WorldWideScience

Sample records for hypersaline arsenic-rich soda

  1. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines

    NARCIS (Netherlands)

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco; Sorokin, Dimitry Y.; Tringe, Susannah G.; Hugenholtz, Philip; Muyzer, Gerard

    2016-01-01

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still

  2. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    NARCIS (Netherlands)

    Vavourakis, C.D.; Ghai, R.; Rodriguez-valera, F.; Sorokin, D.Y.; Tringe, S.G.; Hugenholtz, P.; Muyzer, G.

    2016-01-01

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still

  3. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    Science.gov (United States)

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  4. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  5. Uranium Geochemistry in Hypersaline Soda Lakes in Eastern Mongolia

    Science.gov (United States)

    Linhoff, B. S.; Bennett, P.; Puntsag, T.

    2007-12-01

    Extremely high concentrations of uranium were discovered in water samples from hypersaline soda lakes in eastern Mongolia. The origin and fate of uranium in these lakes was examined using geochemical analyses and modeling, using samples collected from five lakes, six wells and one stream. Samples were analyzed for strontium and uranium isotopes, cations and trace metals, anions, alkalinity, and unstable field parameters. The lakes are small, shallow (chlorine to bromine ratios implying groundwater discharges to lake water and is subsequently evaporated. Evaporation is intense with lake waters having average chlorine concentrations 300 times that of well waters. Uranium in well samples is higher than typical for shallow groundwaters (7-101ppb) suggesting discharging groundwater as a probable source of uranium in lake water. Concentrations of uranium in lake water ranges from 57-14,900ppb making these lakes possibly the highest naturally occurring uranium concentration reported. Lake water alkalinity is strongly correlated to uranium abundance suggesting uranium is complexed with carbonate as the aqueous species UO2CO3. Consequently, the extremely high alkalinity of the most alkaline lake (pH = 9.8, 1288.8 meq alk/L) also has the highest uranium concentrations. Stable strontium isotopes were used to assess the degree of water rock interactions and the presence of 90Sr was checked for to test the possibility of input of nuclear fallout. 90Sr was not detected in lake water samples suggesting the high uranium is of natural origins. A large difference in the 87Sr/86Sr ratio was found between groundwater and lake water samples. Groundwater samples displayed large variation in the 87Sr/86Sr ratio (0.70612-0.709776) whereas lake water samples averaged a high radiogenic ratio (0.709432). The large variation in the strontium isotopes in groundwater samples suggests varying degrees of water rock interactions, however the least radiogenic samples likely are derived from

  6. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines

    Directory of Open Access Journals (Sweden)

    Charlotte Dafni Vavourakis

    2016-02-01

    Full Text Available Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first ‘metagenomic snapshots’ of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that the top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha- and Gammaproteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter and Rhodobaca and chemolithotrophic sulfur oxidizers (Thioalkalivibrio were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermaceae-related draft genome were indicative of a

  7. Sulphur-containing compounds in sulphur-rich crude oils from hypersaline lake sediments and their geochemical implications

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Guoying, S.; Jiamo, F.; Brassell, S.C.; Gowar, A.P.; Eglinton, G.; Leeuw, J.W. de; Schenck, P.A.

    1987-01-01

    Three sulphur-rich commercial crude oils have been studied, which contain sulphur as high as up to 4 —12 %. These samples were collected from Tertiary hypersaline lake sediments of the Jianghan Basin, Hubei Province at different depths, but above the oil generation threshold (2200m). FPD-GC and

  8. Arsenic rich iron plaque on macrophyte roots - an ecotoxicological risk?

    International Nuclear Information System (INIS)

    Taggart, M.A.; Mateo, R.; Charnock, J.M.; Bahrami, F.; Green, A.J.; Meharg, A.A.

    2009-01-01

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcollar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root + plaque' material in excess of 1000 mg kg -1 , and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcollar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque. - Accumulation of metals with iron plaque on macrophyte roots in wetlands poses an ecotoxicological risk to certain herbivores

  9. Arsenic rich iron plaque on macrophyte roots--an ecotoxicological risk?

    Science.gov (United States)

    Taggart, M A; Mateo, R; Charnock, J M; Bahrami, F; Green, A J; Meharg, A A

    2009-03-01

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcóllar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root+plaque' material in excess of 1000 mg kg(-1), and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcóllar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque.

  10. Arsenic rich iron plaque on macrophyte roots - an ecotoxicological risk?

    Energy Technology Data Exchange (ETDEWEB)

    Taggart, M.A. [School of Biological Sciences, University of Aberdeen, Cruickshank Bld, St Machar Drive, Aberdeen, AB24 3UU (United Kingdom); Instituto de Investigacion en Recursos Cinegeticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain)], E-mail: mark.taggart@uclm.es; Mateo, R. [Instituto de Investigacion en Recursos Cinegeticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain); Charnock, J.M.; Bahrami, F. [Synchrotron Radiation Department, CCLRC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD (United Kingdom); Green, A.J. [Department of Wetland Ecology, Estacion Biologica de Donana, CSIC, Pabellon del Peru, Avenida Maria Luisa s/n, 41013 Seville (Spain); Meharg, A.A. [School of Biological Sciences, University of Aberdeen, Cruickshank Bld, St Machar Drive, Aberdeen, AB24 3UU (United Kingdom)

    2009-03-15

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcollar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root + plaque' material in excess of 1000 mg kg{sup -1}, and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcollar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque. - Accumulation of metals with iron plaque on macrophyte roots in wetlands poses an ecotoxicological risk to certain herbivores.

  11. On the transition from tin-rich to antimony-rich European white soda-glass trade beads for the Senecas of Northeastern North America

    International Nuclear Information System (INIS)

    Sempowski, M.L.; Nohe, A.W.; Moreau, J.F.; Karklins, K.; Aufreiter, S.; Toronto Univ. ON; Hancock, R.G.V.; Royal Military College, Kingston, ON

    2000-01-01

    It has been shown that several modifications occurred, over the span of the 17th to 19th centuries, in the agents used to opacify European-made white soda-glass beads that were transmitted as trade goods to northeastern North America. Tin was used at the beginning of the 17th century, followed by Sb later in the century, and then by As during the 18th and 19th centuries. In an attempt to define more closely the transition from Sn-rich to Sb-rich white beads, 198 white glass beads from a number of archaeological sites in western New York State were analyzed. It was shown that the arrival of Sb-white soda-glass trade beads began in this region during the period from approximately A.D. 1625-1640, and that they had completely replaced Sn-white beads by A.D. 1675. Specific bead chemistries link a number of the archaeological sites. (author)

  12. Bioleaching of Arsenic-Rich Gold Concentrates by Bacterial Flora before and after Mutation

    Directory of Open Access Journals (Sweden)

    Xuehui Xie

    2013-01-01

    Full Text Available In order to improve the bioleaching efficiency of arsenic-rich gold concentrates, a mixed bacterial flora had been developed, and the mutation breeding method was adopted to conduct the research. The original mixed bacterial flora had been enrichedin acid mine drainage of Dexing copper mine, Jiangxi Province, China. It was induced by UV (ultraviolet, ultrasonic, and microwave, and their combination mutation. The most efficient bacterial flora after mutation was collected for further bioleaching of arsenic-rich gold concentrates. Results indicated that the bacterial flora after mutation by UV 60 s combined with ultrasonic 10 min had the best oxidation rate of ferrous, the biggest density of cells, and the most activity of total protein. During bioleaching of arsenic-rich gold concentrates, the density of the mutant bacterial cells reached to 1.13×108 cells/mL at 15 days, more than 10 times compared with that of the original culture. The extraction of iron reached to 95.7% after 15 days, increased by 9.9% compared with that of the original culture. The extraction of arsenic reached to 92.6% after 12 days, which was increased by 46.1%. These results suggested that optimum combined mutation could improve leaching ability of the bacterial flora more significantly.

  13. Bioleaching of Arsenic-Rich Gold Concentrates by Bacterial Flora before and after Mutation

    Science.gov (United States)

    Xie, Xuehui; Yuan, Xuewu; Liu, Na; Chen, Xiaoguang; Abdelgadir, Awad; Liu, Jianshe

    2013-01-01

    In order to improve the bioleaching efficiency of arsenic-rich gold concentrates, a mixed bacterial flora had been developed, and the mutation breeding method was adopted to conduct the research. The original mixed bacterial flora had been enrichedin acid mine drainage of Dexing copper mine, Jiangxi Province, China. It was induced by UV (ultraviolet), ultrasonic, and microwave, and their combination mutation. The most efficient bacterial flora after mutation was collected for further bioleaching of arsenic-rich gold concentrates. Results indicated that the bacterial flora after mutation by UV 60 s combined with ultrasonic 10 min had the best oxidation rate of ferrous, the biggest density of cells, and the most activity of total protein. During bioleaching of arsenic-rich gold concentrates, the density of the mutant bacterial cells reached to 1.13 × 108 cells/mL at 15 days, more than 10 times compared with that of the original culture. The extraction of iron reached to 95.7% after 15 days, increased by 9.9% compared with that of the original culture. The extraction of arsenic reached to 92.6% after 12 days, which was increased by 46.1%. These results suggested that optimum combined mutation could improve leaching ability of the bacterial flora more significantly. PMID:24381948

  14. Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock

    Directory of Open Access Journals (Sweden)

    Dhiraj ePaul

    2016-01-01

    Full Text Available Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world created in the basalt rocks. Although culture-dependent studies have been reported, the comprehensive understanding of microbial community composition and structure of Lonar Lake remain obscure. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet near consistent community composition. The predominance of bacterial phyla Proteobacteria (30% followed by Actinobacteria (24%, Firmicutes (11% and Cyanobacteria (5% was observed. Bacterial phylum Bacteroidetes (1.12%, BD1-5 (0.5%, Nitrospirae (0.41% and Verrucomicrobia (0.28% were detected as relatively minor populations in Lonar Lake ecosystem. Within Proteobacteria, Gammaproteobacteria represented the most abundant population (21-47% among all the sediments and as a minor population in water samples. Bacterial members Proteobacteria and Firmicutes were present significantly higher (p≥0.05 in sediment samples, whereas members of Actinobacteria, Candidate_division_TM7 and Cyanobacteria (p≥0.05 were significantly abundant in water samples. It was noted that compared to other hypersaline soda lakes, Lonar Lake samples formed one distinct cluster, suggesting a different microbial community composition and structure. The present study reports for the first time the different composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. Having better insight of community structure of this Lake ecosystem could be useful in understanding the microbial role in the geochemical cycle for future functional exploration of the unique hypersaline Lonar Lake.

  15. The Arsenic Cycle in Searles Lake, California: An Arsenic-Rich, Salt-Saturated Soda Lake. II. Isolation of Arsenic-Metabolizing Microbes.

    Science.gov (United States)

    Switzer Blum, J.; Hoeft, S. E.; Stolz, J. F.; Langley, S.; Beveridge, T. J.; Kulp, T. R.; Oremland, R. S.

    2004-12-01

    The motivation for isolating arsenic-metabolizing prokaryotes from Searles Lake was to characterize the physiology of microbes that can cope simultaneously with at least 3 environmental extremes: saturating salt concentration, high pH, and high dissolved inorganic arsenic. A secondary motivation was to find extremely halophilc Archaea that could respire As(V), as this has only been reported for the Crenarchaea. Enrichment cultures of arsenate [As(V)]-respirers were established by inoculating Searles Lake mud into an anaerobic, alkaline (pH = 9.8) artificial medium containing 346 g/L dissolved salts, with lactate as the electron donor and As(V) as the electron acceptor. After about 6 months of bi-weekly transfers, the enrichment was purified by serial dilution, with the highest growth-positive dilution tube exhibiting motile cells having uniform morphology (curved rods). This culture, strain SLAS-1, grew by oxidizing lactate to acetate plus carbon dioxide while reducing As(V) to arsenite [As(III)]. The doubling time was 48 hours at 346 g/L salinity, and nearly equivalent growth rates were observed over a salinity range of 200 to 346 g/l, with no growth evident below 200 g/L. The pH range was 8.5 to 10, with an optimum at 9.5. Strain SLAS-1 has an unusual motility that can be characterized as a "fish-like" swimming motion. Thin section electron micrographs revealed the presence of an internal cytoplasmic filament that runs the full length of the microorganism. We suggest that this filament may be involved in cellular motility. However, taxonomic classification of SLAS-1 made by 16S rRNA gene sequences aligned it in the order Haloanaerobacteriales of the Domain Bacteria. In a further effort to isolate haloalkaliphilic Archaea, a similar enrichment strategy was employed as above, but cell-wall antibiotics were added to the medium to discourage the growth of Bacteria. An enrichment culture, designated Serl-Ab, was established that oxidized lactate to acetate plus carbon

  16. Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India.

    Science.gov (United States)

    Sarkar, Angana; Kazy, Sufia K; Sar, Pinaki

    2013-03-01

    Sixty-four arsenic (As) resistant bacteria isolated from an arsenic rich groundwater sample of West Bengal were characterized to investigate their potential role in subsurface arsenic mobilization. Among the isolated strains predominance of genera Agrobacterium/Rhizobium, Ochrobactrum and Achromobacter which could grow chemolitrophically and utilize arsenic as electron donor were detected. Higher tolerance to As(3+) [maximum tolerable concentration (MTC): ≥10 mM], As(5+) (MTC: ≥100 mM) and other heavy metals like Cu(2+), Cr(2+), Ni(2+) etc. (MTC: ≥10 mM), presence of arsenate reductase and siderophore was frequently observed among the isolates. Ability to produce arsenite oxidase and phosphatase enzyme was detected in 50 and 34 % of the isolates, respectively. Although no direct correlation among taxonomic identity of bacterial strains and their metabolic abilities as mentioned above was apparent, several isolates affiliated to genera Ochrobactrum, Achromobacter and unclassified Rhizobiaceae members were found to be highly resistant to As(3+) and As(5+) and positive for all the test properties. Arsenate reductase activity was found to be conferred by arsC gene, which in many strains was coupled with arsenite efflux gene arsB as well. Phylogenetic incongruence between the 16S rRNA and ars genes lineages indicated possible incidence of horizontal gene transfer for ars genes. Based on the results we propose that under the prevailing low nutrient condition inhabitant bacteria capable of using inorganic electron donors play a synergistic role wherein siderophores and phosphatase activities facilitate the release of sediment bound As(5+), which is subsequently reduced by arsenate reductase resulting into the mobilization of As(3+) in groundwater.

  17. Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump

    International Nuclear Information System (INIS)

    Filippi, Michal; Drahota, Petr; Machovič, Vladimír; Böhmová, Vlasta; Mihaljevič, Martin

    2015-01-01

    A more than 250 year-old mine dump was studied to document the products of long-term arsenopyrite oxidation under natural conditions in a coarse-grained mine waste dump and to evaluate the environmental hazards associated with this material. Using complementary mineralogical and chemical approaches (SEM/EDS/WDS, XRD, micro-Raman spectroscopy, pore water analysis, chemical extraction techniques and thermodynamic PHREEQC-2 modeling), we documented the mineralogical/geochemical characteristics of the dumped arsenopyrite-rich material and environmental stability of the newly formed secondary minerals. A distinct mineralogical zonation was found (listed based on the distance from the decomposed arsenopyrite): scorodite (locally associated with native sulfur pseudomorphs) plus amorphous ferric arsenate (AFA/pitticite), kaňkite, As-bearing ferric (hydr)oxides and jarosite. Ferric arsenates and ferric (hydr)oxides were found to dissolve and again precipitate from downward migrating As-rich solutions cementing rock fragments. Acidic pore water (pH 3.8) has elevated concentrations of As with an average value of about 2.9 mg L −1 . Aqueous As is highly correlated with pH (R 2 = 0.97, p < 0.001) indicating that incongruent dissolution of ferric arsenates controls dissolved As well as the pH of the percolating waste solution. Arsenic released from the dissolution of ferric arsenates into the pore water is, however, trapped by latter and lower-down precipitating jarosite and especially ferric (hydr)oxides. The efficiency of As sequestration by ferric (hydr)oxides in the waste dump and underlying soil has been found to be very effective, suggesting limited environmental impact of the mine waste dump on the surrounding soil ecosystems. - Highlights: • More than 250 year-old arsenopyrite-rich mine waste dump was studied. • Mineral transformation and the environmental stability of different secondary arsenic mineral phases were assessed. • High efficiency of As

  18. Effects of gamma-sterilization on DOC, uranium and arsenic remobilization from organic and microbial rich stream sediments

    International Nuclear Information System (INIS)

    Schaller, Joerg; Weiske, Arndt; Dudel, E. Gert

    2011-01-01

    Organic-rich sediments are known to be effective accumulators for uranium and arsenic. Much is known about the capacity for metal or metalloid fixation by microbes and organic compounds as well as inorganic sediment particles. Experiments investigating the effect of microbes on the process of metal fixation in sediments require sterilized sediments as control treatment which is often realized by gamma-sterilization. Only few studies show that gamma-sterilization has an effect on the remobilization of metal and metalloids and on their physico-chemical properties. These studies deal with sediments with negligible organic content whereas almost nothing is known about organic-rich sediments including a probably high microbial activity. In view of this, we investigated the effect of gamma-sterilization of organic-rich sediments on uranium and arsenic fixation and release. After ten days within an exposure experiment we found a significant higher remobilization of uranium and arsenic in sterile compared to unsterile treatments. In line with these findings the content of dissolved organic carbon (DOC), manganese, and iron increased to even significantly higher concentration in the sterile compared to unsterile treatment. Gamma-sterilization seems to change the physico-chemical properties of organic-rich sediments. Microbial activity is effectively eliminated. From increased DOC concentrations in overlaying water it is concluded that microbes are eventually killed with leaching of cellular compounds in the overlaying water. This decreases the adsorption capacity of the sediment and leads to enhanced uranium and arsenic remobilization. - Research highlight s : →Remobilization of uranium and arsenic is higher in gamma-sterile treatments. →DOC mobilization is also higher in sterilized treatment. →Adsorption capacity in sediments is reduced by release of DOC.

  19. Natronobacillus azotifigens gen. nov., sp. nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats

    NARCIS (Netherlands)

    Sorokin, I.D.; Zadorina, E.V.; Kravchenko, I.K.; Boulygina, E.S.; Tourova, T.P.; Sorokin, D.Y.

    2009-01-01

    Gram-positive bacteria capable of nitrogen fixation were obtained in microoxic enrichments from soda soils in south-western Siberia, north-eastern Mongolia, and the Lybian desert (Egypt). The same organisms were obtained in anoxic enrichments with glucose from soda lake sediments in the Kulunda

  20. Geophysical Investigations of Hypersaline Subglacial Water Systems in the Canadian Arctic: A Planetary Analog

    Science.gov (United States)

    Rutishauser, A.; Sharp, M. J.; Blankenship, D. D.; Skidmore, M. L.; Grima, C.; Schroeder, D. M.; Greenbaum, J. S.; Dowdeswell, J. A.; Young, D. A.

    2017-12-01

    Robotic exploration and remote sensing of the solar system have identified the presence of liquid water beneath ice on several planetary bodies, with evidence for elevated salinity in certain cases. Subglacial water systems beneath Earth's glaciers and ice sheets may provide terrestrial analogs for microbial habitats in such extreme environments, especially those with higher salinity. Geological data suggest that several ice caps and glaciers in the eastern Canadian High Arctic are partially underlain by evaporite-rich sedimentary rocks, and subglacial weathering of these rocks is potentially conducive to the formation of hypersaline subglacial waters. Here, we combine airborne geophysical data with geological constraints to identify and characterize hypersaline subglacial water systems beneath ice caps in Canada's Queen Elizabeth Islands. High relative bedrock reflectivity and specularity anomalies that are apparent in radio-echo sounding data indicate multiple locations where subglacial water is present in areas where modeled ice temperatures at the glacier bed are well below the pressure melting point. This suggests that these water systems are hypersaline, with solute concentrations that significantly depress the freezing point of water. From combined interpretations of geological and airborne-magnetic data, we define the geological context within which these systems have developed, and identify possible solute-sources for the inferred brine-rich water systems. We also derive subglacial hydraulic potential gradients using airborne laser altimetry and ice thickness data, and apply water routing models to derive subglacial drainage pathways. These allow us to identify marine-terminating glaciers where outflow of the brine-rich waters may be anticipated. These hypersaline subglacial water systems beneath Canadian Arctic ice caps and glaciers may represent robust microbial habitats, and potential analogs for brines that may exist beneath ice masses on planetary

  1. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines.

    Czech Academy of Sciences Publication Activity Database

    Vavourakis, C. D.; Ghai, Rohit; Rodriguez-Valera, F.; Sorokin, D. Y.; Tringe, S. G.; Hugenholtz, P.; Muyzer, G.

    2016-01-01

    Roč. 7, February (2016), č. článku 211. ISSN 1664-302X R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : soda lake brines * Nanohaloarchaea * Halobacteria * Bacteroidetes * hydrolytics * cellulase * chitinase * rhodopsin Subject RIV: EE - Microbiology, Virology Impact factor: 4.076, year: 2016

  2. ARSENIC ADSORPTION AND REDUCTION IN IRON-RICH SOILS NEARBY LANDFILLS IN NORTHWEST FLORIDA

    Directory of Open Access Journals (Sweden)

    Hongqin Xue

    2016-01-01

    Full Text Available In Florida, soils are mainly composed of Myakka, an acid soil characterized by a subsurface accumulation of humus and Al(III and Fe(III oxides. Downgradient of the landfills in Northwest Florida, elevated levels of iron and arsenic observations had been made in the groundwater from monitoring wells, which was attributed to the geomicrobial iron and arsenic reduction. There is thus an immediate research need for a better understanding of the reduction reactions that are responsible for the mobilization of iron and arsenic in the subsurface soil nearby landfills. Owing to the high Fe(III oxide content, As(V adsorption reactions with Fe(III oxide surfaces are particularly important, which may control As(V reduction. This research focused on the investigation of the biogeochemical processes of the subsurface soil nearby landfills of Northwest Florida. Arsenic and iron reduction was studied in batch reactors and quantified based on Monod-type microbial kinetic growth simulations. As(V adsorption in iron-rich Northwest Floridian soils was further investigated to explain the reduction observations. It was demonstrated in this research that solubilization of arsenic in the subsurface soil nearby landfills in Northwest Florida would likely occur under conditions favoring Fe(III dissimilatory reduction.

  3. Traditional Practicing with Arsenic Rich Water in Fish Industries Leads to Health Hazards in West Bengal and North-Eastern States of India

    Science.gov (United States)

    Kashyap, C. A.

    2014-12-01

    The supply of good quality food is main necessity for economic and social health of urban and rural population throughout the globe. This study comes to know the severity of As in the west Bengal and north-eastern states of the India. Over the 75% large population of India lives in villages and associated with farming and its related work. West Bengal is the densest populated area of India, fish and rice is the staple food as well as in north-eastern states. For the fulfil demand of fish large population the area are used fisheries as the business. Arsenic contamination in ground water is major growing threat to worldwide drinking water resources. High As contamination in water have been reported in many parts of the world Chandrasekharam et al., 2001; Smedley and Kinniburgh, 2002; Farooq et al., 2010). In context to West Bengal and north-east states of India arsenic is main problem in the food chain. These areas are very rich in arsenic many fold higher concentrations of Arsenic than their respective WHO permissible limits have been reported in the water. Over the 36 million people in Bengal delta are at risk due to drinking of As contaminated water (Nordstrom, 2002). The highest concentration of arsenic (535 μg/L Chandrashekhar et al. 2012) was registered from Ngangkha Lawai Mamang Leikai area of Bishnupur district which is fifty fold of the WHO limit for arsenic and tenfold of Indian permissible limit. With the continuous traditional practicing (As rich water pond) and untreated arsenic rich water in fish industries leads to health hazards. A sustainable development in aquaculture should comprise of various fields including environmental, social, cultural and economic aspects. A scientific study has to be needed for the overcome on this problem and rain harvested water may be used for reduce the arsenic problems in fisheries.

  4. Comparison studies on soda lignin and soda-anthraquinone lignin

    International Nuclear Information System (INIS)

    Ibrahim, M.N.M; Yusof, N.N.M.; Hashim, A.

    2007-01-01

    Soda lignin and soda anthraquinone lignin were compared in this study. The physico-chemical properties and structural features of the isolated lignin were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet (UV), ash test, Carbon-Hydrogen-Nitrogen (CHN) analyzer, Nuclear Magnetic Resonance ( 13 C-NMR) and High Performance Liquid Chromatography (HPLC). Nitrobenzene oxidation was performed on these two types of lignin especially for the HPLC analysis. Based on the CHN, 13 C-NMR and UV results there were no significant differences between soda lignin and soda anthraquinone lignin. The FTIR results also showed that there were no significant differences in terms of functional groups that exist in both lignins. (author)

  5. Large-sized soda ban as an alternative to soda tax.

    Science.gov (United States)

    Min, Hery Michelle

    2013-01-01

    This Note examines New York City's Sugary Drinks Portion Cap Rule (Soda Ban), which was originally set to become effective March 12, 2013. The New York County Supreme Court's decision in New York Statewide Coalition of Hispanic Chambers of Commerce v. New York City Department of Health and Mental Hygiene suspended the Soda Ban on March 11, 2013. The First Department of the Appellate Division of New York State Supreme Court affirmed the suspension on July 30, 2013. However, the complex economic policy and constitutional issues arising from the proposed Soda Ban deserve as much attention as the ultimate result of the legal challenge to the ban. Both courts struck down the Soda Ban on the grounds that it violated the separation of powers doctrine. The lower court further held that the Soda Ban was arbitrary and capricious. This Note does not focus solely on the holdings of the two courts, but takes a broader approach in analyzing the issues involved in the Soda Ban. By comparing and contrasting tobacco products with sugary beverages, this Note explains why the public seems to find the Soda Ban less appealing than tobacco regulations. Specifically, this Note addresses how the failed attempts of numerous states and cities to implement soda taxes demonstrate the complexity of policies geared toward curbing obesity; how fundamental values, such as health, fairness, efficiency, and autonomy factor into obesity policies; and the fact that legislatures and courts are struggling to determine the scope of public health law intervention. The Note explores how the Soda Ban, despite its judicial suspension, could represent a stepping-stone in combating the obesity epidemic.

  6. Arsenic-Rich Polyarsenides Stabilized by Cp*Fe Fragments.

    Science.gov (United States)

    Schmidt, Monika; Konieczny, David; Peresypkina, Eugenia V; Virovets, Alexander V; Balázs, Gabor; Bodensteiner, Michael; Riedlberger, Felix; Krauss, Hannes; Scheer, Manfred

    2017-06-12

    The redox chemistry of [Cp*Fe(η 5 -As 5 )] (1, Cp*=η 5 -C 5 Me 5 ) has been investigated by cyclic voltammetry, revealing a redox behavior similar to that of its lighter congener [Cp*Fe(η 5 -P 5 )]. However, the subsequent chemical reduction of 1 by KH led to the formation of a mixture of novel As n scaffolds with n up to 18 that are stabilized only by [Cp*Fe] fragments. These include the arsenic-poor triple-decker complex [K(dme) 2 ][{Cp*Fe(μ,η 2:2 -As 2 )} 2 ] (2) and the arsenic-rich complexes [K(dme) 3 ] 2 [(Cp*Fe) 2 (μ,η 4:4 -As 10 )] (3), [K(dme) 2 ] 2 [(Cp*Fe) 2 (μ,η 2:2:2:2 -As 14 )] (4), and [K(dme) 3 ] 2 [(Cp*Fe) 4 (μ 4 ,η 4:3:3:2:2:1:1 -As 18 )] (5). Compound 4 and the polyarsenide complex 5 are the largest anionic As n ligand complexes reported thus far. Complexes 2-5 were characterized by single-crystal X-ray diffraction, 1 H NMR spectroscopy, EPR spectroscopy (2), and mass spectrometry. Furthermore, DFT calculations showed that the intermediate [Cp*Fe(η 5 -As 5 )] - , which is presumably formed first, undergoes fast dimerization to the dianion [(Cp*Fe) 2 (μ,η 4:4 -As 10 )] 2- . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.

    Science.gov (United States)

    Fazi, Stefano; Crognale, Simona; Casentini, Barbara; Amalfitano, Stefano; Lotti, Francesca; Rossetti, Simona

    2016-07-01

    Microorganisms play an important role in speciation and mobility of arsenic in the environment, by mediating redox transformations of both inorganic and organic species. Since arsenite [As(III)] is more toxic than arsenate [As(V)] to the biota, the microbial driven processes of As(V) reduction and As(III) oxidation may play a prominent role in mediating the environmental impact of arsenic contamination. However, little is known about the ecology and dynamics of As(III)-oxidizing populations within native microbial communities exposed to natural high levels of As. In this study, two techniques for single cell quantification (i.e., flow cytometry, CARD-FISH) were used to analyze the structure of aquatic microbial communities across a gradient of arsenic (As) contamination in different freshwater environments (i.e., groundwaters, surface and thermal waters). Moreover, we followed the structural evolution of these communities and their capacity to oxidize arsenite, when experimentally exposed to high As(III) concentrations in experimental microcosms. Betaproteobacteria and Deltaproteobacteria were the main groups retrieved in groundwaters and surface waters, while Beta and Gammaproteobacteria dominated the bacteria community in thermal waters. At the end of microcosm incubations, the communities were able to oxidize up to 95 % of arsenite, with an increase of Alphaproteobacteria in most of the experimental conditions. Finally, heterotrophic As(III)-oxidizing strains (one Alphaproteobacteria and two Gammaproteobacteria) were isolated from As rich waters. Our findings underlined that native microbial communities from different arsenic-contaminated freshwaters can efficiently perform arsenite oxidation, thus contributing to reduce the overall As toxicity to the aquatic biota.

  8. Microbial diversity of the hypersaline and lithium-rich Salar de Uyuni, Bolivia.

    Science.gov (United States)

    Haferburg, Götz; Gröning, Janosch A D; Schmidt, Nadja; Kummer, Nicolai-Alexeji; Erquicia, Juan Carlos; Schlömann, Michael

    2017-06-01

    Salar de Uyuni, situated in the Southwest of the Bolivian Altiplano, is the largest salt flat on Earth. Brines of this athalassohaline hypersaline environment are rich in lithium and boron. Due to the ever- increasing commodity demand, the industrial exploitation of brines for metal recovery from the world's biggest lithium reservoir is likely to increase substantially in the near future. Studies on the composition of halophilic microbial communities in brines of the salar have not been published yet. Here we report for the first time on the prokaryotic diversity of four brine habitats across the salar. The brine is characterized by salinity values between 132 and 177 PSU, slightly acidic to near-neutral pH and lithium and boron concentrations of up to 2.0 and 1.4g/L, respectively. Community analysis was performed after sequencing the V3-V4 region of the 16S rRNA genes employing the Illumina MiSeq technology. The mothur software package was used for sequence processing and data analysis. Metagenomic analysis revealed the occurrence of an exclusively archaeal community comprising 26 halobacterial genera including only recently identified genera like Halapricum, Halorubellus and Salinarchaeum. Despite the high diversity of the halobacteria-dominated community in sample P3 (Shannon-Weaver index H'=3.12 at 3% OTU cutoff) almost 40% of the Halobacteriaceae-assigned sequences could not be classified on the genus level under stringent filtering conditions. Even if the limited taxonomic resolution of the V3-V4 region for halobacteria is considered, it seems likely to discover new, hitherto undescribed genera of the family halobacteriaceae in this particular habitat of Salar de Uyuni in future. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Arsenic, Anaerobes, and Autotrophy.

    Science.gov (United States)

    Oremland, R. S.

    2008-12-01

    That microbes have resistance to the toxic arsenic oxyanions arsenite [As(III)] and arsenate [As(V)] has been recognized for some time. More recently it was shown that certain prokaryotes can demonstrate As- dependent growth by conserving the energy gained from the aerobic oxidation of As(III) to As(V), or from the reduction of As(V) to As(III) under anaerobic conditions. During the course of our field studies of two alkaline, hypersaline soda lakes (Mono Lake and Searles Lake, CA) we have discovered several new anaerobic chemo- and photo-autotrophic bacteria that can center their energy gain around the redox reactions between As(III) and As(V). Alkalilimnicola ehrlichii, isolated from the water column of Mono Lake is a nitrate-respiring, As(III)-oxidizing chemoautotroph of the gamma-proteobacteria that has a highly flexible metabolism. It can function either as a facultative anaerobe or as a chemo-autotroph, or as a heterotroph (Hoeft et al., 2007). In contrast, strain MLMS-1 of the delta-proteobacteria was also isolated from Mono Lake, but to date is the first example of an obligate As(V)-respirer that is also an obligate chemo-autotroph, gaining its energy via the oxidation of sulfide to sulfate (Hoeft et al., 2004). Strain SLAS-1, isolated from salt-saturated Searles Lake is a member of the Halananerobiales, and can either grow as a heterotroph (lactate e-donor) or chemo- autotroph (sulfide e-donor) while respiring As(V). The fact that it can achieve this feat at salt-saturation (~ 340 g/L) makes it a true extremophile (Oremland et. al., 2005). Finally, strain PHS-1 isolated from a hot spring on Paoha island in Mono Lake is the first example of a photosynthetic bacterium of the gamma- proteobacteria able to link its growth to As(III)-dependent anoxygenic photosynthesis (Kulp et al., 2008). These novel microbes give us new insights into the evolution of arsenic-based metabolism and their role in the biogeochemical cycling of this toxic element. Hoeft, S.E., et

  10. Papermaking Properties of Carpinus betulus with kraft, Soda and Soda-Urea Pulping Processes

    Directory of Open Access Journals (Sweden)

    Rasoul Darstan

    2013-06-01

    Full Text Available This research was carried out in order to comparatively investigate the hornbeam kraft, soda and soda-urea papermaking properties. The selected treatment in kraft process had an average yield of 44.43% and kappa number of 23.75. In soda process the selected treatment had an average yield of 38.75% and kappa number of 19.28. In soda-urea process, the selected treatments had an average yield of 39.85, 40.1, 40.5, 39.8 and 40.61 and kappa number of 21.21, 22.33, 22.66, 25.28 and 26.85. After refining the selected pulp to reach the freeness of 400±25 ml CSF, 60 g/m2 handsheets were made and physical, mechanical and optical properties were measured. Results showed that kraft pulps had higher yield and better refinability than soda and soda-urea pulps. Papers made from kraft process had higher strength properties than those made of soda and soda-urea process. With addition of urea, yield and kappa number of pulps increased. The highest improvement in tensile index, breaking length and tear index was achieved with addition of 3% urea and the highest improvement in burst index was achieved with adding 4% urea. Results of brightness measurements showed that papers from kraft and soda processes had the lowest and highest brightness degree respectively. With the addition of urea, brightness of papers decreased.

  11. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  12. A comparison of soda and soda-AQ pulps from cotton stalks | Akgül ...

    African Journals Online (AJOL)

    In this study, cotton stalks (Gossypium hirsutum L.) were cooked using soda and soda-anthraquinone (AQ) process. Nine soda cooks were conducted by changing cooking conditions including active alkali charge and pulping time. Soda-AQ cooks were obtained by adding 0.075, 0.10, 0.15, 0.2% AQ (based on o.d stalks) to ...

  13. Rapid arsenic(V)-reduction by fire in schwertmannite-rich soil enhances arsenic mobilisation

    Science.gov (United States)

    Johnston, Scott G.; Bennett, William W.; Burton, Edward D.; Hockmann, Kerstin; Dawson, Nigel; Karimian, Niloofar

    2018-04-01

    Arsenic in acid sulfate soil (ASS) landscapes commonly associates with schwertmannite, a poorly crystalline Fe(III) mineral. Fires in ASS landscapes can thermally transform Fe(III) minerals to more crystalline phases, such as maghemite (γFe2O3). Although thermal genesis of maghemite requires electron transfer via organic matter pyrolysis, the possibility of fire causing concurrent transfer of electrons to schwertmannite-bound As(V) remains unexplored. Here, we subject an organic-rich soil with variable carbon content (∼9-44% organic C) mixed (4:1) with As(V)-bearing schwertmannite (total As of 4.7-5.4 μmol g-1), to various temperatures (200-800 °C) and heating durations (5-120 min). We explore the consequences for As and Fe via X-ray absorption spectroscopy, X-ray diffraction, 57Fe Mössbauer spectroscopy and selective extracts. Heating transforms schwertmannite to mainly maghemite and hematite at temperatures above 300-400 °C, with some transitory formation of magnetite, and electrons are readily transferred to both Fe(III) and As(V). As(V) reduction to As(III) is influenced by a combination of temperature, heating duration and carbon content and is significantly (P moderate fires in ASS landscapes, even of short duration, may generate considerable labile As(III) species and cause a pulse of As(III)aq mobilisation following initial re-wetting. Further research is warranted to examine if analogous As(III) formation occurs during combustion of organic-rich soil containing common As-bearing Fe(III) minerals such as ferrihydrite and goethite.

  14. Pressure retarded osmosis from hypersaline sources - A review

    DEFF Research Database (Denmark)

    Bajraktari, Niada; Hélix-Nielsen, Claus; Madsen, Henrik T.

    2017-01-01

    for commercialization. The scope of this paper is to review the existing knowledge on the use of hypersaline waters in the salinity gradient process, pressure retarded osmosis. Although only few papers have had the specific aim of investigating hypersaline waters, concentrated solutions have been used in many papers...

  15. Baking Soda Science.

    Science.gov (United States)

    Science Activities, 1994

    1994-01-01

    Discusses the basic principles of baking soda chemistry including the chemical composition of baking soda, its acid-base properties, the reaction of bicarbonate solution with calcium ions, and a description of some general types of chemical reactions. Includes a science activity that involves removing calcium ions from water. (LZ)

  16. Arsenic pollution sources.

    Science.gov (United States)

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  17. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation

    Science.gov (United States)

    De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.

    2007-01-01

    Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising

  18. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    Science.gov (United States)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  19. Antibacterial activity of baking soda.

    Science.gov (United States)

    Drake, D

    1997-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque.

  20. Arsenic species in ecosystems affected by arsenic-rich spring water near an abandoned mine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.T. [Department of Earth System Science, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Gu, Seoul 120-749 (Korea, Republic of); Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Yoon, H.O., E-mail: dunee@kbsi.re.k [Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Yoon, C. [Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Woo, N.C., E-mail: ncwoo@yonsei.ac.k [Department of Earth System Science, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Gu, Seoul 120-749 (Korea, Republic of)

    2009-12-15

    The objectives of this study were to quantitatively estimate the distribution of arsenic with its speciation and to identify potential pathways for transformation of arsenic species from samples of water, sediments, and plants in the ecosystem affected by the Cheongog Spring, where As(V) concentration reached levels up to 0.270 mg L{sup -1}. After flowing about 100 m downstream, the arsenic level showed a marked reduction to 0.044 mg L{sup -1} (about 84% removal) without noticeable changes in major water chemistry. The field study and laboratory hydroponic experiments with the dominant emergent plants along the creek (water dropwort and thunbergian smartweed) indicated that arsenic distribution, reduction, and speciation appear to be controlled by, (i) sorption onto stream sediments in exchangeable fractions, (ii) bioaccumulation by and possible release from emergent plants, and (iii) transformation of As(V) to As(III) and organic species through biological activities. - Biogeochemical reactions with emergent plants and sediments control the fate of arsenic along creeks originating from a high-As Spring.

  1. ARSENIC REMOVAL BY PHYTOFILTRATION AND SILICON TREATMENT : A POTENTIAL SOLUTION FOR LOWERING ARSENIC CONCENTRATIONS IN FOOD CROPS

    OpenAIRE

    Sandhi, Arifin

    2017-01-01

    Use of arsenic-rich groundwater for crop irrigation can increase the arsenic (As) content in food crops and act as a carcinogen, compromising human health. Using aquatic plant based phytofiltration is a potential eco-technique for removing arsenic from water. The aquatic moss species Warnstorfia fluitans grows naturally in mining areas in northern Sweden, where high concentrations of arsenic occur in lakes and rivers. This species was selected as a model for field, climate chamber and greenho...

  2. Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia).

    Science.gov (United States)

    Namsaraev, Zorigto; Samylina, Olga; Sukhacheva, Marina; Borisenko, Gennadii; Sorokin, Dimitry Y; Tourova, Tatiana

    2018-04-16

    Bitter-1 is a shallow hypersaline soda lake in Kulunda Steppe (Altai region, Russia). During a study period between 2005 and 2016, the salinity in the littoral area of the lake fluctuated within the range from 85 to 400 g/L (in July of each year). Light-dependent nitrogen fixation occurred in this lake up to the salt-saturating conditions. The rates increased with a decrease in salinity, both under environmental conditions and in laboratory simulations. The salinities below 100 g/L were favorable for light-dependent nitrogen fixation, while the process was dramatically inhibited above 200 g/L salts. The analysis of nifH genes in environmental samples and in enrichment cultures of diazotrophic phototrophs suggested that anaerobic fermenting and sulfate-reducing bacteria could participate in the dark nitrogen fixation process up to soda-saturating conditions. However, we cannot exclude the possibility that haloalkaliphilic nonheterocystous cyanobacteria (Euhalothece sp. and Geitlerinema sp.) and anoxygenic purple sulfur bacteria (Ectothiorhodospira sp.) might also play a role in the process at light conditions. The heterocystous cyanobacterium Nodularia sp. develops at low salinity (below 80 g/L) that is not characteristic for Bitter-1 Lake and thus does not make a significant contribution to the nitrogen fixation in this lake.

  3. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  4. Hemorrhagic Encephalopathy From Acute Baking Soda Ingestion.

    Science.gov (United States)

    Hughes, Adrienne; Brown, Alisha; Valento, Matthew

    2016-09-01

    Baking soda is a readily available household product composed of sodium bicarbonate. It can be used as a home remedy to treat dyspepsia. If used in excessive amounts, baking soda has the potential to cause a variety of serious metabolic abnormalities. We believe this is the first reported case of hemorrhagic encephalopathy induced by baking soda ingestion. Healthcare providers should be aware of the dangers of baking soda misuse and the associated adverse effects.

  5. Hemorrhagic Encephalopathy From Acute Baking Soda Ingestion

    Directory of Open Access Journals (Sweden)

    Adrienne Hughes

    2016-09-01

    Full Text Available Baking soda is a readily available household product composed of sodium bicarbonate. It can be used as a home remedy to treat dyspepsia. If used in excessive amounts, baking soda has the potential to cause a variety of serious metabolic abnormalities. We believe this is the first reported case of hemorrhagic encephalopathy induced by baking soda ingestion. Healthcare providers should be aware of the dangers of baking soda misuse and the associated adverse effects.

  6. Hemorrhagic Encephalopathy From Acute Baking Soda Ingestion

    OpenAIRE

    Hughes, Adrienne; Brown, Alisha; Valento, Matthew

    2016-01-01

    Baking soda is a readily available household product composed of sodium bicarbonate. It can be used asa home remedy to treat dyspepsia. If used in excessive amounts, baking soda has the potential to causea variety of serious metabolic abnormalities. We believe this is the first reported case of hemorrhagicencephalopathy induced by baking soda ingestion. Healthcare providers should be aware of the dangers ofbaking soda misuse and the associated adverse effects. [West J Emerg Med. 2016;17(5)619...

  7. Functional microbiology of soda lakes

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.L.; Muyzer, G.

    2015-01-01

    Soda lakes represent unique permanently haloalkaline system. Despite the harsh conditions, they are inhabited by abundant, mostly prokaryotic, microbial communities. This review summarizes results of studies of main functional groups of the soda lake prokaryotes responsible for carbon, nitrogen and

  8. Relevance of a Hypersaline Sodium-Rich Naturally Sparkling Mineral Water to the Protection against Metabolic Syndrome Induction in Fructose-Fed Sprague-Dawley Rats: A Biochemical, Metabolic, and Redox Approach

    Directory of Open Access Journals (Sweden)

    Cidália Dionísio Pereira

    2014-01-01

    Full Text Available The Metabolic Syndrome increases the risk for atherosclerotic cardiovascular disease and type 2 Diabetes Mellitus. Increased fructose consumption and/or mineral deficiency have been associated with Metabolic Syndrome development. This study aimed to investigate the effects of 8 weeks consumption of a hypersaline sodium-rich naturally sparkling mineral water on 10% fructose-fed Sprague-Dawley rats (Metabolic Syndrome animal model. The ingestion of the mineral water (rich in sodium bicarbonate and with higher potassium, calcium, and magnesium content than the tap water used as control reduced/prevented not only the fructose-induced increase of heart rate, plasma triacylglycerols, insulin and leptin levels, hepatic catalase activity, and organ weight to body weight ratios (for liver and both kidneys but also the decrease of hepatic glutathione peroxidase activity and oxidized glutathione content. This mineral-rich water seems to have potential to prevent Metabolic Syndrome induction by fructose. We hypothesize that its regular intake in the context of modern diets, which have a general acidic character interfering with mineral homeostasis and are poor in micronutrients, namely potassium, calcium, and magnesium, could add surplus value and attenuate imbalances, thus contributing to metabolic and redox health and, consequently, decreasing the risk for atherosclerotic cardiovascular disease.

  9. Microbial ecology of soda lakes: investigating sulfur and nitrogen cycling at Mono Lake, CA, USA

    Science.gov (United States)

    Fairbanks, D.; Phillips, A. A.; Wells, M.; Bao, R.; Fullerton, K. M.; Stamps, B. W.; Speth, D. R.; Johnson, H.; Sessions, A. L.

    2017-12-01

    Soda lakes represent unique ecosystems characterized by extremes of pH, salinity and distinct geochemical cycling. Despite these extreme conditions, soda lakes are important repositories of biological adaptation and have a highly functional microbial system. We investigated the biogeochemical cycling of sulfur and nitrogen compounds in Mono Lake, California, located east of the Sierra Nevada mountains. Mono lake is characterized by hyperalkaline, hypersaline and high sulfate concentrations and can enter prolonged periods of meromixis due to freshwater inflow. Typically, the microbial sulfur cycle is highly active in soda lakes with both oxidation and reduction of sulfur compounds. However, the biological sulfur cycle is connected to many other main elemental cycles such as carbon, nitrogen and metals. Here we investigated the interaction between sulfur and nitrogen cycling in Mono lake using a combination of molecular, isotopic, and geochemical observations to explore the links between microbial phylogenetic composition and functionality. Metagenomic and 16S rRNA gene amplicon sequencing were determined at two locations and five depths in May 2017. 16S rRNA gene amplicon sequencing analysis revealed organisms capable of both sulfur and nitrogen cycling. The relative abundance and distribution of functional genes (dsrA, soxAB, nifH, etc) were also determined. These genetic markers indicate the potential in situ relevance of specific carbon, nitrogen, and sulfur pathways in the water column prior to the transition to meromictic stratification. However, genes for sulfide oxidation, denitrification, and ammonification were present. Genome binning guided by the most abundant dsrA sequences, GC content, and abundance with depth identified a Thioalkalivibrio paradoxus bin containing genes capable of sulfur oxidation, denitrification, and nitrate reduction. The presence of a large number of sulfur and nitrogen cycling genes associated with Thioalkalivibrio paradoxus

  10. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom.

    Science.gov (United States)

    Andreote, Ana P D; Dini-Andreote, Francisco; Rigonato, Janaina; Machineski, Gabriela Silva; Souza, Bruno C E; Barbiero, Laurent; Rezende-Filho, Ary T; Fiore, Marli F

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii . This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  11. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Science.gov (United States)

    Andreote, Ana P. D.; Dini-Andreote, Francisco; Rigonato, Janaina; Machineski, Gabriela Silva; Souza, Bruno C. E.; Barbiero, Laurent; Rezende-Filho, Ary T.; Fiore, Marli F.

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes. PMID:29520256

  12. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Directory of Open Access Journals (Sweden)

    Ana P. D. Andreote

    2018-02-01

    Full Text Available Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600 potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake and by no record of cyanobacterial blooms (Salina Preta, black-water lake. The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  13. SODA: Smart Objects, Dumb Archives

    Science.gov (United States)

    Nelson, Michael L.; Maly, Kurt; Zubair, Mohammad; Shen, Stewart N. T.

    2004-01-01

    We present the Smart Object, Dumb Archive (SODA) model for digital libraries (DLs). The SODA model transfers functionality traditionally associated with archives to the archived objects themselves. We are exploiting this shift of responsibility to facilitate other DL goals, such as interoperability, object intelligence and mobility, and heterogeneity. Objects in a SODA DL negotiate presentation of content and handle their own terms and conditions. In this paper we present implementations of our smart objects, buckets, and our dumb archive (DA). We discuss the status of buckets and DA and how they are used in a variety of DL projects.

  14. Dissimilatory Arsenate Reduction and In Situ Microbial Activities and Diversity in Arsenic-rich Groundwater of Chianan Plain, Southwestern Taiwan.

    Science.gov (United States)

    Das, Suvendu; Liu, Chia-Chuan; Jean, Jiin-Shuh; Liu, Tsunglin

    2016-02-01

    Although dissimilatory arsenic reduction (DAsR) has been recognized as an important process for groundwater arsenic (As) enrichment, its characterization and association with in situ microbial activities and diversity in As-rich groundwater is barely studied. In this work, we collected As-rich groundwater at depths of 23, 300, and 313 m, respectively, from Yenshui-3, Budai-Shinwen, and Budai-4 of Chianan plain, southwestern Taiwan, and conducted incubation experiments using different electron donors, acceptors, and sulfate-reducing bacterial inhibitor (tungstate) to characterize DAsR. Moreover, bacterial diversity was evaluated using 454-pyrosequencing targeting bacterial 16S rRNAs. MPN technique was used to enumerate microorganisms with different in situ metabolic functions. The results revealed that DAsR in groundwater of Chianan plain was a biotic phenomenon (as DAsR was totally inhibited by filter sterilization), enhanced by the type of electron donor (in this case, lactate enhanced DAsR but acetate and succinate did not), and limited by the availability of arsenate. In addition to oxidative recycling of As(III), dissolution of As(V)-saturated manganese and iron minerals by indigenous dissimilatory Mn(IV)- and Fe(III)-reducing bacteria, and abiotic oxidation of As(III) with Mn(IV) regenerated As(V) in the groundwater. Sulfate-respiring bacteria contributed 7.4 and 28.2 % to the observed DAsR in groundwater of Yinshui-3 and Budai-Shinwen, respectively, whereas their contribution was negligible in groundwater of Budai-4. A noticeable variation in dominant genera Acinetobacter and Bacillus was observed within the groundwater. Firmicutes dominated in highly As-rich groundwater of Yenshui-3, whereas Proteobacteria dominated in comparatively less As-rich groundwater of Budai-Shinwen and Budai 4.

  15. Investigations of Methane Production in Hypersaline Environments

    Science.gov (United States)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being

  16. Effects of organic matter and ageing on the bioaccessibility of arsenic

    International Nuclear Information System (INIS)

    Meunier, Louise; Koch, Iris; Reimer, Kenneth J.

    2011-01-01

    Arsenic-contaminated soils may pose a risk to human health. Redevelopment of contaminated sites may involve amending soils with organic matter, which potentially increases arsenic bioaccessibility. The effects of ageing on arsenic-contaminated soils mixed with peat moss were evaluated in a simulated ageing period representing two years, during which arsenic bioaccessibility was periodically measured. Significant increases (p = 0.032) in bioaccessibility were observed for 15 of 31 samples tested, particularly in comparison with samples originally containing >30% bioaccessible arsenic in soils naturally rich in organic matter (>25%). Samples where percent arsenic bioaccessibility was unchanged with age were generally poor in organic matter (average 7.7%) and contained both arsenopyrite and pentavalent arsenic forms that remained unaffected by the organic matter amendments. Results suggest that the addition of organic matter may lead to increases in arsenic bioaccessibility, which warrants caution in the evaluation of risks associated with redevelopment of arsenic-contaminated land. - Highlights: → Adding organic matter to contaminated soils may increase arsenic bioaccessibility. → Ageing soils with >25% organic matter can lead to increased arsenic bioaccessibility. → No changes in arsenic bioaccessibility for soils poor in organic matter (mean 7.7%). → No changes in arsenic bioaccessibility for samples containing arsenopyrite. → Organic matter in soil may favour oxidation of trivalent arsenic to pentavalent form. - Adding organic carbon may increase arsenic bioaccessibility, especially in samples originally containing >30% bioaccessible arsenic in organic carbon-rich soils (>25%).

  17. Arsenic species and chemistry in groundwater of southeast Michigan

    International Nuclear Information System (INIS)

    Kim, M.-J.; Nriagu, Jerome; Haack, Sheridan

    2002-01-01

    Most of the arsenic detected was arsenite [As(III)]. - Groundwater samples, taken from 73 wells in 10 counties of southeast Michigan in 1997 had arsenic concentrations in the range of 0.5 to 278 μg/l, the average being 29 μg/l. About 12% of these wells had arsenic concentrations that exceeded the current USEPA's maximum contaminant level of 50 μg/l. Most (53-98%) of the arsenic detected was arsenite [As(III)] and other observations supported the arsenic species distribution (low redox potential and DO). In shallow groundwater ( 15 m), the concentration of arsenic is possibly controlled by reductive dissolution of arsenic-rich iron hydroxide/oxyhydroxide and dissolution of arsenic sulfide minerals

  18. Exposure to soda commercials affects sugar-sweetened soda consumption in young women. An observational experimental study

    NARCIS (Netherlands)

    Koordeman, R.; Anschutz, D.J.; Baaren, R.B. van; Engels, R.C.M.E.

    2010-01-01

    The present study examines the direct effects of television commercials advertising soda on actual sugar-sweetened soda consumption among young women. An experimental-observational study design was used, in which 51 female students (ages 18-29) were exposed to a 35-min movie clip, interrupted by two

  19. Exposure to soda commercials affects sugar-sweetened soda consumption in young woman: an observational experimental study

    NARCIS (Netherlands)

    Koordeman, R.; Anschutz, D.J.; van Baaren, R.B.; Engels, R.C.M.E.

    2010-01-01

    The present study examines the direct effects of television commercials advertising soda on actual sugar-sweetened soda consumption among young women. An experimental-observational study design was used, in which 51 female students (ages 18-29) were exposed to a 35-min movie clip, interrupted by two

  20. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different

  1. High-Quality Draft Single-Cell Genome Sequence Belonging to the Archaeal Candidate Division SA1, Isolated from Nereus Deep in the Red Sea

    KAUST Repository

    Ngugi, David; Stingl, Ulrich

    2018-01-01

    Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.

  2. High-Quality Draft Single-Cell Genome Sequence Belonging to the Archaeal Candidate Division SA1, Isolated from Nereus Deep in the Red Sea

    KAUST Repository

    Ngugi, David

    2018-05-09

    Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.

  3. Do copepods inhabit hypersaline waters worldwide? A short review and discussion

    Science.gov (United States)

    Anufriieva, Elena V.

    2015-11-01

    A small number of copepod species have adapted to an existence in the extreme habitat of hypersaline water. 13 copepod species have been recorded in the hypersaline waters of Crimea (the largest peninsula in the Black Sea with over 50 hypersaline lakes). Summarizing our own and literature data, the author concludes that the Crimean extreme environment is not an exception: copepod species dwell in hypersaline waters worldwide. There are at least 26 copepod species around the world living at salinity above 100; among them 12 species are found at salinity higher than 200. In the Crimea Cletocamptus retrogressus is found at salinity 360×10-3 (with a density of 1 320 individuals/m3) and Arctodiaptomus salinus at salinity 300×10-3 (with a density of 343 individuals/m3). Those species are probably the most halotolerant copepod species in the world. High halotolerance of osmoconforming copepods may be explained by exoosmolyte consumption, mainly with food. High tolerance to many factors in adults, availability of resting stages, and an opportunity of long-distance transportation of resting stages by birds and/or winds are responsible for the wide geographic distribution of these halophilic copepods.

  4. Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Tu Cong; Ma, Lena Q.; Zhang Weihua; Cai Yong; Harris, Willie G

    2003-07-01

    Arsenic was predominantly present as inorganic arsenite in the fronds of the hyperaccumulator Chinese brake. - Arsenic speciation is important not only for understanding the mechanisms of arsenic accumulation and detoxification by hyperaccumulators, but also for designing disposal options of arsenic-rich biomass. The primary objective of this research was to understand the speciation and leachability of arsenic in the fronds of Chinese brake (Pteris vittata L.), an arsenic hyperaccumulator, with an emphasis on the implications for arsenic-rich biomass disposal. Chinese brake was grown for 18 weeks in a soil spiked with 50 mg As kg{sup -1} as arsenate (AsO{sub 4}{sup 3-}), arsenite (AsO{sub 3}{sup 3-}), dimethylarsinic acid (DMA), or methylarsonic acid (MMA). Plant samples were extracted with methanol/water (1:1) and arsenic speciation was performed using high performance liquid chromatography coupled with atomic fluorescence spectrometry. The impacts of air-drying on arsenic species and leachability in the fronds were examined in the laboratory. After 18 weeks, water-soluble arsenic in soil was mainly present as arsenate with little detectable organic species or arsenite regardless of arsenic species added to the soil. However, arsenic in the fronds was primarily present as inorganic arsenite with an average of 94%. Arsenite re-oxidation occurred in the old fronds and the excised dried tissues. Arsenic species in the fronds were slightly influenced by arsenic forms added to the soil. Air-drying of the fronds resulted in leaching of substantial amounts of arsenic. These findings can be of significance when looking at disposal options of arsenic-rich biomass from the point of view of secondary contamination.

  5. In situ treatment of arsenic-contaminated groundwater by air sparging.

    Science.gov (United States)

    Brunsting, Joseph H; McBean, Edward A

    2014-04-01

    Arsenic contamination of groundwater is a major problem in some areas of the world, particularly in West Bengal (India) and Bangladesh where it is caused by reducing conditions in the aquifer. In situ treatment, if it can be proven as operationally feasible, has the potential to capture some advantages over other treatment methods by being fairly simple, not using chemicals, and not necessitating disposal of arsenic-rich wastes. In this study, the potential for in situ treatment by injection of compressed air directly into the aquifer (i.e. air sparging) is assessed. An experimental apparatus was constructed to simulate conditions of arsenic-rich groundwater under anaerobic conditions, and in situ treatment by air sparging was employed. Arsenic (up to 200 μg/L) was removed to a maximum of 79% (at a local point in the apparatus) using a solution with dissolved iron and arsenic only. A static "jar" test revealed arsenic removal by co-precipitation with iron at a molar ratio of approximately 2 (iron/arsenic). This is encouraging since groundwater with relatively high amounts of dissolved iron (as compared to arsenic) therefore has a large theoretical treatment capacity for arsenic. Iron oxidation was significantly retarded at pH values below neutral. In terms of operation, analysis of experimental results shows that periodic air sparging may be feasible. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Ecology of Hypersaline Microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, S.

    of ancient seas. Deep Sea brines are relatively stable as a result of their higher density as reported in the Red Sea and Gulf of Mexico (MacDonald et al, 1990). Preliminary studies have suggested that microbial activity occurs in some Deep Sea hypersaline... partially characterized extreme halophile called ?Halobacterium sp GN101? (GN = Guerrero Negro, Mexico) (Ebert and Goebel, 1985). Hal R1 activity is typical with first activity detected during the transition from exponential to stationary phase...

  7. The effect of soda immersion on nano hybrid composite resin discoloration

    Directory of Open Access Journals (Sweden)

    M. Chair Effendi

    2014-03-01

    Full Text Available Background: Composite resin is the tooth-colored restorative material which most of the people are fond of due to their aesthetic value. The composite resin discoloration may happen because of the intrinsic and extrinsic factors. Soda water is one of the beverages which can cause the composite resin discoloration. Purpose: The study was aimed to determine the effect of soda immersion on nano hybrid composite resin discoloration. Methods: The study was an experimental laboratory study using 100 shade A3 nano hybrid composite resin specimens with the diameter of 5 mm and density of 2mm. The samples were divided into 5 groups, each group was immersed in different beverages. The beverages were mineral water; lemon-flavored soda; strawberry-flavored soda; fruit punch-flavored soda; and orange-flavored soda for 3, 7, 14 and 21 days respectively, in the temperature of 37o C. The discoloration measurement utilizes Spectrophotometer, Vita Easy Shade, and uses CIEL*a*b* method. Results: The result showed that the duration of immersion in soda had an effect on the Nano hybrid composite resin discoloration. Strawberry and fruit punch- flavored soda were the most influential components toward the discoloration. Nevertheless, the generally-occurred discoloration was clinically acceptable (∆E ≤ 3,3. Conclusion: The study suggested that the soda immersion duration has effect on Nano hybrid composite resin discoloration.Latar belakang: Resin komposit adalah material sewarna gigi yang diminati masyarakat karena memiliki nilai estetik yang baik. Perubahan warna resin komposit dapat terjadi karena faktor intrinsik dan ekstrinsik. Minuman soda merupakan salah satu minuman yang dapat menyebabkan perubahan warna pada resin komposit. Tujuan: Tujuan dari penelitian ini untuk meneliti perubahan warna resin komposit nanohibrida akibat perendaman dalam minuman soda. Metode: Metode yang digunakan pada penelitian ini adalah eksperimental laboratorik dengan menggunakan

  8. Preparation and Characterization of Modified Soda Lignin with Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Fangda Zhang

    2016-10-01

    Full Text Available Soda lignin does not have thermal flowing characteristics and it is impossible for it to be further thermally molded. To achieve the fusibility of soda lignin for fiber preparation by melt-spinning, an effective method for soda lignin modification was conducted by cooking it with polyethylene glycol (PEG 400 at various ratios. The higher the ratio of PEG that was used, the more PEG molecular chains were grafted at the alpha carbon of the soda lignin through ether bonds, resulting in lower thermal transition temperatures and more excellent fusibility. The modified soda lignin with a weight ratio of lignin to PEG of 1:4 exhibited a relative thermal stability of molten viscosity at selected temperatures. Thereafter, the resultant fusible soda lignin was successfully melt-spun into filaments with an average diameter of 33 ± 5 μm, which is smaller than that of some industrial lignins. Accordingly, it is possible to utilize soda lignin to produce fibrous carbonaceous materials.

  9. Mechanisms of fenthion activation in rainbow trout (Oncorhynchus mykiss) acclimated to hypersaline environments

    International Nuclear Information System (INIS)

    Lavado, Ramon; Rimoldi, John M.; Schlenk, Daniel

    2009-01-01

    Previous studies in rainbow trout have shown that acclimation to hypersaline environments enhances the toxicity to thioether organophosphate and carbamate pesticides. In order to determine the role of biotransformation in this process, the metabolism of the thioether organophosphate biocide, fenthion was evaluated in microsomes from gills, liver and olfactory tissues in rainbow trout (Oncorhynchus mykiss) acclimated to freshwater and 17 per mille salinity. Hypersalinity acclimation increased the formation of fenoxon and fenoxon sulfoxide from fenthion in liver microsomes from rainbow trout, but not in gills or in olfactory tissues. NADPH-dependent and independent hydrolysis was observed in all tissues, but only NADPH-dependent fenthion cleavage was differentially modulated by hypersalinity in liver (inhibited) and gills (induced). Enantiomers of fenthion sulfoxide (65% and 35% R- and S-fenthion sulfoxide, respectively) were formed in liver and gills. The predominant pathway of fenthion activation in freshwater appears to be initiated through initial formation of fenoxon which may be subsequently converted to the most toxic metabolite fenoxon R-sulfoxide. However, in hypersaline conditions both fenoxon and fenthion sulfoxide formation may precede fenoxon sulfoxide formation. Stereochemical evaluation of sulfoxide formation, cytochrome P450 inhibition studies with ketoconazole and immunoblots indicated that CYP3A27 was primarily involved in the enhancement of fenthion activation in hypersaline-acclimated fish with limited contribution of FMO to initial sulfoxidation

  10. Concentrations and chemical species of arsenic in human urine and hair

    Energy Technology Data Exchange (ETDEWEB)

    Yamato, Naohisa (St. Marianna Univ. School of Medicine, Kawasaki (Japan))

    1988-05-01

    Because marine products are rich in arsenic, the concentration of arsenic in the human urine varies greatly with the state of ingestion of marine products. It has been revealed that inorganic arsenic is methylated in the human body to form MAA (methylarsonic acid) and DMAA (dimethylarsinic acid). It appears therefore that the arsenic present in the human urine is a mixture of the arsenic originating from marine products and the arsenic metabolized in vivo. Recent studies have shown that inorganic arsenic and methylarsenic compounds are quite different in toxicity and effect on the living body due to their difference in chemical species. Finding the chemical species of arsenic in the urine and hair of normal subjects will therefore provide valuable basal data for the biological monitoring of arsenic exposure and for toxicological studies of arsenic.

