WorldWideScience

Sample records for hyperpolarized xenon nuclear

  1. Hyperpolarized xenon NMR and MRI signal amplification by gas extraction

    Science.gov (United States)

    Zhou, Xin; Graziani, Dominic; Pines, Alexander

    2009-01-01

    A method is reported for enhancing the sensitivity of NMR of dissolved xenon by detecting the signal after extraction to the gas phase. We demonstrate hyperpolarized xenon signal amplification by gas extraction (Hyper-SAGE) in both NMR spectra and magnetic resonance images with time-of-flight information. Hyper-SAGE takes advantage of a change in physical phase to increase the density of polarized gas in the detection coil. At equilibrium, the concentration of gas-phase xenon is ≈10 times higher than that of the dissolved-phase gas. After extraction the xenon density can be further increased by several orders of magnitude by compression and/or liquefaction. Additionally, being a remote detection technique, the Hyper-SAGE effect is further enhanced in situations where the sample of interest would occupy only a small proportion of the traditional NMR receiver. Coupled with targeted xenon biosensors, Hyper-SAGE offers another path to highly sensitive molecular imaging of specific cell markers by detection of exhaled xenon gas. PMID:19805177

  2. Continuous flow production of concentrated hyperpolarized xenon gas from a dilute xenon gas mixture by buffer gas condensation.

    Science.gov (United States)

    Imai, Hirohiko; Yoshimura, Hironobu; Kimura, Atsuomi; Fujiwara, Hideaki

    2017-08-04

    We present a new method for the continuous flow production of concentrated hyperpolarized xenon-129 (HP (129)Xe) gas from a dilute xenon (Xe) gas mixture with high nuclear spin polarization. A low vapor pressure (i.e., high boiling-point) gas was introduced as an alternative to molecular nitrogen (N2), which is the conventional quenching gas for generating HP (129)Xe via Rb-Xe spin-exchange optical-pumping (SEOP). In contrast to the generally used method of extraction by freezing Xe after the SEOP process, the quenching gas separated as a liquid at moderately low temperature so that Xe was maintained in its gaseous state, allowing the continuous delivery of highly polarized concentrated Xe gas. We selected isobutene as the candidate quenching gas and our method was demonstrated experimentally while comparing its performance with N2. Isobutene could be liquefied and removed from the Xe gas mixture using a cold trap, and the concentrated HP (129)Xe gas exhibited a significantly enhanced nuclear magnetic resonance (NMR) signal. Although the system requires further optimization depending on the intended purpose, our approach presented here could provide a simple means for performing NMR or magnetic resonance imaging (MRI) measurements continuously using HP (129)Xe with improved sensitivity.

  3. Hyperpolarized Xenon-129 Magnetic Resonance Imaging of Functional Lung Microstructure

    Science.gov (United States)

    Dregely, Isabel

    Hyperpolarized 129Xe (HXe) is a non-invasive contrast agent for lung magnetic resonance imaging (MRI), which upon inhalation follows the functional pathway of oxygen in the lung by dissolving into lung tissue structures and entering the blood stream. HXe MRI therefore provides unique opportunities for functional lung imaging of gas exchange which occurs from alveolar air spaces across the air-blood boundary into parenchymal tissue. However challenges in acquisition speed and signal-to-noise ratio have limited the development of a HXe imaging biomarker to diagnose lung disease. This thesis addresses these challenges by introducing parallel imaging to HXe MRI. Parallel imaging requires dedicated hardware. This work describes design, implementation, and characterization of a 32-channel phased-array chest receive coil with an integrated asymmetric birdcage transmit coil tuned to the HXe resonance on a 3 Tesla MRI system. Using the newly developed human chest coil, a functional HXe imaging method, multiple exchange time xenon magnetization transfer contrast (MXTC) is implemented. MXTC dynamically encodes HXe gas exchange into the image contrast. This permits two parameters to be derived regionally which are related to gas-exchange functionality by characterizing tissue-to-alveolar-volume ratio and alveolar wall thickness in the lung parenchyma. Initial results in healthy subjects demonstrate the sensitivity of MXTC by quantifying the subtle changes in lung microstructure in response to orientation and lung inflation. Our results in subjects with lung disease show that the MXTC-derived functional tissue density parameter exhibits excellent agreement with established imaging techniques. The newly developed dynamic parameter, which characterizes the alveolar wall, was elevated in subjects with lung disease, most likely indicating parenchymal inflammation. In light of these observations we believe that MXTC has potential as a biomarker for the regional quantification of 1

  4. Validating excised rodent lungs for functional hyperpolarized xenon-129 MRI.

    Science.gov (United States)

    Lilburn, David M L; Hughes-Riley, Theodore; Six, Joseph S; Stupic, Karl F; Shaw, Dominick E; Pavlovskaya, Galina E; Meersmann, Thomas

    2013-01-01

    Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp) (129)Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp (129)Xe. Straightforward hp (129)Xe MRI protocols provide residual lung volume (RV) data and permit for spatially resolved tracking of small hp (129)Xe probe volumes during the inhalation cycle. Hp (129)Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies.

  5. Validating excised rodent lungs for functional hyperpolarized xenon-129 MRI.

    Directory of Open Access Journals (Sweden)

    David M L Lilburn

    Full Text Available Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp (129Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp (129Xe. Straightforward hp (129Xe MRI protocols provide residual lung volume (RV data and permit for spatially resolved tracking of small hp (129Xe probe volumes during the inhalation cycle. Hp (129Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies.

  6. Distribution of hyperpolarized xenon in the brain following sensory stimulation: preliminary MRI findings.

    Directory of Open Access Journals (Sweden)

    Mary L Mazzanti

    Full Text Available In hyperpolarized xenon magnetic resonance imaging (HP (129Xe MRI, the inhaled spin-1/2 isotope of xenon gas is used to generate the MR signal. Because hyperpolarized xenon is an MR signal source with properties very different from those generated from water-protons, HP (129Xe MRI may yield structural and functional information not detectable by conventional proton-based MRI methods. Here we demonstrate the differential distribution of HP (129Xe in the cerebral cortex of the rat following a pain stimulus evoked in the animal's forepaw. Areas of higher HP (129Xe signal corresponded to those areas previously demonstrated by conventional functional MRI (fMRI methods as being activated by a forepaw pain stimulus. The percent increase in HP (129Xe signal over baseline was 13-28%, and was detectable with a single set of pre and post stimulus images. Recent innovations in the production of highly polarized (129Xe should make feasible the emergence of HP (129Xe MRI as a viable adjunct method to conventional MRI for the study of brain function and disease.

  7. Distribution of Hyperpolarized Xenon in the Brain Following Sensory Stimulation: Preliminary MRI Findings

    Science.gov (United States)

    Mazzanti, Mary L.; Walvick, Ronn P.; Zhou, Xin; Sun, Yanping; Shah, Niral; Mansour, Joey; Gereige, Jessica; Albert, Mitchell S.

    2011-01-01

    In hyperpolarized xenon magnetic resonance imaging (HP 129Xe MRI), the inhaled spin-1/2 isotope of xenon gas is used to generate the MR signal. Because hyperpolarized xenon is an MR signal source with properties very different from those generated from water-protons, HP 129Xe MRI may yield structural and functional information not detectable by conventional proton-based MRI methods. Here we demonstrate the differential distribution of HP 129Xe in the cerebral cortex of the rat following a pain stimulus evoked in the animal's forepaw. Areas of higher HP 129Xe signal corresponded to those areas previously demonstrated by conventional functional MRI (fMRI) methods as being activated by a forepaw pain stimulus. The percent increase in HP 129Xe signal over baseline was 13–28%, and was detectable with a single set of pre and post stimulus images. Recent innovations in the production of highly polarized 129Xe should make feasible the emergence of HP 129Xe MRI as a viable adjunct method to conventional MRI for the study of brain function and disease. PMID:21789173

  8. Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR.

    Science.gov (United States)

    Witte, C; Kunth, M; Rossella, F; Schröder, L

    2014-02-28

    Xenon is well known to undergo host-guest interactions with proteins and synthetic molecules. As xenon can also be hyperpolarized by spin exchange optical pumping, allowing the investigation of highly dilute systems, it makes an ideal nuclear magnetic resonance probe for such host molecules. The utility of xenon as a probe can be further improved using Chemical Exchange Saturation Transfer using hyperpolarized nuclei (Hyper-CEST), but for highly accurate experiments requires a polarizer and xenon infusion system optimized for such measurements. We present the design of a hyperpolarizer and xenon infusion system specifically designed to meet the requirements of Hyper-CEST measurements. One key element of this design is preventing rubidium runaway, a chain reaction induced by laser heating that prevents efficient utilization of high photon densities. Using thermocouples positioned along the pumping cell we identify the sources of heating and conditions for rubidium runaway to occur. We then demonstrate the effectiveness of actively cooling the optical cell to prevent rubidium runaway in a compact setup. This results in a 2-3-fold higher polarization than without cooling, allowing us to achieve a polarization of 25% at continuous flow rates of 9 ml/min of (129)Xe. The simplicity of this design also allows it to be retrofitted to many existing polarizers. Combined with a direction infusion system that reduces shot-to-shot noise down to 0.56% we have captured Hyper-CEST spectra in unprecedented detail, allowing us to completely resolve peaks separated by just 1.62 ppm. Due to its high polarization and excellent stability, our design allows the comparison of underlying theories of host-guest systems with experiment at low concentrations, something extremely difficult with previous polarizers.

  9. Physiological response of rats to delivery of helium and xenon: implications for hyperpolarized noble gas imaging

    Science.gov (United States)

    Ramirez, M. P.; Sigaloff, K. C.; Kubatina, L. V.; Donahue, M. A.; Venkatesh, A. K.; Albert, M. S.; ALbert, M. S. (Principal Investigator)

    2000-01-01

    The physiological effects of various hyperpolarized helium and xenon MRI-compatible breathing protocols were investigated in 17 Sprague-Dawley rats, by continuous monitoring of blood oxygen saturation, heart rate, EKG, temperature and endotracheal pressure. The protocols included alternating breaths of pure noble gas and oxygen, continuous breaths of pure noble gas, breath-holds of pure noble gas for varying durations, and helium breath-holds preceded by two helium rinses. Alternate-breath protocols up to 128 breaths caused a decrease in oxygen saturation level of less than 5% for either helium or xenon, whereas 16 continuous-breaths caused a 31.5% +/- 2.3% decrease in oxygen saturation for helium and a 30.7% +/- 1. 3% decrease for xenon. Breath-hold protocols up to 25 s did not cause the oxygen saturation to fall below 90% for either of the noble gases. Oxygen saturation values below 90% are considered pathological. At 30 s of breath-hold, the blood oxygen saturation dropped precipitously to 82% +/- 0.6% for helium, and to 76.5% +/- 7. 4% for xenon. Breath-holds longer than 10 s preceded by pre-rinses caused oxygen saturation to drop below 90%. These findings demonstrate the need for standardized noble gas inhalation procedures that have been carefully tested, and for continuous physiological monitoring to ensure the safety of the subject. We find short breath-hold and alternate-breath protocols to be safe procedures for use in hyperpolarized noble gas MRI experiments. Copyright 2000 John Wiley & Sons, Ltd.

  10. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129.

    Science.gov (United States)

    Six, Joseph S; Hughes-Riley, Theodore; Stupic, Karl F; Pavlovskaya, Galina E; Meersmann, Thomas

    2012-01-01

    Hyperpolarized (hp) (129)Xe and hp (83)Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp (129)Xe MRI cumbersome. For hp (83)Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For (129)Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized (129)Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm(3)/min. For hp (83)Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm(3)/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D(1) transition was observed and taken into account for the qualitative description of the SEOP process.

  11. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129.

    Directory of Open Access Journals (Sweden)

    Joseph S Six

    Full Text Available Hyperpolarized (hp (129Xe and hp (83Kr for magnetic resonance imaging (MRI are typically obtained through spin-exchange optical pumping (SEOP in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp (129Xe MRI cumbersome. For hp (83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For (129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized (129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm(3/min. For hp (83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm(3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D(1 transition was observed and taken into account for the qualitative description of the SEOP process.

  12. Diffusion pore imaging by hyperpolarized xenon-129 nuclear magnetic resonance.

    Science.gov (United States)

    Kuder, Tristan Anselm; Bachert, Peter; Windschuh, Johannes; Laun, Frederik Bernd

    2013-07-12

    While NMR diffusion measurements are widely used to derive parameters indirectly related to the microstructure of biological tissues and porous media, direct imaging of pore shapes would be of high interest. Here we demonstrate experimentally that complexly shaped closed pores can be imaged by diffusion acquisitions. Collecting the signal from the whole sample eliminates the problem of vanishing signal at increasing resolution of conventional NMR imaging. This approach may be used to noninvasively obtain structural information inaccessible so far such as pore or cell shapes, cell density, or axon integrity.

  13. Diffusion Pore Imaging by Hyperpolarized Xenon-129 Nuclear Magnetic Resonance

    Science.gov (United States)

    Kuder, Tristan Anselm; Bachert, Peter; Windschuh, Johannes; Laun, Frederik Bernd

    2013-07-01

    While NMR diffusion measurements are widely used to derive parameters indirectly related to the microstructure of biological tissues and porous media, direct imaging of pore shapes would be of high interest. Here we demonstrate experimentally that complexly shaped closed pores can be imaged by diffusion acquisitions. Collecting the signal from the whole sample eliminates the problem of vanishing signal at increasing resolution of conventional NMR imaging. This approach may be used to noninvasively obtain structural information inaccessible so far such as pore or cell shapes, cell density, or axon integrity.

  14. Recycling and imaging of nuclear singlet hyperpolarization

    DEFF Research Database (Denmark)

    Pileio, Giuseppe; Bowen, Sean; Laustsen, Christoffer

    2013-01-01

    observation of the same batch of polarized nuclei over a period of 30 min and more. We report a recycling protocol in which the enhanced nuclear polarization achieved by dissolution-DNP is observed with full intensity and then returned to singlet order. MRI experiments may be run on a portion of the available...

  15. Hyperpolarized xenon by d-DNP using the clinical GE SpinLab polarizer system

    DEFF Research Database (Denmark)

    Mariager, Christian Østergaard; Ringgaard, Steffen; Ardenkjær-Larsen, Jan Henrik

    2017-01-01

    Hyperpolarized (HP) 129Xe have been demonstrated as a useful probe for magnetic resonance (MR) lung imaging and show promise for in vivo perfusion imaging and brown adipose tissue characterization. Reports of large polarization enhancements for 129Xe using dynamic nuclearpolarization (DNP) have...... raised expectations that DNP can be an alternative to the standard spin exchange optical pumping (SEOP) method. We show that it is possible to produce HP 129Xe gas using the clinical GE SpinLab polarizer, thus extending the practical use of the system beyond the primary purpose of hyperpolarizing liquid...

  16. Hyperpolarized xenon by d-DNP using the clinical GE SpinLab polarizer system

    DEFF Research Database (Denmark)

    Mariager, Christian; Ringgaard, Steffen; Ardenkjaer-Larsen, Jan Henrik

    2017-01-01

    Hyperpolarized (HP) 129Xe have been demonstrated as a useful probe for magnetic resonance (MR) lung imaging and show promise for in vivo perfusion imaging and brown adipose tissue characterization. Reports of large polarization enhancements for 129Xe using dynamic nuclearpolarization (DNP) have r...

  17. Impact of Hyperpolarization-activated, Cyclic Nucleotide-gated Cation Channel Type 2 for the Xenon-mediated Anesthetic Effect: Evidence from In Vitro and In Vivo Experiments.

    Science.gov (United States)

    Mattusch, Corinna; Kratzer, Stephan; Buerge, Martina; Kreuzer, Matthias; Engel, Tatiana; Kopp, Claudia; Biel, Martin; Hammelmann, Verena; Ying, Shui-Wang; Goldstein, Peter A; Kochs, Eberhard; Haseneder, Rainer; Rammes, Gerhard

    2015-05-01

    The thalamus is thought to be crucially involved in the anesthetic state. Here, we investigated the effect of the inhaled anesthetic xenon on stimulus-evoked thalamocortical network activity and on excitability of thalamocortical neurons. Because hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are key regulators of neuronal excitability in the thalamus, the effect of xenon on HCN channels was examined. The effects of xenon on thalamocortical network activity were investigated in acutely prepared brain slices from adult wild-type and HCN2 knockout mice by means of voltage-sensitive dye imaging. The influence of xenon on single-cell excitability in brain slices was investigated using the whole-cell patch-clamp technique. Effects of xenon on HCN channels were verified in human embryonic kidney cells expressing HCN2 channels. Xenon concentration-dependently diminished thalamocortical signal propagation. In neurons, xenon reduced HCN channel-mediated Ih current amplitude by 33.4 ± 12.2% (at -133 mV; n = 7; P = 0.041) and caused a left-shift in the voltage of half-maximum activation (V1/2) from -98.8 ± 1.6 to -108.0 ± 4.2 mV (n = 8; P = 0.035). Similar effects were seen in human embryonic kidney cells. The impairment of HCN channel function was negligible when intracellular cyclic adenosine monophosphate level was increased. Using HCN2 mice, we could demonstrate that xenon did neither attenuate in vitro thalamocortical signal propagation nor did it show sedating effects in vivo. Here, we clearly showed that xenon impairs HCN2 channel function, and this impairment is dependent on intracellular cyclic adenosine monophosphate levels. We provide evidence that this effect reduces thalamocortical signal propagation and probably contributes to the hypnotic properties of xenon.

  18. Analytical solution for the depolarization of hyperpolarized nuclei by chemical exchange saturation transfer between free and encapsulated xenon (HyperCEST).

    Science.gov (United States)

    Zaiss, Moritz; Schnurr, Matthias; Bachert, Peter

    2012-04-14

    We present an analytical solution of the Bloch-McConnell equations for the case of chemical exchange saturation transfer between hyperpolarized nuclei in cavities and in solvent (HyperCEST experiment). This allows quantitative investigation of host-guest interactions by means of nuclear magnetic resonance spectroscopy and, due to the strong HyperCEST signal enhancement, even NMR imaging. Hosts of interest can be hydrophobic cavities in macromolecules or artificial cages like cryptophane-A which was proposed as a targeted biosensor. Relevant system parameters as exchange rate and host concentration can be obtained from the monoexponential depolarization process which is shown to be governed by the smallest eigenvalue in modulus. For this dominant eigenvalue we present a useful approximation leading to the depolarization rate for the case of on- and off-resonant irradiation. It is shown that this rate is a generalization of the longitudinal relaxation rate in the rotating frame. We demonstrate for the free and cryptophane-A-encapsulated xenon system, by comparison with numerical simulations, that HyperCEST experiments are precisely described in the valid range of this widely applicable analytical approximation. Altogether, the proposed analytical solution allows optimization and quantitative analysis of HyperCEST experiments but also characterization and optimal design of possible biosensors.

  19. The role of level anti-crossings in nuclear spin hyperpolarization

    NARCIS (Netherlands)

    Ivanov, Konstantin L.; Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Vieth, Hans Martin; Kaptein, R|info:eu-repo/dai/nl/074334603

    2014-01-01

    Nuclear spin hyperpolarization is an important resource for increasing the sensitivity of NMR spectroscopy and MRI. Signal enhancements can be as large as 3-4 orders of magnitude. In hyperpolarization experiments, it is often desirable to transfer the initial polarization to other nuclei of choice,

  20. Nuclear-spin optical rotation in xenon

    Science.gov (United States)

    Savukov, I.

    2015-10-01

    The nuclear-spin optical rotation (NSOR) effect, which has potential applications in correlated nuclear-spin-resonance optical spectroscopy, has previously been explored experimentally and theoretically in liquid Xe. Calculations of the Xe NSOR constant are very challenging because the result is sensitive to correlations, relativistic effects, and the choice of basis, with strong cancellation between contributions from lowest and remaining states. The relativistic configuration-interaction many-body-theory approach, presented here, is promising because this approach has been successful in predicting various properties of noble-gas atoms, such as energies, oscillator strengths (OSs), Verdet constants, and photoionization cross sections. However, correlations become stronger along the sequence of noble-gas atoms and the theoretical accuracy in Xe is not as high as, for example, in neon and argon. To improve the accuracy of the Xe Verdet and NSOR constants, which are calculated as explicit sums over the excited states, theoretical values for the several lowest levels are replaced with empirical values of energies, OSs, and hyperfine structure constants. We found that the Xe Verdet constant is in excellent agreement with accurate measurements. To take into account liquid effects, empirical data for energy shifts were also used to correct the NSOR constant. The resulting Xe NSOR constant is in a good agreement with experiment, although the liquid-state effect is treated quite approximately.

  1. Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Hurd, Ralph E.; Yen, Yi‐Fen; Chen, Albert

    2012-01-01

    This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution‐DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation of this techn......This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution‐DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation...

  2. Cluster formation restricts dynamic nuclear polarization of xenon in solid mixtures

    DEFF Research Database (Denmark)

    Kuzma, N. N.; Pourfathi, M.; Kara, H.

    2012-01-01

    During dynamic nuclear polarization (DNP) at 1.5 K and 5 T, Xe-129 nuclear magnetic resonance (NMR) spectra of a homogeneous xenon/1-propanol/trityl-radical solid mixture exhibit a single peak, broadened by H-1 neighbors. A second peak appears upon annealing for several hours at 125 K. Its...

  3. Liquid xenon in nuclear medicine: state-of-the-art and the PETALO approach

    Science.gov (United States)

    Ferrario, P.

    2018-01-01

    Liquid xenon has several attractive features, which make it suitable for applications to nuclear medicine, such as high scintillation yield and fast scintillation decay time, better than currently used crystals. Since the '90s, several attempts have been made to build Positron Emission Tomography scanners based on liquid xenon, which can be divided into two different approaches: on one hand, the detection of the ionization charge in TPCs, and, on the other one, the detection of scintillation light with photomultipliers. PETALO (Positron Emission Tof Apparatus with Liquid xenOn) is a novel concept, which combines liquid xenon scintillating cells and silicon photomultipliers for the readout. A first Monte Carlo investigation has pointed out that this technology would provide an excellent intrinsic time resolution, which makes it possible to measure the Time-Of-Flight with high efficiency. Also, the transparency of liquid xenon to UV and blue wavelengths opens the possibility of exploiting both scintillation and Cherenkov light for a high-sensitivity TOF-PET.

