author has done an admirable job of designing figures that clarify these and other aspects of biochemistry and complement the accompanying text. A potential deficiency of book format is the inability to clearly show links between different realms of metabolism: carbohydrate and amino acid pathways, for example. The book overcomes this problem in two ways. A diagrammatic overview of metabolism (with references to applicable sections of the book) is printed inside its front cover, and key compounds (pyruvate, for example) have a distinctive green background to provide a visual link between pathways. (The author compares this

  15. Pravastatin Effects on Placental Prosurvival Molecular Pathways in a Mouse Model of Preeclampsia.

    Science.gov (United States)

    Saad, Antonio F; Diken, Zaid M; Kechichian, Talar B; Clark, Shannon M; Olson, Gayle L; Saade, George R; Costantine, Maged M

    2016-11-01

    Using an animal model of preeclampsia induced by overexpression of soluble fms-like tyrosine kinase 1 (sFlt-1), we previously showed that pravastatin prevents the development of a preeclampsia phenotype. Our objective is to determine whether pravastatin treatment may be explained by its effects on apoptotic/survival pathways in the placenta. Pregnant CD1 mice at day 8 of gestation (length of gestation 19 days) were randomly allocated to injection via tail vein with either adenovirus carrying sFlt-1 or adenovirus carrying the murine immunoglobulin G2α Fc fragment (mFc virus control group). Mice from the sFlt group were randomly assigned to receive pravastatin (5 mg/kg/d) in their drinking water from day 9 until killing (sFlt-1 + Pravastatin) or water (sFlt-1). The mFc control received water only. Mice were killed on day 18, and the placentas were collected. Protein mitogen-activated protein kinase (MAPK) pathway substrates were assayed using Bioplex Multiplex Immunoassay (Bio-Rad, Hercules, California). Data are reported as mean  ±  standard error of the mean or median (interquartile range) when appropriate. One-way analysis of variance followed by post hoc analysis was performed. Two-sided P value preeclampsia phenotype may be mediated through pleiotropic mechanisms involving a prosurvival/ antiapoptotic MAPK pathway in the placenta. Our results further support continued research in the role for statins in the prevention of preeclampsia. © The Author(s) 2016.

  16. Molecular causes and consequences of genetic instability with respect to the FA/BRCA Caretaker Pathway

    OpenAIRE

    Neveling, Kornelia

    2012-01-01

    In the context of this thesis, I investigated the molecular causes and functional consequences of genetic instability using a human inherited disease, Fanconi anemia. FA patients display a highly variable clinical phenotype, including congenital abnormalities, progressive bone marrow failure and a high cancer risk. The FA cellular phenotype is characterized by spontaneous and inducible chromosomal instability, and a typical S/G2 phase arrest after exposure to DNA-damaging agents. So far, 13 g...

  17. Molecular mechanism of Na+,K+-ATPase malfunction in mutations characteristic of adrenal hypertension

    DEFF Research Database (Denmark)

    Kopec, Wojciech; Loubet, Bastien; Poulsen, Hanne

    2014-01-01

    the sodium leak measured with the mutant. The last mutant, EETA956S, opens an additional water pathway near the C-terminus, affecting the III sodium-specific binding site. The results are in excellent agreement with recent electrophysiology measurements and suggest how three mutations prevent the occlusion......), which shows inward leak currents under physiological conditions. The first three mutations affect the structural context of the key ion-binding residue Glu327 at binding site II, which leads to the loss of the ability to bind ions correctly and to occlude the pump. The mutated residue in L97R is more...... hydrated, which ultimately leads to the observed proton leak. V325G mimics the structural behavior of L97R; however, it does not promote the hydration of surrounding residues. In Del93-97, a broader opening is observed because of the rearrangement of the kinked transmembrane helix 1, M1, which may explain...

  18. Molecular Pathways: Is AMPK a Friend or a Foe in Cancer?

    Science.gov (United States)

    Hardie, D. Grahame

    2015-01-01

    The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status expressed in essentially all eukaryotic cells. Once activated by energetic stress via a mechanism that detects increases in AMP:ATP and ADP:ATP ratios, AMPK acts to restore energy homeostasis by switching on catabolic pathways that generate ATP, while switching off ATP-consuming processes, including anabolic pathways required for cell growth and proliferation. AMPK activation promotes the glucose-sparing, oxidative metabolism utilized by most quiescent cells, rather than the rapid glucose uptake and glycolysis used by most proliferating cells. Numerous pharmacological activators of AMPK are known, including drugs in long use such as salicylate and metformin, and there is evidence that regular use of either of the latter provides protection against development of cancer. Tumor cells appear to be under selection pressure to down-regulate AMPK, thus limiting its restraining influence on cell growth and proliferation, and several interesting mechanisms by which this occurs are discussed. Paradoxically, however, a complete loss of AMPK function, which appears to be rare in human cancers, may be deleterious to survival of tumor cells. AMPK can therefore either be a friend and a foe in cancer, depending on the context. PMID:26152739

  19. Using vibrational Cooper minima to determine strong-field molecular-dissociation pathways

    Science.gov (United States)

    Severt, T.; Zohrabi, M.; Armstrong, G. S. J.; McKenna, J.; Gaire, B.; Kling, Nora G.; Ablikim, U.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2015-05-01

    We explore the possibility of using vibrational ``Cooper minima'' (VCM) locations as a method to determine dissociation pathways of molecules in a strong laser field. As a test case, we study the laser-induced dissociation of an O2+ion beam by several wavelengths (λ = 800 , 400, and 266 nm) using a coincidence three-dimensional momentum imaging technique. Vibrational structure is observed in the kinetic energy release spectra, revealing a suppression of the dissociation of certain vibrational levels, which is a manifestation of the VCM effect. Previously, it has been shown in H2+that first-order time-dependent perturbation theory can be used to predict the locations of the VCM. We explore if the VCM locations predicted by perturbation theory can help uniquely identify dissociation pathways in O2+and consider its utility for other systems. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. TS was partially supported by NSF-REU under Grant No. PHY-0851599.

  20. Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes.

    Science.gov (United States)

    Kronenberg-Versteeg, Deborah; Eichmann, Martin; Russell, Mark A; de Ru, Arnoud; Hehn, Beate; Yusuf, Norkhairin; van Veelen, Peter A; Richardson, Sarah J; Morgan, Noel G; Lemberg, Marius K; Peakman, Mark

    2018-04-01

    The signal peptide region of preproinsulin (PPI) contains epitopes targeted by HLA-A-restricted (HLA-A0201, A2402) cytotoxic T cells as part of the pathogenesis of β-cell destruction in type 1 diabetes. We extended the discovery of the PPI epitope to disease-associated HLA-B*1801 and HLA-B*3906 (risk) and HLA-A*1101 and HLA-B*3801 (protective) alleles, revealing that four of six alleles present epitopes derived from the signal peptide region. During cotranslational translocation of PPI, its signal peptide is cleaved and retained within the endoplasmic reticulum (ER) membrane, implying it is processed for immune recognition outside of the canonical proteasome-directed pathway. Using in vitro translocation assays with specific inhibitors and gene knockout in PPI-expressing target cells, we show that PPI signal peptide antigen processing requires signal peptide peptidase (SPP). The intramembrane protease SPP generates cytoplasm-proximal epitopes, which are transporter associated with antigen processing (TAP), ER-luminal epitopes, which are TAP independent, each presented by different HLA class I molecules and N-terminal trimmed by ER aminopeptidase 1 for optimal presentation. In vivo, TAP expression is significantly upregulated and correlated with HLA class I hyperexpression in insulin-containing islets of patients with type 1 diabetes. Thus, PPI signal peptide epitopes are processed by SPP and loaded for HLA-guided immune recognition via pathways that are enhanced during disease pathogenesis. © 2018 by the American Diabetes Association.

  1. Electroacupuncture Exerts Neuroprotection through Caveolin-1 Mediated Molecular Pathway in Intracerebral Hemorrhage of Rats.

    Science.gov (United States)

    Li, Hui-Qin; Li, Yan; Chen, Zi-Xian; Zhang, Xiao-Guang; Zheng, Xia-Wei; Yang, Wen-Ting; Chen, Shuang; Zheng, Guo-Qing

    2016-01-01

    Spontaneous intracerebral hemorrhage (ICH) is one of the most devastating types of stroke. Here, we aim to demonstrate that electroacupuncture on Baihui (GV20) exerts neuroprotection for acute ICH possibly via the caveolin-1/matrix metalloproteinase/blood-brain barrier permeability pathway. The model of ICH was established by using collagenase VII. Rats were randomly divided into three groups: Sham-operation group, Sham electroacupuncture group, and electroacupuncture group. Each group was further divided into 4 subgroups according to the time points of 6 h, 1 d, 3 d, and 7 d after ICH. The methods were used including examination of neurological deficit scores according to Longa's scale, measurement of blood-brain barrier permeability through Evans Blue content, in situ immunofluorescent detection of caveolin-1 in brains, western blot analysis of caveolin-1 in brains, and in situ zymography for measuring matrix metalloproteinase-2/9 activity in brains. Compared with Sham electroacupuncture group, electroacupuncture group has resulted in a significant improvement in neurological deficit scores and in a reduction in Evans Blue content, expression of caveolin-1, and activity of matrix metalloproteinase-2/9 at 6 h, 1 d, 3 d, and 7 d after ICH ( P electroacupuncture on GV20 can improve neurological deficit scores and reduce blood-brain barrier permeability after ICH, and the mechanism possibly targets caveolin-1/matrix metalloproteinase/blood-brain barrier permeability pathway.

  2. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    Science.gov (United States)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  3. βENaC is a molecular component of a VSMC mechanotransducer that contributes to renal blood flow regulation, protection from renal injury, and hypertension.

    Science.gov (United States)

    Drummond, Heather A

    2012-01-01

    Pressure-induced constriction (also known as the "myogenic response") is an important mechano-dependent response in certain blood vessels. The response is mediated by vascular smooth muscle cells (VSMCs) and characterized by a pressure-induced vasoconstriction in small arteries and arterioles in the cerebral, mesenteric, cardiac, and renal beds. The myogenic response has two important roles; it is a mechanism of blood flow autoregulation and provides protection against systemic blood pressure-induced damage to delicate microvessels. However, the molecular mechanism(s) underlying initiation of myogenic response is unclear. Degenerin proteins have a strong evolutionary link to mechanotransduction in the nematode. Our laboratory has addressed the hypothesis that these proteins may also act as mechanosensors in certain mammalian tissues such as VSMCs and arterial baroreceptor neurons. This article discusses the importance of a specific degenerin protein, β Epithelial Na(+) Channel (βENaC) in pressure-induced vasoconstriction in renal vessels and arterial baroreflex function as determined in a mouse model of reduced βENaC (βENaC m/m). We propose that loss of baroreflex sensitivity (due to loss of baroreceptor βENaC) increases blood pressure variability, increasing the likelihood and magnitude of upward swings in systemic pressure. Furthermore, loss of the myogenic constrictor response (due to loss of VSMC βENaC) will permit those pressure swings to be transmitted to the microvasculature in βENaC m/m mice, thus increasing the susceptibility to renal injury and hypertension.

  4. Physical Exercise Modulates L-DOPA-Regulated Molecular Pathways in the MPTP Mouse Model of Parkinson's Disease.

    Science.gov (United States)

    Klemann, Cornelius J H M; Xicoy, Helena; Poelmans, Geert; Bloem, Bas R; Martens, Gerard J M; Visser, Jasper E

    2018-07-01

    Parkinson's disease (PD) is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), resulting in motor and non-motor dysfunction. Physical exercise improves these symptoms in PD patients. To explore the molecular mechanisms underlying the beneficial effects of physical exercise, we exposed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP)-treated mice to a four-week physical exercise regimen, and subsequently explored their motor performance and the transcriptome of multiple PD-linked brain areas. MPTP reduced the number of DA neurons in the SNpc, whereas physical exercise improved beam walking, rotarod performance, and motor behavior in the open field. Further, enrichment analyses of the RNA-sequencing data revealed that in the MPTP-treated mice physical exercise predominantly modulated signaling cascades that are regulated by the top upstream regulators L-DOPA, RICTOR, CREB1, or bicuculline/dalfampridine, associated with movement disorders, mitochondrial dysfunction, and epilepsy-related processes. To elucidate the molecular pathways underlying these cascades, we integrated the proteins encoded by the exercise-induced differentially expressed mRNAs for each of the upstream regulators into a molecular landscape, for multiple key brain areas. Most notable was the opposite effect of physical exercise compared to previously reported effects of L-DOPA on the expression of mRNAs in the SN and the ventromedial striatum that are involved in-among other processes-circadian rhythm and signaling involving DA, neuropeptides, and endocannabinoids. Altogether, our findings suggest that physical exercise can improve motor function in PD and may, at the same time, counteract L-DOPA-mediated molecular mechanisms. Further, we hypothesize that physical exercise has the potential to improve non-motor symptoms of PD, some of which may be the result of (chronic) L-DOPA use.

  5. Hypertension hos gravide

    DEFF Research Database (Denmark)

    Mathiesen, Elisabeth R; Johansen, Marianne; Kamper, Anne Lise

    2009-01-01

    There are four major hypertensive disorders in pregnancy: chronic hypertension, gestational hypertension, preeclampsia and chronic hypertension with superimposed preeclampsia. The indications and efficacy of antihypertensive treatment of the different hypertensive disorders are assessed. Advantages...

  6. Cerebrovascular gene expression in spontaneously hypertensive rats

    DEFF Research Database (Denmark)

    Grell, Anne-Sofie; Frederiksen, Simona Denise; Edvinsson, Lars

    2017-01-01

    Hypertension is a hemodynamic disorder and one of the most important and well-established risk factors for vascular diseases such as stroke. Blood vessels exposed to chronic shear stress develop structural changes and remodeling of the vascular wall through many complex mechanisms. However......, the molecular mechanisms involved are not fully understood. Hypertension-susceptible genes may provide a novel insight into potential molecular mechanisms of hypertension and secondary complications associated with hypertension. The aim of this exploratory study was to identify gene expression differences......, the identified genes in the middle cerebral arteries from spontaneously hypertensive rats could be possible mediators of the vascular changes and secondary complications associated with hypertension. This study supports the selection of key genes to investigate in the future research of hypertension-induced end...

  7. Molecular Pathways: Fumarate Hydratase-Deficient Kidney Cancer: Targeting the Warburg Effect in Cancer

    Science.gov (United States)

    Linehan, W. Marston; Rouault, Tracey A.

    2015-01-01

    Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a hereditary cancer syndrome in which affected individuals are at risk for development of cutaneous and uterine leiomyomas and an aggressive form of type II papillary kidney cancer. HLRCC is characterized by germline mutation of the tricarboxylic acid cycle (TCA) enzyme, fumarate hydratase (FH). FH-deficient kidney cancer is characterized by impaired oxidative phosphorylation and a metabolic shift to aerobic glycolysis, a form of metabolic reprogramming referred to as the Warburg effect. Increased glycolysis generates ATP needed for increased cell proliferation. In FH-deficient kidney cancer levels of AMPK, a cellular energy sensor, are decreased; resulting in diminished p53 levels, decreased expression of the iron importer, DMT1, leading to low cellular iron levels, and to enhanced fatty acid synthesis by diminishing phosphorylation of acetyl CoA carboxylase, a rate limiting step for fatty acid synthesis. Increased fumarate and decreased iron levels in FH-deficient kidney cancer cells inactivate prolyl hydroxylases, leading to stabilization of HIF1α, and increased expression of genes such as vascular endothelial growth factor (VEGF) and GLUT1 to provide fuel needed for rapid growth demands. Several therapeutic approaches for targeting the metabolic basis of FH-deficient kidney cancer are under development or are being evaluated in clinical trials, including the use of agents such as metformin, which would reverse the inactivation of AMPK, approaches to inhibit glucose transport, LDH-A, the anti-oxidant response pathway, the heme oxygenase pathway and approaches to target the tumor vasculature and glucose transport with agents such as bevacizumab and erlotinib. These same types of metabolic shifts, to aerobic glycolysis with decreased oxidative phosphorylation, have been found in a wide variety of other cancer types. Targeting the metabolic basis of a rare cancer such as fumarate hydratase

  8. Electroacupuncture Exerts Neuroprotection through Caveolin-1 Mediated Molecular Pathway in Intracerebral Hemorrhage of Rats

    Directory of Open Access Journals (Sweden)

    Hui-Qin Li

    2016-01-01

    Full Text Available Spontaneous intracerebral hemorrhage (ICH is one of the most devastating types of stroke. Here, we aim to demonstrate that electroacupuncture on Baihui (GV20 exerts neuroprotection for acute ICH possibly via the caveolin-1/matrix metalloproteinase/blood-brain barrier permeability pathway. The model of ICH was established by using collagenase VII. Rats were randomly divided into three groups: Sham-operation group, Sham electroacupuncture group, and electroacupuncture group. Each group was further divided into 4 subgroups according to the time points of 6 h, 1 d, 3 d, and 7 d after ICH. The methods were used including examination of neurological deficit scores according to Longa’s scale, measurement of blood-brain barrier permeability through Evans Blue content, in situ immunofluorescent detection of caveolin-1 in brains, western blot analysis of caveolin-1 in brains, and in situ zymography for measuring matrix metalloproteinase-2/9 activity in brains. Compared with Sham electroacupuncture group, electroacupuncture group has resulted in a significant improvement in neurological deficit scores and in a reduction in Evans Blue content, expression of caveolin-1, and activity of matrix metalloproteinase-2/9 at 6 h, 1 d, 3 d, and 7 d after ICH (P<0.05. In conclusion, the present results suggested that electroacupuncture on GV20 can improve neurological deficit scores and reduce blood-brain barrier permeability after ICH, and the mechanism possibly targets caveolin-1/matrix metalloproteinase/blood-brain barrier permeability pathway.

  9. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M

    2017-08-05

    The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Epigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study

    Directory of Open Access Journals (Sweden)

    Saber Imani

    2015-08-01

    Full Text Available Sulfur mustard (SM, bis- (2-chloroethyl sulphide is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is addressed by DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs expression. It seems SM can induce the epigenetic modifications that are translated into change in gene expression. Classification of epigenetic modifications long after exposure to SM would clarify its mechanism and paves a better strategy for the treatment of SM-affected patients. In this study, we review the key aberrant epigenetic modifications that have important roles in chronic obstructive pulmonary disease (COPD and compared with mustard lung.

  11. Pathways to Structure-Property Relationships of Peptide-Materials Interfaces: Challenges in Predicting Molecular Structures.

    Science.gov (United States)

    Walsh, Tiffany R

    2017-07-18

    An in-depth appreciation of how to manipulate the molecular-level recognition between peptides and aqueous materials interfaces, including nanoparticles, will advance technologies based on self-organized metamaterials for photonics and plasmonics, biosensing, catalysis, energy generation and harvesting, and nanomedicine. Exploitation of the materials-selective binding of biomolecules is pivotal to success in these areas and may be particularly key to producing new hierarchically structured biobased materials. These applications could be accomplished by realizing preferential adsorption of a given biomolecule onto one materials composition over another, one surface facet over another, or one crystalline polymorph over another. Deeper knowledge of the aqueous abiotic-biotic interface, to establish clear structure-property relationships in these systems, is needed to meet this goal. In particular, a thorough structural characterization of the surface-adsorbed peptides is essential for establishing these relationships but can often be challenging to accomplish via experimental approaches alone. In addition to myriad existing challenges associated with determining the detailed molecular structure of any molecule adsorbed at an aqueous interface, experimental characterization of materials-binding peptides brings new, complex challenges because many materials-binding peptides are thought to be intrinsically disordered. This means that these peptides are not amenable to experimental techniques that rely on the presence of well-defined secondary structure in the peptide when in the adsorbed state. To address this challenge, and in partnership with experiment, molecular simulations at the atomistic level can bring complementary and critical insights into the origins of this abiotic/biotic recognition and suggest routes for manipulating this phenomenon to realize new types of hybrid materials. For the reasons outlined above, molecular simulation approaches also face

  12. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants.

    Science.gov (United States)

    Kim, Eun Jin; Lee, Dokyung; Moon, Se Hoon; Lee, Chan Hee; Kim, Sang Jun; Lee, Jae Hyun; Kim, Jae Ouk; Song, Manki; Das, Bhabatosh; Clemens, John D; Pape, Jean William; Nair, G Balakrish; Kim, Dong Wook

    2014-09-01

    Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.

  13. Induction of cellular and molecular immunomodulatory pathways by vitamin A and Flavonoids

    Science.gov (United States)

    Patel, Sapna; Vajdy, Michael

    2016-01-01

    Introduction A detailed study of reports on the immunomodulatory properties of vitamin A and select flavonoids may pave the way for using these natural compounds or compounds with similar structures in novel drug and vaccine designs against infectious and autoimmune diseases and cancers. Areas Covered Intracellular transduction pathways, cellular differentiation and functional immunomodulatory responses have been reviewed. The reported studies encompass in vitro, in vivo preclinical and clinical studies that address the role of Vitamin A and select flavonoids in induction of innate and adaptive B and T cell responses, including TH1, TH2 and Treg. Expert Opinion While the immunomodulatory role of vitamin A, and related compounds, is well-established in many preclinical studies, its role in humans has begun to gain wider acceptance. In contrast, the role of flavonoids is mostly controversial in clinical trials, due to the diversity of the various classes of these compounds, and possibly due to the purity and the selected doses of the compounds. However, current preclinical and clinical studies warrant further detailed studies of these promising immuno-modulatory compounds. PMID:26185959

  14. Curcumin: A Potential Candidate in Prevention of Cancer via Modulation of Molecular Pathways

    Science.gov (United States)

    Rahmani, Arshad H.; Al Zohairy, Mohammad A.; Aly, Salah M.; Khan, Masood A.

    2014-01-01

    Cancer is the most dreadful disease worldwide in terms of morbidity and mortality. The exact cause of cancer development and progression is not fully known. But it is thought that cancer occurs due to the structural and functional changes in the genes. The current approach to cancer treatment based on allopathic is expensive, exhibits side effects; and may also alter the normal functioning of genes. Thus, a safe and effective mode of treatment is needed to control the cancer development and progression. Some medicinal plants provide a safe, effective and affordable remedy to control the progression of malignant cells. The importance of medicinal plants and their constituents has been documented in Ayurveda, Unani medicine, and various religious books. Curcumin, a vital constituent of the spice turmeric, is an alternative approach in the prevention of cancer. Earlier studies have shown the effect of curcumin as an antioxidant, antibacterial, antitumor and it also has a noteworthy role in the control of different diseases. In this review, we summarize the understanding of chemopreventive effects of curcumin in the prevention of cancer via the regulation of various cell signaling and genetic pathways. PMID:25295272

  15. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    International Nuclear Information System (INIS)

    Chandran, Uma R; Ma, Changqing; Dhir, Rajiv; Bisceglia, Michelle; Lyons-Weiler, Maureen; Liang, Wenjing; Michalopoulos, George; Becich, Michael; Monzon, Federico A

    2007-01-01

    Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer

  16. Colorectal carcinomas from Middle East: Molecular and tissue microarray analysis of genomic instability pathways

    International Nuclear Information System (INIS)

    Bavi, P.P.; Abubaker, Jehad A.; Jehan, Zeenath D.; Al-Jomah, Naif A.; Siraj, Abdul K.; Al-Harbi, Sayer R.; Atizado, Valerie L.; Uddin, S.; Al-Kuraya, Khawla S.; Abduljabbar, Alaa S.; Al-Homoud, Samar J.; Ashari, Luai H.; Al-Sanea, Nasser A.; Al-Dayel, Fouad H.

    2008-01-01

    Objective was to evaluate the overall incidence of microsatellite instability (MSI), hereditary non polyposis colorectal cancer and tumor suppressor gene (TP53) mutations in Saudi colorectal carcinomas. We studied the MSI pathway in Saudi colorectal cancers (CRC) from 179 unselected patients using 2 methods: MSI by polymerase chain reaction and immunohistochemistry detection of mutL homologs 1 and mutS homologs 2 proteins. The TP53 mutations were studied by sequencing exons 5, 6, 7 and 8. Of the 150 colorectal carcinomas analyzed for MSI, 16% of the tumors showed high level instability (MSI-H), 19.3% had low level instability (MSI-L) and the remaining 64% tumors were stable. Survival of the MSI-H group was better as compared to the MSI-L or microsatellite stable group (p=0.0217). In the MSI-H group, 48% were familial MSI tumors which could be attributable to the high incidence of consanguinity in the Saudi population. The TP53 mutations were found in 24% of the cases studied. A high production of familial MSI cases and a lower incidence of TP53 mutations are some of the hallmarks of the Saudi colorectal carcinomas which need to be explored further. (author)

  17. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available Chalcone synthase (CHS catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1 encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants.

  18. The SDF-1–CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis

    Science.gov (United States)

    Petit, Isabelle; Jin, David; Rafii, Shahin

    2010-01-01

    Pro-angiogenic bone marrow (BM) cells include subsets of hematopoietic cells that provide vascular support and endothelial progenitor cells (EPCs), which under certain permissive conditions could differentiate into functional vascular cells. Recent evidence demonstrates that the chemokine stromal-cell derived factor-1 (SDF-1, also known as CXCL12) has a major role in the recruitment and retention of CXCR4+ BM cells to the neo-angiogenic niches supporting revascularization of ischemic tissue and tumor growth. However, the precise mechanism by which activation of CXCR4 modulates neo-angiogenesis is not clear. SDF-1 not only promotes revascularization by engaging with CXCR4 expressed on the vascular cells but also supports mobilization of pro-angiogenic CXCR4+VEGFR1+ hematopoietic cells, thereby accelerating revascularization of ischemic organs. Here, we attempt to define the multiple functions of the SDF-1–CXCR4 signaling pathway in the regulation of neo-vascularization during acute ischemia and tumor growth. In particular, we introduce the concept that, by modulating plasma SDF-1 levels, the CXCR4 antagonist AMD3100 acutely promotes, while chronic AMD3100 treatment inhibits, mobilization of pro-angiogenic cells. We will also discuss strategies to modulate the mobilization of essential subsets of BM cells that participate in neo-angiogenesis, setting up the stage for enhancing revascularization or targeting tumor vessels by exploiting CXCR4 agonists and antagonists, respectively. PMID:17560169

  19. Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins

    Science.gov (United States)

    Nikitin, Daniil; Penzar, Dmitry; Garazha, Andrew; Sorokin, Maxim; Tkachev, Victor; Borisov, Nicolas; Poltorak, Alexander; Prassolov, Vladimir; Buzdin, Anton A.

    2018-01-01

    apoptosis, PDGF, TGF beta, EGFR, and p38 signaling, transcriptional repression, structure of nuclear lumen, catabolism of phospholipids, and heterocyclic molecules, insulin and AMPK signaling, retrograde Golgi-ER transport, and estrogen signaling. The immunity-linked pathways were highly represented in both categories, but their functional roles were different and did not overlap. Our results point to the most quickly evolving molecular pathways in the recent and ancient evolution of human genome. PMID:29441061

  20. Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins

    Directory of Open Access Journals (Sweden)

    Daniil Nikitin

    2018-01-01

    progression and apoptosis, PDGF, TGF beta, EGFR, and p38 signaling, transcriptional repression, structure of nuclear lumen, catabolism of phospholipids, and heterocyclic molecules, insulin and AMPK signaling, retrograde Golgi-ER transport, and estrogen signaling. The immunity-linked pathways were highly represented in both categories, but their functional roles were different and did not overlap. Our results point to the most quickly evolving molecular pathways in the recent and ancient evolution of human genome.

  1. Quantitative proteomic analysis of human testis reveals system-wide molecular and cellular pathways associated with non-obstructive azoospermia.

    Science.gov (United States)

    Alikhani, Mehdi; Mirzaei, Mehdi; Sabbaghian, Marjan; Parsamatin, Pouria; Karamzadeh, Razieh; Adib, Samane; Sodeifi, Niloofar; Gilani, Mohammad Ali Sadighi; Zabet-Moghaddam, Masoud; Parker, Lindsay; Wu, Yunqi; Gupta, Vivek; Haynes, Paul A; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2017-06-06

    Male infertility accounts for half of the infertility problems experienced by couples. Azoospermia, having no measurable level of sperm in seminal fluid, is one of the known conditions resulting in male infertility. In order to elucidate the complex molecular mechanisms causing male azoospermia, label-free quantitative shotgun proteomics was carried out on testicular tissue specimens from patients with obstructive azoospermia and non-obstructive azoospermia, including maturation arrest (MA) and Sertoli cell only syndrome (SCOS). The abundance of 520 proteins was significantly changed across three groups of samples. We were able to identify several functional biological pathways enriched in azoospermia samples and confirm selected differentially abundant proteins, using multiple histological methods. The results revealed that cell cycle and proteolysis, and RNA splicing were the most significant biological processes impaired by the substantial suppression of proteins related to the aforementioned categories in SCOS tissues. In the MA patient testes, generation of precursor metabolites and energy as well as oxidation-reduction were the most significantly altered processes. Novel candidate proteins identified in this study include key transcription factors, many of which have not previously been shown to be associated with azoospermia. Our findings can provide substantial insights into the molecular regulation of spermatogenesis and human reproduction. The obtained data showed a drastic suppression of proteins involved in spliceosome, cell cycle and proteasome proteins, as well as energy and metabolic production in Sertoli cell only syndrome testis tissue, and to a lesser extent in maturation arrest samples. Moreover, we identified new transcription factors that are highly down-regulated in SCOS and MA patients, thus helping to understand the molecular complexity of spermatogenesis in male infertility. Our findings provide novel candidate protein targets associated

  2. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes.

    Science.gov (United States)

    Dutta, Eryn H; Behnia, Faranak; Boldogh, Istvan; Saade, George R; Taylor, Brandie D; Kacerovský, Marian; Menon, Ramkumar

    2016-02-01

    In women with preterm premature rupture of the membranes (PPROM), increased oxidative stress may accelerate premature cellular senescence, senescence-associated inflammation and proteolysis, which may predispose them to rupture. We demonstrate mechanistic differences between preterm birth (PTB) and PPROM by revealing differences in fetal membrane redox status, oxidative stress-induced damage, distinct signaling pathways and senescence activation. Oxidative stress-associated fetal membrane damage and cell cycle arrest determine adverse pregnancy outcomes, such as spontaneous PTB and PPROM. Fetal membranes and amniotic fluid samples were collected from women with PTB and PPROM. Molecular, biochemical and histologic markers were used to document differences in oxidative stress and antioxidant enzyme status, DNA damage, secondary signaling activation by Ras-GTPase and mitogen-activated protein kinases, and activation of senescence between membranes from the two groups. Oxidative stress was higher and antioxidant enzymes were lower in PPROM compared with PTB. PTB membranes had minimal DNA damage and showed activation of Ras-GTPase and ERK/JNK signaling pathway with minimal signs of senescence. PPROM had higher numbers of cells with DNA damage, prosenescence stress kinase (p38 MAPK) activation and signs of senescence. Samples were obtained retrospectively after delivery. The markers of senescence that we tested are specific but are not sufficient to confirm senescence as the pathology in PPROM. Oxidative stress-induced DNA damage and senescence are characteristics of fetal membranes from PPROM, compared with PTB with intact membranes. PTB and PPROM arise from distinct pathophysiologic pathways. Oxidative stress and oxidative stress-induced cellular damages are likely determinants of the mechanistic signaling pathways and phenotypic outcome. This study is supported by developmental funds to Dr R. Menon from the Department of Obstetrics and Gynecology at The University of

  3. H1 antihistamines in allergic rhinitis: The molecular pathways of interleukin and toll - like receptor systems

    Directory of Open Access Journals (Sweden)

    Jonny Karunia Fajar

    2016-03-01

    Full Text Available The complex interaction between inflammatory mediators in allergic rhinitis (AR is determined by the role of genetic polymorphisms, including interleukin (IL and toll-like receptor (TLR genes. This study aimed to discuss the effects of H1-antihistamines on IL and TLR systems. Several ILs involved in AR pathogenesis are: IL-4 (rs2243250, rs1800925, rs1801275, rs2227284, rs2070874, IL-6 (rs1800795, rs1800797, IL-10 (rs1800871, rs1800872, IL-12R (rs438421, IL-13 (rs1800925, rs20541, IL-17 (rs3819024, IL-18 (rs360721, rs360718, rs360717, rs187238, IL-23R (rs7517847, and IL-27 (rs153109, rs17855750. In the IL system, histamines stimulate the IL production in Type 2 helper T (Th2 cells through protein kinase A (PKA, janus kinase-signal transducer and activator of transcription (JAK-STAT pathway, and the activation of H1-histamine receptor and histidine decarboxylase (HDC genes. On contrary, antihistamines down-regulate the H1-histamine receptor gene expression through the transcription suppression of HDC and IL genes and suppress histamine basal signaling through the inverse agonistic activity. TLRs involved in AR pathogenesis are TLR2 (rs4696480, rs3804099, rs5743708, TLR4 (rs4986790, TLR6 (rs2381289, TLR7 (rs179008, rs5935438, TRL8 (rs2407992, rs5741883, rs17256081, rs4830805, rs3788935, rs178998, and TLR10 (rs11466651. In the TLR system, histamines trigger the TLR expression by stimulating interferon-γ (IFN-γ to up-regulate mast cells and by stimulating receptor-interacting protein (RIP to activate IκB kinase-β. Contrastingly, antihistamines suppress TIR-domain-containing adaptor protein inducing IFN-β (TRIF and RIP protein and thus inhibit the expression of TLR. In addition, several studies indicated that H1-antihistamines inhibit the IL and TLR systems indirectly.

  4. A molecular systems approach to modelling human skin pigmentation: identifying underlying pathways and critical components.