  11. Denitrification in a hypersaline lake–aquifer system (Pétrola Basin, Central Spain): The role of recent organic matter and Cretaceous organic rich sediments

    International Nuclear Information System (INIS)

    Gómez-Alday, J.J.; Carrey, R.; Valiente, N.; Otero, N.; Soler, A.; Ayora, C.; Sanz, D.

    2014-01-01

    Agricultural regions in semi-arid to arid climates with associated saline wetlands are one of the most vulnerable environments to nitrate pollution. The Pétrola Basin was declared vulnerable to NO 3 − pollution by the Regional Government in 1998, and the hypersaline lake was classified as a heavily modified body of water. The study assessed groundwater NO 3 − through the use of multi-isotopic tracers (δ 15 N, δ 34 S, δ 13 C, δ 18 O) coupled to hydrochemistry in the aquifer connected to the eutrophic lake. Hydrogeologically, the basin shows two main flow components: regional groundwater flow from recharge areas (Zone 1) to the lake (Zone 2), and a density-driven flow from surface water to the underlying aquifer (Zone 3). In Zones 1 and 2, δ 15 N NO 3 and δ 18 O NO 3 suggest that NO 3 − from slightly volatilized ammonium synthetic fertilizers is only partially denitrified. The natural attenuation of NO 3 − can occur by heterotrophic reactions. However, autotrophic reactions cannot be ruled out. In Zone 3, the freshwater–saltwater interface (down to 12–16 m below the ground surface) is a reactive zone for NO 3 − attenuation. Tritium data suggest that the absence of NO 3 − in the deepest zones of the aquifer under the lake can be attributed to a regional groundwater flow with long residence time. In hypersaline lakes the geometry of the density-driven flow can play an important role in the transport of chemical species that can be related to denitrification processes. - Highlights: • Denitrification comes about in a hypersaline lake–aquifer system. • Nitrate in the basin is derived from synthetic fertilizers slightly volatilized. • Organic carbon oxidation is likely to be the main electron donor in denitrification. • Density driven flow transports organic carbon to deeper zones of the aquifer

  12. Baking soda: a potentially fatal home remedy.

    Science.gov (United States)

    Nichols, M H; Wason, S; Gonzalez del Rey, J; Benfield, M

    1995-04-01

    We present a case of a six-week-old infant who developed life-threatening complications after unintentional sodium bicarbonate intoxication. Baking soda was being used by the mother as a home remedy to "help the baby burp." A review of the literature regarding the use (or misuse) of baking soda follows. Our patient, along with the other noted case reports, emphasizes the need for warnings on baking soda products whose labels recommend its use as an antacid. Poisonings must be high in the differential diagnosis of any patient, regardless of age, who presents with altered mental status or status epilepticus.

  13. Sponsorship of National Health Organizations by Two Major Soda Companies.

    Science.gov (United States)

    Aaron, Daniel G; Siegel, Michael B

    2017-01-01

    Obesity is a pervasive public health problem in the U.S. Reducing soda consumption is important for stemming the obesity epidemic. However, several articles and one book suggest that soda companies are using their resources to impede public health interventions that might reduce soda consumption. Although corporate sponsorship by tobacco and alcohol companies has been studied extensively, there has been no systematic attempt to catalog sponsorship activities of soda companies. This study investigates the nature, extent, and implications of soda company sponsorship of U.S. health and medical organizations, as well as corporate lobbying expenditures on soda- or nutrition-related public health legislation from 2011 to 2015. Records of corporate philanthropy and lobbying expenditures on public health legislation by soda companies in the U.S. during 2011-2015 were found through Internet and database searches. From 2011 to 2015, the Coca-Cola Company and PepsiCo were found to sponsor a total of 95 national health organizations, including many medical and public health institutions whose specific missions include fighting the obesity epidemic. During the study period, these two soda companies lobbied against 29 public health bills intended to reduce soda consumption or improve nutrition. There is surprisingly pervasive sponsorship of national health and medical organizations by the nation's two largest soda companies. These companies lobbied against public health intervention in 97% of cases, calling into question a sincere commitment to improving the public's health. By accepting funding from these companies, health organizations are inadvertently participating in their marketing plans. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F. [China Medical University, Shenyang (China). Dept. for Occupational & Environmental Health

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  15. Structural and isotopic analysis of kerogens in sediments rich in free sulfurised Botryococcus braunii biomarkers

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Grice, K.; Schouten, S.; Blokker, P.; Derenne, S.; Largeau, C.; Nissenbaum, A.

    2003-01-01

    Type I kerogens of two relatively immature, unusual hypersaline sediments [with extracts rich in sulfurised Botryococcus braunii (B. braunii) biomarkers] of Miocene/Pliocene age from the Sdom Formation (Dead Sea, Israel), have been investigated using a variety of organic geochemical techniques. Py

  16. Bubbling over: soda consumption and its link to obesity in California.

    Science.gov (United States)

    Babey, Susan H; Jones, Malia; Yu, Hongjian; Goldstein, Harold

    2009-09-01

    Background The prevalence of overweight and obesity has increased dramatically in both adults and children in the last three decades in the n California, 62% of adolescents ages 12-17 and 41% of children ages 2-11 drink at least one soda or other sweetened beverage every day. In addition, 24% of adults drink at least one soda or other sweetened beverage on an average day. Adults who drink soda occasionally (not every day) are 15% more likely to be overweight or obese, and adults who drink one or more sodas per day are 27% more likely to be overweight or obese than adults who do not drink soda, even when adjusting for poverty status and race/ethnicity. This policy brief, produced collaboratively by the California Center for Public Health Advocacy and the UCLA Center for Health Policy Research, examines soda consumption in California by cities and counties using data from the 2005 California Health Interview Survey (CHIS 2005). In addition, the brief investigates whether there is an association between soda consumption and the prevalence of overweight and obesity. There are major differences in soda consumption rates by geographic area in California, suggesting that social and environmental factors affect the consumption of soda. Also, the prevalence of overweight and obesity is higher among those who drink one or more sodas or other sweetened beverages every day than among those who do not consume these soft drinks. Establishing public policies that focus on reducing soda consumption could contribute to reversing California's increasing overweight and obesity problem.

  17. Arsenic-transforming microbes and their role in biomining processes

    OpenAIRE

    Drewniak, L.; Sklodowska, A.

    2013-01-01

    It is well known that microorganisms can dissolve different minerals and use them as sources of nutrients and energy. The majority of rock minerals are rich in vital elements (e.g., P, Fe, S, Mg and Mo), but some may also contain toxic metals or metalloids, like arsenic. The toxicity of arsenic is disclosed after the dissolution of the mineral, which raises two important questions: (1) why do microorganisms dissolve arsenic-bearing minerals and release this metal into the environment in a tox...

  18. Evidence for biofilm acid neutralization by baking soda.

    Science.gov (United States)

    Zero, Domenick T

    2017-11-01

    The generating of acids from the microbial metabolism of dietary sugars and the subsequent decrease in biofilm pH below the pH at which tooth mineral begins to demineralize (critical pH) are the key elements of the dental caries process. Caries preventive strategies that rapidly neutralize biofilm acids can prevent demineralization and favor remineralization and may help prevent the development of sugar-induced dysbiosis that shifts the biofilm toward increased cariogenic potential. Although the neutralizing ability of sodium bicarbonate (baking soda) has been known for many years, its anticaries potential as an additive to fluoride dentifrice has received only limited investigation. There is evidence that baking soda rapidly can reverse the biofilm pH decrease after a sugar challenge; however, the timing of when it is used in relation to a dietary sugar exposure is critical in that the sooner its used the greater the benefit in preventing a sustained biofilm pH decrease and subsequent demineralization. Furthermore, the effectiveness of baking soda in elevating biofilm pH appears to depend on concentration. Thus, the concentration of baking soda in marketed dentifrice products, which ranges from 10% to 65%, may affect their biofilm pH neutralizing performance. People with hyposalivation particularly may benefit from using fluoride dentifrice containing baking soda because of their diminished ability to clear dietary sugars and buffer biofilm acids. Although promising, there is the need for more evidence that strategies that modify the oral ecology, such as baking soda, can alter the cariogenic (acidogenic and aciduric) properties of biofilm microorganisms. The acid neutralization of dental biofilm by using fluoride dentifrice that contains baking soda has potential for helping counteract modern high-sugar diets by rapidly neutralizing biofilm-generated acid, especially in people with hyposalivation. Copyright © 2017 American Dental Association. Published by

  19. Hypersaline waters - a potential source of foodborne toxigenic aspergilli and penicillia

    DEFF Research Database (Denmark)

    Butinar, Lorena; Frisvad, Jens Christian; Gunde-Cimerman, Nina

    2011-01-01

    Previous studies of hypersaline environments have revealed the dominant presence of melanized yeast-like fungi and related Cladosporium spp. In this study, we focused on the genera Aspergillus and Penicillium and their teleomorphic forms. From oligotrophic and eutrophic hypersaline waters around...... herbariorum, as they were quite evenly distributed among the sampled sites, and Aspergillus candidus, which was abundant, but more locally distributed. These species and their byproducts can accumulate downstream following evaporation of brine, and they can become entrapped in the salt crystals. Consequently...

  20. Microbiology of Lonar Lake and other soda lakes

    Science.gov (United States)

    Paul Antony, Chakkiath; Kumaresan, Deepak; Hunger, Sindy; Drake, Harold L; Murrell, J Colin; Shouche, Yogesh S

    2013-01-01

    Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalkaliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. Soda lake microorganisms harbor several biotechnologically relevant enzymes and biomolecules (for example, cellulases, amylases, ectoine) and there is the need to augment bioprospecting efforts in soda lake environments with new integrated approaches. Importantly, some saline and alkaline lake ecosystems around the world need to be protected from anthropogenic pressures that threaten their long-term existence. PMID:23178675

  1. Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy, geochemistry, microbiology, and environmental implications

    Czech Academy of Sciences Publication Activity Database

    Majzlan, J.; Plášil, Jakub; Škoda, R.; Gescher, J.; Kögler, F.; Rusznyak, A.; Küsel, K.; Neu, T.R.; Mangold, S.; Rothe, J.

    2014-01-01

    Roč. 48, č. 23 (2014), s. 13685-13693 ISSN 0013-936X R&D Projects: GA ČR GP13-31276P Institutional support: RVO:68378271 Keywords : extreme arsenic concentration Subject RIV: DB - Geology ; Mineralogy Impact factor: 5.330, year: 2014

  2. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh

    Directory of Open Access Journals (Sweden)

    Edwin T. Gnanaprakasam

    2017-11-01

    Full Text Available Long-term exposure to trace levels of arsenic (As in shallow groundwater used for drinking and irrigation puts millions of people at risk of chronic disease. Although microbial processes are implicated in mobilizing arsenic from aquifer sediments into groundwater, the precise mechanism remains ambiguous. The goal of this work was to target, for the first time, a comprehensive suite of state-of-the-art molecular techniques in order to better constrain the relationship between indigenous microbial communities and the iron and arsenic mineral phases present in sediments at two well-characterized arsenic-impacted aquifers in Bangladesh. At both sites, arsenate [As(V] was the major species of As present in sediments at depths with low aqueous As concentrations, while most sediment As was arsenite [As(III] at depths with elevated aqueous As concentrations. This is consistent with a role for the microbial As(V reduction in mobilizing arsenic. 16S rRNA gene analysis indicates that the arsenic-rich sediments were colonized by diverse bacterial communities implicated in both dissimilatory Fe(III and As(V reduction, while the correlation analyses involved phylogenetic groups not normally associated with As mobilization. Findings suggest that direct As redox transformations are central to arsenic fate and transport and that there is a residual reactive pool of both As(V and Fe(III in deeper sediments that could be released by microbial respiration in response to hydrologic perturbation, such as increased groundwater pumping that introduces reactive organic carbon to depth.

  3. Soda intake and osteoporosis risk in postmenopausal American-Indian women

    Science.gov (United States)

    Supplee, Joy D; Duncan, Glen E; Bruemmer, Barbara; Goldberg, Jack; Wen, Yang; Henderson, Jeffrey A

    2015-01-01

    Objective Low bone mass often leads to osteoporosis and increased risk of bone fractures. Soda consumption may contribute to imbalances that lead to decreased bone mineral density (BMD) and general bone health. We examined the relationship between soda consumption and osteoporosis risk in postmenopausal American-Indian women, an at-risk population because of nutritional and other lifestyle-related factors. Design Cross-sectional analysis using logistic regression to examine associations between soda consumption and osteoporosis, and linear regression to examine the association between soda consumption and BMD, with and without adjustment for demographic and lifestyle factors. Quantitative ultrasound of the heel was performed to estimate BMD (g/cm2). Setting American-Indian communities in the Northern Plains and Southwestern USA. Subjects A total of 438 postmenopausal American-Indian women. Results Women with osteoporosis were significantly older and had lower BMI, average daily soda intakes, BMD levels and use of hormones than women without osteoporosis (P 0·05), although age (increased), BMI (decreased) and past hormone use (decreased) were all significantly associated with osteoporosis risk (PIndian women, analyses did confirm confounding between soda consumption and age and BMI. This suggests that any potential effects of soda consumption on bone health are largely mediated through these factors. PMID:21208477

  4. Mobility and attenuation of arsenic in sulfide-rich mining wastes from the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Drahota, Petr, E-mail: petr.drahota@natur.cuni.cz [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2 (Czech Republic); Knappová, Magdaléna; Kindlová, Helena; Culka, Adam [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2 (Czech Republic); Majzlan, Juraj [Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, D-07749 Jena (Germany); Mihaljevič, Martin [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2 (Czech Republic); Rohovec, Jan [Institute of Geology, The Czech Academy of Sciences, v.v.i., Rozvojová 269, 165 00 Prague 6 (Czech Republic); Veselovský, František [Czech Geological Survey, Geologická 6, 152 00 Prague 5 (Czech Republic); Fridrichová, Michaela [Institute of Geology, The Czech Academy of Sciences, v.v.i., Rozvojová 269, 165 00 Prague 6 (Czech Republic); Jehlička, Jan [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2 (Czech Republic)

    2016-07-01

    The mineralogical composition of mining wastes deposited in countless dumps around the world is the key factor that controls retention and release of pollutants. Here we report a multi-method data set combining mineralogical (X-ray diffraction, electron microprobe and Raman microspectrometry) and geochemical (sequential extraction and pore water analysis) methods to resolve As mobility in two 50-years-old mining waste dumps. Originally, all of the As in the mining wastes selected for the study was present as arsenopyrite and with time it has been replaced by secondary As phases. At Jedová jáma mining area, the most of As precipitated as X-ray amorphous ferric arsenate (HFA). Arsenic is also accumulated in the scorodite and Fe (hydr)oxide (with up to 3.2 wt.% As{sub 2}O{sub 5}) that is particularly represented by hematite. Mining wastes at Dlouhá Ves contain only trace amount of scorodite. Arsenic is primarily bound to Pb-jarosite and Fe (hydr)oxides (especially goethite) with up to 1.6 and 1.8 wt.% As{sub 2}O{sub 5}, respectively. The pore water collected after rainfall events indicated high concentrations of As (~ 4600 μg·L{sup −1}) at Jedová jáma, whereas aqueous As at Dlouhá Ves was negligible (up to 1.5 μg·L{sup −1}). Highly mobile As at Jedová jáma is attributed to the dissolution of HFA and simultaneous precipitation of Fe (hydr)oxides under mildly acidic conditions (pH ~ 4.4); immobile As at Dlouhá Ves is due to the efficient adsorption on the Fe (hydr)oxides and hydroxosulfates under acidic pH of ~ 2.8. Taken together, As mobility in the ferric arsenates-containing mining wastes may significantly vary. These wastes must be kept under acidic conditions or with high aqueous Fe(III) concentrations to prevent the release of As from incongruent dissolution of ferric arsenates. - Highlights: • Two 50 years-old sulfide-rich mining waste dumps were studied. • Environmental stability of secondary arsenic mineral phases were assessed.

  5. Mobility and attenuation of arsenic in sulfide-rich mining wastes from the Czech Republic

    International Nuclear Information System (INIS)

    Drahota, Petr; Knappová, Magdaléna; Kindlová, Helena; Culka, Adam; Majzlan, Juraj; Mihaljevič, Martin; Rohovec, Jan; Veselovský, František; Fridrichová, Michaela; Jehlička, Jan

    2016-01-01

    The mineralogical composition of mining wastes deposited in countless dumps around the world is the key factor that controls retention and release of pollutants. Here we report a multi-method data set combining mineralogical (X-ray diffraction, electron microprobe and Raman microspectrometry) and geochemical (sequential extraction and pore water analysis) methods to resolve As mobility in two 50-years-old mining waste dumps. Originally, all of the As in the mining wastes selected for the study was present as arsenopyrite and with time it has been replaced by secondary As phases. At Jedová jáma mining area, the most of As precipitated as X-ray amorphous ferric arsenate (HFA). Arsenic is also accumulated in the scorodite and Fe (hydr)oxide (with up to 3.2 wt.% As_2O_5) that is particularly represented by hematite. Mining wastes at Dlouhá Ves contain only trace amount of scorodite. Arsenic is primarily bound to Pb-jarosite and Fe (hydr)oxides (especially goethite) with up to 1.6 and 1.8 wt.% As_2O_5, respectively. The pore water collected after rainfall events indicated high concentrations of As (~ 4600 μg·L"−"1) at Jedová jáma, whereas aqueous As at Dlouhá Ves was negligible (up to 1.5 μg·L"−"1). Highly mobile As at Jedová jáma is attributed to the dissolution of HFA and simultaneous precipitation of Fe (hydr)oxides under mildly acidic conditions (pH ~ 4.4); immobile As at Dlouhá Ves is due to the efficient adsorption on the Fe (hydr)oxides and hydroxosulfates under acidic pH of ~ 2.8. Taken together, As mobility in the ferric arsenates-containing mining wastes may significantly vary. These wastes must be kept under acidic conditions or with high aqueous Fe(III) concentrations to prevent the release of As from incongruent dissolution of ferric arsenates. - Highlights: • Two 50 years-old sulfide-rich mining waste dumps were studied. • Environmental stability of secondary arsenic mineral phases were assessed. • Different modes of As binding are

  6. Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives.

    Science.gov (United States)

    Grattieri, Matteo; Minteer, Shelley D

    2018-04-01

    This review is aimed to report the possibility to utilize microbial fuel cells for the treatment of saline and hypersaline solutions. An introduction to the issues related with the biological treatment of saline and hypersaline wastewater is reported, discussing the limitation that characterizes classical aerobic and anaerobic digestions. The microbial fuel cell (MFC) technology, and the possibility to be applied in the presence of high salinity, is discussed before reviewing the most recent advancements in the development of MFCs operating in saline and hypersaline conditions, with their different and interesting applications. Specifically, the research performed in the last 5years will be the main focus of this review. Finally, the future perspectives for this technology, together with the most urgent research needs, are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Denitrification in a hypersaline lake–aquifer system (Pétrola Basin, Central Spain): The role of recent organic matter and Cretaceous organic rich sediments

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Alday, J.J., E-mail: JuanJose.Gomez@uclm.es [Hydrogeology Group, Institute for Regional Development (IDR), University of Castilla–La Mancha (UCLM), Campus Universitario s/n, 02071 Albacete (Spain); Carrey, R., E-mail: raulcarrey@ub.edu [Grup d’Mineralogia Aplicada i Medi Ambient, Dep. Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès s/n, 08028, Barcelona (Spain); Valiente, N., E-mail: Nicolas.Valiente@uclm.es [Hydrogeology Group, Institute for Regional Development (IDR), University of Castilla–La Mancha (UCLM), Campus Universitario s/n, 02071 Albacete (Spain); Otero, N., E-mail: notero@ub.edu [Grup d’Mineralogia Aplicada i Medi Ambient, Dep. Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès s/n, 08028, Barcelona (Spain); Soler, A., E-mail: albertsolergil@ub.edu [Grup d’Mineralogia Aplicada i Medi Ambient, Dep. Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès s/n, 08028, Barcelona (Spain); Ayora, C., E-mail: cayora1@gmail.com [Grup d' Hidrologia Subterrània (GHS), Institut de Diagnóstic Ambiental i Estudis de l' Aigua (IDAEA-CSIC), C/Jordi Girona 18, 08028 Barcelona (Spain); Sanz, D. [Hydrogeology Group, Institute for Regional Development (IDR), University of Castilla–La Mancha (UCLM), Campus Universitario s/n, 02071 Albacete (Spain); and others

    2014-11-01

    Agricultural regions in semi-arid to arid climates with associated saline wetlands are one of the most vulnerable environments to nitrate pollution. The Pétrola Basin was declared vulnerable to NO{sub 3}{sup −} pollution by the Regional Government in 1998, and the hypersaline lake was classified as a heavily modified body of water. The study assessed groundwater NO{sub 3}{sup −} through the use of multi-isotopic tracers (δ{sup 15}N, δ{sup 34}S, δ{sup 13}C, δ{sup 18}O) coupled to hydrochemistry in the aquifer connected to the eutrophic lake. Hydrogeologically, the basin shows two main flow components: regional groundwater flow from recharge areas (Zone 1) to the lake (Zone 2), and a density-driven flow from surface water to the underlying aquifer (Zone 3). In Zones 1 and 2, δ{sup 15}N{sub NO{sub 3}} and δ{sup 18}O{sub NO{sub 3}} suggest that NO{sub 3}{sup −} from slightly volatilized ammonium synthetic fertilizers is only partially denitrified. The natural attenuation of NO{sub 3}{sup −} can occur by heterotrophic reactions. However, autotrophic reactions cannot be ruled out. In Zone 3, the freshwater–saltwater interface (down to 12–16 m below the ground surface) is a reactive zone for NO{sub 3}{sup −} attenuation. Tritium data suggest that the absence of NO{sub 3}{sup −} in the deepest zones of the aquifer under the lake can be attributed to a regional groundwater flow with long residence time. In hypersaline lakes the geometry of the density-driven flow can play an important role in the transport of chemical species that can be related to denitrification processes. - Highlights: • Denitrification comes about in a hypersaline lake–aquifer system. • Nitrate in the basin is derived from synthetic fertilizers slightly volatilized. • Organic carbon oxidation is likely to be the main electron donor in denitrification. • Density driven flow transports organic carbon to deeper zones of the aquifer.

  8. Mobility and attenuation of arsenic in sulfide-rich mining wastes from the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Drahota, P.; Knappová, M.; Kindlová, H.; Culka, A.; Majzlan, J.; Mihaljevič, M.; Rohovec, Jan; Veselovský, F.; Fridrichová, Michaela; Jehlička, J.

    557/558, July 01 (2016), s. 192-203 ISSN 0048-9697 Institutional support: RVO:67985831 Keywords : arsenic * mining waste * mobility * pore water * secondary arsenic minerals Subject RIV: DD - Geochemistry Impact factor: 4.900, year: 2016

  9. Arsenic and fluoride in the groundwater of Mexico.

    Science.gov (United States)

    Armienta, M A; Segovia, N

    2008-08-01

    Concentrations of arsenic and fluoride above Mexican drinking water standards have been detected in aquifers of various areas of Mexico. This contamination has been found to be mainly caused by natural sources. However, the specific processes releasing these toxic elements into groundwater have been determined in a few zones only. Many studies, focused on arsenic-related health effects, have been performed at Comarca Lagunera in northern México. High concentrations of fluoride in water were also found in this area. The origin of the arsenic there is still controversial. Groundwater in active mining areas has been polluted by both natural and anthropogenic sources. Arsenic-rich minerals contaminate the fractured limestone aquifer at Zimapán, Central México. Tailings and deposits smelter-rich fumes polluted the shallow granular aquifer. Arsenic contamination has also been reported in the San Antonio-El Triunfo mining zone, southern Baja California, and Santa María de la Paz, in San Luis Potosí state. Even in the absence of mining activities, hydrogeochemistry and statistical techniques showed that arsenopyrite oxidation may also contaminate water, as in the case of the Independencia aquifer in the Mexican Altiplano. High concentrations of arsenic have also been detected in geothermal areas like Los Azufres, Los Humeros, and Acoculco. Prevalence of dental fluorosis was revealed by epidemiological studies in Aguascalientes and San Luis Potosí states. Presence of fluoride in water results from dissolution of acid-volcanic rocks. In Mexico, groundwater supplies most drinking water. Current knowledge and the geology of Mexico indicate the need to include arsenic and fluoride determinations in groundwater on a routine basis, and to develop interdisciplinary studies to assess the contaminant's sources in all enriched areas.

  10. The relationship between amount of soda consumed and intention to reduce soda consumption among adults exposed to the Choose Health LA 'Sugar Pack' health marketing campaign.

    Science.gov (United States)

    Robles, Brenda; Blitstein, Jonathan L; Lieberman, Alicea J; Barragan, Noel C; Gase, Lauren N; Kuo, Tony

    2015-10-01

    To examine behavioural intention to reduce soda consumption after exposure to the Choose Health LA 'Sugar Pack' campaign in Los Angeles County, California, USA. A cross-sectional street-intercept survey was conducted to assess knowledge, attitudes, health behaviours and behavioural intentions after exposure to the 'Sugar Pack' campaign. A multivariable regression analysis was performed to examine the relationships between the amount of soda consumed and self-reported intention to reduce consumption of non-diet soda among adults who saw the campaign. Three pre-selected Los Angeles County Metro bus shelters and/or rail stops with the highest number of 'Sugar Pack' campaign advertisement placements. Riders of the region's Metro buses and railways who were the intended audience of the campaign advertisements. The overall survey response rate was 56 % (resulting n 1041). Almost 60 % of respondents were exposed to the advertisements (619/1041). The multivariable logistic regression analysis suggested that the odds of reporting intention to reduce soda consumption among moderate consumers (1-6 sodas/week) were 1·95 times greater than among heavy consumers (≥1 soda/d), after controlling for clustering and covariates. Respondents with less than a high-school education and who perceived sugary beverage consumption as harmful also had higher odds; in contrast, respondents aged ≥65 years had lower odds. Results suggest that future campaigns should be tailored differently for moderate v. heavy consumers of soda. Similar tailoring strategies are likely needed for younger groups, for those with less educational attainment and for those who do not perceive consumption of soda as harmful.

  11. A Phytoremediation Strategy for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  12. Enhancement of plaque removal by baking soda toothpastes from less accessible areas in the dentition.

    Science.gov (United States)

    Thong, S; Hooper, W; Xu, Y; Ghassemi, A; Winston, A

    2011-01-01

    To determine if baking soda toothpastes are relatively more effective than non-baking soda toothpastes in promoting plaque removal from less accessible sites in the dentition. Several single-brushing comparisons of baking soda and non-baking soda toothpastes for their overall ability to remove plaque have been published. In this study, individual comparisons of these published data, comparing the plaque removal performance of baking soda and non-baking soda toothpastes at various sites in the dentition, were examined to see if there were any site-dependant performance trends. The site-specific single-brushing data were then combined and analyzed in two ways. Meta-analyses of the clinical studies were performed to compare baking soda's relative plaque removal advantage at various sites in the mouth using paired t-testing at p baking soda toothpastes were graphically compared with plaque index reductions due to brushing with non-baking soda dentifrices. The percent relative plaque removal advantage for baking soda toothpastes at various sites were plotted against the reduction in plaque index due to brushing with non-baking soda toothpastes. Individual comparisons showed that brushing with the toothpastes containing baking soda generally removed significantly more plaque from each site than brushing with toothpastes without baking soda. The relative efficacy advantage for baking soda toothpastes was consistently higher at sites where the non-baking soda toothpastes removed less plaque. Meta-analytical comparisons confirmed baking soda toothpastes to be relatively more effective in enhancing plaque removal from sites where less plaque was removed compared to brushing with non-baking soda toothpastes (p baking soda toothpastes' relative plaque removal advantage could be seen to increase hyperbolically with decreasing plaque removal by the non-baking soda toothpastes with which they were compared. We presuppose that the reason less plaque is removed by non-baking soda

  13. Effect of baking soda in dentifrices on plaque removal.

    Science.gov (United States)

    Myneni, Srinivas R

    2017-11-01

    The prevention of dental caries and periodontal diseases targets control of dental plaque biofilm. In this context, chemical agents could represent a valuable complement to mechanical plaque control by reducing and controlling biofilm formation. The literature on the effectiveness of different dentifrices has not, however, been carefully categorized. A lack of consensus exists among dental professionals on a recommendation for a universal dentifrice for plaque control. The authors reviewed the scientific data on the different properties of sodium bicarbonate (baking soda)-containing dentifrices and their effectiveness in plaque removal. The results of the literature search show that baking soda-containing dentifrices are ideal candidates to be considered as a universal dentifrice because baking soda is inexpensive, abundant in supply, highly biocompatible, exhibits specific antibacterial properties to oral microorganisms, has low abrasivity, and is effective in plaque biofilm removal. Although some patients may benefit from desensitizing or high fluoride-containing dentifrices, those with routine needs may find using dentifrices containing baking soda and fluoride effective. Baking soda and fluoride dentifrices, therefore, may perhaps be considered as a criterion standard for patients with routine oral hygiene needs. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  14. Wind effects on prey availability: How northward migrating waders use brackish and hypersaline lagoons in the sivash, Ukraine

    Science.gov (United States)

    Verkuil, Yvonne; Koolhaas, Anita; Van Der Winden, Jan

    Large numbers of waders migrating northward in spring use the Sivash, a large system of shallow, brackish and hypersaline lagoons in the Black Sea and Azov Sea region (Ukraine). The bottoms of these lagoons are often uncovered by the wind. Hence, for waders the time and space available for feeding depend on wind conditions. In hypersaline lagoons the benthic and pelagic fauna was very poor, consisting mainly of chironomid larvae (0.19 g AFDM·m -2) and brine shrimps Artemia salina, respectively. Brine shrimp abundance was correlated with salinity, wind force, wind direction and water depth. Dunlin Calidris alpina and curlew sandpiper Calidris ferruginea were the only species feeding on brine shrimp. As brine shrimp densities are higher in deeper water, smaller waders such as broad-billed sandpipers Limicola falcinellus are too short-legged to reach exploitable densities of brine shrimp. In brackish lagoons the benthic and pelagic fauna was rich, consisting of polychaetes, bivalves, gastropods, chironomid larvae, isopods and amphipods (8.9 to 30.5 g AFDM·m -2), but there were no brine shrimps. Prey biomass increased with the distance from the coast, being highest on the site that was most frequently inundated. Dunlin, broad-billed sandpiper and grey plover Pluvialis squatarola were the most abundant birds in the brackish lagoon. Due to the effects of wind-tides only a small area was usually available as a feeding site. Gammarus insensibilis was the alternative prey resource in the water layer, and their density varied with wind direction in the same way as brine shrimp. Curlew sandpipers and dunlins in the hypersaline lagoons and broad-billed sandpipers in the brackish lagoons often changed feeding sites, probably following the variation in prey availability. Only because of the large size and variety of lagoons are waders in the Sivash always able to find good feeding sites.

  15. Low Temperature Soda-Oxygen Pulping of Bagasse

    OpenAIRE

    Fengxia Yue; Ke-Li Chen; Fachuang Lu

    2016-01-01

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum coo...

  16. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats

    NARCIS (Netherlands)

    Sorokin, D.Y.; Messina, E.; Smedile, F; Roman, P.; Sinninghe Damsté, J.S.; Ciordia, S.; Mena, M.C.; Ferrer, M.; Golyshin, P.N.; Kublanov, I.V.; Samarov, N.I.; Toshchakov, S.V.; La Cono, V.; Yakimov, M.M.

    2017-01-01

    Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery

  17. Anaerobic halo- alkaliphilic bacterial community of athalassic, hypersaline Mono lake and Owens Lake in California

    Science.gov (United States)

    Pikuta, Elena V.; Detkova, Ekaterina N.; Bej, Asim K.; Marsic, Damien; Hoover, Richard B.

    2003-02-01

    The bacterial diversity of microbial extremophiles from the meromictic, hypersaline Mono Lake and a small evaporite pool in Owens Lake of California was studied. In spite of these regions had differing mineral background and different concentrations of NaCl in water they contain the same halo- alkaliphiles anaerobic bacterial community. Three new species of bacteria were detected in this community: primary anaerobe, dissipotrophic saccharolytic spirochete Spirochaeta americana strain AspG1T, primary anaerobe which is proteolytic Tindallia californiensis strain APOT, and secondary anaerobe, hydrogen using Desulfonatronum thiodismutans strain MLF1T, which is sulfate- reducer with chemo-litho-autotrophic metabolism. All of these bacteria are obligate alkaliphiles and dependent upon Na+ ions and CO32- ions in growth mediums. It is interesting that closest relationships for two of these species were isolates from samples of equatorial African soda Magadi lake: Spirochaeta americana AspG1T has 99.4% similarity on 16S rDNA- analyses with Spirochaeta alkalica Z- 7491T, and Tindallia californiensis APOT has 99.1% similarity with Tindallia magadiensis Z-7934T. But result of DNA-DNA- hybridization demonstrated less then 50% similarity between Spirochaeta americana AspG1T and Spirochaeta alkalica Z-7491T. Percent of homology between Tindallia californiensis APOT and Tindallia magadiensis Z-7934T is only 55%. The sulfate-reducer from the alkalic anaerobic community of Magadi lake Desulfonatronovibrio hydrogenovorans Z-7935T was phylogenetically distant from this sulfate-reducer in Mono lake, but genetically closer (99.7% similarity) to the sulfate-reducer, isolated from Central Asian alkalic lake Khadyn in Siberia Desulfonatronum lacustre Z-7951T. The study of key enzymes (hydrogenase and CO- hydrogenase) in Tindallia californiensis APOT and Desulfonatronum thiodismutans MLF1T showed the presence of high activity of both the enzymes in first and only hydrogenase in second

  18. Low Temperature Soda-Oxygen Pulping of Bagasse.

    Science.gov (United States)

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  19. Low Temperature Soda-Oxygen Pulping of Bagasse

    Directory of Open Access Journals (Sweden)

    Fengxia Yue

    2016-01-01

    Full Text Available Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm3/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115–125 °C, this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  20. Can soda fountains be recommended in hospitals?

    Science.gov (United States)

    Chaberny, Iris F; Kaiser, Peter; Sonntag, Hans-Günther

    2006-09-01

    Mineral water (soda water) is very popular in Germany. Therefore, soda fountains were developed as alternatives to the traditional deposit bottle system. Nowadays, different systems of these devices are commercially available. For several years, soda fountains produced by different companies have been examined at the University Hospital of Heidelberg. In 1998, it was possible for the first time to observe and evaluate one of these systems over a period of 320 days in a series of microbiological examinations. The evaluation was implemented on the basis of the German drinking water regulation (Anonymous, 1990. Gesetz über Trinkwasser und Wasser für Lebensmittelbetriebe (Trinkwasserverordnung - TrinkwV) vom 12. Dezember 1990. Bundesgesetzblatt 66, 2613ff). Initially, the bacteria counts exceeded the reference values imposed by the German drinking water regulation in almost 50% of the analyses. Pseudomonas aeruginosa was also detected in almost 38% of the samples. After a re-arrangement of the disinfection procedure and the removal of the charcoal filter, Pseudomonas aeruginosa was not detectable any more. However, the bacteria counts still frequently exceeded the reference values of the German drinking water regulation. Following our long-term analysis, we would not recommend soda fountains in high-risk areas of hospitals. If these devices are to be used in hospitals, the disinfection procedures should be executed in weekly or fortnightly intervals and the water quality should be examined periodically.

  1. Browse Title Index

    African Journals Online (AJOL)

    Vol 14, No 11 (2015), Biological treatment of drinking water by chitosan ... Vol 10, No 86 (2011), Biooxidation of indole and characteristics of the ... alkaliphilic Bacillus sp. strain KSUCr5 isolated from hypersaline Soda lakes, Abstract PDF.

  2. Field demonstration of in situ treatment of buried low-level radioactive solid waste with caustic soda and soda ash to immobilize 90Sr

    International Nuclear Information System (INIS)

    Spalding, B.P.

    1984-02-01

    A low-level radioactive solid waste disposal trench was injected on four occasions with solutions of caustic soda, soda ash, caustic soda, and lime/soda ash, respectively. Because investigations had indicated that 90 Sr could be coprecipitated with soil calcium carbonate by treatment with soda ash, this demonstration was undertaken as a test of its technical feasibility. After concentrations of 90 Sr and water hardness decreased within the intratrench monitoring wells; one well at the foot of the trench decreased from over 100 to a persistent level of less than 10 kBq of 90 Sr per liter. Recharge of 90 Sr from the trench to a sump immediately below was reduced by about 90%. Water hardness and 90 Sr concentrations were strongly correlated through time within each monitoring well, indicating that 90 Sr behaved as a tracer for soil calcium and magnesium. The disappearance of 90 Sr from the trench water, therefore, was an in situ water softening. Soil samples retrieved from the trench indicated that as much as 98% of the total 90 Sr was present as a coprecipitate with calcium carbonate. The hydrologic characterization of this trench indicated an average void space of 41% and an average trench-wall hydraulic conductivity of 3.4 x 10 -7 m/s. Sampling of the trench's discharge contamination plume indicated that it had resulted from a combination of subsurface seepage and bathtub overflow during infrequent periods of intense precipitation. A generic assessment of soda ash treatment indicated that treatment would be most effective for soils of high cation exchange capacity with either low ( 80%) basic cation saturation of that cation exchange capacity

  3. Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from gamma-proteobacterium JB: optimization of process parameters using response surface methodology.

    Science.gov (United States)

    Singh, Gursharan; Ahuja, Naveen; Batish, Mona; Capalash, Neena; Sharma, Prince

    2008-11-01

    An alkalophilic laccase from gamma-proteobacterium JB was applied to wheat straw-rich soda pulp to check its bleaching potential by using response surface methodology based on central composite design. The design was employed by selecting laccase units, ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) concentration and pH as model factors. The results of second order factorial design experiments showed that all three independent variables had significant effect on brightness and kappa number of laccase-treated pulp. Optimum conditions for biobleaching of pulp with laccase preparation (specific activity, 65 nkat mg(-1) protein) were 20 nkat g(-1) of pulp, 2mM ABTS and pH 8.0 which enhanced brightness by 5.89% and reduced kappa number by 21.1% within 4h of incubation at 55 degrees C, without further alkaline extraction of pulp. Tear index (8%) and burst index (18%) also improved for laccase-treated pulp as compared to control raw pulp. Treatment of chemically (CEH1H2) bleached pulp with laccase showed significant effect on release of chromophores, hydrophobic and reducing compounds. Laccase-prebleaching of raw pulp reduced the use of hypochlorite by 10% to achieve brightness of resultant hand sheets similar to the fully chemically bleached pulp.

  4. GPU-powered model analysis with PySB/cupSODA.

    Science.gov (United States)

    Harris, Leonard A; Nobile, Marco S; Pino, James C; Lubbock, Alexander L R; Besozzi, Daniela; Mauri, Giancarlo; Cazzaniga, Paolo; Lopez, Carlos F

    2017-11-01

    A major barrier to the practical utilization of large, complex models of biochemical systems is the lack of open-source computational tools to evaluate model behaviors over high-dimensional parameter spaces. This is due to the high computational expense of performing thousands to millions of model simulations required for statistical analysis. To address this need, we have implemented a user-friendly interface between cupSODA, a GPU-powered kinetic simulator, and PySB, a Python-based modeling and simulation framework. For three example models of varying size, we show that for large numbers of simulations PySB/cupSODA achieves order-of-magnitude speedups relative to a CPU-based ordinary differential equation integrator. The PySB/cupSODA interface has been integrated into the PySB modeling framework (version 1.4.0), which can be installed from the Python Package Index (PyPI) using a Python package manager such as pip. cupSODA source code and precompiled binaries (Linux, Mac OS/X, Windows) are available at github.com/aresio/cupSODA (requires an Nvidia GPU; developer.nvidia.com/cuda-gpus). Additional information about PySB is available at pysb.org. paolo.cazzaniga@unibg.it or c.lopez@vanderbilt.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  5. SODA: The reduced database for the TdeV tokamak

    International Nuclear Information System (INIS)

    Cote, A.; Michaud, D.; Caumartin, J.; de Villers, P.; Gauthier, Y.; Gauvreau, J.; Larsen, J.

    1997-01-01

    SODA which stands for Systgrave eme d close-quote Organisation des Donnacute ees et d close-quote Analyse, is a general database for TdeV. SODA has the following goals: to produce a database of a reduced set of physical data; to ensure that these data are validated; to record all the parameters relevant to tokamak operation and experiments; to facilitate the retrieval of data using given selection criteria; and to improve data accessibility and analysis. The relational database ORACLE trademark has been chosen to provide flexibility and to accommodate the increasing expectations of the TdeV researchers. In-house expertise allows custom-made tables and centralized data management. In the process of creating SODA several new interfaces for the scientific coordinator, machine operator, and diagnosticians have been added to provide a better definition of the experiment for the archiving system. The database includes the more relevant machine and diagnostic parameters, plasma perturbations (rf, biasing, gas hor-ellipsis), mean and standard deviation of physical signals, plasma profiles, and code results (equilibrium hor-ellipsis) for selected time windows in a discharge. Users of the X-window interface of SODA are not required to know the database structure or the SQL language. SODA has been operating successfully for over a year and its capabilities are continuously expanding. copyright 1997 American Institute of Physics

  6. College Cafeteria Signage Increases Water Intake but Water Position on the Soda Dispenser Encourages More Soda Consumption.

    Science.gov (United States)

    Montuclard, Astrid Linn; Park-Mroch, Jennifer; O'Shea, Amy M J; Wansink, Brian; Irvin, Jill; Laroche, Helena H

    2017-10-01

    To evaluate the effects of improved water location visibility and water dispenser position on the soda dispenser on undergraduate students' beverage choices. Two focus groups with pilot intervention surveys before and after, adding a small sign above the soda dispensers' water button for 6 weeks in a large US university's all-you-can-eat, prepaid dining hall (measured with chi-square tests and logistic and ordinal logistic regression). Focus groups included 15 students. Survey participants included 357 students before and 301 after the intervention. After the intervention, more students reported ever having drunk water with the meal (66.4% to 77.0%; P = .003) and water consumption frequency increased (P = .005). Postintervention, the odds of drinking water increased by 1.57. Preference for other drinks was the main reason for not drinking water. A total of 59% of students had ever changed their preference from water to soda. The clear indication of the water's location increased students' reported water consumption. Further investigation is needed into how a non-independent water dispenser influences students' beverage choice. Clearly labeled, independent water dispensers are recommended. Copyright © 2017 Society for Nutrition Education and Behavior. All rights reserved.

  7. Are energy Drinks Scapegoats? Decomposing Teenagers' Caffeine intake from Energy Drinks and Soda Beverages.

    Science.gov (United States)

    Turel, Ofir

    2018-02-22

    Energy drinks have been repeatedly blamed for contributing to caffeine intake among teenagers. This study aimed to estimate and compare the caffeine intake of US teenagers from soda drinks versus energy drinks and shots. Data were taken from a 2015 nationally representative survey (Monitoring the Future) of 8th and 10th graders in the US (47.2% 8th grade; 51.1% female). Participants reported their numbers of consumed sodas, diet sodas, energy drinks, and energy shots per day. These were converted into mg caffeine/day and were contrasted with common guidelines for healthy caffeine intake, stratified by age group and sex. Error-bar charts, ANOVA and ROC curves were used for contrasting caffeine intake from soda drinks and energy drinks, as well as their contribution to exceeding recommended caffeine intake cutoffs. First, in both sexes and grades the intake from soda drinks was significantly higher than the intake from energy drinks. The soda and energy drink intake for males was higher than the intake for females; intake for 8th graders was higher than this of 10th graders. Second, caffeine intake from soda drinks was significantly higher even in those who exceeded the recommended maximum caffeine intake. Third, caffeine intakes from soda and energy drinks were efficacious in explaining the exceeding of the recommended threshold for daily caffeine intake, but the explanatory power of soda drinks was larger. From a caffeine consumption standpoint, health professionals should emphasize reduction in both soda and energy drinks.

  8. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    Directory of Open Access Journals (Sweden)

    Nadine Schibille

    Full Text Available The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS. The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  9. Draft genome sequence of Lampropedia cohaerens strain CT6(T) isolated from arsenic rich microbial mats of a Himalayan hot water spring.

    Science.gov (United States)

    Tripathi, Charu; Mahato, Nitish K; Rani, Pooja; Singh, Yogendra; Kamra, Komal; Lal, Rup

    2016-01-01

    Lampropedia cohaerens strain CT6(T), a non-motile, aerobic and coccoid strain was isolated from arsenic rich microbial mats (temperature ~45 °C) of a hot water spring located atop the Himalayan ranges at Manikaran, India. The present study reports the first genome sequence of type strain CT6(T) of genus Lampropedia cohaerens. Sequencing data was generated using the Illumina HiSeq 2000 platform and assembled with ABySS v 1.3.5. The 3,158,922 bp genome was assembled into 41 contigs with a mean GC content of 63.5 % and 2823 coding sequences. Strain CT6(T) was found to harbour genes involved in both the Entner-Duodoroff pathway and non-phosphorylated ED pathway. Strain CT6(T) also contained genes responsible for imparting resistance to arsenic, copper, cobalt, zinc, cadmium and magnesium, providing survival advantages at a thermal location. Additionally, the presence of genes associated with biofilm formation, pyrroloquinoline-quinone production, isoquinoline degradation and mineral phosphate solubilisation in the genome demonstrate the diverse genetic potential for survival at stressed niches.

  10. A comparative study of the effect of diet and soda carbonated drinks ...

    African Journals Online (AJOL)

    A comparative study of the effect of diet and soda carbonated drinks on the histology of the cerebellum of adult female albino Wistar rats. ... African Health Sciences ... Group B was administered 50 ml of regular soda (RS), and group C was administered 50 ml of diet soda (DS) each per day for 21 days, and the rats were ...

  11. Arsenic release during managed aquifer recharge (MAR)

    Science.gov (United States)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  12. Microbial community of high arsenic groundwater in agricultural irrigation area of Hetao Plain, Inner Mongolia

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-12-01

    Full Text Available Microbial communities can play important role in arsenic release in groundwater aquifers. To investigate the microbial communities in high arsenic groundwater aquifers in agricultural irrigation area, 17 groundwater samples with different arsenic concentrations were collected along the agricultural drainage channels of Hangjinhouqi County, Inner Mongolia and examined by illumina Miseq sequencing approach targeting the V4 region of the 16S rRNA gene. Both principal component analysis and hierarchical clustering results indicated that these samples were divided into two groups (high and low arsenic groups according to the variation of geochemical characteristics. Arsenic concentrations showed strongly positive correlations with NH4+ and TOC. Sequencing results revealed that a total of 329-2823 OTUs were observed at the 97% OTU level. Microbial richness and diversity of high arsenic groundwater samples along the drainage channels were lower than those of low arsenic groundwater samples but higher than those of high arsenic groundwaters from strongly reducing areas. The microbial community structure in groundwater along the drainage channels was different from those in strongly reducing As-rich aquifers of Hetao Plain and other high As groundwater aquifers including Bangladesh, West Bengal and Vietnam. Acinetobacter and Pseudomonas dominated with high percentages in both high and low arsenic groundwaters. Alishewanella, Psychrobacter, Methylotenera and Crenothrix showed relatively high abundances in high arsenic groundwater, while Rheinheimera and the unidentified OP3 were predominant populations in low arsenic groundwater. Archaeal populations displayed a low occurrence and mainly dominated by methanogens such as Methanocorpusculum and Methanospirillum. Microbial community compositions were different between high and low arsenic groundwater samples based on the results of principal coordinate analysis and co-inertia analysis. Other geochemical

  13. Adsorption of arsenic by iron rich precipitates from two coal mine drainage sites on the West Coast of New Zealand

    International Nuclear Information System (INIS)

    Rait, R.; Trumm, D.; Pope, J.; Craw, D.; Newman, N.; MacKenzie, H.

    2010-01-01

    Dissolved As can be strongly adsorbed to fine grained Fe(III) minerals such as hydroxides, oxyhydroxides and hydroxysulphates. Therefore precipitates that form during neutralisation or treatment of acid mine drainage have potential to be useful for treatment of As-contaminated water because acid mine drainage is often Fe rich. We tested the adsorption properties of Fe(III) rich precipitates from two West Coast coal mines with As-contaminated water from an historic gold ore processing site near Reefton. Precipitates were collected from distinctly different settings, an active acid mine drainage treatment plant at Stockton mine and the neutralisation/oxidation zone of acid mine drainage discharge at the abandoned Blackball Coal Mine. The two mine sites produce precipitates with different compositions and mineralogy. Arsenic adsorption onto precipitates from each site was determined in batch and column tests under laboratory conditions. Batch experiments indicate As adsorption occurs rapidly during the first 5 h and reaches equilibrium after 24 h. At equilibrium, and for a dosing ratio of 50 g of precipitate per litre of water, As concentrations decreased from 99 mg/L to 0.0080 mg/L with precipitates from Stockton and to 0.0017 mg/L with precipitates from Blackball. Arsenic adsorption capacity is up to 12 mg/g on precipitates from Stockton sludge and 74 mg/g on precipitates from Blackball. The Blackball precipitate adsorbs more As than precipitates from Stockton which is probably due to the higher Fe oxide content but pH and surface structure could also play a role. The column experiment confirmed that adsorption of As from a continuous waste stream onto these precipitates is possible, and that passive remediation using this waste product mixed with gravel to enhance permeability could be a viable approach at As-contaminated mine sites. (author). 56 refs., 10 figs., 6 tabs.

  14. Baking soda dentifrice and periodontal health: A review of the literature.

    Science.gov (United States)

    Sabharwal, Amarpreet; Scannapieco, Frank A

    2017-11-01

    Mechanical disruption of dental biofilm is critical to maintain periodontal health. Baking soda-containing dentifrices have shown to be potential aids for improving gingival health and maintaining dental biofilm control. Evidence from classic and contemporary literature is reviewed and summarized in this review. In vitro and in vivo (animal and human, respectively) studies and clinical trials have been analyzed. Some clinical studies demonstrated the benefits of baking soda dentifrices in plaque and gingivitis reduction. Clinical trials with longer follow-up would be useful to confirm the impact of baking soda on gingival health. Regular dental biofilm control and adjunctive use of baking soda dentifrices in an otherwise healthy and compliant patient may provide success in maintenance of gingival health. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  15. Heterogeneous arsenic enrichment in meta-sedimentary rocks in central Maine, United States

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, Beth, E-mail: bethoshea@sandiego.edu [Department of Marine Science and Environmental Studies, University of San Diego, 5998 Alcala Park, San Diego, CA 92110 (United States); Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964 (United States); Stransky, Megan; Leitheiser, Sara [Department of Marine Science and Environmental Studies, University of San Diego, 5998 Alcala Park, San Diego, CA 92110 (United States); Brock, Patrick [School of Earth and Environmental Sciences, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367 (United States); Marvinney, Robert G. [Maine Geological Survey, 93 State House Station, Augusta, ME 04333 (United States); Zheng, Yan [School of Earth and Environmental Sciences, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367 (United States); Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964 (United States)

    2015-02-01

    Arsenic is enriched up to 28 times the average crustal abundance of 4.8 mg kg{sup −1} for meta-sedimentary rocks of two adjacent formations in central Maine, USA where groundwater in the bedrock aquifer frequently contains elevated As levels. The Waterville Formation contains higher arsenic concentrations (mean As 32.9 mg kg{sup −1}, median 12.1 mg kg{sup −1}, n = 38) than the neighboring Vassalboro Group (mean As 19.1 mg kg{sup −1}, median 6.0 mg kg{sup −1}, n = 38). The Waterville Formation is a pelitic meta-sedimentary unit with abundant pyrite either visible or observed by scanning electron microprobe. Concentrations of As and S are strongly correlated (r = 0.88, p < 0.05) in the low grade phyllite rocks, and arsenic is detected up to 1944 mg kg{sup −1} in pyrite measured by electron microprobe. In contrast, statistically significant (p < 0.05) correlations between concentrations of As and S are absent in the calcareous meta-sediments of the Vassalboro Group, consistent with the absence of arsenic-rich pyrite in the protolith. Metamorphism converts the arsenic-rich pyrite to arsenic-poor pyrrhotite (mean As 1 mg kg{sup −1}, n = 15) during de-sulfidation reactions: the resulting metamorphic rocks contain arsenic but little or no sulfur indicating that the arsenic is now in new mineral hosts. Secondary weathering products such as iron oxides may host As, yet the geochemical methods employed (oxidative and reductive leaching) do not conclusively indicate that arsenic is associated only with these. Instead, silicate minerals such as biotite and garnet are present in metamorphic zones where arsenic is enriched (up to 130.8 mg kg{sup −1} As) where S is 0%. Redistribution of already variable As in the protolith during metamorphism and contemporary water–rock interaction in the aquifers, all combine to contribute to a spatially heterogeneous groundwater arsenic distribution in bedrock aquifers. - Highlights: • Arsenic is enriched up to 138 mg kg

  16. Health effects following subacute exposure to geogenic dusts from arsenic-rich sediment at the Nellis Dunes Recreation Area, Las Vegas, NV

    International Nuclear Information System (INIS)

    DeWitt, Jamie; Buck, Brenda; Goossens, Dirk; Hu, Qing; Chow, Rebecca; David, Winnie; Young, Sharon; Teng, Yuanxin; Leetham-Spencer, Mallory; Murphy, Lacey; Pollard, James; McLaurin, Brett; Gerads, Russell; Keil, Deborah

    2016-01-01

    Geogenic dust from arid environments is a possible inhalation hazard for humans, especially when using off-road vehicles that generate significant dust. This study focused on immunotoxicological and neurotoxicological effects following subacute exposure to geogenic dust generated from sediments in the Nellis Dunes Recreation Area near Las Vegas, Nevada that are particularly high in arsenic; the naturally-occurring arsenic concentrations in these surficial sediments ranged from 4.8 to 346 μg/g. Dust samples from sediments used in this study had a median diameter of 4.5 μm and also were a complex mixture of naturally-occurring metals, including aluminum, vanadium, chromium, manganese, iron, cobalt, copper, zinc, strontium, cesium, lead, uranium, and arsenic. Adult female B6C3F1 mice exposed via oropharyngeal aspiration to 0.01 to 100 mg dust/kg body weight, four times, a week apart, for 28 days, were evaluated 24 h after the last exposure. Peripheral eosinophils were increased at all concentrations, serum creatinine was dose responsively increased beginning at 1.0 mg/kg/day, and blood urea nitrogen was decreased at 10 and 100 mg/kg/day. Antigen-specific IgM responses and natural killer cell activity were dose-responsively suppressed at 0.1 mg/kg/day and above. Splenic CD4 + CD25 + T cells were decreased at 0.01, 0.1, 10, and 100 mg/kg/day. Antibodies against MBP, NF-68, and GFAP were selectively reduced. A no observed adverse effect level of 0.01 mg/kg/day and a lowest observed adverse effect level of 0.1 mg/kg/day were determined from IgM responses and natural killer cell activity, indicating that exposure to this dust, under conditions similar to our design, could affect these responses. - Highlights: • Toxicity of geogenic dust from arsenic-rich sediment in Nevada was characterized. • The geogenic dust is a mixture of many metals and crystalline silica. • Geogenic dust exposure decreased IgM antibodies and natural killer cell activity.

  17. Health effects following subacute exposure to geogenic dusts from arsenic-rich sediment at the Nellis Dunes Recreation Area, Las Vegas, NV

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, Jamie, E-mail: dewittj@ecu.edu [Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834 (United States); Buck, Brenda [Department of Geoscience, University of Nevada, Las Vegas, NV 89154 (United States); Goossens, Dirk [Department of Geoscience, University of Nevada, Las Vegas, NV 89154 (United States); Department of Earth and Environmental Sciences, KU Leuven (Belgium); Hu, Qing [Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834 (United States); Chow, Rebecca; David, Winnie; Young, Sharon; Teng, Yuanxin [Department of Geoscience, University of Nevada, Las Vegas, NV 89154 (United States); Leetham-Spencer, Mallory; Murphy, Lacey [Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717 (United States); Pollard, James [Department of Geoscience, University of Nevada, Las Vegas, NV 89154 (United States); McLaurin, Brett [Department of Environmental, Geographical, and Geological Sciences, Bloomsburg University of Pennsylvania, Bloomsburg, PA,17815 (United States); Gerads, Russell [Brooks Rand Labs, LLC, Bothell, WA 98011 (United States); Keil, Deborah [Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717 (United States)

    2016-08-01

    Geogenic dust from arid environments is a possible inhalation hazard for humans, especially when using off-road vehicles that generate significant dust. This study focused on immunotoxicological and neurotoxicological effects following subacute exposure to geogenic dust generated from sediments in the Nellis Dunes Recreation Area near Las Vegas, Nevada that are particularly high in arsenic; the naturally-occurring arsenic concentrations in these surficial sediments ranged from 4.8 to 346 μg/g. Dust samples from sediments used in this study had a median diameter of 4.5 μm and also were a complex mixture of naturally-occurring metals, including aluminum, vanadium, chromium, manganese, iron, cobalt, copper, zinc, strontium, cesium, lead, uranium, and arsenic. Adult female B6C3F1 mice exposed via oropharyngeal aspiration to 0.01 to 100 mg dust/kg body weight, four times, a week apart, for 28 days, were evaluated 24 h after the last exposure. Peripheral eosinophils were increased at all concentrations, serum creatinine was dose responsively increased beginning at 1.0 mg/kg/day, and blood urea nitrogen was decreased at 10 and 100 mg/kg/day. Antigen-specific IgM responses and natural killer cell activity were dose-responsively suppressed at 0.1 mg/kg/day and above. Splenic CD4 + CD25 + T cells were decreased at 0.01, 0.1, 10, and 100 mg/kg/day. Antibodies against MBP, NF-68, and GFAP were selectively reduced. A no observed adverse effect level of 0.01 mg/kg/day and a lowest observed adverse effect level of 0.1 mg/kg/day were determined from IgM responses and natural killer cell activity, indicating that exposure to this dust, under conditions similar to our design, could affect these responses. - Highlights: • Toxicity of geogenic dust from arsenic-rich sediment in Nevada was characterized. • The geogenic dust is a mixture of many metals and crystalline silica. • Geogenic dust exposure decreased IgM antibodies and natural killer cell activity.

  18. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    Directory of Open Access Journals (Sweden)

    Yendi E. Navarro-Noya

    2015-01-01

    Full Text Available In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5, indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances clearly clustered the communities by pH.

  19. Stain removal and whitening by baking soda dentifrice: A review of literature.

    Science.gov (United States)

    Li, Yiming

    2017-11-01

    Tooth discoloration may be caused by intrinsic or extrinsic stains or a combination of both. There are 2 major approaches to removing the stains, including the chemical mechanism using peroxides for tooth bleaching and the mechanical mechanism using abrasives in prophylactic pastes and dentifrices to remove stains, resulting in a whitening effect. Attempts have also been made to add a low concentration of peroxides to dentifrices to enhance their abrasive cleaning to remove tooth stains. This article provides a review of both in vitro and clinical studies on stain removal and whitening effect of dentifrices containing sodium bicarbonate (baking soda). In recent years, whitening dentifrices have become popular because of little additional effort for use, ease of availability, low cost, and accumulated evidence of clinical efficacy and safety in the literature. Advances in research and technology have led to innovative formulations of dentifrices using baking soda as the sole abrasive or a component of an abrasive system. Baking soda is biologically compatible with acid-buffering capacities, antibacterial at high concentrations, and has a relatively lower abrasivity. The evidence available in the literature indicates that baking soda-based dentifrices are effective and safe for tooth stain removal and consequently whitening. A number of clinical studies have also shown that baking soda-based dentifrices are more effective in stain removal and whitening than some non-baking soda-containing dentifrices with a higher abrasivity. So far, research efforts have mainly focused on stain removal and tooth-whitening efficacy and clinical safety of baking soda dentifrices used with manual toothbrushes, with only a few studies investigating their effects using powered toothbrushes, for which further research is encouraged. As part of a daily oral hygiene practice, baking soda-based dentifrice is a desirable, alternative or additional measure for tooth stain removal and whitening

  20. Microbial Flocculant for Nature Soda

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Peiyong; Zhang, Tong; Chen, Cuixian

    2004-03-31

    Microbial flocculant for nature soda has been studied. Lactobacillus TRJ21, which was able to produce an excellent biopolymer flocculant for nature soda, was obtained in our lab. The microbial flocculant was mainly produced when the bacteria laid in stationary growth phase. Fructose or glucose, as carbon sources, were more favorable for the bacterial growth and flocculant production. The bacteria was able to use ammonium sulfate or Urea as nitrogen to produce flocculant, but was not able to use peptone effectively. High C/N ratio was more favorable to Lactobacillus TRJ21 growth and flocculant production than low C/N ratio. The biopolymer flocculant was mainly composed of polysaccharide and protein with a molecular weight 1.38x106 by gel permeation chromatography. It was able to be easily purified from the culture medium by acetone. Protein in the flocculant was tested for the flocculating activity ingredient by heating the flocculant.

  1. Regular-soda intake independent of weight status is associated with asthma among US high school students.

    Science.gov (United States)

    Park, Sohyun; Blanck, Heidi M; Sherry, Bettylou; Jones, Sherry Everett; Pan, Liping

    2013-01-01

    Limited research shows an inconclusive association between soda intake and asthma, potentially attributable to certain preservatives in sodas. This cross-sectional study examined the association between regular (nondiet)-soda intake and current asthma among a nationally representative sample of high school students. Analysis was based on the 2009 national Youth Risk Behavior Survey and included 15,960 students (grades 9 through 12) with data for both regular-soda intake and current asthma status. The outcome measure was current asthma (ie, told by doctor/nurse that they had asthma and still have asthma). The main exposure variable was regular-soda intake (ie, drank a can/bottle/glass of soda during the 7 days before the survey). Multivariable logistic regression was used to estimate the adjusted odds ratios for regular-soda intake with current asthma after controlling for age, sex, race/ethnicity, weight status, and current cigarette use. Overall, 10.8% of students had current asthma. In addition, 9.7% of students who did not drink regular soda had current asthma, and 14.7% of students who drank regular soda three or more times per day had current asthma. Compared with those who did not drink regular soda, odds of having current asthma were higher among students who drank regular soda two times per day (adjusted odds ratio=1.28; 95% CI 1.02 to 1.62) and three or more times per day (adjusted odds ratio=1.64; 95% CI 1.25 to 2.16). The association between high regular-soda intake and current asthma suggests efforts to reduce regular-soda intake among youth might have benefits beyond improving diet quality. However, this association needs additional research, such as a longitudinal examination. Published by Elsevier Inc.

  2. Soda Creek springs - metamorphic waters in the eastern Alaska Range

    Science.gov (United States)

    Richter, D.H.; Donaldson, D.E.; Lamarre, R.A.

    1973-01-01

    The Soda Creek springs are a group of small, cold mineral springs on the southern flank of the eastern Alaska Range. The spring waters contain anomalous concentrations of carbon dioxide, sodium, chlorine, sulfate, boron, and ammonia and are actively precipitating deposits of calcite and aragonite. Sparingly present in these deposits are mixed-layer illite-montmorillonite clays and zeolite minerals. Low-temperaturemetamorphic reactions in subjacent marine sedimentary rocks of Jurassic and Cretaceous age may have produced the fluids and silicate minerals. With only a few exceptions, cool bicarbonate-rich springs in Alaska are concentrated south of the Denali fault system in south-central Alaska, southeastern Alaska, and along the Kaltag-Tintina fault system. These areas are characterized by active or recently activetectonism, major faults and folds, and an abundance of marine sedimentary rocks.