  4. When the dust settles: stable xenon isotope constraints on the formation of nuclear fallout.

    Science.gov (United States)

    Cassata, W S; Prussin, S G; Knight, K B; Hutcheon, I D; Isselhardt, B H; Renne, P R

    2014-11-01

    Nuclear weapons represent one of the most immediate threats of mass destruction. In the event that a procured or developed nuclear weapon is detonated in a populated metropolitan area, timely and accurate nuclear forensic analysis and fallout modeling would be needed to support attribution efforts and hazard assessments. Here we demonstrate that fissiogenic xenon isotopes retained in radioactive fallout generated by a nuclear explosion provide unique constraints on (1) the timescale of fallout formation, (2) chemical fractionation that occurs when fission products and nuclear fuel are incorporated into fallout, and (3) the speciation of fission products in the fireball. Our data suggest that, in near surface nuclear tests, the presence of a significant quantity of metal in a device assembly, combined with a short time allowed for mixing with the ambient atmosphere (seconds), may prevent complete oxidation of fission products prior to their incorporation into fallout. Xenon isotopes thus provide a window into the chemical composition of the fireball in the seconds that follow a nuclear explosion, thereby improving our understanding of the physical and thermo-chemical conditions under which fallout forms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates

    Science.gov (United States)

    Capozzi, Andrea; Cheng, Tian; Boero, Giovanni; Roussel, Christophe; Comment, Arnaud

    2017-06-01

    Hyperpolarization via dynamic nuclear polarization (DNP) is pivotal for boosting magnetic resonance imaging (MRI) sensitivity and dissolution DNP can be used to perform in vivo real-time 13C MRI. The type of applications is however limited by the relatively fast decay time of the hyperpolarized spin state together with the constraint of having to polarize the 13C spins in a dedicated apparatus nearby but separated from the MRI magnet. We herein demonstrate that by polarizing 13C with photo-induced radicals, which can be subsequently annihilated using a thermalization process that maintains the sample temperature below its melting point, hyperpolarized 13C-substrates can be extracted from the DNP apparatus in the solid form, while maintaining the enhanced 13C polarization. The melting procedure necessary to transform the frozen solid into an injectable solution containing the hyperpolarized 13C-substrates can therefore be performed ex situ, up to several hours after extraction and storage of the polarized solid.

  6. Construction and 13 C hyperpolarization efficiency of a 180 GHz dissolution dynamic nuclear polarization system.

    Science.gov (United States)

    Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Ferguson, Sarah; Taylor, David; McDonald, George; Lumata, Lloyd

    2017-09-01

    Dynamic nuclear polarization (DNP) via the dissolution method has become one of the rapidly emerging techniques to alleviate the low signal sensitivity in nuclear magnetic resonance (NMR) spectroscopy and imaging. In this paper, we report on the development and 13 C hyperpolarization efficiency of a homebuilt DNP system operating at 6.423 T and 1.4 K. The DNP hyperpolarizer system was assembled on a wide-bore superconducting magnet, equipped with a standard continuous-flow cryostat, and a 180 GHz microwave source with 120 mW power output and wide 4 GHz frequency tuning range. At 6.423 T and 1.4 K, solid-state 13 C polarization P levels of 64% and 31% were achieved for 3 M [1-13 C] sodium acetate samples in 1 : 1 v/v glycerol:water glassing matrix doped with 15 mM trityl OX063 and 40 mM 4-oxo-TEMPO, respectively. Upon dissolution, which takes about 15 s to complete, liquid-state 13 C NMR signal enhancements as high as 240 000-fold (P=21%) were recorded in a nearby high resolution 13 C NMR spectrometer at 1 T and 297 K. Considering the relatively lower cost of our homebuilt DNP system and the relative simplicity of its design, the dissolution DNP setup reported here could be feasibly adapted for in vitro or in vivo hyperpolarized 13 C NMR or magnetic resonance imaging at least in the pre-clinical setting. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma

    Science.gov (United States)

    Litchford, R. J.; Harada, N.

    2005-01-01

    A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.

  8. Innovative concept for a major breakthrough in atmospheric radioactive xenon detection for nuclear explosion monitoring.

    Science.gov (United States)

    Le Petit, G; Cagniant, A; Morelle, M; Gross, P; Achim, P; Douysset, G; Taffary, T; Moulin, C

    The verification regime of the comprehensive test ban treaty (CTBT) is based on a network of three different waveform technologies together with global monitoring of aerosols and noble gas in order to detect, locate and identify a nuclear weapon explosion down to 1 kt TNT equivalent. In case of a low intensity underground or underwater nuclear explosion, it appears that only radioactive gases, especially the noble gas which are difficult to contain, will allow identification of weak yield nuclear tests. Four radioactive xenon isotopes, 131mXe, 133mXe, 133Xe and 135Xe, are sufficiently produced in fission reactions and exhibit suitable half-lives and radiation emissions to be detected in atmosphere at low level far away from the release site. Four different monitoring CTBT systems, ARIX, ARSA, SAUNA, and SPALAX™ have been developed in order to sample and to measure them with high sensitivity. The latest developed by the French Atomic Energy Commission (CEA) is likely to be drastically improved in detection sensitivity (especially for the metastable isotopes) through a higher sampling rate, when equipped with a new conversion electron (CE)/X-ray coincidence spectrometer. This new spectrometer is based on two combined detectors, both exhibiting very low radioactive background: a well-type NaI(Tl) detector for photon detection surrounding a gas cell equipped with two large passivated implanted planar silicon chips for electron detection. It is characterized by a low electron energy threshold and a much better energy resolution for the CE than those usually measured with the existing CTBT equipments. Furthermore, the compact geometry of the spectrometer provides high efficiency for X-ray and for CE associated to the decay modes of the four relevant radioxenons. The paper focus on the design of this new spectrometer and presents spectroscopic performances of a prototype based on recent results achieved from both radioactive xenon standards and air sample measurements

  9. Hyperpolarized 129Xenon Magnetic Resonance Imaging to Quantify Regional Ventilation Differences in Mild to Moderate Asthma: A Prospective Comparison Between Semiautomated Ventilation Defect Percentage Calculation and Pulmonary Function Tests.

    Science.gov (United States)

    Ebner, Lukas; He, Mu; Virgincar, Rohan S; Heacock, Timothy; Kaushik, Suryanarayanan S; Freemann, Matthew S; McAdams, H Page; Kraft, Monica; Driehuys, Bastiaan

    2017-02-01

    The aim of this study was to investigate ventilation in mild to moderate asthmatic patients and age-matched controls using hyperpolarized (HP) Xenon magnetic resonance imaging (MRI) and correlate findings with pulmonary function tests (PFTs). This single-center, Health Insurance Portability and Accountability Act-compliant prospective study was approved by our institutional review board. Thirty subjects (10 young asthmatic patients, 26 ± 6 years; 3 males, 7 females; 10 older asthmatic patients, 64 ± 6 years; 3 males, 7 females; 10 healthy controls) were enrolled. After repeated PFTs 1 week apart, the subjects underwent 2 MRI scans within 10 minutes, inhaling 1-L volumes containing 0.5 to 1 L of Xe. Xe ventilation signal was quantified by linear binning, from which the ventilation defect percentage (VDP) was derived. Differences in VDP among subgroups and variability with age were evaluated using 1-tailed t tests. Correlation of VDP with PFTs was tested using Pearson correlation coefficient. Reproducibility of VDP was assessed using Bland-Altman plots, linear regression (R), intraclass correlation coefficient, and concordance correlation coefficient. Ventilation defect percentage was significantly higher in young asthmatic patients versus young healthy subjects (8.4% ± 3.2% vs 5.6% ± 1.7%, P = 0.031), but not in older asthmatic patients versus age-matched controls (16.8% ± 10.3% vs 11.6% ± 6.6%, P = 0.13). Ventilation defect percentage was found to increase significantly with age (healthy, P = 0.05; asthmatic patients, P = 0.033). Ventilation defect percentage was highly reproducible (R = 0.976; intraclass correlation coefficient, 0.977; concordance correlation coefficient, 0.976) and significantly correlated with FEV1% (r = -0.42, P = 0.025), FEF25%-75% (r = -0.45, P = 0.019), FEV1/FVC (r = -0.71, P < 0.0001), FeNO (r = 0.69, P < 0.0001), and RV/TLC (r = 0.51, P = 0.0067). Bland-Altman analysis showed a bias for VDP of -0.88 ± 1.52 (FEV1%, -0.33 ± 7

  10. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  11. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  12. Exploiting level anti-crossings for efficient and selective transfer of hyperpolarization in coupled nuclear spin systems

    NARCIS (Netherlands)

    Pravdivtsev, A.N.; Yurkovskaya, A.V.; Kaptein, R.|info:eu-repo/dai/nl/074334603; Miesel, K.; Vieth, H.-M.; Ivanov, K.L.

    2013-01-01

    Spin hyperpolarization can be coherently transferred to other nuclei in field-cycling NMR experiments. At low magnetic fields spin polarization is redistributed in a strongly coupled network of spins. Polarization transfer is most efficient at fields where level anti-crossings (LACs) occur for the

  13. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    DEFF Research Database (Denmark)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular intera...

  14. The Isotopic Effect in the Nuclear Capture of Negative Muons in Xenon

    CERN Document Server

    Mamedov, T N; Gritsaj, K I; Duginov, V N; Zhukov, V A; Olshevsky, V G; Stojkov, A V

    2000-01-01

    The lifetime of negative muons in 1s-state of ^129 Xe has been measured for the first time. The nuclear capture rate of muon for ^129 Xe is compared with the analogous results for ^132,136 Xe isotopes. The noticeable dependence of the nuclear capture rate of muon on mass number for the above-mentioned isotopes is observed. The experimental results are compared with the ones calculated according to the semi-empirical Goulard - Primakoff formula.

  15. Vacuum ultraviolet light production by nuclear irradiation of liquid and gaseous xenon

    Science.gov (United States)

    Baldwin, G. C.

    1981-01-01

    Recent Los Alamos investigations suggest that a liquefied noble element may be the long-sought medium for a nuclear-excited laser or flashlamp. Research is needed to confirm this finding and to provide a basis for design and application studies. Quantitative and qualitative information are needed on the nature and behavior of the excited species, the effects of impurities and additives in the liquid phase under nuclear excitation, and the existence and magnitudes of nonlinear effects. Questions that need to be addressed and the most appropriate types of facilities for this task are identified.

  16. Optimization of Xenon Biosensors for Detection of ProteinInteractions

    Energy Technology Data Exchange (ETDEWEB)

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E..

    2005-08-03

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length.

  17. Application of Two Phase (Liquid/Gas) Xenon Gamma-Camera for the Detection of Special Nuclear Material and PET Medical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    McKinsey, Daniel Nicholas [Yale University

    2013-08-27

    The McKinsey group at Yale has been awarded a grant from DTRA for the building of a Liquid Xenon Gamma Ray Color Camera (LXe-GRCC), which combines state-of-the-art detection of LXe scintillation light and time projection chamber (TPC) charge readout. The DTRA application requires a movable detector and hence only a single phase (liquid) xenon detector can be considered in this case. We propose to extend the DTRA project to applications that allow a two phase (liquid/gas) xenon TPC. This entails additional (yet minimal) hardware and extension of the research effort funded by DTRA. The two phase detector will have better energy and angular resolution. Such detectors will be useful for PET medical imaging and detection of special nuclear material in stationary applications (e.g. port of entry). The expertise of the UConn group in gas phase TPCs will enhance the capabilities of the Yale group and the synergy between the two groups will be very beneficial for this research project as well as the education and research projects of the two universities. The LXe technology to be used in this project has matured rapidly over the past few years, developed for use in detectors for nuclear physics and astrophysics. This technology may now be applied in a straightforward way to the imaging of gamma rays. According to detailed Monte Carlo simulations recently performed at Yale University, energy resolution of 1% and angular resolution of 3 degrees may be obtained for 1.0 MeV gamma rays, using existing technology. With further research and development, energy resolution of 0.5% and angular resolution of 1.3 degrees will be possible at 1.0 MeV. Because liquid xenon is a high density, high Z material, it is highly efficient for scattering and capturing gamma rays. In addition, this technology scales elegantly to large detector areas, with several square meter apertures possible. The Yale research group is highly experienced in the development and use of noble liquid detectors for

  18. Optical pumping and xenon NMR

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, M. Daniel [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  19. Optical pumping and xenon NMR

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  20. Development of a method for xenon determination in the microstructure of high burn-up nuclear fuel[Dissertation 17527

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M. I

    2008-07-01

    In nuclear fuel, in approximately one quarter of the fissions, one of the two formed fission products is gaseous. These are mainly the noble gases xenon and krypton with isotopes of xenon contributing up to 90% of the product gases. These noble fission gases do not combine with other species, and have a low solubility in the normally used uranium oxide matrix. They can be dissolved in the fuel matrix or precipitate in nanometer-sized bubbles within the fuel grain, in micrometer-sized bubbles at the grain boundaries, and a fraction also precipitates in fuel pores, coming from fuel fabrication. A fraction of the gas can also be released into the plenum of the fuel rod. With increasing fission, and therefore burn-up, the ceramic fuel material experiences a transformation of its structure in the 'cooler' rim region of the fuel. A subdivision occurs of the original fuel grains of few microns size into thousands of small grains of sub-micron sizes. Additionally, larger pores are formed, which also leads into an increasing porosity in the fuel rim, called high burn-up structure. In this structure, only a small fraction of the fission gas remains in the matrix, the major quantity is said to accumulate in these pores. Because of this accumulation, the knowledge of the quantities of gas within these pores is of major interest in consideration to burn-up, fuel performance and especially for safety issues. In case of design based accidents, i.e. rapidly increasing temperature transients, the behavior of the fuel has to be estimated. Various analytical techniques have been used to determine the Xe concentration in nuclear fuel samples. The capabilities of EPMA (Electron Probe Micro-Analyser) and SIMS (Secondary Ion Mass Spectrometry) have been studied and provided some qualitative information, which has been used for determining Xe-matrix concentrations. First approaches combining these two techniques to estimate pore pressures have been recently reported. However

  1. Search for double β-decays of 124Xe with XENON100 & XENON1T

    Science.gov (United States)

    Fieguth, Alexander; XENON Collaboration

    2017-09-01

    The rare nuclear process of two-neutrino double electron capture, where two electrons are simultaneously captured from the atomic shell, has not yet been observed for 124Xe. A detection of this decay would provide a new reference for nuclear matrix element calculations. Moreover, if a neutrinoless mode were discovered, it would prove a Majorana nature of neutrinos and would shed light on the effective neutrino mass. The XENON dark matter project, with its dual-phase xenon time projection chambers XENON100 and XENON1T, is well suited for this rare event searches with signatures in the keV-region. The search with the XENON100 detector, containing 29 g of 124Xe, is explained as well as the outlook of its successor XENON1T, which contains 2 kg of the isotope in its active volume.

  2. Xenon-Xenon collision events in CMS

    CERN Multimedia

    Mc Cauley, Thomas

    2017-01-01

    One of the first-ever xenon-xenon collision events recorded by CMS during the LHC’s one-day-only heavy-ion run with xenon nuclei. The large number of tracks emerging from the centre of the detector show the many simultaneous nucleon-nucleon interactions that take place when two xenon nuclei, each with 54 protons and 75 neutrons, collide inside CMS.

  3. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  4. Direct WIMP searches with XENON100 and XENON1T

    Directory of Open Access Journals (Sweden)

    Davide Ferella Alfredo

    2015-01-01

    Full Text Available The XENON100 experiment is the second phase of the XENON direct Dark Matter search program. It consists of an ultra-low background double phase (liquid-gas xenon filled time projection chamber with a total mass of 161 kg (62 in the target region and 99 in the active shield, installed at the Laboratori Nazionali del Gran Sasso (LNGS. Here the results from the 224.6 live days of data taken between March 2011 and April 2012 are reported. The experiment set one of the most stringent limits on the WIMP-nucleon spin-independent cross section to date (2 × 10−45 cm2 for a 55 Gev/c2 WIMP mass at 90 % confidence level and the most stringent on the spin-dependent WIMP-neutron interaction (3.5 × 10−40 for a 45 GeV/c2 WIMP mass. With the same dataset, XENON100 excludes also solar axion coupling to electrons at gAe > 7.7 × 10−12 for a mass of mAxion 1 × 10−12 at a mass range of mAxion = 5−10 keV/c2 (both 90 % C.L.. Moreover an absolute spectral comparison between simulated and measured nuclear recoil distributions of light and charge signals from a 241AmBe source demonstrates a high level of detector and systematics understanding. Finally, the third generation of the XENON experiments, XENON1T, is the first tonne scale direct WIMP search experiment currently under construction. The commissioning phase of XENON1T is expected to start in early 2015 followed, a few months after, by the first science run. The experiment will reach sensitivities on the WIMP-nucleon spin-independent cross section down to 2 ×10−47 cm2 after two years of data taking.

  5. Diffusion MR of hyperpolarized 13C molecules in solution.

    Science.gov (United States)

    Koelsch, Bertram L; Keshari, Kayvan R; Peeters, Tom H; Larson, Peder E Z; Wilson, David M; Kurhanewicz, John

    2013-02-21

    We combined the high MR signal enhancement achieved using dissolution dynamic nuclear polarization (DNP) with a pulsed gradient double spin echo diffusion MR sequence to rapidly and accurately measure the diffusion coefficients of various hyperpolarized (13)C molecules in solution. Furthermore, with a diffusion-weighted imaging sequence we generate diffusion coefficient maps of multiple hyperpolarized metabolites simultaneously. While hyperpolarized experiments can measure rapid, non-equilibrium processes by avoiding signal averaging, continuous signal loss due to longitudinal relaxation (T(1)) complicates quantitation. By correcting for this signal loss, we demonstrate the feasibility of using hyperpolarized (13)C diffusion-weighted MR to accurately measure real-time (seconds) molecular transport phenomena. Potential applications include rapidly measuring molecular binding, cellular membrane transport, in vivo metabolite distribution and establishing a magnetic field independent hyperpolarized parameter.

  6. Effect of ultraviolet light, solar radiation, XeCl laser and xenon arc lamp on the nuclear track recording properties of CR-39

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Islam, M.A.; Abu-Abdoun, I.; Khan, M.A. (King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia))

    1992-10-01

    CR-39 nuclear track detectors were exposed in air to various light sources such as three ultraviolet (u.v.) lamps ([lambda] 253.7, 300 and 350 nm), a xenon chloride (XeCl) excimer laser ([lambda] = 308 nm), a xenon arc lamp and sunlight. A visible change of colour (yellowing) of detectors under heavy doses was noticed with the first three sources. The exposure to u.v. light sources resulted in degradation of the surface and in an increase of the bulk (V[sub b]) and track (V[sub t]) etch rates at wavelengths of 253.7 and 350 nm, while at 300 nm no such increase was observed. u.v. absorption spectra of CR-39 obtained after exposure gave no clear answer to this odd behaviour. A slight enhancement in detector sensitivity (V V[sub t]/V[sub b]) was observed for the samples exposed to 253.7 and 350 nm only. At a wavelength of 350 nm different exposure times resulted in different etch induction times; for fission fragments the time shortened from 28 min for unexposed samples to 2 min in the samples exposed for 86 h and V[sub b] decreased with the depth of the plastic. The exposure to an excimer laser resulted in apparent softening of the surfaces for a cumulative energy density up to 30 J cm[sup -2] and hardening started from 30 up to 230 J cm[sup -2]. The laser hardening, however, was found to saturate above an exposure dose of 40 J cm[sup -2]. The surface of the detectors was also damaged when exposed to a high dose from a xenon arc lamp. However, for shorter exposure times, the effect was a slight decrease in V[sub b] and V[sub t]. Finally, a controlled exposure to natural sunlight caused an increased of both the V[sub b] and V[sub t] up to 30h of exposure, and saturation started after that, while no enhancement was noticed in V. Long exposures (2 months) resulted in constant V[sub b], and increase in V[sub t] and V with etching time. (author).

  7. Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents.

    Science.gov (United States)

    Aptekar, Jacob W; Cassidy, Maja C; Johnson, Alexander C; Barton, Robert A; Lee, Menyoung; Ogier, Alexander C; Vo, Chinh; Anahtar, Melis N; Ren, Yin; Bhatia, Sangeeta N; Ramanathan, Chandrasekhar; Cory, David G; Hill, Alison L; Mair, Ross W; Rosen, Matthew S; Walsworth, Ronald L; Marcus, Charles M

    2009-12-22

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in vivo applications of prehyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications.

  8. LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization

    Science.gov (United States)

    Theis, Thomas; Truong, Milton; Coffey, Aaron M.; Chekmenev, Eduard Y.; Warren, Warren S.

    2014-11-01

    Nuclear spin hyperpolarization overcomes the sensitivity limitations of traditional NMR and MRI, but the most general method demonstrated to date (dynamic nuclear polarization) has significant limitations in scalability, cost, and complex apparatus design. As an alternative, signal amplification by reversible exchange (SABRE) of parahydrogen on transition metal catalysts can hyperpolarize a variety of substrates, but to date this scheme has required transfer of the sample to low magnetic field or very strong RF irradiation. Here we demonstrate "Low-Irradiation Generation of High Tesla-SABRE" (LIGHT-SABRE) which works with simple pulse sequences and low power deposition; it should be usable at any magnetic field and for hyperpolarization of many different nuclei. This approach could drastically reduce the cost and complexity of producing hyperpolarized molecules.

  9. Electric dipole moment searches using the isotope 129-xenon

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, Florian

    2014-11-13

    Two new complementary experiments searching for a permanent electric dipole moment (EDM) of 129-xenon are presented. Besides demonstration of a sensitivity improvement by employing established methods and a highly sensitive SQUID detection system the progress towards a novel measurement approach is discussed. The new method introduces time-varying electric fields and a liquid hyper-polarized xenon sample with a potential improvement in sensitivity of three orders of magnitude. The search for EDMs is motivated by their symmetry-breaking nature. A non-zero EDM provides a new source of CP violation to solve the mystery of the huge excess of matter over anti-matter in our Universe.