    Science.gov (United States)

    Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma

    2015-04-29

    Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential

  5. Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Elizabeth-sharon [Los Alamos National Laboratory

    2008-01-01

    Notch signaling activates T lineage differentiation from hemopoietic progenitors, but relatively few regulators that initiate this program have been identified, e.g., GATA3 and T cell factor-I (TCF-1) (gene name Tcli). To identify additional regulators of T cell specification, a cDNA libnlrY from mouse Pro-T cells was screened for genes that are specifically up-regulated in intrathymic T cell precursors as compared with myeloid progenitors. Over 90 genes of interest were identified, and 35 of 44 tested were confirmed to be more highly expressed in T lineage precursors relative to precursors of B and/or myeloid lineage. To a remarkable extent, however, expression of these T lineage-enriched genes, including zinc finger transcription factor, helicase, and signaling adaptor genes, was also shared by stem cells (Lin{sup -}Sca-1{sup +}Kit{sup +}CD27{sup -}) and multipotent progenitors (Lin{sup -}Sca-l{sup +}Kit{sup +}CD27{sup +}), although down-regulated in other lineages. Thus, a major fraction of these early T lineage genes are a regulatory legacy from stem cells. The few genes sharply up-regulated between multipotent progenitors and Pro-T cell stages included those encoding transcription factors Bclllb, TCF-I (Tcli), and HEBalt, Notch target Deltexl, Deltex3L, Fkbp5, Eval, and Tmem13l. Like GATA3 and Deltexl, Bclllb, Fkbp5, and Eval were dependent on Notch/Delta signaling for induction in fetal liver precursors, but only BcIlI band HEBalt were up-regulated between the first two stages of intrathymic T cell development (double negative I and double negative 2) corresponding to T lineage specification. Bclllb was uniquely T lineage restricted and induced by NotchlDelta signaling specifically upon entry into the T lineage differentiation pathway.

  6. Hypertension screening

    Science.gov (United States)

    Foulke, J. M.

    1975-01-01

    An attempt was made to measure the response to an announcement of hypertension screening at the Goddard Space Center, to compare the results to those of previous statistics. Education and patient awareness of the problem were stressed.

  7. The role of the cerebellum in schizophrenia: from cognition to molecular pathways

    Directory of Open Access Journals (Sweden)

    Peyman Yeganeh-Doost

    2011-01-01

    Full Text Available Beside its role in motor coordination, the cerebellum is involved in cognitive function such as attention, working memory, verbal learning, and sensory discrimination. In schizophrenia, a disturbed prefronto-thalamo-cerebellar circuit has been proposed to play a role in the pathophysiology. In addition, a deficit in the glutamatergic N-methyl-D-aspartate (NMDAf receptor has been hypothesized. The risk gene neuregulin 1 may play a major role in this process. We demonstrated a higher expression of the NMDA receptor subunit 2D in the right cerebellar regions of schizophrenia patients, which may be a secondary upregulation due to a dysfunctional receptor. In contrast, the neuregulin 1 risk variant containing at least one C-allele was associated with decreased expression of NMDA receptor subunit 2C, leading to a dysfunction of the NMDA receptor, which in turn may lead to a dysfunction of the gamma amino butyric acid (GABA system. Accordingly, from post-mortem studies, there is accumulating evidence that GABAergic signaling is decreased in the cerebellum of schizophrenia patients. As patients in these studies are treated with antipsychotics long term, we evaluated the effect of long-term haloperidol and clozapine treatment in an animal model. We showed that clozapine may be superior to haloperidol in restoring a deficit in NMDA receptor subunit 2C expression in the cerebellum. We discuss the molecular findings in the light of the role of the cerebellum in attention and cognitive deficits in schizophrenia.

  8. Endokrin hypertension

    DEFF Research Database (Denmark)

    Poulsen, Per Løgstrup; Ibsen, Hans

    2009-01-01

    Endocrine hypertension is rare, but frequently refractory. Adenomas are common incidental findings. Biochemical tests confirm the diagnosis. Primary aldosteronism is the most common form. Hypokalaemia is an important sign, but 50% of patients may be normokalaemic. The plasma-aldosterone-to-renin ......Endocrine hypertension is rare, but frequently refractory. Adenomas are common incidental findings. Biochemical tests confirm the diagnosis. Primary aldosteronism is the most common form. Hypokalaemia is an important sign, but 50% of patients may be normokalaemic. The plasma...

  9. Resistant hypertension.

    Science.gov (United States)

    Wei, Fang-Fei; Zhang, Zhen-Yu; Huang, Qi-Fang; Yang, Wen-Yi; Staessen, Jan A

    2018-06-15

    The publication of the first non-randomised proof-of-concept trial of renal denervation as a treatment modality in treatment-resistant hypertension set the stage for a search for novel devices with the expectation that technology would reduce the burden of hypertension by reducing or eliminating the costly and lifelong use of blood pressure lowering medications. As we demonstrate in this review, this idea so attractive to manufacturers and invasive cardiologists and radiologists overlooked decades of careful pathophysiological research in a disease, which still remains enigmatic but remains the major cause of cardiovascular mortality worldwide. To make our point, we first reviewed the prevalence and risks associated with treatment-resistant hypertension. Next, we highlighted the key points required for the diagnosis of treatment-resistant hypertension, including the recording of the ambulatory blood pressure and the assessment of adherence to medication. Finally, we summarised new insights in the management of treatment-resistant hypertension by medication and devices and in the future research. Throughout our review, we focused on new evidence became available since 2013. Our conclusion is that optimising medical treatment based on simple algorithms remains the state of the art in treatment-resistant hypertension.

  10. Toward a molecular pathogenic pathway for Yersinia pestis YopM

    Directory of Open Access Journals (Sweden)

    Annette M. Uittenbogaard

    2012-12-01

    Full Text Available YopM is one of the six effector Yops of the human-pathogenic Yersinia, but its mechanism has not been defined. After delivery to J774A.1 monocyte-like cells, YopM can rapidly bind and activate the serine/threonine kinases RSK1 and PRK2. However, in infected mice, effects of Y. pestis YopM have been seen only after 24 to 48 h post infection (p.i.. To identify potential direct effects of YopM in vivo we tested for effects of YopM at 1h and 16-18h p.i. in mice infected systemically with 106 bacteria. At 16 h p.i., there was a robust host response to both parent and yopM-1 Y. pestis KIM5. Compared to cells from non-infected mice, CD11b+ cells from spleens of infected mice produced more than 100-fold greater IFN. In the corresponding sera there were more than 100-fold greater amounts of IFN, G-CSF, and CXCL9, as well as more than 10-fold greater amounts of IL-6, CXCL10, and CXCL1. The only YopM-related differences were slightly lower CXCL10 and IL-6 in sera from mice infected 16 h with parent compared to yopM-1 Y. pestis. Microarray analysis of the CD11b+ cells did not identify consistent transcriptional differences of > 4 fold at 18 h p.i. However, at 1 h p.i. mRNA for early growth response transcription factor 1 (Egr1 was decreased when YopM was present. Bone marrow-derived macrophages infected for 1 h also expressed lower Egr1 message when YopM was present. Infected J774A.1 cells showed greater expression of Egr1 at 1 h p.i. when YopM was present, but this pattern reversed at 3 h. At 6 h p.i., Cxcl10 mRNA was lower in parent-strain infected cells. We conclude that decreased Egr1 expression is a very early transcriptional effect of YopM and speculate that a pathway may exist from RSK1 through Egr1. These studies revealed novel early transcriptional effects of YopM but point to a time after 18 h of infection when critical transitional events lead to later major effects on cytokine gene transcription.

  11. Edible bird's nest modulate intracellular molecular pathways of influenza A virus infected cells.

    Science.gov (United States)

    Haghani, Amin; Mehrbod, Parvaneh; Safi, Nikoo; Kadir, Fadzilah A'ini Abd; Omar, Abdul Rahman; Ideris, Aini

    2017-01-05

    Edible Bird's Nest (EBN) as a popular traditional Chinese medicine is believed to have health enhancing and antiviral activities against influenza A virus (IAV); however, the molecular mechanism behind therapeutic effects of EBN is not well characterized. In this study, EBNs that underwent different enzymatic preparation were tested against IAV infected cells. 50% cytotoxic concentration (CC 50 ) and 50% inhibitory concentration (IC 50 ) of the EBNs against IAV strain A/Puerto Rico/8/1934(H1N1) were determined by HA and MTT assays. Subsequently, the sialic acid content of the used EBNs were analyzed by fluorometric HPLC. Western Blotting and immunofluorescent staining were used to investigate the effects of EBNs on early endosomal trafficking and autophagy process of influenza virus. This study showed that post inoculations of EBNs after enzymatic preparations have the highest efficacy to inhibit IAV. While CC50 of the tested EBNs ranged from 27.5-32 mg/ml, the IC50 of these compounds ranged between 2.5-4.9 mg/ml. EBNs could inhibit IAV as efficient as commercial antiviral agents, such as amantadine and oseltamivir with different mechanisms of action against IAV. The antiviral activity of these EBNs correlated with the content of N-acetyl neuraminic acid. EBNs could affect early endosomal trafficking of the virus by reducing Rab5 and RhoA GTPase proteins and also reoriented actin cytoskeleton of IAV infected cells. In addition, for the first time this study showed that EBNs can inhibit intracellular autophagy process of IAV life cycle as evidenced by reduction of LC3-II and increasing of lysosomal degradation. The results procured in this study support the potential of EBNs as supplementary medication or alternative to antiviral agents to inhibit influenza infections. Evidently, EBNs can be a promising antiviral agent; however, these natural compounds should be screened for their metabolites prior to usage as therapeutic approach.

  12. Structured pathway across the transition state for peptide folding revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Lipi Thukral

    2011-09-01

    Full Text Available Small globular proteins and peptides commonly exhibit two-state folding kinetics in which the rate limiting step of folding is the surmounting of a single free energy barrier at the transition state (TS separating the folded and the unfolded states. An intriguing question is whether the polypeptide chain reaches, and leaves, the TS by completely random fluctuations, or whether there is a directed, stepwise process. Here, the folding TS of a 15-residue β-hairpin peptide, Peptide 1, is characterized using independent 2.5 μs-long unbiased atomistic molecular dynamics (MD simulations (a total of 15 μs. The trajectories were started from fully unfolded structures. Multiple (spontaneous folding events to the NMR-derived conformation are observed, allowing both structural and dynamical characterization of the folding TS. A common loop-like topology is observed in all the TS structures with native end-to-end and turn contacts, while the central segments of the strands are not in contact. Non-native sidechain contacts are present in the TS between the only tryptophan (W11 and the turn region (P7-G9. Prior to the TS the turn is found to be already locked by the W11 sidechain, while the ends are apart. Once the ends have also come into contact, the TS is reached. Finally, along the reactive folding paths the cooperative loss of the W11 non-native contacts and the formation of the central inter-strand native contacts lead to the peptide rapidly proceeding from the TS to the native state. The present results indicate a directed stepwise process to folding the peptide.

  13. Addressing the common pathway underlying hypertension and diabetes in people who are obese by maximizing health: the ultimate knowledge translation gap.

    Science.gov (United States)

    Dean, Elizabeth; Lomi, Constantina; Bruno, Selma; Awad, Hamzeh; O'Donoghue, Grainne

    2011-03-06

    In accordance with the WHO definition of health, this article examines the alarming discord between the epidemiology of hypertension, type 2 diabetes mellitus (T2DM), and obesity and the low profile of noninvasive (nondrug) compared with invasive (drug) interventions with respect to their prevention, reversal and management. Herein lies the ultimate knowledge translation gap and challenge in 21st century health care. Although lifestyle modification has long appeared in guidelines for medically managing these conditions, this evidence-based strategy is seldom implemented as rigorously as drug prescription. Biomedicine focuses largely on reducing signs and symptoms; the effects of the problem rather than the problem. This article highlights the evidence-based rationale supporting prioritizing the underlying causes and contributing factors for hypertension and T2DM, and, in turn, obesity. We argue that a primary focus on maximizing health could eliminate all three conditions, at best, or, at worst, minimize their severity, complications, and medication needs. To enable such knowledge translation and maximizing health outcome, the health care community needs to practice as an integrated team, and address barriers to effecting maximal health in all patients. Addressing the ultimate knowledge translation gap, by aligning the health care paradigm to 21st century needs, would constitute a major advance.

  14. Addressing the Common Pathway Underlying Hypertension and Diabetes in People Who Are Obese by Maximizing Health: The Ultimate Knowledge Translation Gap

    Directory of Open Access Journals (Sweden)

    Elizabeth Dean

    2011-01-01

    Full Text Available In accordance with the WHO definition of health, this article examines the alarming discord between the epidemiology of hypertension, type 2 diabetes mellitus (T2DM, and obesity and the low profile of noninvasive (nondrug compared with invasive (drug interventions with respect to their prevention, reversal and management. Herein lies the ultimate knowledge translation gap and challenge in 21st century health care. Although lifestyle modification has long appeared in guidelines for medically managing these conditions, this evidence-based strategy is seldom implemented as rigorously as drug prescription. Biomedicine focuses largely on reducing signs and symptoms; the effects of the problem rather than the problem. This article highlights the evidence-based rationale supporting prioritizing the underlying causes and contributing factors for hypertension and T2DM, and, in turn, obesity. We argue that a primary focus on maximizing health could eliminate all three conditions, at best, or, at worst, minimize their severity, complications, and medication needs. To enable such knowledge translation and maximizing health outcome, the health care community needs to practice as an integrated team, and address barriers to effecting maximal health in all patients. Addressing the ultimate knowledge translation gap, by aligning the health care paradigm to 21st century needs, would constitute a major advance.

  15. Molecular pathways to parallel evolution: I. Gene nexuses and their morphological correlates.

    Science.gov (United States)

    Zuckerkandl, E

    1994-12-01

    Aspects of the regulatory interactions among genes are probably as old as most genes are themselves. Correspondingly, similar predispositions to changes in such interactions must have existed for long evolutionary periods. Features of the structure and the evolution of the system of gene regulation furnish the background necessary for a molecular understanding of parallel evolution. Patently "unrelated" organs, such as the fat body of a fly and the liver of a mammal, can exhibit fractional homology, a fraction expected to become subject to quantitation. This also seems to hold for different organs in the same organism, such as wings and legs of a fly. In informational macromolecules, on the other hand, homology is indeed all or none. In the quite different case of organs, analogy is expected usually to represent attenuated homology. Many instances of putative convergence are likely to turn out to be predominantly parallel evolution, presumably including the case of the vertebrate and cephalopod eyes. Homology in morphological features reflects a similarity in networks of active genes. Similar nexuses of active genes can be established in cells of different embryological origins. Thus, parallel development can be considered a counterpart to parallel evolution. Specific macromolecular interactions leading to the regulation of the c-fos gene are given as an example of a "controller node" defined as a regulatory unit. Quantitative changes in gene control are distinguished from relational changes, and frequent parallelism in quantitative changes is noted in Drosophila enzymes. Evolutionary reversions in quantitative gene expression are also expected. The evolution of relational patterns is attributed to several distinct mechanisms, notably the shuffling of protein domains. The growth of such patterns may in part be brought about by a particular process of compensation for "controller gene diseases," a process that would spontaneously tend to lead to increased regulatory

  16. Molecular Pathways Involved in the Amelioration of Myocardial Injury in Diabetic Rats by Kaempferol.

    Science.gov (United States)

    Suchal, Kapil; Malik, Salma; Khan, Sana Irfan; Malhotra, Rajiv Kumar; Goyal, Sameer N; Bhatia, Jagriti; Ojha, Shreesh; Arya, Dharamvir Singh

    2017-05-15

    There is growing evidence that chronic hyperglycemia leads to the formation of advanced glycation end products (AGEs) which exerts its effect via interaction with the receptor for advanced glycation end products (RAGE). AGE-RAGE activation results in oxidative stress and inflammation. It is well known that this mechanism is involved in the pathogenesis of cardiovascular disease in diabetes. Kaempferol, a dietary flavonoid, is known to possess antioxidant, anti-apoptotic, and anti-inflammatory activities. However, little is known about the effect of kaempferol on myocardial ischemia-reperfusion (IR) injury in diabetic rats. Diabetes was induced in male albino Wistar rats using streptozotocin (70 mg/kg; i.p.), and rats with glucose level >250 mg/dL were considered as diabetic. Diabetic rats were treated with vehicle (2 mL/kg; i.p.) and kaempferol (20 mg/kg; i.p.) daily for a period of 28 days and on the 28th day, ischemia was produced by one-stage ligation of the left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed and the heart tissue was processed for biochemical, morphological, and molecular studies. Kaempferol pretreatment significantly reduced hyperglycemia, maintained hemodynamic function, suppressed AGE-RAGE axis activation, normalized oxidative stress, and preserved morphological alterations. In addition, there was decreased level of inflammatory markers (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and NF-κB), inhibition of active c-Jun N-terminal kinase (JNK) and p38 proteins, and activation of Extracellular signal regulated kinase 1/2 (ERK1/2) a prosurvival kinase. Furthermore, it also attenuated apoptosis by reducing the expression of pro-apoptotic proteins (Bax and Caspase-3), Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells, and increasing the level of anti-apoptotic protein (Bcl-2). In conclusion, kaempferol attenuated

  17. Impulsivity and Concussion in Juvenile Rats: Examining Molecular and Structural Aspects of the Frontostriatal Pathway.

    Directory of Open Access Journals (Sweden)

    Harleen Hehar

    findings suggest the need to tailor treatment strategies for mTBI in light of an individual's premorbid characteristics, given significant differences in molecular profiles of the frontostriatal circuits that depend upon sex and the etiology of the behavioural phenotype.

  18. Molecular network, pathway, and functional analysis of time-dependent gene changes associated with pancreatic cancer susceptibility to oncolytic vaccinia virotherapy

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2016-01-01

    Conclusions: Our study reveals the ability to assess time-dependent changes in gene expression patterns in pancreatic cancer cells associated with infection and susceptibility to vaccinia viruses. This suggests that molecular assays may be useful to develop safer and more efficacious oncolyticvirotherapies and support the idea that these treatments may target pathways implicated in pancreatic cancer resistance to conventional therapies.

  19. RhoA/ROCK pathway is the major molecular determinant of basal tone in intact human internal anal sphincter.

    Science.gov (United States)

    Rattan, Satish; Singh, Jagmohan

    2012-04-01

    The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10(-8) to 10(-4) M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC(20) in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC(20), before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment.

  20. Molecular mechanisms of BMP-induced bone formation: Cross-talk between BMP and NF-κB signaling pathways in osteoblastogenesis

    Directory of Open Access Journals (Sweden)

    Eijiro Jimi

    2010-02-01

    Full Text Available Osteoblasts are bone-forming cells that differentiate from mesenchymal stem cells. Differentiation processes are coordinately and dynamically controlled in the mesenchymal cells by specific signal transduction pathways. Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, induce not only bone formation in vivo, but also osteoblast differentiation of mesenchymal cells in vitro. BMP signals are transduced from plasma membrane receptors to the nucleus through both Smad-dependent and -independent pathways, and are regulated by many extracellular and intercellular proteins that interact with BMPs or components of BMP signaling pathways. To understand the molecular mechanisms underlying the role of BMPs in osteoblast differentiation, it is important to elucidate the BMP signaling transduction pathways that are active during osteoblast differentiation. In this review, we summarize the BMP signaling pathways that are known to function in osteoblast development. We also describe our recent findings regarding the molecular mechanisms underlying the cross-talk between BMP/Smad and NF-κB pathways in osteoblast differentiation.

  1. Probiotic-fermented purple sweet potato yogurt activates compensatory IGF‑IR/PI3K/Akt survival pathways and attenuates cardiac apoptosis in the hearts of spontaneously hypertensive rats.

    Science.gov (United States)

    Lin, Pei-Pei; Hsieh, You-Miin; Kuo, Wei-Wen; Lin, Yueh-Min; Yeh, Yu-Lan; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang; Tsai, Cheng-Chih

    2013-12-01

    Apoptosis is recognized as a predictor of adverse outcomes in subjects with cardiac diseases. The aim of this study was to explore the effects of probiotic-fermented purple sweet potato yogurt (PSPY) with high γ-aminobutyric acid (GABA) content on cardiac apoptosis in spontaneously hypertensive rat (SHR) hearts. The rats were orally adminsitered with 2 different concentrations of PSPY (10 and 100%) or captopril, 15.6 mg/kg, body weight (BW)/day. The control group was administered distilled water. DAPI and TUNEL staining were used to detect the numbers of apoptotic cells. A decrease in the number of TUNEL-positive cardiac myocytes was observed in the SHR-PSPY (10 and 100%) groups. In addition, the levels of key components of the Fas receptor- and mitochondrial-dependent apoptotic pathways were determined by western blot analysis. The results revealed that the levels of the key components of the Fas receptor- and mitochondrial-dependent apoptotic pathway were significantly decreased in the SHR-captopril, and 10 and 100% PSPY groups. Additionally, the levels of phosphorylated insulin-like growth factor‑I receptor (p-IGF‑IR) were increased in SHR hearts from the SHR-control group; however, no recovery in the levels of downstream signaling components was observed. In addition, the levels of components of the compensatory IGF-IR-dependent survival pathway (p-PI3K and p-Akt) were all highly enhanced in the left ventricles in the hearts form the SHR-10 and 100% PSPY groups. Therefore, the oral administration of PSPY may attenuate cardiomyocyte apoptosis in SHR hearts by activating IGF‑IR-dependent survival signaling pathways.

  2. Vascular Remodeling in Experimental Hypertension

    Directory of Open Access Journals (Sweden)

    Norma R. Risler

    2005-01-01

    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  3. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal NG-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    Science.gov (United States)

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N G -nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N G -nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N G -nitro-L-arginine-methyl ester, N G -nitro-L-arginine-methyl ester +melatonin, and N G -nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N G -nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N G -nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N G -nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N G -nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N G -nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway

  4. A pilot randomised controlled trial investigating a mindfulness-based stress reduction (MBSR) intervention in individuals with pulmonary arterial hypertension (PAH): the PATHWAYS study.

    Science.gov (United States)

    Tulloh, R M R; Garratt, V; Tagney, J; Turner-Cobb, J; Marques, E; Greenwood, R; Howard, L; Gin-Sing, W; Barton, A; Ewings, P; Craggs, P; Hollingworth, W

    2018-01-01

    Pulmonary arterial hypertension (PAH) is an uncommon condition with progressive heart failure and premature death. Treatment costs up to £120,000 per patient per year, and the psychological burden of PAH is substantial. Mindfulness-based stress reduction (MBSR) is an intervention with the potential to reduce this burden, but to date, it has not been applied to people with pulmonary hypertension. We wished to determine whether a trial of MBSR for people with PAH would be feasible. A customised gentle MBSR programme of eight sessions was developed for people with physical disability due to PAH, and they were randomised to group-based MBSR or treatment as usual. The completeness of outcome measures including Beck Anxiety Index, Beck Depression Inventory and standard physical assessment at 3 months after randomisation were recorded. Health care utilisation was measured. Attendance at the sessions and the costs involved in delivering the intervention were assessed. Semi-structured interviews were conducted to explore the acceptability of the MBSR intervention and when appropriate the reasons for trial non-participation. Fifty-two patients were recruited, but only 34 were randomised due to patients finding it difficult to travel to sessions. Twenty-two completed all questionnaires and attended all clinics, both routine and additional in order to collect outcomes measures. The MSBR sessions were delivered in Bristol, Cardiff and London, costing, on average, between £2234 (Cardiff) and £4128 (London) per patient to deliver. Attendance at each session averaged between two patients in Bristol and Cardiff and three in London. For those receiving treatment as usual, clinician blinding was achievable. Interviews revealed that people who attended MBSR found it interesting and helpful in managing their symptoms and minimising the psychological component of their disease. We found that attendance at group MBSR was poor in people with chronic PAH within the context of a trial

  5. The cancer theory of pulmonary arterial hypertension

    Science.gov (United States)

    Boucherat, Olivier; Vitry, Geraldine; Trinh, Isabelle; Paulin, Roxane; Provencher, Steeve; Bonnet, Sebastien

    2017-01-01

    Pulmonary arterial hypertension (PAH) remains a mysterious killer that, like cancer, is characterized by tremendous complexity. PAH development occurs under sustained and persistent environmental stress, such as inflammation, shear stress, pseudo-hypoxia, and more. After inducing an initial death of the endothelial cells, these environmental stresses contribute with time to the development of hyper-proliferative and apoptotic resistant clone of cells including pulmonary artery smooth muscle cells, fibroblasts, and even pulmonary artery endothelial cells allowing vascular remodeling and PAH development. Molecularly, these cells exhibit many features common to cancer cells offering the opportunity to exploit therapeutic strategies used in cancer to treat PAH. In this review, we outline the signaling pathways and mechanisms described in cancer that drive PAH cells’ survival and proliferation and discuss the therapeutic potential of antineoplastic drugs in PAH. PMID:28597757

  6. Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Jie Su

    2015-01-01

    Full Text Available Objectives. Preliminary researches showed that luteolin was used to treat hypertension. However, it is still unclear whether luteolin has effect on the hypertensive complication such as vascular remodeling. The present study was designed to investigate the effect of luteolin on the hypertensive vascular remodeling and its molecular mechanism. Method and Results. We evaluated the effect of luteolin on aorta thickening of hypertension in spontaneous hypertensive rats (SHRs and found that luteolin could significantly decrease the blood pressure and media thickness of aorta in vivo. Luteolin could inhibit angiotensin II- (Ang II- induced proliferation and migration of vascular smooth muscle cells (VSMCs. Dichlorofluorescein diacetate (DCFH-DA staining result showed that luteolin reduced Ang II-stimulated ROS production in VSMCs. Furthermore, western blot and gelatin zymography results showed that luteolin treatment leaded to a decrease in ERK1/2, p-ERK1/2, p-p38, MMP2, and proliferating cell nuclear antigen (PCNA protein level. Conclusion. These data support that luteolin can ameliorate hypertensive vascular remodeling by inhibiting the proliferation and migration of Ang II-induced VSMCs. Its mechanism is mediated by the regulation of MAPK signaling pathway and the production of ROS.

  7. Renovascular hypertension

    International Nuclear Information System (INIS)

    Thomsen, H.S.; Sos, T.A.; Nielsen, S.L.; Koebenhavns Amts Sygehus, Herlev; Cornell Univ., New York

    1989-01-01

    Hypertension constitutes a major health problem and the challenge is to identify patients having 'surgically' curable renal vascular disease among the majority with so-called essential hypertension. The best of unsatisfactory diagnostic tests are renography and plasma renin activity both before and during angiotensin II blockade. The necessity of better screening tests has increased because of the recent advances in surgical techniques and especially percutaneous transluminal renal angioplasty. The latter has definitely become the method of choice for correction of suspected hemodynamically significant artery stenoses whenever technically feasible. With improved angioplasty techniques the risk of treating renal artery stenosis without hemodynamic and clinical importance (so-called cosmetic repair) has increased. Unfortunately randomized trials including surgery versus angioplasty are not available. It should be kept in mind that only after correction of the stenosis is achieved and the blood pressure has become normal, can the diagnosis of renovascular hypertension be made with certainty. (orig.)

  8. Exercise Hypertension.

    Science.gov (United States)

    Schultz, Martin G; Sharman, James E

    2014-05-01

    Irrespective of apparent 'normal' resting blood pressure (BP), some individuals may experience an excessive elevation in BP with exercise (i.e. systolic BP ≥210 mm Hg in men or ≥190 mm Hg in women or diastolic BP ≥110 mm Hg in men or women), a condition termed exercise hypertension or a 'hypertensive response to exercise' (HRE). An HRE is a relatively common condition that is identified during standard exercise stress testing; however, due to a lack of information with respect to the clinical ramifications of an HRE, little value is usually placed on such a finding. In this review, we discuss both the clinical importance and underlying physiological contributors of exercise hypertension. Indeed, an HRE is associated with an increased propensity for target organ damage and also predicts the future development of hypertension, cardiovascular events and mortality, independent of resting BP. Moreover, recent work has highlighted that some of the elevated cardiovascular risks associated with an HRE may be related to high-normal resting BP (pre-hypertension) or ambulatory 'masked' hypertension and that an HRE may be an early warning signal of abnormal BP control that is otherwise undetected with clinic BP. Whilst an HRE may be amenable to treatment via pharmacological and lifestyle interventions, the exact physiological mechanism of an HRE remains elusive, but it is likely a manifestation of multiple factors including large artery stiffness, increased peripheral resistance, neural circulatory control and metabolic irregularity. Future research focus may be directed towards determining threshold values to denote the increased risk associated with an HRE and further resolution of the underlying physiological factors involved in the pathogenesis of an HRE.

  9. NGS Reveals Molecular Pathways Affected by Obesity and Weight Loss-Related Changes in miRNA Levels in Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Alina Kuryłowicz

    2017-12-01

    Full Text Available Both obesity and weight loss may cause molecular changes in adipose tissue. This study aimed to characterize changes in adipose tissue miRNome in order to identify molecular pathways affected by obesity and weight changes. Next generation sequencing (NGS was applied to identify microRNAs (miRNAs differentially expressed in 47 samples of visceral (VAT and subcutaneous (SAT adipose tissues from normal-weight (N, obese (O and obese after surgery-induced weight loss (PO individuals. Subsequently miRNA expression was validated by real-time PCR in 197 adipose tissues and bioinformatics analysis performed to identify molecular pathways affected by obesity-related changes in miRNA expression. NGS identified 344 miRNAs expressed in adipose tissues with ≥5 reads per million. Using >2 and <−2 fold change as cut-offs we showed that the expression of 54 miRNAs differed significantly between VAT-O and SAT-O. Equally, between SAT-O and SAT-N, the expression of 20 miRNAs differed significantly, between SAT-PO and SAT-N the expression of 79 miRNAs differed significantly, and between SAT-PO and SAT-O, the expression of 61 miRNAs differed significantly. Ontological analyses disclosed several molecular pathways regulated by these miRNAs in adipose tissue. NGS-based miRNome analysis characterized changes of the miRNA profile of adipose tissue, which are associated with changes of weight possibly responsible for a differential regulation of molecular pathways in adipose tissue when the individual is obese and after the individual has lost weight.

  10. Kinin B1 Receptor Promotes Neurogenic Hypertension Through Activation of Centrally Mediated Mechanisms.

    Science.gov (United States)

    Sriramula, Srinivas; Lazartigues, Eric

    2017-12-01

    Hypertension is associated with increased activity of the kallikrein-kinin system. Kinin B1 receptor (B1R) activation leads to vasoconstriction and inflammation. Despite evidence supporting a role for the B1R in blood pressure regulation, the mechanisms by which B1R could alter autonomic function and participate in the pathogenesis of hypertension remain unidentified. We sought to explore whether B1R-mediated inflammation contributes to hypertension and investigate the molecular mechanisms involved. In this study, we tested the hypothesis that activation of B1R in the brain is involved in the pathogenesis of hypertension, using the deoxycorticosterone acetate-salt model of neurogenic hypertension in wild-type and B1R knockout mice. Deoxycorticosterone acetate-salt treatment in wild-type mice led to significant increases in B1R mRNA and protein levels and bradykinin levels, enhanced gene expression of carboxypeptidase N supporting an increase in the B1R ligand, associated with enhanced blood pressure, inflammation, sympathoexcitation, autonomic dysfunction, and impaired baroreflex sensitivity, whereas these changes were blunted or prevented in B1R knockout mice. B1R stimulation was further shown to involve activation of the ASK1-JNK-ERK1/2 and NF-κB pathways in the brain. To dismiss potential developmental alterations in knockout mice, we further used B1R blockade selectively in the brain of wild-type mice. Supporting the central origin of this mechanism, intracerebroventricular infusion of a specific B1R antagonist, attenuated the deoxycorticosterone acetate-salt-induced increase in blood pressure in wild-type mice. Our data provide the first evidence of a central role for B1R-mediated inflammatory pathways in the pathogenesis of deoxycorticosterone acetate-salt hypertension and offer novel insights into possible B1R-targeted therapies for the treatment of neurogenic hypertension. © 2017 American Heart Association, Inc.

  11. Molecular profiling of ALDH1+ colorectal cancer stem cells reveals preferential activation of MAPK, FAK, and oxidative stress prosurvival signalling pathways

    DEFF Research Database (Denmark)

    Vishnubalaji, Radhakrishnan; Manikandan, Muthurangan; Fahad, Mohamed

    2018-01-01

    enrichment related to DNA damage, MAPK, FAK, oxidative stress response, and Wnt signalling. ALDH+ cells showed enhanced ROS stress resistance, whereas MAPK/FAK pathway pharmacologic inhibition limited their survival. Conversely, 5-fluorouracil increased the ALDH+ cell fraction among the SW403, HCT116 and SW.......006) and poor DFS (p = 0.05), thus implicating ALDH1A1 and POU5F1 in CRC prognosis. Our data reveal distinct molecular signature of ALDH+ CSCs in CRC and suggest pathways relevant for successful targeted therapies and management of CRC....

  12. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle

    DEFF Research Database (Denmark)

    Salleh, M. S.; Mazzoni, G.; Höglund, J. K.

    2017-01-01

    -throughput RNA sequencing data of liver biopsies from 19 dairy cows were used to identify differentially expressed genes (DEGs) between high- and low-FE groups of cows (based on Residual Feed Intake or RFI). Subsequently, a profile of the pathways connecting the DEGs to FE was generated, and a list of candidate...... genes and biomarkers was derived for their potential inclusion in breeding programmes to improve FE. The bovine RNA-Seq gene expression data from the liver was analysed to identify DEGs and, subsequently, identify the molecular mechanisms, pathways and possible candidate biomarkers of feed efficiency....... On average, 57 million reads (short reads or short mRNA sequences ...

  13. Signaling in Parasitic Nematodes: Physicochemical Communication Between Host and Parasite and Endogenous Molecular Transduction Pathways Governing Worm Development and Survival.