  3. Arsenic in groundwater of Licking County, Ohio, 2012—Occurrence and relation to hydrogeology

    Science.gov (United States)

    Thomas, Mary Ann

    2016-02-23

    (2) deeper open intervals, relative to the water level.The spatial distribution of arsenic concentrations was compared to hydrogeologic characteristics of Licking County. Elevated concentrations of arsenic (and iron) were associated with areas of flat topography and thick (greater than 100 feet),clay-rich glacial deposits. These characteristics are conducive to development of strongly reducing redox conditions, which can cause arsenic associated with iron oxyhydroxides in the aquifer matrix to be released to the groundwater.Hydrogeologic characteristics conducive to the development of strongly reducing groundwater are relatively wide-spread in the western part of Licking County, which is part of the Central Lowland physiographic province. In this area, a thick layer of clay-rich glacial deposits obscures the bedrock surface and creates flat to gently rolling landscape with poorly developed drainage networks. In the eastern part of the county, which is part of the Appalachian Plateaus physiographic province, the landscape includes steep-sided valleys and bedrock uplands. In this area, elevated arsenic concentrations were detected in buried valleys but not in the bedrock uplands, where glacial deposits are thin or absent. The observation that elevated concentrations of arsenic (and iron) were more prevalent in the western part of Licking County is true for both glacial and bedrock aquifers.In Licking County, thick, clay-rich glacial deposits (and elevated concentrations of arsenic) are associated with two hydrogeologic settings—buried valley and complex thick drift. Most wells in the buried-valley setting had low arsenic concentrations, but a few samples had very high concentrations (30–44 µg/L) and very reducing redox conditions (methanogenic and near-methanogenic). For wells in the complex-thick-drift setting, elevated arsenic concentrations are more prevalent, but the maximum concentration was lower (about 21 µg/L). Similar observations were made about arsenic

  4. Quantitative bacterial examination and chemical evaluation of Diet, Club, and Ice-cream Sodas, Soft Drinks

    International Nuclear Information System (INIS)

    Watoo, M.K.S.; Watoo, F.S.; Kazi, T.G.; Tirmizi, S.A.; Iqbal, J.

    2005-01-01

    Diet, club, and ice cream sodas are flavored soft drinks consumed throughout the world, especially in summer seasons. This study has been undertaken to monitor the bacterial and chemical contamination of these national and international branded drinks procured from local markets. The isolated coliforms and microbes were E. coli Salmonella spp, Klebsiella spp, Enterobacter spp, Shigella spp, and Bacillus cereus. Diet and club sodas were less contaminated with microorganisms than were ice-cream sodas. Fifteen trace and toxic elements were identified with an atomic absorption spectrophotometer following the improved ash digestion method. The values of Nickel (Ni), (0.15 mg/L), (Pb) (0.28mg/L), Cadmium (Cd) (0.13mg/L) and Aluminum (Al) (0.76 mg/L) were higher than the (WHO) recommended limits. The concentrations of (Na, Fe, Pb) and Chromium (Cr) were higher in club sodas than diet and ice-cream sodas and the concentrations of Calcium (Ca), (Mn) in ice-cream sodas were also higher than diet and club sodas. Overall, the ice-cream sodas did not conform to the (WHO) standards allowed for safe ingestion of micro- and macro-metals in various drinks. (author)

  5. Enhancement of plaque removal efficacy by tooth brushing with baking soda dentifrices: results of five clinical studies.

    Science.gov (United States)

    Putt, Mark S; Milleman, Kimberly R; Ghassemi, Annahita; Vorwerk, Linda M; Hooper, William J; Soparkar, Pramod M; Winston, Anthony E; Proskin, Howard M

    2008-01-01

    An earlier clinical study demonstrated that brushing with a commercial Arm & Hammer dentifrice containing baking soda physically removed significantly more plaque than brushing with either of two commercial dentifrices which did not contain baking soda. However, little has been done to confirm these results and to compare baking soda-containing dentifrices with more recently commercialized non-baking soda dentifrice formulations. The objective of this study was to compare commercial dentifrices containing 20% to 65% baking soda and commercial dentifrices without baking soda in enhancing plaque removal efficacy of tooth brushing. Five randomized, controlled, blinded, crossover clinical studies were performed among healthy adult volunteers who provided informed consent. After approximately 24 hours without oral hygiene, subjects with sufficient plaque were enrolled in the study phase. Plaque was scored before and after supervised brushing for one minute using the Turesky, et al. modification of the Quigley-Hein Plaque Index at six sites per tooth according to Soparkar's modification as described by Lobene, et al. In each study, wash-out periods with a regular dentifrice not evaluated in the study separated each product treatment. In all studies, every dentifrice exhibited a significant (p baking soda dentifrices resulted in statistically greater (p baking soda. Results on other tooth surfaces, such as facial, lingual, proximal, and gingival surfaces also demonstrated statistically greater (p baking soda-containing dentifrices as compared to the baking soda-free dentifrices. In three of the studies comparing different levels of baking soda, brushing with dentifrices with higher concentrations of baking soda consistently removed numerically more plaque than those containing lower levels. In one of these three studies, the difference in plaque removal between the baking soda dentifrices reached statistical significance. The results suggest a positive relationship

  6. The Untapped Power of Soda Taxes: Incentivizing Consumers, Generating Revenue, and Altering Corporate Behavior

    Directory of Open Access Journals (Sweden)

    Sarah A. Roache

    2017-09-01

    Full Text Available Globally, soda taxes are gaining momentum as powerful interventions to discourage sugar consumption and thereby reduce the growing burden of obesity and non-communicable diseases (NCDs. Evidence from early adopters including Mexico and Berkeley, California, confirms that soda taxes can disincentivize consumption through price increases and raise revenue to support government programs. The United Kingdom’s new graduated levy on sweetened beverages is yielding yet another powerful impact: soda manufacturers are reformulating their beverages to significantly reduce the sugar content. Product reformulation – whether incentivized or mandatory – helps reduce overconsumption of sugars at the societal level, moving away from the long-standing notion of individual responsibility in favor of collective strategies to promote health. But as a matter of health equity, soda product reformulation should occur globally, especially in low- and middleincome countries (LMICs, which are increasingly targeted as emerging markets for soda and junk food and are disproportionately impacted by NCDs. As global momentum for sugar reduction increases, governments and public health advocates should harness the power of soda taxes to tackle the economic, social, and informational drivers of soda consumption, driving improvements in food environments and the public’s health.

  7. Holocene estuarine sediments as a source of arsenic in Pleistocene groundwater in suburbs of Hanoi, Vietnam

    Science.gov (United States)

    Kuroda, Keisuke; Hayashi, Takeshi; Funabiki, Ayako; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Takizawa, Satoshi

    2017-06-01

    Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25-40 m depth, 9.6-4.8 cal ka BP) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25-94 μg/L) than in the HUA (5.2-42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.

  8. Stream capture to form Red Pass, northern Soda Mountains, California

    Science.gov (United States)

    Miller, David; Mahan, Shannon

    2014-01-01

    Red Pass, a narrow cut through the Soda Mountains important for prehistoric and early historic travelers, is quite young geologically. Its history of downcutting to capture streams west of the Soda Mountains, thereby draining much of eastern Fort Irwin, is told by the contrast in alluvial fan sediments on either side of the pass. Old alluvial fan deposits (>500 ka) were shed westward off an intact ridge of the Soda Mountains but by middle Pleistocene time, intermediate-age alluvial fan deposits (~100 ka) were laid down by streams flowing east through the pass into Silurian Valley. The pass was probably formed by stream capture driven by high levels of groundwater on the west side. This is evidenced by widespread wetland deposits west of the Soda Mountains. Sapping and spring discharge into Silurian Valley over millennia formed a low divide in the mountains that eventually was overtopped and incised by a stream. Lessons include the importance of groundwater levels for stream capture and the relatively youthful appearance of this ~100-200 ka feature in the slowly changing Mojave Desert landscape.

  9. Evaporative concentration of arsenic in groundwater: health and environmental implications, La Laguna Region, Mexico.

    Science.gov (United States)

    Ortega-Guerrero, Adrián

    2017-10-01

    High arsenic concentrations in groundwater have been documented in La Laguna Region (LLR) in arid northern Mexico, where arsenic poisoning is both chronic and endemic. A heated debate has continued for decades on its origin. LLR consisted of a series of ancient connected lakes that developed at the end of a topographic depression under closed basin conditions. This study addresses the isotopic, chemical composition of the groundwater and geochemical modeling in the southeasternmost part of the LLR to determine the origin of arsenic. Groundwater samples were obtained from a carbonate and granular aquifers and from a clayey aquitard at terminal Viesca Lake. Results show that groundwater originated as meteoric water that reached the lakes mainly via abundant springs in the carbonate aquifer and perennial flooding of the Nazas-Aguanaval Rivers. Paleo-lake water underwent progressive evaporation as demonstrated by the enrichment of δ 18 O, δ 2 H and characteristic geochemical patterns in the granular aquifer and aquitard that resulted in highly saline (>90,000 mS/cm), arsenic-rich (up to 5000 μg/L) paleo-groundwater (>30,000 years BP). However, adsorption or co-precipitation on iron oxides, clay-mineral surfaces and organic carbon limited arsenic concentration in the groundwater. Arsenic-rich groundwater and other solutes are advancing progressively from the lacustrine margins toward the main granular aquifer, due to reversal of hydraulic gradients caused by intensive groundwater exploitation and the reduction in freshwater runoff provoked by dam construction on the main rivers. Desorption of arsenic will incorporate additional concentrations of arsenic into the groundwater and continue to have significant negative effects on human health and the environment.

  10. Early diagenetic processes and sulphur speciation in pore waters and sediments of the hypersaline Tyro and Bannock basins, eastern Mediterranean

    NARCIS (Netherlands)

    Henneke, E.

    1993-01-01

    Anoxic hypersaline basins have been found in two different tectonic environments in the eastern Mediterranean. Within the Tyro area (the western Strabo Trench) there are three pull apart basins: the Tyro Basin, presently filled with anoxic hypersaline bottomwater, and the Poseidon and Kretheus

  11. Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation.

    Science.gov (United States)

    Sultana, Razia; Kobayashi, Katsuichiro; Kim, Ki-Hyun

    2015-01-01

    In this research, the relative performance in arsenic (As) remediation was evaluated among some barnyard grass and rice species under hydroponic conditions. To this end, four barnyard grass varieties and two rice species were selected and tested for their remediation potential of arsenic. The plants were grown for 2 weeks in As-rich solutions up to 10 mg As L(-1) to measure their tolerance to As and their uptake capabilities. Among the varieties of plants tested in all treatment types, BR-29 rice absorbed the highest amount of As in the root, while Nipponbare translocated the maximum amount of As in the shoot. Himetainubie barnyard grass produced the highest biomass, irrespective of the quantity of As in the solution. In all As-treated solutions, the maximum uptake of As was found in BR-29 followed by Choto shama and Himetainubie. In contrast, while the bioaccumulation factor was found to be the highest in Nipponbare followed by BR-29 and Himetainubie. The results suggest that both Choto shama and Himetainubie barnyard grass varieties should exhibit a great potential for As removal, while BR-29 and Nipponbare rice species are the best option for arsenic phytoremediation.

  12. Correlation of Breastmilk Arsenic With Maternal, Infant Urinary Arsenic and Drinking Water Arsenic in an Arsenic Affected Area of Bangladesh

    Science.gov (United States)

    Alauddin, M.; Islam, M. R.; Milton, A. H.; Alauddin, S. T.; Mouly, T.; Behri, E.; Ayesha, A.; Akter, S.; Islam, M. M.

    2016-12-01

    About 97% of population in Bangladesh depend on groundwater as the principle source of drinking water and this water is highly contaminated with inorganic arsenic. Consumption of arsenic contaminated drinking water by pregnant women raises the prospect of early life exposure to inorganic arsenic for newborn which may be lead to adverse health effect in later life. This work was carried out in parts of Gopalganj district in Bangladesh, a region affected by arsenic contamination in groundwater. The objective of the work was to assess potential early life exposure to arsenic for infants through breastfeeding by mothers who were drinking water with arsenic levels ranging from 100 to 300 µg/l. A cohort of 30 mother-baby pairs were selected for the current study. Breastmilk samples from mothers, urine samples from each pair of subjects at 1, 6 and 9 month age of infant were collected and total arsenic were determined in these samples. In addition speciation of urinary arsenic and metabolites were carried out in 12 mother-baby pairs. Median level for breastmilk arsenic were 0.50 µg/l. Urinary arsenic of infants did not correlate with breastmilk arsenic with progressing age of infants. Maternal and infant urinary total arsenic at 1 month age of infant showed some positive correlation (r = 0.39). In infant urine major metabolite were dimethyl arsenic acid (DMA) (approximately 70%) indicating good methylating capacity for infants at 1 and 6 months of age. In conclusion, infants were not exposed to arsenic through breastfeeding even though mothers were exposed to significant levels of arsenic through drinking water.

  13. Characterization of cutting soda-lime glass sludge for the formulation of red ceramic products

    International Nuclear Information System (INIS)

    Filogonio, P.H.C.; Reis, A.S.; Louzada, D.M.; Della, V.P.

    2014-01-01

    Considering previous works that have demonstrated the feasibility of soda-lime glass incorporation into red ceramics, this paper aims to determine the potential for incorporation of cutting soda-lime glass sludge in red ceramic manufacturing. Therefore, the waste was characterized by X-ray fluorescence, X-ray diffraction, particle size distribution and thermal behavior. The results confirm the chemical and mineralogical similarity between waste and soda-lime glass. Because of this similarity, it is concluded that the soda-lime glass waste has the capability to be used in the manufacturing of red ceramics. (author)

  14. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  15. A Modeling Comparison of Methanogenesis from Noncompetitive vs Competitive Substrates in a Simulated Hypersaline Microbial Mat

    Science.gov (United States)

    Decker, K. L.; Potter, C.; Hoehler, T.

    2005-12-01

    The well-documented assumption about methanogens that co-occur in hypersaline mat communities with sulfate-reducing bacteria (SRB) is that they rely entirely on non-competitive substrates for methanogenesis. The reason for this is that during sulfate reduction, sulfur-reducing bacteria efficiently utilize H2, leaving a concentration too low for methanogenesis. Early results from recent work on a hypersaline microbial mat from salt evaporation ponds of Guerrero Negro, Baja, Mexico cast doubt that methanogenesis only occurs via non-competitive substrates, because it shows an excess of H2 in the mat rather than a paucity. We explore the use of our simulation model of the microbial biogeochemistry of a hypersaline mat (named MBGC) to compare methane production rates in a 1 cm thick mat when the methanogens use competitive substrates versus noncompetitive substrates. In the `non-competitive substrate' version of the model, methanogens rely exclusively on methylated amines that are accumulated as compatible solutes in cyanobacteria and released after lysis. In contrast, the `competitive substrate' models examine methanogen use of substrates (such as H2 + acetate) with different SRB population sizes (from absent to low). The comparison of these models of methane and sulfide biogeochemistry of a hypersaline mat has both ecological and geobiological significance, as one hypothesis of Archean microbial mats is that they existed in a low sulfate environment.

  16. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-01-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  17. On the origins of hypersaline groundwater in the Nile Delta Aquifer

    Science.gov (United States)

    van Engelen, Joeri; Oude Essink, Gualbert H. P.; Kooi, Henk; Bierkens, Marc F. P.

    2017-04-01

    The fresh groundwater resources in the Nile Delta, Egypt, are of eminent socio-economic importance. These resources are under major stress due to population growth, the anticipated sea level rise and increased groundwater extraction rates, making fresh water availability the most challenging issue in this area. Up till now, numerous groundwater studies mainly focused on sea water intrusion on the top 100m of the groundwater system and assumed salinities not exceeding that of Mediterranean sea water, as there was no knowledge on groundwater in the deeper coastal parts of the Quaternary Nile Delta aquifer (that ranges up to 1000m depth). Recently, however, the Egyptian Research Institute for Groundwater (RIGW) collected salinity measurements and found a widespread occurrence of "hypersaline" groundwater: groundwater with salinities largely exceeding that of sea water at 600m depth (Nofal et al., 2015). This hypersaline groundwater greatly influences flow patterns and the fresh water potential of the aquifer. This research focuses on the origins of the hypersaline groundwater and the possible processes causing its transport. We consider all relevant salinization processes in the Nile Delta aquifer, over a time domain of up to 2.5 million years, which is the time span in which the aquifer got deposited. The following hypotheses were investigated with a combination of analytical solutions and numerical modelling: upward salt transport due to a) molecular diffusion, b) thermal buoyancy, c) consolidation-induced advection and dispersion, or downward transport due to d) composition buoyancy (salt inversion). We conclude that hypotheses a) and b) can be rejected, but c) and d) are both possible with the available information. An enhanced chemical analysis is suggested for further research, to determine the origins of this hypersaline water. This information in combination with the conclusions drawn in this research will give more insight in the potential amount of non

  18. A case for the protection of saline and hypersaline environments: a microbiological perspective.

    Science.gov (United States)

    Paul, Varun G; Mormile, Melanie R

    2017-08-01

    Saline and hypersaline environments are known for their unique geochemical properties, microbial populations and aesthetic appeal. Microbial activities and a spectrum of diversity seen in hypersaline environments are distinct with many novel species being identified and reported on a regular basis. Many distinguishing characteristics about the adaptation, morphology, evolutionary history, and potential environmental and biotechnological applications of these organisms are continually investigated. An abundance of interdisciplinary activities and opportunities exist to explore and understand the importance of these environments that potentially hold promising solutions for current and future global issues. Therefore, it is critical to conserve these unique environments and limit the damage inflicted by anthropogenic influences. Increased salinization due to water diversions, undesired freshening, extensive mineral extraction, sewage effluents, pollution due to agricultural runoff and industrial processes, urbanization, and global climate change are factors negatively affecting hypersaline lakes and their surrounding environments. If these harmful effects continue to proceed at the current or even accelerated rates, irrevocable consequences for these environments will occur, resulting in the loss of potential opportunities to gain new knowledge of the biogeochemistry as well as beneficial microbial populations closely associated with these unique and interesting environments. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat

    Energy Technology Data Exchange (ETDEWEB)

    Mobberley, Jennifer M.; Lindemann, Stephen R.; Bernstein, Hans C.; Moran, James J.; Renslow, Ryan S.; Babauta, Jerome; Hu, Dehong; Beyenal, Haluk; Nelson, William C.

    2017-03-21

    Phototrophic mat communities are model ecosystems for studying energy cycling and elemental transformations because complete biogeochemical cycles occur over millimeter-to-centimeter scales. Characterization of energy and nutrient capture within hypersaline phototrophic mats has focused on specific processes and organisms, however little is known about community-wide distribution of and linkages between these processes. To investigate energy and macronutrient capture and flow through a structured community, the spatial and organismal distribution of metabolic functions within a compact hypersaline mat community from Hot Lake have been broadly elucidated through species-resolved metagenomics and geochemical, microbial diversity, and metabolic gradient measurements. Draft reconstructed genomes of abundant organisms revealed three dominant cyanobacterial populations differentially distributed across the top layers of the mat suggesting niche separation along light and oxygen gradients. Many organisms contained diverse functional profiles, allowing for metabolic response to changing conditions within the mat. Organisms with partial nitrogen and sulfur metabolisms were widespread indicating dependence upon metabolite exchange. In addition, changes in community spatial structure were observed over the diel. These results indicate that organisms within the mat community have adapted to the temporally dynamic environmental gradients in this hypersaline mat through metabolic flexibility and fluid syntrophic interactions, including shifts in spatial arrangements.

  20. The association of soda sales tax and school nutrition laws: a concordance of policies.

    Science.gov (United States)

    Greathouse, K Leigh; Chriqui, Jamie; Moser, Richard P; Agurs-Collins, Tanya; Perna, Frank M

    2014-10-01

    The current research examined the association between state disfavoured tax on soda (i.e. the difference between soda sales tax and the tax on food products generally) and a summary score representing the strength of state laws governing competitive beverages (beverages that compete with the beverages in the federally funded school lunch programme) in US schools. The Classification of Laws Associated with School Students (CLASS) summary score reflected the strength of a state's laws restricting competitive beverages sold in school stores, vending machines, school fundraisers and à la carte cafeteria items. Bridging the Gap (BTG) is a nationally recognized research initiative that provided state-level soda tax data. The main study outcome was the states' competitive beverage summary scores for elementary, middle and high school grade levels, as predicted by the states' disfavoured soda tax. Univariate and multivariate analyses were conducted, adjusting for year and state. Data from BTG and CLASS were used. BTG and CLASS data from all fifty states and the District of Columbia from 2003 to 2010 were used. A higher disfavoured soda sales tax was generally associated with an increased likelihood of having strong school beverage laws across grade levels, and especially when disfavoured soda sales tax was >5 %. These data suggest a concordance between states' soda taxes and laws governing beverages sold in schools. States with high disfavoured sales tax on soda had stronger competitive beverage laws, indicating that the state sales tax environment may be associated with laws governing beverage policy in schools.

  1. Identification of arsenite-and arsenic diglutathione-binding proteins in human hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Mizumura, Ayano; Watanabe, Takayuki [Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, Chiba 263-8522 (Japan); Kobayashi, Yayoi [Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, Chiba 263-8522 (Japan); Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Hirano, Seishiro [Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, Chiba 263-8522 (Japan); Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2010-01-15

    It is generally accepted that trivalent arsenicals are more toxic than the corresponding pentavalent arsenicals, since trivalent arsenicals bind the thiol groups of biomolecules, leading to a deterioration in cellular functions. In the present study, we prepared three different arsenic-bound sepharoses and investigated the binding of hepatic cytosolic proteins to pentavalent, trivalent, and glutathione-conjugated trivalent arsenicals. SDS-PAGE showed no proteins bound to pentavalent arsenic specifically. In contrast, we found a number of proteins that have specific and high affinity for trivalent arsenic. Two of those proteins were identified: protein disulfide isomerase-related protein 5 (PDSIRP5) and peroxiredoxin 1/enhancer protein (PRX1/EP). These proteins have vicinal cysteines, as previously reported. In contrast, one of the prominent proteins that did not bind to trivalent arsenic was identified as calreticulin precursor. Although there are 3 cysteines in calreticulin precursor, two of the cysteines are spaced more than 25 amino acids apart. Five synthetic peptides containing 2 vicinal cysteines were prepared to study whether they would inhibit the binding of PDSIRP5, PRX1/EP, and other arsenic-binding proteins to trivalent arsenicals. Only two of the five peptides effectively inhibited binding, suggesting that other amino acids besides the 2 vicinal cysteines may modulate the affinity of cysteine-rich proteins for trivalent arsenicals. We further investigated hepatic cytosolic proteins that bound specifically to glutathione-conjugated trivalent arsenic, which is the most abundant form of arsenical in bile fluid. Four proteins that bound specifically to glutathione-conjugated trivalent arsenic were identified; interestingly, these proteins were different from the trivalent arsenic-binding proteins. These results suggest that although glutathione-conjugation is an important process in the metabolism, excretion, and detoxification of arsenicals, glutathione

  2. Long-term fate and transport of arsenic in an in-pit uranium mine tailings facility

    International Nuclear Information System (INIS)

    Moldovan, B.; Hendry, M.J.

    2006-01-01

    An important environmental issue facing the uranium mining industry in Saskatchewan is the quantification of the long-term migration of arsenic from its tailings facilities to the adjacent groundwater system. Decommissioning of these arsenic-rich tailings requires that the long-term arsenic source term for the tailings to the groundwater be defined. To meet this need, arsenic-rich uranium mine tailings from one in-pit tailings facility (tailings emplaced in a mined out open pit) were studied in detail. The tailings facility selected for study was the Rabbit Lake in-pit tailings management facility (RLITMF) in northern Saskatchewan, Canada. The tailings body in the RLITMF is 425 m long x 300 m wide x 100 m deep at its center and mill tailings were deposited in layers between 1985 (base) and 2004 (top). Associated with the low-level radioactive tailings is approximately 23,000 tonnes of arsenic. The in-pit design limits solute transport in these fine-grained tailings to diffusion. Because the layers of tailings have varying chemical characteristics (controlled by the ore being milled at the time), the total arsenic concentrations in the layers and their associated pore fluids range from 56 to 9,871 μ/g and 0.24 to 140 mg/l, respectively. As was the case for arsenic, the concentration of iron present in the layers was also variable (ranging from 8,967 to 30,247 μ/g). Synchrotron-based studies show that the arsenic in these tailings is strongly attenuated by adsorption to secondary 2-line ferrihydrite through inner sphere bidentate linkages. Single reservoir diffusion cell testing shows that the effective diffusion coefficient for arsenic in the tailings is 4.5 x 10 -10 m 2 s- 1 . Based on results from our field- and laboratory-based studies, the redistribution (via diffusion) and attenuation (via adsorption) of arsenic in the RLITMF was modelled using a one-dimensional geochemical reactive transport model to provide a source term for arsenic migration from the

  3. Molecular identification of Nocardia species using the sodA gene

    Directory of Open Access Journals (Sweden)

    K. Sánchez-Herrera

    2017-09-01

    Full Text Available Currently for bacterial identification and classification the rrs gene encoding 16S rRNA is used as a reference method for the analysis of strains of the genus Nocardia. However, it does not have enough polymorphism to differentiate them at the species level. This fact makes it necessary to search for molecular targets that can provide better identification. The sodA gene (encoding the enzyme superoxide dismutase has had good results in identifying species of other Actinomycetes. In this study the sodA gene is proposed for the identification and differentiation at the species level of the genus Nocardia. We used 41 type species of various collections; a 386 bp fragment of the sodA gene was amplified and sequenced, and a phylogenetic analysis was performed comparing the genes rrs (1171 bp, hsp65 (401 bp, secA1 (494 bp, gyrB (1195 bp and rpoB (401 bp. The sequences were aligned using the Clustal X program. Evolutionary trees according to the neighbour-joining method were created with the programs Phylo_win and MEGA 6. The specific variability of the sodA genus of the genus Nocardia was analysed. A high phylogenetic resolution, significant genetic variability, and specificity and reliability were observed for the differentiation of the isolates at the species level. The polymorphism observed in the sodA gene sequence contains variable regions that allow the discrimination of closely related Nocardia species. The clear specificity, despite its small size, proves to be of great advantage for use in taxonomic studies and clinical diagnosis of the genus Nocardia.

  4. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  5. Glass-Forming Ability of Soda Lime Borate Liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, J.C.; Smedskjær, Morten Mattrup

    2012-01-01

    We investigate the composition dependence of glass-forming ability (GFA) of a series of iron-containing soda lime borate liquids by substituting Na2O for B2O3. We have characterized GFA by measuring the glass stability against crystallization using a differential scanning calorimeter (DSC......). The results show that the GFA decreases when substituting Na2O for B2O3. Moreover, we find that there is no direct link between the kinetic fragility and GFA for the soda lime borate series studied herein. We have also discovered and clarified a striking thermal history dependence of the glass stability...

  6. [Modification of fasting blood glucose in adults with diabetes mellitus type 2 after regular soda and diet soda intake in the State of Querétaro, Mexico].

    Science.gov (United States)

    Olalde-Mendoza, Liliana; Moreno-González, Yazmín Esmeralda

    2013-06-01

    The objective of the study was to compare the modification of fasting blood glucose in adults with diabetes mellitus type 2 after intake of regular soda and diet soda. We conducted a randomized clinical trial in clinics of Instituto Mexicano del Seguro Social in Querétaro, México. We included 80 patients with diabetes (mean weight 74.2 +/- 13.66, BMI 30.5 +/- 4.305, waist 98.2 +/- 12.9 and time evolution of diabetes 3.8 +/- 3.009) who were asked to come with fasting for 8 hours and without taking any medicine before testing. They were divided into two groups of 40 subjects, to whom was measured fasting blood glucose after the ingestion of 200 ml of diet soda (with aspartame and acesulfame potassium) or regular soda (without sweetener) we measure glucose at 10, 15 and 30 minutes. For statistical analysis performed we used Student's t-test for dependent and independent samples, and paired t-test, and chi square test (chi2). Capillary glucose levels at 10 minutes were -34.52 and -25.41%, at 15 minutes -48.8 and -36.2% and at 30 minutes 57.75 and 43.6% of absolute and relative differences, with p = 0.000. In conclusion, according to the observations, diet soda doesn't increased blood glucose levels, with a significant difference in fasting decreased at 30 minutes.

  7. Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea

    Science.gov (United States)

    Golan, Rotem; Gavrieli, Ittai; Ganor, Jiwchar; Lazar, Boaz

    2016-01-01

    high ionic strength (TDS = 348 g/L) and the dominance of the divalent cation, Mg2+. Other natural hyper-saline brines with high concentration of divalent cations such as Kunteyi Lake in China and Don-Juan Pond in Antarctica follow the same general pattern. In contrast, the high pH of soda lakes results not only from their high TA but also by the dominance of the monovalent cation, Na+. Our study emphasizes the strong control of brine composition on pKB‧ and pH. These factors should be taken into consideration when reconstructing past and present environmental evaporitic environments.

  8. Geochemical fates and unusual distribution of arsenic in natural ferromanganese duricrust

    International Nuclear Information System (INIS)

    Liu, Huan; Lu, Xiancai; Li, Juan; Chen, Xiaoye; Zhu, Xiangyu; Xiang, Wanli; Zhang, Rui; Wang, Xiaolin; Lu, Jianjun; Wang, Rucheng

    2017-01-01

    Preferential enrichment of arsenic in iron oxides relative to manganese oxides has been well documented. In this study, however, a distinct arsenic enrichment is revealed in natural ferromanganese duricrusts, which are commonly found in natural weathering profiles of manganese-bearing carbonate rocks. In the studied ferromanganese duricrust covering Carboniferous carbonates at Qixia Mountain in eastern China, stromotalite-like structures composed by hematite, goethite, pyrolusite and hetaerolite have been observed. Electron microprobe analysis (EMPA) mapping and synchrotron-based micro-scanning X-ray fluorescence (μ-XRF) analyses reveal that the arsenic content in manganese oxides is elevated with respect to iron oxide phases. For example, the arsenic content of pyrolusite is approximately 5 times as much as that of hematite or hetaerolite. However, the highest arsenic content (0.58 wt% As_2O_5) occurs in 2.75 (±0.96, ±σ) μm micro-bands of hematite ((Fe_xMn"I"I"I_1_-_x)_2O_3, 0.75 < x < 0.83). Although arsenic contents in the Mn-rich hematite micro-bands are extraordinarily high, the amount of hematite with a high Mn content is very low in the duricrust. Hence manganese oxides are suggested to be the major arsenic sink in the ferromanganese duricrust. Extended X-ray absorption fine structure spectra (EXAFS) further shows that all arsenic is present as oxidized As(V) and are bound to Fe/Mn oxides in bidentate binuclear bridging complexes with As−Fe and As−Mn bond distances of 3.24 Å and 3.23 Å, respectively. In addition, it is found that zinc is also more enriched in Mn oxides (besides hetaerolite) than in Fe oxides. The fine hematite crust with low contents of heavy metals could act as a protective seal to separate Mn oxides core with high Zn and As from environmental fluids. This separation could reduce the interaction between them and decrease the release of Zn and As from this ferromanganese duricrusts, which ensures long-term sequestration of

  9. Hydrogen peroxide and caustic soda: Dancing with a dragon while bleaching

    Science.gov (United States)

    Peter W. Hart; Carl Houtman; Kolby Hirth

    2013-01-01

    When hydrogen peroxide is mixed with caustic soda, an auto-accelerating reaction can lead to generation of significant amounts of heat and oxygen. On the basis of experiments using typical pulp mill process concentration and temperatures, a relatively simple kinetic model has been developed. Evaluation of these model results reveals that hydrogen peroxide-caustic soda...

  10. Transformation of monothioarsenate by haloalkaliphilic, anoxygenic photosynthetic purple sulfur bacteria.

    Science.gov (United States)

    Edwardson, Christian F; Planer-Friedrich, Britta; Hollibaugh, James T

    2014-12-01

    Thioarsenates are the dominant arsenic species in arsenic-rich, alkaline, and sulfidic waters, but bacterial interactions with these compounds have only recently been examined. Previous studies have shown that microorganisms play a role in the transformation of monothioarsenate to arsenate, including use of monothioarsenate as a chemolithotrophic electron donor coupled with oxygen as an electron acceptor. We obtained enrichment cultures from two saline, alkaline lakes (Mono Lake, CA and Big Soda Lake, NV) that are able to use monothioarsenate as the sole electron donor for anoxygenic photosynthesis. These anoxic cultures were able to convert a 1 mM mixture of thioarsenates completely to arsenate in c. 13 days and 4 mM monothioarsenate to arsenate in c. 17 days. This conversion was light dependent; thus, monothioarsenate can be used as the sole electron donor for anoxygenic photosynthesis. Both of the Mono Lake and Big Soda Lake enrichment cultures were dominated by an organism closely related to Ectothiorhodospira species. We tested additional strains of purple sulfur bacteria and found widespread ability to use monothioarsenate as an electron donor. The ability of bacteria to transform thioarsenates directly via anoxygenic photosynthesis adds a new perspective to the well-studied arsenic and sulfur cycles. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Corrigendum to "Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump" [Sci. Total Environ. 536 (2015) 713-728

    Czech Academy of Sciences Publication Activity Database

    Filippi, Michal; Drahota, P.; Machovič, V.; Böhmová, Vlasta; Mihaljevič, M.

    2016-01-01

    Roč. 541, January 15 (2016), s. 1639 ISSN 0048-9697 Institutional support: RVO:67985831 Keywords : corrigendum * erratum * arsenic mineralogy Subject RIV: DB - Geology ; Mineralogy Impact factor: 4.900, year: 2016

  12. Identification and characterization of bacteria in a selenium-contaminated hypersaline evaporation pond.

    Science.gov (United States)

    de Souza, M P; Amini, A; Dojka, M A; Pickering, I J; Dawson, S C; Pace, N R; Terry , N

    2001-09-01

    Solar evaporation ponds are commonly used to reduce the volume of seleniferous agricultural drainage water in the San Joaquin Valley, Calif. These hypersaline ponds pose an environmental health hazard because they are heavily contaminated with selenium (Se), mainly in the form of selenate. Se in the ponds may be removed by microbial Se volatilization, a bioremediation process whereby toxic, bioavailable selenate is converted to relatively nontoxic dimethylselenide gas. In order to identify microbes that may be used for Se bioremediation, a 16S ribosomal DNA phylogenetic analysis of an aerobic hypersaline pond in the San Joaquin Valley showed that a previously unaffiliated group of uncultured bacteria (belonging to the order Cytophagales) was dominant, followed by a group of cultured gamma-Proteobacteria which was closely related to Halomonas species. Se K-edge X-ray absorption spectroscopy of selenate-treated bacterial isolates showed that they accumulated a mixture of predominantly selenate and a selenomethionine-like species, consistent with the idea that selenate was assimilated via the S assimilation pathway. One of these bacterial isolates (Halomonas-like strain MPD-51) was the best candidate for the bioremediation of hypersaline evaporation ponds contaminated with high Se concentrations because it tolerated 2 M selenate and 32.5% NaCl, grew rapidly in media containing selenate, and accumulated and volatilized Se at high rates (1.65 microg of Se g of protein(-1) x h(-1)), compared to other cultured bacterial isolates.

  13. The Untapped Power of Soda Taxes: Incentivizing Consumers, Generating Revenue, and Altering Corporate Behavior.

    Science.gov (United States)

    Roache, Sarah A; Gostin, Lawrence O

    2017-06-14

    Globally, soda taxes are gaining momentum as powerful interventions to discourage sugar consumption and thereby reduce the growing burden of obesity and non-communicable diseases (NCDs). Evidence from early adopters including Mexico and Berkeley, California, confirms that soda taxes can disincentivize consumption through price increases and raise revenue to support government programs. The United Kingdom's new graduated levy on sweetened beverages is yielding yet another powerful impact: soda manufacturers are reformulating their beverages to significantly reduce the sugar content. Product reformulation - whether incentivized or mandatory - helps reduce overconsumption of sugars at the societal level, moving away from the long-standing notion of individual responsibility in favor of collective strategies to promote health. But as a matter of health equity, soda product reformulation should occur globally, especially in low- and middleincome countries (LMICs), which are increasingly targeted as emerging markets for soda and junk food and are disproportionately impacted by NCDs. As global momentum for sugar reduction increases, governments and public health advocates should harness the power of soda taxes to tackle the economic, social, and informational drivers of soda consumption, driving improvements in food environments and the public's health. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  14. Cooling, cryporitectant and hypersaline sensitivity of Penaeid shrimp embryos and nauplii larvae

    NARCIS (Netherlands)

    Alfaro Montoya, J.; Komen, J.; Huisman, E.A.

    2001-01-01

    The sensitivity of embryos of the penaeid shrimp, Trachypenaeus byrdi, to cooling, cryoprotectant exposure (dimethyl sulfoxide : DMSO, sucrose, methanol and glycerol), and hypersaline treatment was assessed in order to gain basic knowledge for cryopreservation procedures. In addition, cooling and

  15. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Hans C.; Brislawn, Colin J.; Dana, Karl; Flores-Wentz, Tobias; Cory, Alexandra B.; Fansler, Sarah J.; Fredrickson, James K.; Moran, James J.

    2017-10-01

    Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: 1) How does species diversity relate to the rates of primary and heterotrophic productivity? 2) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline Lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope incorporation that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose and acetate, respectively. Bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, energy constraints imposed by changing irradiance over a diel cycle.

  16. Saliva secretion difference before and after rinsing with baking soda on menopause women

    Directory of Open Access Journals (Sweden)

    Dewi Anggraeni

    2007-03-01

    Full Text Available Menopause women can experience a decrease in saliva secretion (decrease. To understand the clear picture about saliva secretion, the volume, flow rate, pH and viscosity were then measured. The aim of this research was to obtain a picture about the difference of saliva secretion before and after rinsing with baking soda on menopause women. The type of the research used was a laboratory quasi-experiment with comparative descriptive form. The technique used in this research is the survey method, and samples were taken using the multistage cluster random sampling method, and t-student statistical analysis. This research was conducted with the saliva collected with spitting method on 45 menopause women. The results show that the average volume, flow rate, pH and viscosity before rinsing with baking soda was 1.79 ml, 0.18 ml/minute, 7.40 and 0.81 mm2/second. The average volume, flow rate, pH and viscosity after rinsing with baking soda were 2.66 ml; 0.27 ml/minute; 8.67 and 0.78 mm2/second. Statistical analysis t-student on α = 0.05 shows volume changes, flow rate, pH and saliva viscosity before and after rinsing with baking soda was 0.873; 0.086; 1.273 and 0.037 respectively. The conclusion shows a significant difference between saliva secretion before and after rinsing with baking soda, and saliva secretion after rinsing with baking soda on menopause women.

  17. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs. Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-, SO4(2-/total sulfur ratio, and Fe(2+ were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  18. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Science.gov (United States)

    Li, Ping; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Zhou; Jiang, Dawei; Wang, Shang; Jiang, Hongchen; Wang, Yanxin; Dong, Hailiang

    2015-01-01

    A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater) and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes) in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs). Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-), SO4(2-)/total sulfur ratio, and Fe(2+) were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  19. Rapid arsenic(V)-reduction by fire in schwertmannite-rich soil enhances arsenic mobilisation

    DEFF Research Database (Denmark)

    Johnston, Scott G.; Bennett, William W.; Burton, Edward D.

    2018-01-01

    (III) formation (∼90%) within 5–10 min at 400–600 °C, followed by partial re-oxidation to As(V) thereafter. In contrast, heating As(V)-schwertmannite in the absence of soil-organic matter did not cause reduction of As(V) or Fe(III), nor form maghemite; thus highlighting the critical role of organic matter......Arsenic in acid sulfate soil (ASS) landscapes commonly associates with schwertmannite, a poorly crystalline Fe(III) mineral. Fires in ASS landscapes can thermally transform Fe(III) minerals to more crystalline phases, such as maghemite (γFe2O3). Although thermal genesis of maghemite requires...... and hematite at temperatures above 300–400 °C, with some transitory formation of magnetite, and electrons are readily transferred to both Fe(III) and As(V). As(V) reduction to As(III) is influenced by a combination of temperature, heating duration and carbon content and is significantly (P

  20. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Science.gov (United States)

    2010-07-01

    ... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of this... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL...

  1. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Maria I.S.; Santos, Jorge A.G. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, 2169 McCarty Hall, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ifas.ufl.edu

    2008-07-15

    This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant{sup -1} after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg{sup -1}, 110 to 3,056 mg kg{sup -1}, and 162 to 2,139 mg kg{sup -1} from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds. - Pteris vittata was effective in continuously removing arsenic from contaminated soils after three repeated harvests.

  2. Trophic ecology and food consumption of fishes in a hypersaline tropical lagoon.

    Science.gov (United States)

    Almeida-Silva, P H; Tubino, R A; Zambrano, L C; Hunder, D A; Garritano, S R; Monteiro-Neto, C

    2015-06-01

    This study evaluated the trophic ecology (diet composition, trophic strategy, similarities and overlap between species, feeding period and food consumption) of six benthivorous fish species in Araruama Lagoon, the largest hypersaline tropical lagoon on the east coast of South America, with an area of 210 km(2) and an average salinity of 52. The burrfish Chilomycterus spinosus fed on Anomalocardia flexuosa shell deposits, ingesting associated fauna. The caitipa mojarra Diapterus rhombeus differed from all other species, having not only the highest proportions of algae and Nematoda, but also feeding on polychaete tentacles. The two mojarras Eucinostomus spp. showed similar trophic strategies, feeding mostly on Polychaeta. The corocoro grunt Orthopristis ruber also fed mainly on Polychaeta, but differed from Eucinostomus spp. in secondary items. The whitemouth croacker Micropogonias furnieri fed mainly on small Crustacea at night, showing a high number of secondary prey items with low frequencies and high prey-specific abundance. The daily food consumption (g food g(-1) fish mass) for Eucinostomus argenteus was 0·012 and was 0·031 and 0·027 for M. furnieri in two different sampling events. The diet similarities between Araruama Lagoon and other brackish and marine environments indicate that hypersalinity is not a predominant factor shaping the trophic ecology of fishes in this lagoon. The stability of hypersaline conditions, without a pronounced gradient, may explain the presence of several euryhaline fishes and invertebrates well adapted to this condition, resulting in a complex food web. © 2015 The Fisheries Society of the British Isles.

  3. Doping properties of cadmium-rich arsenic-doped CdTe single crystals: Evidence of metastable AX behavior

    Science.gov (United States)

    Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.

    2017-12-01

    Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 ± 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 1016 to 1017/cm3 range is achieved for measured As concentrations between 1016 and 1020/cm3 with the highest doping efficiency of 40% occurring near 1017 As/cm3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.

  4. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron.

    Science.gov (United States)

    Centofanti, Tiziana; Bañuelos, Gary

    2015-07-01

    Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC ∼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC ∼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Properties Of Soda/Yttria/Silica Glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1994-01-01

    Experimental study of glass-formation compositional region of soda/ yttria/silicate system and of selected physical properties of glasses within compositional region part of continuing effort to identify glasses with high coefficients of thermal expansion and high softening temperatures, for use as coatings on superalloys and as glass-to-metal seals.

  6. Arsenic Groundwater Contamination in Bengal: a Coupled Geochemical and Geophysical Study

    Science.gov (United States)

    Charlet, L.; Ansari, A. A.; Dietrich, M.; Latscha, A.; LeBeux, A.; Chatterjee, D.; Mallik, S. B.

    2001-05-01

    Arsenic contamination in drinking water is a problem of great concern in Ganges delta region, and could be one of the largest natural calamity in the world. In the present study, a contamination plume located in the Lalpur area (Chakdaha Block, Nadia District, West Bengal, India) was studied. A coupled geochemical and geophysical approach was employed to understand the mechanism of arsenic mobilisation from the sediments to groundwater, as a first step towards a global explanation of the phenomenon for other contaminated areas in the Ganges delta. The groundwater As concentration, in the 10 km x 10 km studied area, ranges from 10 to 500 ppb. In situ chemical speciation of arsenic was carried out and various geochemical parameters were measured in representative contaminated wells to interpret the mobilization mechanism in terms of redox kinetics. Through geophysical investigations, subsurface lithology, sediment depositional and geomorphological characteristics were determined and correlated with the arsenic contamination processes. From a geomorphological viewpoint, the contaminated area is located in an abandoned paleochannel of the Hooghly river, interpreted as the active site of deposition of fine sediments which were preserved as clay pockets at certain depths. These clay pockets are rich in organic matter, which may be the driving force for redox potential change and thus, may have driven the mobilisation of arsenic in groundwater. The clay pockets rich in organic matter presumably represent the major reservoir where arsenic is sitting and getting released due to redox mechanism. They are sampled at present. A piezometric depression cone characterized by a radial groundwater flow is located underneath the highly populated Lalpur area. The arsenic plume appears to migrate from the Hooghly river towards the cone of depression following the water flowpath, and this shall be verified in forthcoming field campaigns. As (III) constitutes 42 % of the total As

  7. Soda-anthraquinone, kraft and organosolv pulping of holm oak trimmings.

    Science.gov (United States)

    Alaejos, J; López, F; Eugenio, M E; Tapias, R

    2006-11-01

    The operating conditions for an organosolv (ethyleneglycol) and two alkaline (soda-anthraquinone and kraft) processes for obtaining cellulose pulp and paper from holm oak (Quercus ilex) wood trimmings were optimized. A range of variation for each process variable (viz. temperature, cooking time and soda or ethyleneglycol concentration) was established and a central composite experimental design involving three independent variables at three different variation levels was applied. The results obtained with the three cooking processes used were compared and those provided by the kraft process were found to be the best. Thus, the tensile index values it provided (5.9-16.3 N m/g) were 23.7% and 41.5% better than those obtained with the soda-AQ and ethyleneglycol processes, respectively. Also, the kraft process provided the best burst index, brightness and kappa number values. Based on the optimum working ranges, the temperature and cooking time were the variables resulting in the most and least marked changes, respectively, in pulp properties.

  8. [New isolation methods and phylogenetic diversity of actinobacteria from hypersaline beach in Aksu].

    Science.gov (United States)

    Zhang, Yao; Xia, Zhanfeng; Cao, Xinbo; Li, Jun; Zhang, Lili

    2013-08-04

    We explored 4 new methods to improve the isolation of actinobacterial resources from high salt areas. Optimized media based on 4 new strategies were used for isolating actinobacteria from hypersaline beaches. Glycerin-arginine, trehalose-creatine, glycerol-asparticacid, mannitol-casein, casein-mannitol, mannitol-alanine, chitosan-asparagineand GAUZE' No. 1 were used as basic media. New isolation strategy includes 4 methods: ten-fold dilution culture, simulation of the original environment, actinobacterial culture guided by uncultured molecular technology detected, and reference of actinobacterial media for brackish marine environment. The 16S rRNA genes of the isolates were amplified with bacterial universal primers. The results of 16S rRNA gene sequences were compared with sequences obtained from GenBank databases. We constructed phylogenetic tree with the neighbor-joining method. No actinobacterial strains were isolated by 8 media of control group, while 403 strains were isolated by new strategies. The isolates by new methods were members of 14 genera (Streptomyces, Streptomonospora, Saccharomonospora, Plantactinospora, Nocardia, Amycolatopsis, Glycomyces, Micromonospora, Nocardiopsis, Isoptericola, Nonomuraea, Thermobifida, Actinopolyspora, Actinomadura) of 10 families in 8 suborders. The most abundant and diverse isolates were the two suborders of Streptomycineae (69.96%) and Streptosporangineaesuborder (9.68%) within the phylum Actinobacteria, including 9 potential novel species. New isolation methods significantly improved the actinobacterial culturability of hypersaline areas, and obtained many potential novel species, which provided a new and more effective way to isolate actinobacteria resources in hypersaline environments.

  9. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    Science.gov (United States)

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (Pwater were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, Pwater was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  10. Viruses Occur Incorporated in Biogenic High-Mg Calcite from Hypersaline Microbial Mats

    Science.gov (United States)

    De Wit, Rutger; Gautret, Pascale; Bettarel, Yvan; Roques, Cécile; Marlière, Christian; Ramonda, Michel; Nguyen Thanh, Thuy; Tran Quang, Huy; Bouvier, Thierry

    2015-01-01

    Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake “La Salada de Chiprana”, Spain, contain viruses with a diameter of 50–80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>1010 viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 109 viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as “nanobacteria” and that viruses may play a role in initiating calcification. PMID:26115121

  11. Surface morphology study in high speed milling of soda lime glass

    Science.gov (United States)

    Konneh, Mohamed; Bagum, Mst. Nasima; Ali, Mohammad Yeakub; Amin, A. K. M. Nurul

    2018-05-01

    Soda lime glass has a wide range of applications in optical, bio-medical and semi-conductor industries. It is undeniably a challenging task to produce micro finish surface on an amorphous brittle solid like soda lime glass due to its low fracture toughness. In order to obtain such a finish surface, ductile machining has been exploited, as this usually cause's plastic flow which control crack propagation. At sub-micro scale cutting parameters, researchers achieved nano finish surface in micro milling operation using coated tool. However it is possible to enhance the rate of material removal (RMR) of soda lime glass at flexible cutting condition. High speed cutting at micro meter level, extend of thermal softening might be prominent than the strain gradient strengthening. The purpose of this study was to explore the effects of high cutting speed end milling parameters on the surface texture of soda lime glass using uncoated carbide tool. The spindle speed, depth of cut and feed rate were varied from 20,000 to 40,000 rpm, 10 to 30 mm/min and 30 to 50 µm respectively. Mathematical model of roughness has been developed using Response Surface Methodology (RSM). Experimental verification confirmed that surface roughness (Ra) 0.38 µm is possible to achieve at increased RMR, 4.71 mm3/min.

  12. Spatial distribution of soda straws growth rates of the Coufin Cave (Vercors, France

    Directory of Open Access Journals (Sweden)

    Perrette Yves

    2010-07-01

    Full Text Available The Choranche Cave system (Vercors, France is an excellent locality for measuring the growth rates of large numbers soda straws. This is especially the case for the Coufin Cave, as enlargement of the cave entrance in 1875 led to a change in stalactite color from brown to white, thus providing a reliable chronomarker. The date of this brown-to-white calcite transition has been confirmed by lamina counting. We measured and georeferenced the growth-lengths of 306 soda straws in a 1m2 area of the roof of the Coufin Cave entrance chamber. Because of the very slow and sometimes inexistent water feeding of those stalactites, hydrochemistry analysis were not achieved and drop rate effect on growth were neglected; this study is based on a geomorphological and geostatistical work. By measuring a large number of soda straws in a very small area for which most of the parameters affecting stalactite growth could be considered uniform, and because flow rates are very slow (frequencies are always superior to 1 drop per half hour, we could ascribe differences in growth rates to variations in the global increase of water flow through the unsaturated matrix. Statistical and geostatistical analyses of the measurements showed that this set of similarly shaped stalactites actually consisted of three Gaussian populations with different mean growth rates: fast growth rate (FGR- mean of 0.92 mm.y-1, medium growth rate (MGR- mean of 0.47 mm.y-1 and low growth rate (LGR- 0.09 mm.y-1. Plotting the lengths and spatial distribution of the 20 longest FGR soda straws revealed that there is a rough pattern to the water flow through the cave roof. Even if no direction is statisticaly different from others, the observed directional pattern is consistent with local and regional tectonic observations. Plots of the spatial distribution of the soda straws show that FGR soda straws follow lines of regional geological stress, whereas MGR and LGR soda straws are more dispersed.

  13. Application of granular ferric hydroxides for removal elevated concentrations of arsenic from mine waters

    Science.gov (United States)

    Szlachta, Małgorzata; Włodarczyk, Paweł; Wójtowicz, Patryk

    2015-04-01

    Arsenic is naturally occurring element in the environment. Over three hundred minerals are known to contain some form of arsenic and among them arsenopyrite is the most common one. Arsenic-bearing minerals are frequently associated with ores containing mined metals such as copper, tin, nickel, lead, uranium, zinc, cobalt, platinum and gold. In the aquatic environment arsenic is typically present in inorganic forms, mainly in two oxidation states (+5, +3). As(III) is dominant in more reduced conditions, whereas As(V) is mostly present in an oxidizing environment. However, due to certain human activities the elevated arsenic levels in aquatic ecosystems are arising to a serious environmental problem. High arsenic concentrations found in surface and groundwaters, in some regions originate from mining activities and ore processing. Therefore, the major concern of mining industry is to maintain a good quality of effluents discharged in large volumes. This requires constant monitoring of effluents quality that guarantee the efficient protection of the receiving waters and reacting to possible negative impact of contamination on local communities. A number of proven technologies are available for arsenic removal from waters and wastewaters. In the presented work special attention is given to the adsorption method as a technically feasible, commonly applied and effective technique for the treatment of arsenic rich mine effluents. It is know that arsenic has a strong affinity towards iron rich materials. Thus, in this study the granular ferric hydroxides (CFH 12, provided by Kemira Oyj, Finland) was applied to remove As(III) and As(V) from aqueous solutions. The batch adsorption experiments were carried out to assess the efficiency of the tested Fe-based material under various operating parameters, including composition of treated water, solution pH and temperature. The results obtained from the fixed bed adsorption tests demonstrated the benefits of applying granular

  14. Prevalence of using baking soda in different types of most commonly consumed breads by Iranian people

    Directory of Open Access Journals (Sweden)

    Abolfazl Mohammadbeigi

    2018-01-01

    Full Text Available Background: Nowadays, in most bakeries in order to accelerate bread production process and reduce work pressure on bakers, harmful chemicals like baking soda are in use. Therefore, the aim of the present study was to investigate the prevalence of using baking soda in different types of most commonly consumed breads by Iranian people. Materials and Methods: This cross-sectional descriptive study was carried out on 234 bakeries in Qom, Iran, during 2017. The proportional stratified sampling method was used to select bakeries and bakers in different districts of Qom. Age, bakery experience, education of bakers and bread's pH were collected by a questionnaire and an electrical pH meter. Results: The results showed that seventy bakeries (29.9% of Qom were using baking soda in bread. The highest frequent use of baking soda was observed in Taftoon (38.7% and Lavash bread (31.5%. There was a significant difference between the use of baking soda and demographic variables such as age and literacy level. The attitude and knowledge of bakery employees about the complications of the baking soda were not appropriate. Conclusions: To reduce the use of baking soda and improve their knowledge and attitude, there is a need of strict supervision and monitoring by responsible organisations, especially the Ministry of Health.

  15. Interaction of arbuscular mycorrhizal symbionts with arsenic and other potentially toxic elements

    International Nuclear Information System (INIS)

    Khairuddin Abdul Rahim

    2000-01-01

    The response of arbuscular mycorrhizal (AM) symbionts to arsenic, and arsenic interactions with phosphorus and potentially toxic elements (PTEs) in soils from a former arsenic mine, the Devon Great Consols, were investigated. The objective was to determine whether AM associations ameliorate arsenic toxicity in Plantago lanceolata and Agrostis capillaris, plants commonly found at abandoned mines. An exploratory investigation indicated the richness in biodiversity of AMF that colonised plants growing at the site. Arsenic was found at high concentrations and was strongly associated with copper and iron. P. lanceolata was always colonised by AMF, while colonisation of A. capillaris was variable. There was no evidence in the field of soil pH or PTEs influencing AMF colonisation and spore density. There was no strong correlation between arsenic content in plant and available arsenic, obtained through various extraction methods. Spore germination and infectivity in the mine soils were strongly influenced by the AMF genotype and to a lesser extent by the soil environment. P. lanceolata and A. capillaris root growth was inhibited at arsenic concentrations of ≥50 μg g -1 in agar. Bioavailability experiments using mine soils and Terra-Green TM (calcined attapulgite) spiked with sodium arsenate gave no evidence that AMF-colonised plants translocated less arsenic to the shoots. Plants accumulated more arsenic in their roots than in their shoots, whether they were colonised by AMF or not. The A. capillaris genotype used in the present study translocated less of both arsenic and phosphorus to its shoots than P. lanceolata. High available phosphorus in Terra-Green TM protected plants against arsenic toxicity, at -1 As. There was evidence for inhibition by arsenic in AMF colonisation of roots. For quantifying AMF extra radical hyphae contribution to arsenic transportation from growth medium to plant using a compartmented pot system, the use of low phosphorus medium and a longer

  16. Sulfidogenesis in hypersaline chloride-sulfate lakes of Kulunda Steppe (Altai, Russia)

    NARCIS (Netherlands)

    Sorokin, D.Y.; Zacharova, E.E.; Pimenov, N.V.; Tourova, T.P.; Panteleeva, A.N.; Muyzer, G.

    2012-01-01

    The activity and culturable diversity of sulfidogens were investigated in anoxic sediments of four hypersaline lakes with pH 7.6-8.2 in the Kulunda Steppe (Altai, Russia). Sulfate reduction rates were low, varying from 0.1 to 6.0 nmol HS−/(cm3 h) with a maximum in the top 10 cm layer. Potential

  17. Metabolic alkalosis secondary to baking soda treatment of a diaper rash.

    Science.gov (United States)

    Gonzalez, J; Hogg, R J

    1981-06-01

    A 4-month-old infant was seen with hypokalemic metabolic alkalosis that was associated with prior application of liberal amounts of sodium bicarbonate (baking soda) to a diaper rash. After exclusion of other etiologies of the infant's acid-base disturbance, a complete resolution occurred following discontinuation of the baking soda applications. This case report provides a reminder of the significant side effects that may result from the excessive use of a seemingly harmless household substance.

  18. Brain Transcriptome Profiling Analysis of Nile Tilapia (Oreochromis niloticus Under Long-Term Hypersaline Stress

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2018-03-01

    Full Text Available The fish brain plays an important role in controlling growth, development, reproduction, and adaptation to environmental change. However, few studies stem from the perspective of whole transcriptome change in a fish brain and its response to long-term hypersaline stress. This study compares the differential transcriptomic responses of juvenile Nile tilapia (Oreochromis niloticus maintained for 8 weeks in brackish water (16 practical salinity units, psu and in freshwater. Fish brains from each treatment were collected for RNA-seq analysis to identify potential genes and pathways responding to hypersaline stress. A total of 27,089 genes were annotated, and 391 genes were expressed differently in the salinity treatment. Ten pathways containing 40 differentially expressed genes were identified in the tilapia brain. Antigen processing and presentation and phagosome were the two principally affected pathways in the immune system. Thirty-one of 40 genes were involved in various expressions associated with environmental information processing pathways such as neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, the Jak-STAT signaling pathway, cell adhesion molecules (CAMs, and the PI3K-Akt signaling pathway, which are the upstream pathways for modulation of immunity and osmoregulation. The most-changed genes (>5-fold were all down-regulated, including four growth hormone/prolactin gene families, i.e., prolactin precursor (−10.62, prolactin-1 (−11, somatotropin (−10.15, somatolactin-like (−6.18, and two other genes [thyrotropin subunit beta (−7.73 and gonadotropin subunit beta-2 (−5.06] that stimulated prolactin release in tilapia. The downregulation pattern of these genes corroborates the decrease in tilapia immunity with increasing salinity and reveals an adaptive mechanism of tilapia to long-term hypersaline stress. Ovarian steroidogenesis, isoquinoline alkaloid biosynthesis, and phenylalanine metabolism are the

  19. Cleaner production in the ammonia-soda industry: an ecological and economic study.

    Science.gov (United States)

    Kasikowski, T; Buczkowski, R; Lemanowska, E

    2004-12-01

    Five methods to reduce the negative influence of soda ash factories on the natural environment are presented: 1. obtaining calcium-magnesium phosphates by treating the suspension from raw brine purification with orthophosphoric acid (H(3)PO(4)), 2. production of precipitated chalk from soda processing waste, 3. production of gypsum and semi-brine, 4. desulphurisation of fume gases from the factory power plant, 5. utilization of distiller waste. The tests, accomplished on a laboratory scale, showed the high efficiency of these methods. Economic analysis has proved that only four out of the five presented processes can have a positive financial effect on soda ash factories, as well as being well justified economically. The value of two of the innovations presented is confirmed by their implementation in factories.

  20. Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Maria D Esteve-Gassent

    Full Text Available Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdorferi carries one superoxide dismutase gene (sodA capable of controlling intracellular superoxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-DE and immunoblot analysis with antibodies specific to carbonylated proteins to identify targets that were differentially oxidized in the soluble fractions of the sodA mutant compared to its isogenic parental control strain following treatment with an endogenous superoxide generator, methyl viologen (MV, paraquat. HPLC-ESI-MS/MS analysis of oxidized proteins revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348 exhibited increased carbonylation in the sodA mutant treated with MV. Levels of ATP and NAD/NADH were reduced in the sodA mutant compared with the parental strain following treatment with MV and could be attributed to increased levels of oxidation of proteins of the glycolytic pathway. In addition, a chaperone, HtpG (BB0560, and outer surface protein A (OspA, BBA15 were also observed to be oxidized in the sodA mutant. Immunoblot analysis revealed reduced levels of Outer surface protein C (OspC, Decorin binding protein A (DbpA, fibronectin binding protein (BBK32, RpoS and BosR in the sodA mutant compared to the control strains. Viable sodA mutant spirochetes could not be recovered from both gp91/phox-⁄- and iNOS deficient mice while borrelial DNA was detected in multiple tissues samples from infected mice at significantly lower levels compared to the parental strain. Taken together, these observations indicate that the increased oxidation of select borrelial determinants and reduced levels of critical pathogenesis-associated lipoproteins contribute to the in vivo deficit of

  1. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov; Petersen, L. R.; Kjeldsen, Peter

    2011-01-01

    An iron-rich water treatment residue (WTR) consisting mainly of ferrihydrite was used for immobilization of arsenic and chromium in a soil contaminated by wood preservatives. A leaching batch experiment was conducted using two soils, a highly contaminated soil (1033mgkg−1 As and 371mgkg−1 Cr....... Pore water was extracted during 3years from the amended soil and a control site. Pore water arsenic concentrations in the amended soil were more than two orders of magnitude lower than in the control for the upper samplers. An increased release of arsenic was observed during winter in both fields...

  2. A remarkable paradox: Freshwater algae (Botryococcus braunii) in an ancient hypersaline euxinic ecosytem

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Grice, K.; Schouten, S.; Nissenbaum, A.; Charrach, J.

    1998-01-01

    Two relatively immature hypersaline sediments of Miocene/Pliocene age from the Sdom Formation, Dead Sea, Israel were studied using both GC-MS and irm-GCMS analyses. A novel series of extractable organosulfur compounds (OSC) derived from functionalised lipids of freshwater Botryococcus braunii algae

  3. The association between state bans on soda only and adolescent substitution with other sugar-sweetened beverages: a cross-sectional study

    OpenAIRE

    Taber, Daniel R; Chriqui, Jamie F; Vuillaume, Renee; Kelder, Steven H; Chaloupka, Frank J

    2015-01-01

    Background: Across the United States, many states have actively banned the sale of soda in high schools, and evidence suggests that students’ in-school access to soda has declined as a result. However, schools may be substituting soda with other sugar-sweetened beverages (SSBs), and national trends indicate that adolescents are consuming more sports drinks and energy drinks. This study examined whether students consumed more non-soda SSBs in states that banned the sale of soda in school. Meth...

  4. Legacy of the California Gold Rush: Environmental geochemistry of arsenic in the southern Mother Lode Gold District

    Science.gov (United States)

    Savage, K.S.; Bird, D.K.; Ashley, R.P.

    2000-01-01

    Gold mining activity in the Sierra Nevada foothills, both recently and during the California Gold Rush, has exposed arsenic-rich pyritic rocks to weathering and erosion. This study describes arsenic concentration and speciation in three hydrogeologic settings in the southern Mother Lode Gold District: mineralized outcrops and mine waste rock (overburden); mill tailings submerged in a water reservoir; and lake waters in this monomictic reservoir and in a monomictic lake developing within a recent open-pit mine. These environments are characterized by distinct modes of rock-water interaction that influence the local transport and fate of arsenic. Arsenic in outcrops and waste rock occurs in arsenian pyrite containing an average of 2 wt% arsenic. Arsenic is concentrated up to 1300 ppm in fine-grained, friable iron-rich weathering products of the arsenian pyrite (goethite, jarosite, copiapite), which develop as efflorescences and crusts on weathering outcrops. Arsenic is sorbed as a bidentate complex on goethite, and substitutes for sulfate in jarosite. Submerged mill tailings obtained by gravity core at Don Pedro Reservoir contain arsenic up to 300 ppm in coarse sand layers. Overlying surface muds have less arsenic in the solid fraction but higher concentrations in porewaters (up to 500 ??g/L) than the sands. Fine quartz tailings also contain up to 3.5 ppm mercury related to the ore processing. The pH values in sediment porewaters range from 3.7 in buried gypsum-bearing sands and tailings to 7 in the overlying lake sediments. Reservoir waters immediately above the cores contain up to 3.5 ??g/L arsenic; lake waters away from the submerged tailings typically contain less than 1 ??g/L arsenic. Dewatering during excavation of the Harvard open-pit mine produced a hydrologic cone of depression that has been recovering toward the pre-mining groundwater configuration since mining ended in 1994. Aqueous arsenic concentrations in the 80 m deep pit lake are up to 1000 ??g

  5. Microbial effects on the release and attenuation of arsenic in the shallow subsurface of a natural geochemical anomaly

    International Nuclear Information System (INIS)

    Drahota, Petr; Falteisek, Lukáš; Redlich, Aleš; Rohovec, Jan; Matoušek, Tomáš; Čepička, Ivan

    2013-01-01

    Critical factors leading to arsenic release and attenuation from the shallow subsurface were studied with multidisciplinary approach in the natural gold–arsenic geochemical anomaly at Mokrsko (Czech Republic). The results show that microbial reduction promotes arsenic release from Fe(III) (hydr)oxides and Fe(III) arsenates, thereby enhancing dissolved arsenic in the shallow groundwater at average concentration of 7.76 mg/L. In the organic-rich aggregates and wood particles, however, microbial sulfate reduction triggers the formation of realgar deposits, leading to accumulation of As in the distinct organic-rich patches of the shallow subsurface. We conclude that precipitation of realgar in the shallow subsurface of soil/sediment depends on specific and non-trivial combination of water and rock chemistry, microbial community composition and spatial organisation of the subsurface zone, where speciation in saturated environments varied on a centimeter scale from reduced (decomposed wood, H 2 S and realgar present) to oxidized (goethite and arsenate minerals are present). Highlights: •Very high As(III) concentrations were detected in the shallow groundwater. •Arsenic is bound to Fe(III) (hydr)oxides, Fe(III) arsenates and newly-formed realgar. •Reductive dissolution of Fe(III) and As(V) minerals by bacteria leads to mobilization of arsenic. •Precipitation of realgar is constrained to anaerobic domains around and within organic particles. -- Microbial reduction of Fe(III) and As(V) minerals leads to mobilization of As and induces a mineralogical transition toward realgar formation

  6. Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts.