  10. Probing lung physiology with xenon polarization transfer contrast (XTC).

    Science.gov (United States)

    Ruppert, K; Brookeman, J R; Hagspiel, K D; Mugler, J P

    2000-09-01

    One of the major goals of hyperpolarized-gas MRI has been to obtain (129)Xe dissolved-phase images in humans. So far, this goal has remained elusive, mainly due to the low concentration of xenon that dissolves in tissue. A method is proposed and demonstrated in dogs that allows information about the dissolved phase to be obtained by imaging the gas phase following the application of a series of RF pulses that selectively destroy the longitudinal magnetization of xenon dissolved in the lung parenchyma. During the delay time between consecutive RF pulses, the depolarized xenon rapidly exchanges with the gas phase, thus lowering the gas polarization. It is demonstrated that the resulting contrast in the (129)Xe gas image provides information about the local tissue density. It is further argued that minor pulse-sequence modifications may provide information about the alveolar surface area or lung perfusion.

  11. Interactions between xenon and phospholipid bicelles studied by 2H/ 129Xe/ 131Xe NMR and optical pumping of nuclear spins

    Science.gov (United States)

    Li, Xiaoxia; Newberry, Caitlin; Saha, Indrajit; Nikolaou, Panayiotis; Whiting, Nicholas; Goodson, Boyd M.

    2006-02-01

    The interactions between xenon and DMPC/DHPC bicelles ( q = 3.5%, 7.5% w/v) were studied via 2H, 129Xe, 131Xe, and optically enhanced 129Xe NMR. The chemical shifts, linewidths, and quadrupolar couplings of the xenon/bicelle NMR signals were correlated with different regions of the bicellar phase diagram. The addition of xenon (<70 mM) was observed to reduce the temperature-onset of bicelle alignment by several degrees, in quantitative agreement with effects previously observed with chloroform; however, the stable liquid-crystalline range was not significantly reduced. Preliminary laser-polarized xenon/bicelle studies yielded 129Xe T1 values of ˜120 s, long enough to permit a variety of planned experiments.

  12. Sensitivity Enhancement by Exchange Mediated MagnetizationTransfer of the Xenon Biosensor Signal

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Sandra; Chavez, Lana; Lowery, Thomas J.; Han, Song-I.; Wemmer, David E.; Pines, Alexander

    2006-08-31

    Hyperpolarized xenon associated with ligand derivitized cryptophane-A cages has been developed as a NMR based biosensor. To optimize the detection sensitivity we describe use of xenon exchange between the caged and bulk dissolved xenon as an effective signal amplifier. This approach, somewhat analogous to 'remote detection' described recently, uses the chemical exchange to repeatedly transfer spectroscopic information from caged to bulk xenon, effectively integrating the caged signal. After an optimized integration period, the signal is read out by observation of the bulk magnetization. The spectrum of the caged xenon is reconstructed through use of a variable evolution period before transfer and Fourier analysis of the bulk signal as a function of the evolution time.

  13. Observation and applications of single-electron charge signals in the XENON100 experiment

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.

    2014-01-01

    The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are

  14. Liquid-state nuclear spin comagnetometers

    CERN Document Server

    Ledbetter, Micah; Budker, Dmitry; Romalis, Michael; Blanchard, John; Pines, Alex

    2012-01-01

    We discuss nuclear spin comagnetometers based on ultra-low-field nuclear magnetic resonance in mixtures of miscible solvents, each rich in a different nuclear spin. In one version thereof, Larmor precession of protons and ${\\rm ^{19}F}$ nuclei in a mixture of thermally polarized pentane and hexafluorobenzene is monitored via a sensitive alkali-vapor magnetometer. We realize transverse relaxation times in excess of 20 s and suppression of magnetic field fluctuations by a factor of 3400. We estimate it should be possible to achieve single-shot sensitivity of about $5\\times{\\rm 10^{-9} Hz}$, or about $5\\times 10^{-11} {\\rm Hz}$ in $\\approx 1$ day of integration. In a second version, spin precession of protons and ${\\rm ^{129}Xe}$ nuclei in a mixture of pentane and hyperpolarized liquid xenon is monitored using superconducting quantum interference devices. Application to spin-gravity experiments, electric dipole moment experiments, and sensitive gyroscopes are discussed.

  15. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications☆

    Science.gov (United States)

    Hughes-Riley, Theodore; Six, Joseph S.; Lilburn, David M.L.; Stupic, Karl F.; Dorkes, Alan C.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs. PMID:24135800

  16. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications.

    Science.gov (United States)

    Hughes-Riley, Theodore; Six, Joseph S; Lilburn, David M L; Stupic, Karl F; Dorkes, Alan C; Shaw, Dominick E; Pavlovskaya, Galina E; Meersmann, Thomas

    2013-12-01

    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp (129)Xe or hp (83)Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp (129)Xe handling, while (83)Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The (83)Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of (129)Xe in corresponding mixtures. The experimental setup also facilitated (129)Xe T1 relaxation measurements as a function of O2 concentration within excised lungs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Hyperpolarized 129Xe MRI: A Viable Functional Lung Imaging Modality?

    Science.gov (United States)

    Patz, Samuel; Hersman, F. William; Muradian, Iga; Hrovat, Mirko I.; Ruset, Iulian C.; Ketel, Stephen; Jacobson, Francine; Topulos, George P.; Hatabu, Hiroto; Butler, James P.

    2008-01-01

    The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used 3He as their imaging agent of choice rather than 129Xe. This preference has been predominantly due to, 3He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized 129Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized 129Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO2) by observation of 129Xe signal decay. We note that the measurement of pO2 by observation of 129Xe signal decay is more complex than that for 3He because of an additional signal loss mechanism due to interphase diffusion of 129Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO2 that accounts for both traditional T1 decay from pO2 and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output. PMID:17890035

  18. NMR hyperpolarization techniques for biomedicine.

    Science.gov (United States)

    Nikolaou, Panayiotis; Goodson, Boyd M; Chekmenev, Eduard Y

    2015-02-16

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities, ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    Science.gov (United States)

    Stohl, A.; Seibert, P.; Wotawa, G.; Arnold, D.; Burkhart, J. F.; Eckhardt, S.; Tapia, C.; Vargas, A.; Yasunari, T. J.

    2012-04-01

    This presentation will show the results of a paper currently under review in ACPD and some additional new results, including more data and with an independent box modeling approach to support some of the findings of the ACPD paper. On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant (FD-NPP) developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions of two isotopes, the noble gas xenon-133 (133Xe) and the aerosol-bound caesium-137 (137Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined the first guess with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 16.7 (uncertainty range 13.4-20.0) EBq, which is the largest radioactive noble gas release in history not associated with nuclear bomb testing. There is strong evidence that the first strong 133Xe release started early, before active venting was performed. The entire noble gas inventory of reactor units 1-3 was set free into the atmosphere between 11 and 15 March 2011. For 137Cs, the inversion results give a total emission of 35.8 (23.3-50.1) PBq, or about 42% of the estimated Chernobyl emission. Our results indicate that 137Cs emissions peaked on 14-15 March but were generally high from 12 until 19 March, when they

  20. Hyperpolarized 13C MR angiography

    DEFF Research Database (Denmark)

    Lipsø, Hans Kasper Wigh; Magnusson, Peter; Ardenkjær-Larsen, Jan Henrik

    2016-01-01

    Magnetic resonance angiography (MRA) is a non-invasive technology that can be used for diagnosis and monitoring of cardiovascular disease; the number one cause of mortality worldwide. Hyperpolarized imaging agents provide signal enhancement of more than 10, 000 times, which implies large reduction...... in acquisition time and improved spatial resolution. We review the role of hyperpolarized 13C agents for MR angiography and present the literature in the field. Furthermore, we present a study of the benefit of intra-arterial injection over intravenous injection of hyperpolarized agent for cerebral angiography...... in the rat, and compare the performance of two standard angiographic pulse sequences, the gradient echo (GRE) sequence and the balanced steady-state free precession (bSSFP). 2D coronal cerebral angiographies using intra-arterial injections were acquired with a GRE sequence with in-plane resolution of 0.27 mm...

  1. Functionalized Xenon as a Biosensor

    National Research Council Canada - National Science Library

    Megan M. Spence; Seth M. Rubin; Ivan E. Dimitrov; E. Janette Ruiz; David E. Wemmer; Alexander Pines; Shao Qin Yao; Feng Tian; Peter G. Schultz

    2001-01-01

    .... We have developed an NMR-based xenon biosensor that capitalizes on the enhanced signal-to-noise, spectral simplicity, and chemical-shift sensitivity of laser-polarized xenon to detect specific...

  2. Producing Radical-Free Hyperpolarized Perfusion Agents for In Vivo Magnetic Resonance Using Spin-Labeled Thermoresponsive Hydrogel.

    OpenAIRE

    Cheng Tian; Mishkovsky Mor; Junk Matthias J N; Münnemann Kerstin; Comment Arnaud

    2016-01-01

    Dissolution dynamic nuclear polarization (DNP) provides a way to tremendously improve the sensitivity of nuclear magnetic resonance experiments. Once the spins are hyperpolarized by dissolution DNP the radicals used as polarizing agents become undesirable since their presence is an additional source of nuclear spin relaxation and their toxicity might be an issue. This study demonstrates the feasibility of preparing a hyperpolarized [1 (13) C]2 methylpropan 2 ol (tert butanol) solution free of...

  3. Enhancement of NMR and MRI in the presence of hyperpolarized noble gases

    Science.gov (United States)

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2004-11-16

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  4. Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis

    Science.gov (United States)

    Pines, Alexander [Berkeley, CA; Budinger, Thomas [Berkeley, CA; Navon, Gil [Ramat Gan, IL; Song, Yi-Qiao [Berkeley, CA; Appelt, Stephan [Waiblingen, DE; Bifone, Angelo [Rome, IT; Taylor, Rebecca [Berkeley, CA; Goodson, Boyd [Berkeley, CA; Seydoux, Roberto [Berkeley, CA; Room, Toomas [Albany, CA; Pietrass, Tanja [Socorro, NM

    2008-06-10

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  5. Scalability study of solid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  6. Anomalous Xenon in the Precambrian Nuclear Reactor in Okelobondo (Gabon): A Possible Connection to the Fission Component in the Terrestrial Atmosphere

    Science.gov (United States)

    Meshik, A. P.; Kehm, K.; Hohenberg, C. M.

    1999-01-01

    Some CFF-Xe (Chemically Fractionated Fission Xenon), whose isotopic composition is established by simultaneous decay and migration of radioactive fission products, is probably present in the Earth's lithosphere, a conclusion based on available Xe data from various crustal and mantle rocks . Our recent isotopic analysis of Xe in alumophosphate from zone 13 of Okelobondo (southern extension of Oklo), along with the independent estimation of the isotopic composition of atmospheric fission Xe , supports the hypothesis that CFF-Xe was produced on a planetary scale. Additional information is contained in the original extended abstract.

  7. Quantification of human lung structure and physiology using hyperpolarized 129Xe.

    Science.gov (United States)

    Chang, Yulin V; Quirk, James D; Ruset, Iulian C; Atkinson, Jeffrey J; Hersman, F William; Woods, Jason C

    2014-01-01

    To present in vivo, human validation of a previously proposed method to measure key pulmonary parameters related to lung microstructure and physiology. Some parameters, such as blood-air barrier thickness, cannot be measured readily by any other noninvasive modality. Healthy volunteers (n = 12) were studied in 1.5T and 3T whole body human scanners using hyperpolarized xenon. Xenon uptake by lung parenchyma and blood was measured using a chemical shift saturation recovery sequence. Both dissolved-xenon peaks at 197 ppm and 217-218 ppm were fitted against a model of xenon exchange (MOXE) as functions of exchange time. Parameters related to lung function and structure can be obtained by fitting to this model. The following results were obtained from xenon uptake (averaged over all healthy volunteers): surface-area-to-volume ratio = 210 ± 50 cm(-1) ; total septal wall thickness = 9.2 ± 6.5 μm; blood-air barrier thickness = 1.0 ± 0.3 μm; hematocrit = 27 ± 4%; pulmonary capillary blood transit time = 1.3 ± 0.3 s, in good agreement with literature values from invasive experiments. More detailed fitting results are listed in the text. The initial in vivo human results demonstrate that our proposed methods can be used to noninvasively determine lung physiology by simultaneous quantification of a few important pulmonary parameters. This method is highly promising to become a versatile screening method for lung diseases. Copyright © 2013 Wiley Periodicals, Inc.

  8. Retention of xenon in quartz and Earth's missing xenon.

    Science.gov (United States)

    Sanloup, Chrystèle; Schmidt, Burkhard C; Chamorro Perez, Eva Maria; Jambon, Albert; Gregoryanz, Eugene; Mezouar, Mohamed

    2005-11-18

    The reactivity of xenon with terrestrial oxides was investigated by in situ synchrotron x-ray diffraction. At high temperature (T > 500 kelvin), some silicon was reduced, and the pressure stability of quartz was expanded, attesting to the substitution of some xenon for silicon. When the quartz was quenched, xenon diffused out and only a few weight percent remained trapped in samples. These results show that xenon can be covalently bonded to oxygen in quartz in the lower continental crust, providing an answer to the missing xenon problem; synthesis paths of rare gas compounds are also opened.

  9. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2012-03-01

    Full Text Available On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions into the atmosphere of two isotopes, the noble gas xenon-133 (133Xe and the aerosol-bound caesium-137 (137Cs, which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined it with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 15.3 (uncertainty range 12.2–18.3 EBq, which is more than twice as high as the total release from Chernobyl and likely the largest radioactive noble gas release in history. The entire noble gas inventory of reactor units 1–3 was set free into the atmosphere between 11 and 15 March 2011. In fact, our release estimate is higher than the entire estimated 133Xe inventory of the Fukushima Dai-ichi nuclear power plant, which we explain with the decay of iodine-133 (half-life of 20.8 h into 133Xe. There is strong evidence that the 133Xe release started before the first active venting was made, possibly indicating structural damage to reactor components and/or leaks due to overpressure which would have allowed early release of noble gases. For 137

  10. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant. Determination of the source term, atmospheric dispersion, and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Stohl, A.; Burkhart, J.F.; Eckhardt, S. [NILU - Norwegian Institute for Air Research, Kjeller (Norway); Seibert, P. [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Meteorology; Wotawa, G. [Central Institute for Meteorology and Geodynamics, Vienna (Austria); Arnold, D. [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Meteorology; Technical Univ. of Catalonia, Barcelona (Spain). Inst. of Energy Technologies; Tapia, C. [Technical Univ. of Catalonia, Barcelona (Spain). Dept. of Physics and Nucelar Engineering; Vargas, A. [Technical Univ. of Catalonia, Barcelona (Spain). Inst. of Energy Technologies; Yasunari, T.J. [Univs. Space Research Association, Columbia, MD (United States). Goddard Earth Sciences and Technology and Research

    2012-07-01

    On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions into the atmosphere of two isotopes, the noble gas xenon-133 ({sup 133}Xe) and the aerosol-bound caesium-137 ({sup 137}Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined it with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for {sup 137}Cs, measurements of bulk deposition. Regarding {sup 133}Xe, we find a total release of 15.3 (uncertainty range 12.2-18.3) EBq, which is more than twice as high as the total release from Chernobyl and likely the largest radioactive noble gas release in history. The entire noble gas inventory of reactor units 1-3 was set free into the atmosphere between 11 and 15 March 2011. In fact, our release estimate is higher than the entire estimated {sup 133}Xe inventory of the Fukushima Dai-ichi nuclear power plant, which we explain with the decay of iodine-133 (half-life of 20.8 h) into {sup 133}Xe. There is strong evidence that the {sup 133}Xe release started before the first active venting was made, possibly indicating structural damage to reactor components and/or leaks due to overpressure which would have allowed early release of noble gases. For {sup 137}Cs, the inversion results give a total emission of 36

  11. Critical Viscosity of Xenon

    Science.gov (United States)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2001 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure that is placed inside a pressure canister. A similar canister holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD. This is a detail view of MSFC 0100143.

  12. Site specific polarization transfer from a hyperpolarized ligand of dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yunyi [Texas A& M University, Chemistry Department (United States); Ragavan, Mukundan [University of Florida, Department of Biochemistry and Molecular Biology, College of Medicine (United States); Hilty, Christian, E-mail: chilty@tamu.edu [Texas A& M University, Chemistry Department (United States)

    2016-05-15

    Protein–ligand interaction is often characterized using polarization transfer by the intermolecular nuclear Overhauser effect (NOE). For such NOE experiments, hyperpolarization of nuclear spins presents the opportunity to increase the spin magnetization, which is transferred, by several orders of magnitude. Here, folic acid, a ligand of dihydrofolate reductase (DHFR), was hyperpolarized on {sup 1}H spins using dissolution dynamic nuclear polarization (D-DNP). Mixing hyperpolarized ligand with protein resulted in observable increases in protein {sup 1}H signal predominantly in the methyl group region of the spectra. Using {sup 13}C single quantum selection in a series of one-dimensional spectra, the carbon chemical shift ranges of the corresponding methyl groups can be elucidated. Signals observed in these hyperpolarized spectra could be confirmed using 3D isotope filtered NOESY spectra, although the hyperpolarized spectra were obtained in single scans. By further correlating the signal intensities observed in the D-DNP experiments with the occurrence of short distances in the crystal structure of the protein–ligand complex, the observed methyl proton signals could be matched to the chemical shifts of six amino acids in the active site of DHFR-folic acid binary complex. These data demonstrate that {sup 13}C chemical shift selection of protein resonances, combined with the intrinsic selectivity towards magnetization originating from the initially hyperpolarized spins, can be used for site specific characterization of protein–ligand interactions.

  13. Bonding of xenon hydrides

    NARCIS (Netherlands)

    Perez-Peralta, N.; Juarez, R.; Cerpa, E.; Bickelhaupt, F.M.; Merino, G.

    2009-01-01

    We have computed the structure and stability of the xenon hydrides HXeY (with Y = F, Cl, Br, I, CCH, CN, NC) using relativistic density functional theory (DFT) at ZORA-BP86/TZ2P level. All model systems HXeY studied here are bound equilibrium structures, but they are also significantly destabilized

  14. Requirements for Xenon International

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ely, James H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haas, Derek A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harper, Warren W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heimbigner, Tom R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, Charles W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Humble, Paul H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Madison, Jill C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, Scott J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Panisko, Mark E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ripplinger, Mike D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stewart, Timothy L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-30

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  15. Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization.

    Science.gov (United States)

    Klippel, Stefan; Döpfert, Jörg; Jayapaul, Jabadurai; Kunth, Martin; Rossella, Federica; Schnurr, Matthias; Witte, Christopher; Freund, Christian; Schröder, Leif

    2014-01-07

    Caged xenon has great potential in overcoming sensitivity limitations for solution-state NMR detection of dilute molecules. However, no application of such a system as a magnetic resonance imaging (MRI) contrast agent has yet been performed with live cells. We demonstrate MRI localization of cells labeled with caged xenon in a packed-bed bioreactor working under perfusion with hyperpolarized-xenon-saturated medium. Xenon hosts enable NMR/MRI experiments with switchable contrast and selectivity for cell-associated versus unbound cages. We present MR images with 10(3) -fold sensitivity enhancement for cell-internalized, dual-mode (fluorescence/MRI) xenon hosts at low micromolar concentrations. Our results illustrate the capability of functionalized xenon to act as a highly sensitive cell tracer for MRI detection even without signal averaging. The method will bridge the challenging gap for translation to in vivo studies for the optimization of targeted biosensors and their multiplexing applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Xenon as an anesthetic agent.

    Science.gov (United States)

    Jordan, Bryan D; Wright, Elizabeth Laura

    2010-10-01

    Discovered in 1898 by British chemists, xenon is a rare gas belonging to the noble gases of the periodic table. Xenon is used in many different ways, from high-intensity lamps to jet propellant, and in 1939, its anesthetic properties were discovered. Xenon exerts its anesthetic properties, in part, through the noncompetitive inhibition of N-methyl-D-aspartate receptors. Currently, xenon is being used primarily throughout Europe; however, the high price of manufacturing and scavenging the noble gas has discouraged more widespread use. As technology in anesthetic delivery improves, xenon is being investigated further as a possible replacement for nitrous oxide as an inhalational agent. This article reviews the anesthetic properties of xenon and current and potential research about the gas.

  17. Nuclear structure studies in the xenon and radon region and the discovery of a new radon isotope by Penning-trap mass spectrometry

    CERN Document Server

    Neidherr, Dennis

    2010-01-01

    Nowadays high-precision mass measurements based on Penning traps allow a deep insight into the fundamental properties of nucleonic matter. To this end, the cyclotron frequency of an ion confined in a strong, homogeneous magnetic field B is determined. At the ISOLTRAP mass spectrometer at ISOLDE / CERN the masses of short-lived radioactive nuclei with half-lives down to several ten ms can be measured with an uncertainty in the order of 10$^{-8}$and below. ISOLTRAP consists of an RFQ cooler and buncher to cool and accumulate the ions coming from ISOLDE and a double Penning-trap system to first clean the ion samples and finally perform the mass measurements. Within this thesis the masses of neutron rich xenon and radon isotopes, namely $^{138-146}$Xe and $^{223-229}$Rn were determined, eleven of them for the first time. $^{229}$Rn was even discovered in this experiment and its half-life could be determined to roughly 12$^{+1.2}_{-1.3}$ s. Since the mass reflects all interactions inside the nucleus it is a unique...