    Science.gov (United States)

    Lok, James B

    2016-12-01

    Signaling or communication between host and parasite may occur over relatively long ranges to enable host finding and acquisition by infective parasitic nematode larvae. Innate behaviors in infective larvae transmitted from the soil that enhance the likelihood of host contact, such as negative geotaxis and hypermotility, are likely mediated by mechanoreception and neuromuscular signaling. Host cues such as vibration of the substratum, elevated temperature, exhaled CO 2 , and other volatile odorants are perceived by mechanosensory and chemosensory neurons of the amphidial complex. Beyond this, the molecular systems that transduce these external cues within the worm are unknown at this time. Overall, the signal transduction mechanisms that regulate switching between dauer and continuous reproductive development in Caenorhabditis elegans , and doubtless other free-living nematodes, have provided a useful framework for testing hypotheses about how the morphogenesis and development of infective parasitic nematode larvae and the lifespan of adult parasites are regulated. In C. elegans , four major signal transduction pathways, G protein-coupled receptor signaling, insulin/insulin-like growth factor signaling, TGFβ-like signaling and steroid-nuclear hormone receptor signaling govern the switch between dauer and continuous development and regulate adult lifespan. Parasitic nematodes appear to have conserved the functions of G-protein-coupled signaling, insulin-like signaling and steroid-nuclear hormone receptor signaling to regulate larval development before and during the infective process. By contrast, TGFβ-like signaling appears to have been adapted for some other function, perhaps modulation of the host immune response. Of the three signal transduction pathways that appear to regulate development in parasitic nematodes, steroid-nuclear hormone signaling is the most straightforward to manipulate with administered small molecules and may form the basis of new

  14. Essential hypertension vs. secondary hypertension among children.

    Science.gov (United States)

    Gupta-Malhotra, Monesha; Banker, Ashish; Shete, Sanjay; Hashmi, Syed Sharukh; Tyson, John E; Barratt, Michelle S; Hecht, Jacqueline T; Milewicz, Diane M; Boerwinkle, Eric

    2015-01-01

    The aim was to determine the proportions and correlates of essential hypertension among children in a tertiary pediatric hypertension clinic. We evaluated 423 consecutive children and collected demographic and clinical history by retrospective chart review. We identified 275 (65%) hypertensive children (blood pressure >95th percentile per the "Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents") from 423 children referred to the clinic for history of elevated blood pressure. The remainder of the patients had normotension (11%), white coat hypertension (11%), prehypertension (10%), and pending diagnosis (3%). Among the 275 hypertensive children, 43% (n = 119; boys = 56%; median age = 12 years; range = 3-17 years) had essential hypertension and 57% (n = 156; boys = 66%; median age = 9 years; range = 0.08-19 years) had secondary hypertension. When compared with those with secondary hypertension, those with essential hypertension had a significantly older age at diagnosis (P = 0.0002), stronger family history of hypertension (94% vs. 68%; P secondary hypertension. The phenotype of essential hypertension can present as early as 3 years of age and is the predominant form of hypertension in children after age of 6 years. Among children with hypertension, those with essential hypertension present at an older age, have a stronger family history of hypertension, and have lower prevalence of preterm birth. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Molecular characterization and functional analysis of chalcone synthase from Syringa oblata Lindl. in the flavonoid biosynthetic pathway.

    Science.gov (United States)

    Wang, Yu; Dou, Ying; Wang, Rui; Guan, Xuelian; Hu, Zenghui; Zheng, Jian

    2017-11-30

    The flower color of Syringa oblata Lindl., which is often modulated by the flavonoid content, varies and is an important ornamental feature. Chalcone synthase (CHS) catalyzes the first key step in the flavonoid biosynthetic pathway. However, little is known about the role of S. oblata CHS (SoCHS) in flavonoid biosynthesis in this species. Here, we isolate and analyze the cDNA (SoCHS1) that encodes CHS in S. oblata. We also sought to analyzed the molecular characteristics and function of flavonoid metabolism by SoCHS1. We successfully isolated the CHS-encoding genomic DNA (gDNA) in S. oblata (SoCHS1), and the gene structural analysis indicated it had no intron. The opening reading frame (ORF) sequence of SoCHS1 was 1170bp long and encoded a 389-amino acid polypeptide. Multiple sequence alignment revealed that both the conserved CHS active site residues and CHS signature sequence were in the deduced amino acid sequence of SoCHS1. Crystallographic analysis revealed that the protein structure of SoCHS1 is highly similar to that of FnCHS1 in Freesia hybrida. The quantitative real-time polymerase chain reaction (PCR) performed to detect the SoCHS1 transcript expression levels in flowers, and other tissues revealed the expression was significantly correlated with anthocyanin accumulation during flower development. The ectopic expression results of Nicotiana tabacum showed that SoCHS1 overexpression in transgenic tobacco changed the flower color from pale pink to pink. In conclusion, these results suggest that SoCHS1 plays an essential role in flavonoid biosynthesis in S. oblata, and could be used to modify flavonoid components in other plant species. Copyright © 2017. Published by Elsevier B.V.

  16. Delineation of molecular pathways that regulate hepatic PCSK9 and LDL receptor expression during fasting in normolipidemic hamsters

    Science.gov (United States)

    Wu, Minhao; Dong, Bin; Cao, Aiqin; Li, Hai; Liu, Jingwen

    2015-01-01

    Background PCSK9 has emerged as a key regulator of serum LDL-C metabolism by promoting the degradation of hepatic LDL receptor (LDLR). In this study, we investigated the effect of fasting on serum PCSK9, LDL-C, and hepatic LDLR expression in hamsters and further delineated the molecular pathways involved in fasting-induced repression of PCSK9 transcription. Results Fasting had insignificant effects on serum total cholesterol and HDL-C levels, but reduced LDL-C, triglyceride and insulin levels. The decrease in serum LDL-C was accompanied by marked reductions of hepatic PCSK9 mRNA and serum PCSK9 protein levels with concomitant increases of hepatic LDLR protein amounts. Fasting produced a profound impact on SREBP1 expression and its transactivating activity, while having modest effects on mRNA expressions of SREBP2 target genes in hamster liver. Although PPARα mRNA levels in hamster liver were elevated by fasting, ligand-induced activation of PPARα with WY14643 compound in hamster primary hepatocytes did not affect PCSK9 mRNA or protein expressions. Further investigation on HNF1α, a critical transactivator of PCSK9, revealed that fasting did not alter its mRNA expression, however, the protein abundance of HNF1α in nuclear extracts of hamster liver was markedly reduced by prolonged fasting. Conclusion Fasting lowered serum LDL-C in hamsters by increasing hepatic LDLR protein amounts via reductions of serum PCSK9 levels. Importantly, our results suggest that attenuation of SREBP1 transactivating activity owing to decreased insulin levels during fasting is primarily responsible for compromised PCSK9 gene transcription, which was further suppressed after prolonged fasting by a reduction of nuclear HNF1α protein abundance. PMID:22954675

  17. Molecular interaction of the first 3 enzymes of the de novo pyrimidine biosynthetic pathway of Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Nara, Takeshi; Hashimoto, Muneaki; Hirawake, Hiroko; Liao, Chien-Wei; Fukai, Yoshihisa; Suzuki, Shigeo; Tsubouchi, Akiko; Morales, Jorge; Takamiya, Shinzaburo; Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko; Fan, Chia-Kwung; Inaoka, Daniel Ken; Inoue, Masayuki; Tanaka, Akiko; Harada, Shigeharu; Kita, Kiyoshi

    2012-01-01

    Highlights: ► An Escherichia coli strain co-expressing CPSII, ATC, and DHO of Trypanosoma cruzi was constructed. ► Molecular interactions between CPSII, ATC, and DHO of T. cruzi were demonstrated. ► CPSII bound with both ATC and DHO. ► ATC bound with both CPSII and DHO. ► A functional tri-enzyme complex might precede the establishment of the fused enzyme. -- Abstract: The first 3 reaction steps of the de novo pyrimidine biosynthetic pathway are catalyzed by carbamoyl-phosphate synthetase II (CPSII), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), respectively. In eukaryotes, these enzymes are structurally classified into 2 types: (1) a CPSII-DHO-ATC fusion enzyme (CAD) found in animals, fungi, and amoebozoa, and (2) stand-alone enzymes found in plants and the protist groups. In the present study, we demonstrate direct intermolecular interactions between CPSII, ATC, and DHO of the parasitic protist Trypanosoma cruzi, which is the causative agent of Chagas disease. The 3 enzymes were expressed in a bacterial expression system and their interactions were examined. Immunoprecipitation using an antibody specific for each enzyme coupled with Western blotting-based detection using antibodies for the counterpart enzymes showed co-precipitation of all 3 enzymes. From an evolutionary viewpoint, the formation of a functional tri-enzyme complex may have preceded—and led to—gene fusion to produce the CAD protein. This is the first report to demonstrate the structural basis of these 3 enzymes as a model of CAD. Moreover, in conjunction with the essentiality of de novo pyrimidine biosynthesis in the parasite, our findings provide a rationale for new strategies for developing drugs for Chagas disease, which target the intermolecular interactions of these 3 enzymes.

  18. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling

    NARCIS (Netherlands)

    Smeets, Ruben L.; Fleuren, Wilco W. M.; He, Xuehui; Vink, Paul M.; Wijnands, Frank; Gorecka, Monika; Klop, Henri; Bauerschmidt, Sussane; Garritsen, Anja; Koenen, Hans J. P. M.; Joosten, Irma; Boots, Annemieke M. H.; Alkema, Wynand

    2012-01-01

    Background: T lymphocytes are orchestrators of adaptive immunity. Naive T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we

  19. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling.

    NARCIS (Netherlands)

    Smeets, R.L.; Fleuren, W.W.M.; He, X.; Vink, P.M.; Wijnands, F.; Gorecka, M.; Klop, H.; Bauerschmidt, S.; Garritsen, A.; Koenen, H.J.P.M.; Joosten, I.; Boots, A.M.H.; Alkema, W.

    2012-01-01

    BACKGROUND: T lymphocytes are orchestrators of adaptive immunity. Naive T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we

  20. Hypertension and obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Phillips CL

    2013-05-01

    Full Text Available Craig L Phillips,1–3 Denise M O'Driscoll4,51Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, Sydney, Australia; 2National Health and Medical Research Council Center for Integrated Research and Understanding of Sleep, Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia; 3Discipline of Sleep Medicine, Sydney Medical School, University of Sydney, Sydney, Australia; 4Monash Lung and Sleep, Monash Medical Centre, Monash University, Melbourne, Australia; 5Department of Medicine, Southern Clinical School, Monash University, Melbourne, AustraliaAbstract: Obstructive sleep apnea (OSA is increasingly being recognized as a major health burden with strong focus on the associated cardiovascular risk. Studies from the last two decades have provided strong evidence for a causal role of OSA in the development of systemic hypertension. The acute physiological changes that occur during apnea promote nocturnal hypertension and may lead to the development of sustained daytime hypertension via the pathways of sympathetic activation, inflammation, oxidative stress, and endothelial dysfunction. This review will focus on the acute hemodynamic disturbances and associated intermittent hypoxia that characterize OSA and the potential pathophysiological mechanisms responsible for the development of hypertension in OSA. In addition the epidemiology of OSA and hypertension, as well as the role of treatment of OSA, in improving blood pressure control will be examined.Keywords: obstructive sleep apnea, hypertension, intermittent hypoxia, ambulatory blood pressure, sympathetic activation

  1. Circulating osteoprotegerin is associated with chronic kidney disease in hypertensive patients.

    Science.gov (United States)

    Bernardi, Stella; Toffoli, Barbara; Bossi, Fleur; Candido, Riccardo; Stenner, Elisabetta; Carretta, Renzo; Barbone, Fabio; Fabris, Bruno

    2017-07-06

    Osteoprotegerin (OPG) is a glycoprotein that plays an important regulatory role in the skeletal, vascular, and immune system. It has been shown that OPG predicts chronic kidney disease (CKD) in diabetic patients. We hypothesized that OPG could be a risk marker of CKD development also in non-diabetic hypertensive patients. A case-control study was carried out to measure circulating OPG levels in 42 hypertensive patients with CKD and in 141 hypertensive patients without CKD. A potential relationship between OPG and the presence of CKD was investigated and a receiver-operating characteristic (ROC) curve was designed thereafter to identify a cut-off value of OPG that best explained the presence of CKD. Secondly, to evaluate whether OPG increase could affect the kidney, 18 C57BL/6J mice were randomized to be treated with saline or recombinant OPG every 3 weeks for 12 weeks. Circulating OPG levels were significantly higher in hypertensive patients with CKD, and there was a significant inverse association between OPG and renal function, that was independent from other variables. ROC analysis showed that OPG levels had a high statistically predictive value on CKD in hypertensive patients, which was greater than that of hypertension. The OPG best cut-off value associated with CKD was 1109.19 ng/L. In the experimental study, OPG delivery significantly increased the gene expression of pro-inflammatory and pro-fibrotic mediators, as well as the glomerular nitrosylation of proteins. This study shows that OPG is associated with CKD in hypertensive patients, where it might have a higher predictive value than that of hypertension for CKD development. Secondly, we found that OPG delivery significantly increased the expression of molecular pathways involved in kidney damage. Further longitudinal studies are needed not only to evaluate whether OPG predicts CKD development but also to clarify whether OPG should be considered a risk factor for CKD.

  2. Hypertension Subtypes among Hypertensive Patients in Ibadan

    OpenAIRE

    Abiodun M. Adeoye; Adewole Adebiyi; Bamidele O. Tayo; Babatunde L. Salako; Adesola Ogunniyi; Richard S. Cooper

    2014-01-01

    Background. Certain hypertension subtypes have been shown to increase the risk for cardiovascular morbidity and mortality and may be related to specific underlying genetic determinants. Inappropriate characterization of subtypes of hypertension makes efforts at elucidating the genetic contributions to the etiology of hypertension largely vapid. We report the hypertension subtypes among patients with hypertension from South-Western Nigeria. Methods. A total of 1858 subjects comprising 76% fema...

  3. The Evolving Classification of Pulmonary Hypertension.

    Science.gov (United States)

    Foshat, Michelle; Boroumand, Nahal

    2017-05-01

    - An explosion of information on pulmonary hypertension has occurred during the past few decades. The perception of this disease has shifted from purely clinical to incorporate new knowledge of the underlying pathology. This transfer has occurred in light of advancements in pathophysiology, histology, and molecular medical diagnostics. - To update readers about the evolving understanding of the etiology and pathogenesis of pulmonary hypertension and to demonstrate how pathology has shaped the current classification. - Information presented at the 5 World Symposia on pulmonary hypertension held since 1973, with the last meeting occurring in 2013, was used in this review. - Pulmonary hypertension represents a heterogeneous group of disorders that are differentiated based on differences in clinical, hemodynamic, and histopathologic features. Early concepts of pulmonary hypertension were largely influenced by pharmacotherapy, hemodynamic function, and clinical presentation of the disease. The initial nomenclature for pulmonary hypertension segregated the clinical classifications from pathologic subtypes. Major restructuring of this disease classification occurred between the first and second symposia, which was the first to unite clinical and pathologic information in the categorization scheme. Additional changes were introduced in subsequent meetings, particularly between the third and fourth World Symposia meetings, when additional pathophysiologic information was gained. Discoveries in molecular diagnostics significantly progressed the understanding of idiopathic pulmonary arterial hypertension. Continued advancements in imaging modalities, mechanistic pathogenicity, and molecular biomarkers will enable physicians to define pulmonary hypertension phenotypes based on the pathobiology and allow for treatment customization.

  4. Controlling Hypertension

    Centers for Disease Control (CDC) Podcasts

    Hypertension, or high blood pressure, affects one third of U.S. adults and is a leading cause of heart disease and stroke. A recent study found an increase in self-reported high blood pressure among U.S. adults, and an increase in the use of medications to control high blood pressure. In this podcast, Dr. Fleetwood Loustalot discusses the importance of controlling high blood pressure.

  5. A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery.

    Science.gov (United States)

    Hellerstein, Marc K

    2008-01-01

    Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a naïve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.

  6. Hypertension Subtypes among Hypertensive Patients in Ibadan

    Directory of Open Access Journals (Sweden)

    Abiodun M. Adeoye

    2014-01-01

    Full Text Available Background. Certain hypertension subtypes have been shown to increase the risk for cardiovascular morbidity and mortality and may be related to specific underlying genetic determinants. Inappropriate characterization of subtypes of hypertension makes efforts at elucidating the genetic contributions to the etiology of hypertension largely vapid. We report the hypertension subtypes among patients with hypertension from South-Western Nigeria. Methods. A total of 1858 subjects comprising 76% female, hypertensive, aged 18 and above were recruited into the study from two centers in Ibadan, Nigeria. Hypertension was identified using JNCVII definition and was further grouped into four subtypes: controlled hypertension (CH, isolated systolic hypertension (ISH, isolated diastolic hypertension (IDH, and systolic-diastolic hypertension (SDH. Results. Systolic-diastolic hypertension was the most prevalent. Whereas SDH (77.6% versus 73.5% and IDH (4.9% versus 4.7% were more prevalent among females, ISH (10.1% versus 6.2% was higher among males (P=0.048. Female subjects were more obese (P<0.0001 and SDH was prevalent among the obese group. Conclusion. Gender and obesity significantly influenced the distribution of the hypertension subtypes. Characterization of hypertension by subtypes in genetic association studies could lead to identification of previously unknown genetic variants involved in the etiology of hypertension. Large-scale studies among various ethnic groups may be needed to confirm these observations.

  7. DMPD: Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: roles of the receptor complex. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14609719 Molecular mechanisms of macrophage activation and deactivation bylipopolys...acol Ther. 2003 Nov;100(2):171-94. (.png) (.svg) (.html) (.csml) Show Molecular mechanisms of macrophage act...medID 14609719 Title Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: ro

  8. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer's disease.

    Science.gov (United States)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J

    2009-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.

  9. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    International Nuclear Information System (INIS)

    Lowe, Xiu R.; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p -53 ) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease

  10. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-06-06

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.

  11. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling

    Directory of Open Access Journals (Sweden)

    Smeets Ruben L

    2012-03-01

    Full Text Available Abstract Background T lymphocytes are orchestrators of adaptive immunity. Naïve T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we performed comprehensive transcriptome analyses of Jurkat T cells stimulated with various stimuli and pathway inhibitors. Results from these experiments were validated in a human experimental setting using whole blood and purified CD4+ Tcells. Results Calcium-dependent activation of T cells using CD3/CD28 and PMA/CD3 stimulation induced a Th1 expression profile reflected by increased expression of T-bet, RUNX3, IL-2, and IFNγ, whereas calcium-independent activation via PMA/CD28 induced a Th2 expression profile which included GATA3, RXRA, CCL1 and Itk. Knock down with siRNA and gene expression profiling in the presence of selective kinase inhibitors showed that proximal kinases Lck and PKCθ are crucial signaling hubs during T helper cell activation, revealing a clear role for Lck in Th1 development and for PKCθ in both Th1 and Th2 development. Medial signaling via MAPkinases appeared to be less important in these pathways, since specific inhibitors of these kinases displayed a minor effect on gene expression. Translation towards a primary, whole blood setting and purified human CD4+ T cells revealed that PMA/CD3 stimulation induced a more pronounced Th1 specific, Lck and PKCθ dependent IFNγ production, whereas PMA/CD28 induced Th2 specific IL-5 and IL-13 production, independent of Lck activation. PMA/CD3-mediated skewing towards a Th1 phenotype was also reflected in mRNA expression of the master transcription factor Tbet, whereas PMA/CD28-mediated stimulation enhanced GATA3 mRNA expression in primary human CD4+ Tcells. Conclusions This study identifies stimulatory pathways and gene expression profiles for in vitro skewing of T helper cell

  12. Hormones and Hypertension

    Science.gov (United States)

    ... role in the start and continuation of primary hypertension. Secondary hypertension is due to other diseases such as kidney ... the body can greatly improve or even cure secondary hypertension. Resources • Find-an-Endocrinologist: www.hormone.org or ...

  13. Pulmonary Hypertension in Scleroderma

    Science.gov (United States)

    PULMONARY HYPERTENSION IN SCLERODERMA PULMONARY HYPERTENSION Pulmonary hypertension (PH) is high blood pressure in the blood vessels of the lungs. If the high ... the right side of the heart. Patients with scleroderma are at increased risk for developing PH from ...

  14. Hypertension and Spina Bifida

    Science.gov (United States)

    SBA National Resource Center: 800-621-3141 Hypertension A disease that often goes undetected. What is hypertension? Hypertension, also called high blood pressure , is a condition in which the arteries of ...

  15. Intracranial Hypertension Research Foundation

    Science.gov (United States)

    ... PARTNERSHIPS Meet our Fundraising Partners Tweet Welcome Intracranial hypertension (IH) is the general term for the neurological ... high. (Old names for IH include Benign Intracranial Hypertension and Pseudotumor Cerebri). The Intracranial Hypertension Research Foundation ...

  16. HIV and Pulmonary Hypertension

    Science.gov (United States)

    ... What do I need to know about pulmonary hypertension in connection with HIV? Although pulmonary hypertension and ... Should an HIV patient be tested for pulmonary hypertension? HIV patients know that medical supervision is critical ...

  17. Revisiting essential hypertension--a "mechanism-based" approach may argue for a better definition of hypertension.

    Science.gov (United States)

    Calò, L A

    2009-08-01

    Several major overarching themes have recently emerged in our understanding of the pathophysiology of hypertension which may allow to revisit essential hypertension with an eye towards the possibility of adopting a more rational "mechanistic-based" definition of hypertension and moving away from the unsatisfactory "essential" label for hypertension from unknown cause. As our understanding of the biochemical and physiological mechanisms that control blood pressure rapidly evolves, the "essential" label of hypertension is losing both value as well as utility as it will describe an increasingly small number of hypertensive patients. This paper uses some recently identified pathways central to hypertension and uses this understanding of pathophysiology to argue for a better definition of hypertension.

  18. Neonatal hypertension.

    Science.gov (United States)

    Sharma, Deepak; Farahbakhsh, Nazanin; Shastri, Sweta; Sharma, Pradeep

    2017-03-01

    Neonatal hypertension (HT) is a frequently under reported condition and is seen uncommonly in the intensive care unit. Neonatal HT has defined arbitrarily as blood pressure more than 2 standard deviations above the base as per the age or defined as systolic BP more than 95% for infants of similar size, gestational age and postnatal age. It has been diagnosed long back but still is the least studied field in neonatology. There is still lack of universally accepted normotensive data for neonates as per gestational age, weight and post-natal age. Neonatal HT is an important morbidity that needs timely detection and appropriate management, as it can lead to devastating short-term effect on various organs and also poor long-term adverse outcomes. There is no consensus yet about the treatment guidelines and majority of treatment protocols are based on the expert opinion. Neonate with HT should be evaluated in detail starting from antenatal, perinatal, post-natal history, and drug intake by neonate and mother. This review article covers multiple aspects of neonatal hypertension like definition, normotensive data, various etiologies and methods of BP measurement, clinical features, diagnosis and management.

  19. The Emerging Role of Complement Lectin Pathway in Trypanosomatids: Molecular Bases in Activation, Genetic Deficiencies, Susceptibility to Infection, and Complement System-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Ingrid Evans-Osses

    2013-01-01

    Full Text Available The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection.

  20. Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.

    Science.gov (United States)

    Yu, Guoqin; Olsen, Kenneth M; Schaal, Barbara A

    2011-01-01

    The evolution of metabolic pathways is a fundamental but poorly understood aspect of evolutionary change. One approach for understanding the complexity of pathway evolution is to examine the molecular evolution of genes that together comprise an integrated metabolic pathway. The rice endosperm starch biosynthetic pathway is one of the most thoroughly characterized metabolic pathways in plants, and starch is a trait that has evolved in response to strong selection during rice domestication. In this study, we have examined six key genes (AGPL2, AGPS2b, SSIIa, SBEIIb, GBSSI, ISA1) in the rice endosperm starch biosynthesis pathway to investigate the evolution of these genes before and after rice domestication. Genome-wide sequence tagged sites data were used as a neutral reference to overcome the problems of detecting selection in species with complex demographic histories such as rice. Five variety groups of Oryza sativa (aus, indica, tropical japonica, temperate japonica, aromatic) and its wild ancestor (O. rufipogon) were sampled. Our results showed evidence of purifying selection at AGPL2 in O. rufipogon and strong evidence of positive selection at GBSSI in temperate japonica and tropical japonica varieties and at GBSSI and SBEIIb in aromatic varieties. All the other genes showed a pattern consistent with neutral evolution in both cultivated rice and its wild ancestor. These results indicate the important role of positive selection in the evolution of starch genes during rice domestication. We discuss the role of SBEIIb and GBSSI in the evolution of starch quality during rice domestication and the power and limitation of detecting selection using genome-wide data as a neutral reference.

  1. Experimentally-derived fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic sclerosis patients in three independent cohorts.

    Directory of Open Access Journals (Sweden)

    Michael E Johnson

    Full Text Available Genome-wide expression profiling in systemic sclerosis (SSc has identified four 'intrinsic' subsets of disease (fibroproliferative, inflammatory, limited, and normal-like, each of which shows deregulation of distinct signaling pathways; however, the full set of pathways contributing to this differential gene expression has not been fully elucidated. Here we examine experimentally derived gene expression signatures in dermal fibroblasts for thirteen different signaling pathways implicated in SSc pathogenesis. These data show distinct and overlapping sets of genes induced by each pathway, allowing for a better understanding of the molecular relationship between profibrotic and immune signaling networks. Pathway-specific gene signatures were analyzed across a compendium of microarray datasets consisting of skin biopsies from three independent cohorts representing 80 SSc patients, 4 morphea, and 26 controls. IFNα signaling showed a strong association with early disease, while TGFβ signaling spanned the fibroproliferative and inflammatory subsets, was associated with worse MRSS, and was higher in lesional than non-lesional skin. The fibroproliferative subset was most strongly associated with PDGF signaling, while the inflammatory subset demonstrated strong activation of innate immune pathways including TLR signaling upstream of NF-κB. The limited and normal-like subsets did not show associations with fibrotic and inflammatory mediators such as TGFβ and TNFα. The normal-like subset showed high expression of genes associated with lipid signaling, which was absent in the inflammatory and limited subsets. Together, these data suggest a model by which IFNα is involved in early disease pathology, and disease severity is associated with active TGFβ signaling.

  2. Molecular cloning of a novel glucuronokinase/putative pyrophosphorylase from zebrafish acting in an UDP-glucuronic acid salvage pathway.

    Directory of Open Access Journals (Sweden)

    Roman Gangl

    Full Text Available In animals, the main precursor for glycosaminoglycan and furthermore proteoglycan biosynthesis, like hyaluronic acid, is UDP-glucuronic acid, which is synthesized via the nucleotide sugar oxidation pathway. Mutations in this pathway cause severe developmental defects (deficiency in the initiation of heart valve formation. In plants, UDP-glucuronic acid is synthesized via two independent pathways. Beside the nucleotide sugar oxidation pathway, a second minor route to UDP-glucuronic acid exist termed the myo-inositol oxygenation pathway. Within this myo-inositol is ring cleaved into glucuronic acid, which is subsequently converted to UDP-glucuronic acid by glucuronokinase and UDP-sugar pyrophosphorylase. Here we report on a similar, but bifunctional enzyme from zebrafish (Danio rerio which has glucuronokinase/putative pyrophosphorylase activity. The enzyme can convert glucuronic acid into UDP-glucuronic acid, required for completion of the alternative pathway to UDP-glucuronic acid via myo-inositol and thus establishes a so far unknown second route to UDP-glucuronic acid in animals. Glucuronokinase from zebrafish is a member of the GHMP-kinase superfamily having unique substrate specificity for glucuronic acid with a Km of 31 ± 8 µM and accepting ATP as the only phosphate donor (Km: 59 ± 9 µM. UDP-glucuronic acid pyrophosphorylase from zebrafish has homology to bacterial nucleotidyltransferases and requires UTP as nucleosid diphosphate donor. Genes for bifunctional glucuronokinase and putative UDP-glucuronic acid pyrophosphorylase are conserved among some groups of lower animals, including fishes, frogs, tunicates, and polychaeta, but are absent from mammals. The existence of a second pathway for UDP-glucuronic acid biosynthesis in zebrafish likely explains some previous contradictory finding in jekyll/ugdh zebrafish developmental mutants, which showed residual glycosaminoglycans and proteoglycans in knockout mutants of UDP

  3. Transcriptomics and metabolite analysis reveals the molecular mechanism of anthocyanin biosynthesis branch pathway in different Senecio cruentus cultivars

    Directory of Open Access Journals (Sweden)

    Xuehua Jin

    2016-09-01

    Full Text Available The cyanidin (Cy, pelargonidin (Pg and delphinidin (Dp pathways are the three major branching anthocyanin biosynthesis pathways that regulate flavonoid metabolic flux and are responsible for red, orange and blue flower colors, respectively. Different species have evolved to develop multiple regulation mechanisms that form the branched pathways. In the current study, five Senecio cruentus cultivars with different colors were investigated. We found that the white and yellow cultivars do not accumulate anthocyanin and that the blue, pink and carmine cultivars mainly accumulate Dp, Pg and Cy in differing densities. Subsequent transcriptome analysis determined that there were 43 unigenes encoding anthocyanin biosynthesis genes in the blue cultivar. We also combined chemical and transcriptomic analyses to investigate the major metabolic pathways that are related to the observed differences in flower pigmentation in the series of S. cruentus. The results showed that mutations of the ScbHLH17 and ScCHI1/2 coding regions abolish anthocyanin formation in the white and the yellow cultivars; the competition of the ScF3’H1, ScF3’5’H and ScDFR1/2 genes for naringenin determines the differences in branching metabolic flux of the Cy, Dp and Pg pathways. Our findings provide new insights into the regulation of anthocyanin branching and also supplement gene resources (including ScF3’5’H, ScF3’H and ScDFRs for flower color modification of ornamentals.

  4. Molecular Analysis of a Multistep Lung Cancer Model Induced by Chronic Inflammation Reveals Epigenetic Regulation of p16, Activation of the DNA Damage Response Pathway

    Directory of Open Access Journals (Sweden)

    David Blanco

    2007-10-01

    Full Text Available The molecular hallmarks of inflammation-mediated lung carcinogenesis have not been fully clarified, mainly due to the scarcity of appropriate animal models. We have used a silica-induced multistep lung carcinogenesis model driven by chronic inflammation to study the evolution of molecular markers, genetic alterations. We analyzed markers of DNA damage response (DDR, proliferative stress, telomeric stress: δ-H2AX, p16, p53, TERT. Lung cancer-related epigenetic, genetic alterations, including promoter hypermethylation status of p16(CDKN2A, APC, CDH13, Rassf1, Nore1A, as well as mutations of Tp53, epidermal growth factor receptor, K-ras, N-ras, c-H-ras, have been also studied. Our results showed DDR pathway activation in preneoplastic lesions, in association with inducible nitric oxide synthase, p53 induction. p16 was also induced in early tumorigenic progression, was inactivated in bronchiolar dysplasias, tumors. Remarkably, lack of mutations of Ras, epidermal growth factor receptor, a very low frequency of Tp53 mutations suggest that they are not required for tumorigenesis in this model. In contrast, epigenetic alterations in p16(CDKN2A, CDH13, APC, but not in Rassf1, Nore1A, were clearly observed. These data suggest the existence of a specific molecular signature of inflammation-driven lung carcinogenesis that shares some, but not all, of the molecular landmarks of chemically induced lung cancer.

  5. Hypertension in women

    OpenAIRE

    Hage, Fadi G; Mansur, Sulaf J; Xing, Dongqi; Oparil, Suzanne

    2013-01-01

    Hypertension is the most common modifiable risk factor for cardiovascular disease, the leading cause of death in both men and women. The prevalence and severity of hypertension rise markedly with age, and blood pressure control becomes more difficult with aging in both genders, particularly in women. In addition, there are forms of hypertension that occur exclusively in women, e.g., hypertension related to menopause, oral contraceptive use, or pregnancy (e.g., chronic hypertension, gestationa...

  6. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14α-demethylase (ERG11 gene of Moniliophthora perniciosa

    Directory of Open Access Journals (Sweden)

    Geruza de Oliveira Ceita

    2014-12-01

    Full Text Available The phytopathogenic fungus Moniliophthora perniciosa (Stahel Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11 that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR. Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.

  7. Molecular effects of bioactive fraction of Curcuma mangga (DLBS4847 as a downregulator of 5α-reductase activity pathways in prostatic epithelial cells

    Directory of Open Access Journals (Sweden)

    Karsono AH

    2014-06-01

    Full Text Available Agung Heru Karsono, Olivia Mayasari Tandrasasmita, Raymond R TjandrawinataSection of Molecular Pharmacology, Research Innovation and Invention, Dexa Laboratories of Biomolecular Sciences, Dexa Medica, Cikarang, IndonesiaAbstract: DLBS4847 is a standardized bioactive fraction of Curcuma mangga. In this study, we used prostate cancer (PC-3 as the cell line to study the effects of DLBS4847 on prostatic cell viability, as well as related molecular changes associated with the decreased cell number. The observation revealed that DLBS4847 inhibited the growth of PC3 cells through downregulation of the 5α-reductase (5AR pathway. At the transcription level, 5AR1 and androgen-receptor gene expressions were downregulated in a dose-dependent manner. Furthermore, 5AR-1 and dihydrotestosterone expression were also downregulated at the protein level. A microarray study was also performed to see the effects of DLBS4847 on differential gene expressions in prostate cancer 3 cells. Among others, DLBS4847 downregulated genes related to prostate growth and hypertrophy. Our results suggested that DLBS4847 could potentially become an alternative treatment for prostate disorders, such as benign prostatic hyperplasia. In this regard, DLBS4847 exerts its growth inhibition partially through downregulation of the 5AR pathway.Keywords: DLBS4847, Curcuma mangga, 5α-reductase inhibitor, benign prostatic hyperplasia (BPH, prostate cancer

  8. Therapeutic Implications of Black Seed and Its Constituent Thymoquinone in the Prevention of Cancer through Inactivation and Activation of Molecular Pathways

    Directory of Open Access Journals (Sweden)

    Arshad H. Rahmani

    2014-01-01

    Full Text Available The cancer is probably the most dreaded disease in both men and women and also major health problem worldwide. Despite its high prevalence, the exact molecular mechanisms of the development and progression are not fully understood. The current chemotherapy/radiotherapy regime used to treat cancer shows adverse side effect and may alter gene functions. Natural products are generally safe, effective, and less expensive substitutes of anticancer chemotherapeutics. Based on previous studies of their potential therapeutic uses, Nigella sativa and its constituents may be proved as good therapeutic options in the prevention of cancer. Black seeds are used as staple food in the Middle Eastern Countries for thousands of years and also in the treatment of diseases. Earlier studies have shown that N. sativa and its constituent thymoquinone (TQ have important roles in the prevention and treatment of cancer by modulating cell signaling pathways. In this review, we summarize the role of N. sativa and its constituents TQ in the prevention of cancer through the activation or inactivation of molecular cell signaling pathways.

  9. Systolic hypertension in adult nigerians with hypertension

    International Nuclear Information System (INIS)

    Opadijo, O.G.; Salami, T.A.T.; Sanya, E.O.; Omotoso, A.B.O.