    Science.gov (United States)

    Ma, Jiantao; Fox, Caroline S; Jacques, Paul F; Speliotes, Elizabeth K; Hoffmann, Udo; Smith, Caren E; Saltzman, Edward; McKeown, Nicola M

    2015-08-01

    Non-alcoholic fatty liver disease affects ∼30% of US adults, yet the role of sugar-sweetened beverages and diet soda on these diseases remains unknown. We examined the cross-sectional association between intake of sugar-sweetened beverages or diet soda and fatty liver disease in participants of the Framingham Offspring and Third Generation cohorts. Fatty liver disease was defined using liver attenuation measurements generated from computed tomography in 2634 participants. Alanine transaminase concentration, a crude marker of fatty liver disease, was measured in 5908 participants. Sugar-sweetened beverage and diet soda intake were estimated using a food frequency questionnaire. Participants were categorized as either non-consumers or consumers (3 categories: 1 serving/month to sugar-sweetened beverages or diet soda. After adjustment for age, sex, smoking status, Framingham cohort, energy intake, alcohol, dietary fiber, fat (% energy), protein (% energy), diet soda intake, and body mass index, the odds ratios of fatty liver disease were 1, 1.16 (0.88, 1.54), 1.32 (0.93, 1.86), and 1.61 (1.04, 2.49) across sugar-sweetened beverage consumption categories (p trend=0.04). Sugar-sweetened beverage consumption was also positively associated with alanine transaminase levels (p trend=0.007). We observed no significant association between diet soda intake and measures of fatty liver disease. In conclusion, we observed that regular sugar-sweetened beverage consumption was associated with greater risk of fatty liver disease, particularly in overweight and obese individuals, whereas diet soda intake was not associated with measures of fatty liver disease. Copyright © 2015 European Association for the Study of the Liver. All rights reserved.

  7. Efficacy of baking soda-containing chewing gum in removing natural tooth stain.

    Science.gov (United States)

    Mankodi, S M; Conforti, N; Berkowitz, H

    2001-07-01

    A 14-week, double-blind, randomized clinical trial was conducted with 126 healthy volunteers to compare the efficacy of twice-daily use of 3 baking soda-containing chewing gums in removing natural tooth stain when used in conjunction with a program of regular oral hygiene. All 3 chewing gums significantly reduced extrinsic stain (P Baking Soda Gum (AHDC) reduced dental stain by 70.8%, compared to reductions of 71.9% and 65.3%, after use of 2 experimental gum formulations. Whitened appearance improved by 1.73 shade tabs using AHDC gum, and up to 2.49 shade tabs with the experimental formulations. These results suggest that the use of baking soda-containing gum after meals, in conjunction with good oral hygiene, can improve both extrinsic dental staining and the whitened appearance of teeth.

  8. Diversity of virus-host systems in hypersaline Lake Retba, Senegal.

    Science.gov (United States)

    Sime-Ngando, Télesphore; Lucas, Soizick; Robin, Agnès; Tucker, Kimberly Pause; Colombet, Jonathan; Bettarel, Yvan; Desmond, Elie; Gribaldo, Simonetta; Forterre, Patrick; Breitbart, Mya; Prangishvili, David

    2011-08-01

    Remarkable morphological diversity of virus-like particles was observed by transmission electron microscopy in a hypersaline water sample from Lake Retba, Senegal. The majority of particles morphologically resembled hyperthermophilic archaeal DNA viruses isolated from extreme geothermal environments. Some hypersaline viral morphotypes have not been previously observed in nature, and less than 1% of observed particles had a head-and-tail morphology, which is typical for bacterial DNA viruses. Culture-independent analysis of the microbial diversity in the sample suggested the dominance of extremely halophilic archaea. Few of the 16S sequences corresponded to known archeal genera (Haloquadratum, Halorubrum and Natronomonas), whereas the majority represented novel archaeal clades. Three sequences corresponded to a new basal lineage of the haloarchaea. Bacteria belonged to four major phyla, consistent with the known diversity in saline environments. Metagenomic sequencing of DNA from the purified virus-like particles revealed very few similarities to the NCBI non-redundant database at either the nucleotide or amino acid level. Some of the identifiable virus sequences were most similar to previously described haloarchaeal viruses, but no sequence similarities were found to archaeal viruses from extreme geothermal environments. A large proportion of the sequences had similarity to previously sequenced viral metagenomes from solar salterns. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Spread and partitioning of arsenic in soils from a mine waste site in Madrid province (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, M.A. [National Museum of Natural Sciences, CSIC, Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Serrano, S. [Institute of Agrochemistry and Food Technology, CSIC, Catedratico Agustin Escardino 9, 46980 Paterna, Valencia (Spain); Laborda, F. [Group of Analytical Spectroscopy and Sensors, Institute of Environmental Sciences, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Garrido, F., E-mail: fernando.garrido@mncn.csic.es [National Museum of Natural Sciences, CSIC, Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2014-12-01

    The formation of scorodite is an important mechanism for the natural attenuation of arsenic in a wide range of environments. It is dumped on site by metallurgical industries to minimize arsenic release. However, the long-term stability of these deposits is unclear. Sequential As extractions and synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy were used to determine both As and Fe speciation in a small catchment area affected by a scorodite-rich waste pile at an abandoned smelting factory. Our results indicate that this deposit behaves as an acute point source of As and metal pollution and confirms the strong association of As(V) with Fe(III) oxide phases, highlighting the important role of ferrihydrite as an As scavenger in natural systems. In this seasonally variable system, other trapping forms such as jarosite-like minerals also play a role in the attenuation of As. Overall, our results demonstrate that scorodite should not be considered an environmental stable repository for As attenuation when dumped outside because natural rainfall and the resulting runoff drive As dispersion in the environment and indicate the need to monitor and reclamate As-rich mine deposits. - Highlights: • A scorodite-rich mining waste at an old smelting factory in Madrid is described. • Scorodite-rich mining wastes act as an acute point source of As pollution in soils. • Arsenic extraction and XANES analyses show ferrihydrite as an As scavenger in soils.

  10. Analysis of caustic soda of different manufacturers in pakistan for mercerization of cotton textiles

    International Nuclear Information System (INIS)

    Zahid, B.; Faisal, S.; Siddique, S.H.

    2017-01-01

    Pakistan has sufficient production capacity of caustic soda to cater the needs of the local industry. Presently, Pakistan has four major plants with production capacity around 435,000 mega ton per year of caustic soda of various grades. Textile industry of Pakistan is the major consumer of produced high grade caustic soda; as the presence of any impurities especially dissolved salts and metals is unfavorable for wet processing of cotton. This study investigates the performance of three different local brands of caustic soda intended for use in textile wet processing of cotton fabric specifically for mercerization process. The brands were selected based on their purity grades. The selected caustic soda samples were chemically analyzed for the presence of impurities. Twenty seven cotton fabric samples (nine samples of each brand) were prepared by mercerization in slack state. The cotton fabric samples were tested for changes in surface morphology, tensile strength (warp and weft), tear strength, air permeability and K/S (Colour Strength). The results were analyzed using one-way ANOVA (Analysis of Variance) to ascertain the statistical equivalence within and between the tested brands. The results showed no significant differences across the tested brands at a 95% confidence level except for air permeability and K/S in blue shade. (author)

  11. The association between state bans on soda only and adolescent substitution with other sugar-sweetened beverages: a cross-sectional study.

    Science.gov (United States)

    Taber, Daniel R; Chriqui, Jamie F; Vuillaume, Renee; Kelder, Steven H; Chaloupka, Frank J

    2015-07-27

    Across the United States, many states have actively banned the sale of soda in high schools, and evidence suggests that students' in-school access to soda has declined as a result. However, schools may be substituting soda with other sugar-sweetened beverages (SSBs), and national trends indicate that adolescents are consuming more sports drinks and energy drinks. This study examined whether students consumed more non-soda SSBs in states that banned the sale of soda in school. Student data on consumption of various SSBs and in-school access to vending machines that sold SSBs were obtained from the National Youth Physical Activity and Nutrition Study (NYPANS), conducted in 2010. Student data were linked to state laws regarding the sale of soda in school in 2010. Students were cross-classified based on their access to vending machines and whether their state banned soda in school, creating 4 comparison groups. Zero-inflated negative binomial models were used to compare these 4 groups with respect to students’ self-reported consumption of diet soda, sports drinks, energy drinks, coffee/tea, or other SSBs. Students who had access to vending machines in a state that did not ban soda were the reference group. Models were adjusted for race/ethnicity, sex, grade, home food access, state median income, and U.S. Census region. Students consumed more servings of sports drinks, energy drinks, coffee/tea, and other SSBs if they resided in a state that banned soda in school but attended a school with vending machines that sold other SSBs. Similar results were observed where schools did not have vending machines but the state allowed soda to be sold in school. Intake was generally not elevated where both states and schools limited SSB availability – i.e., states banned soda and schools did not have SSB vending machines. State laws that ban soda but allow other SSBs may lead students to substitute other non-soda SSBs. Additional longitudinal research is needed to confirm this

  12. Effects of a Baking Soda Gum on extrinsic dental stain: results of a longitudinal 4-week assessment.

    Science.gov (United States)

    Soparkar, P; Newman, M B

    2001-07-01

    An evaluation of the effects of ARM & HAMMER DENTAL CARE The Baking Soda Gum (AHDC) on extrinsic dental stain was made in 48 subjects presenting with measurable extrinsic stain. The subjects were randomized to use either the baking soda gum or a non-baking soda placebo gum for 20 minutes twice daily after lunch and dinner while brushing once daily. The procedure of limited brushing was chosen to simulate the level of hygiene normally practiced by participants entering a clinical study. After 4 weeks, the reduction in measurable extrinsic stain in the baking soda gum group was statistically significant (P = .0044) relative to baseline. Statistical analysis of the placebo gum group revealed no significant change in extrinsic stain from baseline. The magnitude of the unadjusted longitudinal reduction in extrinsic stain in the baking soda gum group was 29.7% at 4 weeks.

  13. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ahsan, Md. Shamim; Dewanda, Fadia; Lee, Man Seop; Sekita, Hitoshi; Sumiyoshi, Tetsumi

    2013-01-01

    Highlights: ► We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. ► Periodic microstructures are printed on the glass surface for superhydrophobicity. ► The contact angle of water droplet on the microstructured glass surface is 155°. ► The transparency of superhydrophobic glass is higher than 77% in visible spectrum. ► We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152° to 155°. The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  14. Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands.

    Directory of Open Access Journals (Sweden)

    Juan Herrero

    Full Text Available Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight extracts as the standard for expressing the electrical conductivity (EC of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m(-1 to 183.0 dS m(-1. This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.

  15. Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands.

    Science.gov (United States)

    Herrero, Juan; Weindorf, David C; Castañeda, Carmen

    2015-01-01

    Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m(-1) to 183.0 dS m(-1). This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.

  16. Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts.

    Science.gov (United States)

    Al-Mailem, D M; Eliyas, M; Radwan, S S

    2013-05-01

    Two halophilic, hydrocarbonoclastics bacteria, Marinobacter sedimentarum and M. flavimaris, with diazotrophic potential occured in hypersaline waters and soils in southern and northern coasts of Kuwait. Their numbers were in the magnitude of 10(3) colony forming units g(-1). The ambient salinity in the hypersaline environments was between 3.2 and 3.5 M NaCl. The partial 16S rRNA gene sequences of the two strains showed, respectively, 99 and 100% similarities to the sequences in the GenBank. The two strains failed to grow in the absence of NaCl, exhibited best growth and hydrocarbon biodegradation in the presence of 1 to 1.5 M NaCl, and still grew and maintained their hydrocarbonoclastic activity at salinities up to 5 M NaCl. Both species utilized Tween 80, a wide range of individual aliphatic hydrocarbons (C9-C40) and the aromatics benzene, biphenyl, phenanthrene, anthracene and naphthalene as sole sources of carbon and energy. Experimental evidence was provided for their nitrogen-fixation potential. The two halophilic Marinobacter strains successfully mineralized crude oil in nutrient media as well as in hypersaline soil and water microcosms without the use of any nitrogen fertilizers.

  17. Effects of Diet Soda on Gut Hormones in Youths With Diabetes

    OpenAIRE

    Brown, Rebecca J.; Walter, Mary; Rother, Kristina I.

    2012-01-01

    OBJECTIVE In patients with type 2 diabetes, but not type 1 diabetes, abnormal secretion of incretins in response to oral nutrients has been described. In healthy youths, we recently reported accentuated glucagon-like peptide 1 (GLP-1) secretion in response to a diet soda sweetened with sucralose and acesulfame-K. In this study, we examined the effect of diet soda on gut hormones in youths with diabetes. RESEARCH DESIGN AND METHODS Subjects aged 12?25 years with type 1 diabetes (n = 9) or type...

  18. Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chia-Chuan; Kar, Sandeep [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Jean, Jiin-Shuh, E-mail: jiinshuh@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Wang, Chung-Ho [Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan (China); Lee, Yao-Chang [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Sracek, Ondra [OPV s.r.o. (Groundwater Protection Ltd.), Bělohorská 31, 169 00 Praha 6 (Czech Republic); Department of Geology, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Li, Zhaohui [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Department of Geosciences, University of Wisconsin – Parkside, Kenosha, WI 53144 (United States); Bundschuh, Jochen [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Faculty of Engineering and Surveying and National Centre for Engineering in Agriculture, The University of Southern Queensland, Toowoomba (Australia); Yang, Huai-Jen [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Chen, Chien-Yen [Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan (China)

    2013-11-15

    Highlights: ► Study represents geochemical characteristics and their spatial variability among six mud volcanoes of southern Taiwan. ► Anoxic mud volcanic fluids containing high NaCl imply connate water as the possible source. ► δ{sup 18}O-rich fluids is associated with silicate and carbonate mineral released through water–rock interaction. ► High As content in mud and its sequential extraction showed mostly adsorbed As on organic and sulphidic phases. ► Organic matter specially humic acid showed redox dependence and it may play an important role in binding and mobility of arsenic. -- Abstract: The present study deals with geochemical characterization of mud fluids and sediments collected from Kunshuiping (KSP), Liyushan (LYS), Wushanting (WST), Sinyangnyuhu (SYNH), Hsiaokunshui (HKS) and Yenshuikeng (YSK) mud volcanoes in southwestern Taiwan. Chemical constituents (cations, anions, trace elements, organic carbon, humic acid, and stable isotopes) in both fluids and mud were analyzed to investigate the geochemical processes and spatial variability among the mud volcanoes under consideration. Analytical results suggested that the anoxic mud volcanic fluids are highly saline, implying connate water as the probable source. The isotopic signature indicated that δ{sup 18}O-rich fluids may be associated with silicate and carbonate mineral released through water–rock interaction, along with dehydration of clay minerals. Considerable amounts of arsenic in mud irrespective of fluid composition suggested possible release through biogeochemical processes in the subsurface environment. Sequential extraction of As from the mud indicated that As was mostly present in organic and sulphidic phases, and adsorbed on amorphous Mn oxyhydroxides. Volcanic mud and fluids are rich in organic matter (in terms of organic carbon), and the presence of humic acid in mud has implications for the binding of arsenic. Functional groups of humic acid also showed variable sources of

  19. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.

    Science.gov (United States)

    Raj, Anshita; Singh, Nandita

    2015-03-01

    To investigate whether phytoremediation can remove arsenic from the contaminated area, a study was conducted for three consecutive years to determine the efficiency of Pteris vittata, Adiantum capillus veneris, Christella dentata and Phragmites karka, on arsenic removal from the arsenic contaminated soil. Arsenic concentrations in the soil samples were analysed after harvesting in 2009, 2010 and 2011 at an interval of 6 months. Frond arsenic concentrations were also estimated in all the successive harvests. Fronds resulted in the greatest amount of arsenic removal. Root arsenic concentrations were analysed in the last harvest. Approximately 70 % of arsenic was removed by P. vittata which was recorded as the highest among the four plant species. However, 60 % of arsenic was removed by A. capillus veneris, 55.1 % by C. dentata and 56.1 % by P. karka of arsenic was removed from the contaminated soil in 3 years.

  20. Cyanobacterial diversity and halotolerance in a variable hypersaline environment.

    Science.gov (United States)

    Kirkwood, Andrea E; Buchheim, Julie A; Buchheim, Mark A; Henley, William J

    2008-04-01

    The Great Salt Plains (GSP) in north-central Oklahoma, USA is an expansive salt flat (approximately 65 km(2)) that is part of the federally protected Salt Plains National Wildlife Refuge. The GSP serves as an ideal environment to study the microbial diversity of a terrestrial, hypersaline system that experiences wide fluctuations in freshwater influx and diel temperature. Our study assessed cyanobacterial diversity at the GSP by focusing on the taxonomic and physiological diversity of GSP isolates, and the 16S rRNA phylogenetic diversity of isolates and environmental clones from three sites (north, central, and south). Taxonomic diversity of isolates was limited to a few genera (mostly Phormidium and Geitlerinema), but physiological diversity based on halotolerance ranges was strikingly more diverse, even between strains of the same phylotype. The phylogenetic tree revealed diversity that spanned a number of cyanobacterial lineages, although diversity at each site was dominated by only a few phylotypes. Unlike other hypersaline systems, a number of environmental clones from the GSP were members of the heterocystous lineage. Although a number of cyanobacterial isolates were close matches with prevalent environmental clones, it is not certain if these clones reflect the same halotolerance ranges of their matching isolates. This caveat is based on the notable disparities we found between strains of the same phylotype and their inherent halotolerance. Our findings support the hypothesis that variable or poikilotrophic environments promote diversification, and in particular, select for variation in ecotype more than phylotype.

  1. Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world.

    Science.gov (United States)

    Clementino, M M; Vieira, R P; Cardoso, A M; Nascimento, A P A; Silveira, C B; Riva, T C; Gonzalez, A S M; Paranhos, R; Albano, R M; Ventosa, A; Martins, O B

    2008-07-01

    Araruama Lagoon is an environment characterized by high salt concentrations. The low raining and high evaporation rates in this region favored the development of many salty ponds around the lagoon. In order to reveal the microbial composition of this system, we performed a 16S rRNA gene survey. Among archaea, most clones were related to uncultured environmental Euryarchaeota. In lagoon water, we found some clones related to Methanomicrobia and Methanothermococcus groups, while in the saline pond water members related to the genus Haloarcula were detected. Bacterial community was dominated by clones related to Gamma-proteobacteria, Actinobacteria, and Synechococcus in lagoon water, while Salinibacter ruber relatives dominated in saline pond. We also detected the presence of Alpha-proteobacteria, Pseudomonas-like bacteria and Verrucomicrobia. Only representatives of the genus Ralstonia were cosmopolitan, being observed in both systems. The detection of a substantial number of clones related to uncultured archaea and bacteria suggest that the hypersaline waters of Araruama harbor a pool of novel prokaryotic phylotypes, distinct from those observed in other similar systems. We also observed clones related to halophilic genera of cyanobacteria that are specific for each habitat studied. Additionally, two bacterioplankton molecular markers with ecological relevance were analyzed, one is linked to nitrogen fixation (nifH) and the other is linked to carbon fixation by bacterial photosynthesis, the protochlorophyllide genes, revealing a specific genetic distribution in this ecosystem. This is the first study of the biogeography and community structure of microbial assemblages in Brazilian tropical hypersaline environments. This work is directed towards a better understanding of the free-living prokaryotic diversity adapted to life in hypersaline waters.

  2. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Li Jiaxin; Waters, Stephen B.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav; Thomas, David J.

    2005-01-01

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  3. Blood Pressure Associated with Arsenic Methylation and Arsenic Metabolism Caused by Chronic Exposure to Arsenic in Tube Well Water.

    Science.gov (United States)

    Wei, Bing Gan; Ye, Bi Xiong; Yu, Jiang Ping; Yang, Lin Sheng; Li, Hai Rong; Xia, Ya Juan; Wu, Ke Gong

    2017-05-01

    The effects of arsenic exposure from drinking water, arsenic metabolism, and arsenic methylation on blood pressure (BP) were observed in this study. The BP and arsenic species of 560 participants were determined. Logistic regression analysis was applied to estimate the odds ratios of BP associated with arsenic metabolites and arsenic methylation capability. BP was positively associated with cumulative arsenic exposure (CAE). Subjects with abnormal diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) usually had higher urinary iAs (inorganic arsenic), MMA (monomethylated arsenic), DMA (dimethylated arsenic), and TAs (total arsenic) than subjects with normal DBP, SBP, and PP. The iAs%, MMA%, and DMA% differed slightly between subjects with abnormal BP and those with normal BP. The PMI and SMI were slightly higher in subjects with abnormal PP than in those with normal PP. Our findings suggest that higher CAE may elevate BP. Males may have a higher risk of abnormal DBP, whereas females have a higher risk of abnormal SBP and PP. Higher urinary iAs may increase the risk of abnormal BP. Lower PMI may elevate the BP. However, higher SMI may increase the DBP and SBP, and lower SMI may elevate the PP. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  4. Can Periodic Cicadas be used as a Biomonitor for Arsenical Pesticide Contamination?

    Science.gov (United States)

    Robinson, G. R.; Sibrell, P. L.; Boughton, C. J.; Yang, L.; Hancock, T. C.

    2004-12-01

    Widespread use of arsenical pesticides on fruit crops, particularly apple orchards, during the first half of the 20th century is a significant source of arsenic to agricultural soil in the Mid-Atlantic region. Cumulative application rates may be as high as 37 Kg/hectare of arsenic in orchard areas. Brood X 17-year periodic cicadas (Magicicada spp.) emerged at densities up to 30,000 or more individuals per hectare in orchard and forest habitats during May-June, 2004, in Clarke and Frederick Counties, Virginia and in Berkeley and Jefferson Counties, West Virginia. These cicadas were sampled to evaluate the bioavailability of arsenic in orchard and non-orchard reference site soils. Potentially toxic elements, such as arsenic and other heavy metals bind to sulfhydryl groups, and thus may accumulate in keratin-rich tissues, such as cicada nymphal exuviae and adult exoskeletons. These cicadas feed on plant roots underground for 17 years before emerging to molt into their adult form. Adult cicadas have very limited dispersal, rarely traveling more than 50 m in a flight. As such, their body and exoskeleton keratin has potential value as a biomonitor for arsenic and other metals that is spatially referenced to local conditions for the duration of time the nymphs live in the soil. This study addresses the following research questions: (1) do the soils in and adjacent to orchard sites where arsenical pesticide was used contain elevated concentrations of arsenic and other metals relative to likely background conditions?; (2) can periodic cicadas be used as an easily sampled biomonitor measuring bioavailability of pesticide residues in soils?; and (3) do the concentration levels of arsenical pesticide residues in periodic cicadas emerging from contaminated orchard sites pose a dietary threat to birds and other wildlife that preferentially feed upon cicadas during emergence events?

  5. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    International Nuclear Information System (INIS)

    Xu Yuanyuan; Wang Yi; Zheng Quanmei; Li Xin; Li Bing; Jin Yaping; Sun Xiance; Sun Guifan

    2008-01-01

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress

  6. Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat.

    Science.gov (United States)

    Berg, M; Tran, H C; Nguyen, T C; Pham, H V; Schertenleib, R; Giger, W

    2001-07-01

    This is the first publication on arsenic contamination of the Red River alluvial tract in the city of Hanoi and in the surrounding rural districts. Due to naturally occurring organic matter in the sediments, the groundwaters are anoxic and rich in iron. With an average arsenic concentration of 159 micrograms/L, the contamination levels varied from 1 to 3050 micrograms/L in rural groundwater samples from private small-scale tubewells. In a highly affected rural area, the groundwater used directly as drinking water had an average concentration of 430 micrograms/L. Analysis of raw groundwater pumped from the lower aquifer for the Hanoi water supply yielded arsenic levels of 240-320 micrograms/L in three of eight treatment plants and 37-82 micrograms/L in another five plants. Aeration and sand filtration that are applied in the treatment plants for iron removal lowered the arsenic concentrations to levels of 25-91 micrograms/L, but 50% remained above the Vietnamese Standard of 50 micrograms/L. Extracts of sediment samples from five bore cores showed a correlation of arsenic and iron contents (r2 = 0.700, n = 64). The arsenic in the sediments may be associated with iron oxyhydroxides and released to the groundwater by reductive dissolution of iron. Oxidation of sulfide phases could also release arsenic to the groundwater, but sulfur concentrations in sediments were below 1 mg/g. The high arsenic concentrations found in the tubewells (48% above 50 micrograms/L and 20% above 150 micrograms/L) indicate that several million people consuming untreated groundwater might be at a considerable risk of chronic arsenic poisoning.

  7. Beverages obtained from soda fountain machines in the U.S. contain microorganisms, including coliform bacteria.

    Science.gov (United States)

    White, Amy S; Godard, Renee D; Belling, Carolyn; Kasza, Victoria; Beach, Rebecca L

    2010-01-31

    Ninety beverages of three types (sugar sodas, diet sodas and water) were obtained from 20 self-service and 10 personnel-dispensed soda fountains, analyzed for microbial contamination, and evaluated with respect to U.S. drinking water regulations. A follow-up study compared the concentration and composition of microbial populations in 27 beverages collected from 9 soda fountain machines in the morning as well as in the afternoon. Ice dispensed from these machines was also examined for microbial contamination. While none of the ice samples exceeded U.S. drinking water standards, coliform bacteria was detected in 48% of the beverages and 20% had a heterotrophic plate count greater than 500cfu/ml. Statistical analyses revealed no difference in levels of microbial contamination between beverage types or between those dispensed from self-service and personnel-dispensed soda fountains. More than 11% of the beverages analyzed contained Escherichia coli and over 17% contained Chryseobacterium meningosepticum. Other opportunistic pathogenic microorganisms isolated from the beverages included species of Klebsiella, Staphylococcus, Stenotrophomonas, Candida, and Serratia. Most of the identified bacteria showed resistance to one or more of the 11 antibiotics tested. These findings suggest that soda fountain machines may harbor persistent communities of potentially pathogenic microorganisms which may contribute to episodic gastric distress in the general population and could pose a more significant health risk to immunocompromised individuals. These findings have important public health implications and signal the need for regulations enforcing hygienic practices associated with these beverage dispensers. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Zheng, B.S.; Aposhian, H.V.; Zhou, Y.S.; Chen, M.L.; Zhang, A.H.; Waalkes, M.P. [NIEHS, Research Triangle Park, NC (USA)

    2002-07-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China was investigated. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such over exposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.

  9. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer

    Science.gov (United States)

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-01-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ13CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed (34ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment. PMID:25039851

  10. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q

    2004-10-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  11. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    International Nuclear Information System (INIS)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q.

    2004-01-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  12. Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L

    International Nuclear Information System (INIS)

    Wei Shuhe; Ma, Lena Q.; Saha, Uttam; Mathews, Shiny; Sundaram, Sabarinath; Rathinasabapathi, Bala; Zhou Qixing

    2010-01-01

    This experiment examined the effects of sulfate (S) and reduced glutathione (GSH) on arsenic uptake by arsenic hyperaccumulator Pteris vittata after exposing to arsenate (0, 15 or 30 mg As L -1 ) with sulfate (6.4, 12.8 or 25.6 mg S L -1 ) or GSH (0, 0.4 or 0.8 mM) for 2-wk. Total arsenic, S and GSH concentrations in plant biomass and arsenic speciation in the growth media and plant biomass were determined. While both S (18-85%) and GSH (77-89%) significantly increased arsenic uptake in P. vittata, GSH also increased arsenic translocation by 61-85% at 0.4 mM (p < 0.05). Sulfate and GSH did not impact plant biomass or arsenic speciation in the media and biomass. The S-induced arsenic accumulation by P. vittata was partially attributed to increased plant GSH (21-31%), an important non-enzymatic antioxidant countering oxidative stress. This experiment demonstrated that S and GSH can effectively enhance arsenic uptake and translocation by P. vittata. - Sulfate and glutathione increased arsenic uptake and translocation in Pteris vittata.

  13. Where there's a will: can highlighting future youth-targeted marketing increase support for soda taxes?

    Science.gov (United States)

    Roh, Sungjong; Schuldt, Jonathon P

    2014-12-01

    Amid concern about high rates of obesity and related diseases, the marketing of nutritionally poor foods to young people by the food industry has come under heavy criticism by public health advocates, who cite decades of youth-targeted marketing in arguing for reforms. In light of recent evidence that the same event evokes stronger emotional reactions when it occurs in the future versus the past, highlighting youth-targeted marketing that has yet to occur may evoke stronger reactions to such practices, and perhaps, greater support for related health policy initiatives. In a between-subjects experiment, Web participants (N = 285) read that a major soda company had already launched (past condition) or was planning to launch (future condition) an advertising campaign targeting children. Measures included support for a soda tax and affective responses to the company's actions. Greater support for the soda tax was observed in the future condition than in the past condition. Moreover, participants in the future condition reported heightened negative emotions about the company's actions, which mediated the observed effect on soda tax support. The same action undertaken by the food industry (here, marketing soda to children) may evoke stronger negative emotions and greater support for a health policy initiative when it is framed prospectively rather than retrospectively.

  14. Activated charcoal and baking soda to reduce odor associated with extensive blistering disorders.

    Science.gov (United States)

    Chakravarthi, Arun; Srinivas, C R; Mathew, Anil C

    2008-01-01

    Skin disease leading to extensive blistering and loss of skin is associated with a characteristic smell. Odor can cause physiologic disturbances such as increase in heart rate and respiratory rate. It can also cause nausea and vomiting and is disturbing to bystanders. To test odor reducing capability of activated charcoal. In this blinded experimental study we used putrefied amniotic membrane to produce odor and studied the effectiveness of activated charcoal and soda-bi-carbonate to reduce odor. Statistical analysis with Kruskal Wall's Chi Square Test and Man Whitney U test showed significant reduction of odor using activated charcoal by itself or along with soda-bi-carbonate. We recommend the usage of activated charcoal with/without soda bicarbonate as an inexpensive practical measure to reduce foul odor associated with extensive skin loss.

  15. Groundwater arsenic contamination affecting different geologic domains in India--a review: influence of geological setting, fluvial geomorphology and Quaternary stratigraphy.

    Science.gov (United States)

    Acharyya, Subhrangsu K; Shah, Babar A

    2007-10-01

    Arsenic contamination in groundwater is pervasive within lowland organic-rich Bengal Delta and narrow entrenched channels in the Middle Ganga floodplains. Local areas of Damodar fan-delta and isolated areas within the Dongargarh Proterozoic rift-zone in central India are also contaminated. In this rift-zone, arsenic is enriched in felsic magmatic rocks and weathered rocks and soils from local areas are enriched further in arsenic and iron. Late Quaternary stratigraphy, geomorphology and sedimentation have influenced groundwater arsenic contamination in alluvium that aggraded during the Holocene sea-level rise. No specific source of arsenic could be identified, although Himalaya is the main provenance for the Ganga floodplain and the Bengal Delta. Gondwana coal seams and other Peninsular Indian rocks might be sources for arsenic in the Damodar fan-delta. As-bearing pyrite or any As-mineral is nearly absent in the aquifer sediments. Arsenic mainly occurs adsorbed on hydrated-iron-oxide (HFO), which coat sediment grains and minerals. Arsenic and iron are released to groundwater by bio-mediated reductive dissolution of HFO with corresponding oxidation of organic matter.

  16. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, Md. Shamim, E-mail: shamim@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Electronics and Communication Engineering Discipline, School of Science, Engineering and Technology, Khulna University, Khulna-9208 (Bangladesh); Dewanda, Fadia, E-mail: fdewanda@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Man Seop, E-mail: leems1502@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sekita, Hitoshi, E-mail: sekita@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan); Sumiyoshi, Tetsumi, E-mail: sumiy@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. Black-Right-Pointing-Pointer Periodic microstructures are printed on the glass surface for superhydrophobicity. Black-Right-Pointing-Pointer The contact angle of water droplet on the microstructured glass surface is 155 Degree-Sign . Black-Right-Pointing-Pointer The transparency of superhydrophobic glass is higher than 77% in visible spectrum. Black-Right-Pointing-Pointer We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152 Degree-Sign to 155 Degree-Sign . The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  17. Expression of Key Ion Transporters in the Gill and Esophageal-Gastrointestinal Tract of Euryhaline Mozambique Tilapia Oreochromis mossambicus Acclimated to Fresh Water, Seawater and Hypersaline Water

    Science.gov (United States)

    Li, Zhengjun; Lui, Eei Yin; Wilson, Jonathan M.; Ip, Yuen Kwong; Lin, Qingsong; Lam, Toong Jin; Lam, Siew Hong

    2014-01-01

    The ability of euryhaline Mozambique tilapia to tolerate extreme environmental salinities makes it an excellent model for investigating iono-regulation. This study aimed to characterize and fill important information gap of the expression levels of key ion transporters for Na+ and Cl− in the gill and esophageal-gastrointestinal tract of Mozambique tilapia acclimated to freshwater (0 ppt), seawater (30 ppt) and hypersaline (70 ppt) environments. Among the seven genes studied, it was found that nkcc2, nkcc1a, cftr, nka-α1 and nka-α3, were more responsive to salinity challenge than nkcc1b and ncc within the investigated tissues. The ncc expression was restricted to gills of freshwater-acclimated fish while nkcc2 expression was restricted to intestinal segments irrespective of salinity challenge. Among the tissues investigated, gill and posterior intestine were found to be highly responsive to salinity changes, followed by anterior and middle intestine. Both esophagus and stomach displayed significant up-regulation of nka-α1 and nka-α3, but not nkcc isoforms and cftr, in hypersaline-acclimated fish suggesting a response to hypersalinity challenge and involvement of other forms of transporters in iono-regulation. Changes in gene expression levels were partly corroborated by immunohistochemical localization of transport proteins. Apical expression of Ncc was found in Nka-immunoreactive cells in freshwater-acclimated gills while Nkcc co-localized with Nka-immunoreactive cells expressing Cftr apically in seawater- and hypersaline-acclimated gills. In the intestine, Nkcc-stained apical brush border was found in Nka-immunoreactive cells at greater levels under hypersaline conditions. These findings provided new insights into the responsiveness of these genes and tissues under hypersalinity challenge, specifically the posterior intestine being vital for salt absorption and iono-osmoregulation in the Mozambique tilapia; its ability to survive in hypersalinity may be in

  18. Thorium coprecipitation method for spectrophotometric determination of arsenic (III) and arsenic (V) in groundwaters

    International Nuclear Information System (INIS)

    Tamari, Yuzo; Yamamoto, Nobuki; Tsuji, Haruo; Kusaka, Yuzuru

    1989-01-01

    A new coprecipitation method for the spectrophotometry of arsenic (III) and arsenic (V) in groundwater has been developed. Arsenic (III) and arsenic (V) were coprecipitated with thorium (IV) hydroxide from 1000ml of groundwater at pH9. The precipitate was centrifuged and then dissolved with hydrochloric acid. Arsenic (III) was spectrophotometrically determined by the usual silver diethylditiocarbamate (Ag-DDTC) method after generating the arsenic to arsine with sodium tetrahydroborate under masking the thorium with EDTA-NaF at pH6. From another portion of the same groundwater, both arsenic (III) and arsenic (V) were determined by the Ag-DDTC method after reducing all the arsenic to arsine with sodium tetrahydroborate at pH less than 1 in the presence of the EDTA-NaF. The concentration of arsenic (V) was obtained by subtracting that of arsenic (III) from the total for arsenic. (author)

  19. Sugary soda consumption and albuminuria: results from the National Health and Nutrition Examination Survey, 1999-2004.

    Directory of Open Access Journals (Sweden)

    David A Shoham

    Full Text Available BACKGROUND: End-stage renal disease rates rose following widespread introduction of high fructose corn syrup in the American diet, supporting speculation that fructose harms the kidney. Sugar-sweetened soda is a primary source of fructose. We therefore hypothesized that sugary soda consumption was associated with albuminuria, a sensitive marker for kidney disease. METHODOLOGY/PRINCIPAL FINDINGS: Design was a cross-sectional analysis. Data were drawn from the National Health and Nutrition Examination Survey (NHANES, 1999-2004. The setting was a representative United States population sample. Participants included adults 20 years and older with no history of diabetes mellitus (n = 12,601; after exclusions for missing outcome and covariate information (n = 3,243, the analysis dataset consisted of 9,358 subjects. Exposure was consumption of two or more sugary soft drinks, based on 24-hour dietary recall. The main outcome measure was Albuminuria, defined by albumin to creatinine ratio cutpoints of >17 mg/g (males and >25 mg/g (females. Logistic regression adjusted for confounders (diet soda, age, race-ethnicity, gender, poverty. Interactions between age, race-ethnicity, gender, and overweight-obesity were explored. Further analysis adjusted for potential mediators: energy intake, basal metabolic rate, obesity, hypertension, lipids, serum uric acid, smoking, energy expenditure, and glycohemoglobin. Alternative soda intake definitions and cola consumption were employed. RESULTS: Weighted albuminuria prevalence was 11%, and 17% consumed 2+ sugary soft drinks/day. The confounder-adjusted odds ratio for sugary soda was 1.40 (95% confidence interval: 1.13, 1.74. Associations were modified by gender (p = 0.008 and overweight-obesity (p = 0.014. Among women, the OR was 1.86 (95% CI: 1.37, 2.53; the OR among males was not significant. In the group with body mass under 25 kg/m(2, OR = 2.15 (95% confidence interval: 1.42, 3.25. Adjustment for potential

  20. The iron, aluminate and jarosite deposits in Riazas area as potential source of arsenic in groundwater; Los yacimientos de hierro, alunita y jarosita de la zona de Riaza como posible origen del arsenico en las aguas subterraneas

    Energy Technology Data Exchange (ETDEWEB)

    Leal Meca, M.; Lilo Ramos, J.

    2009-07-01

    Arsenic in concentrations above the legal limit of 10 {mu}g/l has been detected in groundwaters of the Duero Cenozoic Basin. The origin of arsenic is related to sedimentary units with arsenic content above the background value of 28.5 mg/kg. Thus, iron-rich deposits located at the base of Cenozoic succession may constitute a potential source of arsenic in the groundwaters. Three outcrops of iron-rich conglomerates in the Riazas area of Segovia province (one in El Negredo and two in Madriguera) have been studied to determine the significance of these materials as a potential source of arsenic in groundwater. These outcrops occur above an unconformity separating them from strongly altered Paleozoic slates, rich in alunite and jarosite. The work is based in geochemical (trace elements detection by INAA) and mineralogical analyses (through XRD-EDAX and ESEM) of 18 samples of altered slates and materials of ferriferrous deposits. Besides, 3 water samples from springs have subjected to hydrochemical analysis to establish major ionic species and trace elements. Although mineralogical study reveals that arsenic occurs in iron oxides and high arsenic concentrations have been identified in rocks of El Negredo (up to 361 mg/kg, average 143.3 mg/kg), the arsenic concentrations in Ca-Mg-HCO{sub 3} - water type are always lower than 10 {mu}g/l. Therefore, it does not seem to be probable that these deposits act as arsenic source, at least at the present physic-chemical conditions.(Author) 37 refs.

  1. PERBEDAAN PH SALIVA ANTARA PENGGUNA PASTA GIGI YANG MENGANDUNG BAKING SODA DAN PENGGUNA PASTA GIGI YANG MENGANDUNG FLUOR

    OpenAIRE

    LINARDI, ALICIA NADIA

    2014-01-01

    2014 Latar belakang : Baking soda dan fluor merupakan bahan yang biasa ditambahkan dalam pasta gigi. Baking soda dan fluor mempunyai kemampuan untuk meningkatkan sekresi saliva dan pH saliva. Tujuan penelitian ini adalah untuk mengetahui perbedaan pH saliva antara pengguna pasta gigi yang mengandung baking soda dan pengguna pasta gigi yang mengandun fluor. Bahan dan metode : Jenis penelitian ini adalah eksperimental dengan desai...

  2. Baking soda misuse as a home remedy: case experience of the California Poison Control System.

    Science.gov (United States)

    Al-Abri, S A; Kearney, T

    2014-02-01

    Baking soda is a common household product promoted by the manufacturer as an antacid. It contains sodium bicarbonate and has the potential for significant toxicity when ingested in excessive amounts. Characterizing the patterns and outcomes from the misuse of baking soda as a home remedy can guide the clinical assessment and preventative counselling of patients at risk for use of this product. We conducted a retrospective review of all symptomatic cases involving ingestion and misuse of a baking soda powder product that were reported to the California Poison Control System between the years 2000 and 2012. Of the 192 cases we identified, 55·8% were female, ages ranged 2 months to 79 years, and the most common reasons for misuse included antacid (60·4%), 'beat a urine drug test' (11·5%) and treat a UTI (4·7%). Most cases (55·2%) had significant symptoms warranting a medical evaluation, whereas 12 patients required hospital admission developed either electrolyte imbalances, metabolic alkalosis or respiratory depression. Misuse of baking soda can result in serious electrolyte and acid/base imbalances. Patients at highest risk of toxicity may include those who chronically use an antacid, those who use the method to 'beat' urine drug screens, pregnant women and young children. Self-treatment with baking soda as a home remedy may also mask or delay medical care thereby complicating or exacerbating an existing medical problem. We suggest that healthcare providers counsel high-risk patients about the potential complications of misuse of baking soda as a home remedy. © 2013 John Wiley & Sons Ltd.

  3. Hypersalinity Acclimation Increases the Toxicity of the Insecticide Phorate in Coho Salmon (Oncorhynchus kisutch)

    Science.gov (United States)

    Lavado, Ramon; Maryoung, Lindley A.; Schlenk, Daniel

    2012-01-01

    Previous studies in euryhaline fish have shown that acclimation to hypersaline environments enhances the toxicity of thioether organophosphate and carbamate pesticides. To better understand the potential mechanism of enhanced toxicity, the effects of the organophosphate insecticide phorate were evaluated in coho salmon (Oncorhynchus kisutch) maintained in freshwater (salinity-dependent manner. In contrast, formation of phorate-oxon (gill; olfactory tissues), phorate sulfone (liver), and phorate-oxon sulfoxide (liver; olfactory tissues) was significantly enhanced in fish acclimated to higher salinities. From previous studies, it was expected that phorate and phorate sulfoxide would be less potent AChE inhibitors than phorate-oxon, with phorate-oxon sulfoxide being the most potent of the compounds tested. This trend was confirmed in this study. In summary, these results suggest that differential expression and/or catalytic activities of Phase I enzymes may be involved to enhance phorate oxidative metabolism and subsequent toxicity of phorate to coho salmon under hypersaline conditions. The outcome may be enhanced fish susceptibility to anticholineterase oxon sulfoxides. PMID:21488666

  4. Speciation of arsenic in human nail and hair from arsenic-affected area by HPLC-inductively coupled argon plasma mass spectrometry

    International Nuclear Information System (INIS)

    Mandal, Badal Kumar; Ogra, Yasumitsu; Suzuki, Kazuo T.

    2003-01-01

    Nail and hair are rich in fibrous proteins, i.e., α-keratins that contain abundant cysteine residues (up to 22% in nail and 10-14% in hair). Although they are metabolically dead materials in the epidermis, the roots are highly influenced by the health status of the living beings and their analyses are used as a tool to monitor occupational and environmental exposure to toxic elements. The aims of the present study are to speciate arsenicals in human nail and hair and also to judge whether they should be used as a biomarker to arsenic (As) exposure and/or toxicity. All human fingernail and hair samples (n = 47) were collected from the As-affected area of West Bengal, India. Speciation of arsenicals in water extracts of fingernails and hair at 90 degree sign C was carried out by HPLC-inductively coupled argon plasma mass spectrometer (ICP MS). Fingernails contained iAs III (58.6%), iAs V (21.5), MMA V (7.7), DMA III (9.2), and DMA V (3.0), and hair contained iAs III (60.9%), iAs V (33.2), MMA V (2.2), and DMA V (3.6). Fingernails contained DMA III , but hair did not. The higher percentage of iAs III both in fingernails and hair than that of iAs V suggests more affinity of iAs III to keratin. Although all arsenicals in fingernails and hair correlate to As exposure positively, As speciation in fingernails seems to be more correlated with arsenism than that in hair. Exogenous contamination is a confounding factor for hair to consider it as a biomarker, whereas this is mostly absent in fingernails, which recommends it to be a better biomarker to arsenic exposure. DMA III content in fingernails and DMA V contents in both fingernails and hair could be the biomarker to As exposure

  5. Activated charcoal and baking soda to reduce odor associated with extensive blistering disorders

    Directory of Open Access Journals (Sweden)

    Chakravarthi Arun

    2008-01-01

    Full Text Available Background: Skin disease leading to extensive blistering and loss of skin is associated with a characteristic smell. Odor can cause physiologic disturbances such as increase in heart rate and respiratory rate. It can also cause nausea and vomiting and is disturbing to bystanders. Aims: To test odor reducing capability of activated charcoal. Methods: In this blinded experimental study we used putrefied amniotic membrane to produce odor and studied the effectiveness of activated charcoal and soda-bi-carbonate to reduce odor. Results: Statistical analysis with Kruskal Wall′s Chi Square Test and Man Whitney U test showed significant reduction of odor using activated charcoal by itself or along with soda-bi-carbonate. Conclusion: We recommend the usage of activated charcoal with/without soda bicarbonate as an inexpensive practical measure to reduce foul odor associated with extensive skin loss.

  6. Hypernatremia and metabolic alkalosis as a consequence of the therapeutic misuse of baking soda.

    Science.gov (United States)

    Fuchs, S; Listernick, R

    1987-12-01

    When used appropriately, baking soda (sodium bicarbonate, USP) is a nontoxic, readily available, multipurpose product found in many households. We report an infant who presented with hypernatremia and metabolic alkalosis due to the addition of baking soda to her water. This case represents the possible dangerous use of a common household product in infants owing to the lack of proper warning labels.

  7. Biological monitoring of arsenic exposure of gallium arsenide- and inorganic arsenic-exposed workers by determination of inorganic arsenic and its metabolites in urine and hair

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, H.; Takahashi, K.; Mashiko, M.; Yamamura, Y. (St. Marianna Univ. School of Medicine, Kawasaki (Japan))

    1989-11-01

    In an attempt to establish a method for biological monitoring of inorganic arsenic exposure, the chemical species of arsenic were measured in the urine and hair of gallium arsenide (GaAs) plant and copper smelter workers. Determination of urinary inorganic arsenic concentration proved sensitive enough to monitor the low-level inorganic arsenic exposure of the GaAs plant workers. The urinary inorganic arsenic concentration in the copper smelter workers was far higher than that of a control group and was associated with high urinary concentrations of the inorganic arsenic metabolites, methylarsonic acid (MAA) and dimethylarsinic acid (DMAA). The results established a method for exposure level-dependent biological monitoring of inorganic arsenic exposure. Low-level exposures could be monitored only by determining urinary inorganic arsenic concentration. High-level exposures clearly produced an increased urinary inorganic arsenic concentration, with an increased sum of urinary concentrations of inorganic arsenic and its metabolites (inorganic arsenic + MAA + DMAA). The determination of urinary arsenobetaine proved to determine specifically the seafood-derived arsenic, allowing this arsenic to be distinguished clearly from the arsenic from occupational exposure. Monitoring arsenic exposure by determining the arsenic in the hair appeared to be of value only when used for environmental monitoring of arsenic contamination rather than for biological monitoring.

  8. Calcium carbonate synthesis with prescribed properties based on liquid waste of soda production

    OpenAIRE

    E.O. Mikhailova; V.O. Panasenko; N.B. Markova

    2016-01-01

    A promising direction in solving of environmental problems of soda industry is the development of low-waste resource-saving technologies, which consist in recycling of valuable waste components with obtaining the commercial products. Aim: The aim is to establish the optimal conditions for obtaining calcium carbonate with prescribed properties from liquid waste of soda production. Materials and Methods: Chemically deposited calcium carbonate is used as filler and should have certain physical a...

  9. Archaeal and Bacterial Variation Across Geochemical Gradients in an Arsenic-Rich, Shallow Submarine Vent, Papua New Guinea

    Science.gov (United States)

    Meyer-Dombard, D. R.; Osburn, M. R.; Amend, J. P.

    2005-12-01

    Near the Feni Islands of Papua New Guinea, reduced hydrothermal fluids mix with seawater, establishing redox disequilibria that may serve as energy sources for chemotrophic Archaea and Bacteria. Of particular interest are elevated arsenite concentrations (1000 μg/L) in the vent water and arsenate-rich ferrihydrite deposits (up to 7 wt.%) that envelope the sediment and coral. In sediment pore waters out to > 200m from the vents, a steeply decreasing arsenic gradient is observed. To establish a baseline of microbial community composition at the vent fluid-seawater interface, bulk DNA was extracted from ferrihydrite coatings, then amplified (16S rRNA, targeting both Archaea and Bacteria), cloned, and sequenced. Red and green biofilms associated with the coatings revealed archaeal communities exclusively composed of deeply-branching, uncultured Crenarchaea. The bacterial members of the community differed in the two biofilms; the red biofilm is primarily composed of gamma Proteobacteria, Chloroflexis, and Planctomycetes, but 60% of clones from the green biofilm community affiliates with the alpha Proteobacteria and candidate group OP11. The remaining portion of the bacterial community in the red coating is made of Thermotogales, Aquificales, Thermales phylotypes and uncultured Bacteria, while OP10, Chloroflexis and Plantomycetales complete the community in the green coatings. No clones associating with thermophilic bacterial groups were found in the green coatings. To provide a comparison to the vent source communities, a sediment core was taken 2.5m from the vent and two depths (10 and 40cm) were analyzed by similar molecular analysis. In both core horizons, the archaeal community is composed of > 75% uncultured Crenarchaea, similar to phylotypes found in deep-sea and terrestrial hydrothermal locations, with the remainder of the communities from known crenarchaeal phylotypes. The bacterial communities are primarily Chloroflexis and gamma Proteobacteria-like phylotypes

  10. Phosphate interference during in situ treatment for arsenic in groundwater.

    Science.gov (United States)

    Brunsting, Joseph H; McBean, Edward A

    2014-01-01

    Contamination of groundwater by arsenic is a problem in many areas of the world, particularly in West Bengal (India) and Bangladesh, where reducing conditions in groundwater are the cause. In situ treatment is a novel approach wherein, by introduction of dissolved oxygen (DO), advantages over other treatment methods can be achieved through simplicity, not using chemicals, and not requiring disposal of arsenic-rich wastes. A lab-scale test of in situ treatment by air sparging, using a solution with approximately 5.3 mg L(-1) ferrous iron and 200 μg L(-1) arsenate, showed removal of arsenate in the range of 59%. A significant obstacle exists, however, due to the interference of phosphate since phosphate competes for adsorption sites on oxidized iron precipitates. A lab-scale test including 0.5 mg L(-1) phosphate showed negligible removal of arsenate. In situ treatment by air sparging demonstrates considerable promise for removal of arsenic from groundwater where iron is present in considerable quantities and phosphates are low.

  11. Arsenic levels in the soils and macrophytes of the 'Entremuros' after the Aznalcollar mine spill

    International Nuclear Information System (INIS)

    Taggart, M.A.; Carlisle, M.; Pain, D.J.; Williams, R.; Green, D.; Osborn, D.; Meharg, A.A.

    2005-01-01

    In April 1998, a holding lagoon containing pyrite ore processing waste rich in arsenic, failed and released 5-6 million m 3 of highly polluting sludge and acidic water. Over 2700 ha of the internationally important Don-tilde ana National and Natural Parks were contaminated. The area of Natural Park to sustain the greatest impact was known as the Entremuros. This paper presents 0-5 cm soil monitoring data from the Entremuros, from sampling campaigns 6 and 18 months after the disaster; as well as macrophyte root, rhizome and stem data from samples taken 18 months after the spill. Results show a clear, decreasing, north-south arsenic soil pollution trend, both 6 and 18 months after the spill, and suggest a small reduction in total soil arsenic levels occurred over time; although a significant increase in extractable arsenic is also noted. The two macrophytes (Typha dominguensis and Scirpus maritimus) studied herein are not accumulating arsenic in stem parts, however, accumulation of arsenic on iron plaque on the roots of these plants may be occurring. Further work is recommended in order to determine the ecotoxicological significance of this process in relation to the avian food-chains of Don-tilde ana, and elsewhere. - Capsule: Arsenic associated with iron plaque on macrophyte roots may pose an ecotoxicological risk to certain herbivores

  12. Arsenic in Food

    Science.gov (United States)

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share ... of the Method used to Measure Arsenic in Foods Inductively Coupled Plasma-Mass Spectrometric Determination of Arsenic, ...

  13. Evolution of arsenic in high fluence plasma immersion ion implanted silicon: Behavior of the as-implanted surface

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanath, V. [Applied Materials, 3225 Oakmead Village Drive, Santa Clara, CA 95052 (United States); Demenev, E. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Department of Molecular Science and Nanosystems, Ca’Foscari University, Dorsoduro 2137, 30123 Venice (Italy); Giubertoni, D., E-mail: giuberto@fbk.eu [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Vanzetti, L. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Koh, A.L. [Stanford Nanocharacterization Laboratory, Stanford University, 476 Lomita Mall, Stanford, CA 94305 (United States); Steinhauser, G. [Colorado State University, Environmental and Radiological Health Sciences, Fort Collins, CO 80523 (United States); Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz, 30419 Hannover (Germany); Pepponi, G.; Bersani, M. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento (Italy); Meirer, F., E-mail: f.meirer@uu.nl [Inorganic Chemistry and Catalysis, Utrecht University, Utrecht 3584 CG (Netherlands); Foad, M.A. [Applied Materials, 3225 Oakmead Village Drive, Santa Clara, CA 95052 (United States)

    2015-11-15

    Highlights: • Samples prepared by high fluence, low-energy PIII of AsH{sub 3}{sup +} on Si(1 0 0) were studied. • PIII is of high technological interest for ultra-shallow doping and activation. • We used a multi-technique approach to study the As-implanted surface. • We show that PIII presents a new set of problems that needs to be tackled. • The presented study goes toward understanding the root mechanisms involved. - Abstract: High fluence (>10{sup 15} ions/cm{sup 2}) low-energy (<2 keV) plasma immersion ion implantation (PIII) of AsH{sub 3}{sup +} on (1 0 0) silicon was investigated, with the focus on stability and retention of the dopant. At this dose, a thin (∼3 nm) amorphous layer forms at the surface, which contains about 45% arsenic (As) in a silicon and oxygen matrix. The presence of silicon indicates that the layer is not only a result of deposition, but predominantly ion mixing. High fluence PIII introduces high concentration of arsenic, modifying the stopping power for incoming ions resulting in an increased deposition. When exposed to atmosphere, the arsenic rich layer spontaneously evolves forming arsenolite As{sub 2}O{sub 3} micro-crystals at the surface. The micro-crystal formation was monitored over several months and exhibits typical crystal growth kinetics. At the same time, a continuous growth of native silicon oxide rich in arsenic was observed on the exposed surface, suggesting the presence of oxidation enhancing factors linked to the high arsenic concentration at the surface.

  14. Structure change of soda-silicate glass by mechanical milling

    International Nuclear Information System (INIS)

    Iwao, M; Okuno, M

    2010-01-01

    Structure change of ground soda-silicate glass (SiO 2 -Na 2 O binary systems) was investigated using X-ray diffraction (XRD) and infrared spectroscopy. The measurement results were discussed comparison to that of SiO 2 glass. With increasing Na 2 O concentrations, the XRD intensity around 2θ = 22 0 decreased and the intensity around 32 0 increased. The intensity around 22 0 and 32 0 maybe attributed to SiO 2 glass structure unit and soda-silicate glass unit, respectively. The peaks of Na 2 CO 3 crystal for 2SiO 2 -Na 2 O glass were observed with increasing milling time. This crystallization was suggested that Na + ion on 2SiO 2 -Na 2 O glass surface connected CO 2 in air. The intensity around 22 0 and 32 0 decreased and the intensity around 30 0 increased with increasing milling time. These may indicate that SiO 2 glass structure unit and soda-silicate glass structure unit were mixed by milling. In addition, IR absorption band near v = 1100 cm -1 was separated to two bands near 940 cm -1 and 1070 cm -1 with increasing Na 2 O concentrations. The band near 940 cm -1 decreased and the band near 1070 cm -1 increased with increasing milling time. These spectra changes were suggested due to decrease of Na 2 O concentrations in 2SiO 2 -Na 2 O glass with Na 2 CO 3 crystallization.

  15. Arsenic Speciation and Extraction and the Significance of Biodegradable Acid on Arsenic Removal—An Approach for Remediation of Arsenic-Contaminated Soil

    Science.gov (United States)

    Nguyen Van, Thinh; Osanai, Yasuhito; Do Nguyen, Hai; Kurosawa, Kiyoshi

    2017-01-01

    A series of arsenic remediation tests were conducted using a washing method with biodegradable organic acids, including oxalic, citric and ascorbic acids. Approximately 80% of the arsenic in one sample was removed under the effect of the ascorbic and oxalic acid combination, which was roughly twice higher than the effectiveness of the ascorbic and citric acid combination under the same conditions. The soils treated using biodegradable acids had low remaining concentrations of arsenic that are primarily contained in the crystalline iron oxides and organic matter fractions. The close correlation between extracted arsenic and extracted iron/aluminum suggested that arsenic was removed via the dissolution of Fe/Al oxides in soils. The fractionation of arsenic in four contaminated soils was investigated using a modified sequential extraction method. Regarding fractionation, we found that most of the soil contained high proportions of arsenic (As) in exchangeable fractions with phosphorus, amorphous oxides, and crystalline iron oxides, while a small amount of the arsenic fraction was organic matter-bound. This study indicated that biodegradable organic acids can be considered as a means for arsenic-contaminated soil remediation.

  16. How state taxes and policies targeting soda consumption modify the association between school vending machines and student dietary behaviors: a cross-sectional analysis.

    Science.gov (United States)

    Taber, Daniel R; Chriqui, Jamie F; Vuillaume, Renee; Chaloupka, Frank J

    2014-01-01

    Sodas are widely sold in vending machines and other school venues in the United States, particularly in high school. Research suggests that policy changes have reduced soda access, but the impact of reduced access on consumption is unclear. This study was designed to identify student, environmental, or policy characteristics that modify the associations between school vending machines and student dietary behaviors. Data on school vending machine access and student diet were obtained as part of the National Youth Physical Activity and Nutrition Study (NYPANS) and linked to state-level data on soda taxes, restaurant taxes, and state laws governing the sale of soda in schools. Regression models were used to: 1) estimate associations between vending machine access and soda consumption, fast food consumption, and lunch source, and 2) determine if associations were modified by state soda taxes, restaurant taxes, laws banning in-school soda sales, or student characteristics (race/ethnicity, sex, home food access, weight loss behaviors.). Contrary to the hypothesis, students tended to consume 0.53 fewer servings of soda/week (95% CI: -1.17, 0.11) and consume fast food on 0.24 fewer days/week (95% CI: -0.44, -0.05) if they had in-school access to vending machines. They were also less likely to consume soda daily (23.9% vs. 27.9%, average difference  =  -4.02, 95% CI: -7.28, -0.76). However, these inverse associations were observed primarily among states with lower soda and restaurant tax rates (relative to general food tax rates) and states that did not ban in-school soda sales. Associations did not vary by any student characteristics except for weight loss behaviors. Isolated changes to the school food environment may have unintended consequences unless policymakers incorporate other initiatives designed to discourage overall soda consumption.

  17. How state taxes and policies targeting soda consumption modify the association between school vending machines and student dietary behaviors: a cross-sectional analysis.

    Directory of Open Access Journals (Sweden)

    Daniel R Taber

    Full Text Available Sodas are widely sold in vending machines and other school venues in the United States, particularly in high school. Research suggests that policy changes have reduced soda access, but the impact of reduced access on consumption is unclear. This study was designed to identify student, environmental, or policy characteristics that modify the associations between school vending machines and student dietary behaviors.Data on school vending machine access and student diet were obtained as part of the National Youth Physical Activity and Nutrition Study (NYPANS and linked to state-level data on soda taxes, restaurant taxes, and state laws governing the sale of soda in schools. Regression models were used to: 1 estimate associations between vending machine access and soda consumption, fast food consumption, and lunch source, and 2 determine if associations were modified by state soda taxes, restaurant taxes, laws banning in-school soda sales, or student characteristics (race/ethnicity, sex, home food access, weight loss behaviors..Contrary to the hypothesis, students tended to consume 0.53 fewer servings of soda/week (95% CI: -1.17, 0.11 and consume fast food on 0.24 fewer days/week (95% CI: -0.44, -0.05 if they had in-school access to vending machines. They were also less likely to consume soda daily (23.9% vs. 27.9%, average difference  =  -4.02, 95% CI: -7.28, -0.76. However, these inverse associations were observed primarily among states with lower soda and restaurant tax rates (relative to general food tax rates and states that did not ban in-school soda sales. Associations did not vary by any student characteristics except for weight loss behaviors.Isolated changes to the school food environment may have unintended consequences unless policymakers incorporate other initiatives designed to discourage overall soda consumption.

  18. How State Taxes and Policies Targeting Soda Consumption Modify the Association between School Vending Machines and Student Dietary Behaviors: A Cross-Sectional Analysis

    Science.gov (United States)

    Taber, Daniel R.; Chriqui, Jamie F.; Vuillaume, Renee; Chaloupka, Frank J.

    2014-01-01

    Background Sodas are widely sold in vending machines and other school venues in the United States, particularly in high school. Research suggests that policy changes have reduced soda access, but the impact of reduced access on consumption is unclear. This study was designed to identify student, environmental, or policy characteristics that modify the associations between school vending machines and student dietary behaviors. Methods Data on school vending machine access and student diet were obtained as part of the National Youth Physical Activity and Nutrition Study (NYPANS) and linked to state-level data on soda taxes, restaurant taxes, and state laws governing the sale of soda in schools. Regression models were used to: 1) estimate associations between vending machine access and soda consumption, fast food consumption, and lunch source, and 2) determine if associations were modified by state soda taxes, restaurant taxes, laws banning in-school soda sales, or student characteristics (race/ethnicity, sex, home food access, weight loss behaviors.) Results Contrary to the hypothesis, students tended to consume 0.53 fewer servings of soda/week (95% CI: -1.17, 0.11) and consume fast food on 0.24 fewer days/week (95% CI: -0.44, -0.05) if they had in-school access to vending machines. They were also less likely to consume soda daily (23.9% vs. 27.9%, average difference = -4.02, 95% CI: -7.28, -0.76). However, these inverse associations were observed primarily among states with lower soda and restaurant tax rates (relative to general food tax rates) and states that did not ban in-school soda sales. Associations did not vary by any student characteristics except for weight loss behaviors. Conclusion Isolated changes to the school food environment may have unintended consequences unless policymakers incorporate other initiatives designed to discourage overall soda consumption. PMID:25083906

  19. Understanding arsenic metabolism through spectroscopic determination of arsenic in human urine

    OpenAIRE

    Brima, Eid I.; Jenkins, Richard O.; Haris, Parvez I.