  18. ATLAS Event Display: First Xenon-Xenon Run 2017

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    Event display from the xenon-xenon collision run of 12-13 October 2017. Curved cyan lines show the trajectories of charged particles in the tracking systems. The bottom right plot shows the distribution of energy deposited in the calorimeters, demonstrating the high particle multiplicity of the event. Two muon candidates are reconstructed at high pseudorapidity, as seen in the bottom left plot

  19. Nuclear structure studies in the xenon and radon region and the discovery of a new radon isotope by Penning trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Neidherr, Dennis

    2010-04-28

    Nowadays high-precision mass measurements based on Penning traps allow a deep insight into the fundamental properties of nucleonic matter. To this end, the cyclotron frequency {nu}{sub c}=qB=(2{pi}m) of an ion confined in a strong, homogeneous magnetic field B is determined. At the ISOLTRAP mass spectrometer at ISOLDE / CERN the masses of short-lived radioactive nuclei with half-lives down to several ten ms can be measured with an uncertainty in the order of 10{sup -8} and below. ISOLTRAP consists of an RFQ cooler and buncher to cool and accumulate the ions coming from ISOLDE and a double Penning trap system to first clean the ion samples and finally perform the mass measurements. Within this thesis the masses of neutron rich xenon and radon isotopes, namely {sup 138-146}Xe and {sup 223-229}Rn were determined, eleven of them for the first time. {sup 229}Rn was even discovered in this experiment and its half-life could be determined to 12{sub -1.3}{sup +1.2} s. Since the mass reflects all interactions inside the nucleus it is a unique fingerprint of the nuclide of interest. One of these interactions, the proton-neutron interaction, leads for example to the onset of deformation. The aim of this thesis is to investigate a possible connection be- tween collective effects in nuclei, like the onset of deformation, and double-differences of binding energies, so called {delta}V{sub pn} values. Especially in the here presented areas these {delta}V{sub pn} values show a very unusual behavior and can not be explained with simple orbital overlapping arguments. One explanation could be the occurrence of octupolar deformation in these regions, which is usually probed with other experimental techniques. However, a quantitative description of the influence of such type of deformation on {delta}V{sub pn} is still not possible with modern theories. (orig.)

  20. Shear Thinning in Xenon

    Science.gov (United States)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  1. Metal-organic framework with optimally selective xenon adsorption and separation

    National Research Council Canada - National Science Library

    Banerjee, Debasis; Simon, Cory M; Plonka, Anna M; Motkuri, Radha K; Liu, Jian; Chen, Xianyin; Smit, Berend; Parise, John B; Haranczyk, Maciej; Thallapally, Praveen K

    2016-01-01

    .... A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations...

  2. Hyperpolarized noble gas magnetic resonance imaging of the animal lung: Approaches and applications

    Science.gov (United States)

    Santyr, Giles E.; Lam, Wilfred W.; Parra-Robles, Juan M.; Taves, Timothy M.; Ouriadov, Alexei V.

    2009-05-01

    Hyperpolarized noble gas (HNG) magnetic resonance (MR) imaging is a very promising noninvasive tool for the investigation of animal models of lung disease, particularly to follow longitudinal changes in lung function and anatomy without the accumulated radiation dose associated with x rays. The two most common noble gases for this purpose are H3e (helium 3) and X129e (xenon 129), the latter providing a cost-effective approach for clinical applications. Hyperpolarization is typically achieved using spin-exchange optical pumping techniques resulting in ˜10 000-fold improvement in available magnetization compared to conventional Boltzmann polarizations. This substantial increase in polarization allows high spatial resolution (single-slice images of the lung to be obtained with excellent temporal resolution (lungs with 1 mm slice thickness can be obtained within reasonable breath-hold intervals (ventilation studies in animals. Special MR hardware and software considerations are described in order to use the strong but nonrecoverable magnetization as efficiently as possible and avoid depolarization primarily by molecular oxygen. Several applications of HNG MR imaging are presented, including measurement of gross lung anatomy (e.g., airway diameters), microscopic anatomy (e.g., apparent diffusion coefficient), and a variety of functional parameters including dynamic ventilation, alveolar oxygen partial pressure, and xenon diffusing capacity.

  3. Hyperpolarized (129)Xe T (1) in oxygenated and deoxygenated blood

    Science.gov (United States)

    Albert, M. S.; Balamore, D.; Kacher, D. F.; Venkatesh, A. K.; Jolesz, F. A.

    2000-01-01

    The viability of the new technique of hyperpolarized (129)Xe MRI (HypX-MRI) for imaging organs other than the lungs depends on whether the spin-lattice relaxation time, T(1), of (129)Xe is sufficiently long in the blood. In previous experiments by the authors, the T(1) was found to be strongly dependent upon the oxygenation of the blood, with T(1) increasing from about 3 s in deoxygenated samples to about 10 s in oxygenated samples. Contrarily, Tseng et al. (J. Magn. Reson. 1997; 126: 79-86) reported extremely long T(1) values deduced from an indirect experiment in which hyperpolarized (129)Xe was used to create a 'blood-foam'. They found that oxygenation decreased T(1). Pivotal to their experiment is the continual and rapid exchange of hyperpolarized (129)Xe between the gas phase (within blood-foam bubbles) and the dissolved phase (in the skin of the bubbles); this necessitated a complicated analysis to extract the T(1) of (129)Xe in blood. In the present study, the experimental design minimizes gas exchange after the initial bolus of hyperpolarized (129)Xe has been bubbled through the sample. This study confirms that oxygenation increases the T(1) of (129)Xe in blood, from about 4 s in freshly drawn venous blood, to about 13 s in blood oxygenated to arterial levels, and also shifts the red blood cell resonance to higher frequency. Copyright 2000 John Wiley & Sons, Ltd. Abbreviations used BOLD blood oxygen level dependent NOE nuclear overhouses effect PO(2) oxygen partial pressure RBC red blood cells RF radio frequency SNR signal-to-noise ratio.

  4. Radio-xenon monitoring technology for CTBT verification

    Energy Technology Data Exchange (ETDEWEB)

    An, J. S.; Yoon, W. K.; Shin, J. S.; Kim, J. S.; Lee, Y. G.; Na, W. W

    1998-03-01

    To help ensure compliance with a comprehensive nuclear test ban treaty (CTBT), it is important that monitoring technologies for detecting covert nuclear testing be available. Monitoring methods are included seismic, hydroacoustic, infra-sound, and radionuclide technologies. Conducting a test underground, underwater, under such condition, gaseous radionuclides detection would be useful method for detecting of nuclear detonation. This report described on as to performance of detecting equipment and detecting principle of radioactive described on as to performance of detecting equipment and detecting principle of radioactive noble gas detection for CTBT. Although the quantity of xenon radionuclides entering the atmosphere from a nuclear detonation may be very large, the combination of dilution in the atmosphere plus radioactive decay requires very sensitive measurements to detect these radionuclides. Furthermore, xenon radionuclides can be enter the atmosphere from sources other than nuclear detonation, including operating nuclear reactors, producing and using medical isotopes and nuclear fuel reprocessing. Since measurement of the activity ratios of xenon radionuclides is important for determine of their origin. (author). 19 refs., 13 tabs., 18 figs

  5. Efficient production of hyperpolarized bicarbonate by chemical reaction on a DNP precursor to measure pH.

    Science.gov (United States)

    Ghosh, Rajat K; Kadlecek, Stephen J; Pourfathi, Mehrdad; Rizi, Rahim R

    2015-11-01

    To produce hyperpolarized bicarbonate indirectly via chemical reaction from a hyperpolarized precursor and utilize it for the simultaneous regional measurement of metabolism and pH. Alpha keto carboxylic acids are first hyperpolarized by dissolution dynamic nuclear polarization (DNP). These precursor molecules are rapidly reacted with hydrogen peroxide (H2O2) to decarboxylate the species, resulting in new target molecules. Unreacted H2O2 is removed from the system by reaction with sulfite. Interrogation of the ratio of dissolved carbon dioxide (CO2) to bicarbonate can be used to determine pH. Conversion of hyperpolarized alpha keto acids to bicarbonate and CO2 results in a minimal loss of the spin order. The reaction can be conducted to completion within seconds and preserves the nuclear spin polarization. Through a rapid chemical reaction, we can conserve the nuclear spin order of a DNP precursor to generate multiple hyperpolarized bioprobes otherwise unamenable to polarization. This indirect technique for the production of hyperpolarized agents can be applied to different precursor compounds to generate additional novel probes. © 2014 Wiley Periodicals, Inc.

  6. Hyperpolarized {sup 129}Xe MRI: A viable functional lung imaging modality?

    Energy Technology Data Exchange (ETDEWEB)

    Patz, Samuel [Center for Pulmonary Functional Imaging, Brigham and Women' s Hospital, 221 Longwood Avenue, Boston, MA 02115 (United States); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States)], E-mail: patz@bwh.harvard.edu; Hersman, F. William [Department of Physics, University of New Hampshire, 131 Main Street, Nesmith Hall, Durham, NH 03824 (United States); Muradian, Iga [Center for Pulmonary Functional Imaging, Brigham and Women' s Hospital, 221 Longwood Avenue, Boston, MA 02115 (United States); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States); Hrovat, Mirko I. [Mirtech, Inc., 452 Ash Street, Brockton, MA 02301 (United States); Ruset, Iulian C.; Ketel, Stephen [Department of Physics, University of New Hampshire, 131 Main Street, Nesmith Hall, Durham, NH 03824 (United States); Jacobson, Francine [Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States); Topulos, George P. [Department of Anesthesiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States); Hatabu, Hiroto [Center for Pulmonary Functional Imaging, Brigham and Women' s Hospital, 221 Longwood Avenue, Boston, MA 02115 (United States); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States); Butler, James P. [Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115 (United States)

    2007-12-15

    The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used {sup 3}He as their imaging agent of choice rather than {sup 129}Xe. This preference has been predominantly due to, {sup 3}He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized {sup 129}Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized {sup 129}Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO{sub 2}) by observation of {sup 129}Xe signal decay. We note that the measurement of pO{sub 2} by observation of {sup 129}Xe signal decay is more complex than that for {sup 3}He because of an additional signal loss mechanism due to interphase diffusion of {sup 129}Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO{sub 2} that accounts for both traditional T{sub 1} decay from pO{sub 2} and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output.

  7. Renal MR angiography and perfusion in the pig using hyperpolarized water

    DEFF Research Database (Denmark)

    Lipsø, Hans Kasper Wigh; Hansen, Esben Søvsø Szocska; Tougaard, Rasmus Stilling

    2016-01-01

    Purpose: To study hyperpolarized water as an angiographyand perfusion tracer in a large animal model.Methods: Protons dissolved in deuterium oxide (D2O) werehyperpolarized in a SPINlab dissolution dynamic nuclear polari-zation (dDNP) polarizer and subsequently investigated in vivo ina pig model...

  8. Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging

    Science.gov (United States)

    Atkins, Tonya M.; Cassidy, Maja C.; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M.; Kauzlarich, Susan M.

    2013-01-01

    We describe the synthesis, materials characterization and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na4Si4) and silicon tetrachloride (SiCl4) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted 29Si spin lattice relaxation (T1) times (> 600 s), which are retained after hyperpolarization by low temperature DNP. PMID:23350651

  9. Synthesis of long T₁ silicon nanoparticles for hyperpolarized ²⁹Si magnetic resonance imaging.

    Science.gov (United States)

    Atkins, Tonya M; Cassidy, Maja C; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M; Kauzlarich, Susan M

    2013-02-26

    We describe the synthesis, materials characterization, and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na₄Si₄) and silicon tetrachloride (SiCl₄) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ∼10 nm with long size-adjusted ²⁹Si spin-lattice relaxation (T₁) times (>600 s), which are retained after hyperpolarization by low-temperature DNP.

  10. Synthesis of long T silicon nanoparticles for hyperpolarized Si magnetic resonance imaging

    DEFF Research Database (Denmark)

    Atkins, T.M.; Ganguly, S.; Kauzlarich, S.M.

    2013-01-01

    We describe the synthesis, materials characterization, and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium...... silicide (Na Si) and silicon tetrachloride (SiCl) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted Si spin-lattice relaxation (T) times (>600 s), which are retained after hyperpolarization by low...

  11. Utilizing a Water-Soluble Cryptophane with Fast Xenon Exchange Rates for Picomolar Sensitivity NMR Measurements

    Science.gov (United States)

    Bai, Yubin; Hill, P. Aru; Dmochowski, Ivan J.

    2012-01-01

    Hyperpolarized 129Xe chemical exchange saturation transfer (129Xe Hyper-CEST) NMR is a powerful technique for the ultrasensitive, indirect detection of Xe host molecules (e.g., cryptophane-A). Irradiation at the appropriate Xe-cryptophane resonant radio frequency results in relaxation of the bound hyperpolarized 129Xe and rapid accumulation of depolarized 129Xe in bulk solution. The cryptophane effectively ‘catalyzes’ this process by providing a unique molecular environment for spin depolarization to occur, while allowing xenon exchange with the bulk solution during the hyperpolarized lifetime (T1 ≈ 1 min). Following this scheme, a triacetic acid cryptophane-A derivative (TAAC) was indirectly detected at 1.4 picomolar concentration at 320 K in aqueous solution, which is the record for a single-unit xenon host. To investigate this sensitivity enhancement, the xenon binding kinetics of TAAC in water was studied by NMR exchange lifetime measurement. At 297 K, kon ≈ 1.5 × 106 M−1s−1 and koff = 45 s−1, which represent the fastest Xe association and dissociation rates measured for a high-affinity, water-soluble xenon host molecule near rt. NMR linewidth measurements provided similar exchange rates at rt, which we assign to solvent-Xe exchange in TAAC. At 320 K, koff was estimated to be 1.1 × 103 s−1. In Hyper-CEST NMR experiments, the rate of 129Xe depolarization achieved by 14 pM TAAC in the presence of RF pulses was calculated to be 0.17 µM·s−1. On a per cryptophane basis, this equates to 1.2 × 104 129Xe atoms s−1 (or 4.6 × 104 Xe atoms s−1, all Xe isotopes), which is more than an order of magnitude faster than koff, the directly measurable Xe-TAAC exchange rate. This compels us to consider multiple Xe exchange processes for cryptophane-mediated bulk 129Xe depolarization, which provide at least 107-fold sensitivity enhancements over directly detected hyperpolarized 129Xe NMR signals. PMID:23106513

  12. Stability of xenon oxides at high pressures.

    Science.gov (United States)

    Zhu, Qiang; Jung, Daniel Y; Oganov, Artem R; Glass, Colin W; Gatti, Carlo; Lyakhov, Andriy O

    2013-01-01

    Xenon, which is quite inert under ambient conditions, may become reactive under pressure. The possibility of the formation of stable xenon oxides and silicates in the interior of the Earth could explain the atmospheric missing xenon paradox. Using an ab initio evolutionary algorithm, we predict the existence of thermodynamically stable Xe-O compounds at high pressures (XeO, XeO(2) and XeO(3) become stable at pressures above 83, 102 and 114 GPa, respectively). Our calculations indicate large charge transfer in these oxides, suggesting that large electronegativity difference and high pressure are the key factors favouring the formation of xenon compounds. However, xenon compounds cannot exist in the Earth's mantle: xenon oxides are unstable in equilibrium with the metallic iron occurring in the lower mantle, and xenon silicates are predicted to decompose spontaneously at all mantle pressures (xenon atoms may be retained at defects in mantle silicates and oxides.

  13. [Xenon: From rare gaz to doping product].

    Science.gov (United States)

    Tassel, Camille; Le Daré, Brendan; Morel, Isabelle; Gicquel, Thomas

    2016-04-01

    Doping is defined as the use of processes or substances to artificially increase physical or mental performance. Xenon is a noble gas used as an anesthetic and recently as a doping agent. Xenon is neuroprotective as an antagonist of NMDA glutamate receptors. Xenon stimulates the synthesis of erythropoietin (EPO) by increase of hypoxia inducible factor (HIF). Xenon would be a new doping product, maintaining doping methods ahead of detection. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research

    Directory of Open Access Journals (Sweden)

    John Kurhanewicz

    2011-02-01

    Full Text Available A major challenge in cancer biology is to monitor and understand cancer metabolism in vivo with the goal of improved diagnosis and perhaps therapy. Because of the complexity of biochemical pathways, tracer methods are required for detecting specific enzyme-catalyzed reactions. Stable isotopes such as 13C or 15N with detection by nuclear magnetic resonance provide the necessary information about tissue biochemistry, but the crucial metabolites are present in low concentration and therefore are beyond the detection threshold of traditional magnetic resonance methods. A solution is to improve sensitivity by a factor of 10,000 or more by temporarily redistributing the populations of nuclear spins in a magnetic field, a process termed hyperpolarization. Although this effect is short-lived, hyperpolarized molecules can be generated in an aqueous solution and infused in vivo where metabolism generates products that can be imaged. This discovery lifts the primary constraint on magnetic resonance imaging for monitoring metabolism—poor sensitivity—while preserving the advantage of biochemical information. The purpose of this report was to briefly summarize the known abnormalities in cancer metabolism, the value and limitations of current imaging methods for metabolism, and the principles of hyperpolarization. Recent preclinical applications are described. Hyperpolarization technology is still in its infancy, and current polarizer equipment and methods are suboptimal. Nevertheless, there are no fundamental barriers to rapid translation of this exciting technology to clinical research and perhaps clinical care.

  15. Hyperpolarized noble gases as contrast agents.

    Science.gov (United States)

    Zhou, Xin

    2011-01-01

    Hyperpolarized noble gases ((3)He and (129)Xe) can provide NMR signal enhancements of 10,000 to 100,000 times that of thermally polarized gases and have shown great potential for applications in lung magnetic resonance imaging (MRI) by greatly enhancing the sensitivity and contrast. These gases obtain a highly polarized state by employing a spin exchange optical pumping technique. In this chapter, the underlying physics of spin exchange optical pumping for production of hyperpolarized noble gases is explained and the basic components and procedures for building a polarizer are described. The storage and delivery strategies of hyperpolarized gases for in vivo imaging are discussed. Many of the problems that are likely to be encountered in practical experiments and the corresponding detailed approaches to overcome them are also discussed.

  16. Transport and imaging of brute-force (13)C hyperpolarization.

    Science.gov (United States)

    Hirsch, Matthew L; Smith, Bryce A; Mattingly, Mark; Goloshevsky, Artem G; Rosay, Melanie; Kempf, James G

    2015-12-01

    We demonstrate transport of hyperpolarized frozen 1-(13)C pyruvic acid from its site of production to a nearby facility, where a time series of (13)C images was acquired from the aqueous dissolution product. Transportability is tied to the hyperpolarization (HP) method we employ, which omits radical electron species used in other approaches that would otherwise relax away the HP before reaching the imaging center. In particular, we attained (13)C HP by 'brute-force', i.e., using only low temperature and high-field (e.g., Tthermal mixing (yielding ∼0.1% (13)C polarization). By avoiding polarization agents (a.k.a. relaxation agents) that are needed to hyperpolarize by the competing method of dissolution dynamic nuclear polarization (d-DNP), the (13)C relaxation time was sufficient to transport the sample for ∼10min before finally dissolving in warm water and obtaining a (13)C image of the hyperpolarized, dilute, aqueous product (∼0.01% (13)C polarization, a >100-fold gain over thermal signals in the 1T scanner). An annealing step, prior to polarizing the sample, was also key for increasing T1∼30-fold during transport. In that time, HP was maintained using only modest cryogenics and field (T∼60K and B=1.3T), for T1((13)C) near 5min. Much greater time and distance (with much smaller losses) may be covered using more-complete annealing and only slight improvements on transport conditions (e.g., yielding T1∼5h at 30K, 2T), whereas even intercity transfer is possible (T1>20h) at reasonable conditions of 6K and 2T. Finally, it is possible to increase the overall enhancement near d-DNP levels (i.e., 10(2)-fold more) by polarizing below 100mK, where nanoparticle agents are known to hasten T1 buildup by 100-fold, and to yield very little impact on T1 losses at temperatures relevant to transport. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. On the spin-dependent sensitivity of XENON100

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2012-11-15

    The latest XENON100 data severely constrains dark matter elastic scattering off nuclei, leading to impressive upper limits on the spin-independent cross-section. The main goal of this paper is to stress that the same data set has also an excellent spin-dependent sensitivity, which is of utmost importance in probing dark matter models. We show in particular that the constraints set by XENON100 on the spin-dependent neutron cross-section are by far the best at present, whereas the corresponding spin-dependent proton limits lag behind other direct detection results. The effect of nuclear uncertainties on the structure functions of xenon isotopes is analysed in detail and found to lessen the robustness of the constraints, especially for spin-dependent proton couplings. Notwith-standing, the spin-dependent neutron prospects for XENON1T and DARWIN are very encouraging. We apply our constraints to well-motivated dark matter models and demonstrate that in both mass-degenerate scenarios and the minimal supersymmetric standard model the spin-dependent neutron limits can actually override the spin-independent limits. This opens the possibility of probing additional unexplored regions of the dark matter parameter space with the next generation of ton-scale direct detection experiments.

  18. Pulmonary hyperpolarized noble gas MRI: Recent advances and perspectives in clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zaiyi [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston (United States); Department of Radiology, Guangdong General Hospital Guangdong Academy of Medical Sciences (China); Araki, Tetsuro, E-mail: taraki@partners.org [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston (United States); Okajima, Yuka [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston (United States); Albert, Mitchell [Hyperpolarized Gas MRI Laboratory, Thunder Bay Regional Research Institute, Lakehead University (Canada); Hatabu, Hiroto [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston (United States)

    2014-07-15

    The invention of hyperpolarized (HP) noble gas MRI using helium-3 ({sup 3}He) or xenon-129 ({sup 129}Xe) has provided a new method to evaluate lung function. Using HP {sup 3}He or {sup 129}Xe for inhalation into the lung air spaces as an MRI contrast agent significantly increases MR signal and makes pulmonary ventilation imaging feasible. This review focuses on important aspects of pulmonary HP noble gas MRI, including the following: (1) functional imaging types, (2) applications for major pulmonary diseases, (3) safety considerations, and (4) future directions. Although it is still challenging to use pulmonary HP noble gas MRI clinically, the technology offers promise for the investigation of the microstructure and function of the lungs.

  19. Penile blood flow by xenon-133 washout

    Energy Technology Data Exchange (ETDEWEB)

    Haden, H.T.; Katz, P.G.; Mulligan, T.; Zasler, N.D.

    1989-06-01

    Penile erectile failure is often attributed to abnormalities of vascular supply or drainage, but few direct measurements of penile blood flow have been made. We describe the xenon washout method for measurement of penile blood flow, and present the results obtained in a group of normal and impotent subjects. The procedure was performed with standard nuclear imaging equipment. Flaccid-state penile blood flow in the impotent patients studied was not significantly different from the normal group, suggesting that flaccid-state measurements may not be helpful in evaluation of erectile failure. However, this method can be used to measure penile venous outflow with stimulated or induced erection, and may provide a method for detecting abnormal venous leakage.