    2007-01-01

    To determine the prevalence of both systolic and diastolic hypertensions in relation to age and their impacts on target organ among adult Nigerians with hypertension. Newly diagnosed adult hypertensives, with blood pressure 140/90mm Hg, taken twice with mercury column sphygmomanometer at 3 weeks interval, were studied. The total number of hypertensive patients treated over this period was also taken into consideration. The newly diagnosed hypertensives were classified using JNC VI classification. The frequency of occurrence of target organ damage such as Left Ventricular Hypertrophy (LVH), heart failure, renal impairment etc. was charted according to systolic and or diastolic pressures. The occurrence of systolic or diastolic blood pressure was also related with the age of the patients. Blood metabolic parameters were compared in both systolic and diastolic blood pressures for their possible contributory role. Two thousand seven hundred and ninety-two adult hypertensive patients were managed over the study period. Of them, 218 (7.8%) were newly diagnosed and studied. There were 94 males and 124 females. Seventy-seven (35.3%) were aged 60 years and above with equal frequency in the gender. One hundred and seventy-eight (81.7%) cases had combined systolic and diastolic pressures. Twenty-nine (13.3%) patients had systolic hypertension. Twenty-five (86.2%) of these 29 were aged 50 years and above and 20 (69.0%) were aged 60 years and above. Eleven (5.0%) patients had isolated diastolic hypertension and they were all in the age bracket 40-49 years. Systolic blood pressure was found to be rising with advancing age while diastolic blood pressure peaked at mid 40's and declined. Target organ damage occurred more frequently with systolic hypertension and advancing age than with diastolic hypertension. Systolic hypertension occurred more frequently in this series of adult Nigerians with hypertension. It was higher with advancing age and associated with more target organ

  10. Pathways and mechanisms for product release in the engineered haloalkane dehalogenases explored using classical and random acceleration molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Klvana, M.; Pavlová, M.; Koudeláková, T.; Chaloupková, R.; Dvořák, P.; Prokop, Z.; Stsiapanava, A.; Kutý, Michal; Kutá-Smatanová, Ivana; Dohnálek, Jan; Kulhánek, P.; Damborský, J.

    2009-01-01

    Roč. 392, č. 5 (2009), s. 1339-1356 ISSN 0022-2836 R&D Projects: GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z60870520 Keywords : haloalkane dehalogenase * product release * random acceleration molecular dynamics Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.871, year: 2009

  11. DMPD: Molecular aspects of anti-inflammatory action of G-CSF. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available ng T. Inflamm Res. 2002 Mar;51(3):119-28. (.png) (.svg) (.html) (.csml) Show Molecular aspects of anti-infla...way - PNG File (.png) SVG File (.svg) HTML File (.html) CSML File (.csml) Open .csml file with CIOPlayer Ope

  12. Sympathoexcitation and arterial hypertension associated with obstructive sleep apnea and cyclic intermittent hypoxia.

    Science.gov (United States)

    Weiss, J Woodrow; Tamisier, Renaud; Liu, Yuzhen

    2015-12-15

    Obstructive sleep apnea (OSA) is characterized by repetitive episodes of upper airway obstruction during sleep. These obstructive episodes are characterized by cyclic intermittent hypoxia (CIH), by sleep fragmentation, and by hemodynamic instability, and they result in sustained sympathoexcitation and elevated arterial pressure that persist during waking, after restoration of normoxia. Early studies established that 1) CIH, rather than sleep disruption, accounts for the increase in arterial pressure; 2) the increase in arterial pressure is a consequence of the sympathoactivation; and 3) arterial hypertension after CIH exposure requires an intact peripheral chemoreflex. More recently, however, evidence has accumulated that sympathoactivation and hypertension after CIH are also dependent on altered central sympathoregulation. Furthermore, although many molecular pathways are activated in both the carotid chemoreceptor and in the central nervous system by CIH exposure, two specific neuromodulators-endothelin-1 and angiotensin II-appear to play crucial roles in mediating the sympathetic and hemodynamic response to intermittent hypoxia. Copyright © 2015 the American Physiological Society.

  13. Rostafuroxin: an ouabain-inhibitor counteracting specific forms of hypertension.

    Science.gov (United States)

    Ferrari, Patrizia

    2010-12-01

    An innovative approach to the therapy of essential hypertension (EH) and the related complications has been pursued by our group with the aim of defining specific genetic-molecular mechanisms underlying the disease in sub-sets of patients. This approach is anticipated to have a major effect on the clinical practice, diagnostics and development of new drugs able to selectively target such mechanisms. The final achievement is the definition of biomarkers for identifying patients who more likely should benefit for a given therapy both in terms of efficacy and reduction of the adverse reactions. Among many, two mechanisms have been defined and addressed:Both alterations lead to hypertension, organ hypertrophy, negative vascular remodeling and increased cardiovascular risk by affecting the renal Na(+) handling, through the up-regulation of the Na(+)-K(+) pump and the activation of the Src-dependent signal transduction pathway. A novel antihypertensive agent, rostafuroxin (PST2238), has been selected and developed for its ability to correct the renal Na(+)-K(+) pump abnormalities sustained by the mutant adducin and EO-dependent mechanisms. It is endowed with high potency and efficacy in reducing blood pressure (BP) and preventing organ hypertrophy in animal models representative of both adducin and EO mechanisms. At molecular level, in the kidney, rostafuroxin normalizes the enhanced activity of the Na(+)-K(+) pump induced by mutant adducin and antagonizes the EO triggering of the Src-EGFr-dependent signaling pathway leading to renal Na(+)-K(+) pump and ERK phosphorylation and activation. In the vasculature, it normalizes the increased myogenic tone caused by ouabain. A very high safety ratio and the absence of interaction with other mechanisms involved in BP regulation, together with evidence of high tolerability and efficacy in hypertensive patients indicate rostafuroxin as the first example of a new class of antihypertensive agents designed to antagonize adducin and

  14. In Silico study for diversing the molecular pathway of pigment formation: An alternative to manual coloring in cotton fibers.

    Directory of Open Access Journals (Sweden)

    Ammara eAhad

    2015-09-01

    Full Text Available Diversity of colors in flowers and fruits is largely due to anthocyanin pigments. The flavonoid/anthocyanin pathway has been most extensively studied. Dihydroflavonol 4-reductase (DFR is a vibrant enzyme of the flavonoid pathway which displays major impact on the formation of anthocyanins, flavan 3-ols and flavonols. The substrate specificity of the DFR was found to play a crucial role in determination of type of anthocyanidins. Altering the flavonoid/ anthocyanin pathway through genetic engineering to develop color of our own choice is an exciting subject of future research. In the present study, comparison among four DFR genes (Gossypium hirsutum, Iris × hollandica, Ang. DFRI and DFRII, sequence alignment for homology as well as protein modeling and docking is demonstrated. Estimation of catalytic sites, prediction of substrate preference and protein docking were the key features of this article. For specific substrate uptake, a proline rich region and positions 12 plus 26 along with other positions emphasizing the 26-amino acid residue region (132-157 was tested. Results showed that proline rich region position 12, 26 and 132-157 plays an important role in selective attachment of DFRs with respective substrates. Further, ‘Expasy ProtParam tool’ results showed that Iris × hollandica DFR amino acids (Asn 9: Asp 23 favorable for reducing DHQ and DHM thus accumulating delphinidin, while Gossypium hirsutum DFR has (Asn 13: Asp 21 hypothesized to consume DHK. Protein docking data showed that amino acid residues in above mentioned positions were just involved in attachment of DFR with substrate and had no role in specific substrate uptake.Advanced bioinformatics analysis has revealed that all above mentioned positions have role in substrate attachment. For substrate specificity, other residues region is involved. It will help in color manipulations in different plant species.

  15. Gene expression profiling, pathway analysis and subtype classification reveal molecular heterogeneity in hepatocellular carcinoma and suggest subtype specific therapeutic targets.

    Science.gov (United States)

    Agarwal, Rahul; Narayan, Jitendra; Bhattacharyya, Amitava; Saraswat, Mayank; Tomar, Anil Kumar

    2017-10-01

    A very low 5-year survival rate among hepatocellular carcinoma (HCC) patients is mainly due to lack of early stage diagnosis, distant metastasis and high risk of postoperative recurrence. Hence ascertaining novel biomarkers for early diagnosis and patient specific therapeutics is crucial and urgent. Here, we have performed a comprehensive analysis of the expression data of 423 HCC patients (373 tumors and 50 controls) downloaded from The Cancer Genome Atlas (TCGA) followed by pathway enrichment by gene ontology annotations, subtype classification and overall survival analysis. The differential gene expression analysis using non-parametric Wilcoxon test revealed a total of 479 up-regulated and 91 down-regulated genes in HCC compared to controls. The list of top differentially expressed genes mainly consists of tumor/cancer associated genes, such as AFP, THBS4, LCN2, GPC3, NUF2, etc. The genes over-expressed in HCC were mainly associated with cell cycle pathways. In total, 59 kinases associated genes were found over-expressed in HCC, including TTK, MELK, BUB1, NEK2, BUB1B, AURKB, PLK1, CDK1, PKMYT1, PBK, etc. Overall four distinct HCC subtypes were predicted using consensus clustering method. Each subtype was unique in terms of gene expression, pathway enrichment and median survival. Conclusively, this study has exposed a number of interesting genes which can be exploited in future as potential markers of HCC, diagnostic as well as prognostic and subtype classification may guide for improved and specific therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The influence of kaolin application on key metabolic pathways associated with grape berry quality: a molecular and biochemical analysis

    OpenAIRE

    Pimentel, Diana Margarida Alpoim de Andrade

    2015-01-01

    Dissertação de mestrado em Biologia Molecular, Biotecnologia e Bioempreendedorismo em Plantas Grapevine (Vitis vinifera L.) is a perennial woody plant with huge importance in national and global economy, widely grown in areas with typical Mediterranean climates, such as the Douro Demarcated Region (Denomination of Origin Douro/Porto). This region is usually affected by extended dry and hot summers that lead to productivity issues and are thus a main concern to viticulturists. The exogenous...

  17. Hypoxia Inducible Factors and Hypertension: Lessons from Sleep Apnea Syndrome

    Science.gov (United States)

    Nanduri, Jayasri; Peng, Ying-Jie; Yuan, Guoxiang; Kumar, Ganesh K.; Prabhakar, Nanduri R.

    2015-01-01

    Systemic hypertension is one of the most prevalent cardiovascular diseases. Sleep disordered breathing (SDB) with recurrent apnea is a major risk factor for developing essential hypertension. Chronic intermittent hypoxia (CIH) is a hallmark manifestation of recurrent apnea. Rodent models patterned after the O2 profiles seen with SDB patients showed that CIH is the major stimulus for causing systemic hypertension. This article reviews the physiological and molecular basis of CIH-induced hypertension. Physiological studies have identified that augmented carotid body chemosensory reflex and the resulting increase in sympathetic nerve activity is a major contributor to CIH-induced hypertension. Analysis of molecular mechanisms revealed that CIH activates hypoxia-inducible factor (HIF)-1 and suppresses HIF-2- mediated transcription. Dysregulation of HIF-1- and HIF-2- mediated transcription leads to imbalance of pro-oxidant and anti-oxidant enzyme gene expression resulting in increased reactive species (ROS) generation in the chemosensory reflex which is central for developing hypertension. PMID:25772710

  18. Citric Acid Metabolism in Resistant Hypertension: Underlying Mechanisms and Metabolic Prediction of Treatment Response.

    Science.gov (United States)

    Martin-Lorenzo, Marta; Martinez, Paula J; Baldan-Martin, Montserrat; Ruiz-Hurtado, Gema; Prado, Jose Carlos; Segura, Julian; de la Cuesta, Fernando; Barderas, Maria G; Vivanco, Fernando; Ruilope, Luis Miguel; Alvarez-Llamas, Gloria

    2017-11-01

    Resistant hypertension (RH) affects 9% to 12% of hypertensive adults. Prolonged exposure to suboptimal blood pressure control results in end-organ damage and cardiovascular risk. Spironolactone is the most effective drug for treatment, but not all patients respond and side effects are not negligible. Little is known on the mechanisms responsible for RH. We aimed to identify metabolic alterations in urine. In addition, a potential capacity of metabolites to predict response to spironolactone was investigated. Urine was collected from 29 patients with RH and from a group of 13 subjects with pseudo-RH. For patients, samples were collected before and after spironolactone administration and were classified in responders (n=19) and nonresponders (n=10). Nuclear magnetic resonance was applied to identify altered metabolites and pathways. Metabolites were confirmed by liquid chromatography-mass spectrometry. Citric acid cycle was the pathway most significantly altered ( P citric acid cycle and deregulation of reactive oxygen species homeostasis control continue its activation after hypertension was developed. A metabolic panel showing alteration before spironolactone treatment and predicting future response of patients is shown. These molecular indicators will contribute optimizing the rate of control of RH patients with spironolactone. © 2017 American Heart Association, Inc.

  19. Metabolic and molecular changes of the phenylpropanoid pathway in tomato (Solanum lycopersicum lines carrying different Solanum pennellii wild chromosomal regions

    Directory of Open Access Journals (Sweden)

    Maria Manuela Rigano

    2016-10-01

    Full Text Available Solanum lycopersicum represents an important dietary source of bioactive compounds including the antioxidants flavonoids and phenolic acids. We previously identified two genotypes (IL7-3 and IL12-4 carrying loci from the wild species Solanum pennellii, which increased antioxidants in the fruit. Successively, these lines were crossed and two genotypes carrying both introgressions at the homozygous condition (DHO88 and DHO88-SL were selected. The amount of total antioxidant compounds was increased in DHOs compared to both ILs and the control genotype M82. In order to understand the genetic mechanisms underlying the positive interaction between the two wild regions pyramided in DHO genotypes, detailed analyses of the metabolites accumulated in the fruit were carried out by colorimetric methods and LC/MS/MS. These analyses evidenced a lower content of flavonoids in DHOs and in ILs, compared to M82. By contrast, in the DHOs the relative content of phenolic acids increased, particularly the fraction of hexoses, thus evidencing a redirection of the phenylpropanoid flux towards the biosynthesis of phenolic acid glycosides in these genotypes. In addition, the line DHO88 exhibited a lower content of free phenolic acids compared to M82. Interestingly, the two DHOs analyzed differ in the size of the wild region on chromosome 12. Genes mapping in the introgression regions were further investigated. Several genes of the phenylpropanoid biosynthetic pathway were identified, such as one 4-coumarate:CoA ligase and two UDP-glycosyltransferases in the region 12-4 and one chalcone isomerase and one UDP-glycosyltransferase in the region 7-3. Transcriptomic analyses demonstrated a different expression of the detected genes in the ILs and in the DHOs compared to M82.These analyses, combined with biochemical analyses, suggested a central role of the 4-coumarate:CoA ligase in redirecting the phenylpropanoid pathways towards the biosynthesis of phenolic acids in the

  20. [Pulmonary hypertension: definition, classification and treatments].

    Science.gov (United States)

    Jutant, Etienne-Marie; Humbert, Marc

    2016-01-01

    Pulmonary hypertension (PH) is a cardio-pulmonary disorder that may involve multiple clinical conditions and can complicate the majority of cardiovascular and respiratory diseases. Its definition is an increase in mean pulmonary artery pressure (mPAP) \\hbox{$\\geqslant $} ⩾ 25 mmHg at rest, leading to right heart failure and ultimately death. The clinical classification of pulmonary hypertension (PH) categorizes PH into groups which share similar pathophysiological and hemodynamic characteristics and treatments. Five groups of disorders that cause PH are identified: pulmonary arterial hypertension (Group 1) which is a pre-capillary PH, defined by a normal pulmonary artery wedge pressure (PAWP) \\hbox{$\\leqslant $} ⩽ 15 mmH, due to remodelling of the small pulmonary arteries (15 mmHg; pulmonary hypertension due to chronic lung disease and/or hypoxia (Group 3); chronic thrombo-embolic pulmonary hypertension (Group 4); and pulmonary hypertension due to unclear and/or multifactorial mechanisms (Group 5). PAH (PH group 1) can be treated with agents targeting three dysfunctional endothelial pathways of PAH: nitric oxide (NO) pathway, endothelin-1 pathway and prostacyclin pathway. Patients at low or intermediate risk can be treated with either initial monotherapy or initial oral combination therapy. In patients at high risk initial combination therapy including intravenous prostacyclin analogues should be considered. Patients with inadequate clinical response to maximum treatment (triple therapy with an intravenous prostacyclin) should be assessed for lung transplantation. Despite progresses, PAH remains a fatal disease with a 3-year survival rate of 58%. Treatment of group 2, group 3 and group 5 PH is the treatment of the causal disease and PAH therapeutics are not recommended. Treatment of group 4 PH is pulmonary endarteriectomy if patients are eligible, otherwise balloon pulmonary angioplasty and/or medical therapy can be considered. © Société de Biologie

  1. Hypertensive retinopathy (image)

    Science.gov (United States)

    ... retina from high blood pressure is called hypertensive retinopathy. It occurs as the existing high blood pressure ... flame hemorrhages and cotton wool spots. As hypertensive retinopathy progresses, hard exudates can appear around the macula ...

  2. Hypertensive heart disease

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000163.htm Hypertensive heart disease To use the sharing features on this page, please enable JavaScript. Hypertensive heart disease refers to heart problems that occur because of ...

  3. Chronic Hypertension in Pregnancy

    Science.gov (United States)

    ... org/ by guest on June 19, 2018 Chronic Hypertension in Pregnancy Ellen W. Seely, MD; Cynthia Maxwell, ... M any women have been diag- nosed with hypertension (blood pressure Ͼ 140/ 90 mm Hg) when ...

  4. Regulatory effects of the AMPKα-SIRT1 molecular pathway on insulin resistance in PCOS mice: An in vitro and in vivo study.

    Science.gov (United States)

    Tao, Xin; Chen, Lei; Cai, Lisi; Ge, Shuqi; Deng, Xuanying

    2017-12-16

    In order to preliminarily explore the correlation between the AMPKα-SIRT1 pathway and insulin resistance and reproductive function in PCOS mice and find the pathogenesis molecular mechanism and potential therapeutic target of PCOS, we carried out in vitro study of human granulosa KGN cells and in vivo study of PCOS mouse model which was constructed with DHEA, and AICAR and Compound C were applied. We have found that SIRT1 and AMPKα expression in KGN cells gradually decreased as DHEA concentration increased; Mice of the PCOS model were in an obvious status of IR (P PCOS and may serve as a therapeutic target for the development of potential treatments for improving metabolic and reproductive function in PCOS. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Protein kinase A (PKA) phosphorylation of Na+/K+-ATPase opens intracellular C-terminal water pathway leading to third Na+-binding site in molecular dynamics simulations

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Nissen, Poul; Mouritsen, Ole G.

    2012-01-01

    -atom Molecular Dynamics (MD) simulations to investigate the structural consequences of phosphorylating the Na+/K+- ATPase (NKA) residue S936, which is the best characterized phosphorylation site in NKA, targeted in vivo by Protein Kinase A (PKA) (1-3). The MD simulations suggest that S936 phosphorylation opens......Phosphorylation is one of the major mechanisms for posttranscriptional modification of proteins. The addition of a compact, negatively charged moiety to a protein can significantly change its function and localization by affecting its structure and interaction network. We have used all...... a C-terminal hydrated pathway leading to D926, a transmembrane residue proposed to form part of the third sodium ion-binding site (4). Simulations of a S936E mutant form, for which only subtle effects are observed when expressed in Xenopus oocytes and studied with electrophysiology, does not mimic...

  6. Integrative Bioinformatic Analysis of Transcriptomic Data Identifies Conserved Molecular Pathways Underlying Ionizing Radiation-Induced Bystander Effects (RIBE

    Directory of Open Access Journals (Sweden)

    Constantinos Yeles

    2017-11-01

    Full Text Available Ionizing radiation-induced bystander effects (RIBE encompass a number of effects with potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular events is initiated in response to the exposure to ionizing radiation (IR, something that may occur during diagnostic or therapeutic medical applications. In order to better investigate these complex response mechanisms, we employed a unified framework integrating statistical microarray analysis, signal normalization, and translational bioinformatics functional analysis techniques. This approach was applied to several microarray datasets from Gene Expression Omnibus (GEO related to RIBE. The analysis produced lists of differentially expressed genes, contrasting bystander and irradiated samples versus sham-irradiated controls. Furthermore, comparative molecular analysis through BioInfoMiner, which integrates advanced statistical enrichment and prioritization methodologies, revealed discrete biological processes, at the cellular level. For example, the negative regulation of growth, cellular response to Zn2+-Cd2+, and Wnt and NIK/NF-kappaB signaling, thus refining the description of the phenotypic landscape of RIBE. Our results provide a more solid understanding of RIBE cell-specific response patterns, especially in the case of high-LET radiations, like α-particles and carbon-ions.

  7. Investigating the molecular pathway through which L-Lactate interacts with synaptic NMDAR to modulate neuronal plasticity

    KAUST Repository

    Ibrahim, Engy

    2016-12-01

    In the brain, glycogen, the storage form of glucose, is exclusively localized in astrocytes (Magistretti and Allaman, 2015). Glycogenolysis leads to the production of L-lactate, which is shuttled to neurons for ATP production. Interestingly, L-lactate was recently shown to be not only a source of energy, but also a signaling molecule to neurons. This was demonstrated through the inhibition of L-lactate production or transport in an inhibitory avoidance paradigm, where the rodents developed amnesia. This inhibition of memory consolidation was rescued by L-lactate and not by equicaloric glucose emphasizing that L-lactate acts as a signaling molecule as well (Suzuki et al., 2011). A recent study in our laboratory suggests that the action of L-lactate takes place through a cascade of molecular events via the modulation of N-methyl-D-aspartate receptor (NMDAR) activity (Yang et al., 2014). Since NADH produced similar results to those seen with L-lactate, it was hypothesized that the action of the latter is based on altering the redox state of the cell, in particular in view of the fact that redox-sensitive sites are present on the NMDAR. However, the precise molecular mechanism underlying the apparent change in the NMDAR activity is not fully elucidated. The objective of this study is to explore those mechanisms.

  8. Expression profiling of a genetic animal model of depression reveals novel molecular pathways underlying depressive-like behaviours.

    Directory of Open Access Journals (Sweden)

    Ekaterini Blaveri

    2010-09-01

    Full Text Available The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL and control Flinders Depression Resistant (FRL lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7 and serotonergic receptors (Htr1a, Htr2a in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research.

  9. Placental gene-expression profiles of intrahepatic cholestasis of pregnancy reveal involvement of multiple molecular pathways in blood vessel formation and inflammation.

    Science.gov (United States)

    Du, QiaoLing; Pan, YouDong; Zhang, YouHua; Zhang, HaiLong; Zheng, YaJuan; Lu, Ling; Wang, JunLei; Duan, Tao; Chen, JianFeng

    2014-07-07

    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-associated liver disease with potentially deleterious consequences for the fetus, particularly when maternal serum bile-acid concentration >40 μM. However, the etiology and pathogenesis of ICP remain elusive. To reveal the underlying molecular mechanisms for the association of maternal serum bile-acid level and fetal outcome in ICP patients, DNA microarray was applied to characterize the whole-genome expression profiles of placentas from healthy women and women diagnosed with ICP. Thirty pregnant women recruited in this study were categorized evenly into three groups: healthy group; mild ICP, with serum bile-acid concentration ranging from 10-40 μM; and severe ICP, with bile-acid concentration >40 μM. Gene Ontology analysis in combination with construction of gene-interaction and gene co-expression networks were applied to identify the core regulatory genes associated with ICP pathogenesis, which were further validated by quantitative real-time PCR and histological staining. The core regulatory genes were mainly involved in immune response, VEGF signaling pathway and G-protein-coupled receptor signaling, implying essential roles of immune response, vasculogenesis and angiogenesis in ICP pathogenesis. This implication was supported by the observed aggregated immune-cell infiltration and deficient blood vessel formation in ICP placentas. Our study provides a system-level insight into the placental gene-expression profiles of women with mild or severe ICP, and reveals multiple molecular pathways in immune response and blood vessel formation that might contribute to ICP pathogenesis.

  10. The Prenylflavonoid Xanthohumol Reduces Alzheimer-Like Changes and Modulates Multiple Pathogenic Molecular Pathways in the Neuro2a/APPswe Cell Model of AD

    Directory of Open Access Journals (Sweden)

    Xianfeng Huang

    2018-04-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disorder that has proved refractory to drug treatment. Given evidence of neuroprotection in animal models of ischemic stroke, we assessed the prenylflavonoid xanthohumol from the Common Hop (Humulus lupulus L. for therapeutic potential in murine neuroblastoma N2a cells stably expressing human Swedish mutant amyloid precursor protein (N2a/APP, a well-characterized cellular model of AD. The ELISA and Western-blot analysis revealed that xanthohumol (Xn inhibited Aβ accumulation and APP processing, and that Xn ameliorated tau hyperphosphorylation via PP2A, GSK3β pathways in N2a/APP cells. The amelioration of tau hyperphosphorylation by Xn was also validated on HEK293/Tau cells, another cell line with tau hyperphosphorylation. Proteomic analysis (2D-DIGE-coupled MS revealed a total of 30 differentially expressed lysate proteins in N2a/APP vs. wild-type (WT N2a cells (N2a/WT, and a total of 21 differentially expressed proteins in lysates of N2a/APP cells in the presence or absence of Xn. Generally, these 51 differential proteins could be classified into seven main categories according to their functions, including: endoplasmic reticulum (ER stress-associated proteins; oxidative stress-associated proteins; proteasome-associated proteins; ATPase and metabolism-associated proteins; cytoskeleton-associated proteins; molecular chaperones-associated proteins, and others. We used Western-blot analysis to validate Xn-associated changes of some key proteins in several biological/pathogenic processes. Taken together, we show that Xn reduces AD-related changes in stably transfected N2a/APP cells. The underlying mechanisms involve modulation of multiple pathogenic pathways, including those involved in ER stress, oxidative stress, proteasome molecular systems, and the neuronal cytoskeleton. These results suggest Xn may have potential for the treatment of AD and/or neuropathologically related

  11. Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice

    Directory of Open Access Journals (Sweden)

    Grau Georges E

    2007-12-01

    Full Text Available Abstract Background Microarray analyses allow the identification and assessment of molecular signatures in whole tissues undergoing pathological processes. To better understand cerebral malaria pathogenesis, we investigated intra-cerebral gene-expression profiles in well-defined genetically cerebral malaria-resistant (CM-R and CM-susceptible (CM-S mice, upon infection by Plasmodium berghei ANKA (PbA. We investigated mouse transcriptional responses at early and late stages of infection by use of cDNA microarrays. Results Through a rigorous statistical approach with multiple testing corrections, we showed that PbA significantly altered brain gene expression in CM-R (BALB/c, and in CM-S (CBA/J and C57BL/6 mice, and that 327 genes discriminated between early and late infection stages, between mouse strains, and between CM-R and CM-S mice. We further identified 104, 56, 84 genes with significant differential expression between CM-R and CM-S mice on days 2, 5, and 7 respectively. The analysis of their functional annotation indicates that genes involved in metabolic energy pathways, the inflammatory response, and the neuroprotection/neurotoxicity balance play a major role in cerebral malaria pathogenesis. In addition, our data suggest that cerebral malaria and Alzheimer's disease may share some common mechanisms of pathogenesis, as illustrated by the accumulation of β-amyloid proteins in brains of CM-S mice, but not of CM-R mice. Conclusion Our microarray analysis highlighted marked changes in several molecular pathways in CM-S compared to CM-R mice, particularly at early stages of infection. This study revealed some promising areas for exploration that may both provide new insight into the knowledge of CM pathogenesis and the development of novel therapeutic strategies.

  12. Maskeret hypertension i graviditeten

    DEFF Research Database (Denmark)

    Fischer, Margit Bistrup; Thingaard, Ebbe; Andersen, Anita Sylvest

    2018-01-01

    Hypertension during pregnancy is one of the leading causes of maternal and foetal morbidity and mortality. Monitoring of blood pressure is therefore an essential part of prenatal care. Masked hypertension, where blood pressure levels are elevated at home despite normal blood pressure levels...... monitored in a clinical setting, may lead to cardiovascular and obstetric complications equal to those of sustained hypertension. This article discusses masked hypertension and the need for further investigation of blood pressure monitoring during pregnancy....

  13. Maskeret hypertension i graviditeten

    DEFF Research Database (Denmark)

    Fischer, Margit Bistrup; Thingaard, Ebbe; Andersen, Anita Sylvest

    2018-01-01

    Hypertension during pregnancy is one of the leading causes of maternal and foetal morbidity and mortality. Monitoring of blood pressure is therefore an essential part of prenatal care. Masked hypertension, where blood pressure levels are elevated at home despite normal blood pressure levels monit...... monitored in a clinical setting, may lead to cardiovascular and obstetric complications equal to those of sustained hypertension. This article discusses masked hypertension and the need for further investigation of blood pressure monitoring during pregnancy....

  14. Molecular effects of bioactive fraction of Curcuma mangga (DLBS4847) as a downregulator of 5α-reductase activity pathways in prostatic epithelial cells

    International Nuclear Information System (INIS)

    Karsono, Agung Heru; Tandrasasmita, Olivia Mayasari; Tjandrawinata, Raymond R

    2014-01-01

    DLBS4847 is a standardized bioactive fraction of Curcuma mangga. In this study, we used prostate cancer (PC)-3 as the cell line to study the effects of DLBS4847 on prostatic cell viability, as well as related molecular changes associated with the decreased cell number. The observation revealed that DLBS4847 inhibited the growth of PC3 cells through downregulation of the 5α-reductase (5AR) pathway. At the transcription level, 5AR1 and androgen-receptor gene expressions were downregulated in a dose-dependent manner. Furthermore, 5AR-1 and dihydrotestosterone expression were also downregulated at the protein level. A microarray study was also performed to see the effects of DLBS4847 on differential gene expressions in prostate cancer 3 cells. Among others, DLBS4847 downregulated genes related to prostate growth and hypertrophy. Our results suggested that DLBS4847 could potentially become an alternative treatment for prostate disorders, such as benign prostatic hyperplasia. In this regard, DLBS4847 exerts its growth inhibition partially through downregulation of the 5AR pathway

  15. Hypertension after kidney transplantation

    NARCIS (Netherlands)

    Dobrowolski, L.C.

    2016-01-01

    Hypertension increases the cardiovascular risk in kidney transplant recipients (KTRs). In chapter 2 we found that hypertension was highly prevalent in adult (77.2%), paediatric (62.7%) and young adult (86.4%) KTRs. Transition from the paediatric to adult care did not affect hypertension and there

  16. Hypertension in pregnancy

    Directory of Open Access Journals (Sweden)

    Andrea Ungar

    2007-03-01

    Full Text Available Hypertension is the most common medical problem encountered during pregnancy, complicating 2-3% of pregnancies. Hypertensive disorders during pregnancy are classified into 4 categories: chronic hypertension, pre-eclampsia/eclampsia, pre-eclampsia superimposed on chronic hypertension, and gestational hypertension. A relative paucity of investigative data, as well as the frequent difficulty in making an etiological diagnosis, may lead to problems in its management. This case report analyses current concepts regarding the hypertensive disorders of gestation, focusing on chronic hypertension. Chronic hypertension is defined as blood pressure exceeding 140/90 mmHg before pregnancy or before 20 weeks gestation. Hypertensive disorders in pregnancy may cause maternal and fetal morbidity and remain a leading source of maternal mortality. A prompt diagnosis is needed also because hypertension may be an indicator of pre-eclampsia, a condition which can evolve into serious complications. Maintaining blood pressure below 140/90 mmHg is recommended, although treatment should be determined on an individual basis. Many anti-hypertensive agents appear to be safe for use during pregnancy: methildopa has been the most studied of the anti-hypertensive drugs and has the best safety record. Labetalol, idralazine and nifedipine also have been found to be safe; ACE-inhibitors are absolutely contraindicated, because they are associated with intrauterine growth retardation.

  17. Genetik og hypertension

    DEFF Research Database (Denmark)

    Ellervik, Christina; Tarnow, Lisa; Pedersen, Erling Bjerregaard

    2009-01-01

    Monogenic forms of hypertension are very rare, but have a well-characterized heredity. Primary hypertension is very common with a complex and polygenic heredity. Primary hypertension arises due to an interaction between multiple genetic and environmental factors. Its heredity is unknown, although...

  18. A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Derrick, Jeffrey S.; Kerr, Richard A.; Nam, Younwoo; Oh, Shin Bi; Lee, Hyuck Jin; Earnest, Kaylin G.; Suh, Nayoung; Peck, Kristy L.; Ozbil, Mehmet; Korshavn, Kyle J.; Ramamoorthy, Ayyalusamy; Prabhakar, Rajeev; Merino, Edward J.; Shearer, Jason; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee

    2015-11-25

    Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand–peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer’s disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.

  19. Molecular Characterization of the Fatty Alcohol Oxidation Pathway for Wax-Ester Mobilization in Germinated Jojoba Seeds1[W

    Science.gov (United States)

    Rajangam, Alex S.; Gidda, Satinder K.; Craddock, Christian; Mullen, Robert T.; Dyer, John M.; Eastmond, Peter J.

    2013-01-01

    Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WEs) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very-long-chain fatty alcohols, which must be oxidized to fatty acids by the sequential action of a fatty alcohol oxidase (FAO) and a fatty aldehyde dehydrogenase (FADH) before they can be β-oxidized. Here, we describe the cloning and characterization of genes for each of these two activities. Jojoba FAO and FADH are 52% and 68% identical to Arabidopsis (Arabidopsis thaliana) FAO3 and ALDH3H1, respectively. The genes are expressed most strongly in the cotyledons of jojoba seedlings following germination, but transcripts can also be detected in vegetative tissues. Proteomic analysis indicated that the FAO and FADH proteins can be detected on wax bodies, but they localized to the endoplasmic reticulum when they were expressed as amino-terminal green fluorescent protein fusions in tobacco (Nicotiana tabacum) leaves. Recombinant jojoba FAO and FADH proteins are active on very-long-chain fatty alcohol and fatty aldehyde substrates, respectively, and have biochemical properties consistent with those previously reported in jojoba cotyledons. Coexpression of jojoba FAO and FADH in Arabidopsis enhanced the in vivo rate of fatty alcohol oxidation more than 4-fold. Taken together, our data suggest that jojoba FAO and FADH constitute the very-long-chain fatty alcohol oxidation pathway that is likely to be necessary for efficient WE mobilization following seed germination. PMID:23166353

  20. Molecular characterization of the fatty alcohol oxidation pathway for wax-ester mobilization in germinated jojoba seeds.