    2006-01-01

    In this review we discuss a range of spectroscopic techniques that are currently used for analysis of arsenic in human urine for understanding arsenic metabolism and toxicity, especially in relation to genetics/ethnicity, ingestion studies and exposure to arsenic through drinking water and diet. Spectroscopic techniques used for analysis of arsenic in human urine include inductively coupled plasma mass spectrometry (ICP-MS), hydride generation atomic absorption spectrometry (HG-AAS), hydride ...

  20. Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter.

    Science.gov (United States)

    Liu, Chia-Chuan; Kar, Sandeep; Jean, Jiin-Shuh; Wang, Chung-Ho; Lee, Yao-Chang; Sracek, Ondra; Li, Zhaohui; Bundschuh, Jochen; Yang, Huai-Jen; Chen, Chien-Yen

    2013-11-15

    The present study deals with geochemical characterization of mud fluids and sediments collected from Kunshuiping (KSP), Liyushan (LYS), Wushanting (WST), Sinyangnyuhu (SYNH), Hsiaokunshui (HKS) and Yenshuikeng (YSK) mud volcanoes in southwestern Taiwan. Chemical constituents (cations, anions, trace elements, organic carbon, humic acid, and stable isotopes) in both fluids and mud were analyzed to investigate the geochemical processes and spatial variability among the mud volcanoes under consideration. Analytical results suggested that the anoxic mud volcanic fluids are highly saline, implying connate water as the probable source. The isotopic signature indicated that δ(18)O-rich fluids may be associated with silicate and carbonate mineral released through water-rock interaction, along with dehydration of clay minerals. Considerable amounts of arsenic in mud irrespective of fluid composition suggested possible release through biogeochemical processes in the subsurface environment. Sequential extraction of As from the mud indicated that As was mostly present in organic and sulphidic phases, and adsorbed on amorphous Mn oxyhydroxides. Volcanic mud and fluids are rich in organic matter (in terms of organic carbon), and the presence of humic acid in mud has implications for the binding of arsenic. Functional groups of humic acid also showed variable sources of organic matter among the mud volcanoes being examined. Because arsenate concentration in the mud fluids was found to be independent from geochemical factors, it was considered that organic matter may induce arsenic mobilization through an adsorption/desorption mechanism with humic substances under reducing conditions. Organic matter therefore plays a significant role in the mobility of arsenic in mud volcanoes. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Baking soda pica associated with rhabdomyolysis and cardiomyopathy in pregnancy.

    Science.gov (United States)

    Scolari Childress, Katherine M; Myles, Thomas

    2013-08-01

    Pica is a commonly underappreciated disorder in pregnancy that can lead to several complications, including severe metabolic derangements and other adverse outcomes. We report a case of baking soda pica in pregnancy associated with both rhabdomyolysis and cardiomyopathy. A multigravid woman at 37 weeks of gestation presented with weakness and severe hypokalemia. She subsequently had development of rhabdomyolysis and presumed peripartum cardiomyopathy. After delivery, it was discovered that the patient had a long history of consumption of large quantities of baking soda. Her condition improved with cessation of the pica. Clinicians must have a high index of suspicion for pica in pregnancy because it can lead to complex diagnostic challenges and pregnancy complications. The diagnosis should be considered in a patient with unexplained metabolic abnormalities.

  2. Chronic Arsenic Toxicity: Statistical Study of the Relationships Between Urinary Arsenic, Selenium and Antimony

    OpenAIRE

    Analía Boemo, BS; Irene María Lomniczi, PhD; Elsa Mónica Farfán Torres, PhD

    2012-01-01

    Background. The groundwater of Argentina’s Chaco plain presents arsenic levels above those suitable for human consumption. Studies suggest skin disorders among local populations caused by arsenic intake. The relationship between urinary arsenic and arsenic in drinking water is well known, but urinary arsenic alone is not enough for risk assessment due to modulating factors such as the intake of selenium and antimony. Objectives. Determining the relationship between urinary arsenic, seleniu...

  3. Effect of arsenic on nitrification of simulated mining water.

    Science.gov (United States)

    Papirio, S; Zou, G; Ylinen, A; Di Capua, F; Pirozzi, F; Puhakka, J A

    2014-07-01

    Mining and mineral processing of gold-bearing ores often release arsenic to the environment. Ammonium is released when N-based explosives or cyanide are used. Nitrification of simulated As-rich mining waters was investigated in batch bioassays using nitrifying cultures enriched in a fluidized-bed reactor (FBR). Nitrification was maintained at 100mg AsTOT/L. In batch assays, ammonium was totally oxidized by the FBR enrichment in 48 h. As(III) oxidation to As(V) occurred during the first 3h attenuating arsenic toxicity to nitrification. At 150 and 200mg AsTOT/L, nitrification was inhibited by 25%. Candidatus Nitrospira defluvii and other nitrifying species mainly colonized the FBR. In conclusion, the FBR enriched cultures of municipal activated sludge origins tolerated high As concentrations making nitrification a potent process for mining water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Can soda ash dumping grounds provide replacement habitats for digger wasps (Hymenoptera, Apoidea, Spheciformes?

    Directory of Open Access Journals (Sweden)

    Lucyna Twerd

    Full Text Available Published sources document a loss of biodiversity at an extreme rate, mainly because natural and semi-natural ecosystems are becoming fragmented and isolated, thus losing their biological functions. These changes significantly influence biological diversity, which is a complex phenomenon that changes over time. Contemporary ecologists must therefore draw attention to anthropogenic replacement habitats and increase their conservation status. In our studies we show the positive role of soda ash dumping grounds as an alternative habitat for digger wasps, especially the thermophilic species.In the years 2007-2010 we carried out investigations in postindustrial soda ash dumping grounds located in Central Poland. We demonstrated that these areas serve as replacement habitats for thermophilic species of Spheciformes and, indirectly, for their potential prey. The studies were conducted in three microhabitat types, varying in soil moisture, salinity and alkalinity, that were changing in the course of ecological succession. We trapped 2571 specimens belonging to 64 species of digger wasps. Species typical of open sunny spaces comprised 73% of the whole inventory. The obtained results suggest that the stage of succession determines the richness, abundance and diversity of Spheciformes. The most favorable conditions for digger wasps were observed in habitats at late successional stages.Our results clearly showed that these habitats were replacement habitats for thermophilous Spheciformes, including rare taxa that require genetic, species and ecosystem protection, according to the Biodiversity Convention. We showed that some types of industry might play a positive role in the preservation of taxa in the landscape, and that even degraded industrial wasteland can replace habitats under anthropopressure, serving as refugia of biological diversity, especially for disturbance-dependent species.

  5. The motivational benefits of a dentifrice containing baking soda and hydrogen peroxide.

    Science.gov (United States)

    Fischman, S L; Kugel, G; Truelove, R B; Nelson, B J; Cancro, L P

    1992-01-01

    Twenty-two family practice dentists, in a large metropolitan area, were recruited to act as independent examiners in a study to evaluate the compliance of their patients to accept a good oral hygiene regimen with the use of a fluoride dentifrice, containing hydrogen peroxide and baking soda, dispensed from a dual dispensing package. To evaluate compliance, the dentists attended an orientation seminar and were trained to assess gingival health using the CPITN periodontal probe. Each dentist evaluated the gingival health status of five to seven of his own patients, initially and after one and three months of product use following hygiene instruction and product assignment. One-hundred and thirty-one patients successfully completed the study. After one month of using the hydrogen peroxide/baking soda toothpaste, the mean reduction in bleeding sites was 53%; at three months the reduction was 62%. The hydrogen peroxide/baking soda dentifrice was well accepted by dentist and patient, and a discernible improvement in oral health of the patients was achieved when the product was used in a conscientious oral hygiene program.

  6. Approaches to increase arsenic awareness in Bangladesh: an evaluation of an arsenic education program.

    Science.gov (United States)

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H

    2013-06-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from baseline to follow-up 4 to 6 months after the household received the intervention. This was assessed through a pre- and postintervention quiz concerning knowledge of arsenic. Respondents were between 18 and 102 years of age, with an average age of 37 years; 99.9% were female. The knowledge of arsenic quiz scores for study participants were significantly higher at follow-up compared with baseline. The intervention was effective in increasing awareness of the safe uses of arsenic-contaminated water and dispelling the misconception that boiling water removes arsenic. At follow-up, nearly all respondents were able to correctly identify the meaning of a red (contaminated) and green (arsenic safe) well relative to arsenic (99%). The educational program also significantly increased the proportion of respondents who were able to correctly identify the health implications of arsenic exposure. However, the intervention was not effective in dispelling the misconceptions in the population that arsenicosis is contagious and that illnesses such as cholera, diarrhea, and vomiting could be caused by arsenic. Further research is needed to develop effective communication strategies to dispel these misconceptions. This study demonstrates that a household-level arsenic educational program can be used to significantly increase arsenic awareness in Bangladesh.

  7. Arsenic speciation in saliva of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment

    OpenAIRE

    Chen, Baowei; Cao, Fenglin; Yuan, Chungang; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X. Chris

    2013-01-01

    Arsenic trioxide has been successfully used as a therapeutic in the treatment of acute promyelocytic leukemia (APL). Detailed monitoring of the therapeutic arsenic and its metabolites in various accessible specimens of APL patients can contribute to improving treatment efficacy and minimizing arsenic-induced side effects. This article focuses on the determination of arsenic species in saliva samples from APL patients undergoing arsenic treatment. Saliva samples were collected from nine APL pa...

  8. PHYLOGENETIC ANALYSIS AND AUTECOLOGY OF SPORE-FORMING BACTERIA FROM HYPERSALINE ENVIRONMENTS.

    Science.gov (United States)

    Gladka, G V; Romanovskaya, V A; Tashyreva, H O; Tashyrev, O B

    2015-01-01

    Multi-resistant to extreme factors spore-forming bacteria of Bacillus genus are isolated from hypersaline environments of the Crimea (Ukraine) and the Dead Sea (Israel). Phylogenetic analysis showed distinction of dominating extremophilic culturable species in studied regions. In Crimean environments they are B. mojavensis and B. simplex, in the Dead Sea ecosystem--B. subtilis subsp. spizizenii, B. subtilis subsp. subtilis, B. licheniformis and B. simplex. Isolates are simultaneously halotolerant and resistant to UV radiation. Strains isolated from the Dead Sea and the Crimea environments were resistant to UV: LD90 and LD99.99 made 100-170 J/m2 and 750-1500 J/m2 respectively. Spores showed higher UV-resistance (LD99.99-2500 J/m2) than the vegetative cells. However the number of spores made 0.02-0.007% of the whole cell population, and should not significantly affect the UV LD99.99 value. Isolates of both environments were halotolerant in the range of 0.1-10% NaCl and thermotolerant in the range of 20-50 °C, and didn't grow at 15 °C. Survival strategy of spore-forming bacteria from hypersaline environments under high UV radiation level can be performed by spore formation which minimize cell damage as well as efficient DNA-repair systems that remove damages.

  9. Application of colloidal gas aphron suspensions produced from Sapindus mukorossi for arsenic removal from contaminated soil.

    Science.gov (United States)

    Mukhopadhyay, Soumyadeep; Mukherjee, Sumona; Hashim, Mohd Ali; Sen Gupta, Bhaskar

    2015-01-01

    Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5-6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Functional-Structural Analysis of Nitrogen-Cycle Bacteria in a Hypersaline Mat from the Omani Desert

    DEFF Research Database (Denmark)

    Abed, Raeid M M; de Beer, Dirk; Stief, Peter

    2015-01-01

    to sequences from the Rhizobiales group. Sequences of the nosZ gene were the most diverse and clustered with sequences from various genera. Our results demonstrate that the hypersaline mat from Oman harbors nitrifying and denitrifying bacteria with the potential to perform respective processes at detectable...

  11. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Norton, Gareth J.; Adomako, Eureka E.; Deacon, Claire M.; Carey, Anne-Marie; Price, Adam H.; Meharg, Andrew A.

    2013-01-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  12. Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment

    Czech Academy of Sciences Publication Activity Database

    Jarošíková, A.; Ettler, V.; Mihaljevič, M.; Penížek, V.; Matoušek, Tomáš; Culka, A.; Drahota, P.

    2018-01-01

    Roč. 237, JUN (2018), s. 83-92 ISSN 0269-7491 Institutional support: RVO:68081715 Keywords : arsenic * smelter dust * soil Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 5.099, year: 2016

  13. Hydrogenolysis and Activation of Soda Lignin Using [BMIM]Cl as a Catalyst and Solvent

    Directory of Open Access Journals (Sweden)

    Shengming Zhang

    2017-07-01

    Full Text Available To improve the reactivity of the soda lignin, an acid ionic liquid 1-butyl-3-mthylimidazolium chloride ([BMIM]Cl was used as the catalyst and solvent to degrade the soda lignin through hydrogenolysis. Structural elucidation of the lignin samples was conducted by using a combination of analytical methods including chemical analysis, ultraviolet spectrophotometry (UV spectrophotometry, Fourier transform infrared spectroscopy (FT-IR spectra, two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR techniques, and gel permeation chromatography (GPC. The antioxidant activities of the lignin samples were evaluated using the diammonium 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate (ABTS+ radical scavenging and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging methods. The degradation mechanism was proposed based on the characterization results. The optimal reaction condition was as follows: the concentration of [BMIM]Cl in the solution was 10 wt %, the hydrogen initial pressure was 3 MPa, and the solution was heated for 4 h at 90 °C. After the reaction, the total hydroxyl content of the soda lignin increased by 81.3%, while the phenolic hydroxyl content increased by 23.1%. At the same time, the weight-average molar mass of the soda lignin sample decreased from 8220 to 6450 g/mol with an improved antioxidant activity. In addition, approximately 56.7% of the β-O-4 linkages were degraded in the lreaction. The main effect of the acid ionic liquid [BMIM]C1 was related to the cleavage of β-O-4 linkages. This study has shown the potential of using the catalyzed soda lignin as a natural polymer antioxidant.

  14. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (piAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  15. EVALUATION OF LINERBOARD PROPERTIES FROM MALAYSIAN CULTIVATED KENAF SODA-ANTHRAQUINONE PULPS VERSUS COMMERCIAL PULPS

    OpenAIRE

    Ahmad Azizi Mossello; Jalaluddin Harun; Rushdan Ibrahim; Hossien Resalati; Seyed Rashid Fallah Shamsi; Paridah Md Tahir; Mohd Nor Mohad Yusoff

    2010-01-01

    Malaysian cultivated kenaf has been identified as a suitable raw material for linerboard production. This study examines the soda-antraquinone (soda-AQ) pulp of kenaf fibers versus old corrugated container (OCC) and unbleached softwood kraft pulps as the main sources for linerboard production. The results showed significant differences among the pulp properties. The unbleached kraft pulp with very high freeness required high beating to reach an optimized freeness and produced paper with the h...

  16. Halo(natronoarchaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates

    Directory of Open Access Journals (Sweden)

    Dimitry Y Sorokin

    2015-09-01

    Full Text Available Until recently, extremely halophilic euryarchaeota were considered mostly as aerobic heterotrophs utilizing simple organic compounds as growth substrates. Almost nothing is known on the ability of these prokaryotes to utilize complex polysaccharides as cellulose, xylan and chitin. Although few haloarchaeal cellulases and chitinases were recently characterized, the analysis of currently available haloarchaeal genomes deciphered numerous genes encoding glycosidases (GHs of various families including endoglucanases and chitinases. However, all these haloarchaea were isolated and cultivated on simple substrates and their ability to grow on polysaccharides in situ or in vitro is unknown. This study examines several halo(natronoarchaeal strains from geographically distant hypersaline lakes for the ability to grow on insoluble polymers as a sole growth substrate in salt-saturated mineral media. Some of them belonged to known taxa, while other represented novel phylogenetic lineages within the class Halobacteria. All isolates produced extracellular extremely salt tolerant cellulases or chitinases, either cell-free or cell-bound. Obtained results demonstrate a presence of diverse population of haloarchaeal cellulo/chitinotrophs in hypersaline habitats indicating that euryarchaea participate in aerobic mineralization of recalcitrant organic polymers in salt-saturated environments.

  17. Environmental Source of Arsenic Exposure

    OpenAIRE

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a ...

  18. Baking soda as an abrasive in toothpastes: Mechanism of action and safety and effectiveness considerations.

    Science.gov (United States)

    Hara, Anderson T; Turssi, Cecilia P

    2017-11-01

    Toothpastes can be formulated with different abrasive systems, depending on their intended clinical application. This formulation potentially affects their effectiveness and safety and, therefore, requires proper understanding. In this article, the authors focused on abrasive aspects of toothpastes containing sodium bicarbonate (baking soda), which have gained considerable attention because of their low abrasivity and good compatibility, while providing clinical effectiveness (further detailed in the other articles of this special issue). The authors first appraised the role of toothpaste abrasivity on tooth wear, exploring some underlying processes and the existing methods to determine toothpaste abrasivity. The authors reviewed the available data on the abrasivity of toothpastes containing baking soda and reported a summary of findings highlighting the clinical implications. On the basis of the collected evidence, baking soda has an intrinsic low-abrasive nature because of its comparatively lower hardness in relation to enamel and dentin. Baking soda toothpastes also may contain other ingredients, which can increase their stain removal effectiveness and, consequently, abrasivity. Even those formulations have abrasivity well within the safety limit regulatory agencies have established and, therefore, can be considered safe. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  19. Correlation of arsenic exposure through drinking groundwater and urinary arsenic excretion among adults in Pakistan.

    Science.gov (United States)

    Ahmed, Mubashir; Fatmi, Zafar; Ali, Arif

    2014-01-01

    Long-term exposure to arsenic has been associated with manifestation of skin lesions (melanosis/keratosis) and increased risk of internal cancers (lung/bladder). The objective of the study described here was to determine the relationship between exposure of arsenic through drinking groundwater and urinary arsenic excretion among adults > or =15 years of age living in Khairpur district, Pakistan. Total arsenic was determined in drinking groundwater and in spot urine samples of 465 randomly selected individuals through hydride generation-atomic absorption spectrometry. Spearman's rank correlation coefficient was calculated between arsenic in drinking groundwater and arsenic excreted in urine. The median arsenic concentration in drinking water was 2.1 microg/L (range: 0.1-350), and in urine was 28.5 microg/L (range: 0.1-848). Positive correlation was found between total arsenic in drinking water and in urine (r = .52, p arsenic may be used as a biomarker of arsenic exposure through drinking water.

  20. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Linsheng Yang

    2011-06-01

    Full Text Available In contrast to arsenic (As poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions, who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China, were reported. The urinary arsenic species, including inorganic arsenic (iAs [arsenite (iAsIII and arsenate (iAsV], monomethylarsonic acid (MMAV and dimethylarsinic acid (DMAV, were determined by high-performance liquid chromatography (HPLC combined with inductively coupled plasma mass spectroscopy (ICP-MS. The relative distributions of arsenic species, the primary methylation index (PMI = MMAV/iAs and the secondary methylation index (SMI = DMAV/MMAV were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.

  1. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD).

    Science.gov (United States)

    Fernandez-Rojo, L; Héry, M; Le Pape, P; Braungardt, C; Desoeuvre, A; Torres, E; Tardy, V; Resongles, E; Laroche, E; Delpoux, S; Joulian, C; Battaglia-Brunet, F; Boisson, J; Grapin, G; Morin, G; Casiot, C

    2017-10-15

    Passive water treatments based on biological attenuation can be effective for arsenic-rich acid mine drainage (AMD). However, the key factors driving the biological processes involved in this attenuation are not well-known. Here, the efficiency of arsenic (As) removal was investigated in a bench-scale continuous flow channel bioreactor treating As-rich AMD (∼30-40 mg L -1 ). In this bioreactor, As removal proceeds via the formation of biogenic precipitates consisting of iron- and arsenic-rich mineral phases encrusting a microbial biofilm. Ferrous iron (Fe(II)) oxidation and iron (Fe) and arsenic removal rates were monitored at two different water heights (4 and 25 mm) and with/without forced aeration. A maximum of 80% As removal was achieved within 500 min at the lowest water height. This operating condition promoted intense Fe(II) microbial oxidation and subsequent precipitation of As-bearing schwertmannite and amorphous ferric arsenate. Higher water height slowed down Fe(II) oxidation, Fe precipitation and As removal, in relation with limited oxygen transfer through the water column. The lower oxygen transfer at higher water height could be partly counteracted by aeration. The presence of an iridescent floating film that developed at the water surface was found to limit oxygen transfer to the water column and delayed Fe(II) oxidation, but did not affect As removal. The bacterial community structure in the biogenic precipitates in the bottom of the bioreactor differed from that of the inlet water and was influenced to some extent by water height and aeration. Although potential for microbial mediated As oxidation was revealed by the detection of aioA genes, removal of Fe and As was mainly attributable to microbial Fe oxidation activity. Increasing the proportion of dissolved As(V) in the inlet water improved As removal and favoured the formation of amorphous ferric arsenate over As-sorbed schwertmannite. This study proved the ability of this bioreactor

  2. A methodology for the sustainability assessment of arsenic mitigation technology for drinking water.

    Science.gov (United States)

    Etmannski, T R; Darton, R C

    2014-08-01

    In this paper we show how the process analysis method (PAM) can be applied to assess the sustainability of options to mitigate arsenic in drinking water in rural India. Stakeholder perspectives, gathered from a fieldwork survey of 933 households in West Bengal in 2012 played a significant role in this assessment. This research found that the 'most important' issues as specified by the technology users are cost, trust, distance from their home to the clean water source (an indicator of convenience), and understanding the health effects of arsenic. We show that utilisation of a technology is related to levels of trust and confidence in a community, making use of a composite trust-confidence indicator. Measures to improve trust between community and organisers of mitigation projects, and to raise confidence in technology and also in fair costing, would help to promote successful deployment of appropriate technology. Attitudes to cost revealed in the surveys are related to the low value placed on arsenic-free water, as also found by other investigators, consistent with a lack of public awareness about the arsenic problem. It is suggested that increased awareness might change attitudes to arsenic-rich waste and its disposal protocols. This waste is often currently discarded in an uncontrolled manner in the local environment, giving rise to the possibility of point-source recontamination. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage.

    Science.gov (United States)

    Adra, Areej; Morin, Guillaume; Ona-Nguema, Georges; Menguy, Nicolas; Maillot, Fabien; Casiot, Corinne; Bruneel, Odile; Lebrun, Sophie; Juillot, Farid; Brest, Jessica

    2013-11-19

    Ferrihydrite (Fh) is a nanocrystalline ferric oxyhydroxide involved in the retention of pollutants in natural systems and in water-treatment processes. The status and properties of major chemical impurities in natural Fh is however still scarcely documented. Here we investigated the structure of aluminum-rich Fh, and their role in arsenic scavenging in river-bed sediments from a circumneutral river (pH 6-7) impacted by an arsenic-rich acid mine drainage (AMD). Extended X-ray absorption fine structure (EXAFS) spectroscopy at the Fe K-edge shows that Fh is the predominant mineral phase forming after neutralization of the AMD, in association with minor amount of schwertmannite transported from the AMD. TEM-EDXS elemental mapping and SEM-EDXS analyses combined with EXAFS analysis indicates that Al(3+) substitutes for Fe(3+) ions into the Fh structure in the natural sediment samples, with local aluminum concentration within the 25-30 ± 10 mol %Al range. Synthetic aluminous Fh prepared in the present study are found to be less Al-substituted (14-20 ± 5 mol %Al). Finally, EXAFS analysis at the arsenic K-edge indicates that As(V) form similar inner-sphere surface complexes on the natural and synthetic Al-substituted Fh studied. Our results provide direct evidence for the scavenging of arsenic by natural Al-Fh, which emphasize the possible implication of such material for scavenging pollutants in natural or engineered systems.

  4. Differences in lateral gene transfer in hypersaline versus thermal environments

    Directory of Open Access Journals (Sweden)

    House Christopher H

    2011-07-01

    Full Text Available Abstract Background The role of lateral gene transfer (LGT in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. Results We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei and a halophilic class of Archaea (Halobacteria. We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Conclusions Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.

  5. Differences in lateral gene transfer in hypersaline versus thermal environments.

    Science.gov (United States)

    Rhodes, Matthew E; Spear, John R; Oren, Aharon; House, Christopher H

    2011-07-08

    The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.

  6. Arsenic activation analysis of freshwater fish through the precipitation of elemental arsenic

    International Nuclear Information System (INIS)

    Comparetto, G.M.; Jester, W.A.; Skinner, W.F.

    1982-01-01

    The activation analysis of trace elements of arsenic in biological samples is complicated by the interference of a 82 Br photo peak (554KeV) and the compton continuum with the major 76 As photo peak of 559 KeV. In addition, the half-lives of 24 Na, 82 Br, and 76 As are too similar to be resolved by varying irradiation and/or decay times. Thus post irradiation chemical separation of arsenic is often required. A study of existing radiochemistry techniques reported in the literature found that existing methods were complex x and/or lengthy. In this work, a more rapid and less extensive method was required to analyze a large number of fish samples exposed to fly ash sluice water from coalburning power plant. A method has been developed which involves the dissolution of irradiated homogenized fish samples, the addition of an arsenic carrier, and the reduction of arsenic to the +3 state. Arsenic is then precipitated as elemental arsenic. An important factor in this work was the discovery that this procedure produced arsenic yields of 81+-3% for both the fish samples and the NBC Orchard leaves standard employed in this analysis. Thus the determination of absolute arsenic yields is not required. This method has been used to analyze 32 of the fish samples the average arsenic content of which was found to vary between 0.08 and 4.8 ppm. (author)

  7. Arsenic species excretion after dimercaptopropanesulfonic acid (DMPS) treatment of an acute arsenic trioxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich-Ramm, R. [Ordinariat fuer Arbeitsmedizin der Universitaet Hamburg und Zentralinstitut fuer Arbeitsmedizin, Hamburg (Germany); Schaller, K.H.; Angerer, J. [Institut und Poliklinik fuer Arbeits-, Sozial- und Umweltmedizin der Universitaet Erlangen-Nuernberg, Schillerstr. 25, 91054 Erlangen (Germany); Horn, J. [Medizinische Klinik II, Toxikologische-internistische Intensivstation, Klinikum Nuernberg, Nuernberg (Germany)

    2003-02-01

    We studied the urinary excretion of the different arsenic species in urine samples from a young man who tried to commit suicide by ingesting about 0.6 g arsenic trioxide. He received immediate therapy with dimercaptopropanesulfonic acid (DMPS) after his delivery into the hospital. We assessed urinary arsenite (inorganic trivalent arsenic), arsenate (inorganic pentavalent arsenic), pentavalent dimethylarsinic acid (DMA) and pentavalent monomethylarsonic acid (MMA) in urine with ion-exchange chromatography and on-line hydride-technique atomic absorption spectrometry. The predominant amount of the excreted arsenic was unchanged trivalent inorganic arsenic (37.4%), followed by pentavalent inorganic arsenic (2.6%), MMA (2.1%), DMA (0.2%) and one unidentified arsenic species (0.7%, if calculated as DMA). In the first urine voiding in the clinic, the total arsenic concentration was 215 mg/l, which fell 1000-fold after 8 days of DMPS therapy. A most striking finding was the almost complete inhibition of the second methylation step in arsenic metabolism. As mechanisms for the reduced methylation efficiency, the saturation of the enzymatic process of arsenic methylation, the high dosage of antidote DMPS, which might inhibit the activity of the methyl transferases, and analytical reasons are discussed. The high dosage of DMPS is the most likely explanation. The patient left the hospital after a 12-day treatment with antidote. (orig.)

  8. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  9. Going flat: examining heterogeneity in the soda-obesity relationship by subgroup and place of birth among Asian Americans.

    Science.gov (United States)

    Alcalá, Héctor E; Sharif, Mienah Z

    2017-06-01

    To determine if the association between soda consumption and obesity is uniform among Asian-American population subgroups. We conducted multivariate logistic regression analyses on odds of being obese among seven Asian subgroups and by place of birth using data from the 2009 California Health Interview Survey. An omnibus population-based health survey. Non-institutionalized adults, aged 18 years or over, residing in California (n 36 271). Despite low levels of soda consumption in several Asian-American ethnic groups, soda consumption increased the odds of being obese among Chinese, Koreans and Other Asians but not for Whites. Obesity risk varied across Asian subgroups and by place of birth within these subgroups. More public health efforts addressing soda consumption in Asian-American communities are needed as a strategy for not only preventing chronic diseases but also disparities, considering the varying levels of soda intake across subgroups. Results support the growing body of literature critiquing acculturation theory in immigrant health research by documenting inconsistent findings by place of birth. Future research should take into account the heterogeneity among Asian Americans to advance our understanding of health outcomes and disparities.

  10. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.

    Science.gov (United States)

    Wei, Chao-Yang; Chen, Tong-Bin

    2006-05-01

    In an area near an arsenic mine in Hunan Province of south China, soils were often found with elevated arsenic levels. A field survey was conducted to determine arsenic accumulation in 8 Cretan brake ferns (Pteris cretica) and 16 Chinese brake ferns (Pteris vittata) growing on these soils. Three factors were evaluated: arsenic concentration in above ground parts (fronds), arsenic bioaccumulation factor (BF; ratio of arsenic in fronds to soil) and arsenic translocation factor (TF; ratio of arsenic in fronds to roots). Arsenic concentrations in the fronds of Chinese brake fern were 3-704 mg kg-1, the BFs were 0.06-7.43 and the TFs were 0.17-3.98, while those in Cretan brake fern were 149-694 mg kg-1, 1.34-6.62 and 1.00-2.61, respectively. Our survey showed that both ferns were capable of arsenic accumulation under field conditions. With most of the arsenic being accumulated in the fronds, these ferns have potential for use in phytoremediation of arsenic contaminated soils.

  11. Arsenic levels in the soils and macrophytes of the 'Entremuros' after the Aznalcollar mine spill

    Energy Technology Data Exchange (ETDEWEB)

    Taggart, M.A. [Department of Plant and Soil Science, University of Aberdeen, Cruickshank Building, Aberdeen AB24 3UU (United Kingdom)]. E-mail: mark.taggart@abdn.ac.uk; Carlisle, M. [Department of Geography and Environment, University of Aberdeen, Elphinstone Road, Aberdeen AB24 3UF (United Kingdom); Pain, D.J. [RSPB, The Lodge, Sandy, Bedfordshire SG19 2DL (United Kingdom); Williams, R. [RSPB, The Lodge, Sandy, Bedfordshire SG19 2DL (United Kingdom); Green, D. [Department of Geography and Environment, University of Aberdeen, Elphinstone Road, Aberdeen AB24 3UF (United Kingdom); Osborn, D. [Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Meharg, A.A. [Department of Plant and Soil Science, University of Aberdeen, Cruickshank Building, Aberdeen AB24 3UU (United Kingdom)

    2005-01-01

    In April 1998, a holding lagoon containing pyrite ore processing waste rich in arsenic, failed and released 5-6 million m{sup 3} of highly polluting sludge and acidic water. Over 2700 ha of the internationally important Don-tilde ana National and Natural Parks were contaminated. The area of Natural Park to sustain the greatest impact was known as the Entremuros. This paper presents 0-5 cm soil monitoring data from the Entremuros, from sampling campaigns 6 and 18 months after the disaster; as well as macrophyte root, rhizome and stem data from samples taken 18 months after the spill. Results show a clear, decreasing, north-south arsenic soil pollution trend, both 6 and 18 months after the spill, and suggest a small reduction in total soil arsenic levels occurred over time; although a significant increase in extractable arsenic is also noted. The two macrophytes (Typha dominguensis and Scirpus maritimus) studied herein are not accumulating arsenic in stem parts, however, accumulation of arsenic on iron plaque on the roots of these plants may be occurring. Further work is recommended in order to determine the ecotoxicological significance of this process in relation to the avian food-chains of Don-tilde ana, and elsewhere. - Capsule: Arsenic associated with iron plaque on macrophyte roots may pose an ecotoxicological risk to certain herbivores.

  12. Effect of organosolv and soda pulping processes on the metals content of non-woody pulps.

    Science.gov (United States)

    González, M; Cantón, L; Rodríguez, A; Labidi, J

    2008-09-01

    In this work the effect of different pulping processes (ethyleneglycol, diethyleneglycol, ethanolamine and soda) of tow abounded raw materials (empty fruit bunches - EFB and rice straw) on the ash, silicates and metals (Fe, Zn, Cu, Pb, Mn, Ni and Cd) content of the obtained pulps have been studied. Results showed that pulps obtained by diethyleneglycol pulping process presented lower metals content (756 microg/g and 501 microg/g for EFB and rice straw pulp, respectively) than soda pulps (984 microg/g and 889 microg/g). Ethanolamine pulps presented values of holocellulose (74% and 77% for EFB and rice straw pulp, respectively), alpha-cellulose (74% and 69%), kappa number (18.7 and 18.5) and viscosity (612 and 90 6ml/g) similar to those of soda pulp, and lower lignin contents (11% and 12%).

  13. Arsenic Methyltransferase

    Science.gov (United States)

    The metalloid arsenic enters the environment by natural processes (volcanic activity, weathering of rocks) and by human activity (mining, smelting, herbicides and pesticides). Although arsenic has been exploited for homicidal and suicidal purposes since antiquity, its significan...

  14. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    Directory of Open Access Journals (Sweden)

    Fabrizio Bianchi

    2013-04-01

    Full Text Available The arsenic (As exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects.

  15. Flue gas desulphurization in a spray tower with de-coupled recycling of soda ash

    Energy Technology Data Exchange (ETDEWEB)

    Liebgott, H.

    1983-05-01

    RD project to develop a ''dry'' process for the desulphurization of flue gases. The process is based on a desulphurization step with a solution of soda ash which is sprayed into the flue gas. The gas is cooled by evaporation but its temperature is still higher than the dew point; reheating is not necessary. The product of the desulphurization is a dry mixture of sodium sulphite and -carbonate. It is intended to reprocess this powder to soda in a central plant - serving several power stations. First sulphite is oxidized to sulphate, which in turn is reacted with calcium chloride to form calcium sulphate and sodium chloride. The latter is introduced into the Solvay-soda ash process which yields calcium chloride as a by-product. Tests were carried out for the desulphurization step and the oxidation of sulphite. The desulphurization tests resulted in poor degrees of SO/sub 2/-removal even with high stoichiometric ratios of soda ash to sulphur dioxide. The preliminary estimates of process economics made before start of experimental work could not be verified. Furthermore, during work on the project, new processes were revealed whereby flue gas is desulphurized in a spray-drying apparatus with a slurry of calcium hydroxide. In an extension of the project, tests were carried out which confirmed these findings. The project was abandoned.

  16. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    Science.gov (United States)

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  17. Pathways for arsenic from sediments to groundwater to streams: Biogeochemical processes in the Inner Coastal Plain, New Jersey, USA

    Science.gov (United States)

    Barringer, Julia L.; Mumford, Adam; Young, Lily Y.; Reilly, Pamela A.; Bonin, Jennifer L.; Rosman, Robert

    2010-01-01

    The Cretaceous and Tertiary sediments that underlie the Inner Coastal Plain of New Jersey contain the arsenic-rich mineral glauconite. Streambed sediments in two Inner Coastal Plain streams (Crosswicks and Raccoon Creeks) that traverse these glauconitic deposits are enriched in arsenic (15–25 mg/kg), and groundwater discharging to the streams contains elevated levels of arsenic (>80 μg/L at a site on Crosswicks Creek) with arsenite generally the dominant species. Low dissolved oxygen, low or undetectable levels of nitrate and sulfate, detectable sulfide concentrations, and high concentrations of iron and dissolved organic carbon (DOC) in the groundwater indicate that reducing environments are present beneath the streambeds and that microbial activity, fueled by the DOC, is involved in releasing arsenic and iron from the geologic materials. In groundwater with the highest arsenic concentrations at Crosswicks Creek, arsenic respiratory reductase gene (arrA) indicated the presence of arsenic-reducing microbes. From extracted DNA, 16s rRNA gene sequences indicate the microbial community may include arsenic-reducing bacteria that have not yet been described. Once in the stream, iron is oxidized and precipitates as hydroxide coatings on the sediments. Arsenite also is oxidized and co-precipitates with or is sorbed to the iron hydroxides. Consequently, dissolved arsenic concentrations are lower in streamwater than in the groundwater, but the arsenic contributed by groundwater becomes part of the arsenic load in the stream when sediments are suspended during high flow. A strong positive relation between concentrations of arsenic and DOC in the groundwater samples indicates that any process—natural or anthropogenic—that increases the organic carbon concentration in the groundwater could stimulate microbial activity and thus increase the amount of arsenic that is released from the geologic materials.

  18. Environmental source of arsenic exposure.

    Science.gov (United States)

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-09-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  19. Environmental Source of Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Jin-Yong Chung

    2014-09-01

    Full Text Available Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  20. A randomized crossover clinical study showing that methylphenidate-SODAS improves attention-deficit/hyperactivity disorder symptoms in adolescents with substance use disorder

    Directory of Open Access Journals (Sweden)

    C.M. Szobot

    2008-03-01

    Full Text Available Our objective was to evaluate the effectiveness of a long-acting formulation of methylphenidate (MPH-SODAS on attention-deficit/hyperactivity disorder (ADHD symptoms in an outpatient sample of adolescents with ADHD and substance use disorders (SUD. Secondary goals were to evaluate the tolerability and impact on drug use of MPH-SODAS. This was a 6-week, single-blind, placebo-controlled crossover study assessing efficacy of escalated doses of MPH-SODAS on ADHD symptoms in 16 adolescents with ADHD/SUD. Participants were randomly allocated to either group A (weeks 1-3 on MPH-SODAS, weeks 4-6 on placebo or group B (reverse order. The primary outcome measures were the Swanson, Nolan and Pelham Scale, version IV (SNAP-IV and the Clinical Global Impression Scale (CGI. We also evaluated the adverse effects of MPH-SODAS using the Barkley Side Effect Rating Scale and subject reports of drug use during the study. The sample consisted of marijuana (N = 16; 100% and cocaine users (N = 7; 43.8%. Subjects had a significantly greater reduction in SNAP-IV and CGI scores (P < 0.001 for all analyses during MPH-SODAS treatment compared to placebo. No significant effects for period or sequence were found in analyses with the SNAP-IV and CGI scales. There was no significant effect on drug use. MPH-SODAS was well tolerated but was associated with more severe appetite reduction than placebo (P < 0.001. MPH-SODAS was more effective than placebo in reducing ADHD symptoms in a non-abstinent outpatient sample of adolescents with comorbid SUD. Randomized clinical trials, with larger samples and SUD intervention, are recommended.

  1. Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure

    International Nuclear Information System (INIS)

    Pu, Y.-S.; Yang, S.-M.; Huang, Y.-K.; Chung, C.-J.; Huang, Steven K.; Chiu, Allen Wen-Hsiang; Yang, M.-H.; Chen, C.-J.; Hsueh, Y.-M.

    2007-01-01

    Arsenic exposure is associated with an increased risk of urothelial carcinoma (UC). To explore the association between individual risk and urinary arsenic profile in subjects without evident exposure, 177 UC cases and 313 age-matched controls were recruited between September 2002 and May 2004 for a case-control study. Urinary arsenic species including the following three categories, inorganic arsenic (As III + As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ), were determined with high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Arsenic methylation profile was assessed by percentages of various arsenic species in the sum of the three categories measured. The primary methylation index (PMI) was defined as the ratio between MMA V and inorganic arsenic. Secondary methylation index (SMI) was determined as the ratio between DMA V and MMA V . Smoking is associated with a significant risk of UC in a dose-dependent manner. After multivariate adjustment, UC cases had a significantly higher sum of all the urinary species measured, higher percent MMA V , lower percent DMA V , higher PMI and lower SMI values compared with controls. Smoking interacts with the urinary arsenic profile in modifying the UC risk. Differential carcinogenic effects of the urinary arsenic profile, however, were seen more prominently in non-smokers than in smokers, suggesting that smoking is not the only major environmental source of arsenic contamination since the UC risk differs in non-smokers. Subjects who have an unfavorable urinary arsenic profile have an increased UC risk even at low exposure levels

  2. Decoupling of arsenic and iron release from ferrihydrite suspension under reducing conditions: a biogeochemical model

    Directory of Open Access Journals (Sweden)

    Morin Guillaume

    2007-11-01

    Full Text Available Abstract High levels of arsenic in groundwater and drinking water are a major health problem. Although the processes controlling the release of As are still not well known, the reductive dissolution of As-rich Fe oxyhydroxides has so far been a favorite hypothesis. Decoupling between arsenic and iron redox transformations has been experimentally demonstrated, but not quantitatively interpreted. Here, we report on incubation batch experiments run with As(V sorbed on, or co-precipitated with, 2-line ferrihydrite. The biotic and abiotic processes of As release were investigated by using wet chemistry, X-ray diffraction, X-ray absorption and genomic techniques. The incubation experiments were carried out with a phosphate-rich growth medium and a community of Fe(III-reducing bacteria under strict anoxic conditions for two months. During the first month, the release of Fe(II in the aqueous phase amounted to only 3% to 10% of the total initial solid Fe concentration, whilst the total aqueous As remained almost constant after an initial exchange with phosphate ions. During the second month, the aqueous Fe(II concentration remained constant, or even decreased, whereas the total quantity of As released to the solution accounted for 14% to 45% of the total initial solid As concentration. At the end of the incubation, the aqueous-phase arsenic was present predominately as As(III whilst X-ray absorption spectroscopy indicated that more than 70% of the solid-phase arsenic was present as As(V. X-ray diffraction revealed vivianite Fe(II3(PO42.8H2O in some of the experiments. A biogeochemical model was then developed to simulate these aqueous- and solid-phase results. The two main conclusions drawn from the model are that (1 As(V is not reduced during the first incubation month with high Eh values, but rather re-adsorbed onto the ferrihydrite surface, and this state remains until arsenic reduction is energetically more favorable than iron reduction, and (2 the

  3. Contrasting the genetic patterns of microbial communities in Soda lakes with and without cyanobacterial bloom

    OpenAIRE

    Andreote, A. P. D.; Dini-Andreote, F.; Rigonato, J.; Machineski, G. S.; Souza, B. C. E.; Barbiéro, Laurent; Rezende, A. T.; Fiore, M. F.

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved...

  4. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic.

    Science.gov (United States)

    Molin, Marianne; Ulven, Stine Marie; Meltzer, Helle Margrete; Alexander, Jan

    2015-01-01

    Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    Science.gov (United States)

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  6. Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic

    International Nuclear Information System (INIS)

    Liu Xiaojuan; Zhao Quanli; Sun Guoxin; Williams, Paul; Lu Xiujun; Cai Jingzhu; Liu Wenju

    2013-01-01

    Rice and drinking water are recognized as the dominant sources of arsenic (As) for human intake, while little is known about As accumulation and speciation in Chinese Herbal Medicines (CHMs), which have been available for many hundreds of years for the treatment of diseases in both eastern and western cultures. Inorganic arsenic was the predominant species in all of CHMs samples. The levels of inorganic arsenic in CHMs from fields and markets or pharmacies ranged from 63 to 550 ng/g with a mean of 208 ng/g and 94 to 8683 ng/g with a mean of 1092 ng/g, respectively. The highest concentration was found in the Chrysanthemum from pharmacies. It indicates that the risk of inorganic As in CHMs to human health is higher in medicines from markets or pharmacies than that collected directly from fields. Some CHMs may make a considerable contribution to the human intake of inorganic arsenic. - Highlights: ► Arsenic speciation was extracted using 1% HNO 3 in microwave. ► Inorganic arsenic was the predominant species in all of CHMs samples. ► The highest concentration of inorganic arsenic was found in the Chrysanthemum. - Inorganic arsenic was the predominant species in all of CHMs samples.

  7. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  8. [Study on the variation of arsenic concentration in groundwater and chemical characteristics of arsenic in sediment cores at the areas with endemic arsenic poison disease in Jianghan Plain].

    Science.gov (United States)

    Zhou, Suhua; Ye, Hengpeng; Li, Mingjian; Xiong, Peisheng; Du, Dongyun; Wang, Jingwen

    2015-06-01

    To understand the variation of arsenic concentration in underground water at the endemic arsenic poison disease area of Jianghan Plain so as to better understand the spatial distribution of high arsenic groundwater, hydro-chemical evolution and source of arsenic in this region. Thirty underground water samples were collected respectively around 3 km radius of the two houses where arsenic poisoning patients lived, in Xiantao and Honghu. Sediment cores of three drillings were collected as well. Both paired t-test or paired Wilcoxon Signed Ranking Test were used to compare the arsenic concentration of water. The arsenic concentration in 2011-2012 appeared lower than that in 2006-2007 at the Nanhong village of Xiantao (t = 4.645 3, P arsenic concentration and Cl, HCO3(-), Fe, Mn. However, negative correlations were found between As and SO4(2-), NO3(-). The range of arsenic content in the sediment was 1.500 mg/kg to 17.289 mg/kg. The maximum arsenic content existed in the soil layer, while the minimum arsenic content existed in the sand layer. The concentration of arsenic varied widely with time and space at endemic arsenic poison disease area of Jianghan Plain. Characteristics of these water chemicals showed significant differences, when compared to the groundwater from Datong Basin, Shanxi Shanyin and Hetao Plain of Inner Mongolia, which presented a typical environment with high arsenic contents in the groundwater. The arsenic content in the sediment samples seemed related to the lithologic structure.

  9. Environmental biochemistry of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, S.; Frankenberger, W.T. Jr. (Department of Soil and Environmental Sciences, University of California, Riverside (United States))

    1992-01-01

    Microorganisms are involved in the redistribution and global cycling of arsenic. Arsenic can accumulate and can be subject to various biotransformations including reduction, oxidation, and methylation. Bacterial methylation of inorganic arsenic is coupled to the methane biosynthetic pathway in methanogenic bacteria under anaerobic conditions and may be a mechanism for arsenic detoxification. The pathway proceeds by reduction of arsenate to arsenite followed by methylation to dimethylarsine. Fungi are also able to transform inorganic and organic arsenic compounds into volatile methylarsines. The pathway proceeds aerobically by arsenate reduction to arsenite followed by several methylation steps producing trimethylarsine. Volatile arsine gases are very toxic to mammals because they destroy red blood cells (LD50 in rats; 3.0 mg kg-1). Further studies are needed on dimethylarsine and trimethylarsine toxicity tests through inhalation of target animals. Marine algae transform arsenate into non-volatile methylated arsenic compounds (methanearsonic and dimethylarsinic acids) in seawater. This is considered to be a beneficial step not only to the primary producers, but also to the higher trophic levels, since non-volatile methylated arsenic is much less toxic to marine invertebrates. Freshwater algae like marine algae synthesize lipid-soluble arsenic compounds and do not produce volatile methylarsines. Aquatic plants also synthesize similar lipid-soluble arsenic compounds. In terrestrial plants, arsenate is preferentially taken up 3 to 4 times the rate of arsenite. In the presence of phosphate, arsenate uptake is inhibited while in the presence of arsenate, phosphate uptake is only slightly inhibited. There is a competitive interaction between arsenate and phosphate for the same uptake system in terrestrial plants.

  10. Assessment of soda ash calcination treatment of Turkish trona ore

    Directory of Open Access Journals (Sweden)

    Gezer Sibel

    2016-01-01

    Full Text Available Trona is relatively rare, non-metallic mineral, Na2CO3 · NaHCO3 · 2H2O. The pure material contains 70.3% sodium carbonate and by calcination the excess CO2 and water can be driven off, yielding natural soda ash. The terms soda ash and sodium carbonate are used interchangeably. Trona calcining is a key process step in production of soda ash (sodium carbonate anhydrate from the relatively cheap trona ore. The calcination reaction may proceeds in a sequence of steps. Depending on the conditions, it may result in formation of either sodium carbonate monohydrate (Na2CO3 · H2O, sodium sesquicarbonate or weigschederite (Na2CO3 · 3NaHCO3. The Beypazarı Turkish trona deposit is the second largest deposit in the world with the content of 84% trona. The decomposition of trona appeared to be a single stage process across the temperature range studied (150-200 °C with the representative samples of different size fractions in the draught up metallurgical furnace. The optimum particle size and calcination time were −6.35 mm and 30 minutes, respectively, at calcination temperature of 175 °C in a metallurgical furnace. Microwave-induced dry calcination of trona was possible and 5 minutes of calcination time at a power level of 900 was sufficient for complete calcination of −6.35 mm feed. This includes short time calcinations with the goal of improving economics and simplifying the thermal process.

  11. Arsenic and Fluoride Mobilization Mechanism in Groundwater of Indus Delta and Thar Desert, Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    VIQAR HUSAIN

    2012-06-01

    Full Text Available Indus deltaic plain consists of medium to fine grained sediments, rich in organic matter deposited during the Holocene period. Thar desert is covered with sand dunes and loess originated from transported sediments from Rann of Kutch or the Indus plain by monsoon winds or by the reworking of local alluvial deposits. Groundwater salinity and microbial pollution are common in both types of lanforms, but arsenic (AS and fluoride (F toxicity dominate in the groundwater of Indus delta and Thar desert, respectively. Arsenic concentration in Tando Mohammad Khan and Tando Allayar varies from 10-500 ppb and exhibits near neutral slightly alkaline pH ranging from 6.8 to 8.0. Arsenic distribution is patchy and seems to be related to the prsence of small scale redox zonation in the aquifer. High arsenic affected areas are densely populated and intensively cultivated and its hot spots are those from where the Indus river passed during the Holocene period including Tando Allayar and Tando Mohammad Khan. Extensive ground water irrigation has accelerated flow of groundwater that brought dissolved degraded organic matter in contact with arsenic bearing sediments, enhancing reduction processes and triggering release of arsenic from detrital bioitite and muscovite in the groundwater. Furthermore, unlined sanitation and microbial contamination contribute to degradation of organic matter that enhances the reduction of iron oxy-hydroxide leading to release of arsenic to groundwater. Fluoride is found in all the groundwater samples of Tharparkar district, in the range of 0.96-2.74mg/l. The pH of groundwater is alkaline (7.38-8.59, which is accelerating maximum (1.24%F dissolution in the groundwater. The favourable pH of groundwater and soil composition of Holocene sediments of Indus delta and slightly older alluvium of Thar desert, respectively are responsible for mobilization of arsenic and fluoride in groundwater of Sindh province of Pakistan.

  12. Urinary arsenic concentrations and speciation in residents living in an area with naturally contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Fillol, Clemence, E-mail: c.fillol@invs.sante.fr [Universite Paris Descartes, Laboratoire Sante Publique et Environnement - EA 4064, Paris (France); Institut de veille sanitaire, Departement Sante environnement, Saint-Maurice (France); Dor, Frederic [Institut de veille sanitaire, Departement Sante environnement, Saint-Maurice (France); Labat, Laurence [CHRU de Lille, Laboratoire de Toxicologie et Genopathies, Lille (France); Boltz, Patricia [Centre antipoison et de toxicovigilance de Nancy (France); Le Bouard, Jerome [Direction Regionale des Affaires Sanitaires et Sociales, Meurthe-et-Moselle (France); Mantey, Karine [Cellule Interregionale d' epidemiologie de l' Est (France); Mannschott, Christian [Direction Departementale des Affaires Sanitaires et Sociales 54, Meurthe-et-Moselle (France); Puskarczyk, Emmanuel [Centre antipoison et de toxicovigilance de Nancy (France); Viller, Frederique [Cellule Interregionale d' epidemiologie de l' Est (France); Momas, Isabelle [Universite Paris Descartes, Laboratoire Sante Publique et Environnement - EA 4064, Paris (France); Seta, Nathalie [Universite Paris Descartes, Laboratoire Sante Publique et Environnement - EA 4064, Paris (France); AP-HP, Hopital Bichat, Biochimie, Paris (France)

    2010-02-01

    A cross sectional study was carried out to evaluate arsenic exposure of residents living in an area with a soil naturally rich in arsenic (As), through urinary measurements. During the summer of 2007, 322 people aged over 7 years and resident in the study area for at least 4 days prior to the investigation were recruited. The sum of urinary inorganic arsenic and metabolites (iAs + MMA + DMA) and speciation were determined by graphite furnace atomic absorption spectrometry and high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry, respectively. Geometric means levels of iAs + MMA + DMA were 3.6 {mu}g/L or 4.4 {mu}g/g creatinine. The percent of DMA, As(III) and MMA contribution to urinary arsenic concentrations was respectively 84.2%, 12% and 3.7%. We found significant associations between urinary arsenic concentrations and the consumption of seafood (p = 0.03), the consumption of wine (p = 0.03) and beer (p = 0.001), respectively 3 and 4 days before the investigation. When we focus on the various species, As(V) was rarely detected and DMA is the predominant metabolite composing the majority of measurable inorganic-related As in the urine. Considering the percent of DMA contribution to iAs + MMA + DMA urinary concentrations, almost half of the subjects had 100% of DMA contribution whatever the concentration of urinary As whereas the others had a lower DMA contribution, between 39 and 90%. Arsenic levels reported in this original study in France were between 2 and 4 times lower than in other studies dealing with iAs + MMA + DMA levels associated with soil arsenic exposure. Arsenic levels were similar to those observed in unexposed individuals in European countries, although 10% were above the French guideline values for the general population.

  13. Urinary arsenic concentrations and speciation in residents living in an area with naturally contaminated soils

    International Nuclear Information System (INIS)

    Fillol, Clemence; Dor, Frederic; Labat, Laurence; Boltz, Patricia; Le Bouard, Jerome; Mantey, Karine; Mannschott, Christian; Puskarczyk, Emmanuel; Viller, Frederique; Momas, Isabelle; Seta, Nathalie

    2010-01-01

    A cross sectional study was carried out to evaluate arsenic exposure of residents living in an area with a soil naturally rich in arsenic (As), through urinary measurements. During the summer of 2007, 322 people aged over 7 years and resident in the study area for at least 4 days prior to the investigation were recruited. The sum of urinary inorganic arsenic and metabolites (iAs + MMA + DMA) and speciation were determined by graphite furnace atomic absorption spectrometry and high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry, respectively. Geometric means levels of iAs + MMA + DMA were 3.6 μg/L or 4.4 μg/g creatinine. The percent of DMA, As(III) and MMA contribution to urinary arsenic concentrations was respectively 84.2%, 12% and 3.7%. We found significant associations between urinary arsenic concentrations and the consumption of seafood (p = 0.03), the consumption of wine (p = 0.03) and beer (p = 0.001), respectively 3 and 4 days before the investigation. When we focus on the various species, As(V) was rarely detected and DMA is the predominant metabolite composing the majority of measurable inorganic-related As in the urine. Considering the percent of DMA contribution to iAs + MMA + DMA urinary concentrations, almost half of the subjects had 100% of DMA contribution whatever the concentration of urinary As whereas the others had a lower DMA contribution, between 39 and 90%. Arsenic levels reported in this original study in France were between 2 and 4 times lower than in other studies dealing with iAs + MMA + DMA levels associated with soil arsenic exposure. Arsenic levels were similar to those observed in unexposed individuals in European countries, although 10% were above the French guideline values for the general population.

  14. A four-week clinical study to evaluate and compare the effectiveness of a baking soda dentifrice and an antimicrobial dentifrice in reducing plaque.

    Science.gov (United States)

    Ghassemi, Annahita; Vorwerk, Linda M; Hooper, William J; Putt, Mark S; Milleman, Kimberly R

    2008-01-01

    To evaluate and compare the effectiveness in reducing plaque of a fluoride dentifrice containing baking soda and a non-baking soda fluoride dentifrice containing an antimicrobial (triclosan/copolymer) system after a single brushing and over a four-week period of daily brushing. A total of 207 subjects completed this randomized, blinded, parallel-group clinical study. Twenty-four hour plaque buildup was scored at baseline and after two and four weeks of twice-daily use of the products. Additionally, controlled single brushing with the assigned dentifrice, followed by post-brushing plaque assessment, was performed at the start (baseline visit) and end (Week-4 visit) of the study. Plaque was scored using the Turesky, et al. modification of Quigley-Hein Index at six sites per tooth, according to Soparkar's modification. Mean baseline whole mouth plaque scores for the baking soda and triclosan dentifrice groups were 2.90 +/- 0.40 and 2.90 +/- 0.39, respectively, and the difference was not statistically significant. Within-group analysis showed that both products significantly reduced the amount of plaque over the four-week period (p baking soda dentifrice exhibited significantly greater reduction in plaque scores (p baking soda dentifrice group (0.34 +/- 0.32) was 2.22-fold greater than that observed for the triclosan dentifrice group (0.15 +/- 0.24). Similarly, single brushing with the baking soda dentifrice showed a 1.88- to 2.08-fold greater pre- to post-brushing plaque difference as compared to the triclosan dentifrice at the baseline visit (mean plaque reduction: baking soda 0.54 +/- 0.26; triclosan 0.28 +/- 0.18; ratio 1.88X) and Week-4 visit (baking soda 0.47 +/- 0.21; triclosan 0.23 +/- 0.15; ratio 2.08X). Similar to the whole mouth scores, evaluation of various tooth sites (facial, lingual, proximal, and gingival) showed a significantly greater reduction in plaque scores for brushing with the baking soda dentifrice as compared to brushing with the triclosan

  15. Biodiversity of the Hypersaline Urmia Lake National Park (NW Iran

    Directory of Open Access Journals (Sweden)

    Alireza Asem

    2014-02-01

    Full Text Available Urmia Lake, with a surface area between 4000 to 6000 km2, is a hypersaline lake located in northwest Iran. It is the saltiest large lake in the world that supports life. Urmia Lake National Park is the home of an almost endemic crustacean species known as the brine shrimp, Artemia urmiana. Other forms of life include several species of algae, bacteria, microfungi, plants, birds, reptiles, amphibians and mammals. As a consequence of this unique biodiversity, this lake has been selected as one of the 59 biosphere reserves by UNESCO. This paper provides a comprehensive species checklist that needs to be updated by additional research in the future.

  16. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    International Nuclear Information System (INIS)

    Hsieh, Yi-Chen; Lien, Li-Ming; Chung, Wen-Ting; Hsieh, Fang-I; Hsieh, Pei-Fan; Wu, Meei-Maan; Tseng, Hung-Pin; Chiou, Hung-Yi; Chen, Chien-Jen

    2011-01-01

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 μg/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 μg/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 μg/l). - Highlights: →Arsenic metabolic genes might be associated with carotid atherosclerosis. → A case

  17. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Yi-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Lien, Li-Ming [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Neurology, Shin Kong WHS Memorial Hospital, Taipei, Taiwan (China); Chung, Wen-Ting [Department of Neurology, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsieh, Fang-I; Hsieh, Pei-Fan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Wu, Meei-Maan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Graduate Institute of Basic Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan (China); Tseng, Hung-Pin [Department of Neurology, Lotung Poh-Ai Hospital, I-Lan, Taiwan (China); Chiou, Hung-Yi, E-mail: hychiou@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Chen, Chien-Jen [Genomics Research Center, Academia Sinica, Taipei, Taiwan (China)

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis. {yields

  18. Hydrology and Salt Balance in a Large, Hypersaline Coastal Lagoon: Lagoa de Araruama, Brazil

    Science.gov (United States)

    Kjerfve, Björn; Schettini, C. A. F.; Knoppers, Bastiaan; Lessa, Guilherme; Ferreira, H. O.

    1996-06-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline coastal lagoon as a result of semi-arid climate conditions, a small drainage basin and a choked entrance channel. The lagoon has been continuously hypersaline for at least 4·5 centuries, but the mean salinity has varied substantially. It has recently decreased from 57 to 52 as indicated by density (salinity) measurements between 1965 and 1990. Analysis of more than 20 years of salinity time series data, in addition to monthly lagoon cruises to measure the spatial salinity distribution, indicate that the lagoon salinity largely fluctuates in response to the difference between evaporation and precipitation. The major factor explaining the long-term trend of decreasing salinity in the lagoon is the constant pumping of 1 m 3s -1of freshwater to the communities surrounding the lagoon from an adjacent watershed, and subsequent discharge of this water into Lagoa de Araruama. The net salt budget is primarily a balance between the advective import of salt from the coastal ocean and eddy diffusive export of salt to the ocean, although the extensive mining of salt from the lagoon during past decades is also a small but significant contribution to the salt budget. The flushing half-life is proposed as a useful time scale of water exchange, is calculated based on a combination of hydrological and tidal processes, and is excellent for comparison of lagoons and assessing water quality changes. The flushing half-life measures 83·5 days for Lagoa de Araruama, considerably longer than for most other coastal lagoons. The proposed dredging of a second ocean channel to Lagoa de Araruama is probably not a good idea. It is likely to accelerate the decrease of lagoon salinity and somewhat improve the lagoon water exchange. At the same time, this will eliminate the apparent buffering capacity provided by the hypersaline environment, and thus may potentially cause water quality problems.

  19. Citrate, malate and alkali content in commonly consumed diet sodas: implications for nephrolithiasis treatment.

    Science.gov (United States)

    Eisner, Brian H; Asplin, John R; Goldfarb, David S; Ahmad, Ardalanejaz; Stoller, Marshall L

    2010-06-01

    Citrate is a known inhibitor of calcium stone formation. Dietary citrate and alkali intake may have an effect on citraturia. Increasing alkali intake also increases urine pH, which can help prevent uric acid stones. We determined citrate, malate and total alkali concentrations in commonly consumed diet sodas to help direct dietary recommendations in patients with hypocitraturic calcium or uric acid nephrolithiasis. Citrate and malate were measured in a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis and in 15 diet sodas. Anions were measured by ion chromatography. The pH of each beverage was measured to allow calculation of the unprotonated anion concentration using the known pK of citric and malic acid. Total alkali equivalents were calculated for each beverage. Statistical analysis was done using Pearson's correlation coefficient. Several sodas contained an amount of citrate equal to or greater than that of alkali and total alkali as a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis (6.30 mEq/l citrate as alkali and 6.30 as total alkali). These sodas were Diet Sunkist Orange, Diet 7Up, Sprite Zero, Diet Canada Dry Ginger Ale, Sierra Mist Free, Diet Orange Crush, Fresca and Diet Mountain Dew. Colas, including Caffeine Free Diet Coke, Coke Zero, Caffeine Free Diet Pepsi and Diet Coke with Lime, had the lowest total alkali (less than 1.0 mEq/l). There was no significant correlation between beverage pH and total alkali content. Several commonly consumed diet sodas contain moderate amounts of citrate as alkali and total alkali. This information is helpful for dietary recommendations in patients with calcium nephrolithiasis, specifically those with hypocitraturia. It may also be useful in patients with low urine pH and uric acid stones. Beverage malate content is also important since malate ingestion increases the total alkali delivered, which in turn augments citraturia and increases urine pH. Copyright

  20. Sugar-sweetened beverage and diet soda consumption and the 7-year risk for type 2 diabetes mellitus in middle-aged Japanese men.

    Science.gov (United States)

    Sakurai, M; Nakamura, K; Miura, K; Takamura, T; Yoshita, K; Nagasawa, S Y; Morikawa, Y; Ishizaki, M; Kido, T; Naruse, Y; Suwazono, Y; Sasaki, S; Nakagawa, H

    2014-02-01

    This cohort study investigated the association between sugar-sweetened beverage (SSB) and diet soda consumption and the incidence of type 2 diabetes in Japanese men. The participants were 2,037 employees of a factory in Japan. We measured consumption of SSB and diet soda using a self-administered diet history questionnaire. The incidence of diabetes was determined in annual medical examinations over a 7-year period. Hazard ratios (HRs) with 95 % confidence intervals (CIs) for diabetes were estimated after adjusting for age, body mass index, family history, and dietary and other lifestyle factors. During the study, 170 participants developed diabetes. The crude incidence rates (/1,000 person-years) across participants who were rare/never SSB consumers, Diet soda consumption was significantly associated with the incident risk of diabetes (P for trend = 0.013), and multivariate-adjusted HRs compared to rare/never diet soda consumers were 1.05 (0.62-1.78) and 1.70 (1.13-2.55), respectively, for participants who consumed diet soda was significantly associated with an increased risk for diabetes in Japanese men. Diet soda is not always effective at preventing type 2 diabetes even though it is a zero-calorie drink.

  1. Mercury and arsenic in the gold mining regions of the Ankobra River basin in Ghana

    Science.gov (United States)

    Bannerman, W.; Potin-Gautier, M.; Amoureux, D.; Tellier, S.; Rambaud, A.; Babut, M.; Adimado, A.; Beinhoff, C.