  20. XENON100 - Results and Prospects

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Marc, E-mail: marc.schumann@physik.uzh.ch [Physik Institut, University of Zurich (Switzerland)

    2011-08-10

    The XENON100 Dark Matter experiment, installed in the Laboratory Nazionali del Gran Sasso (LNGS, Italy), is searching for WIMP type Dark Matter particles scattering off a 62 kg liquid xenon target in a dual phase (liquid/gas) time projection chamber. Careful material selection, a novel detector design, and an upgrade of the passive shield, together with capitalizing the self-shielding power of liquid xenon, are crucial in order to achieve a background of less than 0.01 events kg{sup -1} keV{sup -1} day{sup -1} in the fiducial volume. This background, which has been verified experimentally, is lower than in any other dark matter experiment. The analysis of 11.2 live days of background data taken during a commissioning run in fall 2009 leads to the first science result of XENON100: No events are observed in a pre-defined fiducial volume of 40 kg mass, excluding spin-independent WIMP-nucleon scattering cross sections above 3.4 x 10{sup -44} cm{sup 2} (at 100 GeV/c{sup 2}). Below 80 GeV/c{sup 2} this is the most sensitive exclusion limit so far, disfavouring the interpretation of DAMA and CoGeNT being due to spin-independent, elastic interactions of light mass WIMPs.

  1. Can monoatomic xenon become chiral?

    Science.gov (United States)

    Bartik, K; El Haouaj, M; Luhmer, M; Collet, A; Reisse, J

    2000-12-15

    A chiral host, cryptophane-A (1), makes even a monoatomic noble gas chiral. The interaction of xenon and 1 was monitored by (129) Xe NMR and in the presence of a chiral chemical shift reagent. © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  2. A xenon recirculating ventilator for the newborn piglet: developing clinical applications of xenon for neonates.

    Science.gov (United States)

    Faulkner, Stuart D; Downie, Neil A; Mercer, Christopher J; Kerr, Stuart A; Sanders, Robert D; Robertson, Nicola J

    2012-12-01

    The clinical applications of xenon for the neonate include both anaesthesia and neuroprotection. However, due to the limited natural availability of xenon, special equipment is required to administer and recapture the gas to develop xenon as a therapeutic agent. In order to test the xenon recirculating ventilator for the application of neuroprotection in a preclinical trial, our primary objective was to test the efficiency, reliability and safety of administering 50% xenon for 24 h in hypoxic ischaemic piglets. A prospective observational study. Institute for Women's Health, University College London, January 2008 to March 2008. Four anaesthetised male piglets, less than 24 h old, underwent a global hypoxic ischaemic insult for approximately 25 min prior to switching to the xenon recirculating ventilator. Between 2 and 26 h after hypoxic ischaemia, anaesthetised piglets were administered a mixture of 50% xenon, air, oxygen and isoflurane. The primary outcome measure was blood gas PaCO2 (kPa) and secondary outcome measure was xenon gas use (l h), over the 24-h duration of xenon administration. The xenon recirculating ventilator provided effective ventilation, automated control of xenon/air gas mixtures, and stable blood gas PaCO2 (4.5 to 6.3 kPa) for 24 h of ventilation with the xenon recirculating ventilator. Total xenon use was minimal at approximately 0.6 l h at a cost of approximately &OV0556;8 h. Additional features included an isoflurane scavenger and bellows height alarm. Stable gas delivery to a piglet with minimal xenon loss and analogue circuitry made the xenon recirculating ventilator easy to use and it could be modified for other large animals and noble gas mixtures. The technologies, safety and efficiency of xenon delivery in this preclinical system have been taken forward in the development of neonatal ventilators for clinical use in phase II clinical trials for xenon-augmented hypothermia and for xenon anaesthesia.

  3. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Contreras, H.; Goetzke, L.W.; Fernandez, A.J.M.; Messina, M.; Plante, G.; Rizzo, A. [Columbia University, Physics Department, New York, NY (United States); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Bologna Univ., Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Alfonsi, M. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Arazi, L.; Budnik, R.; Duchovni, E.; Gross, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Priel, N.; Vitells, O. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Arisaka, K.; Lyashenko, A.; Meng, Y.; Pantic, E.; Teymourian, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Arneodo, F.; Di Giovanni, A. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Auger, M.; Barrow, P.; Baudis, L.; Behrens, A.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F. [University of Zurich, Physik-Institut, Zurich (Switzerland); Balan, C.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos [University of Coimbra, Department of Physics, Coimbra (Portugal); Bauermeister, B.; Fattori, S.; Geis, C.; Grignon, C.; Oberlack, U.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Beltrame, P. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); University of Edinburgh, Edinburgh (United Kingdom); Brown, A.; Lang, R.F.; Macmullin, S.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Brown, E.; Levy, C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Bruenner, S.; Hampel, W.; Kaether, F.; Lindemann, S.; Lindner, M.; Undagoitia, T.M.; Rauch, L.; Schreiner, J.; Simgen, H.; Weber, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Buetikofer, L.; Coderre, D.; Schumann, M. [University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Cussonneau, J.P.; Le Calloch, M.; Masbou, J.; Lavina, L.S.; Thers, D. [Universite de Nantes, Subatech, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Ferella, A.D.; Fulgione, W.; Laubenstein, M. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [Bologna Univ., Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Miguez, B.; Molinario, A.; Trinchero, G. [INFN-Torino and Osservatorio Astrofisico di Torino, Turin (Italy); Naganoma, J.; Shagin, P.; Wall, R. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Orrigo, S.E.A. [University of Coimbra, Department of Physics, Coimbra (Portugal); IFIC, CSIC-Universidad de Valencia, Valencia (Spain); Persiani, R. [Universite de Nantes, Subatech, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (FR); Bologna Univ., Department of Physics and Astrophysics, Bologna (IT); INFN, Bologna (IT); Collaboration: XENON Collaboration

    2015-11-15

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment. (orig.)

  4. [How xenon works: neuro and cardioprotection mechanisms].

    Science.gov (United States)

    Morais, Ricardo; Andrade, Luísa; Lourenço, André; Tavares, Jorge

    2014-01-01

    The Xenon, a noble gas, has anesthetics properties, associated with remarkable hemodynamic stability as well as cardioprotective, neuroprotective proprieties. Its physicochemical characteristics give him a quick induction and emergence of anesthesia, being free of deleterious effects in all organs and showing no teratogenicity. Such properties have led to a growing interest in improving the knowledge about this noble gas, in order to assess the mechanisms of neuro and cardioprotection induced and to assess the clinical indications for its use. Qualitative review of clinical trials on anesthesia with xenon. Studies were identified from MEDLINE and by hand-searching, using the following keywords: xenon, xenon anestesia, xenon neuroprotection, xenon cradioprotection. After several studies, including two randomized multicenter controlled trials, the use of xenon as an anesthetic in patients ASA I-II was approved in March 2007. However his use in clinical practice has been strongly limited by it's high price. It seems unlikely that the advantages it offers in relation to other anesthetics justify it's use in patients ASA I-II. Although, xenon may be a valuable asset in the reduction of co-morbilities and mortality in anesthesia of patients ASA III-IV, unfortunately, there are no large randomized control studies to prove it. Unfortunately, there are still no randomized or multicentric studies showing a favourable cost-benefit profile of xenon in ASA III-IV patients vs. other anaesthetics. The usefulness of xenon in Anesthesiology requires more studies to be defined.

  5. Pomeranchuk cell for hyperpolarized 3He based on the brute force method

    Science.gov (United States)

    Makino, Seiji; Tanaka, Masayoshi; Ueda, Kunihiro; Fujiwara, Mamoru; Fujimura, Hisako; Yosoi, Masaru; Ohta, Takeshi; Frossati, Giorgio; de Waard, Arlette; Rouille, Gerard

    2014-09-01

    MRI (Magnetic Resonance Imaging) has been used for the medical diagnosis as a radiation-free imaging equipment. Since the proton has been mainly used for medical MRI, usefulness has been rather restrictive. As an example for expanding the range of applicability, MRI with hyperpolarized 3He gas has been used for the lung disease. Here, ``hyperpolarized'' means ``polarized higher than the thermal equilibrium polarization.'' For producing a large amount of hyperpolarized 3He gas at a time, we have been developing a hyperpolarization technique based on the brute force method which uses an ultralow temperature of a few mK and a strong magnetic field around 17 T in combination with the principle of the Pomeranchuk cooling. The Pomeranchuk cell made with non-metallic materials of small heat capacity is attached to the 3He/4He dilution refrigerator using a sintered silver allowing large heat conduction. After the sensors to monitor the temperature and pressure of 3He are calibrated and the Pomeranchuk cell is constructed, the system is tested. Then, the solidification of 3He and the measurement of NMR (Nuclear Magnetic Resonance) signals of 3He under the magnetic field of 17 T are carried out. The current status is reported in this talk.

  6. In vivo magnetic resonance imaging of hyperpolarized silicon particles.

    Science.gov (United States)

    Cassidy, M C; Chan, H R; Ross, B D; Bhattacharya, P K; Marcus, C M

    2013-05-01

    Silicon-based micro- and nanoparticles have gained popularity in a wide range of biomedical applications due to their biocompatibility and biodegradability in vivo, as well as their flexible surface chemistry, which allows drug loading, functionalization and targeting. Here, we report direct in vivo imaging of hyperpolarized (29)Si nuclei in silicon particles by magnetic resonance imaging. Natural physical properties of silicon provide surface electronic states for dynamic nuclear polarization, extremely long depolarization times, insensitivity to the in vivo environment or particle tumbling, and surfaces favourable for functionalization. Potential applications to gastrointestinal, intravascular and tumour perfusion imaging at subpicomolar concentrations are presented. These results demonstrate a new background-free imaging modality applicable to a range of inexpensive, readily available and biocompatible silicon particles.

  7. Perspectives of hyperpolarized noble gas MRI beyond 3He

    Science.gov (United States)

    Lilburn, David M.L.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed. PMID:23290627

  8. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  9. RESULTS FROM THE XENON100 EXPERIMENT

    Directory of Open Access Journals (Sweden)

    Rino Persiani

    2013-12-01

    Full Text Available The XENON program consists in operating and developing double-phase time projection chambers using liquid xenon as the target material. It aims to directly detect dark matter in the form of WIMPs via their elastic scattering off xenon nuclei. The current phase is XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS, with a 62 kg liquid xenon target. We present the 100.9 live days of data, acquired between January and June 2010, with no evidence of dark matter, as well as the new results of the last scientific run, with about 225 live days. The next phase, XENON1T, will increase the sensitivity by two orders of magnitude.

  10. High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes

    Science.gov (United States)

    Hermkens, Niels K. J.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco

    2017-03-01

    SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H2) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H2 spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2 min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay.

  11. Depolarization of nuclear spin polarized 129Xe gas by dark rubidium during spin-exchange optical pumping

    Science.gov (United States)

    Antonacci, M. A.; Burant, Alex; Wagner, Wolfgang; Branca, Rosa T.

    2017-06-01

    Continuous-flow spin-exchange optical pumping (SEOP) continues to serve as the most widespread method of polarizing 129Xe for magnetic resonance experiments. Unfortunately, continuous-flow SEOP still suffers from as-yet unidentified inefficiencies that prevent the production of large volumes of xenon with a nuclear spin polarization close to theoretically calculated values. In this work we use a combination of ultra-low field nuclear magnetic resonance spectroscopy and atomic absorption spectroscopy (AAS) measurements to study the effects of dark Rb vapor on hyperpolarized 129Xe in situ during continuous-flow SEOP. We find that dark Rb vapor in the optical cell outlet has negligible impact on the final 129Xe polarization at typical experimental conditions, but can become significant at higher oven temperatures and lower flow rates. Additionally, in the AAS spectra we also look for a signature of paramagnetic Rb clusters, previously identified as a source of xenon depolarization and a cause for SEOP inefficiency, for which we are able to set an upper limit of 8.3 × 1015 Rb dimers per cm3.

  12. Xenon Fractionation and Archean Hydrogen Escape

    Science.gov (United States)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  13. Hyperpolarized H2O MR angiography

    DEFF Research Database (Denmark)

    Ardenkjær-Larsen, Jan Henrik; Laustsen, Christoffer; Bowen, Sean

    2014-01-01

    polarization followed by dissolution in D2O. A water 1H signal enhancement of 77 times compared with 4.7 Tesla was obtained. This corresponds to a polarization of 3.5% for the 3.9 mol/L 1H in D2O . Moreover, a T1 in excess of 20 s was achieved. The use of hyperpolarized water as a contrast agent presents a new...

  14. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    Science.gov (United States)

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  15. A large volume double channel 1H-X RF probe for hyperpolarized magnetic resonance at 0.0475 T

    Science.gov (United States)

    Coffey, Aaron M.; Shchepin, Roman V.; Wilkens, Ken; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2012-07-01

    In this work we describe a large volume 340 mL 1H-X magnetic resonance (MR) probe for studies of hyperpolarized compounds at 0.0475 T. 1H/13C and 1H/15N probe configurations are demonstrated with the potential for extension to 1H/129Xe. The primary applications of this probe are preparation and quality assurance of 13C and 15N hyperpolarized contrast agents using PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) and other parahydrogen-based methods of hyperpolarization. The probe is efficient and permits 62 μs 13C excitation pulses at 5.3 W, making it suitable for portable operation. The sensitivity and detection limits of this probe, tuned to 13C, are compared with a commercial radio frequency (RF) coil operating at 4.7 T. We demonstrate that low field MR of hyperpolarized contrast agents could be as sensitive as conventional high field detection and outline potential improvements and optimization of the probe design for preclinical in vivo MRI. PASADENA application of this low-power probe is exemplified with 13C hyperpolarized 2-hydroxyethyl propionate-1-13C,2,3,3-d3.

  16. Producing Radical-Free Hyperpolarized Perfusion Agents for In Vivo Magnetic Resonance Using Spin-Labeled Thermoresponsive Hydrogel.

    Science.gov (United States)

    Cheng, Tian; Mishkovsky, Mor; Junk, Matthias J N; Münnemann, Kerstin; Comment, Arnaud

    2016-07-01

    Dissolution dynamic nuclear polarization (DNP) provides a way to tremendously improve the sensitivity of nuclear magnetic resonance experiments. Once the spins are hyperpolarized by dissolution DNP, the radicals used as polarizing agents become undesirable since their presence is an additional source of nuclear spin relaxation and their toxicity might be an issue. This study demonstrates the feasibility of preparing a hyperpolarized [1-(13) C]2-methylpropan-2-ol (tert-butanol) solution free of persistent radicals by using spin-labeled thermoresponsive hydrophilic polymer networks as polarizing agents. The hyperpolarized (13) C signal can be detected for up to 5 min before the spins fully relax to their thermal equilibrium. This approach extends the applicability of spin-labeled thermoresponsive hydrogel to the dissolution DNP field and highlights its potential as polarizing agent for preparing neat slowly relaxing contrast agents. The hydrogels are especially suited to hyperpolarize deuterated alcohols which can be used for in vivo perfusion imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optically induced cross relaxation via nitrogen-related defects for bulk diamond 13C hyperpolarization

    Science.gov (United States)

    Wunderlich, Ralf; Kohlrautz, Jonas; Abel, Bernd; Haase, Jürgen; Meijer, Jan

    2017-12-01

    In this Rapid Communication we utilize nuclear magnetic resonance to investigate the hyperpolarization effect of negatively charged nitrogen vacancy (NV) centers on bulk 13C nuclei in a diamond single crystal. We were able to identify several polarization peaks of a different sign at different magnetic fields in a region of some tens of Gauss centered around 50 mT . The bulk 13C hyperpolarization in the investigated field range is usually attributed to the excited state level anticrossing of the NV center. However, we found that this bulk hyperpolarization is caused by optically induced cross relaxation and that it takes place in the NV center ground state. The four-spin coupling between the polarized NV electron spin, the electron spin of a substitutional nitrogen impurity (P1), as well as its 14N nuclei and the 13C nuclear spin have to be considered. We introduce a simple theoretical model which completely fits with the experimental data and which clearly shows that the P1 centers are involved in the polarization process. We expect that the current work has a significant impact on future NV-based polarization applications.

  18. Xenon lighting adjusted to plant requirements

    Energy Technology Data Exchange (ETDEWEB)

    Koefferlein, M.; Doehring, T.; Payer, H.D.; Seidlitz, H.K. [GSF-Forschungszentrum fuer Umwelt und Gesundheit, Oberschleissheim (Germany)

    1994-12-31

    The high luminous flux and spectral properties of xenon lamps would provide an ideal luminary for plant lighting if not excess IR radiation poses several problems for an application: the required filter systems reduce the irradiance at spectral regions of particular importance for plant development. Most of the economical drawbacks of xenon lamps are related to the difficult handling of that excess IR energy. Furthermore, the temporal variation of the xenon output depending on the oscillations of the applied AC voltage has to be considered for the plant development. However, xenon lamps outperform other lighting systems with respect to spectral stability, immediate response, and maximum luminance. Therefore, despite considerable competition by other lighting techniques, xenon lamps provide a very useful tool for special purposes. In plant lighting however, they seem to play a less important role as other lamp and lighting developments can meet these particular requirements at lower costs.

  19. Magnetic resonance imaging with hyperpolarized agents: methods and applications

    Science.gov (United States)

    Adamson, Erin B.; Ludwig, Kai D.; Mummy, David G.; Fain, Sean B.

    2017-07-01

    In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways in cancer and cardiac

  20. [Benefits and indications of xenon anaesthesia].

    Science.gov (United States)

    Delhaye, O; Robin, E; Bazin, J-E; Ripart, J; Lebuffe, G; Vallet, B

    2010-09-01

    To analyze the current knowledge related to xenon anaesthesia. References were obtained from computerized bibliographic research (Medline), recent review articles, the library of the service and personal files. All categories of articles on this topic have been selected. Articles have been analyzed for biophysics, pharmacology, toxicity and environmental effects, clinical effects and using prospect. The noble gas xenon has anaesthetic properties that have been recognized 50 years ago. Xenon is receiving renewed interest because it has many characteristics of an ideal anaesthetic. In addition to its lack of effects on cardiovascular system, xenon has a low solubility enabling faster induction of and emergence from anaesthesia than with other inhalational agents. Nevertheless, at present, the cost and rarity of xenon limits widespread use in clinical practice. The development of closed rebreathing system that allowed recycling of xenon and therefore reducing its waste has led to a recent interest in this gas. Reducing its cost will help xenon to find its place among anaesthetic agents and extend its use to severe patients with specific pathologies. Copyright (c) 2010. Published by Elsevier SAS.

  1. Inference and analysis of xenon outflow curves under multi-pulse injection in two-dimensional chromatography.

    Science.gov (United States)

    Shu-Jiang, Liu; Zhan-Ying, Chen; Yin-Zhong, Chang; Shi-Lian, Wang; Qi, Li; Yuan-Qing, Fan

    2013-10-11

    Multidimensional gas chromatography is widely applied to atmospheric xenon monitoring for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). To improve the capability for xenon sampling from the atmosphere, sampling techniques have been investigated in detail. The sampling techniques are designed by xenon outflow curves which are influenced by many factors, and the injecting condition is one of the key factors that could influence the xenon outflow curves. In this paper, the xenon outflow curves of single-pulse injection in two-dimensional gas chromatography has been tested and fitted as a function of exponential modified Gaussian distribution. An inference formula of the xenon outflow curve for six-pulse injection is derived, and the inference formula is also tested to compare with its fitting formula of the xenon outflow curve. As a result, the curves of both the one-pulse and six-pulse injections obey the exponential modified Gaussian distribution when the temperature of the activated carbon column's temperature is 26°C and the flow rate of the carrier gas is 35.6mLmin(-1). The retention time of the xenon peak for one-pulse injection is 215min, and the peak width is 138min. For the six-pulse injection, however, the retention time is delayed to 255min, and the peak width broadens to 222min. According to the inferred formula of the xenon outflow curve for the six-pulse injection, the inferred retention time is 243min, the relative deviation of the retention time is 4.7%, and the inferred peak width is 225min, with a relative deviation of 1.3%. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Field dependence of T1 for hyperpolarized [1-13C]pyruvate

    DEFF Research Database (Denmark)

    Chattergoon, N.; Martnez-Santiesteban, F.; Handler, W. B.

    2013-01-01

    conformation and properties of the dissolution media such as buffer composition, solution pH, temperature and magnetic field. We have measured the magnetic field dependence of the spin–lattice relaxation time of hyperpolarized [1-13C]pyruvate using field-cycled relaxometry. [1-13C]pyruvate was hyperpolarized.......75 T. The magnetic field of the relaxometer was rapidly varied between relaxation and acquisition fields where the sample magnetization was periodically measured using a small flip angle. Data were recorded for relaxation fields varying between 0.237 mT and 0.705 T to map the T1 dispersion of the C-1...... using dynamic nuclear polarization and then rapidly thawed and dissolved in a buffered solution to a concentration of 80 mmol l−1 and a pH of ~7.8. The hyperpolarized liquid was transferred within 8 s to a fast field-cycling relaxometer with a probe tuned for detection of 13C at a field strength of ~0...

  3. Xenon Blocks Neuronal Injury Associated with Decompression.

    Science.gov (United States)

    Blatteau, Jean-Eric; David, Hélène N; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H

    2015-10-15

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS.

  4. Investigation of Lung Structure-Function Relationships Using Hyperpolarized Noble Gases

    Science.gov (United States)

    Thomen, Robert P.