    Science.gov (United States)

    Rajangam, Alex S; Gidda, Satinder K; Craddock, Christian; Mullen, Robert T; Dyer, John M; Eastmond, Peter J

    2013-01-01

    Jojoba (Simmondsia chinensis) is the only plant species known to use liquid wax esters (WEs) as a primary seed storage reserve. Upon germination, WE hydrolysis releases very-long-chain fatty alcohols, which must be oxidized to fatty acids by the sequential action of a fatty alcohol oxidase (FAO) and a fatty aldehyde dehydrogenase (FADH) before they can be β-oxidized. Here, we describe the cloning and characterization of genes for each of these two activities. Jojoba FAO and FADH are 52% and 68% identical to Arabidopsis (Arabidopsis thaliana) FAO3 and ALDH3H1, respectively. The genes are expressed most strongly in the cotyledons of jojoba seedlings following germination, but transcripts can also be detected in vegetative tissues. Proteomic analysis indicated that the FAO and FADH proteins can be detected on wax bodies, but they localized to the endoplasmic reticulum when they were expressed as amino-terminal green fluorescent protein fusions in tobacco (Nicotiana tabacum) leaves. Recombinant jojoba FAO and FADH proteins are active on very-long-chain fatty alcohol and fatty aldehyde substrates, respectively, and have biochemical properties consistent with those previously reported in jojoba cotyledons. Coexpression of jojoba FAO and FADH in Arabidopsis enhanced the in vivo rate of fatty alcohol oxidation more than 4-fold. Taken together, our data suggest that jojoba FAO and FADH constitute the very-long-chain fatty alcohol oxidation pathway that is likely to be necessary for efficient WE mobilization following seed germination.

  1. Idiopathic portal hypertension

    International Nuclear Information System (INIS)

    Han, Tae Kyun; Ryu, Dae Sik; Kim, Heung Chul; Hur, Hun; Eom, Kyeung Tae; Namkung, Sook; Park, Man Soo; Hwang, Woo Chul; Lee, Kwan Seop

    1996-01-01

    To describe the radiologic findings of idiopathic portal hypertension and to find the points of differentiation between idiopathic portal hypertension and liver cirrhosis. Four portograms in five patients who for four years had suffered from pathologically confirmed idiopathic portal hypertension were retrospectively analyzed and compared with a portogram obtained from a control subject with liver cirrhosis. Portographic finding s of idiopathic portal hypertension were paucity of medium-sized portal branches, irregular and obtuse-angled division of peripheral branches, abrupt interruption and an avascular area beneath the liver margin. A portogram of idiopathic portal hypertension may be useful in differentiation this and liver cirrhosis

  2. SECONDARY (ENDOCRINE HYPERTENSION: LECTURE

    Directory of Open Access Journals (Sweden)

    M. Yu. Yukina

    2016-01-01

    Full Text Available Hypertension is a  very common disease with high morbidity and reduction in quality of life. Endocrine disorders are the most common cause of secondary hypertension affecting ~3% of the population. Primary aldosteronism can be the cause of endocrine hypertension more often than other endocrine disorders. Other less common causes of endocrine hypertension include Cushing syndrome, pheochromocytoma, thyroid disorders, and hyperparathyroidism. Endocrine hypertension is potentially curable if the underlying cause is identified and treated accordingly. Younger age at manifestation of resistance to multiple antihypertensive drugs, together with other clinical signs of an endocrine disorder, should raise the suspicion and prompt the appropriate evaluation.

  3. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia

    Science.gov (United States)

    Yoshida, Tadashi; Tabony, A. Michael; Galvez, Sarah; Mitch, William E.; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-01-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5′ AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. PMID:23769949

  4. Use of Curcumin, a Natural Polyphenol for Targeting Molecular Pathways in Treating Age-Related Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Panchanan Maiti

    2018-05-01

    Full Text Available Progressive accumulation of misfolded amyloid proteins in intracellular and extracellular spaces is one of the principal reasons for synaptic damage and impairment of neuronal communication in several neurodegenerative diseases. Effective treatments for these diseases are still lacking but remain the focus of much active investigation. Despite testing several synthesized compounds, small molecules, and drugs over the past few decades, very few of them can inhibit aggregation of amyloid proteins and lessen their neurotoxic effects. Recently, the natural polyphenol curcumin (Cur has been shown to be a promising anti-amyloid, anti-inflammatory and neuroprotective agent for several neurodegenerative diseases. Because of its pleotropic actions on the central nervous system, including preferential binding to amyloid proteins, Cur is being touted as a promising treatment for age-related brain diseases. Here, we focus on molecular targeting of Cur to reduce amyloid burden, rescue neuronal damage, and restore normal cognitive and sensory motor functions in different animal models of neurodegenerative diseases. We specifically highlight Cur as a potential treatment for Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases. In addition, we discuss the major issues and limitations of using Cur for treating these diseases, along with ways of circumventing those shortcomings. Finally, we provide specific recommendations for optimal dosing with Cur for treating neurological diseases.

  5. High-altitude pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    X-Q. Xu

    2009-03-01

    Full Text Available High-altitude pulmonary hypertension (HAPH is a specific disease affecting populations that live at high elevations. The prevalence of HAPH among those residing at high altitudes needs to be further defined. Whereas reduction in nitric oxide production may be one mechanism for the development of HAPH, the roles of endothelin-1 and prostaglandin I2 pathways in the pathogenesis of HAPH deserve further study. Although some studies have suggested that genetic factors contribute to the pathogenesis of HAPH, data published to date are insufficient for the identification of a significant number of gene polymorphims in HAPH. The clinical presentation of HAPH is nonspecific. Exertional dyspnoea is the most common symptom and signs related to right heart failure are common in late stages of HAPH. Echocardiography is the most useful screening tool and right heart catheterisation is the gold standard for the diagnosis of HAPH. The ideal management for HAPH is migration to lower altitudes. Phosphodiesterase 5 is an attractive drug target for the treatment of HAPH. In addition, acetazolamide is a promising therapeutic agent for high-altitude pulmonary hypertension. To date, no evidence has confirmed whether endothelin-receptor antagonists have efficacy in the treatment of high-altitude pulmonary hypertension.

  6. Pulmonary hypertension of the newborn.

    Science.gov (United States)

    Stayer, Stephen A; Liu, Yang

    2010-09-01

    Pulmonary hypertension presenting in the neonatal period can be due to congenital heart malformations (most commonly associated with obstruction to pulmonary venous drainage), high output cardiac failure from large arteriovenous malformations and persistent pulmonary hypertension of the newborn (PPHN). Of these, the most common cause is PPHN. PPHN develops when pulmonary vascular resistance (PVR) remains elevated after birth, resulting in right-to-left shunting of blood through foetal circulatory pathways. The PVR may remain elevated due to pulmonary hypoplasia, like that seen with congenital diaphragmatic hernia; maldevelopment of the pulmonary arteries, seen in meconium aspiration syndrome; and maladaption of the pulmonary vascular bed as occurs with perinatal asphyxia. These newborn patients typically require mechanical ventilatory support and those with underlying lung disease may benefit from high-frequency oscillatory ventilation or extra-corporeal membrane oxygenation (ECMO). Direct pulmonary vasodilators, such as inhaled nitric oxide, have been shown to improve the outcome and reduce the need for ECMO. However, there is very limited experience with other pulmonary vasodilators. The goals for anaesthetic management are (1) to provide an adequate depth of anaesthesia to ablate the rise in PVR associated with surgical stimuli; (2) to maintain adequate ventilation and oxygenation; and (3) to be prepared to treat a pulmonary hypertensive crisis--an acute rise in PVR with associated cardiovascular collapse.

  7. Long-term smoking alters abundance of over half of the proteome in bronchoalveolar lavage cell in smokers with normal spirometry, with effects on molecular pathways associated with COPD.

    Science.gov (United States)

    Yang, Mingxing; Kohler, Maxie; Heyder, Tina; Forsslund, Helena; Garberg, Hilde K; Karimi, Reza; Grunewald, Johan; Berven, Frode S; Magnus Sköld, C; Wheelock, Åsa M

    2018-03-08

    Smoking represents a significant risk factor for many chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). To identify dysregulation of specific proteins and pathways in bronchoalveolar lavage (BAL) cells associated with smoking, isobaric tags for relative and absolute quantitation (iTRAQ)-based shotgun proteomics analyses were performed on BAL cells from healthy never-smokers and smokers with normal lung function from the Karolinska COSMIC cohort. Multivariate statistical modeling, multivariate correlations with clinical data, and pathway enrichment analysis were performed. Smoking exerted a significant impact on the BAL cell proteome, with more than 500 proteins representing 15 molecular pathways altered due to smoking. The majority of these alterations occurred in a gender-independent manner. The phagosomal- and leukocyte trans endothelial migration (LTM) pathways significantly correlated with FEV 1 /FVC as well as the percentage of CD8 + T-cells and CD8 + CD69 + T-cells in smokers. The correlations to clinical parameters in healthy never-smokers were minor. The significant correlations of proteins in the phagosome- and LTM pathways with activated cytotoxic T-cells (CD69+) and the level of airway obstruction (FEV 1 /FVC) in smokers, both hallmarks of COPD, suggests that these two pathways may play a role in the molecular events preceding the development of COPD in susceptible smokers. Both pathways were found to be further dysregulated in COPD patients from the same cohort, thereby providing further support to this hypothesis. Given that not all smokers develop COPD in spite of decades of smoking, it is also plausible that some of the molecular pathways associated with response to smoking exert protective mechanisms to smoking-related pathologies in resilient individuals. ClinicalTrials.gov identifier NCT02627872 ; Retrospectively registered on December 9, 2015.

  8. Present and future of targeted molecular imaging and therapy (theranostics) as a personalized pathway to diagnosis and treatment

    International Nuclear Information System (INIS)

    Baum, Richard P.

    2014-01-01

    68 Gallium is a positron emitter (T1/2 68 min) which can be produced from a generator in a convenient, 'in-house' preparation and used for labeling of peptides, e.g. somatostatin analogues (SA) like DOTATOC or DOTATATE for molecular imaging of SSTR expressing tumors. Since 2004, we have performed over 8,000 68 Ga PET/CT studies in patients with neuroendocrine tumors (NET) and have established SSTR PET/CT as the new gold standard for imaging G1 and G2 NET (staging, restaging, therapy response evaluation and detection of unknown primary NET). The same peptides can be labeled with 177 Lutetium or 90 Yttrium for radionuclide therapy, a form of personalized treatment (THERANOSTICS approach). PRRT is based on the receptor-mediated internalization of SA, a concept which was introduced at our center in 1999 and since then we have treated over 1,200 patients with a total of 4,000 therapy cycles using 177 Lu and 90 Y labeled peptides. Several clinical trials indicate that PRRT can deliver effective radiation doses to tumors. A German multi-institutional registry study with prospective follow up in 450 patients indicates that PRRT is an effective therapy for patients with G1-2 neuroendocrine tumors, irrespective of previous therapies, with a survival advantage of several years compared to other therapies and only minor side effects. Median overall survival (OS) of all patients from the start of treatment was 59 months. Median progression-free survival (PFS) measured from last cycle of therapy accounted to 41 mo. Median PFS of pancreatic NET was 39 mo. Similar results were obtained for NET of unknown primary (median PFS: 38 mol whereas NET of small bowel had a median PFS of 51 months. Side effects like °3-4 nephro- or hematotoxicity were observed in only 0.2% and 2% of patients respectively. PRRT is highly effective in the management of NET, even in advanced cases. In patients with progressive neuroendocrine tumors, fractionated, personalized PRRT with lower doses

  9. Unraveling Molecular Mechanisms for the Unusual Fossil Preservation and Biomineralization Pathways in Tlayúa, the Mexican Solenhofen

    Science.gov (United States)

    Cervini-Silva, J.; Fakra, S.; Alvarado-Ortega, J.; Cornejo-Garrido, H.; Marcus, M.; Hao, Z.; Espinosa-Arruberena, L.; Banfield, J.

    2007-12-01

    lagoon when the barrier was breached, probably during periods of heavy rains and hurricanes, or during high tides. Additionally, some fishes from Tlayua have been found to have affinities with recent families known to inhabit brackish and freshwater environments. Some of these fish preserve gut contents. Preliminary analysis of the intestinal content of these fishes has resulted in identification of freshwater insects and fern fragments. This work addresses for the first time the study of chemical and biological mechanisms contributing to fossil preservation and biomineralization pathways prevailing in Tlayúa using synchrotron techniques (XRF, - XRD, 3D--IR, XANES/EXAFS, STxM). We present chemical composition data collected from a fish egg's interior in search of fossilized structures. We also present data from well-preserved soft tissue collected from a fish soon to be named Michin scernai (newly identified specie, thus the name cannot be applied formally just yet). This fish is a Pachyrhizodontide, from the telesteos incertae sedis group already extinct. This particular sample was collected from the gastric cavity, precisely where female fish store the eggs before laying.

  10. Community Structure Analysis of Transcriptional Networks Reveals Distinct Molecular Pathways for Early- and Late-Onset Temporal Lobe Epilepsy with Childhood Febrile Seizures

    Science.gov (United States)

    Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Iamashita, Priscila; Silva, Filipi Nascimento; Costa, Luciano da Fontoura; Silva, Alexandre Valotta; Castro, Luiz Henrique Martins; Wen, Hung-Tzu

    2015-01-01

    Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system’s constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to

  11. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wenjun, E-mail: wjzheng@buffalo.edu; Glenn, Paul [Department of Physics, University at Buffalo, Buffalo, New York 14260 (United States)

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  12. Quantum mechanical/molecular mechanical calculated reactivity networks reveal how cytochrome P450cam and Its T252A mutant select their oxidation pathways.

    Science.gov (United States)

    Wang, Binju; Li, Chunsen; Dubey, Kshatresh Dutta; Shaik, Sason

    2015-06-17

    Quantum mechanical/molecular mechanical calculations address the longstanding-question of a "second oxidant" in P450 enzymes wherein the proton-shuttle, which leads to formation of the "primary-oxidant" Compound I (Cpd I), was severed by mutating the crucial residue (in P450cam: Threonine-252-to-Alanine, hence T252A). Investigating the oxidant candidates Cpd I, ferric hydroperoxide, and ferric hydrogen peroxide (Fe(III)(O2H2)), and their reactions, generates reactivity networks which enable us to rule out a "second oxidant" and at the same time identify an additional coupling pathway that is responsible for the epoxidation of 5-methylenylcamphor by the T252A mutant. In this "second-coupling pathway", the reaction starts with the Fe(III)(O2H2) intermediate, which transforms to Cpd I via a O-O homolysis/H-abstraction mechanism. The persistence of Fe(III)(O2H2) and its oxidative reactivity are shown to be determined by interplay of substrate and protein. The substrate 5-methylenylcamphor prevents H2O2 release, while the protein controls the Fe(III)(O2H2) conversion to Cpd I by nailing-through hydrogen-bonding interactions-the conformation of the HO(•) radical produced during O-O homolysis. This conformation prevents HO(•) attack on the porphyrin's meso position, as in heme oxygenase, and prefers H-abstraction from Fe(IV)OH thereby generating H2O + Cpd I. Cpd I then performs substrate oxidations. Camphor cannot prevent H2O2 release and hence the T252A mutant does not oxidize camphor. This "second pathway" transpires also during H2O2 shunting of the cycle of wild-type P450cam, where the additional hydrogen-bonding with Thr252 prevents H2O2 release, and contributes to a successful Cpd I formation. The present results lead to a revised catalytic cycle of Cytochrome P450cam.

  13. Molecular weight growth in Titan's atmosphere: branching pathways for the reaction of 1-propynyl radical (H3CC≡C˙) with small alkenes and alkynes.

    Science.gov (United States)

    Kirk, Benjamin B; Savee, John D; Trevitt, Adam J; Osborn, David L; Wilson, Kevin R

    2015-08-28

    The reaction of small hydrocarbon radicals (i.e.˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC[triple bond, length as m-dash]C˙), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.

  14. Functional and molecular characterization of kinin B1 and B 2 receptors in human bladder cancer: implication of the PI3Kγ pathway.

    Science.gov (United States)

    Sgnaolin, V; Pereira, T C B; Bogo, M R; Zanin, R; Battastini, A M O; Morrone, F B; Campos, M M

    2013-08-01

    Kinins and their receptors have been recently implicated in cancer. Using functional and molecular approaches, we investigated the relevance of kinin B1 and B2 receptors in bladder cancer. Functional studies were conducted using bladder cancer cell lines, and human biopsies were employed for molecular studies. Both B1 des-Arg(9)-BK and B2 BK receptor agonists stimulated the proliferation of grade 3-derived T24 bladder cancer cells. Furthermore, treatment with B1 and B2 receptor antagonists (SSR240612 and HOE140) markedly inhibited the proliferation of T24 cells. Only higher concentrations of BK increased the proliferation of the grade 1 bladder cancer cell line RT4, while des-Arg(9)-BK completely failed to induce its proliferation. Real-time PCR revealed that the mRNA expression of kinin receptors, particularly B1 receptors, was increased in T24 cells relative to RT4 cells. Data from bladder cancer human biopsies revealed that B1 receptor expression was increased in all tumor samples and under conditions of chronic inflammation. We also show novel evidence demonstrating that the pharmacological inhibition of PI3Kγ (phosphatidylinositol 3-kinase) with AS252424, concentration-dependently reduced T24 cell proliferation induced by BK or des-Arg(9)-BK. Finally, the incubation of T24 cells with kinin agonists led to a marked activation of the PI3K/AKT and ERK 1/2 signaling pathways, whereas p38 MAP kinase remained unaffected. Kinin receptors, especially B1 receptors, appear to be implicated in bladder cancer progression. It is tempting to suggest that selective kinin antagonists might represent potential alternative therapies for bladder cancer.

  15. Noncirrhotic portal hypertension.

    Science.gov (United States)

    Da, Ben L; Koh, Christopher; Heller, Theo

    2018-05-01

    Noncirrhotic portal hypertension represents a heterogeneous group of liver disorders that is characterized by portal hypertension in the absence of cirrhosis. The purpose of this review is to serve as a guide on how to approach a patient with noncirrhotic portal hypertension with a focus on recent developments. Recent studies pertaining to noncirrhotic portal hypertension have investigated aetiological causes, mechanisms of disease, noninvasive diagnostic modalities, clinical characteristics in the paediatric population and novel treatment targets. Noncirrhotic portal hypertension is an underappreciated clinical entity that can be difficult to diagnosis without a healthy suspicion. Diagnosis then relies on a comprehensive understanding of the causes and clinical manifestations of this disease, as well as a careful interpretation of the liver biopsy. Noninvasive approaches to diagnosis may play a significant role moving forward in this disease. Treatment in NCPH remains largely targeted at the individual sequalae of portal hypertension.

  16. Hypertension in Danish seafarers

    DEFF Research Database (Denmark)

    Tu, Mingshan; Jepsen, Jørgen Riis

    2016-01-01

    Background: Due to the high prevalence of arterial hypertension and its role in the development of athe- rosclerosis, myocardial infarction and stroke, hypertension is a major public health challenge worldwide. There is limited knowledge of the prevalence of hypertension among seafarers who......, however, are known to have an excess morbidity and mortality from these disorders. This article addresses the prevalence of hypertension among Danish seafarers and discusses potential risk factors for hypertension in maritime settings. Materials and methods: A representative sample of 629 Danish seafarers...... who had statutory medical examinations was studied from the beginning of October 2011 to the end of June 2012. The medical examination included measurements of blood pressure. The prevalence of hypertension in the study po- pulation was stratified by age, work place on board, smoking status, alcohol...

  17. Pediatric portal hypertension

    Science.gov (United States)

    Vogel, Clarissa Barbon

    2017-01-01

    Abstract: Pediatric portal hypertension management is a team approach between the patient, the patient's family, the primary caregiver, and specialty providers. Evidence-based practice guidelines have not been established in pediatrics. This article serves as a review for the primary care NP in the management of pediatric portal hypertension, discussing the etiology, pathophysiology, and clinical presentation of pediatric portal hypertension, diagnostic tests, and treatment and management options. PMID:28406835

  18. Hypertension og hyperlipidaemi

    DEFF Research Database (Denmark)

    Hansen, Henrik Steen; Larsen, Mogens Lytken

    2009-01-01

    Hypertension and hyperlipidemia are well-established and partially overlapping risk factors for cardiovascular disease. Analyses of cardiovascular morbidity in relationship to changes in blood pressure and in serum cholesterol levels have shown that combined reduction of both risk factors...... are important to achieve a reduction in morbidity. Statins have been shown to be effective in preventing both coronary and cerebrovascular events in both hypertensive and normotensive cases. Consequently, most recent guidelines recommend that statin treatment be considered in hypertensive patients aged less...

  19. 42. Hypertension: Morbidity review

    Directory of Open Access Journals (Sweden)

    Hamzullah khan

    2015-10-01

    Conclusions: hypertension is a major modifiable risk factor for coronary artery disease, stroke, eye abnormalities and end stage renal disease, which require proper counseling and management of patients.

  20. The new hypertension guidelines.

    Science.gov (United States)

    Stern, Ralph H

    2013-10-01

    The Canadian Hypertension Education Program (CHEP) has published guidelines annually since 2000. The CHEP guidelines are a model of concise, comprehensive, up-to-date, evidence-rated guidelines for physicians who diagnose and treat hypertension. The guidelines address measurement of blood pressure and the definition of hypertension, secondary hypertension evaluation and treatment, and blood pressure targets and medication choices in patients with and without compelling indications. This review describes CHEP's process for developing guidelines and provides an overview of the 2013 recommendations. ©2013 Wiley Periodicals, Inc.

  1. [Hypertension in women].

    Science.gov (United States)

    Tagle, Rodrigo; Tagle V, Rodrigo; Acevedo, Mónica; Valdés, Gloria

    2013-02-01

    The present review examines the types of hypertension that women may suffer throughout life, their physiopathological characteristics and management. In early life, the currently used low-dose oral contraceptives seldom cause hypertension. Pregnancy provokes preeclampsia, its main medical complication, secondary to inadequate transformation of the spiral arteries and the subsequent multisystem endothelial damage caused by deportation of placental factors and microparticles. Hypertension in preeclampsia is an epiphenomenon which needs to be controlled at levels that reduce maternal risk without impairing placental perfusion. The hemodynamic changes of pregnancy may unmask a hypertensive phenotype, may exacerbate a chronic hypertension, or may complicate hypertension secondary to lupus, renovascular lesions, and pheochromocytoma. On the other hand a primary aldosteronism may benefit from the effect of progesterone and present as a postpartum hypertension. A hypertensive pregnancy, especially preeclampsia, represents a risk for cardiac, vascular and renal disease in later life. Menopause may mimic a pheochromocytoma, and is associated to endothelial dysfunction and salt-sensitivity. Among women, non-pharmacological treatment should be forcefully advocated, except for sodium restriction during pregnancy. The blockade of the renin-angiotensin system should be avoided in women at risk of pregnancy; betablockers could be used with precautions during pregnancy; diuretics, ACE inhibitors and angiotensin receptor antagonists should not be used during breast feeding. Collateral effects of antihypertensives, such as hyponatremia, cough and edema are more common in women. Thus, hypertension in women should be managed according to the different life stages.

  2. Aedes aegypti Molecular Responses to Zika Virus: Modulation of Infection by the Toll and Jak/Stat Immune Pathways and Virus Host Factors

    Directory of Open Access Journals (Sweden)

    Yesseinia I. Angleró-Rodríguez

    2017-10-01

    Full Text Available Zika (ZIKV and dengue virus (DENV are transmitted to humans by Aedes mosquitoes. However, the molecular interactions between the vector and ZIKV remain largely unexplored. In this work, we further investigated the tropism of ZIKV in two different Aedes aegypti strains and show that the virus infection kinetics, tissue migration, and susceptibility to infection differ between mosquito strains. We also compare the vector transcriptome changes upon ZIKV or DENV infection demonstrating that 40% of the mosquito’s midgut infection-responsive transcriptome is virus-specific at 7 days after virus ingestion. Regulated genes included key factors of the mosquito’s anti-viral immunity. Comparison of the ZIKV and DENV infection-responsive transcriptome data to those available for yellow fever virus and West Nile virus identified 26 genes likely to play key roles in virus infection of Aedes mosquitoes. Through reverse genetic analyses, we show that the Toll and the Jak/Stat innate immune pathways mediate increased resistance to ZIKV infection, and the conserved DENV host factors vATPase and inosine-5′-monophosphate dehydrogenase are also utilized for ZIKV infection.

  3. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Molecular pathways of early CD105-positive erythroid cells as compared with CD34-positive common precursor cells by flow cytometric cell-sorting and gene expression profiling

    International Nuclear Information System (INIS)

    Machherndl-Spandl, S; Suessner, S; Danzer, M; Proell, J; Gabriel, C; Lauf, J; Sylie, R; Klein, H-U; Béné, M C; Weltermann, A; Bettelheim, P

    2013-01-01

    Special attention has recently been drawn to the molecular network of different genes that are responsible for the development of erythroid cells. The aim of the present study was to establish in detail the immunophenotype of early erythroid cells and to compare the gene expression profile of freshly isolated early erythroid precursors with that of the CD34-positive (CD34 + ) compartment. Multiparameter flow cytometric analyses of human bone marrow mononuclear cell fractions (n=20) defined three distinct early erythroid stages. The gene expression profile of sorted early erythroid cells was analyzed by Affymetrix array technology. For 4524 genes, a differential regulation was found in CD105-positive erythroid cells as compared with the CD34 + progenitor compartment (2362 upregulated genes). A highly significant difference was observed in the expression level of genes involved in transcription, heme synthesis, iron and mitochondrial metabolism and transforming growth factor-β signaling. A comparison with recently published data showed over 1000 genes that as yet have not been reported to be upregulated in the early erythroid lineage. The gene expression level within distinct pathways could be illustrated directly by applying the Ingenuity software program. The results of gene expression analyses can be seen at the Gene Expression Omnibus repository

  5. Molecular pathways underlying inhibitory effect of antimicrobial peptide Nal-P-113 on bacteria biofilms formation of Porphyromonas gingivalis W83 by DNA microarray.

    Science.gov (United States)

    Wang, Hong-Yan; Lin, Li; Tan, Li-Si; Yu, Hui-Yuan; Cheng, Jya-Wei; Pan, Ya-Ping

    2017-02-17

    Wound-related infection remains a major challenge for health professionals. One disadvantage in conventional antibiotics is their inability to penetrate biofilms, the main protective strategy for bacteria to evade irradiation. Previously, we have shown that synthetic antimicrobial peptides could inhibit bacterial biofilms formation. In this study, we first delineated how Nal-P-113, a novel antimicrobial peptide, exerted its inhibitory effects on Porphyromonas gingivalis W83 biofilms formation at a low concentration. Secondly, we performed gene expression profiling and validated that Nal-P-113 at a low dose significantly down-regulated genes related to mobile and extrachromosomal element functions, transport and binding proteins in Porphyromonas gingivalis W83. These findings suggest that Nal-P-113 at low dose is sufficient to inhibit the formation of biofilms although Porphyromonas gingivalis W83 may maintain its survival in the oral cavity. The newly discovered molecular pathways may add the knowledge of developing a new strategy to target bacterial infections in combination with current first-line treatment in periodontitis.

  6. PP005. Vitamin D depletion aggravates hypertension in transgenic rats

    DEFF Research Database (Denmark)

    Bjørkholt Andersen, Louise; Herse, Florian; Christesen, Henrik Thybo

    2013-01-01

    INTRODUCTION: Vitamin D may ameliorate hypertension and kidney disease through genomic and extra-genomic pathways. OBJECTIVE: To investigate the impact of vitamin D in a transgenic rat model of angiotensin II-mediated hypertensive organ failure. METHODS: In 4-week-old age-matched rats overexpress......INTRODUCTION: Vitamin D may ameliorate hypertension and kidney disease through genomic and extra-genomic pathways. OBJECTIVE: To investigate the impact of vitamin D in a transgenic rat model of angiotensin II-mediated hypertensive organ failure. METHODS: In 4-week-old age-matched rats...... determined once weekly. After three weeks, animals were sacrificed. Heart tissue was examined for atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) by RT-PCR. RESULTS: The vitamin D depleted group had higher blood pressure at week 1 (mean difference 23.4mmHg, 95% CI 9.1-37.7) and tended...

  7. Therapeutic Exercise and Hypertension

    African Journals Online (AJOL)

    Nekky Umera

    patients but may not reduce the BP of normotensive individual. Exercise function ... and mortality in all age groups; it also creates major social, personal and financial ... drug therapy by as symptomatic hypertensive and high cost of drugs particularly in a ..... Events in hypertensive patients randomized to doxagosin versus.

  8. Noncirrotisk intrahepatisk portal hypertension

    DEFF Research Database (Denmark)

    Dam Fialla, Annette; Havelund, Troels

    2007-01-01

    Non-cirrhotic intrahepatic portal hypertension is characterized by portal hypertension in the absence of liver cirrhosis or portal vein thrombosis. The disease is common in the East and rarely seen in the West. Two cases with oesophageal varices are described. The histopathology is heterogeneous...... but includes vascular lesions and portal fibrosis. Patient management follows the current recommendations for variceal bleeding....

  9. Pulmonary Arterial Hypertension

    Science.gov (United States)

    ... heart). This type of pulmonary hypertension was called “secondary pulmonary hypertension” but is now referred to as PH, because the cause is known to be from lung disease, heart disease, or chronic thromboemboli (blood clots). Pulmonary Arterial Hypertension (PAH) used to be ...

  10. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  11. Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis)

    Science.gov (United States)

    Zheng, Chao; Zhao, Lei; Wang, Yu; Shen, Jiazhi; Zhang, Yinfei; Jia, Sisi; Li, Yusheng; Ding, Zhaotang

    2015-01-01

    Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants’ growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq technologies, we performed an integrative analysis of miRNA and mRNA expression profiling and their regulatory network of tea plants under chilling (4℃) and freezing (-5℃) stress. Differentially expressed (DE) miRNA and mRNA profiles were obtained based on fold change analysis, miRNAs and target mRNAs were found to show both coherent and incoherent relationships in the regulatory network. Furthermore, we compared several key pathways (e.g., ‘Photosynthesis’), GO terms (e.g., ‘response to karrikin’) and transcriptional factors (TFs, e.g., DREB1b/CBF1) which were identified as involved in the early chilling and/or freezing response of tea plants. Intriguingly, we found that karrikins, a new group of plant growth regulators, and β-primeverosidase (BPR), a key enzyme functionally relevant with the formation of tea aroma might play an important role in both early chilling and freezing response of tea plants. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-Seq and sRNA-Seq analysis. This is the first study to simultaneously profile the expression patterns of both miRNAs and mRNAs on a genome-wide scale to elucidate the molecular mechanisms of early responses of tea plants to cold stress. In addition to gaining a deeper insight into the cold resistant characteristics of tea plants, we provide a good case study to analyse mRNA/miRNA expression and profiling of non-model plant species using next-generation sequencing technology. PMID:25901577

  12. Cervical Spondylosis and Hypertension

    Science.gov (United States)

    Peng, Baogan; Pang, Xiaodong; Li, Duanming; Yang, Hong

    2015-01-01

    Abstract Cervical spondylosis and hypertension are all common diseases, but the relationship between them has never been studied. Patients with cervical spondylosis are often accompanied with vertigo. Anterior cervical discectomy and fusion is an effective method of treatment for cervical spondylosis with cervical vertigo that is unresponsive to conservative therapy. We report 2 patients of cervical spondylosis with concomitant cervical vertigo and hypertension who were treated successfully with anterior cervical discectomy and fusion. Stimulation of sympathetic nerve fibers in pathologically degenerative disc could produce sympathetic excitation, and induce a sympathetic reflex to cause cervical vertigo and hypertension. In addition, chronic neck pain could contribute to hypertension development through sympathetic arousal and failure of normal homeostatic pain regulatory mechanisms. Cervical spondylosis may be one of the causes of secondary hypertension. Early treatment for resolution of symptoms of cervical spondylosis may have a beneficial impact on cardiovascular disease risk in patients with cervical spondylosis. PMID:25761188

  13. Overweight, adipocytokines and hypertension

    DEFF Research Database (Denmark)

    Seven, Ekim; Husemoen, Lise L N; Wachtell, Kristian

    2014-01-01

    OBJECTIVE:: The adipocytokines, leptin, adiponectin, and interleukin-6, which stimulate liver C-reactive protein (CRP) production, are regarded as potential candidate intermediates between adipose tissue and overweight-induced hypertension. METHODS:: We examined the associations between leptin......, adiponectin, and CRP levels with both prevalent and 5-year incident hypertension (IHT) in a general population of Danish adults (n = 5868, 51.3% women, mean age 45.8 ± 7.9 years). RESULTS:: We recorded 2195 prevalent and 379 incident cases of hypertension. In models including leptin, CRP, adiponectin, sex.......023) in the fully adjusted model. The population attributable risk estimate of IHT owing to overweight was 31%. CONCLUSION:: Leptin, but not adiponectin or CRP, may play a mediating role in overweight-induced hypertension. However, as BMI was a strong independent predictor of hypertension, other factors than leptin...

  14. Hypertension in women.

    Science.gov (United States)

    Pimenta, Eduardo

    2012-02-01

    Hypertension is an important modifiable risk factor for cardiovascular (CV) morbidity and mortality, and a highly prevalent condition in both men and women. However, the prevalence of hypertension is predicted to increase more among women than men. Combined oral contraceptives (COCs) can induce hypertension in a small group of women and, increase CV risk especially among those with hypertension. Both COC-related increased CV risk and blood pressure (BP) returns to pretreatment levels by 3 months of its discontinuation. The effects of menopause and hormone replacement therapy (HRT) on BP are controversial, and COCs and HRT containing the new generation progestin drospirenone are preferred in women with established hypertension. Despite the high incidence of cancer in women, CV disease remains the major cause of death in women and comparable benefit of antihypertensive treatment have been demonstrated in both women and men.