    2003-05-01

    The river Ankobra flows through the principal gold mining centres in Western Ghana, draining a total area of 8272 km^2 to join the Atlantic ocean. Mercury is used by thousands of small-scale miners in the region to amalgamate gold. Ores mined in some deep shafts and surface mines are arsenopyrites and the region is marked by the presence of heaps of arsenic - rich mine tailings from both past and recent activities. This study was conducted to assess the impact of mining activities on the distribution and speciation of arsenic and mercury in the aquatic environment of the Ankobra River. In all, water (filtered and non-filtered) and bed sediments were collected from various locations within the watershed. Principal parameters investigated include total mercury, arsenic (III), arsenic (V), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA). Seasonal and spatial variations of these parameters were investigated. Quality control systems were adopted at both the environmental and analytical stages of the study. ln general, areas close to the mining centres are the most pollilited. As (V)/As (III) ratios in water are reversed after the first 100-km of the river length with the onset of industrial influence downstream.

  2. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    Wang Mingshi; Zheng Baoshan; Wang Binbin; Li Shehong; Wu Daishe; Hu Jun

    2006-01-01

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  3. Kinetics of dissolution of a biocide soda-lime glass powder containing silver nanoparticles

    International Nuclear Information System (INIS)

    Esteban-Tejeda, L.; Silva, A. C. da; Mello-Castanho, S. R.; Pacharroman, C.; Moya, J. S.

    2013-01-01

    In the present study we have studied the lixiviation kinetics of silver nanoparticles, as well as the solubility of a particulate system ( 2 lixiviation followed a Jander model (α 2 /4 ≈ Kt). It has been proven that nanostructured soda-lime glass/nAg composed by particles <30 μm with a 20 wt% of silver are a strong biocide versus Gram-positive, Gram-negative bacteria and yeasts. This soda-lime glass/nAg acts as a perfect dispenser of silver nanoparticles to the liquid media, avoiding the fast increasing of its concentration over the toxicity limit for human cells and for the environment.

  4. Structural adaptation of Salsola soda L. (Chenopodiaceae from inland and maritime saline area

    Directory of Open Access Journals (Sweden)

    Milić Dubravka M.

    2013-01-01

    Full Text Available The microscopic analysis of leaf and stem in two populations of Salsola soda was carried out in order to examine mechanism of anatomical adaptations to environmental condition on saline habitats and to determine if there exists a morpho-anatomical differentiation between populations from maritime and inland saline area. Analysis included 26 quantitative characters of leaf and stem. The results showed that both populations exhibited halomorphic and xeromorphic adaptations, which refered to ecological plasticity and adaptations of plants to their habitats. Our research also showed that S. soda had quite a stable morphoanatomical structure, since only quantitative changes were recorded. [Projekat Ministarstva nauke Republike Srbije, br. 173002

  5. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland

    OpenAIRE

    Kalwasi?ska, Agnieszka; Felf?ldi, Tam?s; Szab?, Attila; Deja-Sikora, Edyta; Kosobucki, Przemys?aw; Walczak, Maciej

    2017-01-01

    Soda lime is a by-product of the Solvay soda process for the production of sodium carbonate from limestone and sodium chloride. Due to a high salt concentration and alkaline pH, the lime is considered as a potential habitat of haloalkaliphilic and haloalkalitolerant microbial communities. This artificial and unique environment is nutrient-poor and devoid of vegetation, due in part to semi-arid, saline and alkaline conditions. Samples taken from the surface layer of the lime and from the depth...

  6. Positive and negative aspects of soda/anthraquinone pulping of hardwoods.

    Science.gov (United States)

    Francis, R C; Bolton, T S; Abdoulmoumine, N; Lavrykova, N; Bose, S K

    2008-11-01

    The positive aspects of the non-sulfur soda/anthraquinone (SAQ) process are mostly tied to improved energy efficiency while lower pulp brightness after bleaching is its most significant drawback. A credible method that quantifies bleachability as well as an approach that solves the problem for SAQ pulps from hardwoods will be described. A straight line correlation (R2=0.904) was obtained between O2 kappa number and final light absorption coefficient (LAC) value after standardized OD0EpD1 bleaching of nine hardwood kraft pulps from three laboratories and one pulp mill. The bleachability of pulps from four different soda processes catalyzed by anthraquinone (AQ) and 2-methylanthraquinone (MAQ) was compared to that of conventional kraft pulps by comparing O2 kappa number decrease and final LAC values. It was observed that a mild hot water pre-hydrolysis improved the bleachability of SAQ pulps to a level equal to that of kraft.

  7. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ren, Xuefeng; Gaile, Daniel P.; Gong, Zhihong; Qiu, Wenting; Ge, Yichen; Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao; Olson, James R.; Kavanagh, Terrance J.; Wu, Hongmei

    2015-01-01

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  8. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xuefeng, E-mail: xuefengr@buffalo.edu [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Gaile, Daniel P. [Department of Biostatistics, School of Public Health and Health Professions, the State University of New York, Buffalo, NY 14214 (United States); Gong, Zhihong [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Qiu, Wenting [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Ge, Yichen [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Olson, James R. [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Kavanagh, Terrance J. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 (United States); Wu, Hongmei, E-mail: hongmeiwwu@hotmail.com [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China)

    2015-03-15

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  9. Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases.

    Science.gov (United States)

    Hu, Hongyun; Chen, Dunkui; Liu, Huan; Yang, Yuhan; Cai, Hexun; Shen, Junhao; Yao, Hong

    2017-08-01

    Arsenic emission from fuel combustion and metal smelting flue gas causes serious pollution. Addition of sorbents is a promising way for the arsenic capture from high temperature flue gas. However, it is difficult to remove arsenic from SO 2 /HCl-rich flue gas due to the competitive reaction of the sorbents with arsenic and these acid gases. To solve this problem, arsenic adsorption over γ-Al 2 O 3 was studied in this work to evaluate its adsorption mechanism, resistance to acid gases as well as regeneration behavior. The results show that γ-Al 2 O 3 had good resistance to acid gases and the arsenic adsorption by γ-Al 2 O 3 could be effectively carried out at a wide temperature range between 573 and 1023 K. Nevertheless, adsorption at higher-temperature (like 1173 K) leaded to the decrease of surface area and the rearrangement of crystal structure of γ-Al 2 O 3 , reducing the active sites for arsenic adsorption. The adsorption of arsenic was confirmed to occur at different active sites in γ-Al 2 O 3 by forming various adsorbed species. Increasing temperature facilitated arsenic transformation into more stable chemisorbed As 3+ and As 5+ which were difficult to remove through thermal treatment regeneration. Fortunately, the regeneration of spent γ-Al 2 O 3 could be well performed using NaOH solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Preservation strategies for inorganic arsenic species in high iron, low-Ehgroundwater from West Bengal, India

    Energy Technology Data Exchange (ETDEWEB)

    Gault, Andrew G.; Polya, David A. [University of Manchester, Department of Earth Sciences and Williamson Research Centre for Molecular Environmental Science, Manchester (United Kingdom); Jana, Joydeb; Chakraborty, Sudipto; Mukherjee, Partha; Sarkar, Mitali; Nath, Bibash; Chatterjee, Debashis [University of Kalyani, Department of Chemistry, Kalyani, (India)

    2005-01-01

    Despite the importance of accurately determining inorganic arsenic speciation in natural waters to predicting bioavailability and environmental and health impacts, there remains considerable debate about the most appropriate species preservation strategies to adopt. In particular, the high-iron, low-Eh(redox potential) shallow groundwaters in West Bengal, Bangladesh and SE Asia, the use of which for drinking and irrigation purposes has led to massive international concerns for human health, are particularly prone to changes in arsenic speciation after sampling. The effectiveness of HCl and EDTA preservation strategies has been compared and used on variably arsenic-rich West Bengali groundwater samples, analysed by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Immediate filtration and acidification with HCl followed by refrigerated storage was found to be the most effective strategy for minimizing the oxidation of inorganic As(III) during storage. The use of a PRP-X100 (Hamilton) column with a 20 mmol L{sup -1} NH{sub 4}H{sub 2}PO{sub 4} as mobile phase enabled the separation of Cl{sup -} from As(III), monomethylarsonic acid, dimethylarsinic acid and As(V), thereby eliminating any isobaric interference between {sup 40}Ar{sup 35}Cl{sup +} and {sup 75}As{sup +}. The use of EDTA as a preservative, whose action is impaired by the high calcium concentrations typical of these types of groundwater, resulted in marked oxidation during storage. The use of HCl is therefore indicated for analytical methods in which chloride-rich matrices are not problematical. The groundwaters analysed by IC-ICP-MS were found to contain between 5 and 770 ng As mL{sup -1} exclusively as inorganic arsenic species. As(III)/total-As varied between 0 and 0.94. (orig.)

  11. The effect of baking soda when applied to bleached enamel prior to restorative treatment.

    Science.gov (United States)

    Tostes, Bhenya Ottoni; Mondelli, Rafael Francisco Lia; Lima-Arsati, Ynara Bosco de Oliveira; Rodrigues, Jose Augusto; Costa, Leonardo Cesar

    2013-08-01

    This in vitro study evaluated the effect of 10% baking soda solution and sodium bicarbonate powder (applied with jets) when applied to bleached enamel prior to restorative treatment. The surfaces of 40 bovine incisors were flattened and divided into 5 groups (n = 8): Group B (bleached and restored, negative control), Group W (bleached, stored in distilled water for 7 days, and restored), Group BSJ (bleached, abraded with baking soda jet for 1 min, and restored), Group BSS (bleached, application of 10% baking soda solution for 5 min, and restored), and Group R (restored, without bleaching, positive control). The samples were bleached in 1 session with 3 applications of 35% HP-based gel and activated with a LED appliance for 9 min each. Resin composite cylinders (2 mm height and 0.8 mm diameter) were made on the enamel surface after the acid etching and a conventional 1-step single vial adhesive application was performed. After storage in distilled water (37 ± 1°C, 24 hr), the microshear bond test was performed (1 mm/min). ANOVA and Tukey tests were applied to compare the results. The mean results of these tests showed that Groups W, BBS, and R were not statistically different. These groups also indicated a higher bond strength when compared with Groups B and BSJ. The application of 10% baking soda solution for 5 min may be an alternative pre-restorative treatment for bleached enamel, but further studies are needed to consider whether or not this treatment may be effectively used in clinical practice.

  12. Determination of total arsenic in soil and arsenic-resistant bacteria from selected ground water in Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Hamzah, A.; Wong, K.K.; Hasan, F.N.; Mustafa, S.; Khoo, K.S.; Sarmani, S.B.

    2013-01-01

    Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30-35 deg C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic. (author)

  13. Understanding arsenic contamination of groundwater in Bangladesh

    International Nuclear Information System (INIS)

    Kabir, Babar

    2001-01-01

    The problem of water contamination by naturally occurring arsenic confronts governments, public and private utilities, and the development community with a new challenge for implementing operational mitigation activities under difficult conditions of imperfect knowledge - especially for arsenic mitigation for the benefit of the rural poor. With more than a conservative estimate of 20 million of its 130 million people assumed to be drinking contaminated water and another 70 million potentially at risk, Bangladesh is facing what has been described as perhaps the largest mass poisoning in history. High concentrations of naturally occurring arsenic have already been found in water from tens of thousands of tube wells, the main source of potable water, in 59 out of Bangladesh's 64 districts. Arsenic contamination is highly irregular, so tube wells in neighboring locations or even different depths can be safe. Arsenic is extremely hazardous if ingested in drinking water or used in cooking in excess of the maximum permissible limit of 0.01 mg/liter over an extended period of time. Even in the early 1970s, most of Bangladesh's rural population got its drinking water from surface ponds and nearly a quarter of a million children died each year from water-borne diseases. Groundwater now constitutes the major source of drinking water in Bangladesh with 95% of the drinking water coming from underground sources. The provision of tube well water for 97 percent of the rural population has been credited with bringing down the high incidence of diarrheal diseases and contributing to a halving of the infant mortality rate. Paradoxically, the same wells that saved so many lives now pose a threat due to the unforeseen hazard of arsenic. The provenance of arsenic rich minerals in sediments of the Bengal basin as a component of geological formations is believed to be from the Himalayan mountain range. Arsenic has been found in different uncropped geological hard rock formations

  14. [Arsenical keratosis treated by dermatome shaving].

    Science.gov (United States)

    Kjerkegaard, Ulrik Knap; Heje, Jens Martin; Vestergaard, Christian; Stausbøl-Grøn, Birgitte; Stolle, Lars Bjørn

    2014-05-05

    Cutaneous malignancy in association with arsenic exposure is a rare but well-documented phenomenon. Signs of chronic arsenic exposure are very rare in Denmark today. However, arsenic was used in the medical treatment of psoriasis vulgaris up till the 1980's and several patients suffer from this arsenic treatment today. This case report shows that arsenical keratosis can be treated by dermatome shaving, a superficial destructive therapy.

  15. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nandita [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India); Ma, Lena Q., E-mail: lqma@ufl.ed [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Vu, Joseph C. [Chemistry Research Unit, CMAVE, USDA-ARS, Gainesville, FL 32608-1069 and Agronomy Department, University of Florida, Gainesville, FL 32611-0500 (United States); Raj, Anshita [Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India)

    2009-08-15

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 muM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO{sub 3}{sup -} concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO{sub 3}{sup -} uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic. - Arsenic reduced the activity of nitrate and nitrite reductase more in Pteris ensiformis than Pteris vittata.

  16. Revisiting tropical instability wave variability in the Atlantic ocean using SODA reanalysis

    Science.gov (United States)

    de Decco, Hatsue Takanaca; Torres Junior, Audalio Rebelo; Pezzi, Luciano Ponzi; Landau, Luiz

    2018-03-01

    The spatial and temporal variability of energy exchange in Tropical Instability Waves (TIWs) in the Atlantic Ocean were investigated. A spectral analysis was used to filter the 5-day mean results from Simple Ocean Data Assimilation (SODA) reanalysis spanning from 1958 to 2008. TIWs were filtered over periods of 15 to 60 days and between wavelengths of 4 and 20 longitude degrees. The main approach of this study was the use of bidirectionally filtered TIW time series as the perturbation fields, and the difference in these time series from the SODA total results was considered to be the basic state for energetics analysis. The main result was that the annual cycle (period of 360 days) was the main source of variability of the waves, and the semi-annual cycle (period of 180 days) was a secondary variation, which indicated that TIWs occurred throughout the year but with intensity that varies seasonally. In SODA, barotropic instability acts as the mechanism that feeds and extracts energy to/from TIWs at equatorial Atlantic. Baroclinic instability is the main mechanism that extracts energy from TIWs to the equatorial circulation north of the Equator. All TIW patterns of variability were observed western of 10° W. The present study reveals new evidences regarding TIW variability and suggests that future investigations should include a detailed description of TIW dynamics as part of Atlantic Ocean equatorial circulation.

  17. Arsenic Exposure, Arsenic Metabolism, and Incident Diabetes in the Strong Heart Study

    Science.gov (United States)

    Howard, Barbara V.; Umans, Jason G.; Gribble, Matthew O.; Best, Lyle G.; Francesconi, Kevin A.; Goessler, Walter; Lee, Elisa; Guallar, Eliseo; Navas-Acien, Ana

    2015-01-01

    OBJECTIVE Little is known about arsenic metabolism in diabetes development. We investigated the prospective associations of low-moderate arsenic exposure and arsenic metabolism with diabetes incidence in the Strong Heart Study. RESEARCH DESIGN AND METHODS A total of 1,694 diabetes-free participants aged 45–75 years were recruited in 1989–1991 and followed through 1998–1999. We used the proportions of urine inorganic arsenic (iAs), monomethylarsonate (MMA), and dimethylarsinate (DMA) over their sum (expressed as iAs%, MMA%, and DMA%) as the biomarkers of arsenic metabolism. Diabetes was defined as fasting glucose ≥126 mg/dL, 2-h glucose ≥200 mg/dL, self-reported diabetes history, or self-reported use of antidiabetic medications. RESULTS Over 11,263.2 person-years of follow-up, 396 participants developed diabetes. Using the leave-one-out approach to model the dynamics of arsenic metabolism, we found that lower MMA% was associated with higher diabetes incidence. The hazard ratios (95% CI) of diabetes incidence for a 5% increase in MMA% were 0.77 (0.63–0.93) and 0.82 (0.73–0.92) when iAs% and DMA%, respectively, were left out of the model. DMA% was associated with higher diabetes incidence only when MMA% decreased (left out of the model) but not when iAs% decreased. iAs% was also associated with higher diabetes incidence when MMA% decreased. The association between MMA% and diabetes incidence was similar by age, sex, study site, obesity, and urine iAs concentrations. CONCLUSIONS Arsenic metabolism, particularly lower MMA%, was prospectively associated with increased incidence of diabetes. Research is needed to evaluate whether arsenic metabolism is related to diabetes incidence per se or through its close connections with one-carbon metabolism. PMID:25583752

  18. Nutrient budgets and trophic state in a hypersaline coastal lagoon: Lagoa de Araruama, Brazil

    Science.gov (United States)

    Souza, Marcelo F. L.; Kjerfve, Björn; Knoppers, Bastiaan; Landim de Souza, Weber F.; Damasceno, Raimundo N.

    2003-08-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline lagoon with salinity varying spatially from 45 to 56. We collected water samples during monthly cruises throughout the lagoon, and along the streams feeding the system, from April 1991 to March 1992. Nutrients and other water quality parameters exhibited great spatial and temporal variations. Mass balance calculations indicate large amounts of anthropogenic nutrient inputs. The data indicate that the lagoon currently is oligotrophic but is in a state of transition to become a mesotrophic system. Molar dissolved inorganic nitrogen:dissolved inorganic phosphorus (DIN/DIP) varied between 2.2:1 and 659:1 with a volume-weighted average of 22:1. The high DIN/DIP ratio contrasts with that found in nearby lagoons, suggesting that phytoplankton primary production is limited by phosphorus in Lagoa de Araruama. The major loss of DIP is apparently driven by biological assimilation and diagenic reactions in the sediments. Calculations indicate that the lagoon is slightly net autotrophic at +0.9 mol C m -2 yr -1. This suggests that the biomass of the primary producers is restricted by phosphorus availability. Phosphorus retention in the sediment and the hypersaline state of the lagoon prevent changes in autotrophic communities and the formation of eutrophic conditions.

  19. Acute and chronic arsenic toxicity

    OpenAIRE

    Ratnaike, R

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption o...

  20. Prevalence of using baking soda in different types of most commonly consumed breads by Iranian people

    OpenAIRE

    Abolfazl Mohammadbeigi; Ali Salehi; Hassan Izanloo; Zahra Ghorbani; Vahid Vanaki; Reza Ramazani; Mahdi Asadi-Ghalhari

    2018-01-01

    Background: Nowadays, in most bakeries in order to accelerate bread production process and reduce work pressure on bakers, harmful chemicals like baking soda are in use. Therefore, the aim of the present study was to investigate the prevalence of using baking soda in different types of most commonly consumed breads by Iranian people. Materials and Methods: This cross-sectional descriptive study was carried out on 234 bakeries in Qom, Iran, during 2017. The proportional stratified sampling met...

  1. Screening of polyhydroxyalkanoate-producing bacteria and PhaC-encoding genes in two hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Carolina A. Martínez-Gutiérrez

    2018-05-01

    Full Text Available Hypersaline microbial mats develop through seasonal and diel fluctuations, as well as under several physicochemical variables. Hence, resident microorganisms commonly employ strategies such as the synthesis of polyhydroxyalkanoates (PHAs in order to resist changing and stressful conditions. However, the knowledge of bacterial PHA production in hypersaline microbial mats has been limited to date, particularly in regard to medium-chain length PHAs (mcl-PHAs, which have biotechnological applications due to their plastic properties. The aim of this study was to obtain evidence for PHA production in two hypersaline microbial mats of Guerrero Negro, Mexico by searching for PHA granules and PHA synthase genes in isolated bacterial strains and environmental samples. Six PHA-producing strains were identified by 16S rRNA gene sequencing; three of them corresponded to a Halomonas sp. In addition, Paracoccus sp., Planomicrobium sp. and Staphylococcus sp. were also identified as PHA producers. Presumptive PHA granules and PHA synthases genes were detected in both sampling sites. Moreover, phylogenetic analysis showed that most of the phylotypes were distantly related to putative PhaC synthases class I sequences belonging to members of the classes Alphaproteobacteria and Gammaproteobacteria distributed within eight families, with higher abundances corresponding mainly to Rhodobacteraceae and Rhodospirillaceae. This analysis also showed that PhaC synthases class II sequences were closely related to those of Pseudomonas putida, suggesting the presence of this group, which is probably involved in the production of mcl-PHA in the mats. According to our state of knowledge, this study reports for the first time the occurrence of phaC and phaC1 sequences in hypersaline microbial mats, suggesting that these ecosystems may be a novel source for the isolation of short- and medium-chain length PHA producers.

  2. Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater.

    Science.gov (United States)

    Paul, Dhiraj; Kazy, Sufia K; Banerjee, Tirtha Das; Gupta, Ashok K; Pal, Taraknath; Sar, Pinaki

    2015-01-01

    Arsenic (As) biotransformation and release by indigenous bacteria from As rich groundwater was investigated. Metabolic landscape of 173 bacterial isolates indicated broad catabolic repertoire including abundance of As(5+) reductase activity and abilities in utilizing wide ranges of organic and inorganic respiratory substrates. Abundance of As homeostasis genes and utilization of hydrocarbon as carbon/electron donor and As(5+) as electron acceptor were noted within the isolates. Sediment microcosm study (for 300 days) showed a pivotal role of metal reducing facultative anaerobic bacteria in toxic As(3+) release in aqueous phase. Inhabitant bacteria catalyze As transformation and facilitate its release through a cascade of reactions including mineral bioweathering and As(5+) and/or Fe(3+) reduction activities. Compared to anaerobic incubation with As(5+) reducing strains, oxic state and/or incubation with As(3+) oxidizing bacteria resulted in reduced As release, thus indicating a strong role of such condition or biocatalytic mechanism in controlling in situ As contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction.

    Science.gov (United States)

    Pierce, Brandon L; Tong, Lin; Argos, Maria; Gao, Jianjun; Farzana, Jasmine; Roy, Shantanu; Paul-Brutus, Rachelle; Rahaman, Ronald; Rakibuz-Zaman, Muhammad; Parvez, Faruque; Ahmed, Alauddin; Quasem, Iftekhar; Hore, Samar K; Alam, Shafiul; Islam, Tariqul; Harjes, Judith; Sarwar, Golam; Slavkovich, Vesna; Gamble, Mary V; Chen, Yu; Yunus, Mohammad; Rahman, Mahfuzar; Baron, John A; Graziano, Joseph H; Ahsan, Habibul

    2013-12-01

    Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.

  4. Health Effects of Chronic Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Young-Seoub Hong

    2014-09-01

    Full Text Available Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments.

  5. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  6. Arsenic speciation in hair and nails of acute promyelocytic leukemia (APL) patients undergoing arsenic trioxide treatment.

    Science.gov (United States)

    Chen, Baowei; Cao, Fenglin; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X Chris

    2018-07-01

    Arsenic in hair and nails has been used to assess chronic exposure of humans to environmental arsenic. However, it remains to be seen whether it is appropriate to evaluate acute exposure to sub-lethal doses of arsenic typically used in therapeutics. In this study, hair, fingernail and toenail samples were collected from nine acute promyelocytic leukemia (APL) patients who were administered intravenously the daily dose of 10 mg arsenic trioxide (7.5 mg arsenic) for up to 54 days. These hair and nail samples were analyzed for arsenic species using high performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection (HPLC-ICPMS). Inorganic arsenite was the predominant form among water-extractable arsenicals. Dimethylarsinic acid (DMA V ), monomethylarsonic acid (MMA V ), monomethylarsonous acid (MMA III ), monomethylmonothioarsonic acid (MMMTA V ), and dimethylmonothioarsinic acid (DMMTA V ) were also detected in both hair and nail samples. This is the first report of the detection of MMA III and MMMTA V as metabolites of arsenic in hair and nails of APL patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Chemical durability of soda-lime-aluminosilicate glass for radioactive waste vitrification

    International Nuclear Information System (INIS)

    Eppler, F.H.; Yim, M.S.

    1998-01-01

    Vitrification has been identified as one of the most viable waste treatment alternatives for nuclear waste disposal. Currently, the most popular glass compositions being selected for vitrification are the borosilicate family of glasses. Another popular type that has been around in glass industry is the soda-lime-silicate variety, which has often been characterized as the least durable and a poor candidate for radioactive waste vitrification. By replacing the boron constituent with a cheaper substitute, such as silica, the cost of vitrification processing can be reduced. At the same time, addition of network intermediates such as Al 2 O 3 to the glass composition increases the environmental durability of the glass. The objective of this study is to examine the ability of the soda-lime-aluminosilicate glass as an alternative vitrification tool for the disposal of radioactive waste and to investigate the sensitivity of product chemical durability to variations in composition

  8. Nano Transition Metal Sulfide Catalyst for Solvolysis Liquefaction of Soda Lignin

    International Nuclear Information System (INIS)

    Fei-Ling, P.; Chin-Hua, C.; Sarani Zakaria; Soon-Keong, N.; Tze-Khong, L.

    2011-01-01

    Solvolysis liquefaction of soda lignin in the presence of various transition metal sulfide catalysts was studied to investigate the catalyst effects on the oil and gas yields, conversion rate and higher heating value (HHV) of oil. Nano sized copper sulfide, iron sulfide and molybdenum sulfide were successfully synthesized via a simple hydrothermal method under reaction temperature 200 degree Celsius for 90 min. The addition of transition metal sulfide based catalysts (CuS, MoS 2 and FeS 2 ) enhanced both production of the oils and gas and the higher heating value (HHV) of oil products. A high oil and gas yields of 82.1 % and 2890 cm 3 was obtained with MoS 2 at 250 degree Celsius for 60 min. Elemental analyses for the oils revealed that the liquid products have much higher heating values than the crude soda lignin powder. (author)

  9. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water.

    Science.gov (United States)

    Chen, Baowei; Arnold, Lora L; Cohen, Samuel M; Thomas, David J; Le, X Chris

    2011-12-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic (iAs) producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated arsenicals may contribute to toxicity associated with exposure to inorganic arsenic. Here, adult female wild-type (WT) C57BL/6 mice and female As3mt knockout (KO) mice received drinking water that contained 1, 10, or 25 ppm (mg/l) of arsenite for 33 days and blood, liver, kidney, and lung were taken for arsenic speciation. Genotype markedly affected concentrations of arsenicals in tissues. Summed concentrations of arsenicals in plasma were higher in WT than in KO mice; in red blood cells, summed concentrations of arsenicals were higher in KO than in WT mice. In liver, kidney, and lung, summed concentrations of arsenicals were greater in KO than in WT mice. Although capacity for arsenic methylation is much reduced in KO mice, some mono-, di-, and tri-methylated arsenicals were found in tissues of KO mice, likely reflecting the activity of other tissue methyltransferases or preabsorptive metabolism by the microbiota of the gastrointestinal tract. These results show that the genotype for arsenic methylation determines the phenotypes of arsenic retention and distribution and affects the dose- and organ-dependent toxicity associated with exposure to inorganic arsenic.

  10. Briquetting soda weed (Salsola tragus) to be used as a rural fuel source

    Energy Technology Data Exchange (ETDEWEB)

    Yumak, Hasan [Mechanical Engineering Department, Faculty of Engineering and Architecture, Yuzuncu Yil University, 65080 Van (Turkey); Ucar, Tamer [Mechanical Engineering Department, Faculty of Engineering and Architecture, Bozok University, 66200 Yozgat (Turkey); Seyidbekiroglu, Nesim [Agricultural Machinery Department, Faculty of Agriculture, Yuzuncu Yil University, 65080 Van (Turkey)

    2010-05-15

    Amount of traditional fuel sources in the world has been decreasing and there is a definite need to produce and utilize alternative fuels such as biomass materials. In this study, briquetting conditions of Russian tumbleweed, Salsola tragus, (commonly named soda weed in Turkey) which grows in salty soils were investigated. Soda weeds were first chopped coarsely in a local tresher, then chopped finely in a hammer mill. Weed materials at three moisture levels (7%, 10%, and 13%) were prepared in the lab. Chopped weed materials were filled in cylindrical and square dies and compressed using a hydraulic press at three pressure levels of 15.7, 19.6 and 31.4 MPa. Optimum temperature, moisture rate, and pressure values were determined to produce stable briquettes. Further experiments were conducted to produce briquettes using sawdust and walnut shells as additives in conical dies of two different sizes. Results of a statistical analysis of parameters to produce briquettes in different dies indicated that moisture rates of 7-10%, pressure of 31.4 MPa, and temperatures of 85-105 C were suitable for briquetting soda weed. Furthermore, sawdust and walnut shells additives increased briquette density without any negative effects on production process and product stability. (author)

  11. Neutron activation analysis of arsenic in Greece

    International Nuclear Information System (INIS)

    Grimanis, A.P.

    1989-01-01

    Arsenic is considered a toxic trace element for plant, animal, and human organisms. Arsenic and certain arsenic compounds have been listed as carcinogens by the U.S. Environmental Protection Agency. Arsenic is emitted in appreciable quantities into the atmosphere by coal combustion and the production of cement. Arsenic enters the aquatic environment through industrial activities such as smelting of metallic ores, metallurgical glassware, and ceramics as well as insecticide production and use. Neutron activation analysis (NAA) is a very sensitive, precise, and accurate method for determining arsenic. This paper is a review of research studies of arsenic in the Greek environment by NAA performed at our radioanalytical laboratory. The objectives of these studies were (a) to determine levels of arsenic concentrations in environmental materials, (b) to pinpoint arsenic pollution sources and estimate the extent of arsenic pollution, and (c) to find out whether edible marine organisms from the gulfs of Greece receiving domestic, industrial, and agricultural wastes have elevated concentrations of arsenic in their tissues that could render them dangerous for human consumption

  12. Fractal Loop Heat Pipe Performance Comparisons of a Soda Lime Glass and Compressed Carbon Foam Wick

    Science.gov (United States)

    Myre, David; Silk, Eric A.

    2014-01-01

    This study compares heat flux performance of a Loop Heat Pipe (LHP) wick structure fabricated from compressed carbon foam with that of a wick structure fabricated from sintered soda lime glass. Each wick was used in an LHP containing a fractal based evaporator. The Fractal Loop Heat Pipe (FLHP) was designed and manufactured by Mikros Manufacturing Inc. The compressed carbon foam wick structure was manufactured by ERG Aerospace Inc., and machined to specifications comparable to that of the initial soda lime glass wick structure. Machining of the compressed foam as well as performance testing was conducted at the United States Naval Academy. Performance testing with the sintered soda lime glass wick structures was conducted at NASA Goddard Space Flight Center. Heat input for both wick structures was supplied via cartridge heaters mounted in a copper block. The copper heater block was placed in contact with the FLHP evaporator which had a circular cross-sectional area of 0.88 cm(sup 2). Twice distilled, deionized water was used as the working fluid in both sets of experiments. Thermal performance data was obtained for three different Condenser/Subcooler temperatures under degassed conditions. Both wicks demonstrated comparable heat flux performance with a maximum of 75 W/cm observed for the soda lime glass wick and 70 W /cm(sup 2) for the compressed carbon foam wick.

  13. Arsenic and Antimony Transporters in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Ewa Maciaszczyk-Dziubinska

    2012-03-01

    Full Text Available Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  14. Arsenic and Antimony Transporters in Eukaryotes

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  15. ASSESSMENT OF VEGETATION COVER ON SODA WASTE DISPOSAL SITE AT JANIKOWO, FOLLOWING 13-YEAR-LONG RECLAMATION

    Directory of Open Access Journals (Sweden)

    Kazimierz Henryk Dyguś

    2014-10-01

    Full Text Available The results are presented of vegetation survey on the alkaline and saline soda waste disposal site at Janikowo Soda Plant near Toruń (central Poland. The site was subject to reclamation using diverse techniques including sewage sludge and ash, starting from the year 2000 onwards. The survey was made to evaluate the status of plant succession as well as stability and diversity of vegetation cover. The vegetation was inventoried using the cover-frequency method, on a 10 x 10 m quadrat samples randomly distributed over the reclaimed area. Communities were classified using the Central-European approach by Braun-Blanquet (1964. In 2013, the vegetation was well established and provided a dense cover of the substrate. 108 plant species were found compared to some 5–8 plants which arrived spontaneously until the year 2000. Species richness increased 15 fold since the year when reclamation started. Species of graminoid and Asteraceae families prevailed in most patches of local vegetation. The vegetation cover on sites treated with a mixt of power plant ash and sewage sludge was less stable and less diverse than that on sites where sewage sludge only was applied. Annuals and biennials dominated in the vegetation on ash grounds while more competitive perennials prevailed on sewage sludge substrates. On the latter substrates there develop plant communities classified as an association of smooth meadow grass and common yarrow Poa pratensis-Achillea millefolium, whose species combination closely resembles that of seminatural fresh meadows. On the ash grounds, a variety of associations of ruderal plants were found with dominating Loesel mustard and common mugwort Sisymbrium loeselii-Artemisia vulgaris. Phytoindicatory methods using Ellenberg values have shown that waste substrates contained increased salt concentrations, however, there was no indication of increased heavy metal contents, as no plants tolerating excessive amounts of heavy metals were

  16. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic

    OpenAIRE

    Stanton, Bruce A.

    2015-01-01

    This report is the outcome of the meeting: “Environmental and Human Health Consequences of Arsenic”, held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13–15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food and more than 200 million people ingest arsenic via drinking water at concentrations greater than inte...

  17. A comparative study of the effect of diet and soda carbonated drinks ...

    African Journals Online (AJOL)

    EB

    2013-09-03

    Sep 3, 2013 ... Objectives: A comparative effect of the diet and regular soda carbonated drinks on the histology of the cerebellum of ... contains caffeine, depending on the quantities .... and health: a systematic review and meta-analysis.

  18. Relationship between arsenic and selenium in workers occupationally exposed to inorganic arsenic.

    Science.gov (United States)

    Janasik, Beata; Zawisza, Anna; Malachowska, Beata; Fendler, Wojciech; Stanislawska, Magdalena; Kuras, Renata; Wasowicz, Wojciech

    2017-07-01

    The interaction between arsenic (As) and selenium (Se) has been one of the most extensively studied. The antagonism between As and Se suggests that low Se status plays an important role in aggravating arsenic toxicity in diseases development. The objective of this study was to assess the Se contents in biological samples of inorganic As exposed workers (n=61) and in non-exposed subjects (n=52). Median (Me) total arsenic concentration in urine of exposed workers was 21.83μg/g creat. (interquartile range (IQR) 15.49-39.77) and was significantly higher than in the control group - (Me 3.75μg/g creat. (IQR 2.52-9.26), piAs+MMA+DMA) was significantly associated with the high total selenium urine excretion (B=0.14 (95%CI (confidence interval) 0.05-0.23)). Combination of both arsenic and selenium status to assess the risk of arsenic-induced diseases requires more studies with regard to both the analysis of speciation, genetics and the influence of factors such as nutritional status. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Arsenic K-edge X-ray absorption near-edge spectroscopy to determine oxidation states of arsenic of a coastal aquifer–aquitard system

    International Nuclear Information System (INIS)

    Wang, Ya; Jiao, Jiu Jimmy; Zhu, Sanyuan; Li, Yiliang

    2013-01-01

    Determination of oxidation states of solid-phase arsenic in bulk sediments is a valuable step in the evaluation of its bioavailability and environmental fate in deposits, but is difficult when the sediments have low arsenic contents and heterogeneous distribution of arsenic species. As K-edge X-ray absorption near-edge spectroscopy (XANES) was used to determine quantitatively the oxidation states of arsenic in sediments collected from different depths of boreholes in the Pearl River Delta, China, where the highest aquatic arsenic concentration is 161.4 μg/L, but the highest solid arsenic content only 39.6 mg/kg. The results demonstrated that XANES is efficient in determining arsenic oxidation states of the sediments with low arsenic contents and multiple arsenic species. The study on the high-resolution vertical variations of arsenic oxidation states also indicated that these states are influenced strongly by groundwater activities. With the help of geochemical data, solid arsenic speciation, toxicity and availability were further discussed. -- Highlights: •XANES is efficient in determining arsenic oxidation states of the bulk sediments. •Distribution of arsenic oxidation states is consistent with geochemical conditions. •Arsenic oxidation states are influenced strongly by groundwater activities. -- As K-edge X-ray absorption near-edge spectroscopy is efficient in determining arsenic oxidation states of the bulk sediments with low arsenic contents and heterogeneous distribution of arsenic species

  20. Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka.

    Science.gov (United States)

    Jayasumana, Channa; Fonseka, Saranga; Fernando, Ashvin; Jayalath, Kumudika; Amarasinghe, Mala; Siribaddana, Sisira; Gunatilake, Sarath; Paranagama, Priyani

    2015-01-01

    Chronic Kidney Disease of unknown etiology (CKDu) has escalated into an epidemic in North Central Province (NCP) and adjacent farming areas in the dry zone of Sri Lanka. Studies have shown that this special type of CKD is a toxic nephropathy and arsenic may play a causative role along with a number of other heavy metals. We investigated the hypothesis that chemical fertilizers and pesticide could be a source of arsenic. 226 samples of Fertilizers and 273 samples of pesticides were collected and analyzed using atomic absorption spectrometry and inductively coupled plasma mass spectrometry for arsenic and other heavy metals in two university laboratories. Almost all the agrochemicals available to the farmers in the study area are contaminated with arsenic. The highest amount was in triple super phosphate (TSP) with a mean value of 31 mg/kg. Also TSP is a rich source of other nephrotoxic metals including Cr, Co, Ni, Pb and V. Annually more than 0.1 million tons of TSP is imported to Sri Lanka containing approximately 2100 kg of arsenic. The next highest concentration was seen in the rock phosphate obtained from an open pit mine in NCP (8.56 mg/kg). Organic fertilizer contained very low amounts of arsenic. Arsenic contamination in pesticides varied from 0.18 mg/kg to 2.53 mg/kg although arsenic containing pesticides are banned in Sri Lanka. Glyphosate the most widely used pesticide in Sri Lanka contains average of 1.9 mg/kg arsenic. Findings suggest that agrochemicals especially phosphate fertilizers are a major source of inorganic arsenic in CKDu endemic areas. Organic fertilizer available in Sri Lanka is comparatively very low in arsenic and hence the farmers in CKDu endemic areas in Sri Lanka should be encouraged to minimize the use of imported chemical fertilizer and use organic fertilizers instead.

  1. Voltammetric Study of Arsenic (III and Arsenic (V in Ground Water of Hajigonj and Kalkini in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammad Arifur Rahman

    2008-06-01

    Full Text Available The speciation of arsenic in groundwater samples using Square Wave Anodic Stripping Voltammetry (SWASV, Differential Pulse Anodic Stripping Voltammetry (DPASV and Normal Pulse Anodic Stripping Voltammetry (NPASV are described. Good resolution of the species, arsenic (III and arsenic (V is achieved using SWASV. The reliability of the methods was checked by analyzing the total arsenic content of the samples by Hydride Generation Atomic Absorptioion Spectrophotometer and by analyzing prepared controlled laboratory standard solution. Since this technique is comparatively cheaper than other available techniques it could be a better analytical technique for arsenic speciation from water. In this study, the assessment of inorganic arsenic species in ground water of Kalkini (Madaripur and Hajigonj (Chandpur is reported. It shows that arsenic content in water in different locations is irregular. Most of the locations contain higher level of As(III than As(V. The highest concentration of arsenic is found in Anayetnagor (554.46 ± 0.07 mg/L of Kalkini and Raichar (562 ± 0.50 mg/L of Hajigonj. However, the level of total arsenic and As(III of most of the villages of the study areas are more than the WHO guideline value (50mg/L. Therefore a proper monitoring process should be evolved along with the development of methods to keep the water free from arsenic.

  2. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    2002-01-01

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  3. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network

    International Nuclear Information System (INIS)

    Pendashteh, Ali Reza; Fakhru'l-Razi, A.; Chaibakhsh, Naz; Abdullah, Luqman Chuah; Madaeni, Sayed Siavash; Abidin, Zurina Zainal

    2011-01-01

    Highlights: → Hypersaline oily wastewater was treated in a membrane bioreactor. → The effects of salinity and organic loading rate were evaluated. → The system was modeled by neural network and optimized by genetic algorithm. → The model prediction agrees well with experimental values. → The model can be used to obtain effluent characteristics less than discharge limits. - Abstract: A membrane sequencing batch reactor (MSBR) treating hypersaline oily wastewater was modeled by artificial neural network (ANN). The MSBR operated at different total dissolved solids (TDSs) (35,000; 50,000; 100,000; 150,000; 200,000; 250,000 mg/L), various organic loading rates (OLRs) (0.281, 0.563, 1.124, 2.248, and 3.372 kg COD/(m 3 day)) and cyclic time (12, 24, and 48 h). A feed-forward neural network trained by batch back propagation algorithm was employed to model the MSBR. A set of 193 operational data from the wastewater treatment with the MSBR was used to train the network. The training, validating and testing procedures for the effluent COD, total organic carbon (TOC) and oil and grease (O and G) concentrations were successful and a good correlation was observed between the measured and predicted values. The results showed that at OLR of 2.44 kg COD/(m 3 day), TDS of 78,000 mg/L and reaction time (RT) of 40 h, the average removal rate of COD was 98%. In these conditions, the average effluent COD concentration was less than 100 mg/L and met the discharge limits.

  4. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Pendashteh, Ali Reza [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Environmental Research Institute, Iranian Academic Center for Education, Culture and Research (ACECR), Rasht (Iran, Islamic Republic of); Fakhru' l-Razi, A., E-mail: fakhrul@eng.upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Chaibakhsh, Naz [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Abdullah, Luqman Chuah [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Madaeni, Sayed Siavash [Chemical Engineering Department, Razi University, Kermanshah (Iran, Islamic Republic of); Abidin, Zurina Zainal [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia)

    2011-08-30

    Highlights: {yields} Hypersaline oily wastewater was treated in a membrane bioreactor. {yields} The effects of salinity and organic loading rate were evaluated. {yields} The system was modeled by neural network and optimized by genetic algorithm. {yields} The model prediction agrees well with experimental values. {yields} The model can be used to obtain effluent characteristics less than discharge limits. - Abstract: A membrane sequencing batch reactor (MSBR) treating hypersaline oily wastewater was modeled by artificial neural network (ANN). The MSBR operated at different total dissolved solids (TDSs) (35,000; 50,000; 100,000; 150,000; 200,000; 250,000 mg/L), various organic loading rates (OLRs) (0.281, 0.563, 1.124, 2.248, and 3.372 kg COD/(m{sup 3} day)) and cyclic time (12, 24, and 48 h). A feed-forward neural network trained by batch back propagation algorithm was employed to model the MSBR. A set of 193 operational data from the wastewater treatment with the MSBR was used to train the network. The training, validating and testing procedures for the effluent COD, total organic carbon (TOC) and oil and grease (O and G) concentrations were successful and a good correlation was observed between the measured and predicted values. The results showed that at OLR of 2.44 kg COD/(m{sup 3} day), TDS of 78,000 mg/L and reaction time (RT) of 40 h, the average removal rate of COD was 98%. In these conditions, the average effluent COD concentration was less than 100 mg/L and met the discharge limits.

  5. Incorporation of arsenic into gypsum: Relevant to arsenic removal and immobilization process in hydrometallurgical industry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Danni; Yuan, Zidan [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Shaofeng, E-mail: wangshaofeng@iae.ac.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Jia, Yongfeng, E-mail: yongfeng.jia@iae.ac.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Demopoulos, George P. [Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada)

    2015-12-30

    Highlights: • Quantitatively studied the incorporation of arsenic into the structure of gypsum. • Arsenic content in the solid increased with pH and initial arsenic concentration. • Calcium arsenate phase precipitated in addition to gypsum at higher pH values. • The structure of gypsum and its morphology was altered by the incorporated arsenate. • The incorporated arsenate formed sainfeldite-like local structure in gypsum. - Abstract: Gypsum precipitates as a major secondary mineral during the iron-arsenate coprecipitation process for the removal of arsenic from hydrometallurgical effluents. However, its role in the fixation of arsenic is still unknown. This work investigated the incorporation of arsenic into gypsum quantitatively during the crystallization process at various pHs and the initial arsenic concentrations. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray absorption near edge spectroscopy (XANES) and scanning electron microscopy (SEM) were employed to characterize the coprecipitated solids. The results showed that arsenate was measurably removed from solution during gypsum crystallization and the removal increased with increasing pH. At lower pH where the system was undersaturated with respect to calcium arsenate, arsenate ions were incorporated into gypsum structure, whereas at higher pH, calcium arsenate was formed and constituted the major arsenate bearing species in the precipitated solids. The findings may have important implications for arsenic speciation and stability of the hydrometallurgical solid wastes.

  6. Arsenic chemistry in soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of

  7. Studying the Environmental Health Status and Consumption of Baking Soda in Military and Urban Lavash Bakeries of Tehran in 2012

    Directory of Open Access Journals (Sweden)

    H Rostami

    2013-06-01

    Full Text Available Background and purpose:Consumption of baking soda, as a primary material for preparation of bread dough, has been banned due to its health complications in Iran. So bread production in our country faced difficulties and one part of them is related to health issues which are bread production. Also, in some cases, baking soda is used in the bread production. This study was done to study the environmental health status and consumption of baking soda in the military and urban Lavash bakeries of Tehran in 2012. Materials and methods:This is a descriptive comparative study done on Lavash bread production of 14 military bakeries and 14 corresponding urban bakeries near them. PH in the samples was tested based on Institute of Standards and Industrial Research of Iran No. 2628. To check the status of environmental health and personal hygiene of bakeries, the check list of Cereal Research Center was used. Results:In terms of environmental health status,28.6% military bakeries and7.1% urban bakeries were at good level. In terms of personal hygiene, all bakeries were in the poor category. Also,42.9% of military Lavash bakeries and 14.3% of urban Lavash bakeries used baking soda in their bread production. Conclusion:Environment health and personal hygiene status in military bakeries are better than the urban bakeries however, hygiene status was not desirable in military bakeries. Also, baking soda consumption in military bakeries was more common than the urban bakeries. According to the results of this study, control of health status and avoiding baking soda consumption in the bakeries are necessary.

  8. Shift in aggregation, ROS generation, antioxidative defense, lysozyme and acetylcholinesterase activities in the cells of an Indian freshwater sponge exposed to washing soda (sodium carbonate).

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2016-09-01

    Washing soda, chemically identified as anhydrous sodium carbonate, is a popular cleaning agent among the rural and urban populations of India which often contaminates the freshwater ponds and lakes, the natural habitat of sponge Eunapius carteri. Present investigation deals with estimation of cellular aggregation, generation of ROS and activities of antioxidant enzymes, lysozyme and acetylcholinesterase in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Prolonged treatment of washing soda inhibited the degree of cellular aggregation. Experimental exposure of 8 and 16mg/l of sodium carbonate for 48h elevated the physiological level of reactive oxygen species (ROS) generation in the agranulocytes, semigranulocytes and granulocytes of E. carteri, whereas, treatment of 192h inhibited the ROS generation in three cellular morphotypes. Activities of superoxide dismutase, catalase and glutathione-S-transferase were recorded to be inhibited under prolonged exposure of washing soda. Washing soda mediated inhibition of ROS generation and depletion in the activities of antioxidant enzymes were indicative to an undesirable shift in cytotoxic status and antioxidative defense in E. carteri. Inhibition in the activity of lysozyme under the treatment of sodium carbonate was suggestive to a severe impairment of the innate immunological efficiency of E. carteri distributed in the washing soda contaminated habitat. Washing soda mediated inhibition in the activity of acetylcholinesterase indicated its neurotoxicity in E. carteri. Washing soda, a reported environmental contaminant, affected adversely the immunophysiological status of E. carteri with reference to cellular aggregation, oxidative stress, antioxidative defense, lysozyme and acetylcholinesterase activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Understanding Arsenic Dynamics in Agronomic Systems to ...

    Science.gov (United States)

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and thus must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils. Consumption of staple foods such as rice, beverages such as apple juice, or vegetables grown in historically arsenic-contaminated soils is now recognized as a tangible route of arsenic exposure that, in many cases, is more significant than exposure from drinking water. Understanding the sources of arsenic to crop plants and the factors that influence them is key to reducing exposure now and preventing exposure in future. In addition to the abundant natural sources of arsenic, there are a large number of industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly

  10. Arsenic: natural and anthropogenic

    National Research Council Canada - National Science Library

    Matschullat, Jörg; Deschamps, Eleonora

    2011-01-01

    .... Based on state-of-the-art investigations into the global arsenic cycle, the related human toxicology and available remediation technologies, it assesses arsenic in all the environmental compartments...

  11. Arsenic transport by zebrafish aquaglyceroporins

    Directory of Open Access Journals (Sweden)

    Landfear Scott M

    2009-11-01

    Full Text Available Abstract Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII. However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII and antimonite (SbIII was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were named aqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye

  12. Determination of arsenic compounds in earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Geiszinger, A.; Goessler, W.; Kuehnelt, D.; Kosmus, W. [Karl-Franzens-Univ., Graz (Austria). Inst. for Analytical Chemistry; Francesconi, K. [Odense Univ. (Denmark). Inst. of Biology

    1998-08-01

    Earthworms and soil collected from six sites in Styria, Austria, were investigated for total arsenic concentrations by ICP-MS and for arsenic compounds by HPLC-ICP-MS. Total arsenic concentrations ranged from 3.2 to 17.9 mg/kg dry weight in the worms and from 5.0 to 79.7 mg/kg dry weight in the soil samples. There was no strict correlation between the total arsenic concentrations in the worms and soil. Arsenic compounds were extracted from soil and a freeze-dried earthworm sample with a methanol/water mixture (9:1, v/v). The extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion- and a cation-exchange column. Arsenic compounds were identified by comparison of the retention times with known standards. Only traces of arsenic acid could be extracted from the soil with the methanol/water (9:1, v/v) mixture. The major arsenic compounds detected in the extracts of the earthworms were arsenous acid and arsenic acid. Arsenobetaine was present as a minor constituent, and traces of dimethylarsinic acid were also detected. Two dimethylarsinoyltribosides were also identified in the extracts by co-chromatography with standard compounds. This is the first report of the presence of dimethylarsinoylribosides in a terrestrial organism. Two other minor arsenic species were present in the extract, but their retention times did not match with the retention times of the available standards.

  13. Variability in human metabolism of arsenic

    International Nuclear Information System (INIS)

    Loffredo, C.A.; Aposhian, H.V.; Cebrian, M.E.; Yamauchi, Hiroshi; Silbergeld, E.K.

    2003-01-01

    Estimating the nature and extent of human cancer risks due to arsenic (As) in drinking water is currently of great concern, since millions of persons worldwide are exposed to arsenic, primarily through natural enrichment of drinking water drawn from deep wells. Humans metabolize and eliminate As through oxidative methylation and subsequent urinary excretion. While there is debate as to the role of methylation in activation/detoxification, variations in arsenic metabolism may affect individual risks of toxicity and carcinogenesis. Using data from three populations, from Mexico, China, and Chile, we have analyzed the distribution in urine of total arsenic and arsenic species (inorganic arsenic (InAs), monomethyl arsenic (MMA), and dimethyl arsenic (DMA). Data were analyzed in terms of the concentration of each species and by evaluating MMA:DMA and (MMA+DMA):InAs ratios. In all persons most urinary As was present as DMA. Male:female differences were discernible in both high- and low-exposure groups from all three populations, but the gender differences varied by populations. The data also indicated bimodal distributions in the ratios of DMA to InAs and to MMA. While the gene or genes responsible for arsenic methylation are still unknown, the results of our studies among the ethnic groups in this study are consistent with the presence of functional genetic polymorphisms in arsenic methylation leading to measurable differences in toxicity. This analysis highlights the need for continuing research on the health effects of As in humans using molecular epidemiologic methods

  14. Mathematical model insights into arsenic detoxification

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2011-08-01

    Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic

  15. The characteristics of soda metasomatite type uranium mineralization for proterozoic strata in the central-southern part of Kang-Dian earth's axis

    International Nuclear Information System (INIS)

    Qian Farong

    1995-12-01

    The uranium mineralization for Proterozoic strata in the central-southern part of Kang-Dian earth's axis can be divided into four typy (sandstone, soda metasomatite, proterozoic epimetamorphics and quartzite). The soda metasomatite type is the dominant type of uranium mineralization and has the prospecting potential in the area. The characteristics of this type uranium mineralization and the problems of metallogenesis are discussed. Soda metasomatite type uranium mineralization is controlled by soda metasomatite and structure. Uranium exists mainly in the forms of minerals (pitchblende, uranate). Its cell parameter is high and oxygenated coefficient is low, belonging to moderate-low temperature hydrothermal origin. The metallogenetic materials originated from deep-seated crust and country rocks. The metallogenetic solution includes a great quantity of atmospheric water, besides hydrothermal solution from deep-seated crust. The metallogene underwent the two stages i.e. Jinnin and Chengjiang. (4 tabs., 3 figs.)

  16. Arsenic in the soils of Zimapan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ongley, Lois K. [Oak Hill High School, P.O. Box 400, Sabattus, ME 04280 (United States)]. E-mail: loisongley@earthlink.net; Sherman, Leslie [Department of Chemistry, Washington College, 300 Washington Avenue, Chestertown, MD 21620 (United States); Armienta, Aurora [Instituto de Geofisica, UNAM, Mexico D.F. 04510 (Mexico); Concilio, Amy [Department of Earth, Ecological, and Environmental Sciences, University of Toledo, Toledo, OH 43606 (United States); Salinas, Carrie Ferguson [Department of Agronomy and Environmental Management, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2007-02-15

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapan Valley range from 4 to 14 700 mg As kg{sup -1}. Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg{sup -1} only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment. -- Much of the arsenic is relatively immobile but presents long-term source of arsenic.

  17. Arsenic in the soils of Zimapan, Mexico

    International Nuclear Information System (INIS)

    Ongley, Lois K.; Sherman, Leslie; Armienta, Aurora; Concilio, Amy; Salinas, Carrie Ferguson

    2007-01-01

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapan Valley range from 4 to 14 700 mg As kg -1 . Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg -1 only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment. -- Much of the arsenic is relatively immobile but presents long-term source of arsenic

  18. Arsenic speciation and sorption in natural environments

    Science.gov (United States)

    Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources.

  19. Method of arsenic removal from water

    Science.gov (United States)

    Gadgil, Ashok

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  20. Wind effects on prey availability: How northward migrating waders use brackish and hypersaline lagoons in the Sivash, Ukraine

    NARCIS (Netherlands)

    Verkuil, Yvonne I.; Koolhaas, Anita; Van Der Winden, Jan

    1993-01-01

    Large numbers of waders migrating northward in spring use the Sivash, a large system of shallow, brackish and hypersaline lagoons in the Black Sea and Azov Sea region (Ukraine). The bottoms of these lagoons are often uncovered by the wind. Hence, for waders the time and space available for feeding

  1. Effect of dentifrice containing fluoride and/or baking soda on enamel demineralization/remineralization: an in situ study.

    Science.gov (United States)

    Cury, J A; Hashizume, L N; Del Bel Cury, A A; Tabchoury, C P

    2001-01-01

    The additive effect of baking soda on the anticariogenic effect of fluoride dentifrice is not well established. To evaluate it, a crossover in situ study was done in three phases of 28 days. Volunteers, using acrylic palatal appliances containing four human enamel blocks, two sound (to evaluate demineralization) and two with artificial caries lesions (to evaluate remineralization), took part in this study. During each phase, 10% sucrose solution was dripped (3 times a day) only onto the sound blocks. After 10 min, a slurry of placebo, fluoride (F) or fluoride and baking soda (F+NaHCO(3)) dentifrice was dripped onto all enamel blocks. The results showed a higher F concentration in dental plaque formed during treatment with F+NaHCO(3) than placebo (pbaking soda neither improves nor impairs the effect of F dentifrice on reduction of demineralization and enhancement of remineralization of enamel.

  2. Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian freshwater sponge exposed to washing soda (sodium carbonate).

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Dutta, Manab Kumar; Acharya, Avanti; Mukhopadhyay, Sandip Kumar; Ray, Sajal

    2015-12-01

    Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    Science.gov (United States)

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  4. Effect of alpha-lipoic acid on the removal of arsenic from arsenic-loaded isolated liver tissues of rat

    Directory of Open Access Journals (Sweden)

    Noor-E-Tabassum

    2006-06-01

    Full Text Available The patient of chronic arsenic toxicity shows oxidative stress. To overcome the oxidative stress, several antioxidants such as beta-carotene, ascorbic acid, α-tocopherol, zinc and selenium had been suggested in the treatment of chronic arsenic toxicity. In the present study universal antioxidant (both water and lipid soluble antioxidant α-lipoic acid was used to examine the effectiveness of reducing the amount of arsenic from arsenic-loaded isolated liver tissues of rat. Isolated liver tissues of Long Evans Norwegian rats were cut into small pieces and incubated first in presence or absence of arsenic and then with different concentrations of α-lipoic acid during the second incubation. α-Lipoic acid decreases the amount of arsenic and malondialdehyde (MDA in liver tissues as well as increases the reduced glutathione (GSH level in dose dependent manner. These results suggest that α-lipoic acid remove arsenic from arsenic-loaded isolated liver tissues of rat.

  5. Comparative studies on anthraquinone retention following the soda/anthraquinone process using 14C-labelled anthraquinone, and mode of action of anthraquinone on lignins and lignin model components

    International Nuclear Information System (INIS)

    Pfuetze, E.

    1982-01-01

    This dissertation contributes to the clarification of the following questions: how much of the additive is retained in cellulose following soda/anthraquinone-wood pulping; how much anthraquinone can be detected after extraction studies and after a conventional CEHD-bleaching treatment; can differences be detected between soda lignins and soda/anthraquinone lignins with respect to analytical data, spectroscopie characteristics and macromolecular properties; and how do dimeric lignin models with #betta#-arylether structure behave in decomposition studies using the soda/anthraquinone process. (orig./MG) [de

  6. Poisoning of bees by industrial arsenic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jaroslav, S

    1962-01-01

    Massive poisoning of bees by industrial arsenic emissions in Czechoslovakia are reviewed. Arsenic emissions from an ore processing plant in Tesin were responsible for massive bee deaths after World War I. Massive death of bees was observed in 1938 in the Krompach region around a copper ore smelting plant which emitted arsenic. Other accidents were reported in 1954 and 1957 in areas around industrial plants and power plants using arsenopyrite-containing low-grade coal or lignite. Arsenic was emitted bound in fly-ash in the form of arsenic trioxide or, in the case of coals containing alkaline chlorides, in the form of arsenic trichloride. The arsenic contamination extended to areas within a radius of 3 to 7 km. Settled fly-ash contained 0.0004 to 0.75 percent arsenic, which was soluble in a citrate-hydrochloric acid solution of pH 3.9, which corresponds to the gastric acid of bees. The arsenic uptake by the bees from pollen was calculated to amount to 1 microgram daily, against a toxic dose of 0.37 microgram. The toxic effect of arsenic on bees can be abated by adding colloidal iron hydroxide to the sugar solution which they are fed.

  7. Poisoning of bees by industrial arsenic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, J

    1962-01-01

    Massive poisoning of bees by industrial arsenic emissions in Czechoslovakia are reviewed. Arsenic emissions from an ore processing plant in Tesin were responsible for massive bee deaths after World War I. Massive death of bees was observed in 1938 in the Krompach region around a copper ore smelting plant which emitted arsenic. Other accidents were reported in 1954 and 1957 in areas around industrial plants and power plants using arsenopyrite-containing low-grade coal or lignite. Arsenic was emitted bound in fly-ash in the form of arsenic trioxide or, in the case of coals containing alkaline chlorides, in the form of arsenic trichloride. The arsenic contamination extended to areas within a radius of 3-7 km. Settled fly-ash contained 0.0004-0.75% arsenic, which was soluble in a citrate-hydrochloric acid solution of pH 3.9, which corresponds to the gastric acid of bees. The arsenic uptake by the bees from pollen was calculated to amount to 1 microgram daily, against a toxic dose of 0.37 microgram. The toxic effect of arsenic on bees can be abated by adding colloidal iron hydroxide to the sugar solution which they are fed. 5 references.

  8. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yager, J.W.; Hicks, J.B.; Fabianova, N. [EPRI, Palo Alto, CA (United States). Environment Group

    1997-08-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study was undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites-inorganic arsenic (As), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) prior to the start of each shift. Results from a small number of cascade impacter air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions {ge} 3.5 {mu}m. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 {mu}g/m{sup 3} (range 0.17-375.2) and the mean sum of urinary arsenic (Sigma As) metabolites was 16.9 {mu}g As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 {mu}g/m{sup 3} arsenic from coal fly ash, the predicted mean concentration f the Sigma As urinary metabolites was 13.2 {mu}g As/g creatinine. Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic.

  9. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    Science.gov (United States)

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  10. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    International Nuclear Information System (INIS)

    Kitchin, Kirk T.; Wallace, Kathleen

    2008-01-01

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this hypothesis by using radioactive 73 As labeled arsenite and vacuum filtration methodology to determine the binding affinity and capacity of 73 As arsenite to calf thymus DNA and Type 2A unfractionated histones, histone H3, H4 and horse spleen ferritin. Arsenicals are known to release redox active Fe from ferritin. At concentrations up to about 1 mM, neither DNA nor any of the three proteins studied, Type II-A histones, histone H3, H4 or ferritin, bound radioactive arsenite in a specific manner. Therefore, it appears highly unlikely that initial in situ binding of trivalent arsenicals, followed by in situ oxidative DNA damage, can account for arsenic's carcinogenicity. This experimental evidence (lack of arsenite binding to DNA, histone Type II-A and histone H3, H4) does not rule out other possible oxidative stress modes of action for arsenic such as (a) diffusion of longer lived oxidative stress molecules, such as H 2 O 2 into the nucleus and ensuing oxidative damage, (b) redox chemistry by unbound arsenicals in the nucleus, or (c) arsenical-induced perturbations in Fe, Cu or other metals which are already known to oxidize DNA in vitro and in vivo

  11. RELATIONSHIP BETWEEN CRYSTALLINE STRUCTURE AND OPTICAL PROPERTIES OF WHEAT (Triticum aestevum L. STRAW SODA-OXYGEN PULP

    Directory of Open Access Journals (Sweden)

    Esat Gümüşkaya

    2003-04-01

    Full Text Available In this study; pulp was produced with soda-oxygen process by using wheat (Triticum aestevum L. straw as raw material and this pulp bleached with hypocholoride (H and peroxyde (P stages. It was found that crystalline properties of unbleached and bleached pulp samples increased by removing amorphous components. In addition, paper sheets made from unbleached and bleached soda-oxygen pulp and determined their optical properties. Consequently; while crystalline properties of pulp samples was rising with HP bleaching, it was determined that optical properties of paper sheets improved with bleaching.

  12. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  13. Methane as a biomarker in the search for extraterrestrial life: Lessons learned from Mars analog hypersaline environments

    Science.gov (United States)

    Bebout, B.; Tazaz, A.; Kelley, C. A.; Poole, J. A.; Davila, A.; Chanton, J.

    2010-12-01

    Methane released from discrete regions on Mars, together with previous reports of methane determined with ground-based telescopes, has revived the possibility of past or even extant life near the surface on Mars, since 90% of the methane on Earth has a biological origin. This intriguing possibility is supported by the abundant evidence of large bodies of liquid water, and therefore of conditions conducive to the origin of life, early in the planet's history. The detection and analysis of methane is at the core of NASA’s strategies to search for life in the solar system, and on extrasolar planets. Because methane is also produced abiotically, it is important to generate criteria to unambiguously assess biogenicity. The stable carbon and hydrogen isotopic signature of methane, as well as its ratio to other low molecular weight hydrocarbons (the methane/(ethane + propane) ratio: C1/(C2 + C3)), has been suggested to be diagnostic for biogenic methane. We report measurements of the concentrations and stable isotopic signature of methane from hypersaline environments. We focus on hypersaline environments because spectrometers orbiting Mars have detected widespread chloride bearing deposits resembling salt flats. Other evaporitic minerals, e.g., sulfates, are also abundant in several regions, including those studied by the Mars Exploration Rovers. The presence of evaporitic minerals, together with the known evolution of the Martian climate, from warmer and wetter to cold and hyper-arid, suggest that evaporitic and hypersaline environments were common in the past. Hypersaline environments examined to date include salt ponds located in Baja California, the San Francisco Bay, and the Atacama Desert. Methane was found in gas produced both in the sediments, and in gypsum- and halite-hosted (endolithic) microbial communities. Maximum methane concentrations were as high as 40% by volume. The methane carbon isotopic (δ13C) composition showed a wide range of values, from about

  14. Geomicrobial interactions with arsenic and antimony

    Science.gov (United States)

    Oremland, Ronald S.