    Magnetic Resonance Imaging (MRI) is an application of the nuclear magnetic resonance (NMR) phenomenon to non-invasively generate 3D tomographic images. MRI is an emerging modality for the lung, but it suffers from low sensitivity due to inherent low tissue density and short T(*/2) . Hyperpolarization is a process by which the nuclear contribution to NMR signal is greatly enhanced to more than 100,000 times that of samples in thermal equilibrium. The noble gases 3He and 129Xe are most often hyperpolarized by transfer of light angular momentum through the electron of a vaporized alkali metal to the noble gas nucleus (called Spin Exchange Optical Pumping). The enhancement in NMR signal is so great that the gas itself can be imaged via MRI, and because noble gases are chemically inert, they can be safely inhaled by a subject, and the gas distribution within the interior of the lung can be imaged. The mechanics of respiration is an elegant physical process by which air is is brought into the distal airspaces of the lungs for oxygen/carbon dioxide gas exchange with blood. Therefore proper description of lung function is intricately related to its physical structure , and the basic mechanical operation of healthy lungs -- from pressure driven airflow, to alveolar airspace gas kinetics, to gas exchange by blood/gas concentration gradients, to elastic contraction of parenchymal tissue -- is a process decidedly governed by the laws of physics. This dissertation will describe experiments investigating the relationship of lung structure and function using hyperpolarized (HP) noble gas MRI. In particular HP gases will be applied to the study of several pulmonary diseases each of which demonstrates unique structure-function abnormalities: asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Successful implementation of an HP gas acquisition protocol for pulmonary studies is an involved and stratified undertaking which requires a solid theoretical foundation in NMR

  5. Transportable Xenon Laboratory (TXL-1) Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Robert C.; Stewart, Timothy L.; Willett, Jesse A.; Woods, Vincent T.

    2011-03-07

    The Transportable Xenon Laboratory Operations Manual is a guide to set up and shut down TXL, a fully contained laboratory made up of instruments to identify and measure concentrations of the radioactive isotopes of xenon by taking air samples and analyzing them. The TXL is housed in a standard-sized shipping container. TXL can be shipped to and function in any country in the world.

  6. Biomedical imaging with hyperpolarized noble gases.

    Science.gov (United States)

    Ruppert, Kai

    2014-11-01

    Hyperpolarized noble gases (HNGs), polarized to approximately 50% or higher, have led to major advances in magnetic resonance (MR) imaging of porous structures and air-filled cavities in human subjects, particularly the lung. By boosting the available signal to a level about 100 000 times higher than that at thermal equilibrium, air spaces that would otherwise appear as signal voids in an MR image can be revealed for structural and functional assessments. This review discusses how HNG MR imaging differs from conventional proton MR imaging, how MR pulse sequence design is affected and how the properties of gas imaging can be exploited to obtain hitherto inaccessible information in humans and animals. Current and possible future imaging techniques, and their application in the assessment of normal lung function as well as certain lung diseases, are described.

  7. Simultaneous Multiagent Hyperpolarized 13C Perfusion Imaging

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Bok, Robert A.; Reed, Galen D.

    2014-01-01

    Purpose: To demonstrate simultaneous hyperpolarization and imaging of three 13C-labeled perfusion MRI contrast agents with dissimilar molecular structures ([13C]urea, [13C]hydroxymethyl cyclopropane, and [13C]t-butanol) and correspondingly variable chemical shifts and physiological characteristics......, and to exploit their varying diffusibility for simultaneous measurement of vascular permeability and perfusion in initial preclinical studies. Methods: Rapid and efficient dynamic multislice imaging was enabled by a novel pulse sequence incorporating balanced steady state free precession excitation and spectral...... in simulations. "Tripolarized" perfusion MRI methods were applied to initial preclinical studies with differential conditions of vascular permeability, in normal mouse tissues and advanced transgenic mouse prostate tumors. Results: Dynamic imaging revealed clear differences among the individual tracer...

  8. Xenon Treatment Protects against Remote Lung Injury after Kidney Transplantation in Rats.

    Science.gov (United States)

    Zhao, Hailin; Huang, Han; Ologunde, Rele; Lloyd, Dafydd G; Watts, Helena; Vizcaychipi, Marcela P; Lian, Qingquan; George, Andrew J T; Ma, Daqing

    2015-06-01

    Ischemia-reperfusion injury (IRI) of renal grafts may cause remote organ injury including lungs. The authors aimed to evaluate the protective effect of xenon exposure against remote lung injury due to renal graft IRI in a rat renal transplantation model. For in vitro studies, human lung epithelial cell A549 was challenged with H2O2, tumor necrosis factor-α, or conditioned medium from human kidney proximal tubular cells (HK-2) after hypothermia-hypoxia insults. For in vivo studies, the Lewis renal graft was stored in 4°C Soltran preserving solution for 24 h and transplanted into the Lewis recipient, and the lungs were harvested 24 h after grafting. Cultured lung cells or the recipient after engraftment was exposed to 70% Xe or N2. Phospho (p)-mammalian target of rapamycin (mTOR), hypoxia-inducible factor-1α (HIF-1α), Bcl-2, high-mobility group protein-1 (HMGB-1), TLR-4, and nuclear factor κB (NF-κB) expression, lung inflammation, and cell injuries were assessed. Recipients receiving ischemic renal grafts developed pulmonary injury. Xenon treatment enhanced HIF-1α, which attenuated HMGB-1 translocation and NF-κB activation in A549 cells with oxidative and inflammatory stress. Xenon treatment enhanced p-mTOR, HIF-1α, and Bcl-2 expression and, in turn, promoted cell proliferation in the lung. Upon grafting, HMGB-1 translocation from lung epithelial nuclei was reduced; the TLR-4/NF-κB pathway was suppressed by xenon treatment; and subsequent tissue injury score (nitrogen vs. xenon: 26 ± 1.8 vs. 10.7 ± 2.6; n = 6) was significantly reduced. Xenon treatment confers protection against distant lung injury triggered by renal graft IRI, which is likely through the activation of mTOR-HIF-1α pathway and suppression of the HMGB-1 translocation from nuclei to cytoplasm.

  9. Endothelium-derived hyperpolarizing factor: where are we now?

    Science.gov (United States)

    Félétou, Michel; Vanhoutte, Paul M

    2006-06-01

    The endothelium controls vascular tone not only by releasing nitric oxide (NO) and prostacyclin but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the denomination endothelium-derived hyperpolarizing factor (EDHF). We know now that this acronym includes different mechanisms. In general, EDHF-mediated responses involve an increase in the intracellular calcium concentration, the opening of calcium-activated potassium channels of small and intermediate conductance and the hyperpolarization of the endothelial cells. This results in an endothelium-dependent hyperpolarization of the smooth muscle cells, which can be evoked by direct electrical coupling through myo-endothelial junctions and/or the accumulation of potassium ions in the intercellular space. Potassium ions hyperpolarize the smooth muscle cells by activating inward rectifying potassium channels and/or Na+/K(+)-ATPase. In some blood vessels, including large and small coronary arteries, the endothelium releases arachidonic acid metabolites derived from cytochrome P450 monooxygenases. The epoxyeicosatrienoic acids (EET) generated are not only intracellular messengers but also can diffuse and hyperpolarize the smooth muscle cells by activating large conductance calcium-activated potassium channels. Additionally, the endothelium can produce other factors such as lipoxygenases derivatives or hydrogen peroxide (H2O2). These different mechanisms are not necessarily exclusive and can occur simultaneously.

  10. Direct Dark Matter search with XENON100

    Directory of Open Access Journals (Sweden)

    Orrigo S.E.A.

    2016-01-01

    Full Text Available The XENON100 experiment is the second phase of the XENON program for the direct detection of the dark matter in the universe. The XENON100 detector is a two-phase Time Projection Chamber filled with 161 kg of ultra pure liquid xenon. The results from 224.6 live days of dark matter search with XENON100 are presented. No evidence for dark matter in the form of WIMPs is found, excluding spin-independent WIMP-nucleon scattering cross sections above 2 × 10−45 cm2 for a 55 GeV/c2 WIMP at 90% confidence level (C.L.. The most stringent limit is established on the spin-dependent WIMP-neutron interaction for WIMP masses above 6 GeV/c2, with a minimum cross section of 3.5 × 10−40 cm2 (90% C.L. for a 45 GeV/c2 WIMP. The same dataset is used to search for axions and axion-like-particles. The best limits to date are set on the axion-electron coupling constant for solar axions, gAe < 7.7 × 10−12 (90% C.L., and for axion-like-particles, gAe < 1 × 10−12 (90% C.L. for masses between 5 and 10 keV/c2.

  11. Anticonvulsant effect of xenon on neonatal asphyxial seizures.

    Science.gov (United States)

    Azzopardi, Denis; Robertson, Nicola J; Kapetanakis, Andrew; Griffiths, James; Rennie, Janet M; Mathieson, Sean R; Edwards, A David

    2013-09-01

    Xenon, a monoatomic gas with very high tissue solubility, is a non-competitive inhibitor of N-methyl-D-aspartate (NMDA) glutamate receptor, has antiapoptotic effects and is neuroprotective following hypoxic ischaemic injury in animals. Xenon may be expected to have anticonvulsant effects through glutamate receptor blockade, but this has not previously been demonstrated clinically. We examined seizure activity on the real time and amplitude integrated EEG records of 14 full-term infants with perinatal asphyxial encephalopathy treated within 12 h of birth with 30% inhaled xenon for 24 h combined with 72 h of moderate systemic hypothermia. Seizures were identified on 5 of 14 infants. Seizures stopped during xenon therapy but recurred within a few minutes of withdrawing xenon and stopped again after xenon was restarted. Our data show that subanaesthetic levels of xenon may have an anticonvulsant effect. Inhaled xenon may be a valuable new therapy in this hard-to-treat population.

  12. Simultaneous Hyperpolarized 13C-Pyruvate MRI and 18F-FDG PET (HyperPET) in 10 Dogs with Cancer

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E; Larsen, Majbrit M E

    2015-01-01

    was to establish a practical workflow for performing (18)F-FDG PET and hyperpolarized (13)C-pyruvate MRS imaging simultaneously for tumor tissue characterization and on a larger scale test its feasibility. In addition, we evaluated the correlation between (18)F-FDG uptake and (13)C-lactate production. Ten dogs......With the introduction of combined PET/MR spectroscopic (MRS) imaging, it is now possible to directly and indirectly image the Warburg effect with hyperpolarized (13)C-pyruvate and (18)F-FDG PET imaging, respectively, via a technique we have named hyperPET. The main purpose of this present study...... with biopsy-verified spontaneous malignant tumors were included for imaging. All dogs underwent a protocol of simultaneous (18)F-FDG PET, anatomic MR, and hyperpolarized dynamic nuclear polarization with (13)C-pyruvate imaging. The data were acquired using a combined clinical PET/MR imaging scanner. We found...

  13. XMASS experiment, dark matter search with liquid xenon detector

    Energy Technology Data Exchange (ETDEWEB)

    Minamino, Akihiro, E-mail: minamino@scphys.kyoto-u.ac.j [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan)

    2010-11-01

    The XMASS Collaboration is developing liquid xenon detector for the purpose of direct detection of dark matter in the universe. A prototype detector was developed at Kamioka Observatory to test the basic performance of single phase liquid xenon detector. With the detector, the physical properties of liquid xenon were measured, and the performance of vertex and energy reconstruction and the self-shielding power of liquid xenon for background {gamma}-rays were confirmed.

  14. XENON ANESTHESIA IN CHILDREN: BIS-MONITORING

    Directory of Open Access Journals (Sweden)

    V. G. Bagaev

    2013-01-01

    Full Text Available We conducted 60 low-flow xenon anesthesias in children of 1-18 years of age. We measured the sedation level using bispectral (BIS index and clinically on the stage of induction, xenon anesthesia maintenance and during recovery. The trial showed that, according to the clinical and BIS-monitoring data, sevoflurane inhalational induction in children of 1-5 years of age and propofol intravenous induction in children of 6-18 years of age provides children with the required sedation level. BIS index objectively reflects intensity of the sedative component of an anesthesia both in the junior and the senior age groups on the stages of xenon anesthesia maintenance and during recovery.

  15. Isotopic Composition of Xenon in Petroleum from the Shell ...

    Indian Academy of Sciences (India)

    We have measured the abundance and isotopic composition of xenon in petroleum samples from the Shell Bullwinkle Field off the coast of Louisiana. We used an oxidation and purification procedure designed to insure complete extraction and clean up of xenon from the petroleum. The xenon isotopic composition was ...

  16. Analgesic Effect of Xenon in Rat Model of Inflammatory Pain.

    Science.gov (United States)

    Kukushkin, M L; Igon'kina, S I; Potapov, S V; Potapov, A V

    2017-02-01

    The analgesic effects of inert gas xenon were examined on rats. The formalin model of inflammatory pain, tail-flick test, and hot-plate test revealed the antinociceptive effects of subanesthetizing doses of inhalation anesthetic xenon. Inhalation of 50/50 xenon/oxygen mixture moderated the nociceptive responses during acute and tonic phases of inflammatory pain.

  17. Emission Characteristics of Xenon and Xenon-Rare Gas Dielectric Barrier Discharge Fluorescent Lamps

    Science.gov (United States)

    Jinno, Masafumi; Motomura, Hideki; Loo, Ka Hong; Aono, Masaharu

    The profile of vacuum ultraviolet (VUV), visible and near IR emissions of xenon and xenon-rare gas pulsed discharge fluorescent lamps were observed as a fundamental research on developing a mercury-free fluorescent lamp. All lamps were operated by pulsed dielectric barrier discharge (DBD). As the pulse width decreases, higher intensity of VUV emissions is obtained, while luminance and efficacy also increase. As the pulse frequency increases, the intensity of VUV emissions increases, however the radiative output per one pulse period decreases and the efficacy decreases. The decay time of VUV emissions which are exciting a phosphor, can be controlled by introducing a rare-gas mixture into xenon.

  18. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway*

    Science.gov (United States)

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu

    2015-01-01

    Objectives: Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Design: Experimental animal investigation. Setting: University research laboratory. Subjects: Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20–25 g. Interventions: We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Measurements and Main Results: Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10

  19. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway.

    Science.gov (United States)

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu; Ding, Xiaoqiang

    2015-07-01

    Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Experimental animal investigation. University research laboratory. Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20-25 g. We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10 expression, resulted in an increase in apoptosis, and exacerbated lipopolysaccharide

  20. Search for Two-Neutrino Double Electron Capture of $^{124}$Xe with XENON100

    CERN Document Server

    Aprile, E; Agostini, F; Alfonsi, M; Amaro, F D; Anthony, M; Arneodo, F; Barrow, P; Baudis, L; Bauermeister, B; Benabderrahmane, M L; Berger, T; Breur, P A; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Bütikofer, L; Calvén, J; Cardoso, J M R; Cervantes, M; Cichon, D; Coderre, D; Colijn, A P; Conrad, J; Cussonneau, J P; Decowski, M P; de Perio, P; Di Gangi, P; Di Giovanni, A; Diglio, S; Duchovni, E; Fei, J; Ferella, A D; Fieguth, A; Franco, D; Fulgione, W; Rosso, A Gallo; Galloway, M; Gao, F; Garbini, M; Geis, C; Goetzke, L W; Greene, Z; Grignon, C; Hasterok, C; Hogenbirk, E; Itay, R; Kaminsky, B; Kessler, G; Kish, A; Landsman, H; Lang, R F; Lellouch, D; Levinson, L; Calloch, M Le; Levy, C; Lin, Q; Lindemann, S; Lindner, M; Lopes, J A M; Manfredini, A; Undagoitia, T Marrodán; Masbou, J; Massoli, F V; Masson, D; Mayani, D; Meng, Y; Messina, M; Micheneau, K; Miguez, B; Molinario, A; Murra, M; Naganoma, J; Ni, K; Oberlack, U; Orrigo, S E A; Pakarha, P; Pelssers, B; Persiani, R; Piastra, F; Pienaar, J; Piro, M -C; Plante, G; Priel, N; Rauch, L; Reichard, S; Reuter, C; Rizzo, A; Rosendahl, S; Rupp, N; Santos, J M F dos; Sartorelli, G; Scheibelhut, M; Schindler, S; Schreiner, J; Schumann, M; Lavina, L Scotto; Selvi, M; Shagin, P; Silva, M; Simgen, H; Sivers, M v; Stein, A; Thers, D; Tiseni, A; Trinchero, G; Tunnell, C D; Wall, R; Wang, H; Weber, M; Wei, Y; Weinheimer, C; Wulf, J; Zhang, Y

    2016-01-01

    Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For $^{124}$Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of $^{124}$Xe using 7636 kg$\\cdot$d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life $T_{1/2}>6.5\\times10^{20}$ yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and find a sensitivity of $T_{1/2}>6.1\\times10^{22}$ yr after an exposure of 2 t$\\cdot$yr.

  1. Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone.

    Science.gov (United States)

    Maresova, Lydie; Muend, Sabina; Zhang, Yong-Qiang; Sychrova, Hana; Rao, Rajini

    2009-01-30

    Cationic amphipathic drugs, such as amiodarone, interact preferentially with lipid membranes to exert their biological effect. In the yeast Saccharomyces cerevisiae, toxic levels of amiodarone trigger a rapid influx of Ca(2+) that can overwhelm cellular homeostasis and lead to cell death. To better understand the mechanistic basis of antifungal activity, we assessed the effect of the drug on membrane potential. We show that low concentrations of amiodarone (0.1-2 microm) elicit an immediate, dose-dependent hyperpolarization of the membrane. At higher doses (>3 microm), hyperpolarization is transient and is followed by depolarization, coincident with influx of Ca(2+) and H(+) and loss in cell viability. Proton and alkali metal cation transporters play reciprocal roles in membrane polarization, depending on the availability of glucose. Diminishment of membrane potential by glucose removal or addition of salts or in pma1, tok1Delta, ena1-4Delta, or nha1Delta mutants protected against drug toxicity, suggesting that initial hyperpolarization was important in the mechanism of antifungal activity. Furthermore, we show that the link between membrane hyperpolarization and drug toxicity is pH-dependent. We propose the existence of pH- and hyperpolarization-activated Ca(2+) channels in yeast, similar to those described in plant root hair and pollen tubes that are critical for cell elongation and growth. Our findings illustrate how membrane-active compounds can be effective microbicidals and may pave the way to developing membrane-selective agents.

  2. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.

    Science.gov (United States)

    Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A

    2016-04-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  3. PRAMANA Cluster radioactivity in xenon isotopes

    Indian Academy of Sciences (India)

    Abstract. Half-life time and branching ratio for cluster decay from various xenon iso- topes are studied taking Coulomb and proximity potentials as interacting barrier. Inclu- sion of proximity potential reduces the height of potential barrier, which closely agrees with the experiments. It is found that 4He, 8Be, 12C and 16O ...

  4. Antiapoptotic activity of argon and xenon

    Science.gov (United States)

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-01-01

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  5. Real-time quantitative analysis of metabolic flux in live cells using a hyperpolarized micromagnetic resonance spectrometer.

    Science.gov (United States)

    Jeong, Sangmoo; Eskandari, Roozbeh; Park, Sun Mi; Alvarez, Julio; Tee, Sui Seng; Weissleder, Ralph; Kharas, Michael G; Lee, Hakho; Keshari, Kayvan R

    2017-06-01

    Metabolic reprogramming is widely considered a hallmark of cancer, and understanding metabolic dynamics described by the conversion rates or "fluxes" of metabolites can shed light onto biological processes of tumorigenesis and response to therapy. For real-time analysis of metabolic flux in intact cells or organisms, magnetic resonance (MR) spectroscopy and imaging methods have been developed in conjunction with hyperpolarization of nuclear spins. These approaches enable noninvasive monitoring of tumor progression and treatment efficacy and are being tested in multiple clinical trials. However, because of their limited sensitivity, these methods require a larger number of cells, on the order of 10(7), which is impractical for analyzing scant target cells or mass-limited samples. We present a new technology platform, a hyperpolarized micromagnetic resonance spectrometer (HMRS), that achieves real-time, 10(3)-fold more sensitive metabolic analysis on live cells. This platform enables quantification of the metabolic flux in a wide range of cell types, including leukemia stem cells, without significant changes in viability, which allows downstream molecular analyses in tandem. It also enables rapid assessment of metabolic changes by a given drug, which may direct therapeutic choices in patients. We further advanced this platform for high-throughput analysis of hyperpolarized molecules by integrating a three-dimensionally printed microfluidic system. The HMRS platform holds promise as a sensitive method for studying metabolic dynamics in mass-limited samples, including primary cancer cells, providing novel therapeutic targets and an enhanced understanding of cellular metabolism.

  6. Multiple-exchange-time xenon polarization transfer contrast (MXTC) MRI: initial results in animals and healthy volunteers.

    Science.gov (United States)

    Dregely, Isabel; Ruset, Iulian C; Mata, Jaime F; Ketel, Jeffrey; Ketel, Steve; Distelbrink, Jan; Altes, Talissa A; Mugler, John P; Wilson Miller, G; William Hersman, F; Ruppert, Kai

    2012-04-01

    Hyperpolarized xenon-129 is a noninvasive contrast agent for lung MRI, which upon inhalation dissolves in parenchymal structures, thus mirroring the gas-exchange process for oxygen in the lung. Multiple-exchange-time xenon polarization transfer contrast (MXTC) MRI is an implementation of the XTC MRI technique in four dimensions (three spatial dimensions plus exchange time). The aim of this study was to evaluate the sensitivity of MXTC MRI for the detection of microstructural deformations of the healthy lung in response to gravity-induced tissue compression and the degree of lung inflation. MXTC MRI was performed in four rabbits and in three healthy human volunteers. Two lung function parameters, one related to tissue- to alveolar-volume ratio and the other to average septal-wall thickness, were determined regionally. A significant gradient in MXTC MRI parameters, consistent with gravity-induced lung tissue deformation in the supine imaging position, was found at low lung volumes. At high lung volumes, parameters were generally lower and the gradient in parameter values was less pronounced. Results show that MXTC MRI permits the quantification of subtle changes in healthy lung microstructure. Further, only structures participating in gas exchange are represented in MXTC MRI data, which potentially makes the technique especially sensitive to pathological changes in lung microstructure affecting gas exchange. Copyright © 2011 Wiley Periodicals, Inc.

  7. Hyperpolarized singlet NMR on a small animal imaging system

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Pileio, Giuseppe; Tayler, Michael C. D.

    2012-01-01

    populations of spin- 1/2 pairs. Here, we report hyperpolarized 13C spin order transferred into and retrieved from singlet spin order using a small animal magnetic resonance imaging scanner. For spins in sites with very similar chemical shifts, singlet spin order is sustained in high magnetic field without...

  8. Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2T.