  15. Overweight, adipocytokines and hypertension

    DEFF Research Database (Denmark)

    Seven, Ekim; Husemoen, Lise L N; Wachtell, Kristian

    2014-01-01

    OBJECTIVE: The adipocytokines, leptin, adiponectin, and interleukin-6, which stimulate liver C-reactive protein (CRP) production, are regarded as potential candidate intermediates between adipose tissue and overweight-induced hypertension. METHODS: We examined the associations between leptin......, adiponectin, and CRP levels with both prevalent and 5-year incident hypertension (IHT) in a general population of Danish adults (n = 5,868, 51.3% women, mean age 45.8 ± 7.9 years). RESULTS: We recorded 2195 prevalent and 379 incident cases of hypertension. In models including leptin, CRP, adiponectin, sex.......023) in the fully adjusted model. The population attributable risk estimate of IHT owing to overweight was 31%. CONCLUSION: Leptin, but not adiponectin or CRP, may play a mediating role in overweight-induced hypertension. However, as BMI was a strong independent predictor of hypertension, other factors than leptin...

  16. [Hypertension: is the actual definition adapted to women?].

    Science.gov (United States)

    Wuerzner, G; Bochud, M; Jaunin-Stalder, N; Pechère-Bertschi, A

    2010-07-28

    The control of blood pressure in men and women differs due to different physiological pathways. Moreover, conditions increasing the risk of hypertension, such as pre-eclampsia, exposure to oral contraceptives are specific to women. Men have a higher blood pressure than women from pubertal growth to advanced age. However, the definition of hypertension (blood pressure--140/90 mmHg) is the same for adult men and women. The management of hypertension should be based not only on the level of blood pressure, but also on the global cardiovascular risk. Sex is included in the global evaluation of the cardiovascular risk.

  17. Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat

    Czech Academy of Sciences Publication Activity Database

    Coan, P. M.; Hummel, O.; Diaz, A. G.; Barrier, M.; Alfazema, N.; Norsworthy, P. J.; Pravenec, Michal; Petretto, E.; Hübner, N.; Aitman, T. J.

    2017-01-01

    Roč. 10, č. 3 (2017), s. 297-306 ISSN 1754-8403 R&D Projects: GA ČR(CZ) GAP301/12/0696 Institutional support: RVO:67985823 Keywords : rat * congenic * genomic * hypertension * insulin resistance Subject RIV: EB - Gene tics ; Molecular Biology OBOR OECD: Endocrinology and metabolism (including diabetes, hormones) Impact factor: 4.691, year: 2016

  18. The relative importance of competing pathways for the formation of high-molecular-weight peroxides in the ozonolysis of organic aerosol particles

    Directory of Open Access Journals (Sweden)

    M. Mochida

    2006-01-01

    Full Text Available High-molecular-weight (HMW organic compounds are an important component of atmospheric particles, although their origins, possibly including in situ formation pathways, remain incompletely understood. This study investigates the formation of HMW organic peroxides through reactions involving stabilized Criegee intermediates (SCI's. The model system is methyl oleate (MO mixed with dioctyl adipate (DOA and myristic acid (MA in submicron aerosol particles, and Criegee intermediates are formed by the ozonolysis of the double bond in methyl oleate. An aerosol flow tube coupled to a quadrupole aerosol mass spectrometer (AMS is employed to determine the relative importance of different HMW organic peroxides following the ozonolysis of different mixing mole fractions of MO in DOA and MA. Possible peroxide products include secondary ozonides (SOZ's, α-acyloxyalkyl hydroperoxides and α-acyloxyalkyl alkyl peroxides (αAAHP-type compounds, diperoxides, and monoperoxide oligomers. Of these, the AMS data identify two SOZ's as major HMW products in the ozonolysis of pure methyl oleate as well as in an inert matrix of DOA to as low as 0.04 mole fraction MO. In comparison, in mixed particles of MO and MA, αAAHP-type compounds form in high yields for MO mole fractions of 0.5 or less, suggesting that SCI's efficiently attack the carboxylic acid group of myristic acid. The reactions of SCI's with carboxylic acid groups to form αAAHP-type compounds therefore compete with those of SCI's with aldehydes to form SOZ's, provided that both types of functionalities are present at significant concentrations. The results therefore suggest that SCI's in atmospheric particles contribute to the transformation of carboxylic acids and other protic groups into HMW organic peroxides.

  19. Binding modes and pathway of RHPS4 to human telomeric G-quadruplex and duplex DNA probed by all-atom molecular dynamics simulations with explicit solvent.

    Science.gov (United States)

    Mulholland, Kelly; Siddiquei, Farzana; Wu, Chun

    2017-07-19

    RHPS4, a potent binder to human telomeric DNA G-quadruplex, shows high efficacy in tumor cell growth inhibition. However, it's preferential binding to DNA G-quadruplex over DNA duplex (about 10 fold) remains to be improved toward its clinical application. A high resolution structure of the single-stranded telomeric DNA G-quadruplexes, or B-DNA duplex, in complex with RHPS4 is not available yet, and the binding nature of this ligand to these DNA forms remains to be elusive. In this study, we carried out 40 μs molecular dynamics binding simulations with a free ligand to decipher the binding pathway of RHPS4 to a DNA duplex and three G-quadruplex folders (parallel, antiparallel and hybrid) of the human telomeric DNA sequence. The most stable binding mode identified for the duplex, parallel, antiparallel and hybrid G-quadruplexes is an intercalation, bottom stacking, top intercalation and bottom intercalation mode, respectively. The intercalation mode with similar binding strength to both the duplex and the G-quadruplexes, explains the lack of binding selectivity of RHPS4 to the G-quadruplex form. Therefore, a ligand modification that destabilizes the duplex intercalation mode but stabilizes the G-quadruplex intercalation mode will improve the binding selectivity toward G-quadruplex. The intercalation mode of RHPS4 to both the duplex and the antiparallel and the hybrid G-quadruplex follows a base flipping-insertion mechanism rather than an open-insertion mechanism. The groove binding, the side binding and the intercalation with flipping out of base were observed to be intermediate states before the full intercalation state with paired bases.

  20. A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN

    Directory of Open Access Journals (Sweden)

    María Josefina Poupin

    2016-04-01

    Full Text Available Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR. However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1 or auxin (axr1-5 signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2, indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.

  1. Sex differences in T cells in hypertension.

    Science.gov (United States)

    Tipton, Ashlee J; Sullivan, Jennifer C

    2014-12-01

    Hypertension is a major risk factor for cardiovascular disease, stroke, and end-organ damage. There is a sex difference in blood pressure (BP) that begins in adolescence and continues into adulthood, in which men have a higher prevalence of hypertension compared with women until the sixth decade of life. Less than 50% of hypertensive adults in the United States manage to control their BP to recommended levels using current therapeutic options, and women are more likely than are men to have uncontrolled high BP. This, is despite the facts that more women compared with men are aware that they have hypertension and that women are more likely to seek treatment for the disease. Novel therapeutic targets need to be identified in both sexes to increase the percentage of hypertensive individuals with controlled BP. The purpose of this article was to review the available literature on the role of T cells in BP control in both sexes, and the potential therapeutic application/implications of targeting immune cells in hypertension. A search of PubMed was conducted to determine the impact of sex on T cell-mediated control of BP. The search terms included sex, gender, estrogen, testosterone, inflammation, T cells, T regulatory cells, Th17 cells, hypertension, and blood pressure. Additional data were included from our laboratory examinations of cytokine expression in the kidneys of male and female spontaneously hypertensive rats (SHRs) and differential gene expression in both the renal cortex and mesenteric arterial bed of male and female SHRs. There is a growing scientific literature base regarding the role of T cells in the pathogenesis of hypertension and BP control; however, the majority of these studies have been performed exclusively in males, despite the fact that both men and women develop hypertension. There is increasing evidence that although T cells also mediate BP in females, there are distinct differences in both the T-cell profile and the functional impact of sex

  2. Hyperthyroidism and pulmonary hypertension: an important association.

    Science.gov (United States)

    Vallabhajosula, Sailaja; Radhi, Saba; Cevik, Cihan; Alalawi, Raed; Raj, Rishi; Nugent, Kenneth

    2011-12-01

    Pulmonary hypertension is a complex disorder with multiple etiologies. The World Health Organization Group 5 (unclear multifactorial mechanisms) includes patients with thyroid disorders. The authors reviewed the literature on the association between hyperthyroidism and pulmonary hypertension and identified 20 publications reporting 164 patients with treatment outcomes. The systolic pulmonary artery (PA) pressures in these patients ranged from 28 to 78 mm Hg. They were treated with antithyroid medications, radioactive iodine and surgery. The mean pretherapy PA systolic pressure was 39 mm Hg; the mean posttreatment pressure was 30 mm Hg. Pulmonary hypertension should be considered in hyperthyroid patients with dyspnea. All patients with pulmonary hypertension should be screened for hyperthyroidism, because the treatment of hyperthyroidism can reduce PA pressures, potentially avoid the side-effects and costs with current therapies for pulmonary hypertension and limit the consequences of untreated hyperthyroidism. However, the long-term outcome in these patients is uncertain, and this issue needs more study. Changes in the pulmonary circulation and molecular regulators of vascular remodeling likely explain this association.

  3. Pulmonary hypertension CT imaging

    International Nuclear Information System (INIS)

    Nedevska, A.

    2013-01-01

    Full text: The right heart catheterization is the gold standard in the diagnosis and determines the severity of pulmonary hypertension. The significant technical progress of noninvasive diagnostic imaging methods significantly improves the pixel density and spatial resolution in the study of cardiovascular structures, thus changes their role and place in the overall diagnostic plan. Learning points: What is the etiology, clinical manifestation and general pathophysiological disorders in pulmonary hypertension. What are the established diagnostic methods in the diagnosis and follow-up of patients with pulmonary hypertension. What is the recommended protocol for CT scanning for patients with clinically suspected or documented pulmonary hypertension. What are the important diagnostic findings in CT scan of a patient with pulmonary hypertension. Discussion: The prospect of instantaneous complex - anatomical and functional cardiopulmonary and vascular diagnostics seems extremely attractive. The contrast enhanced multislice computed (CT ) and magnetic resonance imaging are very suitable methods for imaging the structures of the right heart, with the possibility of obtaining multiple projections and three-dimensional imaging reconstructions . There are specific morphological features that, if carefully analyzed, provide diagnostic information. Thus, it is possible to avoid or at least reduce the frequency of use of invasive diagnostic cardiac catheterization in patients with pulmonary hypertension. Conclusion: This review focuses on the use of contrast-enhanced CT for comprehensive evaluation of patients with pulmonary hypertension and presents the observed characteristic changes in the chest, lung parenchyma , the structures of the right half of the heart and pulmonary vessels

  4. Hypertension og nyresygdom

    DEFF Research Database (Denmark)

    Kamper, Anne-Lise; Pedersen, Erling B; Strandgaard, Svend

    2009-01-01

    Renal mechanisms, in particular the renin-angiotensin system and renal salt handling, are of major importance in blood pressure regulation. Co-existence of hypertension and decreased renal function may be due to nephrosclerosis secondary to hypertension, or primary renal disease with secondary...... hypertension. Mild degrees of chronic kidney disease (CKD) can be detected in around 10% of the population, and detection is important as CKD is an important risk factor for atherosclerotic cardiovascular disease. Conversely, heart failure may cause an impairment of renal function. In chronic progressive...

  5. Hypertension og nyresygdom

    DEFF Research Database (Denmark)

    Kamper, Anne-Lise; Pedersen, Erling B; Strandgaard, Svend

    2009-01-01

    Renal mechanisms, in particular the renin-angiotensin system and renal salt handling, are of major importance in blood pressure regulation. Co-existence of hypertension and decreased renal function may be due to nephrosclerosis secondary to hypertension, or primary renal disease with secondary...... hypertension. Mild degrees of chronic kidney disease (CKD) can be detected in around 10% of the population, and detection is important as CKD is an important risk factor for atherosclerotic cardiovascular disease. Conversely, heart failure may cause an impairment of renal function. In chronic progressive...... nephropathy, effective blood pressure lowering is of paramount importance, and angiotensin converting enzyme inhibitors and angiotensin receptor blockers are agents of choice....

  6. Hypertension and Cardiac Arrhythmias

    DEFF Research Database (Denmark)

    Lip, Gregory Y H; Coca, Antonio; Kahan, Thomas

    2017-01-01

    Hypertension (HTN) is a common cardiovascular risk factor leading to heart failure (HF), coronary artery disease (CAD), stroke, peripheral artery disease and chronic renal failure. Hypertensive heart disease can manifest as many types of cardiac arrhythmias, most commonly being atrial fibrillation......) Council on Hypertension convened a Task Force, with representation from the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLEACE), with the remit of comprehensively reviewing the available evidence...

  7. Liver cirrhosis and arterial hypertension

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Møller, Søren

    2006-01-01

    blood pressure. This review considers the alterations in systemic hemodynamics in patients with cirrhosis in relation to essential hypertension and arterial hypertension of the renal origin. Subjects with arterial hypertension (essential, secondary) may become normotensive during the development...... of cirrhosis, and arterial hypertension is rarely manifested in patients with cirrhosis, even in cases with renovascular disease and high circulating renin activity. There is much dispute as to the understanding of homoeostatic regulation in cirrhotic patients with manifest arterial hypertension. This most...

  8. Hypertension and liver disease

    DEFF Research Database (Denmark)

    Henriksen, Jens H; Møller, Søren

    2004-01-01

    to increased arterial blood pressure. Subjects with established arterial hypertension (essential, secondary) may become normotensive during the development of cirrhosis, and arterial hypertension is rarely manifested in patients with cirrhosis, even in cases with renovascular disease and high circulating renin......Arterial hypertension is a common disorder with a frequency of 10% to 15% in subjects in the 40- to 60-year age group. Yet most reports find the prevalence of arterial hypertension in patients with chronic liver disease (cirrhosis) much lower. In this review, we consider the alterations in systemic...... hemodynamics in cirrhosis. The most characteristic findings in cirrhotic patients are vasodilatation with low systemic vascular resistance, increased cardiac output, high arterial compliance, secondary activation of counterregulatory systems (sympathetic nervous system, renin-angiotensin-aldosterone system...

  9. Secondary hypertension in adults.

    Science.gov (United States)

    Puar, Troy Hai Kiat; Mok, Yingjuan; Debajyoti, Roy; Khoo, Joan; How, Choon How; Ng, Alvin Kok Heong

    2016-05-01

    Secondary hypertension occurs in a significant proportion of adult patients (~10%). In young patients, renal causes (glomerulonephritis) and coarctation of the aorta should be considered. In older patients, primary aldosteronism, obstructive sleep apnoea and renal artery stenosis are more prevalent than previously thought. Primary aldosteronism can be screened by taking morning aldosterone and renin levels, and should be considered in patients with severe, resistant or hypokalaemia-associated hypertension. Symptoms of obstructive sleep apnoea should be sought. Worsening of renal function after starting an angiotensin-converting enzyme inhibitor suggests the possibility of renal artery stenosis. Recognition, diagnosis and treatment of secondary causes of hypertension lead to good clinical outcomes and the possible reversal of end-organ damage, in addition to blood pressure control. As most patients with hypertension are managed at the primary care level, it is important for primary care physicians to recognise these conditions and refer patients appropriately. Copyright: © Singapore Medical Association.

  10. Pulmonary Hypertension Overview

    Science.gov (United States)

    ... well as sleep apnea, are common causes of secondary pulmonary hypertension. Other causes include the following: Congestive heart failure Birth defects in the heart Chronic pulmonary thromboembolism (blood clots in the pulmonary arteries) Acquired immunodeficiency syndrome ( ...

  11. Hypertension and Anaesthesia

    African Journals Online (AJOL)

    worldwide, and is a major risk factor for coronary artery disease, myocardial ... pressure falls in different categories of systolic and diastolic pressure the higher ... Without this consensus, the management of the elderly hypertensive patient.

  12. Diabetes + Hypertension (comorbidity)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This data set provides de-identified population data for diabetes and hypertension comorbidity prevalence in Allegheny County.

  13. Understanding idiopathic intracranial hypertension

    DEFF Research Database (Denmark)

    Markey, Keira A; Mollan, Susan P; Jensen, Rigmor H

    2016-01-01

    Idiopathic intracranial hypertension is a disorder characterised by raised intracranial pressure that predominantly affects young, obese women. Pathogenesis has not been fully elucidated, but several causal factors have been proposed. Symptoms can include headaches, visual loss, pulsatile tinnitus...

  14. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  15. Hypertension and cardiac arrhythmias

    DEFF Research Database (Denmark)

    Lip, Gregory Y.H.; Coca, Antonio; Kahan, Thomas

    2017-01-01

    Hypertension is a common cardiovascular risk factor leading to heart failure (HF), coronary artery disease, stroke, peripheral artery disease and chronic renal insufficiency. Hypertensive heart disease can manifest as many cardiac arrhythmias, most commonly being atrial fibrillation (AF). Both...... supraventricular and ventricular arrhythmias may occur in hypertensive patients, especially in those with left ventricular hypertrophy (LVH) or HF. Also, some of the antihypertensive drugs commonly used to reduce blood pressure, such as thiazide diuretics, may result in electrolyte abnormalities (e.g. hypokalaemia......, hypomagnesemia), further contributing to arrhythmias, whereas effective control of blood pressure may prevent the development of the arrhythmias such as AF. In recognizing this close relationship between hypertension and arrhythmias, the European Heart Rhythm Association (EHRA) and the European Society...

  16. Diabetes Mellitus and Hypertension

    OpenAIRE

    Tuğrul, Armağan

    2014-01-01

    Hypertension is a major worldwide health problem. Its prevalence is 1.5-2 times higher in diabetic population than that in non-diabetic individuals. Its pathogenesis depends on diabetic nephropathy in type 1, whereas may be multifactorial in type 2 diabetes mellitus. In diabetics, angiotensin converting enzyme inhibitors are most widely preferred in the treatment of hypertension because of their numerous desirable effects. In this article, the most recent data are presented on the relationshi...

  17. Hypertension og hjernen

    DEFF Research Database (Denmark)

    Christensen, Hanne; Strandgaard, Svend

    2009-01-01

    Hypertension is a major and modifiable risk factor of stroke and dementia. Hypertension causes remodelling of the cerebral resistance vessels, impairing their tolerance to very low blood pressure. In primary prevention of stroke, the effect of beta-blockers is inferior to other classes...... of antihypertensives. In secondary prevention of stroke, ACE-inhibitors and angiotensin blockers may be recommended as first choice drugs. Lowering of the blood pressure is, however, more important than the choice of drug. Udgivelsesdato: 2009-Jun-8...

  18. Cervical Spondylosis and Hypertension

    OpenAIRE

    Peng, Baogan; Pang, Xiaodong; Li, Duanming; Yang, Hong

    2015-01-01

    Abstract Cervical spondylosis and hypertension are all common diseases, but the relationship between them has never been studied. Patients with cervical spondylosis are often accompanied with vertigo. Anterior cervical discectomy and fusion is an effective method of treatment for cervical spondylosis with cervical vertigo that is unresponsive to conservative therapy. We report 2 patients of cervical spondylosis with concomitant cervical vertigo and hypertension who were treated successfully w...

  19. Thromboembolic chronicle pulmonary Hypertension

    International Nuclear Information System (INIS)

    Ovalle, Amador

    2003-01-01

    The thromboembolic chronicle pulmonary Hypertension, also well known as chronic lung thromboembolism not resolved; it is a form not very common of lung thromboembolism. Until very recently was considered a rare curiosity of autopsy, but as the methods of diagnoses have improved and our attitude has changed, the incidence of this nosological entity has experienced a notable increment, but the most excellent in this illness is maybe that it is a form of lung hypertension, potentially recoverable

  20. Renovascular hypertension: bibliographic review

    International Nuclear Information System (INIS)

    Cruz Guzman, Luis Fernando

    2011-01-01

    A review of the literature on the management of the renovascular disease is performed to provide better attention to patients. Renovascular hypertension is defined. The clinical implications and complications of the disease are determined. Pharmacological and surgical management are specified. Endovascular therapy has allowed to determine some indication in the management of hypertension renovascular. Instances where endovascular therapy has been beneficial are detailed. The new interventions for the management of renovascular disease are exposed [es

  1. Biology of portal hypertension.

    Science.gov (United States)

    McConnell, Matthew; Iwakiri, Yasuko

    2018-02-01

    Portal hypertension develops as a result of increased intrahepatic vascular resistance often caused by chronic liver disease that leads to structural distortion by fibrosis, microvascular thrombosis, dysfunction of liver sinusoidal endothelial cells (LSECs), and hepatic stellate cell (HSC) activation. While the basic mechanisms of LSEC and HSC dysregulation have been extensively studied, the role of microvascular thrombosis and platelet function in the pathogenesis of portal hypertension remains to be clearly characterized. As a secondary event, portal hypertension results in splanchnic and systemic arterial vasodilation, leading to the development of a hyperdynamic circulatory syndrome and subsequently to clinically devastating complications including gastroesophageal varices and variceal hemorrhage, hepatic encephalopathy from the formation of portosystemic shunts, ascites, and renal failure due to the hepatorenal syndrome. This review article discusses: (1) mechanisms of sinusoidal portal hypertension, focusing on HSC and LSEC biology, pathological angiogenesis, and the role of microvascular thrombosis and platelets, (2) the mesenteric vasculature in portal hypertension, and (3) future directions for vascular biology research in portal hypertension.

  2. Pathways to multidrug-resistant tuberculosis diagnosis and treatment initiation: a qualitative comparison of patients' experiences in the era of rapid molecular diagnostic tests.

    Science.gov (United States)

    Naidoo, Pren; van Niekerk, Margaret; du Toit, Elizabeth; Beyers, Nulda; Leon, Natalie

    2015-10-28

    Although new molecular diagnostic tests such as GenoType MTBDRplus and Xpert® MTB/RIF have reduced multidrug-resistant tuberculosis (MDR-TB) treatment initiation times, patients' experiences of diagnosis and treatment initiation are not known. This study aimed to explore and compare MDR-TB patients' experiences of their diagnostic and treatment initiation pathway in GenoType MTBDRplus and Xpert® MTB/RIF-based diagnostic algorithms. The study was undertaken in Cape Town, South Africa where primary health-care services provided free TB diagnosis and treatment. A smear, culture and GenoType MTBDRplus diagnostic algorithm was used in 2010, with Xpert® MTB/RIF phased in from 2011-2013. Participants diagnosed in each algorithm at four facilities were purposively sampled, stratifying by age, gender and MDR-TB risk profiles. We conducted in-depth qualitative interviews using a semi-structured interview guide. Through constant comparative analysis we induced common and divergent themes related to symptom recognition, health-care access, testing for MDR-TB and treatment initiation within and between groups. Data were triangulated with clinical information and health visit data from a structured questionnaire. We identified both enablers and barriers to early MDR-TB diagnosis and treatment. Half the patients had previously been treated for TB; most recognised recurring symptoms and reported early health-seeking. Those who attributed symptoms to other causes delayed health-seeking. Perceptions of poor public sector services were prevalent and may have contributed both to deferred health-seeking and to patient's use of the private sector, contributing to delays. However, once on treatment, most patients expressed satisfaction with public sector care. Two patients in the Xpert® MTB/RIF-based algorithm exemplified its potential to reduce delays, commencing MDR-TB treatment within a week of their first health contact. However, most patients in both algorithms experienced

  3. Sex differences in angiotensin II- induced hypertension

    Directory of Open Access Journals (Sweden)

    B. Xue

    2007-05-01

    Full Text Available Sex differences in the development of hypertension and cardiovascular disease have been described in humans and in animal models. In this paper we will review some of our studies which have as their emphasis the examination of the role of sex differences and sex steroids in modulating the central actions of angiotensin II (ANG II via interactions with free radicals and nitric oxide, generating pathways within brain circumventricular organs and in central sympathomodulatory systems. Our studies indicate that low-dose infusions of ANG II result in hypertension in wild-type male mice but not in intact wild-type females. Furthermore, we have demonstrated that ANG II-induced hypertension in males is blocked by central infusions of the androgen receptor antagonist, flutamide, and by central infusions of the superoxide dismutase mimetic, tempol. We have also found that, in comparison to females, males show greater levels of intracellular reactive oxygen species in circumventricular organ neurons following long-term ANG II infusions. In female mice, ovariectomy, central blockade of estrogen receptors or total knockout of estrogen a receptors augments the pressor effects of ANG II. Finally, in females but not in males, central blockade of nitric oxide synthase increases the pressor effects of ANG II. Taken together, these results suggest that sex differences and estrogen and testosterone play important roles in the development of ANG II-induced hypertension.

  4. Oxidative Stress in Hypertension: Role of the Kidney

    Science.gov (United States)

    Araujo, Magali

    2014-01-01

    Abstract Significance: Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. Recent Advances: Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. Critical Issues and Future Directions: Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2−• rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension. Antioxid. Redox Signal. 20, 74–101. PMID:23472618

  5. Genetic Risk Score for Essential Hypertension and Risk of Preeclampsia.

    Science.gov (United States)

    Smith, Caitlin J; Saftlas, Audrey F; Spracklen, Cassandra N; Triche, Elizabeth W; Bjonnes, Andrew; Keating, Brendan; Saxena, Richa; Breheny, Patrick J; Dewan, Andrew T; Robinson, Jennifer G; Hoh, Josephine; Ryckman, Kelli K

    2016-01-01

    Preeclampsia is a hypertensive complication of pregnancy characterized by novel onset of hypertension after 20 weeks gestation, accompanied by proteinuria. Epidemiological evidence suggests that genetic susceptibility exists for preeclampsia; however, whether preeclampsia is the result of underlying genetic risk for essential hypertension has yet to be investigated. Based on the hypertensive state that is characteristic of preeclampsia, we aimed to determine if established genetic risk scores (GRSs) for hypertension and blood pressure are associated with preeclampsia. Subjects consisted of 162 preeclamptic cases and 108 normotensive pregnant controls, all of Iowa residence. Subjects' DNA was extracted from buccal swab samples and genotyped on the Affymetrix Genome-wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA). Missing genotypes were imputed using MaCH and Minimac software. GRSs were calculated for hypertension, systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) using established genetic risk loci for each outcome. Regression analyses were performed to determine the association between GRS and risk of preeclampsia. These analyses were replicated in an independent US population of 516 cases and 1,097 controls of European ancestry. GRSs for hypertension, SBP, DBP, and MAP were not significantly associated with risk for preeclampsia (P > 0.189). The results of the replication analysis also yielded nonsignificant associations. GRSs for hypertension and blood pressure are not associated with preeclampsia, suggesting that an underlying predisposition to essential hypertension is not on the causal pathway of preeclampsia. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Race differences in the relationship between formal volunteering and hypertension.

    Science.gov (United States)

    Tavares, Jane L; Burr, Jeffrey A; Mutchler, Jan E

    2013-03-01

    This study investigated race differences in the relationship between formal volunteering and hypertension prevalence among middle-aged and older adults. Using data from the 2004 and 2006 Health and Retirement Study (N = 5,666; 677 African Americans and 4,989 whites), we examined regression models stratified by race to estimate relationships among hypertension prevalence, systolic and diastolic blood pressure, and volunteer status and hours spent volunteering among persons aged 51 years old and older. White volunteers had a lower risk of hypertension than white nonvolunteers. A threshold effect was also present; compared with nonvolunteers, volunteering a moderate number of hours was associated with lowest risk of hypertension for whites. Results for hypertension were consistent with results from alternative models of systolic and diastolic blood pressure. We found no statistically significant relationship between volunteering activity and hypertension/blood pressure for African Americans. There may be unmeasured cultural differences related to the meaning of volunteering and contextual differences in volunteering that account for the race differences we observed. Research is needed to determine the pathways through which volunteering is related to hypertension risk and that may help explain race differences identified here.

  7. Pregnancy with Portal Hypertension

    Science.gov (United States)

    Aggarwal, Neelam; Negi, Neha; Aggarwal, Aakash; Bodh, Vijay; Dhiman, Radha K.

    2014-01-01

    Even though pregnancy is rare with cirrhosis and advanced liver disease, but it may co-exist in the setting of non-cirrhotic portal hypertension as liver function is preserved but whenever encountered together is a complex clinical dilemma. Pregnancy in a patient with portal hypertension presents a special challenge to the obstetrician as so-called physiological hemodynamic changes associated with pregnancy, needed for meeting demands of the growing fetus, worsen the portal hypertension thereby putting mother at risk of potentially life-threatening complications like variceal hemorrhage. Risks of variceal bleed and hepatic decompensation increase many fold during pregnancy. Optimal management revolves round managing the portal hypertension and its complications. Thus management of such cases requires multi-speciality approach involving obstetricians experienced in dealing with high risk cases, hepatologists, anesthetists and neonatologists. With advancement in medical field, pregnancy is not contra-indicated in these women, as was previously believed. This article focuses on the different aspects of pregnancy with portal hypertension with special emphasis on specific cause wise treatment options to decrease the variceal bleed and hepatic decompensation. Based on extensive review of literature, management from pre-conceptional period to postpartum is outlined in order to have optimal maternal and perinatal outcomes. PMID:25755552

  8. Management of diabetic hypertensives

    Science.gov (United States)

    Ganesh, Jai; Viswanathan, Vijay

    2011-01-01

    Hypertension occurs twice as commonly in diabetics than in comparable nondiabetics. Patients with both disorders have a markedly higher risk for premature microvascular and macrovascular complications. Aggressive control of blood pressure (BP) reduces both micro- and macrovascular complications. In diabetic hypertensives, angiotensin converting enzyme inhibitors (ACEIs) are the first line in management of hypertension, and can be replaced by angiotensin II receptor blockers (ARBs) if patients are intolerant of them. Recent studies suggest ARBs to be on par with ACEI in reducing both macro- and microvascular risks. Adding both these agents may have a beneficial effect on proteinuria, but no extra macrovascular risk reduction. Thiazides can also be used as first line drugs, but are better used along with ACEI/ARBs. Beta-blockers [especially if the patient has coronary artery disease] and calcium channel blockers are used as second line add-on drugs. Multidrug regimens are commonly needed in diabetic hypertensives. Achieving the target BP of <130/80 is the priority rather than the drug combination used in order to arrest and prevent the progression of macro- and microvascular complications in diabetic hypertensives. PMID:22145142

  9. Adaptation, allometry, and hypertension.

    Science.gov (United States)

    Weder, A B; Schork, N J

    1994-08-01

    Essential hypertension is a "disease of civilization" but has a clear genetic component. From an evolutionary perspective, persistence in the human genome of elements capable of raising blood pressure presupposes their adaptive significance. Recently, two hypotheses that explicitly appeal to selectionist arguments, the "slavery" and "thrifty gene" theories, have been forwarded. We find neither completely successful, and we advance an alternative explanation of the adaptive importance of genes responsible for hypertension. We propose that blood pressure rises during childhood and adolescence to subserve homeostatic needs of the organism. Specifically, we contend that blood pressure is a flexible element in the repertoire of renal homeostatic mechanisms serving to match renal function to growth. The effect of modern diet and lifestyle on human growth stimulates earlier and more vigorous development, straining biologically necessary relationships between renal and general somatic growth and requiring compensation via homeostatic mechanisms preserved during evolution. Prime among such mechanisms is blood pressure, which rises as a compensation to maintain renal function in the face of greater growth. Since virtually all members of acculturated societies share in the modern lifestyle, the demands imposed by accelerated growth and development result in a populational shift to higher blood pressures, with a consequent increase in the prevalence of hypertension. We propose that hypertension is the product of maladaptation of highly genetically conserved mechanisms subserving important biological homeostatic needs. Elucidation of the mechanisms underlying hypertension will require approaches that examine the developmental processes linking growth to blood pressure.

  10. Hypertension in postmenopausal women: how to approach hypertension in menopause.

    Science.gov (United States)

    Modena, Maria Grazia

    2014-09-01

    During fertile life women are usually normo or hypotensive. Hypertension may appear during pregnancy and this represents a peculiar phenomenon increasing nowadays for delay time of pregnancy. Gestational hypertension appears partially similar to hypertension in the context of metabolic syndrome for a similar condition of increased waste circumference. Parity, for the same pathogenesis, has been reported to be associated to peri and postmenopausal hypertension, not confirmed by our study of parous women with transitional non persistent perimenopausal hypertension. Estrogen's deficiency inducing endothelial dysfunction and increased body mass index are the main cause for hypertension in this phase of life. For these reasons lifestyle modification, diet and endothelial active drugs represent the ideal treatment. Antioxidant agents may have a role in prevention and treatment of hypertension. In conclusion, hypertension in women represents a peculiar constellation of different biological and pathogenic factors, which need a specific gender related approach, independent from the male model.

  11. Knowledge and awareness of hypertension among patients with systemic hypertension.

    Science.gov (United States)

    Familoni, B. Oluranti; Ogun, S. Abayomi; Aina, A. Olutoyin

    2004-01-01

    BACKGROUND: In Nigeria, systemic hypertension is the commonest noncommunicable disease, and public awareness about hypertension and its determinants is poor. This study aims to assess the knowledge and level of awareness of the disease among hypertensive patients attending the medical outpatient clinic of Olabisi Onabanjo University Teaching Hospital (OOUTH). METHODOLOGY: Hypertensive patients who attended the medical outpatient clinic during the one-year study period and gave their consent were recruited into the study. Response to a questionnaire on various aspects of hypertension was analyzed using the STATA for Windows software. RESULTS: There were 254 hypertensive patients, of which 111 were males and 143 were females, giving a male: female ratio of 1:1.3. The mean age (SD) of the patients was 51 years +/- 12.2; 52.4% of the participants were aware that hypertension was the commonest noncommunicable disease in Nigeria. About one in 10 patients (11.4%) was aware that "nil symptom" is the commonest symptom of hypertension, while 37% were not aware that hypertension could cause renal failure. Only about one-third (35.4%) of the patients knew that hypertension should ideally be treated for life, while 58.3% believed that antihypertensive drugs should be used only when there are symptoms. The remaining 6.3% believed that the treatment of hypertension should be for periods ranging from two weeks to five years but not for life. CONCLUSION: This study has demonstrated inadequate knowledge of hypertension in patients with hypertension in our study population. Conscious efforts should be made and time set aside to health educate hypertensive patients. Organization of "hypertensive club or society" could be encouraged. These will reduce dissemination of false or inaccurate information by hypertensive patients to the public and its attendant dangers. PMID:15160976

  12. Hypertension og nyresygdom

    DEFF Research Database (Denmark)

    Kamper, Anne-Lise; Pedersen, Erling B; Strandgaard, Svend

    2009-01-01

    Renal mechanisms, in particular the renin-angiotensin system and renal salt handling, are of major importance in blood pressure regulation. Co-existence of hypertension and decreased renal function may be due to nephrosclerosis secondary to hypertension, or primary renal disease with secondary...... hypertension. Mild degrees of chronic kidney disease (CKD) can be detected in around 10% of the population, and detection is important as CKD is an important risk factor for atherosclerotic cardiovascular disease. Conversely, heart failure may cause an impairment of renal function. In chronic progressive...... nephropathy, effective blood pressure lowering is of paramount importance, and angiotensin converting enzyme inhibitors and angiotensin receptor blockers are agents of choice. Udgivelsesdato: 2009-Jun-15...