    2015-01-01

    Although arsenic and antimony are generally toxic to life, some microorganisms exist that can metabolize certain forms of these elements. Some can use arsenite or stibnite as potential or sole energy sources, whereas others can use aresenate and antimonite (as was discovered only recently) as terminal electron acceptors. Still other microbes can metabolize arsenic and antimony compounds to detoxify them. These reactions are important from a geomicrobial standpoint because they indicate that a number of microbes contribute to arsenic and antimony mobilization or immobilization in the environment and play a role in arsenic and antimony cycles. Recent reviews include five on prokaryotes and arsenic metabolism, a review with an arsenic perspective on biomining, and a series on environmental antimony, including one about antimony and its interaction with microbiota.

  15. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan

    International Nuclear Information System (INIS)

    Tseng, C.-H.; Huang, Y.-K.; Huang, Y.-L.; Chung, C.-J.; Yang, M.-H.; Chen, C.-J.; Hsueh, Y.-M.

    2005-01-01

    Long-term exposure to ingested inorganic arsenic is associated with peripheral vascular disease (PVD) in the blackfoot disease (BFD)-hyperendemic area in Taiwan. This study further examined the interaction between arsenic exposure and urinary arsenic speciation on the risk of PVD. A total of 479 (220 men and 259 women) adults residing in the BFD-hyperendemic area were studied. Doppler ultrasound was used to diagnose PVD. Arsenic exposure was estimated by an index of cumulative arsenic exposure (CAE). Urinary levels of total arsenic, inorganic arsenite (As III ) and arsenate (As V ), monomethylarsonic acid (MMA V ), and dimethylarsinic acid (DMA V ) were determined. Primary methylation index [PMI = MMA V /(As III + As V )] and secondary methylation index (SMI = DMA V /MMA V ) were calculated. The association between PVD and urinary arsenic parameters was evaluated with consideration of the interaction with CAE and the confounding effects of age, sex, body mass index, total cholesterol, triglycerides, cigarette smoking, and alcohol consumption. Results showed that aging was associated with a diminishing capacity to methylate inorganic arsenic and women possessed a more efficient arsenic methylation capacity than men did. PVD risk increased with a higher CAE and a lower capacity to methylate arsenic to DMA V . The multivariate-adjusted odds ratios for CAE of 0, 0.1-15.4, and >15.4 mg/L x year were 1.00, 3.41 (0.74-15.78), and 4.62 (0.96-22.21), respectively (P 6.93, PMI > 1.77 and SMI > 6.93, PMI > 1.77 and SMI ≤ 6.93, and PMI ≤ 1.77 and SMI ≤ 6.93 were 1.00, 2.93 (0.90-9.52), 2.85 (1.05-7.73), and 3.60 (1.12-11.56), respectively (P V have a higher risk of developing PVD in the BFD-hyperendemic area in Taiwan

  16. A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Toru [National Institute for Environmental Studies, Environmental Health Sciences Division, Ibaraki (Japan); Chiba University, Faculty of Pharmaceutical Sciences, Chiba (Japan); Kobayashi, Yayoi; Cui, Xing; Hirano, Seishiro [National Institute for Environmental Studies, Environmental Health Sciences Division, Ibaraki (Japan)

    2005-04-01

    The metabolism of arsenic is generally accepted to proceed by repetitive reduction and oxidative methylation; the latter is mediated by arsenic methyltransferase (Cyt19). In human urine, the major metabolites of inorganic arsenicals such as arsenite (iAs{sup III}) and arsenate (iAs{sup V}) are monomethylarsonic acid (MMA{sup V}) and dimethylarsinic acid (DMA{sup V}). On the other hand, in rat bile, the major metabolites of iAs{sup III} have been reported to be arsenic-glutathione (As-GSH) complexes. In the present study we investigate whether these As-GSH complexes are substrates for arsenic methyltransferase by using human recombinant Cyt19. Analyses by high-performance liquid chromatography-inductively coupled plasma mass spectrometry suggested that arsenic triglutathione (ATG) was generated nonenzymatically from iAs{sup III} when GSH was present at concentrations 2 mM or higher. Human recombinant Cyt19 catalyzed transfer of a methyl group from S-adenosyl-l-methionine to arsenic and produced monomethyl and dimethyl arsenicals. The methylation of arsenic was catalyzed by Cyt19 only when ATG was present in the reaction mixture. Moreover, monomethylarsonic diglutathione (MADG) was a substrate of Cyt19 for further methylation to dimethylarsinic glutathione (DMAG). On the other hand, monomethylarsonous acid (MMA{sup III}), a hydrolysis product of MADG, was not methylated to dimethyl arsenical by Cyt19. These results suggest that As-GSH complexes such as ATG and MADG were converted by Cyt19 to MADG and DMAG, respectively. Both MADG and DMAG were unstable in solution when the GSH concentration was lower than 1 mM, and were hydrolyzed and oxidized to MMA{sup V} and DMA{sup V}, respectively. Metabolism of iAs{sup III} to methylated arsenicals by Cyt19 was via ATG and MADG rather than by oxidative methylation of iAs{sup III} and MMA{sup III}. (orig.)

  17. Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system.

    Science.gov (United States)

    Akerman, N H; Price, R E; Pichler, T; Amend, J P

    2011-09-01

    The hydrothermally influenced sediments of Tutum Bay, Ambitle Island, Papua New Guinea, are ideal for investigating the chemolithotrophic activities of micro-organisms involved in arsenic cycling because hydrothermal vents there expel fluids with arsenite (As(III)) concentrations as high as 950 μg L(-1) . These hot (99 °C), slightly acidic (pH ~6), chemically reduced, shallow-sea vent fluids mix with colder, oxidized seawater to create steep gradients in temperature, pH, and concentrations of As, N, Fe, and S redox species. Near the vents, iron oxyhydroxides precipitate with up to 6.2 wt% arsenate (As(V)). Here, chemical analyses of sediment porewaters from 10 sites along a 300-m transect were combined with standard Gibbs energies to evaluate the energy yields (-ΔG(r)) from 19 potential chemolithotrophic metabolisms, including As(V) reduction, As(III) oxidation, Fe(III) reduction, and Fe(II) oxidation reactions. The 19 reactions yielded 2-94 kJ mol(-1) e(-) , with aerobic oxidation of sulphide and arsenite the two most exergonic reactions. Although anaerobic As(V) reduction and Fe(III) reduction were among the least exergonic reactions investigated, they are still potential net metabolisms. Gibbs energies of the arsenic redox reactions generally correlate linearly with pH, increasing with increasing pH for As(III) oxidation and decreasing with increasing pH for As(V) reduction. The calculated exergonic energy yields suggest that micro-organisms could exploit diverse energy sources in Tutum Bay, and examples of micro-organisms known to use these chemolithotrophic metabolic strategies are discussed. Energy modeling of redox reactions can help target sampling sites for future microbial collection and cultivation studies. © 2011 Blackwell Publishing Ltd.

  18. Arsenic in Drinking Water—A Global Environmental Problem

    Science.gov (United States)

    Shaofen Wang, Joanna; Wai, Chien M.

    2004-02-01

    Arsenic contamination of groundwater is a global environmental problem affecting a large number of populations, especially in developing countries. The "blackfoot disease"that occurred in Taiwan more than half of a century ago was attributed to drinking arsenic-contaminated water from deep wells containing high concentrations of the trivalent arsenite species. Similar arsenic poisoning cases were reported later in Chinese Inner Mongolia, Bangladesh, and India—all related to drinking groundwater contaminated with arsenic. The maximum contaminant level (MCL) of arsenic in drinking water has been changed recently by the U.S. EPA from 50 ppb to 10 ppb; the compliance date is January 2006. This article summarizes documented global arsenic contamination problems, the regulatory controversy regarding MCL of arsenic in drinking water, and available technologies for removing arsenic from contaminated waters. Methods for analyzing total arsenic and arsenic species in water are also described.

  19. [Study of relationship between arsenic methylation and skin lesion in a population with long-term high arsenic exposure].

    Science.gov (United States)

    Su, Liqin; Cheng, Yibin; Lin, Shaobin; Wu, Chuanye

    2007-05-01

    To investigate the difference of arsenic metabolism in populations with long-term high arsenic exposure and explore the relationship between arsenic metabolism diversity and skin lesion. 327 residents in an arsenic polluted village were voluntarily enrolled in this study. Questionnaire survey and medical examination were carried out to learn basic information and detect skin lesions. Urinary inorganic and methylated arsenic were speciated by high performance liquid chromatography combined with hydride-generation atomic fluorescence spectrometry. Total arsenic concentration in hair was determined with DDC-Ag method. Hair arsenic content of studied polutions was generally high, but no significant difference were found among the studied four groups. MMA and DMA concentration in urine increased with studied polution age, and were positively related with skin lesion grade. The relative proportion of MMA in serious skin lesion group was significantly higher than in other 3 groups, while DMA/MMA ratio was significantly lower than control and mild group. The relative proportion of MMA was positively related with skin lesion grade, DMA/ MMA ratio was negatively related with skin lesion grade. Males could have higher arsenic cumulation and lower methylation capacity than those of females. The population of above 40 years old may have higher methylation capacity than those of adults below 40yeas old. Smokers and drinkers seemed lower methylation capacity than those of non-smokers and non-drinkers respectively. The methylation of arsenic could affect by several factors, including age gender, smoking and drinking. Arsenic methylation copacity mey be associated with skin lesion induced by arsenic exposure.

  20. Arsenic speciation analysis of urine samples from individuals living in an arsenic-contaminated area in Bangladesh.

    Science.gov (United States)

    Hata, Akihisa; Yamanaka, Kenzo; Habib, Mohamed Ahsan; Endo, Yoko; Fujitani, Noboru; Endo, Ginji

    2012-05-01

    Chronic inorganic arsenic (iAs) exposure currently affects tens of millions of people worldwide. To accurately determine the proportion of urinary arsenic metabolites in residents continuously exposed to iAs, we performed arsenic speciation analysis of the urine of these individuals and determined whether a correlation exists between the concentration of iAs in drinking water and the urinary arsenic species content. The subjects were 165 married couples who had lived in the Pabna District in Bangladesh for more than 5 years. Arsenic species were measured using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. The median iAs concentration in drinking water was 55 μgAs/L (range 47.9-153.4 μgAs/L), respectively. No arsenobetaine or arsenocholine was detected. The concentrations of the 4 urinary arsenic species were significantly and linearly related to each other. The urinary concentrations of total arsenic and each species were significantly correlated with the iAs concentration of drinking water. All urinary arsenic species are well correlated with each other and with iAs in drinking water. The most significant linear relationship existed between the iAs concentration in drinking water and urinary iAs + MMA concentration. From these results, combined with the effects of seafood ingestion, the best biomarker of iAs exposure is urinary iAs + MMA concentration.

  1. Exiguobacterium mediated arsenic removal and its protective effect against arsenic induced toxicity and oxidative damage in freshwater fish, Channa striata

    Directory of Open Access Journals (Sweden)

    Neha Pandey

    2015-01-01

    Full Text Available Arsenic is a toxic metalloid existing widely in the environment, and its removal from contaminated water has become a global challenge. The use of bacteria in this regard finds a promising solution. In the present study, Exiguobacterium sp. As-9, which is an arsenic resistant bacterium, was selected with respect to its arsenic removal efficiency. Quantification of arsenic in the water treated with bacterium showed that Exiguobacterium efficiently removed up to 99% of arsenic in less than 20 h. In order to reveal the possible effect of this bacterium in removal of arsenic from water and protecting fishes from the detrimental effects of arsenic, we initiated a range of studies on fresh water fish, Channa striata. It was observed that the fishes introduced into bacteria treated water displayed no symptoms of arsenic toxicity which was marked by a decreased oxidative damage, whereas the fishes exposed to arsenic revealed a significant (p < 0.05 increase in the oxidative stress together with the elevated levels of malondialdehyde. Determination of the bioaccumulation of arsenic in the liver tissues of C. striata using hydride generation atomic absorption spectrophotometry (HG-AAS revealed an increased As(III accumulation in the fishes exposed to arsenic whereas the arsenic level in the control and bacteria treated fishes were found below the detectable limit. In conclusion, this study presents the strategies of bacterial arsenic removal with possible directions for future research.

  2. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water

    NARCIS (Netherlands)

    Cavalca, L.; Corsini, A.; Zaccheo, P.; Andreoni, V.; Muyzer, G.

    2013-01-01

    Arsenic is present in many environments and is released by various natural processes and anthropogenic actions. Although arsenic is recognized to cause a wide range of adverse health effects in humans, diverse bacteria can metabolize it by detoxification and energy conservation reactions. This

  3. On the rational technology of low-grade tungsten raw material reprocessing

    International Nuclear Information System (INIS)

    Verevkin, G.V.; Kulmukhamedov, G.K.; Perlov, P.M.; Zelikman, A.N.; Ivanov, I.M.; Medvedev, V.V.

    1989-01-01

    The most rational technology for autoclave alkali reprocessing is presented. It lies in selective extraction of tungsten from alkali, containing the excess soda. It is shown that deep purification of tungsten from silicon, phosphorus and arsenic impurities takes place during tungsten extraction out of alkaline media. The important advantage of alkaline extraction technology is the exclusion of acid usage, possibility of soda regeneration and liquidation of acid flows, which solves the ecological problems

  4. Folate deficiency enhances arsenic effects on expression of genes involved in epidermal differentiation in transgenic K6/ODC mouse skin

    International Nuclear Information System (INIS)

    Nelson, Gail M.; Ahlborn, Gene J.; Delker, Don A.; Kitchin, Kirk T.; O'Brien, Thomas G.; Chen Yan; Kohan, Michael J.; Roop, Barbara C.; Ward, William O.; Allen, James W.

    2007-01-01

    Chronic arsenic exposure in humans is associated with cancers of the skin, lung, bladder and other tissues. There is evidence that folate deficiency may increase susceptibility to arsenic effects, including skin lesions. K6/ODC mice develop skin tumors when exposed to 10 ppm sodium arsenite for 5 months. In the current study, K6/ODC mice maintained on either a folate deficient or folate sufficient diet were exposed to 0, 1, or 10 ppm sodium arsenite in the drinking water for 30 days. Total RNA was isolated from skin samples and gene expression analyzed using Affymetrix Mouse 430 2.0 GeneChips. Data from 24 samples, with 4 mice in each of the 6 treatment groups, were RMA normalized and analyzed by two-way ANOVA using GeneSpring TM . Top gene ontology (GO) categories for genes responding significantly to both arsenic treatment and folate deficiency include nucleotide metabolism and cell organization and biogenesis. For many of these genes, folate deficiency magnifies the response to arsenic treatment. In particular, expression of markers of epidermal differentiation, e.g., loricrin, small proline rich proteins and involucrin, was significantly reduced by arsenic in the folate sufficient animals, and reduced further or at a lower arsenic dose in the folate deficient animals. In addition, expression of a number of epidermal cell growth/proliferation genes and cellular movement genes was altered. These results indicate that arsenic disrupts the normal balance of cell proliferation and differentiation, and that folate deficiency exacerbates these effects, consistent with the view that folate deficiency is a nutritional susceptibility factor for arsenic-induced skin tumorigenesis

  5. Baking soda and salt in bakeries of Mehrdasht (Najafabad), Isfahan, Iran: a survey on a typical rural population in a developing country.

    Science.gov (United States)

    Rezaiimofrad, M; Rangraz Jeddi, F; Azarbad, Z

    2013-03-01

    Bread is a valuable source of proteins, minerals and calories. Baking soda prevents the absorption and digestion of bread and more salt used in production of bread also causes different diseases. This study was conducted to determine the amount of soda and salt in bakeries. Cross-sectional descriptive study was carried out on 50 bakeries district during 2009. 400 samples were collected in four steps randomly. The standard PH baking soda in bread and salt less than 2 g/100 g was considered as the reference. The PH less than 6.2 was seen in 91.5% of samples and analyzed by random effect analysis. In 64.5% of samples, the amount of salt was more than the standard. The amount of baking soda used in the bakeries was not high; bakers either had no enough knowledge about the amount of salt or had more other reasons. Drastic measures are recommended.

  6. Linking Arsenic Metabolism and Toxic Effects

    Science.gov (United States)

    Although arsenic has been long recognized as a toxicant and a carcinogen, the molecular basis for few of its adverse effects are well understood. Like other metalloids, arsenic undergoes extensive metabolism involving oxidation state changes and formation of methyl-arsenic bonds ...

  7. Mechanical performance of a biocompatible biocide soda-lime glass-ceramic.

    Science.gov (United States)

    López-Esteban, S; Bartolomé, J F; Dí Az, L A; Esteban-Tejeda, L; Prado, C; López-Piriz, R; Torrecillas, R; Moya, J S

    2014-06-01

    A biocompatible soda-lime glass-ceramic in the SiO2-Na2O-Al2O3-CaO-B2O3 system containing combeite and nepheline as crystalline phases, has been obtained at 750°C by two different routes: (i) pressureless sintering and (ii) Spark Plasma Sintering. The SPS glass-ceramic showed a bending strength, Weibull modulus, and toughness similar values to the cortical human bone. This material had a fatigue limit slightly superior to cortical bone and at least two times higher than commercial dental glass-ceramics and dentine. The in vitro studies indicate that soda-lime glass-ceramic is fully biocompatible. The in vivo studies in beagle jaws showed that implanted SPS rods presented no inflammatory changes in soft tissues surrounding implants in any of the 10 different cases after four months implantation. The radiological analysis indicates no signs of osseointegration lack around implants. Moreover, the biocide activity of SPS glass-ceramic versus Escherichia coli, was found to be >4log indicating that it prevents implant infections. Because of this, the SPS new glass-ceramic is particularly promising for dental applications (inlay, crowns, etc). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Arsenic geochemistry of groundwater in Southeast Asia.

    Science.gov (United States)

    Kim, Kyoung-Woong; Chanpiwat, Penradee; Hanh, Hoang Thi; Phan, Kongkea; Sthiannopkao, Suthipong

    2011-12-01

    The occurrence of high concentrations of arsenic in the groundwater of the Southeast Asia region has received much attention in the past decade. This study presents an overview of the arsenic contamination problems in Vietnam, Cambodia, Lao People's Democratic Republic and Thailand. Most groundwater used as a source of drinking water in rural areas has been found to be contaminated with arsenic exceeding the WHO drinking water guideline of 10 μg·L(-1). With the exception of Thailand, groundwater was found to be contaminated with naturally occurring arsenic in the region. Interestingly, high arsenic concentrations (> 10 μg·L(-1)) were generally found in the floodplain areas located along the Mekong River. The source of elevated arsenic concentrations in groundwater is thought to be the release of arsenic from river sediments under highly reducing conditions. In Thailand, arsenic has never been found naturally in groundwater, but originates from tin mining activities. More than 10 million residents in Southeast Asia are estimated to be at risk from consuming arsenic-contaminated groundwater. In Southeast Asia, groundwater has been found to be a significant source of daily inorganic arsenic intake in humans. A positive correlation between groundwater arsenic concentration and arsenic concentration in human hair has been observed in Cambodia and Vietnam. A substantial knowledge gap exists between the epidemiology of arsenicosis and its impact on human health. More collaborative studies particularly on the scope of public health and its epidemiology are needed to conduct to fulfill the knowledge gaps of As as well as to enhance the operational responses to As issue in Southeast Asian countries.

  9. Production of selenium-72 and arsenic-72

    Science.gov (United States)

    Phillips, D.R.

    1994-12-06

    Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.

  10. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vorasan Sobhon*

    2008-04-01

    Full Text Available The disposal of toxic heavy metals such as arsenic posed high risk to the environment. Arsenite [As(III], a reduced form of arsenic, is more toxic and mobile than arsenate [As(V]. The aim of this work was to isolate arsenic-tolerant bacteria from contaminated soil collected in Ronphibun District, Nakorn Srithammarat Province, followed by screening these bacteria for their ability to adsorb arsenite. Twenty-four bacterial isolates were obtained from samples cultivated in basal salts medium plus 0.1% yeast extract and up to 40 mM sodium-arsenite at 30oC under aerobic condition. From these, isolates B-2, B-3, B-4, B-21, B-25 and B-27 produced extracellular polymeric-like substances into the culture medium, which may potentially be used in the bioremediation of arsenic and other contaminants. All isolates displayed arsenite adsorbing activities in the ranges of 36.87-96.93% adsorption from initial concentration of 40 mM sodium-arsenite, without any arsenic transforming activity. Five isolates with the highest arsenite adsorbing capacity include B-4, B-7, B-8, B-10 and B-13 which adsorbed 80.90, 86.72, 87.08, 84.36 and 96.93% arsenite, respectively. Identification of their 16S rDNA sequences showed B -7, B-8, and B-10 to have 97%, 99% and 97% identities to Microbacterium oxydans, Achromobacter sp. and Ochrobactrum anthropi, respectively. Isolates B-4 and B-13, which did not show sequence similarity to any bacterial species, may be assigned based on their morphological and biochemical characteristics to the genus Streptococcus and Xanthomonas, respectively. Thus, both isolates B-4 and B-13 appear to be novel arsenite adsorbing bacteria within these genuses.

  11. Sources and circulation of water and arsenic in the Giant Mine, Yellowknife, NWT, Canada.

    Science.gov (United States)

    Clark, Ian D; Raven, Kenneth G

    2004-06-01

    Recovery of gold from arsenopyrite-hosted ore in the Giant Mine camp, Yellowknife, NWT, Canada, has left a legacy of arsenic contamination that poses challenges for mine closure planning. Seepage from underground chambers storing some 237,000 tonnes of arsenic trioxide dust, has As concentrations exceeding 4000 ppm. Other potential sources and sinks of As also exist. Sources and movement of water and arsenic are traced using the isotopes of water and sulphate. Mine waters (16 ppm As; AsV/AsIII approximately 150) are a mixture of two principal water sources--locally recharged, low As groundwaters (0.5 ppm As) and Great Slave Lake (GSL; 0.004 ppm As) water, formerly used in ore processing and discharged to the northwest tailings impoundment (NWTP). Mass balance with delta18O shows that recirculation of NWTP water to the underground through faults and unsealed drillholes contributes about 60% of the mine water. Sulphate serves to trace direct infiltration to the As2O3 chambers. Sulphate in local, low As groundwaters (0.3-0.6 ppm As; delta34SSO4 approximately 4% and delta18OSO4 approximately -10%) originates from low-temperature aqueous oxidation of sulphide-rich waste rock. The high As waters gain a component of 18O-enriched sulphate derived from roaster gases (delta18OSO4) = + 3.5%), consistent with their arsenic source from the As2O3 chambers. High arsenic in NWTP water (approximately 8 ppm As; delta18OSO4 = -2%) derived from mine water, is attenuated to close to 1 ppm during infiltration back to the underground, probably by oxidation and sorption by ferrihydrite. Copyright 2004 Taylor and Francis Ltd.

  12. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 μg=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 μg=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100

  13. ARSENIC RESEARCH AT GWERD

    Science.gov (United States)

    Abstract - The presentation will summarize the arsenic research program at the Ground Water & Ecosystems Restoration Division of the National Risk Management Research Laboratory of USEPA. Topics include use of permeable reactive barriers for in situ arsenic remediation in ground...

  14. Transplacental arsenic carcinogenesis in mice

    International Nuclear Information System (INIS)

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  15. Roxarsone, inorganic arsenic, and other arsenic species in chicken: a U.S.-based market basket sample.

    Science.gov (United States)

    Nachman, Keeve E; Baron, Patrick A; Raber, Georg; Francesconi, Kevin A; Navas-Acien, Ana; Love, David C

    2013-07-01

    Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Conventional, antibiotic-free, and organic chicken samples were collected from grocery stores in 10 U.S. metropolitan areas from December 2010 through June 2011. We tested 116 raw and 142 cooked chicken samples for total arsenic, and we determined arsenic species in 65 raw and 78 cooked samples that contained total arsenic at ≥ 10 µg/kg dry weight. The geometric mean (GM) of total arsenic in cooked chicken meat samples was 3.0 µg/kg (95% CI: 2.5, 3.6). Among the 78 cooked samples that were speciated, iAs concentrations were higher in conventional samples (GM = 1.8 µg/kg; 95% CI: 1.4, 2.3) than in antibiotic-free (GM = 0.7 µg/kg; 95% CI: 0.5, 1.0) or organic (GM = 0.6 µg/kg; 95% CI: 0.5, 0.8) samples. Roxarsone was detected in 20 of 40 conventional samples, 1 of 13 antibiotic-free samples, and none of the 25 organic samples. iAs concentrations in roxarsone-positive samples (GM = 2.3 µg/kg; 95% CI: 1.7, 3.1) were significantly higher than those in roxarsone-negative samples (GM = 0.8 µg/kg; 95% CI: 0.7, 1.0). Cooking increased iAs and decreased roxarsone concentrations. We estimated that consumers of conventional chicken would ingest an additional 0.11 µg/day iAs (in an 82-g serving) compared with consumers of organic chicken. Assuming lifetime exposure and a proposed cancer slope factor of 25.7 per milligram per kilogram of body weight per day, this increase in arsenic exposure could result in 3.7 additional lifetime bladder and lung cancer cases per 100,000 exposed persons. Conventional chicken meat had higher iAs concentrations than did conventional antibiotic

  16. Arsenic mobilization and immobilization in paddy soils

    Science.gov (United States)

    Kappler, A.; Hohmann, C.; Zhu, Y. G.; Morin, G.

    2010-05-01

    Arsenic is oftentimes of geogenic origin and in many cases bound to iron(III) minerals. Iron(III)-reducing bacteria can harvest energy by coupling the oxidation of organic or inorganic electron donors to the reduction of Fe(III). This process leads either to dissolution of Fe(III)-containing minerals and thus to a release of the arsenic into the environment or to secondary Fe-mineral formation and immobilisation of arsenic. Additionally, aerobic and anaerobic iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation at neutral pH that is usually followed by iron(III) mineral precipitation. We are currently investigating arsenic immobilization by Fe(III)-reducing bacteria and arsenic co-precipitation and immobilization by anaerobic iron(II)-oxidizing bacteria in batch, microcosm and rice pot experiments. Co-precipitation batch experiments with pure cultures of nitrate-dependent Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation, to identify the minerals formed and to analyze the arsenic binding environment in the precipitates. Microcosm and rice pot experiments are set-up with arsenic-contaminated rice paddy soil. The microorganisms (either the native microbial population or the soil amended with the nitrate-dependent iron(II)-oxidizing Acidovorax sp. strain BoFeN1) are stimulated either with iron(II), nitrate, or oxygen. Dissolved and solid-phase arsenic and iron are quantified. Iron and arsenic speciation and redox state in batch and microcosm experiments are determined by LC-ICP-MS and synchrotron-based methods (EXAFS, XANES).

  17. Impaired arsenic metabolism in children during weaning

    International Nuclear Information System (INIS)

    Faengstroem, Britta; Hamadani, Jena; Nermell, Barbro; Grander, Margaretha; Palm, Brita; Vahter, Marie

    2009-01-01

    Background: Methylation of inorganic arsenic (iAs) via one-carbon metabolism is a susceptibility factor for a range of arsenic-related health effects, but there is no data on the importance of arsenic metabolism for effects on child development. Aim: To elucidate the development of arsenic metabolism in early childhood. Methods: We measured iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA), the metabolites of iAs, in spot urine samples of 2400 children at 18 months of age. The children were born to women participating in a population-based longitudinal study of arsenic effects on pregnancy outcomes and child development, carried out in Matlab, a rural area in Bangladesh with a wide range of arsenic concentrations in drinking water. Arsenic metabolism was evaluated in relation to age, sex, anthropometry, socio-economic status and arsenic exposure. Results: Arsenic concentrations in child urine (median 34 μg/L, range 2.4-940 μg/L), adjusted to average specific gravity of 1.009 g/mL, were considerably higher than that measured at 3 months of age, but lower than that in maternal urine. Child urine contained on average 12% iAs, 9.4% MA and 78% DMA, which implies a marked change in metabolite pattern since infancy. In particular, there was a marked increase in urinary %MA, which has been associated with increased risk of health effects. Conclusion: The arsenic metabolite pattern in urine of children at 18 months of age in rural Bangladesh indicates a marked decrease in arsenic methylation efficiency during weaning.

  18. Hijacking membrane transporters for arsenic phytoextraction

    Science.gov (United States)

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  19. Homespun remedy, homespun toxicity: baking soda ingestion for dyspepsia.

    Science.gov (United States)

    Ajbani, Keyur; Chansky, Michael E; Baumann, Brigitte M

    2011-04-01

    A 68-year-old man presented to the Emergency Department with a severe metabolic alkalosis after ingesting large quantities of baking soda to treat his dyspepsia. His underlying pulmonary disease and a progressively worsening mental status necessitated intubation for respiratory failure. Laboratory studies revealed a hyponatremic, hypochloremic, hypokalemic metabolic alkalosis. The patient was successfully treated after cessation of the oral bicarbonate, initiation of intravenous hydration, and correction of electrolyte abnormalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Assessment of global industrial-age anthropogenic arsenic contamination.

    Science.gov (United States)

    Han, Fengxiang X; Su, Yi; Monts, David L; Plodinec, M John; Banin, Amos; Triplett, Glover E

    2003-09-01

    Arsenic, a carcinogenic trace element, threatens not only the health of millions of humans and other living organisms, but also global sustainability. We present here, for the first time, the global industrial-age cumulative anthropogenic arsenic production and its potential accumulation and risks in the environment. In 2000, the world cumulative industrial-age anthropogenic arsenic production was 4.53 million tonnes. The world-wide coal and petroleum industries accounted for 46% of global annual gross arsenic production, and their overall contribution to industrial-age gross arsenic production was 27% in 2000. Global industrial-age anthropogenic As sources (as As cumulative production) follow the order: As mining production>As generated from coal>As generated from petroleum. The potential industrial-age anthropogenic arsenic input in world arable surface in 2000 was 2.18 mg arsenic kg(-1), which is 1.2 times that in the lithosphere. The development of substitute materials for arsenic applications in the agricultural and forestry industries and controls of arsenic emissions from the coal industry may be possible strategies to significantly decrease arsenic pollution sources and dissipation rates into the environment.

  1. Arsenic and human health effects: A review.

    Science.gov (United States)

    Abdul, Khaja Shameem Mohammed; Jayasinghe, Sudheera Sammanthi; Chandana, Ediriweera P S; Jayasumana, Channa; De Silva, P Mangala C S

    2015-11-01

    Arsenic (As) is ubiquitous in nature and humans being exposed to arsenic via atmospheric air, ground water and food sources are certain. Major sources of arsenic contamination could be either through geological or via anthropogenic activities. In physiological individuals, organ system is described as group of organs that transact collectively and associate with other systems for conventional body functions. Arsenic has been associated with persuading a variety of complications in body organ systems: integumentary, nervous, respiratory, cardiovascular, hematopoietic, immune, endocrine, hepatic, renal, reproductive system and development. In this review, we outline the effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions. Additionally, underlying mechanisms of disease development in each organ system due to arsenic have also been explored. Strikingly, arsenic has been able to induce epigenetic changes (in utero) and genetic mutations (a leading cause of cancer) in the body. Occurrence of various arsenic induced health effects involving emerging areas such as epigenetics and cancer along with their respective mechanisms are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Role of complex organic arsenicals in food in aggregate exposure to arsenic

    Science.gov (United States)

    For much of the world’s population, food is the major source of exposure to arsenic. Exposure to this non-essential metalloid at relatively low levels has been linked to a wide range of adverse health effects. Thus, evaluating foods as sources of exposure to arsenic is important ...

  3. ARSENIC INTERACTION WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST: IMPLICATIONS FOR ARSENIC REMEDIATION

    Science.gov (United States)

    Zerovalent iron is being used in permeable reactive barriers (PRBs) to remediate groundwater arsenic contamination. Iron(II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron under anaerobic conditions. The interaction between arsenic and this green...

  4. Baking soda pica: a case of hypokalemic metabolic alkalosis and rhabdomyolysis in pregnancy.

    Science.gov (United States)

    Grotegut, Chad A; Dandolu, Vani; Katari, Sunita; Whiteman, Valerie E; Geifman-Holtzman, Ossie; Teitelman, Melissa

    2006-02-01

    We report a case of baking soda pica in a woman at 31 weeks of pregnancy causing severe hypokalemic metabolic alkalosis and rhabdomyolysis. A multigravida at 31 weeks of gestation presented with weakness and muscle pain. She was found to have severe hypokalemic metabolic alkalosis and rhabdomyolysis, with elevation in serum transaminases and hypertension. We initially thought the patient had an atypical presentation of preeclampsia until it was realized that she was ingesting 1 full box of baking soda (454 g sodium bicarbonate) per day. Symptoms and abnormal laboratory findings resolved with discontinuation of the patient's pica practices. Pica is a common but often overlooked practice that can potentially lead to life-threatening disorders. A thorough evaluation of a patient's dietary intake is extremely important, especially in the setting of atypical presentations of disease in pregnancy.

  5. The effect of baking soda/hydrogen peroxide dentifrice (Mentadent) and a 0.12 percent chlorhexidine gluconate mouthrinse (Peridex) in reducing gingival bleeding.

    Science.gov (United States)

    Taller, S H

    1993-01-01

    The purpose of this study was to determine the effectiveness of a baking soda/hydrogen peroxide dentifrice, Mentadent, and a 0.12 percent chlorhexidine gluconate mouthrinse, Peridex, in reducing gingival bleeding. Forty subjects were divided into three groups; the baking soda group, the chlorhexidine group and the control group. All groups received oral hygiene instruction and brushed and flossed three times per day. Bleeding point scores were evaluated at baseline and at five weeks. The baking soda/hydrogen peroxide group used the supplied dentifrice as their sole toothpaste. The 0.12 percent chlorhexidine group used the mouthrinse twice per day. The control group performed oral hygiene as instructed. At five weeks, the 0.12 percent chlorhexidine mouthrinse significantly reduced gingival bleeding. The dentifrice and control groups revealed no statistically significant reductions. The results indicate that the 0.12 percent chlorhexidine mouthrinse is useful in improving oral health, whereas the baking soda/hydrogen peroxide dentifrice offered no advantages to conventional oral hygiene.

  6. Distribution and speciation of arsenic by transplacental and early life exposure to inorganic arsenic in offspring rats.

    Science.gov (United States)

    Xi, Shuhua; Jin, Yaping; Lv, Xiuqiang; Sun, Guifan

    2010-04-01

    The amount of arsenic compounds was determined in the liver and brain of pups and in breast milk in the pup's stomach in relation to the route of exposure: transplacental, breast milk, or drinking water. Forty-eight pregnant rats were randomly divided into four groups, each group was given free access to drinking water that contained 0, 10, 50, and 100 mg/L NaAsO(2) from gestation day 6 (GD 6) until postnatal day 42 (PND 42). Once pups were weaned, they started to drink the same arsenic-containing water as the dams. Contents of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and trimethylarsenic acid (TMA) in livers and brains of the pups on PND 0, 15, 28, and 42 and breast milk taken from the pup's stomach on PND 0 and 15 were detected using the hydride generation atomic absorption spectroscopy method. Concentrations of iAs, MMA, and DMA in the breast milk, the brain, and the liver of the pups increased with the concentration of arsenic in drinking water on PND 0, 15, 28, and 42. Compared to the liver or brain, breast milk had the lowest arsenic concentrations. There was a significant decrease in the levels of arsenic species on PND 15 compared to PND 0, 28, or 42. It was confirmed that arsenic species can pass through the placental barrier from dams to offspring and across the blood-brain barrier in the pups, and breast milk from dams exposed to arsenic in drinking water contains less arsenic than the liver and brain of pups.

  7. Diel changes in water chemistry in an arsenic-rich stream and treatment-pond system

    Science.gov (United States)

    Gammons, C.H.; Grant, T.M.; Nimick, D.A.; Parker, S.R.; DeGrandpre, M.D.

    2007-01-01

    Arsenic concentrations are elevated in surface waters of the Warm Springs Ponds Operable Unit (WSPOU), located at the head of the upper Clark Fork River Superfund site, Montana, USA. Arsenic is derived from historical deposition of smelter emissions (Mill and Willow Creeks) and historical mining and milling wastes (Silver Bow Creek). Although long-term monitoring has characterized the general seasonal and flow-related trends in As concentrations in these streams and the pond system used to treat Silver Bow Creek water, little is known about solubility controls and sorption processes that influence diel cycles in As concentrations. Diel (24-h) sampling was conducted in July 2004 and August 2005 at the outlet of the treatment ponds, at two locations along a nearby reconstructed stream channel that diverts tributary water around the ponds, and at Silver Bow Creek 2??km below the ponds. Dissolved As concentration increased up to 51% during the day at most of the stream sites, whereas little or no diel change was displayed at the treatment-pond outlet. The strong cycle in streams is explained by pH- and temperature-dependent sorption of As onto hydrous metal oxides or biofilms on the streambed. Concentrations of dissolved Ca2+ and HCO3- at the stream sites showed a diel temporal pattern opposite to that of As, and geochemical modeling supports the hypothesis that the concentrations of Ca2+ and HCO3- were controlled by precipitation of calcite during the warm afternoon hours when pH rose above 9.0. Nightly increases in dissolved Mn and Fe(II) concentrations were out of phase with concentrations of other divalent cations and are more likely explained by redox phenomena. ?? 2007 Elsevier B.V. All rights reserved.

  8. Toxic Substances Portal- Arsenic

    Science.gov (United States)

    ... is found at low levels in breast milk. top How can families reduce their risk for exposure to arsenic? If you use arsenic-treated wood in home projects, you should wear dust masks, gloves, and protective clothing to decrease exposure to sawdust. ...

  9. Arsenical poisoning of racehorses

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.N.; Fawell, E.V.; Brown, J.K.

    1964-03-07

    A case of arsenic poisoning in a training stable of Thoroughbred racehorses is described. This was due to the accidental spilling of an arsenical rat poison into the corn bin. Nine horses were affected. The mortality rate was 100 per cent. 1 table.

  10. Arsenic removal for ceramic water filters

    Directory of Open Access Journals (Sweden)

    Mishant Kumar

    2013-02-01

    Full Text Available Arsenic in drinking water is a hazard to human health and is a known carcinogen (Mass 1992. Resource Development International – Cambodia (RDIC has researched, developed, and manufactured simple ceramic water fi lters (CWF which have proved to be extremely effective in removing pathogens from water. These fi lters however, do not remove arsenic from water, which exists in the source water at levels above the World Health Organisation (WHO guideline of 10μg/L. The aims of this literature based study were to investigate conventional and non-conventional arsenic removal processes, and to discuss the options for applying an arsenic removal technology to the CWFs produced by RDIC. It was found that conventional arsenic removal technologies are diffi cult to implement in the context of household water treatment in a developing country. This study suggested that non-conventional arsenic removal technologies shall be more effective and that field studies must be undertaken to verify the success of such methods.

  11. Arsenic

    Science.gov (United States)

    ... for drinking-water quality Chemical hazards in drinking-water: arsenic Evaluations of the Joint FAO/WHO Expert Committee ... Africa Americas South-East Asia Europe Eastern Mediterranean Western ...

  12. Effect of Fluoride on Arsenic Uptake from Arsenic-Contaminated Groundwater using Pteris vittata L.

    Science.gov (United States)

    Zhao, Junying; Guo, Huaming; Ma, Jie; Shen, Zhaoli

    2015-01-01

    High-arsenic groundwater in inland basins usually contains high concentrations of fluoride. In the present study, the effects of fluoride on arsenic uptake by Pteris vittata and on arsenic transformation in growth media were investigated under greenhouse conditions. After P. vittata was hydroponically exposed to 66.8 μM As (V) in the presence of 1.05 mM F- in the form of NaF, KF, or NaF+KF for 10 d, no visible toxicity symptoms were observed, and there were not significant differences in the dry biomass among the four treatments. The results showed that P. vittata tolerated F- concentrations as high as 1.05 mM but did not accumulate fluoride in their own tissues. Arsenic uptake was inhibited in the presence of 1.05 mM F-. However, in hydroponic batches with 60 μM As (III) or 65 μM As (V), it was found that 210.6 and 316.0 μM F(-) promoted arsenic uptake. As(III) was oxidized to As(V) in the growth media in the presence and absence of plants, and F- had no effect on the rate of As(III) transformation. These experiments demonstrated that P. vittata was a good candidate to remediate arsenic-contaminated groundwater in the presence of fluoride. Our results can be used to develop strategies to remediate As-F-contaminated water using P. vittata.

  13. State policies targeting junk food in schools: racial/ethnic differences in the effect of policy change on soda consumption.

    Science.gov (United States)

    Taber, Daniel R; Stevens, June; Evenson, Kelly R; Ward, Dianne S; Poole, Charles; Maciejewski, Matthew L; Murray, David M; Brownson, Ross C

    2011-09-01

    We estimated the association between state policy changes and adolescent soda consumption and body mass index (BMI) percentile, overall and by race/ethnicity. We obtained data on whether states required or recommended that schools prohibit junk food in vending machines, snack bars, concession stands, and parties from the 2000 and 2006 School Health Policies and Programs Study. We used linear mixed models to estimate the association between 2000-2006 policy changes and 2007 soda consumption and BMI percentile, as reported by 90 730 students in 33 states and the District of Columbia in the Youth Risk Behavior Survey, and to test for racial/ethnic differences in the associations. Policy changes targeting concession stands were associated with 0.09 fewer servings of soda per day among students (95% confidence interval [CI] = -0.17, -0.01); the association was more pronounced among non-Hispanic Blacks (0.19 fewer servings per day). Policy changes targeting parties were associated with 0.07 fewer servings per day (95% CI = -0.13, 0.00). Policy changes were not associated with BMI percentile in any group. State policies targeting junk food in schools may reduce racial/ethnic disparities in adolescent soda consumption, but their impact appears to be too weak to reduce adolescent BMI percentile.

  14. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation.

    Science.gov (United States)

    Flanagan, Sara V; Johnston, Richard B; Zheng, Yan

    2012-11-01

    A national drinking water quality survey conducted in 2009 furnished data that were used to make an updated estimate of chronic arsenic exposure in Bangladesh. About 20 million and 45 million people were found to be exposed to concentrations above the national standard of 50 µg/L and the World Health Organization's guideline value of 10 µg/L, respectively. From the updated exposure data and all-cause mortality hazard ratios based on local epidemiological studies, it was estimated that arsenic exposures to concentrations > 50 µg/L and 10-50 µg/L account for an annual 24,000 and perhaps as many as 19,000 adult deaths in the country, respectively. Exposure varies widely in the 64 districts; among adults, arsenic-related deaths account for 0-15% of all deaths. An arsenic-related mortality rate of 1 in every 16 adult deaths could represent an economic burden of 13 billion United States dollars (US$) in lost productivity alone over the next 20 years. Arsenic mitigation should follow a two-tiered approach: (i) prioritizing provision of safe water to an estimated 5 million people exposed to > 200 µg/L arsenic, and (ii) building local arsenic testing capacity. The effectiveness of such an approach was demonstrated during the United Nations Children's Fund 2006-2011 country programme, which provided safe water to arsenic-contaminated areas at a cost of US$ 11 per capita. National scale-up of such an approach would cost a few hundred million US dollars but would improve the health and productivity of the population, especially in future generations.

  15. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride-sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride-sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related

  16. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride–sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride–sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related

  17. Arsenic removal by manganese greensand filters

    Energy Technology Data Exchange (ETDEWEB)

    Phommavong, T. [Saskatchewan Environment, Regina (Canada); Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1994-12-31

    Some of the small communities in Saskatchewan are expected to have difficulty complying with the new maximum acceptable concentration (MAC) of 25 {micro}g/L for arsenic. A test column was set up in the laboratory to study the removal of arsenic from the potable water using oxidation with KMnO{sub 4}, followed by manganese greensand filtration. Tests were run using water from the tap having a background arsenic concentration of <0.5 {micro}g/L and iron concentration in the range of 0.02 to 0.77 mg/L. The test water was spiked with arsenic and iron. Results showed that 61 % to 98% of arsenic can be removed from the potable water by oxidation with KMnO{sub 4} followed by manganese greensand filtration.

  18. Maternal Arsenic Exposure, Arsenic Methylation Efficiency, and Birth Outcomes in the Biomarkers of Exposure to ARsenic (BEAR) Pregnancy Cohort in Mexico

    Science.gov (United States)

    Laine, Jessica E.; Bailey, Kathryn A.; Rubio-Andrade, Marisela; Olshan, Andrew F.; Smeester, Lisa; Drobná, Zuzana; Herring, Amy H.; Stýblo, Miroslav; García-Vargas, Gonzalo G.

    2014-01-01

    Background: Exposure to inorganic arsenic (iAs) from drinking water is a global public health problem, yet much remains unknown about the extent of exposure in susceptible populations. Objectives: We aimed to establish the Biomarkers of Exposure to ARsenic (BEAR) prospective pregnancy cohort in Gómez Palacio, Mexico, to better understand the effects of iAs exposure on pregnant women and their children. Methods: Two hundred pregnant women were recruited for this study. Concentrations of iAs in drinking water (DW-iAs) and maternal urinary concentrations of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) were determined. Birth outcomes were analyzed for their relationship to DW-iAs and to the concentrations and proportions of maternal urinary arsenicals. Results: DW-iAs for the study subjects ranged from iAs that exceeded the World Health Organization’s recommended guideline of 10 μg As/L. DW-iAs was significantly associated with the sum of the urinary arsenicals (U-tAs). Maternal urinary concentrations of MMAs were negatively associated with newborn birth weight and gestational age. Maternal urinary concentrations of iAs were associated with lower mean gestational age and newborn length. Conclusions: Biomonitoring results demonstrate that pregnant women in Gómez Palacio are exposed to potentially harmful levels of DW-iAs. The data support a relationship between iAs metabolism in pregnant women and adverse birth outcomes. The results underscore the risks associated with iAs exposure in vulnerable populations. Citation: Laine JE, Bailey KA, Rubio-Andrade M, Olshan AF, Smeester L, Drobná Z, Herring AH, Stýblo M, García-Vargas GG, Fry RC. 2015. Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environ Health Perspect 123:186–192; http://dx.doi.org/10.1289/ehp.1307476 PMID:25325819

  19. Microbial ecology of deep-sea hypersaline anoxic basins

    KAUST Repository

    Merlino, Giuseppe

    2018-05-09

    Deep hypersaline anoxic basins (DHABs) are unique water bodies occurring within fractures at the bottom of the sea, where the dissolution of anciently buried evaporites created dense anoxic brines that are separated by a chemocline/pycnocline from the overlying oxygenated deep-seawater column. DHABs have been described in the Gulf of Mexico, the Mediterranean Sea, the Black Sea and the Red Sea. They are characterized by prolonged historical separation of the brines from the upper water column due to lack of mixing and by extreme conditions of salinity, anoxia, and relatively high hydrostatic pressure and temperatures. Due to these combined selection factors, unique microbial assemblages thrive in these polyextreme ecosystems. The topological localization of the different taxa in the brine-seawater transition zone coupled with the metabolic interactions and niche adaptations determine the metabolic functioning and biogeochemistry of DHABs. In particular, inherent metabolic strategies accompanied by genetic adaptations have provided insights on how prokaryotic communities can adapt to salt-saturated condition. Here, we review the current knowledge on the diversity, genomics, metabolisms and ecology of prokaryotes in DHABs.

  20. A comparative study of the effect of diet and soda carbonated drinks ...

    African Journals Online (AJOL)

    EB

    2013-09-03

    Sep 3, 2013 ... Objectives: A comparative effect of the diet and regular soda carbonated drinks on the histology of the cerebellum of female albino Wistar rats was ... contains caffeine, depending on the quantities consumed5. Caffeine is linked ... consumption might result in seizures, memory loss, dizziness, headache and ...

  1. Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes

    International Nuclear Information System (INIS)

    Walton, Felecia S.; Harmon, Anne W.; Paul, David S.; Drobna, Zuzana; Patel, Yashomati M.; Styblo, Miroslav

    2004-01-01

    Chronic exposures to inorganic arsenic (iAs) have been associated with increased incidence of noninsulin (type-2)-dependent diabetes mellitus. Although mechanisms by which iAs induces diabetes have not been identified, the clinical symptoms of the disease indicate that iAs or its metabolites interfere with insulin-stimulated signal transduction pathway or with critical steps in glucose metabolism. We have examined effects of iAs and methylated arsenicals that contain trivalent or pentavalent arsenic on glucose uptake by 3T3-L1 adipocytes. Treatment with inorganic and methylated pentavalent arsenicals (up to 1 mM) had little or no effect on either basal or insulin-stimulated glucose uptake. In contrast, trivalent arsenicals, arsenite (iAs III ), methylarsine oxide (MAs III O), and iododimethylarsine (DMAs III O) inhibited insulin-stimulated glucose uptake in a concentration-dependent manner. Subtoxic concentrations of iAs III (20 μM), MAs III O (1 μM), or DMAs III I (2 μM) decreased insulin-stimulated glucose uptake by 35-45%. Basal glucose uptake was significantly inhibited only by cytotoxic concentrations of iAs III or MAs III O. Examination of the components of the insulin-stimulated signal transduction pathway showed that all trivalent arsenicals suppressed expression and possibly phosphorylation of protein kinase B (PKB/Akt). The concentration of an insulin-responsive glucose transporter (GLUT4) was significantly lower in the membrane region of 3T3-L1 adipocytes treated with trivalent arsenicals as compared with untreated cells. These results suggest that trivalent arsenicals inhibit insulin-stimulated glucose uptake by interfering with the PKB/Akt-dependent mobilization of GLUT4 transporters in adipocytes. This mechanism may be, in part, responsible for the development of type-2 diabetes in individuals chronically exposed to iAs

  2. Arsenic, microbes and contaminated aquifers

    Science.gov (United States)

    Oremland, Ronald S.; Stolz, John F.

    2005-01-01

    The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.

  3. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    Directory of Open Access Journals (Sweden)

    Palas Roy

    2013-01-01

    Full Text Available High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Multivariate data analysis was done with the collected groundwater samples from the 132 tubewells of this contaminated region shows that three variable parameters are significantly related with the arsenic. Based on these relationships, a multiple linear regression model has been developed that estimated the arsenic contamination by measuring such three predictor parameters of the groundwater variables in the contaminated aquifer. This model could also be a suggestive tool while designing the arsenic removal scheme for any affected groundwater.

  4. CCD camera eases the control of a soda recovery boiler; CCD-kamera helpottaa soodakattilan valvontaa

    Energy Technology Data Exchange (ETDEWEB)

    Kinnunen, L.

    2001-07-01

    Fortum Technology has developed a CCD firebox camera, based on semiconductor technology, enduring hard conditions of soda recovery boiler longer than traditional cameras. The firebox camera air- cooled and the same air is pressed over the main lens so it remains clean despite of the alkaline liquor splashing around in the boiler. The image of the boiler is transferred through the main lens, image transfer lens and a special filter, mounted inside the camera tube, into the CCD camera. The first CCD camera system has been in use since 1999 in Sunila pulp mill in Kotka, owned by Myllykoski Oy and Enso Oyj. The mill has two medium-sized soda recovery boilers. The amount of black liquor, formed daily, is about 2000 tons DS, which is more than enough for the heat generation. Even electric power generation exceeds sometimes the demand, so the surplus power can be sold out. Black liquor is sprayed inside the soda recovery boiler with high pressure. The liquor form droplets in the boiler, the temperature of which is over 1000 deg C. A full-hot pile is formed at the bottom of the boiler after burning. The size and shape of the pile effect on the efficiency and the emissions of the boiler. The camera has operated well.

  5. Distribution of Arsenic and Risk Assessment of Activities on Soccer Pitches Irrigated with Arsenic-Contaminated Water

    Directory of Open Access Journals (Sweden)

    Nadia Martínez-Villegas

    2018-05-01

    Full Text Available The aim of this research was to estimate the risk of human exposure to arsenic due to sporting activities in a private soccer club in Mexico, where arsenic-contaminated water was regularly used for irrigation. For this purpose, the total concentration in the topsoil was considered for risk assessment. This was accomplished through three main objectives: (1 measuring arsenic concentrations in irrigation water and irrigated soils, (2 determining arsenic spatial distribution in shallow soils with Geographical Information Systems (GIS using geostatistical analysis, and (3 collecting field and survey data to develop a risk assessment calculation for soccer activities in the soccer club. The results showed that the average arsenic concentrations in shallow soils (138.1 mg/kg were 6.2 times higher than the Mexican threshold for domestic soils (22 mg/kg. Furthermore, dermal contact between exposed users and contaminated soils accounted for a maximum carcinogenic risk value of 1.8 × 10−5, which is one order of magnitude higher than the recommended risk value, while arsenic concentrations in the irrigation water were higher (6 mg/L than the WHO’s permissible threshold in drinking water, explaining the contamination of soils after irrigation. To the best of our knowledge, this is the first risk study regarding dermal contact with arsenic following regular grass irrigation with contaminated water in soccer pitches.

  6. Certain cases of poisoning by arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Cristol, P; Fourcade, J; Ravoire, J; Bezenech, C

    1939-05-01

    Cases of acute and chronic poisoning by arsenic are reported. Diffuse pains, angor, edema of the limbs and genitals, complicated by heptic insufficiency and chronic bronchitis were determined in a subject having lived near an industrial plant processing arseniferous ores for several years. The plant emitted several hundred kg of finely dispersed arsenic oxide daily which settled on forage and vegetables. Symptoms of poisoning by arsenic were also detected in cattle in the same area. The installation of Cottrell type dust separators has helped to suppress the arsenic oxide emissions.

  7. Acute toxicity from baking soda ingestion.

    Science.gov (United States)

    Thomas, S H; Stone, C K

    1994-01-01

    Sodium bicarbonate is an extremely well-known agent that historically has been used for a variety of medical conditions. Despite the widespread use of oral bicarbonate, little documented toxicity has occurred, and the emergency medicine literature contains no reports of toxicity caused by the ingestion of baking soda. Risks of acute and chronic oral bicarbonate ingestion include metabolic alkalosis, hypernatremia, hypertension, gastric rupture, hyporeninemia, hypokalemia, hypochloremia, intravascular volume depletion, and urinary alkalinization. Abrupt cessation of chronic excessive bicarbonate ingestion may result in hyperkalemia, hypoaldosteronism, volume contraction, and disruption of calcium and phosphorus metabolism. The case of a patient with three hospital admissions in 4 months, all the result of excessive oral intake of bicarbonate for symptomatic relief of dyspepsia is reported. Evaluation and treatment of patients with acute bicarbonate ingestion is discussed.

  8. Application of factor analysis and electrical resistivity to understand groundwater contributions to coastal embayments in semi-arid and hypersaline coastal settings.

    Science.gov (United States)

    Bighash, Paniz; Murgulet, Dorina

    2015-11-01

    Groundwater contributions and sources of salinity to Oso Bay in south Texas were investigated using multivariate statistical analysis of geochemical data and multitemporal electrical resistivity tomography surveys. Both analysis of geochemical data and subsurface imaging techniques identified two commonalities for the investigated system: 1) hypersaline water occurs near the groundwater/surface water interface during wet conditions creating reverse hydraulic gradients due to density effects. The development and downward movement of these fluids as continuous plumes deflect fresher groundwater discharge downward and laterally away from the surface; and 2) more pronounced upwelling of fresher groundwater occurs during drought periods when density inversions are more defined and are expected to overcome dispersion and diffusion processes and create sufficiently large-enough unstable gradients that induce density-difference convection. Salinity mass-balance models derived from time-difference resistivity tomograph and in-situ salinity data reaffirm these findings indicating that groundwater upwelling is more prominent during dry to wet conditions in 2013 (~545.5m(3)/d) and is less pronounced during wet to dry conditions in 2012 (~262.7 m(3)/d) for the 224 m(2) area surveyed. Findings show that the highly saline nature of water in this area and changes in salinity regimes can be attributed to a combination of factors, namely: surface outflows, evapoconcentration, recirculation of hypersaline groundwaters, and potential trapped oil field brines. Increased drought conditions will likely exacerbate the rate at which salinity levels are increasing in bays and estuaries in semi-arid regions where both hypersaline groundwater discharge and high evaporation rates occur simultaneously. Published by Elsevier B.V.

  9. Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water.

    Science.gov (United States)

    Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri

    2015-01-01

    Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported.

  10. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  11. Preliminary observation on the effect of baking soda volume on controlling odour from discarded organic waste

    International Nuclear Information System (INIS)

    Qamaruz-Zaman, N.; Kun, Y.; Rosli, R.-N.

    2015-01-01

    Highlights: • Approximately 50 g baking soda reduced odour concentration by 70%. • Reducing volatile acid concentration reduces odour concentration. • Ammonia has less effect on odour concentration. - Abstract: Food wastes with high moisture and organic matter content are likely to emit odours as a result of the decomposition process. The management of odour from decomposing wastes is needed to sustain the interest of residents and local councils in the source separation of kitchen wastes. This study investigated the potential of baking soda (at 50 g, 75 g and 100 g per kg food waste) to control odour from seven days stored food waste. It was found that 50 g of baking soda, spread at the bottom of 8 l food wastes bin, can reduce the odour by about 70%. A higher amount (above 100 g) is not advised as a pH higher than 9.0 may be induced leading to the volatilization of odorous ammonia. This research finding is expected to benefit the waste management sector, food processing industries as well as the local authorities where malodour from waste storage is a pressing issue

  12. Preliminary observation on the effect of baking soda volume on controlling odour from discarded organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Qamaruz-Zaman, N., E-mail: cenastaein@usm.my; Kun, Y.; Rosli, R.-N.

    2015-01-15

    Highlights: • Approximately 50 g baking soda reduced odour concentration by 70%. • Reducing volatile acid concentration reduces odour concentration. • Ammonia has less effect on odour concentration. - Abstract: Food wastes with high moisture and organic matter content are likely to emit odours as a result of the decomposition process. The management of odour from decomposing wastes is needed to sustain the interest of residents and local councils in the source separation of kitchen wastes. This study investigated the potential of baking soda (at 50 g, 75 g and 100 g per kg food waste) to control odour from seven days stored food waste. It was found that 50 g of baking soda, spread at the bottom of 8 l food wastes bin, can reduce the odour by about 70%. A higher amount (above 100 g) is not advised as a pH higher than 9.0 may be induced leading to the volatilization of odorous ammonia. This research finding is expected to benefit the waste management sector, food processing industries as well as the local authorities where malodour from waste storage is a pressing issue.

  13. CHEMISTRY OF PLANTS AND RECLAIMED GROUNDS ON SODA WASTE SITE AT JANIKOWO

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2014-10-01

    Full Text Available The paper presents the state of soda waste dumping site prior to reclamation, including the initial vegetation and properties of local grounds, the chemistry of plants colonizing the alkaline grounds in 2013 as well as the comparison of mineral element contents in leaves of trees spontaneously growing on the soda waste site in the years 2000 and 2013. The paper consists an integral part of a wider work concerning the effectiveness of sewage sludge application for bioremediation of highly saline and alkaline waste at the Janikowo Soda Plant. The spontaneous vegetation on soda waste in 2000 was scarce and patchy, its development conditioned by local microrelief where depressions provided water for plant establishment. The main species entering the site included grasses (Lolium perenne, Calamagrostis epigeios and herbs (Reseda lutea, Tussilago farfara and Picris hieracioides. The physico-chemical properties of waste grounds varied widely both horizontally and spatially. In 2013, the reclaimed dumping site was covered by a well-established meadow-likevegetation and the soil top layer (0–5 cm contained 9.2–13.9% Ca and 15–161 mg Cl/kg, at pH 7.6–7.8. The underlying 10–20 cm layer contained 21.1–63.3% Ca and 204–3110 mg Cl/kg, at pH 7.93–9.04. In the deeper 40-60 cm layer there was found 30.0-37.5% Ca and 9 920-16 320 mg Cl/kg, at pH 11.5–12.1. The vegetation growing in the vicinity of soil profiles contained: 1.65–3.36% N; 0.25–0.43% P; 1.38–2.95% K; 0.33–1.10 % Ca and 0.13–0.54% Mg. The contents of heavy metals in plants approximated the average amounts found in meadow clippings in Poland. The contents of main nutrients in leaves of trees spontaneously growing on the waste site were significantly higher in 2013 (2.70–3.21% N; 0.25–0.34% P and 0.98–1.75% K than in the year 2000 (1.70–2.04% N; 0.11–0.21% P and 0.54–0.80% K. The application of sewage sludge and subsequent fertilization of vegetation on waste

  14. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  15. Adaptation in Toxic Environments: Arsenic Genomic Islands in the Bacterial Genus Thiomonas.

    Directory of Open Access Journals (Sweden)

    Kelle C Freel

    Full Text Available Acid mine drainage (AMD is a highly toxic environment for most living organisms due to the presence of many lethal elements including arsenic (As. Thiomonas (Tm. bacteria are found ubiquitously in AMD and can withstand these extreme conditions, in part because they are able to oxidize arsenite. In order to further improve our knowledge concerning the adaptive capacities of these bacteria, we sequenced and assembled the genome of six isolates derived from the Carnoulès AMD, and compared them to the genomes of Tm. arsenitoxydans 3As (isolated from the same site and Tm. intermedia K12 (isolated from a sewage pipe. A detailed analysis of the Tm. sp. CB2 genome revealed various rearrangements had occurred in comparison to what was observed in 3As and K12 and over 20 genomic islands (GEIs were found in each of these three genomes. We performed a detailed comparison of the two arsenic-related islands found in CB2, carrying the genes required for arsenite oxidation and As resistance, with those found in K12, 3As, and five other Thiomonas strains also isolated from Carnoulès (CB1, CB3, CB6, ACO3 and ACO7. Our results suggest that these arsenic-related islands have evolved differentially in these closely related Thiomonas strains, leading to divergent capacities to survive in As rich environments.

  16. Lewis acid-catalyzed depolymerization of soda lignin in supercritical ethanol/water mixtures

    NARCIS (Netherlands)

    Güvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Emiel J M

    2016-01-01

    The depolymerization of lignin model compounds and soda lignin by super Lewis acidic metal triflates has been investigated in a mixture of ethanol and water at 400 °C. The strong Lewis acids convert representative model compounds for the structure-forming linkages in lignin, namely α-O-4, 5-O-4

  17. Containing arsenic-enriched groundwater tracing lead isotopic compositions of common arsenical pesticides in a coastal Maine watershed

    Science.gov (United States)

    Ayuso, Robert A.; Foley, Nora K.; Robinson, Glipin R.; Colvin, A.S.; Lipfert, G.; Reeve, A.S.

    2006-01-01

    Arsenical pesticides and herbicides were extensively used on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Lead arsenate was the most heavily used arsenical pesticide until it was officially banned. Lead arsenate, calcium arsenate, and sodium arsenate have similar Pb isotope compositions: 208Pb207Pb = 2.3839-2.4722, and 206Pb207Pb = 1.1035-1.2010. Other arsenical pesticides such as copper acetoarsenite (Paris green), methyl arsonic acid and methane arsonic acid, as well as arsanilic acid are widely variable in isotope composition. Although a complete understanding of the effects of historical use of arsenical pesticides is not available, initial studies indicate that arsenic and lead concentrations in stream sediments in New England are higher in agricultural areas that intensely used arsenical pesticides than in other areas. The Pb isotope compositions of pesticides partially overlap values of stream sediments from areas with the most extensive agricultural use. The lingering effects of arsenical pesticide use were tested in a detailed geochemical and isotopic study of soil profiles from a watershed containing arsenic-enriched ground water in coastal Maine. Acid-leach compositions of the soils represent lead adsorbed to mineral surfaces or held in soluble minerals (Fe- and Mn-hydroxides, carbonate, and some micaceous minerals), whereas residue compositions likely reflect bedrock compositions. The soil profiles contain labile Pb (acid-leach) showing a moderate range in 206Pb 207Pb (1.1870-1.2069), and 208Pb207Pb (2.4519-2.4876). Isotope values vary as a function of depth: the lowest Pb isotope ratios (e.g.,208Pb206Pb) representing labile lead are in the uppermost soil horizons. Lead contents decrease with depth in the soil profiles. Arsenic contents show no clear trend with depth. A multi-component mixing scheme that included lead from the local parent rock (Penobscot Formation), lead derived from combustion of

  18. First-principles studies of di-arsenic interstitial and its implications for arsenic-interstitial diffusion in crystalline silicon

    International Nuclear Information System (INIS)

    Kim, Yonghyun; Kirichenko, Taras A.; Kong, Ning; Larson, Larry; Banerjee, Sanjay K.