    Science.gov (United States)

    Patz, Samuel; Muradian, Iga; Hrovat, Mirko I; Ruset, Iulian C; Topulos, George; Covrig, Silviu D; Frederick, Eric; Hatabu, Hiroto; Hersman, F W; Butler, James P

    2008-06-01

    Using a novel (129)Xe polarizer with high throughput (1-2 L/hour) and high polarization (approximately 55%), our objective was to demonstrate and characterize human pulmonary applications at 0.2T. Specifically, we investigated the ability of (129)Xe to measure the alveolar surface area per unit volume of gas, S(A)/V(gas). Variable spin echo time (TE) gradient and radiofrequency (RF) echoes were used to obtain estimates of the lung's contribution to both T(2)* and T(2). Standard multislice ventilation images were obtained and signal-to-noise ratio (SNR) determined. Whole-lung, time-dependent measurements of (129)Xe diffusion from gas to septal tissue were obtained with a chemical shift saturation recovery (CSSR) method. Four healthy subjects were studied, and the Butler et al CSSR formalism (J Phys Condensed Matter 2002; 14:L297-L304) was used to calculate S(A)/V(gas). A single-breath version of the xenon transfer contrast (SB-XTC) method was implemented and used to image (129)Xe diffusion between alveolar gas and septal tissue. A direct comparison of CSSR and SB-XTC was performed. T(2)*=135+/-29 ms amd T(2)=326.2+/-9.5 ms. Maximum SNR=36 for ventilation images from inhalation of 1L 86% (129)Xe and voxel volume =0.225 mL. CSSR analysis showed S(A)/V(gas) decreased with increasing lung volume in a manner very similar to that observed from histology measurements; however, the absolute value of S(A)/V(gas) was approximately 40% smaller than histology values. SB-XTC images in different postures demonstrate gravitationally dependent values. Initial comparison of CSSR with XTC showed fairly good agreement with expected ratios. Hyperpolarized (129)Xe human imaging and spectroscopy are very promising methods to provide functional information about the lung.

  9. Optically enhanced production of metastable xenon

    CERN Document Server

    Hickman, G T; Pittman, T B

    2016-01-01

    Metastable states of noble gas atoms are typically produced by electrical discharge techniques or "all-optical" excitation methods. Here we combine electrical discharges with optical pumping to demonstrate "optically enhanced" production of metastable xenon (Xe*). We experimentally measure large increases in Xe* density with relatively small optical control field powers. This technique may have applications in systems where large metastable state densities are desirable.

  10. HEMODYNAMIC EFFECTS OF XENON ANESTHESIA IN CHILDREN

    Directory of Open Access Journals (Sweden)

    M. V. Bykov

    2014-01-01

    Full Text Available The study was aimed at hemodynamic effects of xenon on operative interventions in children. Patients and methods: the study involved 30 5-17-year-old children – 10 (33.3% girls and 20 (66.7% boys with ASA score 1-3 admitted for surgical treatment. The children underwent endotracheal anesthesia with xenon-oxygen mixture (Xe:O2 = 60-65:30% and fentanyl (2.5‑3.5  mcg/kg per hour for the following operations: appendectomy – 10 (33.3% patients, herniotomy – 8 (26.7% patients, Ivanissevich procedure – 6 (20.0% patients, plastic surgery of posttraumatic defects of skin and soft tissues – 4 (13.3% patients, abdominal adhesiotomy – 2 (6.7% patients. Central hemodynamics was studied echocardiographically (Philips HD 11, the Netherlands using the Teichholz technique along the cephalocaudal axis (parasternal access. Results: the anesthesia was notable for hemodynamic stability during the operation: as a result, a statistically significant (p < 0.05 increase in systolic, diastolic and mean arterial pressure by 10, 18 and 17%, respectively, was observed. Conclusion: the analysis demonstrated that xenon anesthesia improves lusitropic myocardial function statistically significantly increasing cardiac output by 12% by way of increasing stroke volume by 30%. 

  11. Relaxation channels of multi-photon excited xenon clusters.

    Science.gov (United States)

    Serdobintsev, P Yu; Rakcheeva, L P; Murashov, S V; Melnikov, A S; Lyubchik, S; Timofeev, N A; Pastor, A A; Khodorkovskii, M A

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  12. Measuring and Modeling Xenon Uptake in Plastic Beta-Cells

    Science.gov (United States)

    Suarez, R.; Hayes, J. C.; Harper, W. W.; Humble, P.; Ripplinger, M. D.; Stephenson, D. E.; Williams, R. M.

    2013-12-01

    The precision of the stable xenon volume measurement in atmospheric monitoring radio-xenon systems is a critical parameter used to determine the activity concentration of a radio-xenon sample. Typically these types of systems use a plastic scintillating beta-cell as part of a beta-gamma detection scheme to measure the radioactivity present in the gas sample. Challenges arise when performing the stable xenon calculation during or after radioactive counting of the sample due to xenon uptake into the plastic beta-cells. Plastic beta cells can adsorb as much as 5% of the sample during counting. If quantification is performed after counting, the uptake of xenon into the plastic results in an underestimation of the xenon volume measurement. This behavior also causes what is typically known as 'memory effect' in the cell. Experiments were conducted using a small volume low pressure range thermal conductivity sensor to quantify the amount of xenon uptake into the cell over a given period of time. Understanding the xenon uptake in the cell provides a better estimate of the stable volume which improves the overall measurement capability of the system. The results from these experiments along with modeling will be presented.

  13. A cost-effective and versatile xenon gas dispenser.

    Science.gov (United States)

    Hung, Joseph C; Lenz, Warren N; Reed, Terry L; McGough, Christopher G

    2005-04-01

    To modify a commercial xenon gas dispenser so that two xenon unit-dose vials could be combined with a modified dispenser to deliver a recommended dose. To maintain the same operating mechanism, changes were made only to the vial shield and the needle port of the original gas dispenser. The modified gas dispenser consisted of two puncture needles and two vial holders shielded with the same thickness of lead as the commercial dispenser. Our evaluation showed that the modified gas dispenser operated the same way as the commercial unit, and the average 133Xe residual activity in either one or two xenon unit-dose vials of the modified gas dispenser was not significantly different from that in one vial of the commercial xenon gas dispenser. The modified xenon gas dispenser allows the stock of xenon gas vials to be managed cost-effectively. The modified unit can be used to dispense two low-activity xenon gas vials to deliver a standard dose to a patient. Also, the modified gas dispenser can be used to combine different amounts of xenon activity in two unit-dose vials in order to customize the dose delivered to patients with special needs (e.g., obese patients). Our modified device can also function as a single-dose dispenser by placing an empty vial alongside the unit-dose vial of radioactive xenon gas.

  14. MRI of the lung gas-space at very low-field using hyperpolarized noble gases

    Science.gov (United States)

    Venkatesh, Arvind K.; Zhang, Adelaide X.; Mansour, Joey; Kubatina, Lyubov; Oh, Chang Hyun; Blasche, Gregory; Selim Unlu, M.; Balamore, Dilip; Jolesz, Ferenc A.; Goldberg, Bennett B.; hide

    2003-01-01

    In hyperpolarized (HP) noble-gas magnetic resonance imaging, large nuclear spin polarizations, about 100,000 times that ordinarily obtainable at thermal equilibrium, are created in 3He and 129Xe. The enhanced signal that results can be employed in high-resolution MRI studies of void spaces such as in the lungs. In HP gas MRI the signal-to-noise ratio (SNR) depends only weakly on the static magnetic field (B(0)), making very low-field (VLF) MRI possible; indeed, it is possible to contemplate portable MRI using light-weight solenoids or permanent magnets. This article reports the first in vivo VLF MR images of the lungs in humans and in rats, obtained at a field of only 15 millitesla (150 Gauss).

  15. Large dose hyperpolarized water with dissolution-DNP at high magnetic field

    DEFF Research Database (Denmark)

    Lipsø, Hans Kasper Wigh; Bowen, Sean; Rybalko, Oleksandr

    2016-01-01

    We demonstrate a method for the preparation of hyperpolarized water by dissolution Dynamic Nuclear Polarization at high magnetic field. Protons were polarized at 6.7T and 1.1K to >70% with frequency modulated microwave irradiation at 188GHz. 97.2±0.7% of the radical was extracted from the sample...... in the dissolution in a two-phase system. 16±1mL of 5.0M (1)H in D2O with a polarization of 13.0±0.9% in the liquid state was obtained, corresponding to an enhancement factor of 4000±300 compared to the thermal equilibrium at 9.4T and 293K. A longitudinal relaxation time constant of 16±1s was measured. The sample...

  16. Nuclear magnetic resonance diffusion pore imaging: Experimental phase detection by double diffusion encoding.

    Science.gov (United States)

    Demberg, Kerstin; Laun, Frederik Bernd; Windschuh, Johannes; Umathum, Reiner; Bachert, Peter; Kuder, Tristan Anselm

    2017-02-01

    Diffusion pore imaging is an extension of diffusion-weighted nuclear magnetic resonance imaging enabling the direct measurement of the shape of arbitrarily formed, closed pores by probing diffusion restrictions using the motion of spin-bearing particles. Examples of such pores comprise cells in biological tissue or oil containing cavities in porous rocks. All pores contained in the measurement volume contribute to one reconstructed image, which reduces the problem of vanishing signal at increasing resolution present in conventional magnetic resonance imaging. It has been previously experimentally demonstrated that pore imaging using a combination of a long and a narrow magnetic field gradient pulse is feasible. In this work, an experimental verification is presented showing that pores can be imaged using short gradient pulses only. Experiments were carried out using hyperpolarized xenon gas in well-defined pores. The phase required for pore image reconstruction was retrieved from double diffusion encoded (DDE) measurements, while the magnitude could either be obtained from DDE signals or classical diffusion measurements with single encoding. The occurring image artifacts caused by restrictions of the gradient system, insufficient diffusion time, and by the phase reconstruction approach were investigated. Employing short gradient pulses only is advantageous compared to the initial long-narrow approach due to a more flexible sequence design when omitting the long gradient and due to faster convergence to the diffusion long-time limit, which may enable application to larger pores.

  17. Hyperpolarized functional magnetic resonance of murine skeletal muscle enabled by multiple tracer-paradigm synchronizations.

    Science.gov (United States)

    Leftin, Avigdor; Roussel, Tangi; Frydman, Lucio

    2014-01-01

    Measuring metabolism's time- and space-dependent responses upon stimulation lies at the core of functional magnetic resonance imaging. While focusing on water's sole resonance, further insight could arise from monitoring the temporal responses arising from the metabolites themselves, in what is known as functional magnetic resonance spectroscopy. Performing these measurements in real time, however, is severely challenged by the short functional timescales and low concentrations of natural metabolites. Dissolution dynamic nuclear polarization is an emerging technique that can potentially alleviate this, as it provides a massive sensitivity enhancement allowing one to probe low-concentration tracers and products in a single-scan. Still, conventional implementations of this hyperpolarization approach are not immediately amenable to the repeated acquisitions needed in real-time functional settings. This work proposes a strategy for functional magnetic resonance of hyperpolarized metabolites that bypasses this limitation, and enables the observation of real-time metabolic changes through the synchronization of stimuli-triggered, multiple-bolus injections of the metabolic tracer 13C1-pyruvate. This new approach is demonstrated with paradigms tailored to reveal in vivo thresholds of murine hind-limb skeletal muscle activation, involving the conversion of 13C1-pyruvate to 13C1-lactate and 13C1-alanine. These functional hind-limb studies revealed that graded skeletal muscle stimulation causes commensurate increases in glycolytic metabolism in a frequency- and amplitude-dependent fashion, that can be monitored on the seconds/minutes timescale using dissolution dynamic nuclear polarization. Spectroscopic imaging further allowed the in vivo visualization of uptake, transformation and distribution of the tracer and products, in fast-twitch glycolytic and in slow-twitch oxidative muscle fiber groups. While these studies open vistas in time and sensitivity for metabolic

  18. Feasibility, tolerability and safety of pediatric hyperpolarized {sup 129}Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Walkup, Laura L.; Watters, Erin; Ruppert, Kai [Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati, OH (United States); Thomen, Robert P.; Woods, Jason C. [Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati, OH (United States); Washington University in St. Louis, Department of Physics, St. Louis, MO (United States); Akinyi, Teckla G.; Cleveland, Zackary I. [Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati, OH (United States); University of Cincinnati, Biomedical Engineering Program, Cincinnati, OH (United States); Clancy, John P. [Cincinnati Children' s Hospital Medical Center, Division of Pulmonary Medicine, Cincinnati, OH (United States)

    2016-11-15

    Hyperpolarized {sup 129}Xe is a promising contrast agent for MRI of pediatric lung function, but its safety and tolerability in children have not been rigorously assessed. To assess the feasibility, safety and tolerability of hyperpolarized {sup 129}Xe gas as an inhaled contrast agent for pediatric pulmonary MRI in healthy control subjects and in children with cystic fibrosis. Seventeen healthy control subjects (ages 6-15 years, 11 boys) and 11 children with cystic fibrosis (ages 8-16 years, 4 boys) underwent {sup 129}Xe MRI, receiving up to three doses of {sup 129}Xe gas prepared by either a commercially available or a homebuilt {sup 129}Xe polarizer. Subject heart rate and SpO{sub 2} were monitored for 2 min post inhalation and compared to resting baseline values. Adverse events were reported via follow-up phone call at days 1 and 30 (range ±7 days) post-MRI. All children tolerated multiple doses of {sup 129}Xe, and no children withdrew from the study. Relative to baseline, most children who received a full dose of gas for imaging (10 of 12 controls and 8 of 11 children with cystic fibrosis) experienced a nadir in SpO{sub 2} (mean -6.0 ± standard deviation 7.2%, P≤0.001); however within 2 min post inhalation SpO{sub 2} values showed no significant difference from baseline (P=0.11). There was a slight elevation in heart rate (mean +6.6 ± 13.9 beats per minute [bpm], P=0.021), which returned from baseline within 2 min post inhalation (P=0.35). Brief side effects related to the anesthetic properties of xenon were mild and quickly resolved without intervention. No serious or severe adverse events were observed; in total, four minor adverse events (14.3%) were reported following {sup 129}Xe MRI, but all were deemed unrelated to the study. The feasibility, safety and tolerability of {sup 129}Xe MRI has been assessed in a small group of children as young as 6 years. SpO{sub 2} changes were consistent with the expected physiological effects of a short anoxic breath

  19. A hyperpolarized equilibrium for magnetic resonance

    OpenAIRE

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization d...

  20. LASER PHYSICS: Optical pumping of xenon gas lasers

    Science.gov (United States)

    Zuev, V. S.; Kanaev, A. V.; Mikheev, L. D.

    1987-07-01

    The absolute quantum efficiency of the luminescence emitted by gaseous xenon in the vacuum ultraviolet range was determined as a function of the concentration of the gas and the luminescence wavelength. The main channel for decay of Xe2* excimers after excitation right up to the ionization limit was radiative. The possibility of using xenon-based mixtures as active media was analyzed.

  1. Energy Resolution Optimization of the Yale ``PIXeY'' Two-Phase Xenon Detector

    Science.gov (United States)

    Destefano, Nicholas; Gai, Moshe; McKinsey, Daniel; Bernard, Ethan; Wahl, Christopher; Edwards, Blair; Horn, Markus; Larsen, Nicole; Tennyson, Brian

    2015-04-01

    PIXeY (Particle Identification in Xenon at Yale) is a two-phase (liquid/gas) xenon prototype detector with 3-kg active mass. The two-phase xenon technology has many applications that include gamma-ray imaging, neutrinoless double beta decay searches, dark matter searches, and 4 π gamma-ray detectors for studies in Nuclear Astrophysics. PIXeY was built to optimize energy resolution, position resolution, and gamma/neutron discrimination. A number of fiducial cuts and correction factors were used to optimize energy resolution. The light and charge signals were corrected by the spatial location of the event within the detector, taking into account effects such as the electron lifetime, geometric light collection, and any other position and field-dependent variations. The energy spectrum of various sources was studied by varying the cathode, anode, and PMT voltages. Optimal configurations for the drift and scintillation fields were found for energies ranging from 41.5 keV (83m Kr) to 2.61 MeV (228 Th), resolving the light signal and keeping the charge signal unsaturated. In addition, after optimizing for the energy resolution of Cs-137 (662 keV) the value obtained was 1.4% σ/E. Once the energy resolution studies have concluded, PIXeY will serve as a platform for future improvements, including multiple optical volumes and single-wire readout for R&D on gamma-ray imaging.

  2. Hyperpolarized C-13 MRS Cardiac Metabolism Studies in Pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Hartwig, V.; Frijia, F.

    2012-01-01

    Cardiac metabolism assessment with hyperpolarized 13C magnetic resonance spectroscopy in pig models requires the design of dedicated coils capable of providing large field of view with high signal-to-noise ratio (SNR) data. This work presents a comparison between a commercial 13C quadrature...... birdcage coil and a homebuilt 13C circular coil both designed for hyperpolarized studies of pig heart with a clinical 3T scanner. In particular, the simulation of the two coils is described by developing an SNR model for coil performance prediction and comparison. While coil resistances were calculated...... from Ohm’s law, the magnetic field patterns and sample-induced resistances were calculated using a numerical finite-difference time-domain algorithm. After the numerical simulation of both coils, the results are presented as SNR-versus-depth profiles using experimental SNR extracted from the [1-13C...

  3. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...... at 200 Hz. The abnormalities in excitability of regenerated nerves were reduced by depolarization and cooling and increased by hyperpolarization and during postischaemia. Moreover, the time course of recovery of excitability from repetitive stimulation and ischaemia was prolonged in regenerated nerves...

  4. Liquid Xenon Detectors for Positron Emission Tomography

    Science.gov (United States)

    Miceli, A.; Amaudruz, P.; Benard, F.; Bryman, D. A.; Kurchaninov, L.; Martin, J. P.; Muennich, A.; Retiere, F.; Ruth, T. J.; Sossi, V.; Stoessl, A. J.

    2011-09-01

    PET is a functional imaging technique based on detection of annihilation photons following beta decay producing positrons. In this paper, we present the concept of a new PET system for preclinical applications consisting of a ring of twelve time projection chambers filled with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization charge and scintillation light leads to a significant improvement to spatial resolution, image quality, and sensitivity. Simulated performance shows that an energy resolution of < 10% (FWHM) and a sensitivity of 15% are achievable. First tests with a prototype TPC indicate position resolution < 1 mm (FWHM).

  5. Cerebral blood flow tomography with xenon-133

    DEFF Research Database (Denmark)

    Lassen, N A

    1985-01-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-133. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission...... of other tracers for CBF tomography using SPECT is summarized with emphasis on the 99mTc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers....

  6. A pulse generator for xenon lamps

    CERN Document Server

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  7. Biophysical changes induced by xenon on phospholipid bilayers.

    Science.gov (United States)

    Booker, Ryan D; Sum, Amadeu K

    2013-05-01

    Structural and dynamic changes in cell membrane properties induced by xenon, a volatile anesthetic molecule, may affect the function of membrane-mediated proteins, providing a hypothesis for the mechanism of general anesthetic action. Here, we use molecular dynamics simulation and differential scanning calorimetry to examine the biophysical and thermodynamic effects of xenon on model lipid membranes. Our results indicate that xenon atoms preferentially localize in the hydrophobic core of the lipid bilayer, inducing substantial increases in the area per lipid and bilayer thickness. Xenon depresses the membrane gel-liquid crystalline phase transition temperature, increasing membrane fluidity and lipid head group spacing, while inducing net local ordering effects in a small region of the lipid carbon tails and modulating the bilayer lateral pressure profile. Our results are consistent with a role for nonspecific, lipid bilayer-mediated mechanisms in producing xenon's general anesthetic action. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Core level photoelectron spectroscopy probed heterogeneous xenon/neon clusters

    Science.gov (United States)

    Pokapanich, Wandared; Björneholm, Olle; Öhrwall, Gunnar; Tchaplyguine, Maxim

    2017-06-01

    Binary rare gas clusters; xenon and neon which have a significant contrariety between sizes, produced by a co-expansion set up and have been studied using synchrotron radiation based x-ray photoelectron spectroscopy. Concentration ratios of the heterogeneous clusters; 1%, 3%, 5% and 10% were controlled. The core level spectra were used to determine structure of the mixed cluster and analyzed by considering screening mechanisms. Furthermore, electron binding energy shift calculations demonstrated cluster aggregation models which may occur in such process. The results showed that in the case of low mixing ratios of 3% and 5% of xenon in neon, the geometric structures exhibit xenon in the center and xenon/neon interfaced in the outer shells. However, neon cluster vanished when the concentration of xenon was increased to 10%.

  9. Perfusion Imaging with a Freely Diffusible Hyperpolarized Contrast Agent

    OpenAIRE

    Grant, Aaron K.; Vinogradov, Elena; Wang, Xiaoen; Lenkinski, Robert E.; Alsop, David C.

    2011-01-01

    Contrast agents that can diffuse freely into or within tissue have numerous attractive features for perfusion imaging. Here we present preliminary data illustrating the suitability of hyperpolarized 13C labeled 2-methylpropan-2-ol (also known as dimethylethanol, tertiary butyl alcohol and tert-butanol) as a freely diffusible contrast agent for magnetic resonance perfusion imaging. Dynamic 13C images acquired in rat brain with a balanced steady-state free precession (bSSFP) sequence following ...

  10. Toward molecular mechanism of xenon anesthesia: a link to studies of xenon complexes with small aromatic molecules.

    Science.gov (United States)

    Andrijchenko, Natalya N; Ermilov, Alexander Yu; Khriachtchev, Leonid; Räsänen, Markku; Nemukhin, Alexander V

    2015-03-19

    The present study illustrates the steps toward understanding molecular mechanism of xenon anesthesia by focusing on a link to the structures and spectra of intermolecular complexes of xenon with small aromatic molecules. A primary cause of xenon anesthesia is attributed to inhibition of N-methyl-D-aspartate (NMDA) receptors by an unknown mechanism. Following the results of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) calculations we report plausible xenon action sites in the ligand binding domain of the NMDA receptor, which are due to interaction of xenon atoms with aromatic amino-acid residues. We rely in these calculations on computational protocols adjusted in combined experimental and theoretical studies of intermolecular complexes of xenon with phenol. Successful reproduction of vibrational shifts in molecular species upon complexation with xenon measured in low-temperature matrices allowed us to select a proper functional form in density functional theory (DFT) approach for use in QM subsystems, as well as to calibrate force field parameters for MD simulations. The results of molecular modeling show that xenon atoms can compete with agonists for a place in the corresponding protein cavity, thus indicating their active role in anesthetic action.