  13. [Hypertension and renal disease

    DEFF Research Database (Denmark)

    Kamper, A.L.; Pedersen, E.B.; Strandgaard, S.

    2009-01-01

    Renal mechanisms, in particular the renin-angiotensin system and renal salt handling, are of major importance in blood pressure regulation. Co-existence of hypertension and decreased renal function may be due to nephrosclerosis secondary to hypertension, or primary renal disease with secondary...... hypertension. Mild degrees of chronic kidney disease (CKD) can be detected in around 10% of the population, and detection is important as CKD is an important risk factor for atherosclerotic cardiovascular disease. Conversely, heart failure may cause an impairment of renal function. In chronic progressive...... nephropathy, effective blood pressure lowering is of paramount importance, and angiotensin converting enzyme inhibitors and angiotensin receptor blockers are agents of choice Udgivelsesdato: 2009/6/15...

  14. Echocardiography in Arterial Hypertension.

    Science.gov (United States)

    de Simone, Giovanni; Mancusi, Costantino; Esposito, Roberta; De Luca, Nicola; Galderisi, Maurizio

    2018-05-02

    Hypertension is a condition characterized by pressure and/or volume overloads and echocardiography is helpful and feasible to understand hemodynamic mechanisms. Echocardiographic information is sometimes critical and susceptible of modifying decision making. In this review, we provide detailed descriptions of the parameters that can be derived from a standard transthoracic echocardiogram, including some more recent techniques. We will also explain how each parameter might have impact in the evaluation of the hypertensive patient and give indications on when to refer patients to echo-labs, which parameters are critical and which ones might be redundant, and how to use the information obtained in the report. Cardiac geometry, LV systolic and diastolic function, LV pump performance, output impedance and left atrial function are parameters that might be altered in arterial hypertension, but not necessarily doctors need the whole information for decision making. The critical measures are provided.

  15. [Hypertension in females].

    Science.gov (United States)

    Cífková, Renata

    2015-05-01

    Hypertension is the most common cardiovascular disorder affecting more males in younger age groups; in the age group of 45-64, it is equally frequent in both genders, it is more common in elderly females. Blood pressure increases more in females around the menopause. Use of hormonal replacement therapy is not associated with an BP increase but, because of increased risk of coronary events, stroke, and thromboembolic events, HRT is not re-commended in CVD prevention. There is a similar decrease in BP by antihypertensive drugs in both genders as well as benefit from antihypertensive treatment. Women report about a double rate of adverse events of antihypertensive drugs. Oral contraception use is associated with a mild BP increase in most women and development of overt hypertension in about 5 %. Pre-eclampsia is associated with increased risk of developing CVD later in life (more frequent development of hypertension, myocardial infarction, and stroke).

  16. Radioinduced intestinal fibrosis: from molecular mechanisms to therapy applications. Contribution of the TGF--β1, of the CTGF and of the transduction pathway of the Rho/ROCK signal

    International Nuclear Information System (INIS)

    Haydont, V.

    2006-12-01

    Delayed radiation enteritis is an intestinal fibrosis induced by accidental or therapeutic radiation for pelvic and abdominal cancer treatments. Studies of molecular mechanisms involved in the development and maintenance of fibrosis have showed the respective contribution of CTGF, low TGF-β1 concentrations and Rho/ROCK pathway. Thus, based on the relationship between CTGF, TGF-β1 and Rho pathway, 2 therapeutics strategies have been develop. First, a pravastatin curative gift leads to a fibro-lysis involving an inhibition of Rho and in cascade a reduction of CTGF expression and extracellular matrix deposition. The data suggest that reversal of established radiation fibrosis in the gut is possible. Second, a pravastatin prophylactic gift prevents the installation of a chronic fibrosis but does not protect the tumor. On the base of these results, the radiation therapy department of the Institut Gustave Roussy will soon initiate 2 clinical trials. (author)

  17. Peripheral adrenergic receptors in hypertension

    NARCIS (Netherlands)

    Michel, M. C.; Brodde, O. E.; Insel, P. A.

    1990-01-01

    Increased sympathoadrenal activity appears to play an important role in the development or maintenance of elevated blood pressure in hypertensive patients and various animal models of hypertension. Alterations of adrenergic receptor number or responsiveness might contribute to this increased

  18. Radiation-induced renovascular hypertension

    International Nuclear Information System (INIS)

    Staab, G.E.; Tegtmeyer, C.J.; Constable, W.C.

    1976-01-01

    Radiation is known to produce changes in the small vessels and interstitium of the kidneys resulting in hypertension. Two cases of renal artery stenosis and resultant hypertension secondary to abdominal irradiation are reported and the literature is reviewed

  19. Pulmonary arterial hypertension : an update

    NARCIS (Netherlands)

    Hoendermis, E. S.

    2011-01-01

    Pulmonary arterial hypertension (PAH), defined as group 1 of the World Heart Organisation (WHO) classification of pulmonary hypertension, is an uncommon disorder of the pulmonary vascular system. It is characterised by an increased pulmonary artery pressure, increased pulmonary vascular resistance

  20. Knowing hypertension and diabetes

    DEFF Research Database (Denmark)

    Whyte, Susan Reynolds

    2015-01-01

    In Uganda, hypertension and diabetes have only recently been included in the health policy agenda. As they become treatable disorders, they take on more distinct contours in people's minds. This article relates knowledge about these two conditions to health institutions and technology...... for diagnosing and treating them. The response to the AIDS epidemic in Uganda provides an important context for, and contrast with, the emergence of hypertension and diabetes as social phenomena. Ethnographic fieldwork shows the interplay between experience of these conditions and the political economy...

  1. Idiopathic intracranial hypertension

    DEFF Research Database (Denmark)

    Yri, Hanne M; Jensen, Rigmor H

    2015-01-01

    AIMS: The aims of this article are to characterize the headache in idiopathic intracranial hypertension (IIH) and to field-test the ICHD diagnostic criteria for headache attributed to IIH. MATERIALS AND METHODS: We included 44 patients with new-onset IIH. Thirty-four patients with suspected but u...... tinnitus may suggest intracranial hypertension. Based on data from a well-defined IIH cohort, we propose a revision of the ICDH-3 beta diagnostic criteria with improved clinical applicability and increased sensitivity and specificity....

  2. Hypertension and renovascular disease

    DEFF Research Database (Denmark)

    Hasbak, P; Ibsen, H; Jensen, Lars Thorbjørn

    2002-01-01

    The clinical value of renal vein renin sampling (RVRS) as a prognostic tool in the treatment of renovascular hypertension was evaluated. One hundred consecutive patients were included over a 4-year period of time. About half of the patients (49%) were treated interventionally by PTRA (21%), nephr......The clinical value of renal vein renin sampling (RVRS) as a prognostic tool in the treatment of renovascular hypertension was evaluated. One hundred consecutive patients were included over a 4-year period of time. About half of the patients (49%) were treated interventionally by PTRA (21...

  3. Molecular analysis of pediatric brain tumors identifies microRNAs in pilocytic astrocytomas that target the MAPK and NF-κB pathways.

    Science.gov (United States)

    Jones, Tania A; Jeyapalan, Jennie N; Forshew, Tim; Tatevossian, Ruth G; Lawson, Andrew R J; Patel, Sheena N; Doctor, Gabriel T; Mumin, Muhammad A; Picker, Simon R; Phipps, Kim P; Michalski, Antony; Jacques, Thomas S; Sheer, Denise

    2015-12-18

    Pilocytic astrocytomas are slow-growing tumors that usually occur in the cerebellum or in the midline along the hypothalamic/optic pathways. The most common genetic alterations in pilocytic astrocytomas activate the ERK/MAPK signal transduction pathway, which is a major driver of proliferation but is also believed to induce senescence in these tumors. Here, we have conducted a detailed investigation of microRNA and gene expression, together with pathway analysis, to improve our understanding of the regulatory mechanisms in pilocytic astrocytomas. Pilocytic astrocytomas were found to have distinctive microRNA and gene expression profiles compared to normal brain tissue and a selection of other pediatric brain tumors. Several microRNAs found to be up-regulated in pilocytic astrocytomas are predicted to target the ERK/MAPK and NF-κB signaling pathways as well as genes involved in senescence-associated inflammation and cell cycle control. Furthermore, IGFBP7 and CEBPB, which are transcriptional inducers of the senescence-associated secretory phenotype (SASP), were also up-regulated together with the markers of senescence and inflammation, CDKN1A (p21), CDKN2A (p16) and IL1B. These findings provide further evidence of a senescent phenotype in pilocytic astrocytomas. In addition, they suggest that the ERK/MAPK pathway, which is considered the major driver of these tumors, is regulated not only by genetic aberrations but also by microRNAs.

  4. Endothelial dysfunction in the regulation of portal hypertension

    Science.gov (United States)

    Iwakiri, Yasuko

    2013-01-01

    Portal hypertension is caused by an increased intrahepatic resistance, a major consequence of cirrhosis. Endothelial dysfunction in liver sinusoidal endothelial cells (LSECs) decreases the production of vasodilators, such as nitric oxide (NO) and favors vasoconstriction. This contributes to an increased vascular resistance in the intrahepatic/sinusoidal microcirculation. Portal hypertension, once developed, causes endothelial cell (EC) dysfunction in the extrahepatic, i.e. splanchnic and systemic, circulation. Unlike LSEC dysfunction, EC dysfunction in the splanchnic and systemic circulation overproduces vasodilator molecules, leading to arterial vasodilatation. In addition, portal hypertension leads to the formation of portosystemic collateral vessels. Both arterial vasodilatation and portosystemic collateral vessel formation exacerbate portal hypertension by increasing the blood flow through the portal vein. Pathologic consequences, such as esophageal varices and ascites, result. While the sequence of pathological vascular events in cirrhosis and portal hypertension have been elucidated, the underlying cellular and molecular mechanisms causing EC dysfunctions are not yet fully understood. This review article summarizes the current cellular and molecular studies on EC dysfunctions found during the development of cirrhosis and portal hypertension with a focus on intra- and extrahepatic circulation. The article ends by discussing future directions of study for EC dysfunctions. PMID:21745318

  5. Hyperuricemia in Childhood Primary Hypertension

    OpenAIRE

    Feig, Daniel I.; Johnson, Richard J.

    2003-01-01

    Experimental animal models suggest that uric acid might have a pathogenic role in the early development of primary hypertension. We hypothesized that serum uric acid is correlated with blood pressure in children with new-onset, untreated, primary hypertension. We evaluated 125 consecutive children referred to the Baylor Pediatric Renal Program for evaluation of hypertension. None of the subjects had previously been evaluated or treated for hypertension. The children ranged in age from 6 to 18...

  6. Hypertension and experimental stroke therapies

    OpenAIRE

    O'Collins, Victoria E; Donnan, Geoffrey A; Macleod, Malcolm R; Howells, David W

    2013-01-01

    Hypertension is an established target for long-term stroke prevention but procedures for management of hypertension in acute stroke are less certain. Here, we analyze basic science data to examine the impact of hypertension on candidate stroke therapies and of anti-hypertensive treatments on stroke outcome. Methods: Data were pooled from 3,288 acute ischemic stroke experiments (47,899 animals) testing the effect of therapies on infarct size (published 1978–2010). Data were combined using meta...

  7. Cytoskeletal defects in Bmpr2-associated pulmonary arterial hypertension.

    Science.gov (United States)

    Johnson, Jennifer A; Hemnes, Anna R; Perrien, Daniel S; Schuster, Manfred; Robinson, Linda J; Gladson, Santhi; Loibner, Hans; Bai, Susan; Blackwell, Tom R; Tada, Yuji; Harral, Julie W; Talati, Megha; Lane, Kirk B; Fagan, Karen A; West, James

    2012-03-01

    The heritable form of pulmonary arterial hypertension (PAH) is typically caused by a mutation in bone morphogenic protein receptor type 2 (BMPR2), and mice expressing Bmpr2 mutations develop PAH with features similar to human disease. BMPR2 is known to interact with the cytoskeleton, and human array studies in PAH patients confirm alterations in cytoskeletal pathways. The goal of this study was to evaluate cytoskeletal defects in BMPR2-associated PAH. Expression arrays on our Bmpr2 mutant mouse lungs revealed cytoskeletal defects as a prominent molecular consequence of universal expression of a Bmpr2 mutation (Rosa26-Bmpr2(R899X)). Pulmonary microvascular endothelial cells cultured from these mice have histological and functional cytoskeletal defects. Stable transfection of different BMPR2 mutations into pulmonary microvascular endothelial cells revealed that cytoskeletal defects are common to multiple BMPR2 mutations and are associated with activation of the Rho GTPase, Rac1. Rac1 defects are corrected in cell culture and in vivo through administration of exogenous recombinant human angiotensin-converting enzyme 2 (rhACE2). rhACE2 reverses 77% of gene expression changes in Rosa26-Bmpr2(R899X) transgenic mice, in particular, correcting defects in cytoskeletal function. Administration of rhACE2 to Rosa26-Bmpr2(R899X) mice with established PAH normalizes pulmonary pressures. Together, these findings suggest that cytoskeletal function is central to the development of BMPR2-associated PAH and that intervention against cytoskeletal defects may reverse established disease.

  8. Signal transduction in the development of pulmonary arterial hypertension

    Science.gov (United States)

    Malenfant, Simon; Neyron, Anne-Sophie; Paulin, Roxane; Potus, François; Meloche, Jolyane; Provencher, Steeve; Bonnet, Sébastien

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a unique disease. Properly speaking, it is not a disease of the lung. It can be seen more as a microvascular disease occurring mainly in the lungs and affecting the heart. At the cellular level, the PAH paradigm is characterized by inflammation, vascular tone imbalance, pulmonary arterial smooth muscle cell proliferation and resistance to apoptosis and the presence of in situ thrombosis. At a clinical level, the aforementioned abnormal vascular properties alter physically the pulmonary circulation and ventilation, which greatly influence the right ventricle function as it highly correlates with disease severity. Consequently, right heart failure remains the principal cause of death within this cohort of patients. While current treatment modestly improve patients’ conditions, none of them are curative and, as of today, new therapies are lacking. However, the future holds potential new therapies that might have positive influence on the quality of life of the patient. This article will first review the clinical presentation of the disease and the different molecular pathways implicated in the pathobiology of PAH. The second part will review tomorrow's future putative therapies for PAH. PMID:24015329

  9. EMERGENCY STATES IN ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    M. A. Gurevich

    2014-01-01

    Full Text Available The article describes in detail potential emergency states in patients with different stages of arterial hypertension with special attention to diagnosis and rational management of hypertensive crisis. Differentiated approach to management of different forms of hypertensive crisis is specified.

  10. Biological pathways involved in the aggressive behavior of the keratocystic odontogenic tumor and possible implications for molecular oriented treatment - An overview

    NARCIS (Netherlands)

    Mendes, R.A.; Carvalho, J.F.C.; van der Waal, I.

    2010-01-01

    In the classification of Head and Neck Tumors, published in 2005 by the World Health Organization Classification, the odontogenic keratocyst has been reclassified as a benign intraosseous neoplasm, calling it "keratocystic odontogenic tumor" (KCOT). Significant differences on the molecular level

  11. Primary lung hypertension in-patient with hypertension portal

    International Nuclear Information System (INIS)

    Restrepo Uribe; Villa Restrepo, Alfredo

    1990-01-01

    Thorax x-rays were reviewed in 18 patients with portal hypertension. In 28% of these we found radiologic signs of pulmonary hypertension of the precapillary type. The existing relation between primary pulmonary hypertension and portal hypertension has been established in different scientific papers. In the published series the incidence of primary pulmonary hypertension is less than the one of found in these patients the physiopathology of this association is reviewed, and as a hypothetic manner it is postulated the possible roll of the hypoxaemia of the residents, at the altitude of the Bogota city. (2.640 mts) as a helping factor in this phenomenon

  12. Decoding white coat hypertension

    Science.gov (United States)

    Bloomfield, Dennis A; Park, Alex

    2017-01-01

    There is arguably no less understood or more intriguing problem in hypertension that the “white coat” condition, the standard concept of which is significantly blood pressure reading obtained by medical personnel of authoritative standing than that obtained by more junior and less authoritative personnel and by the patients themselves. Using hospital-initiated ambulatory blood pressure monitoring, the while effect manifests as initial and ending pressure elevations, and, in treated patients, a low daytime profile. The effect is essentially systolic. Pure diastolic white coat hypertension appears to be exceedingly rare. On the basis of the studies, we believe that the white coat phenomenon is a common, periodic, neuro-endocrine reflex conditioned by anticipation of having the blood pressure taken and the fear of what this measurement may indicate concerning future illness. It does not change with time, or with prolonged association with the physician, particularly with advancing years, it may be superimposed upon essential hypertension, and in patients receiving hypertensive medication, blunting of the nighttime dip, which occurs in about half the patients, may be a compensatory mechanisms, rather than an indication of cardiovascular risk. Rather than the blunted dip, the morning surge or the widened pulse pressure, cardiovascular risk appears to be related to elevation of the average night time pressure. PMID:28352632

  13. Angiography for renal hypertension

    International Nuclear Information System (INIS)

    Chuang, V.P.; Ernst, C.B.

    1985-01-01

    As angioplasty and operative techniques have become more precise and successful, so have evaluation techniques. Preoperative arteriography is indispensible for deciding on the appropriate treatment modality and the specifics of the procedure. Arteriography, therefore, remains the cornerstone in managing renovascular hypertension and renal arterial disease

  14. Children and Hypertension.

    Science.gov (United States)

    Carter, Denise

    1983-01-01

    Since children as young as seven years old can suffer from hypertension, all children should have blood pressure checked during physical examinations. Guidelines for testing children's blood pressure are presented along with suggestions about what schools and parents can do to help deal with the problem. (PP)

  15. Project "Hypertension Alert."

    Science.gov (United States)

    Sailors, Emma Lou

    1983-01-01

    "Hypertension Alert," a 1979-80 blood pressure screening-awareness project of the Yonkers, New York Public Schools, is described. Data is analyzed in tables for ethnic composition, and range of blood pressure readings for the high school, junior high school, and elementary school students tested. (Author/JMK)

  16. Hypertensive Heart Disease

    DEFF Research Database (Denmark)

    Wachtell, Kristian

    2011-01-01

    Abstract Hypertensive heart disease is prevalent and during the last decade it has been determined that patients with left ventricular (LV) hypertrophy have increased cardiovascular morbidity and mortality. However, many have doubted the effectiveness of LV mass assessment because it is difficult...

  17. What Is Pulmonary Hypertension?

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Pulmonary Hypertension - High Blood Pressure in the Heart-to-Lung System Updated:Jan ... Pressure" This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  18. Hypertension og hjertet

    DEFF Research Database (Denmark)

    Wachtell, Kristian; Andersen, Niels Holmark; Svendsen, Tage Lysbo

    2009-01-01

    of left ventricular mass is associated with substantial and significant reduction of cardiovascular morbidity and mortality. Hypertension is strongly associated with increased risk of subsequent heart failure. Meta analysis data suggests that reduction in blood pressure is also associated with very...

  19. Fermented milk for hypertension

    DEFF Research Database (Denmark)

    Usinger, Lotte; Reimer, Christina; Ibsen, Hans

    2012-01-01

    Fermented milk has been suggested to have a blood pressure lowering effect through increased content of proteins and peptides produced during the bacterial fermentation. Hypertension is one of the major risk factors for cardiovascular disease world wide and new blood pressure reducing lifestyle...

  20. Nitroglycerin kan give hypertension

    DEFF Research Database (Denmark)

    Mørup, Peter; Levinsen, Tine Holbæk; Hovind, Peter

    2011-01-01

    Hg. The conclusion was that her response was a paradoxical response to glycerylnitrate, orthostatism and a pathological response to massage of the carotid artery. This is the third reported case on paradoxical hypertension induced by glyceryl nitrates. It is speculated that dysfunction of the cerebral bloodflow...

  1. Congenital diaphragmatic hernia-associated pulmonary hypertension.

    Science.gov (United States)

    Harting, Matthew T

    2017-06-01

    Congenital diaphragmatic hernia (CDH) is a complex entity wherein a diaphragmatic defect allows intrathoracic herniation of intra-abdominal contents and both pulmonary parenchymal and vascular development are stifled. Pulmonary pathology and pathophysiology, including pulmonary hypoplasia and pulmonary hypertension, are hallmarks of CDH and are associated with disease severity. Pulmonary hypertension (PH) is sustained, supranormal pulmonary arterial pressure, and among patients with CDH (CDH-PH), is driven by hypoplastic pulmonary vasculature, including alterations at the molecular, cellular, and tissue levels, along with pathophysiologic pulmonary vasoreactivity. This review addresses the basic mechanisms, altered anatomy, definition, diagnosis, and management of CDH-PH. Further, emerging therapies targeting CDH-PH and PH are explored. Published by Elsevier Inc.

  2. Determining the Molecular Pathways Underlying the Protective Effect of Non-Steroidal Anti-Inflammatory Drugs for Alzheimer's Disease: A Bioinformatics Approach

    Directory of Open Access Journals (Sweden)

    Alejo J Nevado-Holgado

    Full Text Available Alzheimer's disease (AD represents a substantial unmet need, due to increasing prevalence in an ageing society and the absence of a disease modifying therapy. Epidemiological evidence shows a protective effect of non steroidal anti inflammatory (NSAID drugs, and genome wide association studies (GWAS show consistent linkage to inflammatory pathways; both observations suggesting anti-inflammatory compounds might be effective in AD therapy although clinical trials to date have not been positive.In this study, we use pathway enrichment and fuzzy logic to identify pathways (KEGG database simultaneously affected in both AD and by NSAIDs (Sulindac, Piroxicam, Paracetamol, Naproxen, Nabumetone, Ketoprofen, Diclofenac and Aspirin. Gene expression signatures were derived for disease from both blood (n = 344 and post-mortem brain (n = 690, and for drugs from immortalised human cell lines exposed to drugs of interest as part of the Connectivity Map platform. Using this novel approach to combine datasets we find striking overlap between AD gene expression in blood and NSAID induced changes in KEGG pathways of Ribosome and Oxidative Phosphorylation. No overlap was found in non NSAID comparison drugs. In brain we find little such overlap, although Oxidative Phosphorylation approaches our pre-specified significance level.These findings suggest that NSAIDs might have a mode of action beyond inflammation and moreover that their therapeutic effects might be mediated in particular by alteration of Oxidative Phosphorylation and possibly the Ribosome pathway. Mining of such datasets might prove increasingly productive as they increase in size and richness. Keywords: Alzheimer's disease, NSAID, Inflammation, Fuzzy logic, Ribosome

  3. Molecular and enzymatic characterization of two enzymes BmPCD and BmDHPR involving in the regeneration pathway of tetrahydrobiopterin from the silkworm Bombyx mori.

    Science.gov (United States)

    Li, Wentian; Gong, Meixia; Shu, Rui; Li, Xin; Gao, Junshan; Meng, Yan

    2015-08-01

    Tetrahydrobiopterin (BH4) is an essential cofactor of aromatic amino acid hydroxylases and nitric oxide synthase so that BH4 plays a key role in many biological processes. BH4 deficiency is associated with numerous metabolic syndromes and neuropsychological disorders. BH4 concentration in mammals is maintained through a de novo synthesis pathway and a regeneration pathway. Previous studies showed that the de novo pathway of BH4 is similar between insects and mammals. However, knowledge about the regeneration pathway of BH4 (RPB) is very limited in insects. Several mutants in the silkworm Bombyx mori have been approved to be associated with BH4 deficiency, which are good models to research on the RPB in insects. In this study, homologous genes encoding two enzymes, pterin-4a-carbinolamine dehydratase (PCD) and dihydropteridine reductase (DHPR) involving in RPB have been cloned and identified from B. mori. Enzymatic activity of DHPR was found in the fat body of wild type silkworm larvae. Together with the transcription profiles, it was indicated that BmPcd and BmDhpr might normally act in the RPB of B. mori and the expression of BmDhpr was activated in the brain and sexual glands while BmPcd was expressed in a wider special pattern when the de novo pathway of BH4 was lacked in lemon. Biochemical analyses showed that the recombinant BmDHPR exhibited high enzymatic activity and more suitable parameters to the coenzyme of NADH in vitro. The results in this report give new information about the RPB in B. mori and help in better understanding insect BH4 biosynthetic networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Vitamin D3 deficiency increases DNA damage and modify the expression of genes associated with hypertension in normotensive and hypertensive rats

    Directory of Open Access Journals (Sweden)

    Carla Silva Machado

    2015-05-01

    DNA damage near the basal in both cardiac muscle and blood tissues. Regarding the expression profile of genes associated to hypertension, in both SHR and WKY rats, vitamin D3 deficiency increased the expression of gene Ace, involved in the pathway of the renin-angiotensin-aldosterone system. Five genes involved in the pathway of ion transport (Scnn1a and Scnn1g in SHR; Itpr1, Itpr2 and Itpr3 in WKY and one gene associated with lipid metabolism (Sphk1 in SHR also had their expression increased. Vitamin D3 supplementation decreased the expression of two genes (Ace and Agt in SHR and increased the expression of one gene (Ace2 in WKY involved in the pathway of the renin-angiotensin-aldosterone system. The expression of three genes involved in the pathway of ion transport (Scnn1a, Scnn1g and Scnn1b in SHR; Scnn1a and Scnn1g in WKY and two genes involved in the pathway of smooth muscle contraction (Acta2 and Ednra in SHR; Ednra in WKY were also decreased. Systolic blood pressure of SHR rats decreased after treatment with vitamin D3 supplementation, but vitamin D3 deficiency did not alter blood pressure in SHR and WKY rats. The results showed that vitamin D3 played an important role in molecular biology and blood pressure, and upon the genomic stability/instability. Down-regulation of genes involved in the renin-angiotensin-aldosterone system and ion transport was accompanied by a decrease in systolic blood pressure after vitamin D3 supplementation, suggesting a relationship between vitamin D3 supplementation and low blood pressure in hypertensive rats. In relation to the DNA damage, the results showed that the blood tissue was more sensitive to vitamin D3 deficiency in relation to cardiac tissue. It was also observed that vitamin D3 deficiency was genotoxic not only to SHR, but also to WKY rats, suggesting that there is an increase in DNA damage in hypertensive and normotensive individuals. In WKY rats, the increase of DNA damage in blood tissue, as well as the up

  5. Hypertension, a health economics perspective.

    Science.gov (United States)

    Alcocer, Luis; Cueto, Liliana

    2008-06-01

    The economic aspects of hypertension are critical to modern medicine. The medical, economic, and human costs of untreated and inadequately controlled hypertension are enormous. Hypertension is distributed unequally and with iniquity in different countries and regions of the world. Treatment of hypertension requires an investment over many years to prolong disease-free quality years of life. The high prevalence and high cost of the disease impacts on the microeconomics and macroeconomics of countries and regions. The criteria used for inclusion in clinical guidelines for hypertension impact on the cost and cost/utility of diagnosis or treatment.

  6. Pulmonary Hypertension and Pulmonary Vasodilators.

    Science.gov (United States)

    Keller, Roberta L

    2016-03-01

    Pulmonary hypertension in the perinatal period can present acutely (persistent pulmonary hypertension of the newborn) or chronically. Clinical and echocardiographic diagnosis of acute pulmonary hypertension is well accepted but there are no broadly validated criteria for echocardiographic diagnosis of pulmonary hypertension later in the clinical course, although there are significant populations of infants with lung disease at risk for this diagnosis. Contributing cardiovascular comorbidities are common in infants with pulmonary hypertension and lung disease. It is not clear who should be treated without confirmation of pulmonary vascular disease by cardiac catheterization, with concurrent evaluation of any contributing cardiovascular comorbidities. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Milan hypertensive rat as a model for studying cation transport abnormality in genetic hypertension

    International Nuclear Information System (INIS)

    Ferrari, P.; Barber, B.R.; Torielli, L.; Ferrandi, M.; Salardi, S.; Bianchi, G.

    1987-01-01

    Environmental factors, genetic polymorphisms, and different experimental designs have been the main impediments to evaluating a genetic association between cell membrane cation transport abnormalities and human essential or genetic hypertension. We review the results obtained in the Milan hypertensive strain of rats (MHS) and in its appropriate control normotensive strain (MNS) to illustrate our approach to defining the role of cation transport abnormality in a type of genetic hypertension. Before the development of a difference in blood pressure between the two strains, the comparison of kidney and erythrocyte functions showed that MHS had an increased glomerular filtration rate and urinary output, and lower plasma renin and urine osmolality. Kidney cross-transplantation between the strains showed that hypertension is transplanted with the kidney. Proximal tubular cell volume and sodium content were lower in MHS while sodium transport across the brush border membrane vesicles of MHS was faster. Erythrocytes in MHS were smaller and had lower sodium concentration, and Na+-K+ cotransport and passive permeability were faster. The differences in volume, sodium content, and Na+-K+ cotransport between erythrocytes of the two strains persisted after transplantation of bone marrow to irradiated F1 (MHS X MNS) hybrids. Moreover, in normal segregating F2 hybrid populations there was a positive correlation between blood pressure and Na+-K+ cotransport. These results suggest a genetic and functional link in MHS between cell membrane cation transport abnormalities and hypertension. Thus, erythrocyte cell membrane may be used for approaching the problem of defining the genetically determined molecular mechanism underlying the development of a type of essential hypertension. 35 references

  8. UNMASKING MASKED HYPERTENSION: PREVALENCE, CLINICAL IMPLICATIONS, DIAGNOSIS, CORRELATES, AND FUTURE DIRECTIONS

    Science.gov (United States)

    Peacock, James; Diaz, Keith M.; Viera, Anthony J.; Schwartz, Joseph E.; Shimbo, Daichi

    2014-01-01

    ‘Masked hypertension’ is defined as having non-elevated clinic blood pressure (BP) with elevated out-of-clinic average BP, typically determined by ambulatory BP monitoring. Approximately 15–30% of adults with non-elevated clinic BP have masked hypertension. Masked hypertension is associated with increased risks of cardiovascular morbidity and mortality compared to sustained normotension (non-elevated clinic and ambulatory BP), which is similar to or approaching the risk associated with sustained hypertension (elevated clinic and ambulatory BP). The confluence of increased cardiovascular risk and a failure to be diagnosed by the conventional approach of clinic BP measurement makes masked hypertension a significant public health concern. However, many important questions remain. First, the definition of masked hypertension varies across studies. Further, the best approach in the clinical setting to exclude masked hypertension also remains unknown. It is unclear whether home BP monitoring is an adequate substitute for ambulatory BP monitoring in identifying masked hypertension. Few studies have examined the mechanistic pathways that may explain masked hypertension. Finally, scarce data are available on the best approach to treating individuals with masked hypertension. Herein, we review the current literature on masked hypertension including definition, prevalence, clinical implications, special patient populations, correlates, issues related to diagnosis, treatment, and areas for future research. PMID:24573133

  9. [Hypertension in polycystic ovary syndrome].

    Science.gov (United States)

    Ben Salem Hachmi, L; Ben Salem Hachmi, S; Bouzid, C; Younsi, N; Smida, H; Bouguerra, R; Ben Slama, C

    2006-01-01

    Polycystic ovary syndrome (PCOS) is associated with multiple cardiovascular risk factors. The aims of this study are to investigate the prevalence of hypertension in a female population with PCOS and to correlate hypertension with her clinical and hormonal profile. it is a transversal study of 79 PCOS patients with mean age of 25 +/- 7 years (range 13-44). PCOS diagnosis is made by Rotterdam consensus criteria's (2003). WHO definition of hypertension is used (BP 140/90 mmHg). Blood pressure is measured three times in each patient. Ovarian echography and biochemical assays (GnRH test, androgens, cholesterol, triglycerides, and oral glucose tolerance test) are made before the 5th day of the menstrual cycle. 12% of PCOS women have hypertension. Family history of hypertension is not a predictive factor of hypertension in our study. PCOS patients with hypertension are not significantly older than those without hypertension (28.4 +/- 6.5 vs. 25.2 +/- 7; p = 0.12). If compared to PCOS women without hypertension, those with hypertension have a significantly higher BMI (39.2 +/- 7 vs. 29.6; p = 0.0004). PCOS patients with and without hypertension do not differ significantly in their level of androgens and total cholesterol. Triglycerides level is higher in PCOS patients with hypertension (p = 0.06). In oral glucose tolerance test, areas under the curve of insulin and glucose are significantly higher in PCOS patients with hypertension (respectively p = 0.06 and 0.02). The area under the curve of LH during GnRH test is lower in PCOS patients with hypertension (p = 0.04).

  10. The evolving definition of systemic arterial hypertension.

    Science.gov (United States)

    Ram, C Venkata S; Giles, Thomas D

    2010-05-01

    Systemic hypertension is an important risk factor for premature cardiovascular disease. Hypertension also contributes to excessive morbidity and mortality. Whereas excellent therapeutic options are available to treat hypertension, there is an unsettled issue about the very definition of hypertension. At what level of blood pressure should we treat hypertension? Does the definition of hypertension change in the presence of co-morbid conditions? This article covers in detail the evolving concepts in the diagnosis and management of hypertension.

  11. Towards the management of hypertension: Modulation of the renin ...

    African Journals Online (AJOL)

    In response to the side effects of antihypertensive drugs, dietary and lifestyle modification approaches have become alternative strategies for prevention and modulation of mild hypertension. Moreover, the use of low molecular size bioactive peptides (BAPs) as antihypertensive agents has gained particular attention as a ...