    2007-01-01

    We propose new structural configurations and novel diffusion mechanisms for neutral di-arsenic interstitial (As 2 I 2 ) in silicon with a first-principle density functional theory simulation within the generalized gradient approximation. With an assumption of excess silicon interstitials and high arsenic concentrations, neutral As 2 I 2 is expected to be favorable and mobile with low-migration barrier. Moreover, because the diffusion barrier of arsenic interstitial pairs (AsI) is very low ( 2 I 2 can be easily formed and likely intermediate stage of larger arsenic interstitial clusters

  19. Inorganic arsenic levels in baby rice are of concern

    International Nuclear Information System (INIS)

    Meharg, Andrew A.; Sun, Guoxin; Williams, Paul N.; Adomako, Eureka; Deacon, Claire; Zhu, Yong-Guan; Feldmann, Joerg; Raab, Andrea

    2008-01-01

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as μg/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe

  20. Chronic arsenic poisoning following ayurvedic medication.

    Science.gov (United States)

    Pinto, Benzeeta; Goyal, Palvi; Flora, S J S; Gill, K D; Singh, Surjit

    2014-12-01

    Ayurveda, Indian traditional system of medicine, is practiced commonly in South East Asia and in many parts of the world. Many ayurvedic drugs contain heavy metals and may lead to metal toxicity. Of these, chronic lead poisoning is the most common. Chronic arsenic poisoning following the use of ayurvedic medication, though reported, is rare. We describe three patients who presented with features of chronic arsenic poisoning following prolonged ayurvedic medication use. The diagnosis of chronic arsenic poisoning was confirmed by high arsenic levels in the blood, urine, hair, and nails in all the three patients and in ayurvedic drug in two patients. The ayurvedic medication was discontinued and treatment with D-penicillamine started. At 6 months after treatment, blood arsenic levels returned to normal with clinical recovery in all of them. Arsenic poisoning following ayurvedic medication is much less common than lead poisoning, though mineral ayurvedic medicines may lead to it. We used D-penicillamine as chelator and all of them recovered. Whether withdrawal of medication alone or D-penicillamine also played a role in recovery is unclear and needs to be assessed.

  1. Role and mechanism of arsenic in regulating angiogenesis.

    Directory of Open Access Journals (Sweden)

    Ling-Zhi Liu

    Full Text Available Arsenic is a wide spread carcinogen associated with several kinds of cancers including skin, lung, bladder, and liver cancers. Lung is one of the major targets of arsenic exposure. Angiogenesis is the pivotal process during carcinogenesis and chronic pulmonary diseases, but the role and mechanism of arsenic in regulating angiogenesis remain to be elucidated. In this study we show that short time exposure of arsenic induces angiogenesis in both human immortalized lung epithelial cells BEAS-2B and adenocarcinoma cells A549. To study the molecular mechanism of arsenic-inducing angiogenesis, we find that arsenic induces reactive oxygen species (ROS generation, which activates AKT and ERK1/2 signaling pathways and increases the expression of hypoxia-inducible factor 1 (HIF-1 and vascular endothelial growth factor (VEGF. Inhibition of ROS production suppresses angiogenesis by decreasing AKT and ERK activation and HIF-1 expression. Inhibition of ROS, AKT and ERK1/2 signaling pathways is sufficient to attenuate arsenic-inducing angiogenesis. HIF-1 and VEGF are downstream effectors of AKT and ERK1/2 that are required for arsenic-inducing angiogenesis. These results shed light on the mechanism of arsenic in regulating angiogenesis, and are helpful to develop mechanism-based intervention to prevent arsenic-induced carcinogenesis and angiogenesis in the future.

  2. The Soda Can Optimization Problem: Getting Close to the Real Thing

    Science.gov (United States)

    Premadasa, Kirthi; Martin, Paul; Sprecher, Bryce; Yang, Lai; Dodge, Noah-Helen

    2016-01-01

    Optimizing the dimensions of a soda can is a classic problem that is frequently posed to freshman calculus students. However, if we only minimize the surface area subject to a fixed volume, the result is a can with a square edge-on profile, and this differs significantly from actual cans. By considering a more realistic model for the can that…

  3. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution

    International Nuclear Information System (INIS)

    Drewniak, Lukasz; Styczek, Aleksandra; Majder-Lopatka, Malgorzata; Sklodowska, Aleksandra

    2008-01-01

    The aim of the present study was to find out if bacteria present in ancient gold mine could transform immobilized arsenic into its mobile form and increase its dissemination in the environment. Twenty-two arsenic-hypertolerant cultivable bacterial strains were isolated. No chemolithoautotrophs, which could use arsenite as an electron donor as well as arsenate as an electron acceptor, were identified. Five isolates exhibited hypertolerance to arsenic: up to 500 mM of arsenate. A correlation between the presence of siderophores and high resistance to arsenic was found. The results of this study show that detoxification processes based on arsenate reductase activity might be significant in dissemination of arsenic pollution. It was concluded that the activity of the described heterotrophic bacteria contributes to the mobilization of arsenic in the more toxic As(III) form and a new mechanism of arsenic mobilization from a scorodite was proposed. - The activity of the described heterotrophic bacteria leads to mobilization of arsenic and in this way contributes to the dissemination of arsenic pollution

  4. Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment.

    Science.gov (United States)

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Penížek, Vít; Matoušek, Tomáš; Culka, Adam; Drahota, Petr

    2018-06-01

    Dust emissions from copper smelters processing arsenic-bearing ores represent a risk to soil environments due to the high levels of As and other inorganic contaminants. Using an in situ experiment in four different forest and grassland soils (pH 3.2-8.0) we studied the transformation of As-rich (>50 wt% As) copper smelter dust over 24 months. Double polyamide bags with 1 g of flue dust were buried at different depths in soil pits and in 6-month intervals; then those bags, surrounding soil columns, and soil pore waters were collected and analysed. Dust dissolution was relatively fast during the first 6 months (5-34%), and mass losses attained 52% after 24 months. The key driving forces affecting dust dissolution were not only pH, but also the water percolation/retention in individual soils. Primary arsenolite (As 2 O 3 ) dissolution was responsible for high As release from the dust (to 72%) and substantial increase of As in the soil (to a 56 × increase; to 1500 mg kg -1 ). Despite high arsenolite solubility, this phase persisted in the dust after 2 years of exposure. Mineralogical investigation indicated that mimetite [Pb 5 (AsO 4 ) 3 (Cl,OH)], unidentified complex Ca-Pb-Fe-Zn arsenates, and Fe oxyhydroxides partly controlled the mobility of As and other metal(loid)s. Compared to As, other less abundant contaminants (Bi, Cu, Pb, Sb, Zn) were released into the soil to a lesser extent (8-40% of total). The relatively high mobility of As in the soil can be seen from decreases of bulk As concentrations after spring snowmelt, high water-extractable fractions with up to ∼50% of As(III) in extracts, and high As concentrations in soil pore waters. Results indicate that efficient controls of emissions from copper smelters and flue dust disposal sites are needed to prevent extensive contamination of nearby soils by persistent As. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Small System Use of a Solid Arsenic Oxidizing Media in Place of Chemical Oxidation to Enhance Arsenic Removals

    Science.gov (United States)

    As part of the USEPA Arsenic Demonstration Program, an arsenic removal adsorptive media treatment system (10 gpm) was installed at Head Start School in Buckeye Lake, Ohio on June 28, 2006. The source water (ground water) contained around 20 µg/L of arsenic, existing predominatel...

  6. Arsenic uptake by Lemna minor in hydroponic system.

    Science.gov (United States)

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.

  7. Arsenic contamination and arsenicosis in China

    International Nuclear Information System (INIS)

    Sun Guifan

    2004-01-01

    Arsenicosis is a serious environmental chemical disease in China mainly caused by drinking water from pump wells contaminated by high levels of arsenic. Chronic exposure of humans to high concentrations of arsenic in drinking water is associated with skin lesions, peripheral vascular disease, hypertension, blackfoot disease, and high risk of cancers. Lead by the Ministry of Health of China, we carried out a research about arsenicosis in China recently. Areas contaminated with arsenic from drinking water are determined by 10% pump well water sample method while areas from burning coal are determined by existing data. Two epidemic areas of Shanxi Province and Inner Mongolia are investigated for the distribution of pump wells containing high arsenic. Well water in all the investigated villages of Shanxi Province showed polluted by high arsenic, and the average rate of unsafe pump well water is 52%. In Inner Mongolia, the high percentage of pump wells containing elevated arsenic is found only in a few villages. The average rate of unsafe pump well water is 11%. From our research, we find that new endemic areas are continuously emerging in China. Up to now, epidemic areas of arsenicosis mainly involve eight provinces and 37 counties in China. In the affected areas, the discovery of wells and coal with high levels of arsenic is continuing sporadically, and a similar scattered distribution pattern of patients is also being observed

  8. Groundwater arsenic contamination throughout China.

    Science.gov (United States)

    Rodríguez-Lado, Luis; Sun, Guifan; Berg, Michael; Zhang, Qiang; Xue, Hanbin; Zheng, Quanmei; Johnson, C Annette

    2013-08-23

    Arsenic-contaminated groundwater used for drinking in China is a health threat that was first recognized in the 1960s. However, because of the sheer size of the country, millions of groundwater wells remain to be tested in order to determine the magnitude of the problem. We developed a statistical risk model that classifies safe and unsafe areas with respect to geogenic arsenic contamination in China, using the threshold of 10 micrograms per liter, the World Health Organization guideline and current Chinese standard for drinking water. We estimate that 19.6 million people are at risk of being affected by the consumption of arsenic-contaminated groundwater. Although the results must be confirmed with additional field measurements, our risk model identifies numerous arsenic-affected areas and highlights the potential magnitude of this health threat in China.

  9. Trace speciation analysis of arsenic in beverages

    OpenAIRE

    Fajgarová, Aneta

    2016-01-01

    The aim of this bachelor thesis was to determine the toxicologically important arsenic species in beverages (beer, wine and apple juice) with minimal sample preparation. Determination of arsenic species was performed by selective hydride generation of arsenic hydrides with cryogenic collection under liquid nitrogen and detection by atomic absorption spectrometry. In all the samples only inorganic arsenic was found, methyl substituted species were below the limit of detection. The method is su...

  10. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    OpenAIRE

    Palas Roy; Naba Kumar Mondal; Biswajit Das; Kousik Das

    2013-01-01

    High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India) has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Mul...

  11. State Policies Targeting Junk Food in Schools: Racial/Ethnic Differences in the Effect of Policy Change on Soda Consumption

    Science.gov (United States)

    Stevens, June; Evenson, Kelly R.; Ward, Dianne S.; Poole, Charles; Maciejewski, Matthew L.; Murray, David M.; Brownson, Ross C.

    2011-01-01

    Objectives. We estimated the association between state policy changes and adolescent soda consumption and body mass index (BMI) percentile, overall and by race/ethnicity. Methods. We obtained data on whether states required or recommended that schools prohibit junk food in vending machines, snack bars, concession stands, and parties from the 2000 and 2006 School Health Policies and Programs Study. We used linear mixed models to estimate the association between 2000–2006 policy changes and 2007 soda consumption and BMI percentile, as reported by 90 730 students in 33 states and the District of Columbia in the Youth Risk Behavior Survey, and to test for racial/ethnic differences in the associations. Results. Policy changes targeting concession stands were associated with 0.09 fewer servings of soda per day among students (95% confidence interval [CI] = −0.17, −0.01); the association was more pronounced among non-Hispanic Blacks (0.19 fewer servings per day). Policy changes targeting parties were associated with 0.07 fewer servings per day (95% CI = −0.13, 0.00). Policy changes were not associated with BMI percentile in any group. Conclusions. State policies targeting junk food in schools may reduce racial/ethnic disparities in adolescent soda consumption, but their impact appears to be too weak to reduce adolescent BMI percentile. PMID:21778484

  12. Arsenic poisoning of cattle and other domestic animals

    Energy Technology Data Exchange (ETDEWEB)

    Moxham, J W; Coup, M R

    1968-01-01

    One hundred and sixty-one incidents of arsenic poisoning in domestic animals were recorded at Ruakura Veterinary Diagnostic Station from 1955 to 1967. Cattle was the animal species most subject to arsenic poisoning. Clincal signs, post-mortem findings and sources of arsenic are given. Arsenic poisoning was more prevalent in younger cattle and during the warmer months of the year. With cattle most incidents were associated with carelessly discarded arsenical compounds, although most deaths occurred when these compounds were deliberately used. In other species, losses were generally caused by the deliberate use of arsenical preparations for dipping, drenching and weed spraying. 10 references, 2 tables.

  13. Arsenic in the environment: enrichments in the Slovenian soils

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2005-12-01

    Full Text Available Arsenic, a toxic element with metalloid properties, is found in detectable concentrations in environmental samples. In nature it is enriched in metal (sulphide ore deposits, mainly as arsenides of Cu, Ni and Fe. Arsenic compounds are used mainly in agricultureand forestry as pesticides and herbicides. The ecosystem can be contaminated with arsenic via both natural and anthropogenic sources. Uses of arsenic contaminated water present so far the greatest health hazard. Occurrences of mining related arsenic problems havealso been recorded in many parts of the world.The impact of mining and metallurgic industry with regard to arsenic contents in soils in some potentially contaminated areas in Slovenia is discussed. Enriched contents of arsenic were found in Mežica. Arsenic correlates very well with lead, zinc and other heavymetals which are enriched as a result of long lasting lead production in the area. Also in Celje and Jesenice arsenic has the same distribution pattern as other anthropogenically introduced pollutants. In Idrija there are some slightly arsenic enriched areas, but there is no correlation with mercury, so the origin of arsenic in not clear yet.

  14. Arsenic (Environmental Health Student Portal)

    Science.gov (United States)

    ... Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Videos Games Experiments For Teachers Home Chemicals Arsenic Print this ... human activities, such as mining, farming, and other industries. This can be dangerous, because arsenic is poisonous ...

  15. Napoleon Bonaparte's exposure to arsenic during 1816.

    Science.gov (United States)

    Leslie, A C; Smith, H

    1978-12-11

    Analysis of hair from Napoleon showed that he was exposed to considerable amounts of arsenic during 1816. The distribution pattern of the arsenic in the hair is similar to that found after the daily ingestion of excessive amounts of arsenic.

  16. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption.

    Science.gov (United States)

    Batista, Bruno L; Souza, Juliana M O; De Souza, Samuel S; Barbosa, Fernando

    2011-07-15

    Rice is an important source of essential elements. However, rice may also contain toxic elements such as arsenic. Therefore, in the present study, the concentration of total arsenic and five main chemical species of arsenic (As(3+), As(5+), DMA, MMA and AsB) were evaluated in 44 different rice samples (white, parboiled white, brown, parboiled brown, parboiled organic and organic white) from different Brazilian regions using high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The mean level of total arsenic was 222.8 ng g(-1) and the daily intake of inorganic arsenic (the most toxic form) from rice consumption was estimated as 10% of the Provisional Tolerable Daily Intake (PTDI) with a daily ingestion of 88 g of rice. Inorganic arsenic (As(3+), As(5+)) and dimethylarsinic acid (DMA) are the predominant forms in all samples. The percentages of species were 38.7; 39.7; 3.7 and 17.8% for DMA, As(3+), MMA and As(5+), respectively. Moreover, rice samples harvested in the state of Rio Grande do Sul presented more fractions of inorganic arsenic than rice in Minas Gerais or Goiás, which could lead to different risks of arsenic exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. An investigation of the health effects caused by exposure to arsenic from drinking water and coal combustion: arsenic exposure and metabolism.

    Science.gov (United States)

    Wei, Binggan; Yu, Jiangping; Kong, Chang; Li, Hairong; Yang, Linsheng; Guo, Zhiwei; Cui, Na; Xia, Yajuan; Wu, Kegong

    2017-11-01

    Few studies have been conducted to compare arsenic exposure, metabolism, and methylation in populations exposed to arsenic in drinking water and from coal combustion. Therefore, arsenic concentrations in the environment and arsenic speciation in the urine of subjects exposed to arsenic as a consequence of coal combustion in a rural area in Shaanxi province (CCA) and in drinking water in a rural area in Inner Mongolia (DWA) were investigated. The mean arsenic concentrations in drinking water, indoor air, and soil in CCA were 4.52 μg/L, 0.03 mg/m 3 , and 14.93 mg/kg, respectively. The mean arsenic concentrations in drinking water and soil in DWA were 144.71 μg/L and 10.19 mg/kg, respectively, while the level in indoor air was lower than the limit of detection. The total daily intakes of arsenic in DWA and CCA were 4.47 and 3.13 μg/day·kg, respectively. The mean urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and total arsenic (TAs) for subjects with skin lesions in DWA were 50.41, 47.01, 202.66, and 300.08 μg/L. The concentrations for subjects without skin lesions were 49.76, 44.20, 195.60, and 289.56 μg/L, respectively. The %iAs, %MMA, and %DMA in the TAs in the urine of subjects from CCA were 12.24, 14.73, and 73.03%, while the corresponding values from DWA were 17.54, 15.57, and 66.89%, respectively. The subjects in DWA typically had a higher %iAs and %MMA, and a lower %DMA, and primary and secondary methylation index (PMI and SMI) than the subjects in CCA. It was concluded that the arsenic methylation efficiency of subjects in DWA and CCA was significantly influenced by chronic exposure to high levels of arsenic in the environment. The lower PMI and SMI values in DWA revealed lower arsenic methylation capacity due to ingestion of arsenic in drinking water. However, it remained unclear if the differences in arsenic metabolism between the two groups were due to differences in exposure levels

  18. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    Science.gov (United States)

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Analytical results for arsenic in water samples from 5,023 wells obtained during 1969–2007 across Pennsylvania were compiled and related to other associated groundwater-quality and environmental factors and used to predict the probability of elevated arsenic concentrations, defined as greater than or equal to 4.0 micrograms per liter (µg/L), in groundwater. Arsenic concentrations of 4.0 µg/L or greater (elevated concentrations) were detected in 18 percent of samples across Pennsylvania; 8 percent of samples had concentrations that equaled or exceeded the U.S. Environmental Protection Agency’s drinking-water maximum contaminant level of 10.0 µg/L. The highest arsenic concentration was 490.0 µg/L.

  19. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield.

    Science.gov (United States)

    Mandal, Asit; Purakayastha, T J; Patra, A K; Sanyal, S K

    2012-07-01

    A greenhouse experiment evaluated the effect of phytoextraction of arsenic from a contaminated soil by Chinese Brake Fern (Pteris vittata L.) and its subsequent effects on growth and uptake of arsenic by rice (Oryza sativa L.) crop. Pteris vittata was grown for one or two growing cycles of four months each with two phosphate sources, using single super phosphate (SSP) and di-ammonium phosphate (DAP). Rice was grown on phytoextracted soils followed by measurements of biomass yield (grain, straw, and root), arsenic concentration and, uptake by individual plant parts. The biomass yield (grain, straw and rice) of rice was highest in soil phytoextracted with Pteris vittata grown for two cycles and fertilized with diammonium phosphate (DAP). Total arsenic uptake in contaminated soil ranged from 8.2 to 16.9 mg pot(-1) in first growing cycle and 5.5 to 12.0 mg pot(-1) in second growing cycle of Pteris vittata. There was thus a mean reduction of 52% in arsenic content of rice grain after two growing cycle of Pteris vittata and 29% after the one growing cycle. The phytoextraction of arsenic contaminated soil by Pteris vittata was beneficial for growing rice resulted in decreased arsenic content in rice grain of <1 ppm. There was a mean improvement in rice grain yield 14% after two growing cycle and 8% after the one growing cycle of brake fern.

  20. Arsenic in contaminated soil and river sediment

    International Nuclear Information System (INIS)

    Bombach, G.; Pierra, A.; Klemm, W.

    1994-01-01

    Different areas in the Erzgebirge mountains are contaminated by high arsenic concentration which is caused by the occurrence of ore and industrial sources. The study showed clearly a high concentration of arsenic in the surface and under soil (A and B horizons) in the Freiberg district. The distribution of the arsenic concentration in the area, the content of water soluble arsenic, the several oxidation states (As 3+ , As 5+ ) and the bonding types have been analyzed. (orig.)

  1. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment

    Directory of Open Access Journals (Sweden)

    Salvador eMirete

    2015-10-01

    Full Text Available Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes involved in salt resistance from the microbial communities of brines and the rhizosphere from the Es Trenc saltern (Mallorca, Spain. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain Escherichia coli MKH13, and screened for salt resistance. As a result, eleven genes that conferred salt resistance were identified, some encoding for well known proteins previously related to osmoadaptation as a glycerol and a proton pump, whereas others encoded for proteins not previously related to this function in microorganisms as DNA/RNA helicases, an endonuclease III (Nth and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also exhibited salt resistance in this bacterium, broadening the spectrum of bacterial species where these genes can operate. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment.

  2. Arsenic Remediation by Synthetic and Natural Adsorbents

    Directory of Open Access Journals (Sweden)

    Muhammad Saqaf Jagirani

    2017-06-01

    Full Text Available The contagion of toxic metals in water is a serious environmental and health concern and threatening problem worldwide. Particularly arsenic contamination in ground water has became great dilemma in the earlier decades. With advent in research for arsenic remediation, standard of drinking water is improving and now reduced to few parts per million (ppm level of arsenic in drinking water sources. However, due to continuous enhancement in environmental pollution, remediation techniques are still needed to achieve the drinking water quality standard. Development of novel and economically feasible removal techniques or materials for selective separation of this toxic specie has been the main focus of research. Several arsenic removal techniques, including membrane separation, coagulation, precipitation, anion exchange have been developed. The aim of this article is to review briefly arsenic chemistry and previous and current available technologies that have been reported various low-cost adsorbents for arsenic removal.

  3. Dietary arsenic consumption and urine arsenic in an endemic population: response to improvement of drinking water quality in a 2-year consecutive study.

    Science.gov (United States)

    Biswas, Anirban; Deb, Debasree; Ghose, Aloke; Du Laing, Gijs; De Neve, Jan; Santra, Subhas Chandra; Guha Mazumder, Debendra Nath

    2014-01-01

    We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L(-1)) in a first year (group I) and for participants using water lower in arsenic (water in groups I and II males was 7.44 and 0.85 μg kg body wt.(-1) day(-1) (p water were reduced to below 50 μg L(-1) (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt.(-1) day(-1) (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that supplying the filtered water only may not be sufficient to minimize arsenic availability for an already endemic population.

  4. Arsenic and selenium in microbial metabolism

    Science.gov (United States)

    Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.

    2006-01-01

    Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.

  5. Arsenic Contamination in Groundwater of Bangladesh: Perspectives on Geochemical, Microbial and Anthropogenic Issues

    Directory of Open Access Journals (Sweden)

    Shafi M. Tareq

    2011-11-01

    Full Text Available A groundwater, sediment and soil chemistry and mineralogical study has been performed to investigate the sources and mobilization process of Arsenic (As in shallow aquifers of Bangladesh. The groundwater from the shallow aquifers is characterized by high concentrations of Arsenic (47.5–216.8 µg/L, iron (0.85–5.83 mg/L, and phosphate, along with high electrical conductivity (EC. The groundwater has both very low oxidation-reduction potential (Eh and dissolved oxygen (DO values indicating reducing conditions. By contrast, the deep aquifers and surface waters (pond, canal have very low concentrations of Arsenic ( < 6 µg/L, iron (0.12–0.39 mg/L, and phosphate along with a relatively low EC. Furthermore, the values of Eh and DO are high, indicating oxic to suboxic conditions. Arsenic is inversely correlated with Eh values in the upper aquifer, whereas no relationship in the deeper aquifer is observed. These results suggest that As mobilization is clearly linked to the development of reducing conditions. The clayey silt, enriched in Fe, Mn, Al oxides and organic matter, and deposited in the middle unit of shallow aquifers, contains moderately high concentrations of As, whereas the sediments of deep aquifers and silty mud surface soils from paddy fields and ponds contain a low content of As (Daudkandi area. Arsenic is strongly correlated with the concentrations of Fe, Mn and Al oxides in the core samples from the Daudkandi and Marua areas. Arsenic is present in the oxide phase of Fe and Mn, phyllosilicate minerals and in organic matter in sediments. This study suggests that adsorption or precipitation of As-rich Fe oxyhydroxide on the surface or inner sites of biotite might be responsible for As concentrations found in altered biotite minerals by Seddique et al. Microbially or geochemically mediated reductive dissolution of Fe oxyhydroxides is the main mechanism for As release. The reducing conditions are caused by respiratory decomposition of

  6. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products.

    Science.gov (United States)

    Almela, C; Algora, S; Benito, V; Clemente, M J; Devesa, V; Súñer, M A; Vélez, D; Montoro, R

    2002-02-13

    The total arsenic, inorganic arsenic, lead, cadmium, and mercury contents of 18 algae food products currently on sale in Spain were determined. The suitability of the analytical methodologies for this type of matrix was confirmed by evaluating their analytical characteristics. The concentration ranges found for each contaminant, expressed in milligrams per kilogram of dry weight, were as follows: total arsenic, 2.3-141; inorganic arsenic, 0.15-88; lead, mercury, 0.004-0.04. There is currently no legislation in Spain regarding contaminants in algae food products, but some of the samples analyzed revealed Cd and inorganic As levels higher than those permitted by legislation in other countries. Given the high concentrations of inorganic As found in Hizikia fusiforme, a daily consumption of 1.7 g of the product would reach the Provisional Tolerable Weekly Intake recommended by the WHO for an average body weight of 68 kg. A more comprehensive study of the contents and toxicological implications of the inorganic As present in the algae food products currently sold in Spain may be necessary, which might then be the basis for the introduction of specific sales restrictions.

  7. Evolution of genomic diversity and sex at extreme environments: Fungal life under hypersaline Dead Sea stress

    Science.gov (United States)

    Kis-Papo, Tamar; Kirzhner, Valery; Wasser, Solomon P.; Nevo, Eviatar

    2003-01-01

    We have found that genomic diversity is generally positively correlated with abiotic and biotic stress levels (1–3). However, beyond a high-threshold level of stress, the diversity declines to a few adapted genotypes. The Dead Sea is the harshest planetary hypersaline environment (340 g·liter–1 total dissolved salts, ≈10 times sea water). Hence, the Dead Sea is an excellent natural laboratory for testing the “rise and fall” pattern of genetic diversity with stress proposed in this article. Here, we examined genomic diversity of the ascomycete fungus Aspergillus versicolor from saline, nonsaline, and hypersaline Dead Sea environments. We screened the coding and noncoding genomes of A. versicolor isolates by using >600 AFLP (amplified fragment length polymorphism) markers (equal to loci). Genomic diversity was positively correlated with stress, culminating in the Dead Sea surface but dropped drastically in 50- to 280-m-deep seawater. The genomic diversity pattern paralleled the pattern of sexual reproduction of fungal species across the same southward gradient of increasing stress in Israel. This parallel may suggest that diversity and sex are intertwined intimately according to the rise and fall pattern and adaptively selected by natural selection in fungal genome evolution. Future large-scale verification in micromycetes will define further the trajectories of diversity and sex in the rise and fall pattern. PMID:14645702

  8. Groundwater arsenic contamination in Bangladesh-21 Years of research.

    Science.gov (United States)

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Mukherjee, Amitava; Alauddin, Mohammad; Hassan, Manzurul; Dutta, Rathindra Nath; Pati, Shymapada; Mukherjee, Subhash Chandra; Roy, Shibtosh; Quamruzzman, Quazi; Rahman, Mahmuder; Morshed, Salim; Islam, Tanzima; Sorif, Shaharir; Selim, Md; Islam, Md Razaul; Hossain, Md Monower

    2015-01-01

    Department of Public Health Engineering (DPHE), Bangladesh first identified their groundwater arsenic contamination in 1993. But before the international arsenic conference in Dhaka in February 1998, the problem was not widely accepted. Even in the international arsenic conference in West-Bengal, India in February, 1995, representatives of international agencies in Bangladesh and Bangladesh government attended the conference but they denied the groundwater arsenic contamination in Bangladesh. School of Environmental Studies (SOES), Jadavpur University, Kolkata, India first identified arsenic patient in Bangladesh in 1992 and informed WHO, UNICEF of Bangladesh and Govt. of Bangladesh from April 1994 to August 1995. British Geological Survey (BGS) dug hand tube-wells in Bangladesh in 1980s and early 1990s but they did not test the water for arsenic. Again BGS came back to Bangladesh in 1992 to assess the quality of the water of the tube-wells they installed but they still did not test for arsenic when groundwater arsenic contamination and its health effects in West Bengal in Bengal delta was already published in WHO Bulletin in 1988. From December 1996, SOES in collaboration with Dhaka Community Hospital (DCH), Bangladesh started analyzing hand tube-wells for arsenic from all 64 districts in four geomorphologic regions of Bangladesh. So far over 54,000 tube-well water samples had been analyzed by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). From SOES water analysis data at present we could assess status of arsenic groundwater contamination in four geo-morphological regions of Bangladesh and location of possible arsenic safe groundwater. SOES and DCH also made some preliminary work with their medical team to identify patients suffering from arsenic related diseases. SOES further analyzed few thousands biological samples (hair, nail, urine and skin scales) and foodstuffs for arsenic to know arsenic body burden and people sub

  9. Groundwater arsenic in Chimaltenango, Guatemala.

    Science.gov (United States)

    Lotter, Jason T; Lacey, Steven E; Lopez, Ramon; Socoy Set, Genaro; Khodadoust, Amid P; Erdal, Serap

    2014-09-01

    In the Municipality of Chimaltenango, Guatemala, we sampled groundwater for total inorganic arsenic. In total, 42 samples were collected from 27 (43.5%) of the 62 wells in the municipality, with sites chosen to achieve spatial representation throughout the municipality. Samples were collected from household faucets used for drinking water, and sent to the USA for analysis. The only site found to have a concentration above the 10 μg/L World Health Organization provisional guideline for arsenic in drinking water was Cerro Alto, where the average concentration was 47.5 μg/L. A health risk assessment based on the arsenic levels found in Cerro Alto showed an increase in noncarcinogenic and carcinogenic risks for residents as a result of consuming groundwater as their primary drinking water source. Using data from the US Geological Survey and our global positioning system data of the sample locations, we found Cerro Alto to be the only site sampled within the tertiary volcanic rock layer, a known source of naturally occurring arsenic. Recommendations were made to reduce the levels of arsenic found in the community's drinking water so that the health risks can be managed.

  10. Diversity of halophilic archaea from six hypersaline environments in Turkey.

    Science.gov (United States)

    Ozcan, Birgul; Ozcengiz, Gulay; Coleri, Arzu; Cokmus, Cumhur

    2007-06-01

    The diversity of archaeal strains from six hypersaline environments in Turkey was analyzed by comparing their phenotypic characteristics and 16S rDNA sequences. Thirty-three isolates were characterized in terms of their phenotypic properties including morphological and biochemical characteristics, susceptibility to different antibiotics, and total lipid and plasmid contents, and finally compared by 16S rDNA gene sequences. The results showed that all isolates belong to the family Halobacteriaceae. Phylogenetic analyses using approximately 1,388 bp comparisions of 16S rDNA sequences demonstrated that all isolates clustered closely to species belonging to 9 genera, namely Halorubrum (8 isolates), Natrinema (5 isolates), Haloarcula (4 isolates), Natronococcus (4 isolates), Natrialba (4 isolates), Haloferax (3 isolates), Haloterrigena (3 isolates), Halalkalicoccus (1 isolate), and Halomicrobium (1 isolate). The results revealed a high diversity among the isolated halophilic strains and indicated that some of these strains constitute new taxa of extremely halophilic archaea.

  11. Chemical stability of soda-alumina-zirconia-silica glasses to Na, Na2S4, and S

    International Nuclear Information System (INIS)

    Bloom, S.I.; Bradley, J.; Nelson, P.A.; Roche, M.F.

    1985-01-01

    Twenty-two glasses with a broad range of compositions, spanning the quaternary soda-alumina-zirconia-silica system, have been prepared to allow characterization of the various properties of the system. The glasses were characterized by their resistivities, energies of activation for conduction, and glass transition temperatures. The glasses were screened for compositions of especially high chemical stability of static corrosion tests in Na, S, and Na 2 S 4 for 1000h at 400 0 C. Among the glasses tested, the high soda glasses showed the smallest weight change after exposure to the three media. The weight change observed was comparable to that seen in the Dow borate glass and beta'' alumina

  12. Low selenium status affects arsenic metabolites in an arsenic exposed population with skin lesions.

    Science.gov (United States)

    Huang, Zhi; Pei, Qiuling; Sun, Guifan; Zhang, Sichum; Liang, Jiang; Gao, Yi; Zhang, Xinrong

    2008-01-01

    The antagonistic effects between selenium (Se) and arsenic (As) suggest that low selenium status plays important roles in arsenism development. However, no study has been reported for humans suffering from chronic arsenic exposure with low selenium status. Sixty-three subjects were divided into 2 experimental groups by skin lesions (including hyperkeratosis, depigmentation, and hyperpigmentation). Total urine and serum concentrations of arsenic and selenium were determined by ICP-MS with collision/reaction cell. Arsenic species were analysed by ICP-MS coupled with HPLC. The mean concentration of As in the drinking waters was 41.5 microg/l. The selenium dietary intake for the studied population was 31.7 microg Se/d, and which for the cases and controls were 25.9 and 36.3 microg Se/d, respectively. Compared with the controls, the skin lesions cases had lower selenium concentrations in serum and urine (41.4 vs 49.6 microg/l and 71.0 vs 78.8 microg/l, respectively), higher inorganic arsenic (iAs) in serum (5.2 vs 3.4 microg/l, PiAs in serum and urine (20.2) vs 16.9% and 18.3 vs 14.5%, respectively, PiAs and its inhibition to be biotransformed to DMA occurred in human due to chronic exposure of low selenium status.

  13. Complementary arsenic speciation methods: A review

    Energy Technology Data Exchange (ETDEWEB)

    Nearing, Michelle M., E-mail: michelle.nearing@rmc.ca; Koch, Iris, E-mail: koch-i@rmc.ca; Reimer, Kenneth J., E-mail: reimer-k@rmc.ca

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC–ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC–ICP-MS can be used to identify compounds not extracted for HPLC–ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenic-sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC–ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI–MS) with HPLC–ICP-MS provides confirmation of arsenic compounds identified during the HPLC–ICP-MS analysis, identification of unknown compounds observed during the HPLC–ICP-MS analysis and further resolves HPLC–ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC–ICP-MS and ESI–MS, HPLC–ICP-MS helps to focus the ESI–MS selection of ions. Numerous studies have shown that the information obtained from HPLC–ICP-MS analysis can be greatly enhanced by complementary approaches. - Highlights: • HPLC–ICP-MS is the most common method used for arsenic speciation. • HPLC limitations include

  14. Complementary arsenic speciation methods: A review

    International Nuclear Information System (INIS)

    Nearing, Michelle M.; Koch, Iris; Reimer, Kenneth J.

    2014-01-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC–ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC–ICP-MS can be used to identify compounds not extracted for HPLC–ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenic-sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC–ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI–MS) with HPLC–ICP-MS provides confirmation of arsenic compounds identified during the HPLC–ICP-MS analysis, identification of unknown compounds observed during the HPLC–ICP-MS analysis and further resolves HPLC–ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC–ICP-MS and ESI–MS, HPLC–ICP-MS helps to focus the ESI–MS selection of ions. Numerous studies have shown that the information obtained from HPLC–ICP-MS analysis can be greatly enhanced by complementary approaches. - Highlights: • HPLC–ICP-MS is the most common method used for arsenic speciation. • HPLC limitations include

  15. [Number of bacteria and features of their activity in hypersaline reservoirs of the Crimea].

    Science.gov (United States)

    Dobrynin, E G

    1979-01-01

    The incidence of bacteria, their biomass production, and heterotrophic assimilation of CO2 by bacterioplankton were studied in the Crimean hypersaline water reservoirs from May to October of 1974. The total incidence of bacteria in the natural brine of these reservoirs varied from 20 to 70 x 10(6) cells per 1 ml. Such a high bacterial number may be caused by the combined action of water evaporation which increased the concentration of bacterial cells and active growth of microflora. Low values of bacterial production and heterotrophic CO2 assimilation should be attributed to weak activity of microflora in the reservoirs.

  16. Arsenic compounds in a marine food chain

    Energy Technology Data Exchange (ETDEWEB)

    Goessler, W.; Irgolic, K.J.; Kuehnelt, D.; Schlagenhaufen, C. [Institute for Analytical Chemistry, Karl-Franzens-Universitaet Graz, Universitaetsplatz 1, A-8010 Graz (Austria); Maher, W. [CRC for Freshwater Ecology, University of Canberra, PO Box 1, Belconnen ACT. 2616 (Australia); Kaise, T. [Laboratory of Environmental Chemistry, School of Life Science, University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachijoji, Tokyo 192-03 (Japan)

    1997-10-01

    A three-organism food chain within a rock pool at Rosedale, NSW, Australia, was investigated with respect to arsenic compounds by high performance liquid chromatography - hydraulic high pressure nebulization - inductively coupled plasma mass spectrometry (HPLC-HHPN-ICP-MS). Total arsenic concentration was determined in the seaweed Hormosira banksii (27.2 {mu}g/g dry mass), in the gastropod Austrocochlea constricta (74.4 {mu}g/g dry mass), which consumes the seaweed, and in the gastropod Morula marginalba (233 {mu}g/g dry mass), which eats Austrocochlea constricta. The major arsenic compounds in the seaweed were (2`R)-dimethyl[1-O-(2`,3`-dihydroxypropyl)-5-deoxy-{beta}-d-ribofuranos-5-yl]arsine oxide and an unidentified compound. The herbivorous gastropod Austrocochlea constricta transformed most of the arsenic taken up with the seaweed to arsenobetaine. Traces of arsenite, arsenate, dimethylarsinic acid, arsenocholine, the tetramethylarsonium cation, and several unknown arsenic compounds were detected. Arsenobetaine accounted for 95% of the arsenic in the carnivorous gastropod Morula marginalba. In Morula marginalba the concentration of arsenocholine was higher, and the concentrations of the minor arsenic compounds lower than in the herbivorous gastropod Austrocochlea constricta. (orig.) With 4 figs., 1 tab., 13 refs.

  17. Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil.

    Science.gov (United States)

    Schneider, Jerusa; Stürmer, Sidney Luiz; Guilherme, Luiz Roberto Guimarães; de Souza Moreira, Fatima Maria; Soares, Claudio Roberto Fonsêca de Sousa

    2013-11-15

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous and establish important symbiotic relationships with the majority of the plants, even in soils contaminated with arsenic (As). In order to better understand the ecological relationships of these fungi with excess As in soils and their effects on plants in tropical conditions, occurrence and diversity of AMF were evaluated in areas affected by gold mining activity in Minas Gerais State, Brazil. Soils of four areas with different As concentrations (mg dm(-3)) were sampled: reference Area (10); B1 (subsuperficial layer) (396); barren material (573), and mine waste (1046). Soil sampling was carried out in rainy and dry seasons, including six composite samples per area (n = 24). AMF occurred widespread in all areas, being influenced by As concentrations and sampling periods. A total of 23 species were identified, belonging to the following genus: Acaulospora (10 species), Scutellospora (4 species), Racocetra (3 species), Glomus (4 species), Gigaspora (1 species) and Paraglomus (1 species). The most frequent species occurring in all areas were Paraglomus occultum, Acaulospora morrowiae and Glomus clarum. The predominance of these species indicates their high tolerance to excess As. Although arsenic contamination reduced AMF species richness, presence of host plants tended to counterbalance this reduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Determination of inorganic arsenic in algae using bromine halogenation and on-line nonpolar solid phase extraction followed by hydride generation atomic flourescence spectrometry

    Science.gov (United States)

    Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydrid...

  19. Establishing Relationship between Process Parameters and Temperature during High Speed End Milling of Soda Lime Glass

    Science.gov (United States)

    Nasima Bagum, Mst.; Konneh, Mohamed; Yeakub Ali, Mohammad

    2018-01-01

    In glass machining crack free surface is required in biomedical and optical industry. Ductile mode machining allows materials removal from brittle materials in a ductile manner rather than by brittle fracture. Although end milling is a versatile process, it has not been applied frequently for machining soda lime glass. Soda lime glass is a strain rate and temperature sensitive material; especially around glass transition temperature Tg, ductility increased and strength decreased. Hence, it is envisaged that the generated temperature by high-speed end milling (HSEM) could be brought close to the glass transition temperature, which promote ductile machining. In this research, the objective is to investigate the effect of high speed machining parameters on generated temperature. The cutting parameters were optimized to generate temperature around glass transition temperature of soda lime using response surface methodology (RSM). Result showed that the most influencing process parameter is feed rate followed by spindle speed and depth of cut to generate temperature. Confirmation test showed that combination of spindle speed 30,173 rpm, feed rate 13.2 mm/min and depth of cut 37.68 µm generate 635°C, hence ductile chip removal with machined surface Ra 0.358 µm was possible to achieve.

  20. A review on environmental factors regulating arsenic methylation in humans

    International Nuclear Information System (INIS)

    Tseng, C.-H.

    2009-01-01

    Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers

  1. Determination of leachable arsenic from glass ampoules

    International Nuclear Information System (INIS)

    Kayasth, S.R.; Swain, K.K.

    2004-01-01

    Appreciable amounts of different arsenic compounds are used in the manufacture of glass and glass ampoules (injection vials and bottles) used to store drugs. Exposure/intake of arsenic to human beings may result in skin ulceration, injury to mucous membranes, perforation of nasal septum, skin cancer and keratoses, especially of the palms and soles and may cause detrimental effects. Considering the toxicity of arsenic, even if traces of arsenic from such glass containers/ampoules are leached out, it can impart damage to human beings. To check the possibility of leaching of arsenic from glass ampoules, a simple methodology has been developed. Different makes and varieties of glass ampoules filled with de-ionized water were subjected to high pressure and temperature leaching for varying amount of time using autoclave to create extreme conditions for the maximum leaching out of the analyte. Subsequently, the determination of the arsenic contents in leached water using neutron activation analysis is reported in detail with observations. (author)

  2. Isolation of Arsenic Resistant Escherichia coli from Sewage Water and Its Potential in Arsenic Biotransformation

    Directory of Open Access Journals (Sweden)

    Basanta Bista

    2017-04-01

    Full Text Available Arsenic contamination in drinking water from ground water poses a threat to the health of a large population in developing countries in Asia. This has sparked great interests in the potential of different microbes in arsenic resistance and removal from water. This study involves isolation of arsenic resistant Escherichia coli from sewage water from Kathmandu University and investigation of its attributes. Arsenic resistant E. coli was successfully isolated which could survive in high concentration of arsenic. The maximum tolerance of arsenite was 909.79 mg/L (sodium arsenite and 3120.1 mg/L arsenate (sodium arsenate which is well above most natural concentration of arsenic in ground water. This particular E. coli tolerated multiple heavy metal like silver nitrate, cobalt sulphate, cadmium chloride, nickel chloride, mercury chloride, copper sulphate, and zinc chloride at concentration 20 µM, 1 mM, 0.5mM, 1mM, 0.01 mM, 1 mM, and 1 mM respectively which are concentrations known to be toxic to E. coli. Biotransformation of arsenite to arsenate was also checked for by a qualitative silver nitrate technique. This E. coli was able to transform arsenate to arsenite. It showed some sensitivity to Ciprofloxacin, Gentamicin and Nalidixic Acid. As E. coli and its genome are very widely studied, these particular properties have a lot of potential in microbial remediation or microbial recovery of metals and possible recombination approaches.

  3. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.

    Science.gov (United States)

    Huang, Yi; Miyauchi, Keisuke; Inoue, Chihiro; Endo, Ginro

    2016-01-01

    In this study, we found that high-performance hydroponics of arsenic hyperaccumulator fern Pteris vittata is possible without any mechanical aeration system, if rhizomes of the ferns are kept over the water surface level. It was also found that very low-nutrition condition is better for root elongation of P. vittata that is an important factor of the arsenic removal from contaminated water. By the non-aeration and low-nutrition hydroponics for four months, roots of P. vittata were elongated more than 500 mm. The results of arsenate phytofiltration experiments showed that arsenic concentrations in water declined from the initial concentrations (50 μg/L, 500 μg/L, and 1000 μg/L) to lower than the detection limit (0.1 μg/L) and about 80% of arsenic removed was accumulated in the fern fronds. The improved hydroponics method for P. vittata developed in this study enables low-cost phytoremediation of arsenic-contaminated water and high-affinity removal of arsenic from water.

  4. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution.

    Science.gov (United States)

    Drewniak, Lukasz; Styczek, Aleksandra; Majder-Lopatka, Malgorzata; Sklodowska, Aleksandra

    2008-12-01

    The aim of the present study was to find out if bacteria present in ancient gold mine could transform immobilized arsenic into its mobile form and increase its dissemination in the environment. Twenty-two arsenic-hypertolerant cultivable bacterial strains were isolated. No chemolithoautotrophs, which could use arsenite as an electron donor as well as arsenate as an electron acceptor, were identified. Five isolates exhibited hypertolerance to arsenic: up to 500mM of arsenate. A correlation between the presence of siderophores and high resistance to arsenic was found. The results of this study show that detoxification processes based on arsenate reductase activity might be significant in dissemination of arsenic pollution. It was concluded that the activity of the described heterotrophic bacteria contributes to the mobilization of arsenic in the more toxic As(III) form and a new mechanism of arsenic mobilization from a scorodite was proposed.

  5. Single and combined effects of phosphate, silicate, and natural organic matter on arsenic removal from soft and hard groundwater using ferric chloride

    Science.gov (United States)

    Chanpiwat, Penradee; Hanh, Hoang Thi; Bang, Sunbaek; Kim, Kyoung-Woong

    2017-06-01

    In order to assess the effects of phosphate, silicate and natural organic matter (NOM) on arsenic removal by ferric chloride, batch coprecipitation experiments were conducted over a wide pH range using synthetic hard and soft groundwaters, similar to those found in northern Vietnam. The efficiency of arsenic removal from synthetic groundwater by coprecipitation with FeCl3 was remarkably decreased by the effects of PO4 3-, SiO4 4- and NOM. The negative effects of SiO4 4- and NOM on arsenic removal were not as strong as that of PO4 3-. Combining PO4 3- and SiO4 4- increased the negative effects on both arsenite (As3+) and arsenate (As5+) removal. The introduction of NOM into the synthetic groundwater containing both PO4 3- and SiO4 4- markedly magnified the negative effects on arsenic removal. In contrast, both Ca2+ and Mg2+ substantially increased the removal of As3+ at pH 8-12 and the removal of As5+ over the entire pH range. In the presence of Ca2+ and Mg2+, the interaction of NOM with Fe was either removed or the arsenic binding to Fe-NOM colloidal associations and/or dissolved complexes were flocculated. Removal of arsenic using coprecipitation by FeCl3 could not sufficiently reduce arsenic contents in the groundwater (350 μg/L) to meet the WHO guideline for drinking water (10 μg/L), especially when the arsenic-rich groundwater also contains co-occurring solutes such as PO4 3-, SiO4 4- and NOM; therefore, other remediation processes, such as membrane technology, should be introduced or additionally applied after this coprecipitation process, to ensure the safety of drinking water.

  6. Arsenic in North Carolina: public health implications.

    Science.gov (United States)

    Sanders, Alison P; Messier, Kyle P; Shehee, Mina; Rudo, Kenneth; Serre, Marc L; Fry, Rebecca C

    2012-01-01

    Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water systems. We set out to comprehensively examine statewide arsenic trends and identify areas of public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated over an eleven-year period using the North Carolina Department of Health and Human Services database for private domestic well waters. We geocoded over 63,000 domestic well measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic measurements and geographical coordinates for database entries were mapped using Geographic Information System techniques. Furthermore, we employed a Bayesian Maximum Entropy (BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic values across the state and identify trends for unmonitored locations. Of the approximately 63,000 monitored wells, 7712 showed detectable arsenic concentrations that ranged between 1 and 806μg/L. Additionally, 1436 well samples exceeded the EPA drinking water standard. We reveal counties of concern and demonstrate a historical pattern of elevated arsenic in some counties, particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data in the context of populations using private well water and identify counties for targeted monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our BME estimate revealed arsenic trends at unmonitored locations within counties and better predicted well concentrations when compared to the classical kriging method. This study reveals relevant information on the location of arsenic-contaminated private domestic wells in North Carolina and indicates potential areas at increased risk for adverse health outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Metal loading in Soda Butte Creek upstream of Yellowstone National Park, Montana and Wyoming; a retrospective analysis of previous research; and quantification of metal loading, August 1999

    Science.gov (United States)

    Boughton, G.K.

    2001-01-01

    Acid drainage from historic mining activities has affected the water quality and aquatic biota of Soda Butte Creek upstream of Yellowstone National Park. Numerous investigations focusing on metals contamination have been conducted in the Soda Butte Creek basin, but interpretations of how metals contamination is currently impacting Soda Butte Creek differ greatly. A retrospective analysis of previous research on metal loading in Soda Butte Creek was completed to provide summaries of studies pertinent to metal loading in Soda Butte Creek and to identify data gaps warranting further investigation. Identification and quantification of the sources of metal loading to Soda Butte Creek was recognized as a significant data gap. The McLaren Mine tailings impoundment and mill site has long been identified as a source of metals but its contribution relative to the total metal load entering Yellowstone National Park was unknown. A tracer-injection and synoptic-sampling study was designed to determine metal loads upstream of Yellowstone National Park.A tracer-injection and synoptic-sampling study was conducted on an 8,511-meter reach of Soda Butte Creek from upstream of the McLaren Mine tailings impoundment and mill site downstream to the Yellowstone National Park boundary in August 1999. Synoptic-sampling sites were selected to divide the creek into discrete segments. A lithium bromide tracer was injected continuously into Soda Butte Creek for 24.5 hours. Downstream dilution of the tracer and current-meter measurements were used to calculate the stream discharge. Stream discharge values, combined with constituent concentrations obtained by synoptic sampling, were used to quantify constituent loading in each segment of Soda Butte Creek.Loads were calculated for dissolved calcium, silica, and sulfate, as well as for dissolved and total-recoverable iron, aluminum, and manganese. Loads were not calculated for cadmium, copper, lead, and zinc because these elements were infrequently

  8. Effect of edta on arsenic phytoextraction by arundo donax

    International Nuclear Information System (INIS)

    Mirza, N.; Pervez, A.; Mahmood, Q.; Shah, M.M.; Farooq, U.

    2014-01-01

    Ligand assisted metal uptake by plants is recent trend in environmental clean-up. Arundo donax L. has been demonstrated as a suitable bioresource for the phytoextraction of arsenic recently. A. donax L. plants were grown in arsenic contaminated soil with doses (5 and 10 mg kg/sup -1/) of Ethylene Diamine Tetra Acetic Acid (EDTA) to investigate chelator-assisted phytoextraction. The arsenic treatments included control (no metal) and five doses of arsenic, i.e., 50, 100, 300, 600 and 1000 micro g kg/sup -1/ . The arsenic concentrations linearly increased in parts of plant with the increasing arsenic and EDTA in growth medium. Ligand addition also resulted in the increased arsenic accumulation in the shoot over its control plants. EDTA additionat the rate 5 mg kg/sup -1/ to the treatment system may effectively increase the arsenic uptake by A. donax without severe growth suppression. (author)

  9. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    Science.gov (United States)

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.

  10. Biological treatment of sulfidic spent caustics under haloalkaline conditions using soda lake bacteria

    NARCIS (Netherlands)

    Graaff, de C.M.

    2012-01-01

    In this thesis, the development of a newbiotechnological process for the treatment of undiluted sulfidic spent caustics (SSC’s) using soda lake bacteria is described. SSC’s are waste solutions that are formed in the oil and gas industry due to the caustic (NaOH) scrubbing of hydrocarbon streams

  11. DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMASIII AND DMASIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC

    Science.gov (United States)

    DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMAsIII and DMAsIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC. L. M. Del Razo1, M. Styblo2, W. R. Cullen3, and D.J. Thomas4. 1Toxicology Section, Cinvestav-IPN, Mexico, D.F., 2Univ. North Carolina, Chapel Hill, NC; 3Uni...

  12. Preparation of soda-lime glass using rock wool waste; Preparacao de vidros sodo-calcicos utilizando residuo de la de rocha

    Energy Technology Data Exchange (ETDEWEB)

    Aleixo, F.C.; Della, V.P. [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil); Ballmann, T.J.S.; Folgueras, M.V. [Universidade do Estado de Santa Catarina (UESC), Joinville, SC (Brazil); Junkes, J.A., E-mail: janajunkes@gmail.com [Centro Universitario Tiradentes, Maceio, AL (Brazil)

    2016-10-15

    Discarded by the mining industry during the maintenance stoppages of pelletizing furnaces, rock wool has in its composition SiO{sub 2} (56%), Na{sub 2} O (12%) and CaO (7%) propitious for obtaining soda-lime glasses. Under this focus, this work developed soda-lime glasses formulations, using as main raw-material rock wool waste in proportions from 50 to 100% by adjusting the chemical composition of the formulations with sand, sodium and calcium carbonates, as silica, soda and lime sources, respectively. In some formulations the sodium carbonate was replaced by sodium sulfate, which acts as a refining agent, improving homogenization and reducing the bubble formation during the melting. Initially, the raw-materials were evaluated by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and thermogravimetric analysis. The tests showed that the rock wool waste has potential to be used in soda-lime glasses production, however, the chemical composition must be corrected. After knowing the waste potential, seven mixtures were prepared and molten at 1550 °C for 1 to 2 h. It has been found that the maximum rock wool waste percentage that can be used is between 60 and 80%, and that the 2 h melting time resulted in more homogeneous glasses and fewer bubbles according to the addition of sodium sulfate which is efficient for bubbles removal. (author)

  13. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’ (NE Spain)

    DEFF Research Database (Denmark)

    Jonkers, Henk M.; Ludwig, Rebecca; De Wit, Rutger

    2003-01-01

    The benthic microbial mat community of the only permanent hypersaline natural inland lake of Western Europe, ‘La Salada de Chiprana’, northeastern Spain, was structurally and functionally analyzed. The ionic composition of the lake water is characterized by high concentrations of magnesium...

  14. Functional Role of Native and Invasive Filter-Feeders, and the Effect of Parasites: Learning from Hypersaline Ecosystems.

    Science.gov (United States)

    Sánchez, Marta I; Paredes, Irene; Lebouvier, Marion; Green, Andy J

    2016-01-01

    Filter-feeding organisms are often keystone species with a major influence on the dynamics of aquatic ecosystems. Studies of filtering rates in such taxa are therefore vital in order to understand ecosystem functioning and the impact of natural and anthropogenic stressors such as parasites, climate warming and invasive species. Brine shrimps Artemia spp. are the dominant grazers in hypersaline systems and are a good example of such keystone taxa. Hypersaline ecosystems are relatively simplified environments compared with much more complex freshwater and marine ecosystems, making them suitable model systems to address these questions. The aim of this study was to compare feeding rates at different salinities and temperatures between clonal A. parthenogenetica (native to Eurasia and Africa) and the invasive American brine shrimp A. franciscana, which is excluding native Artemia from many localities. We considered how differences observed in laboratory experiments upscale at the ecosystem level across both spatial and temporal scales (as indicated by chlorophyll-a concentration and turbidity). In laboratory experiments, feeding rates increased at higher temperatures and salinities in both Artemia species and sexes, whilst A. franciscana consistently fed at higher rates. A field study of temporal dynamics revealed significantly higher concentrations of chlorophyll-a in sites occupied by A. parthenogenetica, supporting our experimental findings. Artemia parthenogenetica density and biomass were negatively correlated with chlorophyll-a concentration at the spatial scale. We also tested the effect of cestode parasites, which are highly prevalent in native Artemia but much rarer in the invasive species. The cestodes Flamingolepis liguloides and Anomotaenia tringae decreased feeding rates in native Artemia, whilst Confluaria podicipina had no significant effect. Total parasite prevalence was positively correlated with turbidity. Overall, parasites are likely to reduce

  15. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.

    Directory of Open Access Journals (Sweden)

    Changzhou Yan

    Full Text Available Phytoplankton plays an important role in arsenic speciation, distribution, and cycling in freshwater environments. Little information, however, is available on arsenic efflux from the cyanobacteria Microcystis aeruginosa under different phosphate regimes. This study investigated M. aeruginosa arsenic efflux and speciation by pre-exposing it to 10 µM arsenate or arsenite for 24 h during limited (12 h and extended (13 d depuration periods under phosphate enriched (+P and phosphate depleted (-P treatments. Arsenate was the predominant species detected in algal cells throughout the depuration period while arsenite only accounted for no greater than 45% of intracellular arsenic. During the limited depuration period, arsenic efflux occurred rapidly and only arsenate was detected in solutions. During the extended depuration period, however, arsenate and dimethylarsinic acid (DMA were found to be the two predominant arsenic species detected in solutions under -P treatments, but arsenate was the only species detected under +P treatments. Experimental results also suggest that phosphorus has a significant effect in accelerating arsenic efflux and promoting arsenite bio-oxidation in M. aeruginosa. Furthermore, phosphorus depletion can reduce arsenic efflux from algal cells as well as accelerate arsenic reduction and methylation. These findings can contribute to our understanding of arsenic biogeochemistry in aquatic environments and its potential environmental risks under different phosphorus levels.

  16. Magentite nanoparticle for arsenic remotion

    International Nuclear Information System (INIS)

    Viltres, H; Reguera, E; Odio, O F; Borja, R; Aguilera, Y

    2017-01-01

    Inorganic As (V) and As (III) species are commonly found in groundwater in many countries around the world. It is known that arsenic is highly toxic and carcinogenic, at present exist reports of diverse countries with arsenic concentrations in drinking water higher than those proposed by the World Health Organization (10 μg/L). It has been reported that adsorption strategies using magnetic nanoparticles as magnetite (<20 nm) proved to be very efficient for the removal of arsenic in drinking water. Magnetic nanoparticles (magnetite) were prepared using a co-precipitation method with FeCl 3 and FeCl 2 as metal source and NaOH aqueous solution as precipitating agent. Magnetite nanoparticles synthesized were put in contact with As 2 O 3 and As 2 O 5 solutions at room temperature to pH 4 and 7. The nanoparticles were characterized by FT-IR, DRX, UV-vis, and XRF. The results showed that synthesized magnetite had an average diameter of 11 nm and a narrow size distribution. The presence of arsenic on magnetite nanoparticles surface was confirmed, which is more remarkable when As (V) is employed. Besides, it is possible to observe that no significant changes in the band gap values after adsorption of arsenic in the nanoparticles. (paper)

  17. Lanthanide behavior in hypersaline evaporation ponds at Guerrero Negro, Baja California, Mexico - an environment with halophiles

    Science.gov (United States)

    Choumiline, K.; López-Cortés, A.; Grajeda-Muñoz, M.; Shumilin, E.; Sapozhnikov, D.

    2013-12-01

    Lanthanides are known, in some cases, to be sensitive to changes in water column or sediment chemistry, a fact that allows them to be used as environmental fingerprints. Nevertheless, the behavior of these elements in hypersaline environments is insufficiently understood, especially in those colonized by bacteria, archaea and eukarya halophiles. Extreme environments like the mentioned exist in the artificially-controlled ponds of the 'Exportadora de Sal' salt-producing enterprise located in Guerrero Negro (Baja California, Mexico). Sediment cores from various ponds were collected, subsampled and measured by ICP-MS and INAA. This allowed differencing the behavior of lanthanides and trace elements under a water column salinity gradient along the evaporation sequence of ponds. Sediment profiles (30 mm long), obtained in Pond 5, dominated by Ca and Mg precipitation and at the same time rich in organic matter due to bacterial mat presence, showed highs and lows of the shale-normalized patterns along different in-core depths. Two groups of elements could be distinguished with similar trends: set A (La, Ce, Pr and Nd) and set B (Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu). The first 'group A' had two prominent peaks at 15 mm and around 22 mm, whereas the 'group B' showed only slight increase at 15 mm and none at 22 mm. Microscopic analyses of prokaryotic cells of a stratified mat in Pond 5 (collected in 2004) showed filamentous bacteria and cyanobacteria with a cell abundance and morphotype richness maxima of prokaryotic cells in a chemocline from 3 mm to 7 mm depth which co-exists nine morphotypes of aerobic and anaerobic prokaryotes Microcoleus chthonoplastes, Leptolyngbya, Cyanothece, Geitlerinema, Spirulina, Chloroflexus, Beggiatoa, Chromatium and Thioploca. Below the 7 mm depth, oxygenic photosynthesis depletes and sulfur reducing compounds increase. The highs of the shale-normalized lanthanide contents of the 'group A' (at 15 mm depth) seem to correlate with the

  18. Field observations of hypersaline runoff through a shallow estuary

    Science.gov (United States)

    Hosseini, Seyed Taleb; Siadatmousavi, Seyed Mostafa

    2018-03-01

    This study investigates a rare situation at the Mond River Estuary in the Persian Gulf, in which the classical estuarine density gradient coincides with hypersaline runoff entering from saline soils upstream of the estuary after severe precipitation. This builds a unique estuarine setting, where two salt water masses, one originating from the coastal ocean and the other being discharged from upstream confine a range of almost freshwater in the middle of estuary. This "freshwater lens estuary" (FLE) situation includes two saltwater sources with opposing senses of estuarine circulation. Therefore, the tidal damping by the strong river flood can occur, especially during neap tide when high Unsteadiness number (∼0.04) signified ebb oriented condition which was induced by straining residual lateral circulation near the FLE mouth. Transition from well-mixed to weak strain induced periodic stratification regimes indicated the importance of the spring-neap tidal variations. Close to the mouth, a 13.66-day periodic tidal asymmetry from the triad K1-O1-M2 (ebb-dominance during spring tide and flood-dominance in neap tide) was overcome by higher harmonics.

  19. Sedimentology and arsenic pollution in the Bengal Basin: insight into arsenic occurrence and subsurface geology.

    Science.gov (United States)

    Hills, Andrew; McArthur, John

    2014-05-01

    The Bengal delta system is a geologically recent feature overlying a deeply incised palaeo-surface formed during the Last Glacial Maximum. This surface is a series of terraces and valleys created by river incision (Goodbred & Kuehl 2003). The terraces were weathered, forming a thin, indurated laterite deposit (Goodbred & Kuehl 2000) at depths greater than 50 m. McArthur et al. (2008) define this as a palaeosol and have identified it at depths greater than 30 m though out Bangladesh and West Bengal. It has been observed that arsenic concentrations at these sites are lower than the rest of the delta. It has been assumed that the surface morphology at sites where there is a palaeosol are similar and can therefore be characterised by remote sensing, in the form of Google Earth images. Sites were selected in Bangladesh and West Bengal, from work by McArthur et al. (2011); Hoque et al. (2012), where groundwater chemistry and sedimentology data are available making it possible to determine if the subsurface is a palaeo-channel or palaeo-interfluve. Arsenic concentration data have been inputted into Google Earth and the palaeo-channels marked where the arsenic concentration is greater than 10 µg/L, and palaeo-interfluves where arsenic concentration is less than 10 µg/L. The surface morphologies in these domains have been examined for similarities, and it was shown that avulsion scars and abandoned river channels are found where arsenic concentrations are greater than 10 µg/L. Conversely the surrounding areas that are devoid of channel scars have arsenic concentrations less than 10 µg/L. Using the correlation between avulsion features being representative of palaeo-channels and high arsenic concentrations, sites were selected that had a similar surface morphology to the type localities. A comparison of these images and arsenic concentrations showed that the postulate is valid for over 80 percent of cases. Where this is not valid, this could indicate that the subsurface

  20. Arsenic in Ground Water of the United States

    Science.gov (United States)

    ... Team More Information Arsenic in groundwater of the United States Arsenic in groundwater is largely the result of ... Gronberg (2011) for updated arsenic map. Featured publications United States Effects of human-induced alteration of groundwater flow ...