  12. Future pharmacological therapy in hypertension.

    Science.gov (United States)

    Stewart, Merrill H; Lavie, Carl J; Ventura, Hector O

    2018-04-26

    Hypertension (HTN) is a widespread and growing disease, with medication intolerance and side-effect present among many. To address these obstacles novel pharmacotherapy is an active area of drug development. This review seeks to explore future drug therapy for HTN in the preclinical and clinical arenas. The future of pharmacological therapy in HTN consists of revisiting old pathways to find new targets and exploring wholly new approaches to provide additional avenues of treatment. In this review, we discuss the current status of the most recent drug therapy in HTN. New developments in well trod areas include novel mineralocorticoid antagonists, aldosterone synthase inhibitors, aminopeptidase-A inhibitors, natriuretic peptide receptor agonists, or the counter-regulatory angiotensin converting enzyme 2/angiotensin (Ang) (1-7)/Mas receptor axis. Neprilysin inhibitors popularized for heart failure may also still hold HTN potential. Finally, we examine unique systems in development never before used in HTN such as Na/H exchange inhibitors, vasoactive intestinal peptide agonists, and dopamine beta hydroxylase inhibitors. A concise review of future directions of HTN pharmacotherapy.

  13. Hepatic angiography: Portal hypertension

    International Nuclear Information System (INIS)

    Oliver, T.W. Jr.; Sones, P.J. Jr.

    1985-01-01

    Portal hypertension is usually a manifestation of underlying hepatic parenchymal disease, although it may be secondary to portal or hepatic venous thrombosis and rarely to hyperdynamic portal states. Portal hypertension may present as encephalopathy, ascites, jaundice, hepatic failure, or catastrophic upper gastrointestinal hemorrhage. Radiologic investigation should include indirect or direct measurements of portal pressure, assessment of portal venous perfusion, visualization of collaterals, and demonstration of arterial and venous anatomy for potential shunt procedure. Following survival of initial variceal bleeding, the most effective procedure to prevent recurrent hemorrhage is a shunt to decompress the varices. The decision whether to intervene medically or surgically during the acute hemorrhagic episode as well as the type of shunt used to prevent future hemorrhage is the subject of continuing controversy

  14. [Exercise in arterial hypertension].

    Science.gov (United States)

    Predel, Hans-Georg; Schramm, Thomas

    2006-09-01

    Regular endurance training has established itself as a major therapeutic principle in the specter of nonpharmacological measures in arterial hypertension. An initial medical check as well as an adequate technique, dosage and intensity of the prescribed exercise training are mandatory. With respect to the concomitant pharmacological treatment, it should be considered that the beneficial effects of lifestyle modification will not be counteracted by the chosen antihypertensive drug but, ideally, synergistically supported. Based on the individual clinical situation, principally all antihypertensive drugs recommended by the current European guidelines, may be prescribed as mono- or combination therapy.beta-receptor blockers are especially capable of controlling excessive exercise-induced blood pressure increase; however, they have metabolic and exercise physiological limitations. The neutrality concerning metabolic and exercise physiological parameters as well as the positive profile of side effects favor ACE inhibitors, long-acting calcium channel blockers and especially AT(1) antagonists in physically active hypertensive patients with concomitant metabolic syndrome.

  15. [Chronic hypertension and pregnancy].

    Science.gov (United States)

    Lecarpentier, Edouard; Tsatsaris, Vassili

    2012-09-01

    Hypertensive disorders in pregnancy are a leading cause of maternal and perinatal mortality and morbidity. The management of patients with chronic hypertension requires a multidisciplinary approach prior to conception, during pregnancy and post-partum. In the preconception period, fetotoxic agents should be discontinued. It is also essential to undertake a full cardiovascular examination which may, in some cases, question the possibility of pregnancy. During pregnancy, blood pressure should be monitored and controlled, but not necessarily returned to a normal value. Low blood pressure levels could indeed lead to placental hypoperfusion and fetal growth restriction. Close clinical, biological and ultrasound monitoring is recommended, even postpartum, since those patients are at higher risk for preeclampsia.

  16. Neurological disorders in hypertensive patients

    Directory of Open Access Journals (Sweden)

    N. V. Vakhnina

    2015-01-01

    Full Text Available Hypertension is one of the most common vascular diseases. The brain as target organs in hypertension is damaged more often and earlier. Neurological complications due to hypertension are frequently hyperdiagnosed in Russian neurological practice. Thus, headache, dizziness, impaired recall of recent events, nocturnal sleep disorders, and many other complaints in a hypertensive patient are usually regarded as a manifestation of dyscirculatory encephalopathy. At the same time headaches (tension headache and migraine in hypertensive patients are predominantly primary; headache associated with dramatic marked elevations in blood pressure is encountered in only a small number of patients. The role of cerebrovascular diseases in the development of dizziness in hypertensive patients is also overestimated. The vast majority of cases, patients with this complaint are in fact identified to have benign paroxysmal postural vertigo, Mеniеre’s disease, vestibular neuronitis, or vestibular migraine. Psychogenic disorders or multisensory insufficiency are generally responsible for non-systemic vertigo in hypertensive patients. Chronic cerebral circulatory insufficiency may cause non-systemic vertigo as a subjective equivalent of postural instability.Cognitive impairments (CIs are the most common and earliest manifestation of cerebrovascular lesion in hypertension. In most cases, CIs in hypertension were vascular and associated with cerebrovascular lesion due to lacunar infarcts and leukoaraiosis. However, mixed CIs frequently occur when hypertensive patients are also found to have signs of a degenerative disease, most commonly in Alzheimer’s disease.

  17. Epidemiology of hypertensive kidney disease.

    Science.gov (United States)

    Udani, Suneel; Lazich, Ivana; Bakris, George L

    2011-01-01

    The prevalence of hypertension, chronic kidney disease (CKD) and end-stage renal disease (ESRD) attributable to hypertension continues to rise worldwide. Identifying the precise prevalence of CKD attributable to hypertension is difficult owing to the absence of uniform criteria to establish a diagnosis of hypertensive nephropathy. Despite the increasing prevalence of CKD-associated hypertension, awareness of hypertension among individuals with CKD remains suboptimal and rates of blood-pressure control remain poor. Targeted subgroups involved in studies of CKD seem to reach better rates of blood-pressure control, suggesting that this therapeutic goal can be achieved in patients with CKD. Elevated blood-pressure levels are associated with CKD progression. However, the optimal blood-pressure level and pharmacological agent remains unclear. Physicians treating patients with CKD must recognize the importance of maintaining optimal salt and volume balance to achieve blood-pressure goals. Furthermore, agents that modify the renin-angiotensin-aldosterone axis can be an important adjunct to therapy and physicians must monitor expected changes in serum creatinine and electrolyte levels after their administration. Hypertension remains a common factor complicating CKD. Future investigations identifying early signs of hypertension-related CKD, increasing awareness of the effects of hypertension in CKD and determining optimal therapeutic interventions might help reduce the incidence of hypertensive nephropathy.

  18. Angiography in portal hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, E

    1982-04-05

    We report on the cooperative possibilities the radiologist has as to diagnosis and therapy of portal hypertension. The catheter angiography allows to make a differentiation between pre- and intrahepatic bloc and the localization of bleeding esophagus varices. Only after all endoscopic measures with sclerotherapy and Laser coagulation have failed, catheter angiography will be carried out as a therapeutic measure. The future development, however, will give the opportunity to a series of therapeutic attempts on the field of interventional radiology.

  19. Renal denervation and hypertension.

    Science.gov (United States)

    Schlaich, Markus P; Krum, Henry; Sobotka, Paul A; Esler, Murray D

    2011-06-01

    Essential hypertension remains one of the biggest challenges in medicine with an enormous impact on both individual and society levels. With the exception of relatively rare monogenetic forms of hypertension, there is now general agreement that the condition is multifactorial in nature and hence requires therapeutic approaches targeting several aspects of the underlying pathophysiology. Accordingly, all major guidelines promote a combination of lifestyle interventions and combination pharmacotherapy to reach target blood pressure (BP) levels in order to reduce overall cardiovascular risk in affected patients. Although this approach works for many, it fails in a considerable number of patients for various reasons including drug-intolerance, noncompliance, physician inertia, and others, leaving them at unacceptably high cardiovascular risk. The quest for additional therapeutic approaches to safely and effectively manage hypertension continues and expands to the reappraisal of older concepts such as renal denervation. Based on the robust preclinical and clinical data surrounding the role of renal sympathetic nerves in various aspects of BP control very recent efforts have led to the development of a novel catheter-based approach using radiofrequency (RF) energy to selectively target and disrupt the renal nerves. The available evidence from the limited number of uncontrolled hypertensive patients in whom renal denervation has been performed are auspicious and indicate that the procedure has a favorable safety profile and is associated with a substantial and presumably sustained BP reduction. Although promising, a myriad of questions are far from being conclusively answered and require our concerted research efforts to explore the full potential and possible risks of this approach. Here we briefly review the science surrounding renal denervation, summarize the current data on safety and efficacy of renal nerve ablation, and discuss some of the open questions that need

  20. Angiography in portal hypertension

    International Nuclear Information System (INIS)

    Zeitler, E.

    1982-01-01

    We report on the cooperative possibilities the radiologist has as to diagnosis and therapy of portal hypertension. The catheter angiography allows to make a differentiation between pre- and intrahepatic bloc and the localization of bleeding esophagus varices. Only after all endoscopic measures with sclerotherapy and Laser coagulation have failed, catheter angiography will be carried out as a therapeutic measure. The future development, however, will give the opportunity to a series of therapeutic attempts on the field of interventional radiology. (orig.) [de

  1. Managing hypertension by polyphenols.

    Science.gov (United States)

    Fernández-Arroyo, Salvador; Camps, Jordi; Menendez, Javier A; Joven, Jorge

    2015-06-01

    Some polyphenols, obtained from plants of broad use, induce a favorable endothelial response in hypertension and beneficial effects in the management of other metabolic cardiovascular risks. Previous studies in our laboratories using the calyces of Hibiscus sabdariffa as a source of polyphenols show that significant effects on hypertension are noticeable in humans only when provided in high amounts. Available data are suggestive in animal models and ex vivo experiments, but data in humans are difficult to acquire. Additionally, and despite the low bioavailability of polyphenols, intervention studies provide evidence for the protective effects of secondary plant metabolites. Assumptions on public health benefits are limited by the lack of scientific knowledge, robust data derived from large randomized clinical trials, and an accurate assessment of the bioactive components provided by common foodstuff. Because it is likely that clinical effects are the result of multiple interactions among different polyphenols rather than the isolated action of unique compounds, to provide polyphenol-rich botanical extracts as dietary supplements is a suggestive option. Unfortunately, the lack of patent perspectives for the pharmaceutical industries and the high cost of production and release for alimentary industries will hamper the performance of the necessary clinical trials. Here we briefly discuss whether and how such limitations may complicate the extensive use of plant-derived products in the management of hypertension and which steps are the necessary to deal with the predictable complexity in a possible clinical practice. Georg Thieme Verlag KG Stuttgart · New York.

  2. [Resistant hypertension: An update].

    Science.gov (United States)

    Renna, N F

    2018-02-04

    An estimated 10% to 20% of hypertensive patients could be considered resistant to treatment (RH). These are patients who are not controlled using three drugs, at the maximum tolerated doses, including a diuretic, as well as those with high blood pressure controlled using four or more drugs. The term is used to identify patients that might benefit from special diagnostic and/or therapeutic consideration. The term 'refractory hypertension' has recently been proposed as a novel phenotype of antihypertensive failure. It refers to patients whose blood pressure cannot be controlled with maximum treatment. The first studies of this phenotype indicate that it is rare and affects less than 5% of patients with RH. Adherence to or compliance with medical treatment is key to defining resistant hypertension. Closer attention has been paid to clinical and experimental research since the first scientific statement for the diagnosis, assessment and treatment of RH from the American Heart Association, and in the European guidelines, was published in 2008. This review will set out the concepts relating to prevalence, prognosis and compliance and cover the latest developments on this subject. Copyright © 2018 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Hypertensive target organ damage in Ghanaian civil servants with hypertension.

    Directory of Open Access Journals (Sweden)

    Juliet Addo

    2009-08-01

    Full Text Available Low levels of detection, treatment and control of hypertension have repeatedly been reported from sub Saharan Africa, potentially increasing the likelihood of target organ damage.A cross-sectional study was conducted on 1015 urban civil servants aged > or = 25 years from seven central government ministries in Accra, Ghana. Participants diagnosed to have hypertension were examined for target organ involvement. Hypertensive target organ damage was defined as the detection of any of the following: left ventricular hypertrophy diagnosed by electrocardiogram, reduction in glomerular filtration rate, the presence of hypertensive retinopathy or a history of a stroke.Of the 219 hypertensive participants examined, 104 (47.5% had evidence of target organ damage. The presence of target organ damage was associated with higher systolic and diastolic blood pressure levels. The odds of developing hypertensive target organ damage was five to six times higher in participants with blood pressure (BP > or = 180/110 mmHg compared to those with BP < 140/90 mmHg, and there was a trend to higher odds of target organ damage with increasing BP (p = 0.001. Women had about lower odds of developing target organ damage compared to men.The high prevalence of target organ damage in this working population associated with increasing blood pressure, emphasises the need for hypertension control programs aimed at improving the detection of hypertension, and importantly addressing the issues inhibiting the effective treatment and control of people with hypertension in the population.

  4. Gene expression profiling reveals different molecular patterns in G-protein coupled receptor signaling pathways between early- and late-onset preeclampsia.

    Science.gov (United States)

    Liang, Mengmeng; Niu, Jianmin; Zhang, Liang; Deng, Hua; Ma, Jian; Zhou, Weiping; Duan, Dongmei; Zhou, Yuheng; Xu, Huikun; Chen, Longding

    2016-04-01

    Early-onset preeclampsia and late-onset preeclampsia have been regarded as two different phenotypes with heterogeneous manifestations; To gain insights into the pathogenesis of the two traits, we analyzed the gene expression profiles in preeclamptic placentas. A whole genome-wide microarray was used to determine the gene expression profiles in placental tissues from patients with early-onset (n = 7; 36 weeks) preeclampsia and their controls who delivered preterm (n = 5; 36 weeks). Genes were termed differentially expressed if they showed a fold-change ≥ 2 and q-value preeclampsia (177 genes were up-regulated and 450 were down-regulated). Gene ontology analysis identified significant alterations in several biological processes; the top two were immune response and cell surface receptor linked signal transduction. Among the cell surface receptor linked signal transduction-related, differentially expressed genes, those involved in the G-protein coupled receptor protein signaling pathway were significantly enriched. G-protein coupled receptor signaling pathway related genes, such as GPR124 and MRGPRF, were both found to be down-regulated in early-onset preeclampsia. The results were consistent with those of western blotting that the abundance of GPR124 was lower in early-onset compared with late-onset preeclampsia. The different gene expression profiles reflect the different levels of transcription regulation between the two conditions and supported the hypothesis that they are separate disease entities. Moreover, the G-protein coupled receptor signaling pathway related genes may contribute to the mechanism underlying early- and late-onset preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Prognostic implications of molecular and immunohistochemical profiles of the Rb and p53 cell cycle regulatory pathways in primary non-small cell lung carcinoma.

    LENUS (Irish Health Repository)

    Burke, Louise

    2012-02-03

    PURPOSE: Many studies have highlighted the aberrant expression and prognostic significance of individual proteins in either the Rb (particularly cyclin D1, p16INK4A, and pRb) or the p53 (p53 and p21Waf1) pathways in non-small cell lung cancer. We hypothesize that cumulative abnormalities within each and between these pathways would have significant prognostic potential regarding survival. EXPERIMENTAL DESIGN: Our study population consisted of 106 consecutive surgically resected cases of predominantly early-stage non-small cell lung cancer from the National Cancer Institute-Mayo Clinic series, and assessment of proteins involved both immunohistochemical (cyclin D1, p21Waf1, pRb, p16INK4A, and p53) and mutational analysis (p53) in relationship to staging and survival. RESULTS: Cyclin D1 overexpression was noted in 48% of the tumors, p16INK4A negative in 53%, pRb negative in 17%, p53 immunopositive in 50%, p53 mutation frequency in 48%, and p21(Waf1) overexpression in 47%, none with prognostic significance. Cyclin D1 overexpression in pRb-negative tumors revealed a significantly worse prognosis with a mean survival of 2.3 years (P = 0.004). A simultaneous p53 mutation dramatically reduced the mean survival time to 0.9 years (P = 0.007). Cyclin D1 overexpression with either a p53 mutation or a p53 overexpression was also associated with a significantly poorer prognosis (P = 0.0033 and 0.0063, respectively). CONCLUSIONS: Some cumulative abnormalities in the Rb and p53 pathways (e.g., cyclin D1 overexpression and p53 mutations) significantly cooperate to predict a poor prognosis; however, the complexity of the cell cycle protein interaction in any given tumor warrants caution in interpreting survival results when specific protein abnormalities are taken in isolation.

  6. Diagnostic histochemistry and clinical-pathological testings as molecular pathways to pathogenesis and treatment of the ageing neuromuscular system: a personal view.

    Science.gov (United States)

    Engel, W King

    2015-04-01

    Ageing of the neuromuscular system in elderhood ingravescently contributes to slowness, weakness, falling and death, often accompanied by numbness and pain. This article is to put in perspective examples from a half-century of personal and team neuromuscular histochemical-pathological and clinical-pathological research, including a number of lucky and instructive accomplishments identifying new treatments and new diseases. A major focus currently is on some important, still enigmatic, aspects of the ageing neuromuscular system. It is also includes some of the newest references of others on various closely-related aspects of this ageing system. The article may help guide others in their molecular-based endeavors to identify paths leading to discovering new treatments and new pathogenic aspects. These are certainly needed - our ageing and unsteady constituents are steadily increasing. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis. Copyright © 2014. Published by Elsevier B.V.

  7. Dealing with chemical reaction pathways and electronic excitations in molecular systems via renormalized and active-space coupled-cluster methods

    Energy Technology Data Exchange (ETDEWEB)

    Piecuch, Piotr; Li, Wei; Lutz, Jesse J. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Włoch, Marta [Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931 (United States); Gour, Jeffrey R. [Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA and Department of Chemistry, Stanford University, Stanford, California 94305 (United States)

    2015-01-22

    Coupled-cluster (CC) theory has become the de facto standard for high-accuracy molecular calculations, but the widely used CC and equation-of-motion (EOM) CC approaches, such as CCSD(T) and EOMCCSD, have difficulties with capturing stronger electron correlations that characterize multi-reference molecular problems. This presentation demonstrates that many of these difficulties can be addressed by exploiting the completely renormalized (CR) CC and EOMCC approaches, such as CR-CC(2,3), CR-EOMCCSD(T), and CR-EOMCC(2,3), and their local correlation counterparts applicable to systems with hundreds of atoms, and the active-space CC/EOMCC approaches, such as CCSDt and EOMCCSDt, and their extensions to valence systems via the electron-attached and ionized formalisms.

  8. Is tetrahydrobiopterin a therapeutic option in diabetic hypertensive patients?

    Directory of Open Access Journals (Sweden)

    Alberto Francisco Rubio-Guerra

    2010-09-01

    Full Text Available Alberto Francisco Rubio-Guerra1, Hilda Vargas-Robles2, Luz Maria Ramos-Brizuela1, Bruno Alfonso Escalante-Acosta21Metabolic Clinic, Hospital General de Ticomán SS DF, Mexico; 2Department of Molecular Biomedicine, Centro de Investigacion y de Estudios Avanzados del IPN, MexicoAbstract: Nitric oxide (NO is an important regulator of vascular tone, and is also an antithrombotic, anti-inflammatory, antiproliferative, and antiatherogenic factor. Endothelial function is altered in patients with coronary artery disease, stroke, and peripheral artery disease, and endothelial dysfunction correlates with the risk factor profile for a patient. Hypertension and type 2 diabetes are risk factors for vascular disease, and are both pathologies characterized by loss of NO activity. Indeed, endothelial dysfunction is usually present in diabetic and/or hypertensive patients. Tetrahydrobiopterin is an essential cofactor for the NO synthase enzyme, and insufficiency of this cofactor leads to uncoupling of the enzyme, release of superoxide, endothelial dysfunction, progression of hypertension, and finally, proatherogenic effects. Tetrahydrobiopterin is also an important mediator of NO synthase regulation in type 2 diabetes and hypertension, and may be a rational therapeutic target to restore endothelial function and prevent vascular disease in these patients. The aim of this paper is to review the rationale for therapeutic strategies directed to biopterins as a target for vascular disease in type 2 diabetic hypertensive patients.Keywords: tetrahydrobiopterin, endothelial dysfunction, diabetes, hypertension, oxidative stress, nitric oxide, eNOS synthase uncoupling

  9. [Control of hypertension in nursing homes].

    Science.gov (United States)

    Thomas, J M; Alvarez, W; Mulaj, M; De Breucker, S; Leeman, M; Pepersack, T

    2006-09-01

    In a cross sectional study we determined prevalence of hypertension among institutionalized old subjects. Prevalence of hypertension was 69%. Among detected hypertensive patients, 76% received an antihypertensive drug treatment. 61% of the declared hypertensive patients and 80% of the treated hypertensive patients had their blood pressure controlled. The general practitioners should better detect and treat this common geriatric problem associated with a high comorbidity.

  10. Molecular Cloning and Characterization of a Novel Human Glycine-N-acyltransferase Gene GLYATL1, Which Activates Transcriptional Activity of HSE Pathway

    Directory of Open Access Journals (Sweden)

    Long Yu

    2007-05-01

    Full Text Available The glycine-N-acyltransferase (GLYAT is well known to be involved in thedetoxification of endogenous and exogenous xenobiotic acyl-CoA's in mammals.Unfortunately, the knowledge about the gene encoding GLYAT is very limited. Here wereport a novel gene encoding a GLYAT member, designated as GLYATL1, which was1546 base pairs in length and contained an open reading frame (ORF encoding apolypeptide of 302 amino acids. GLYATL1 was a split gene that was consisted of 7 exonsand 6 introns and mapped to chromosome 11q12.1. The expression of GLYATL1 could befound in liver, kidney, pancreas, testis, ovary and stomach among 18 human tissues by RT-PCR analysis. Subcellular localization of myc-tagged GLYATL1 fusion protein revealedthat GLYATL1 was distributed primarily in the cytoplasm of COS-7 cells. Furthermore,through the pathway profiling assay, the GLYATL1 protein was found to activate HSEsignaling pathway in a dose-dependent manner when overexpressed in HEK293T cells.

  11. Hypertension--forekomst og behandling

    DEFF Research Database (Denmark)

    Ibsen, Hans; Jørgensen, Torben; Jensen, Gorm B

    2009-01-01

    Hypertension is the most important modifiable risk factor for cardiovascular disease. However, less than half of all hypertensives have their blood pressure reduced to relevant goals. The prevalence of hypertension in Denmark was found to be between 26% and 40% of the adult population. Just over ...... half were aware of the diagnosis, but less than half were in treatment. Blood pressure control in patients who are undergoing treatment has improved during recent years, but there is still a gap to achievable control rates....

  12. Hypertension--forekomst og behandling

    DEFF Research Database (Denmark)

    Ibsen, Hans; Jørgensen, Torben; Jensen, Gorm B

    2009-01-01

    Hypertension is the most important modifiable risk factor for cardiovascular disease. However, less than half of all hypertensives have their blood pressure reduced to relevant goals. The prevalence of hypertension in Denmark was found to be between 26% and 40% of the adult population. Just over...... half were aware of the diagnosis, but less than half were in treatment. Blood pressure control in patients who are undergoing treatment has improved during recent years, but there is still a gap to achievable control rates....

  13. Hypertension og det metaboliske syndrom

    DEFF Research Database (Denmark)

    Olsen, Michael Hecht; Jeppesen, Jørgen; Larsen, Mogens Lytken

    2009-01-01

    The metabolic syndrome is a relatively prevalent condition characterized by co-existence of several metabolic and cardiovascular risk factors including hypertension. Patients with hypertension have an increased risk of developing the metabolic syndrome which, in turn, increases the cardiovascular...... syndrome is of clinical importance as it makes the treating physician test for other elements of the syndrome in patients with one of the elements, e.g. hypertension. Udgivelsesdato: 2009-Jun...

  14. Hypertension og det metaboliske syndrom

    DEFF Research Database (Denmark)

    Olsen, Michael; Jeppesen, Jørgen; Larsen, Mogens

    2009-01-01

    The metabolic syndrome is a relatively prevalent condition characterized by co-existence of several metabolic and cardiovascular risk factors including hypertension. Patients with hypertension have an increased risk of developing the metabolic syndrome which, in turn, increases the cardiovascular...... syndrome is of clinical importance as it makes the treating physician test for other elements of the syndrome in patients with one of the elements, e.g. hypertension. Udgivelsesdato: 2009-Jun-15...

  15. [Hepatopulmonary syndrome and portopulmonary hypertension].

    Science.gov (United States)

    Marcu, Cristina; Schiffer, Eduardo; Aubert, John-David; Vionnet, Julien; Yerly, Patrick; Deltenre, Pierre; Marot, Astrid

    2017-08-30

    Hepatopulmonary syndrome (HPS) and portopulmonary hypertension (POPH) are two frequent pulmonary complications of liver disease. Portal hypertension is a key element in the pathogenesis of both disorders, which are however distinct in terms of pathogenesis, diagnosis and treatment. HPS corresponds to an abnormal arterial oxygenation in relation with the development of intrapulmonary vascular dilatations. POPH is a pulmonary arterial hypertension in the setting of portal hypertension and elevated pulmonary vascular resistance. As both diseases are associated with an increased risk of morbidity and mortality, it is important to screen and evaluate the severity of these two disorders particularly in liver transplant candidates.

  16. Vascular inflammatory cells in hypertension

    Directory of Open Access Journals (Sweden)

    David G. Harrison

    2012-05-01

    Full Text Available Hypertension is a common disorder with uncertain etiology. In the last several years, it has become evident that components of both the innate and adaptive immune system play an essential role in hypertension. Macrophages and T cells accumulate in the perivascular fat, the heart and the kidney of hypertensive patients and in animals with experimental hypertension. Various immunosuppressive agents lower blood pressure and prevent end-organ damage. Mice lacking lymphocytes are protected against hypertension, and adoptive transfer of T cells, but not B cells in the animals restores their blood pressure response to stimuli such as angiotensin II or high salt. Recent studies have shown that mice lacking macrophages have blunted hypertension in response to angiotensin II and that genetic deletion of macrophages markedly reduces experimental hypertension. Dendritic cells have also been implicated in this disease. Many hypertensive stimuli have triggering effects on the central nervous system and signals arising from the circumventricular organ seem to promote inflammation. Studies have suggested that central signals activate macrophages and T cells, which home to the kidney and vasculature and release cytokines, including IL-6 and IL-17, which in turn cause renal and vascular dysfunction and lead to blood pressure elevation. These recent discoveries provide a new understanding of hypertension and provide novel therapeutic opportunities for treatment of this serious disease.

  17. Pulmonary hypertension in older adults.

    Science.gov (United States)

    McArdle, John R; Trow, Terence K; Lerz, Kathryn

    2007-12-01

    Pulmonary hypertension is a frequently encountered problem in older patients. True idiopathic pulmonary arterial hypertension can also be seen and requires careful exclusion in older patients. Institution of therapies must be tempered with an appreciation of individual comorbidities and functional limitations that may affect patients' ability to comply and benefit from the complex treatments available for pulmonary arterial hypertension. This article reviews the existing data on the various forms of pulmonary hypertension presenting in older patients and on appropriate therapy in this challenging population.

  18. Diagnosis and treatment of pulmonary hypertension in infancy

    Science.gov (United States)

    Steinhorn, Robin H.

    2013-01-01

    Normal pulmonary vascular development in infancy requires maintenance of low pulmonary vascular resistance after birth, and is necessary for normal lung function and growth. The developing lung is subject to multiple genetic, pathological and/or environmental influences that can adversely affect lung adaptation, development, and growth, leading to pulmonary hypertension. New classifications of pulmonary hypertension are beginning to account for these diverse phenotypes, and or pulmonary hypertension in infants due to PPHN, congenital diaphragmatic hernia, and bronchopulmonary dysplasia (BPD). The most effective pharmacotherapeutic strategies for infants with PPHN are directed at selective reduction of PVR, and take advantage of a rapidly advancing understanding of the altered signaling pathways in the remodeled vasculature. PMID:24083892

  19. ESSENTIAL ARTERIAL HYPERTENSION AND RISK FACTORS ASSOCIATED WITH HYPERTENSIVE NEPHROPATHY

    Directory of Open Access Journals (Sweden)

    Boban Milojković

    2014-12-01

    Full Text Available Arterial hypertension is a major risk factor that predisposes to cardiovascular disorders and is responsible for most of the morbidity and mortality in patients. Hypertension is closely associated with the kidney, because kidney disease can be both the cause and consequence of increased blood pressure. Elevation of blood pressure is a strong independent risk factor for hypertensive nephropathy and development of ESRD. The pathogenesis of ischemic hypertensive nephropathy (IHN is multifactoral, and in addition to blood pressure other factors contribute to the development of this renal pathology and its progression to end-stage renal disease. These include obesity, smoking, male gender and other still unknown risk factors. The aim of this paper was to analyse the association between essential arterial hypertension and renal hypertensive disease and prevalence of other atherosclerotic risk factors in patients with developed hypertensive renal disease. In this prospective cross sectional study 283 patients of both genders with diagnosed essential hypertension and hypertensive renal disease were analysed. The anamnestic data related to age, duration of hypertension, history of smoking, presence of hypertensive retinopathy, hypertrophy of the left chamber and data about previous renal diseases were collected through conversation and medical documentation. The clinical examination comprise determination of blood pressure, body mass index (BMI, lipid parameters (total cholesterol, LDL cholesterol, HDL cholesterol and triglycerides, serum urea and creatinine, urine, albumin and protein concentration. The total number of 283 patients (185 males and 98 females with HN was analyzed. The analysis revealed significantly higher proportion of males aged over 60 years with IHN. The mean age of examined hypertensive patients with IHN is 62.6±8.8 years with duration of hypertension 19.8±5.9 years. All examined patients had hypertensive retinopathy and

  20. Molecular cloning and expression of the transformation sensitive epithelial marker stratifin. A member of a protein family that has been involved in the protein kinase C signalling pathway

    DEFF Research Database (Denmark)

    Leffers, H; Madsen, Peder; Rasmussen, H H

    1993-01-01

    tissues showed that polypeptides comigrating with proteins 9124, 9125 and 9126 are ubiquitous and highly expressed in the brain. Stratifin, however, was present only in cultured epithelial cells and was most abundant in fetal and adult human tissues enriched in stratified squamous keratinising epithelium......We have identified a family of abundant acidic human keratinocyte proteins with apparent molecular masses ranging between 30,000 and 31,100 (isoelectric focussing sample spot proteins 9109 (epithelial marker stratifin), 9124, 9125, 9126 and 9231 in the master two-dimensional gel database of human...

  1. KeyPathwayMinerWeb

    DEFF Research Database (Denmark)

    List, Markus; Alcaraz, Nicolas; Dissing-Hansen, Martin

    2016-01-01

    , for instance), KeyPathwayMiner extracts connected sub-networks containing a high number of active or differentially regulated genes (proteins, metabolites) in the molecular profiles. The web interface at (http://keypathwayminer.compbio.sdu.dk) implements all core functionalities of the KeyPathwayMiner tool set......We present KeyPathwayMinerWeb, the first online platform for de novo pathway enrichment analysis directly in the browser. Given a biological interaction network (e.g. protein-protein interactions) and a series of molecular profiles derived from one or multiple OMICS studies (gene expression...... such as data integration, input of background knowledge, batch runs for parameter optimization and visualization of extracted pathways. In addition to an intuitive web interface, we also implemented a RESTful API that now enables other online developers to integrate network enrichment as a web service...

  2. Clinical predictors and impact of ambulatory blood pressure monitoring in pediatric hypertension referrals.

    Science.gov (United States)

    Davis, Marguerite L; Ferguson, Michael A; Zachariah, Justin P

    2014-09-01

    Elevated blood pressure (BP) is rising in children. Significant proportions of children have reactive hypertension or masked hypertension, making ambulatory BP monitoring (ABPM) a valuable tool, although with potential economic implications. In youth referred for elevated BP, we sought clinic BP combinations that obviated the need for ABPM and to specify the economic role of ABPM. In a retrospective pediatric referral cohort (N = 170), we examine clinic systolic BP (SBP) predictors of components of ABPM hypertension and their combination. In economic analyses, we compared effectiveness and charges of three diagnostic pathways: (1) clinic BP alone; (2) abnormal clinic BP prompting ABPM; or (3) universal ABPM. ABPM hypertension occurred in 55 (32.4%) and reactive hypertension in 37 (21.8%), average automated (β = 0.208; 95% confidence interval, 0.027, 0.389; P = .03) and maximum auscultatory clinic SBP (β = 0.160; 95% confidence interval 0.022, 0.299; P = .02) were associated with ABPM SBP mean, but none predicted SBP load. No clinic SBP combination was associated with ABPM hypertension. Universal ABPM accrued the lowest average charge per hypertensive youth identified ($10,948). We did not identify a clinic SBP combination that predicted ABPM hypertension in youth referred for elevated BP. Universal ABPM, in this context, may be the most economically and clinically efficient diagnostic strategy. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  3. Regulation of Hypertension for Secondary Prevention of Stroke: The Possible 'Bridging Function' of Acupuncture.

    Science.gov (United States)

    Zheng, Haizhen; Han, Yuhui; Du, Yuzheng; Shi, Xuemin; Huang, Huiyuan; Yu, Xiaoyang; Tan, Xiaochan; Hu, Chunxiao; Wang, Yue; Zhou, Shiyuan

    2018-01-01

    Worldwide, stroke is the leading cause of mortality and disability, with hypertension being an independent risk factor for a secondary stroke. Acupuncture for the treatment of hypertension gains more attention in alternative and complementary medicine, but the results are inconsistent. Few studies regarding the secondary prevention of stroke by managing hypertension with acupuncture have been carried out as there are some problems regarding the antihypertensive drug status in the secondary prevention of stroke. Still, the potential of acupuncture in regulating the blood pressure for secondary stroke prevention deserves our focus. This review is based on papers recorded in the PubMed, Embase, and Web of Science