  11. A hyperpolarized equilibrium for magnetic resonance

    Science.gov (United States)

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-12-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10-3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application.

  12. Action Spectrum of Light-Induced Membrane Hyperpolarization in Egeria densa

    OpenAIRE

    Masashi, Tazawa; Teruo, Shimmen; Tetsuro, Mimura; Department of Biology, Faculty of Science, Tokyo Metropolitan University

    1986-01-01

    Action spectra of light-induced membrane hyperpolarization and photosynthetic oxygen evolution were determined in cells of Egeria densa. Since both spectra were similar, photosynthetic pigments are assumed to be involved in the light-induced membrane hyperpolarization. However, the saturation levels of light fluencies differed greatly between the two light reactions. Light-induced hyperpolarization reached the maximum level at a light fluence less than one-tenth that needed for saturation of ...

  13. Characterization of zeolites using xenon-129 nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Jo, Young-Heon

    This study focused on the following three aspects of thermal and thermohaline dynamics in the oceans using long-time series (January 1993 to December 1999) of multi-sensor data. They are (1) heat storage anomaly in the upper layer of the Pacific and the Atlantic using altimeter data; (2) heat and moisture transfer in the Tropical Pacific derived from Bowen ratio (Bo), sensible heat flux (SHF), and latent heat flux (LHF); (3) salt fluxes from the Mediterranean Sea into the North Atlantic through the Mediterranean Eddies (Meddies). The heat storage anomaly derived from XBT data (H' XBT) and altimeter data (H' T/P) was highly correlated, except in a few regions. The non-steric height signals in the altimeter measurements were analyzed. For the Pacific, the wiggle features across 20°N North Pacific caused by long baroclinic waves were found in the areas of low correlation between H'XBT and H' T/P, and were validated with a theoretical dispersion relation. For the Tropical Atlantic, three regions were investigated, i.e., near the Amazon River mouth; the North Equatorial Counter Current; the Guinea Dome. The equilibrium Bowen Ratio (Bo) can be estimated empirically from the sea surface temperature only when the air is saturated with water vapor at the sea surface. In order to estimate the discrepancy between the empirical Bo and the bulk formulated Bo and to correct for the wind-effect and the humidity-effect, the Tropical Atmosphere Ocean data were used. After computing SHF and Bo, the LHF were estimated. The SHF was estimated using wind divergence, which is caused by a convection of airflow. The root mean square of the SHF and LHF were estimated as 3.5Wm-2 and 39.3Wm-2 , respectively. The trajectories and evolution of the Meddies were studied using satellite multi-sensor data analyses. Two experiments, AMUSE and SEMAPHORE were used to directly validate my method. In order to analyze the Meddies' movements, the effect of baroclinic instability resulting from the surface air pressure variations and wind forcing on the Meddies was considered. Finally, the horizontal and vertical viscosity dissipation of the Meddies, using angular velocity measured by floats, was computed and compared with a theoretical model.

  14. On the charge dispersion in high-energy proton-xenon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yuming; Massmann, H.; Xu Shuyan; Gross, D.H.E.; Zhang Xiaoze; Lu Zhaoqi; Sa Benhao

    1987-08-06

    The mass yield and the charge dispersion of secondary fragments produced in high-energetic proton-xenon bombardment are analysed in the frame of our statistical multifragmentation model. The critical mass distribution as well as the charge dispersion, which have led to the discussion of a nuclear liquid-gas phase transition, are easily reproduced within our model. A clear signal of a 'phase transition' at T = 5 MeV is found and is analysed in terms of various multifragment correlations.

  15. [Changes in brain bioelectrical activity during xenon anesthesia in neurosurgical patients].

    Science.gov (United States)

    Rylova, A V; Sazonova, O B; Lubnin, A Iu; Masherov, E L

    2010-01-01

    Xenon is a promising anesthetic agent in neurosurgery. However, there is now little evidence on the effect of xenon at anesthetic concentrations on brain electrical activity, which limits its use in neurosurgical patients. Changes in brain bioelectrical activity were studied in patients with skull base tumors before surgery (conscious ones) and at different stages of xenon anesthesia (after denitrogenization, at 50% xenon concentration in the circuit, at 65% xenon concentration in the circuit, during steady-state xenon anesthesia, and after hyperventilation). EEG during xenon anesthesia was similar to that during propofol anesthesia; a circuit xenon concentration (50 or 65%) and a ventilation mode had no considerable impact on EEG. Xenon did not induce paroxysmal activity. The findings suggest that the use of xenon anesthesia in neurosurgical patients is safe in terms of its impact on brain bioelectrical activity.

  16. Electrostatic simulation of a liquid xenon purity monitor

    Science.gov (United States)

    Gdanski, Jared; nEXO Collaboration

    2017-09-01

    Liquid xenon detectors like the proposed nEXO neutrinoless double beta decay experiment use scintillation and ionization signals to track the position and energy of radiation events in the detector. Ionization signals can be diminished by impurities in the xenon. We have designed a liquid xenon purity monitor with high voltage switching capability to measure long electron lifetimes for studying detector materials. We discuss the use of COMSOL electrostatic simulation software to model the field cage of this purity monitor and simulate the electron transport efficiency. An intensive study of the high voltage switching region and shielding grids was completed to ensure uniform electric fields and grid transparencies in the purity monitor.

  17. Facile synthesis [5-(13)C-4-(2)H(2)]-L-glutamine for hyperpolarized MRS imaging of cancer cell metabolism.

    Science.gov (United States)

    Qu, Wenchao; Zha, Zhihao; Lieberman, Brian P; Mancuso, Anthony; Stetz, Mathew; Rizzi, Rahim; Ploessl, Karl; Wise, David; Thompson, Craig; Kung, Hank F

    2011-08-01

    Recent reports suggest that cancer cells may use glutamine, instead of glucose, as an alternative source of metabolic energy. This suggests that hyperpolarized (13)C glutamine may be useful as a magnetic resonance spectroscopy (MRS) imaging agent for detecting changes in glutamine metabolism in cancerous cells or tissues. Synthesis of [5-(13)C-4-(2)H(2)]-L-glutamine was accomplished through a seven-step synthetic pathway with a 44% overall yield. The introduction of two stable isotopes was performed by a NaB(2)H(4)-mixed anhydride reduction and K(13)CN-nuclophilic substitution, respectively. The desired [5-(13)C-4-(2)H(2)]-L-glutamine was successfully obtained by a one-pot reaction of deprotection and controlled cyanide hydrolysis. Hyperpolarized [5-(13)C-4-(2)H(2)]-L-glutamine samples were tested in human glioma cells (myc upregulated glia cells, SF188-Bcl-x(L)). MRS signals were obtained with a 9.4 Tesla 89-mm bore nuclear magnetic resonance spectrometer and a direct-detection multi-nuclear probe. The initial degree of polarization for [5-(13)C-4-(2)H(2)]-L-glutamine was ~5% and the initial (13)C signal to noise ratio was ~100:1. Glutamate was detected within seconds after the injection of hyperpolarized glutamine into the cells. The ratio of glutamate to glutamine was very high, indicating rapid conversion to glutamate. Similar cell uptake studies using [(3)H]-L-glutamine also demonstrated cell uptakes higher than that of [(18)F]fluorodeoxyglucose. We are reporting the first example of using specifically deuterated [5-(13)C-4-(2)H(2)]-L-glutamine in conjunction with hyperpolarized MRS for studying "glutaminolysis" in proliferating tumor cells. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  18. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents.

    Science.gov (United States)

    Rogers, Nicola J; Hill-Casey, Fraser; Stupic, Karl F; Six, Joseph S; Lesbats, Clémentine; Rigby, Sean P; Fraissard, Jacques; Pavlovskaya, Galina E; Meersmann, Thomas

    2016-03-22

    Hyperpolarized (hp) (83)Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of (83)Kr that enable unique MRI contrast also complicate the production of hp (83)Kr. This work presents a previously unexplored approach in the generation of hp (83)Kr that can likewise be used for the production of hp (129)Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P =29% for(83)Kr and P= 63% for (129)Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either (83)Kr or (129)Xe. Highly spin-polarized (83)Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp (83)Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp(129)Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp (129)Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized (129)Xe.

  19. Observation of emission from xenon hydride molecules

    Science.gov (United States)

    Vlasenko, A. A.; Lakoba, I. S.; Chernov, S. P.; Esselbakh, P. B.

    1986-08-01

    A previously unobserved band with an intensity peak at a wavelength of 190 nm and a halfwidth of 6 nm has been detected in the emission spectra of a plasma produced by a fast repetitively pulsed discharge in a xenon-hydrogen mixture. The present investigation has determined that this band is connected with the penetration of some impurity into the mixture. Specifically, the spectral positions of intensity troughs in the 175-200 nm range are sufficiently close to the wavelengths of the Schumann-Runge bands; hence, it can be assumed that the origin of the troughs is connected with the photoabsorption of molecular oxygen penetrating into the cell through rubber seals. The results are of interest in connection with the development of XeH lasers.

  20. Viscosity of Xenon Examined in Microgravity

    Science.gov (United States)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.

    1999-01-01

    Why does water flow faster than honey? The short answer, that honey has a greater viscosity, merely rephrases the question. The fundamental answer is that viscosity originates in the interactions between a fluid s molecules. These interactions are so complicated that, except for low-density gases, the viscosity of a fluid cannot be accurately predicted. Progress in understanding viscosity has been made by studying moderately dense gases and, more recently, fluids near the critical point. Modern theories predict a universal behavior for all pure fluids near the liquid-vapor critical point, and they relate the increase in viscosity to spontaneous fluctuations in density near this point. The Critical Viscosity of Xenon (CVX) experiment tested these theories with unprecedented precision when it flew aboard the Space Shuttle Discovery (STS-85) in August 1997. Near the critical point, xenon is a billion times more compressible than water, yet it has about the same density. Because the fluid is so "soft," it collapses under its own weight when exposed to the force of Earth s gravity - much like a very soft spring. Because the CVX experiment is conducted in microgravity, it achieves a very uniform fluid density even very close to the critical point. At the heart of the CVX experiment is a novel viscometer built around a small nickel screen. An oscillating electric field forces the screen to oscillate between pairs of electrodes. Viscosity, which dampens the oscillations, can be calculated by measuring the screen motion and the force applied to the screen. So that the fluid s delicate state near the critical point will not be disrupted, the screen oscillations are set to be both slow and small.

  1. Inhalation anaesthesia: from diethyl ether to xenon.

    Science.gov (United States)

    Bovill, J G

    2008-01-01

    Modern anaesthesia is said to have began with the successful demonstration of ether anaesthesia by William Morton in October 1846, even though anaesthesia with nitrous oxide had been used in dentistry 2 years before. Anaesthesia with ether, nitrous oxide and chloroform (introduced in 1847) rapidly became commonplace for surgery. Of these, only nitrous oxide remains in use today. All modern volatile anaesthetics, with the exception of halothane (a fluorinated alkane), are halogenated methyl ethyl ethers. Methyl ethyl ethers are more potent, stable and better anaesthetics than diethyl ethers. They all cause myocardial depression, most markedly halothane, while isoflurane and sevoflurane cause minimal cardiovascular depression. The halogenated ethers also depress the normal respiratory response to carbon dioxide and to hypoxia. Other adverse effects include hepatic and renal damage. Hepatitis occurs most frequently with halothane, although rare cases have been reported with the other agents. Liver damage is not caused by the anaesthetics themselves, but by reactive metabolites. Type I hepatitis occurs fairly commonly and takes the form of a minor disturbance of liver enzymes, which usually resolves without treatment. Type II, thought to be immune-mediated, is rare, unpredictable and results in a severe fulminant hepatitis with a high mortality. Renal damage is rare, and was most often associated with methoxyflurane because of excessive plasma fluoride concentrations resulting from its metabolism. Methoxyflurane was withdrawn from the market because of the high incidence of nephrotoxicity. Among the contemporary anaesthetics, the highest fluoride concentrations have been reported with sevoflurane, but there are no reports of renal dysfunction associated with its use. Recently there has been a renewed interest in xenon, one of the noble gases. Xenon has many of the properties of an ideal anaesthetic. The major factor limiting its more widespread is the high cost, about

  2. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  3. In vivo single-shot (13)C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    DEFF Research Database (Denmark)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas

    2014-01-01

    Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are nece...

  4. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry

    DEFF Research Database (Denmark)

    Reed, Galen D; von Morze, Cornelius; Verkman, Alan S

    2016-01-01

    In vivo spin spin relaxation time (T2) heterogeneity of hyperpolarized [(13)C,(15)N2]urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized (13)C signal with a macromolecular relaxation agent revealed that a long-T2 component of the [(13)C,(15)N2]urea signal o...

  5. Purging means and method for Xenon arc lamps

    Science.gov (United States)

    Miller, C. G. (Inventor)

    1973-01-01

    High pressure Xenon short-arc lamp with two reservoirs which are selectively connectable to the lamp's envelope is described. One reservoir contains an absorbent which will absorb both Xenon and contaminant gases such as CO2 and O2. The absorbent temperature is controlled to evacuate the envelope of both the Xenon and the contaminant gases. The temperature of the absorbent is then raised to desorb only clean Xenon while retaining the contaminant gases, thereby clearing the envelope of the contaminant gases. The second reservoir contains a gas whose specific purpose is, to remove the objectional metal film which deposits gradually on the interior surface of the lamp envelope during normal arc operation. The origin of the film is metal transferred from the cathode of the arc lamp by sputtering or other gas transfer processes.

  6. Radon depletion in xenon boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T.M.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2017-03-15

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of {sup 222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of >or similar 4 for the {sup 222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10{sup -15} mol/mol level. (orig.)

  7. Urine analysis concerning xenon for doping control purposes.

    Science.gov (United States)

    Thevis, Mario; Piper, Thomas; Geyer, Hans; Schaefer, Maximilian S; Schneemann, Julia; Kienbaum, Peter; Schänzer, Wilhelm

    2015-01-15

    On September 1(st) 2014, a modified Prohibited List as established by the World Anti-Doping Agency (WADA) became effective featuring xenon as a banned substance categorized as hypoxia-inducible factor (HIF) activator. Consequently, the analysis of xenon from commonly provided doping control specimens such as blood and urine is desirable, and first data on the determination of xenon from urine in the context of human sports drug testing, are presented. In accordance to earlier studies utilizing plasma as doping control matrix, urine was enriched to saturation with xenon, sequentially diluted, and the target analyte was detected as supported by the internal standard d6 -cyclohexanone by means of gas chromatography/triple quadrupole mass spectrometry (GC/MS/MS) using headspace injection. Three major xenon isotopes at m/z 128.9, 130.9 and 131.9 were targeted in (pseudo) selected reaction monitoring mode enabling the unambiguous identification of the prohibited substance. Assay characteristics including limit of detection (LOD), intraday/interday precision, and specificity as well as analyte recovery under different storage conditions were determined. Proof-of-concept data were generated by applying the established method to urine samples collected from five patients before, during and after (up to 48 h) xenon-based general anesthesia. Xenon was traceable in enriched human urine samples down to the detection limit of approximately 0.5 nmol/mL. The intraday and interday imprecision values of the method were found below 25%, and specificity was demonstrated by analyzing 20 different blank urine samples that corroborated the fitness-for-purpose of the analytical approach to unequivocally detect xenon at non-physiological concentrations in human urine. The patients' urine specimens returned 'xenon-positive' test results up to 40 h post-anesthesia, indicating the limits of the expected doping control detection window. Since xenon has been considered a prohibited substance

  8. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    Abstract. We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at z = 3.32 Å. It was observed ...

  9. Mirror dark matter will be confirmed or excluded by XENON1T

    Directory of Open Access Journals (Sweden)

    J.D. Clarke

    2017-03-01

    Full Text Available Mirror dark matter, where dark matter resides in a hidden sector exactly isomorphic to the standard model, can be probed via direct detection experiments by both nuclear and electron recoils if the kinetic mixing interaction exists. In fact, the kinetic mixing interaction appears to be a prerequisite for consistent small scale structure: Mirror dark matter halos around spiral galaxies are dissipative – losing energy via dark photon emission. This ongoing energy loss requires a substantial energy input, which can be sourced from ordinary supernovae via kinetic mixing induced processes in the supernova's core. Astrophysical considerations thereby give a lower limit on the kinetic mixing strength, and indeed lower limits on both nuclear and electron recoil rates in direct detection experiments can be estimated. We show here that potentially all of the viable parameter space will be probed in forthcoming XENON experiments including LUX and XENON1T. Thus, we anticipate that these experiments will provide a definitive test of the mirror dark matter hypothesis.

  10. Mirror dark matter will be confirmed or excluded by XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, J.D., E-mail: j.clarke5@pgrad.unimelb.edu.au; Foot, R., E-mail: rfoot@unimelb.edu.au

    2017-03-10

    Mirror dark matter, where dark matter resides in a hidden sector exactly isomorphic to the standard model, can be probed via direct detection experiments by both nuclear and electron recoils if the kinetic mixing interaction exists. In fact, the kinetic mixing interaction appears to be a prerequisite for consistent small scale structure: Mirror dark matter halos around spiral galaxies are dissipative – losing energy via dark photon emission. This ongoing energy loss requires a substantial energy input, which can be sourced from ordinary supernovae via kinetic mixing induced processes in the supernova's core. Astrophysical considerations thereby give a lower limit on the kinetic mixing strength, and indeed lower limits on both nuclear and electron recoil rates in direct detection experiments can be estimated. We show here that potentially all of the viable parameter space will be probed in forthcoming XENON experiments including LUX and XENON1T. Thus, we anticipate that these experiments will provide a definitive test of the mirror dark matter hypothesis.

  11. Review of xenon-133 production and related problems; Estudio bibliografico de la produccion de xenon-133 y problemas afines

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, M.; Ropero, M.

    1980-07-01

    A literature survey is given on the production methods of fission xenon-133 and related problems, such as purification, metrological and dosimetric aspects, preparation of isotopic solutions, recycling, etc. 127 references are included. (Author) 127 refs.

  12. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET)

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E.; Henriksen, Sarah T.

    2015-01-01

    named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13CCO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use...... of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq 18F-FDG. 13C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized 13C......-pyruvate. Peak heights of 13C-pyruvate and 13Clactate were quantified using a general linear model. Anatomic 1H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased 13C-lactate production, which also...

  13. Chemical shift encoded imaging of hyperpolarized (13) C pyruvate.

    Science.gov (United States)

    Wiens, Curtis N; Friesen-Waldner, Lanette J; Wade, Trevor P; Sinclair, Kevin J; McKenzie, Charles A

    2015-12-01

    To demonstrate a reconstruction technique for separating signal from different hyperpolarized carbon-13 metabolites. A reconstruction method is described for chemical shift encoded separation of the signal from pyruvate and its downstream metabolites. This method uses consistency of the data with the signal model rather than an additional free-induction decay (FID) acquisition to estimate the B0 offset. Compressed sensing was also integrated into the reconstruction allowing reconstruction of metabolite images from undersampled datasets. The performance of the reconstruction was assessed using thermal phantoms, digital phantoms, and in vivo hyperpolarized [1-(13) C] pyruvate experiments. Thermal and digital phantoms indicate that metabolite separation is feasible given Signal-to-noise ratio > 5 and an initial B0 offset estimate within -105 Hz to 90 Hz of the actual B0 offset. In vivo comparisons to an existing FID calibrated reconstruction show improved fidelity in regions with significant field map inhomogeneity provided that these field map variations are accounted for using an additional proton acquisition. Prospectively and retrospectively undersampled studies show acceleration factors of 2 are feasible using compressed sensing. A reconstruction framework for the separation of signal from pyruvate and its downstream metabolites is shown. This reconstruction eliminates the need to acquire additional calibration FID acquisition and allows acceleration through compressed sensing. © 2014 Wiley Periodicals, Inc.

  14. Simple and robust referencing system enables identification of dissolved-phase xenon spectral frequencies.

    Science.gov (United States)

    Antonacci, Michael A; Zhang, Le; Burant, Alex; McCallister, Drew; Branca, Rosa T

    2017-12-19

    To assess the effect of macroscopic susceptibility gradients on the gas-phase referenced dissolved-phase 129 Xe (DPXe) chemical shift (CS) and to establish the robustness of a water-based referencing system for in vivo DPXe spectra. Frequency shifts induced by spatially varying magnetic susceptibility are calculated by finite-element analysis for the human head and chest. Their effect on traditional gas-phase referenced DPXe CS is then assessed theoretically and experimentally. A water-based referencing system for the DPXe resonances that uses the local water protons as reference is proposed and demonstrated in vivo in rats. Across the human brain, macroscopic susceptibility gradients can induce an apparent variation in the DPXe CS of up to 2.5 ppm. An additional frequency shift as large as 6.5 ppm can exist between DPXe and gas-phase resonances. By using nearby water protons as reference for the DPXe CS, the effect of macroscopic susceptibility gradients is eliminated and consistent CS values are obtained in vivo, regardless of shimming conditions, region of interest analyzed, animal orientation, or lung inflation. Combining in vitro and in vivo spectroscopic measurements finally enables confident assignment of some of the DPXe peaks observed in vivo. To use hyperpolarized xenon as a biological probe in tissues, the DPXe CS in specific organs/tissues must be reliably measured. When the gas-phase is used as reference, variable CS values are obtained for DPXe resonances. Reliable peak assignments in DPXe spectra can be obtained by using local water protons as reference. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon

    OpenAIRE

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Abstract Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pu...

  16. Bonding of xenon to oxygen in magmas at depth

    Science.gov (United States)

    Leroy, Clémence; Sanloup, Chrystèle; Bureau, Hélène; Schmidt, Burkhard C.; Konôpková, Zuzana; Raepsaet, Caroline

    2018-02-01

    The field of noble gases chemistry has witnessed amazing advances in the last decade with over 100 compounds reported including Xe oxides and Xe-Fe alloys stable at the pressure-temperature conditions of planetary interiors. The chemistry of Xe with planetary materials is nonetheless still mostly ignored, while Xe isotopes are used to trace a variety of key planetary processes from atmosphere formation to underground nuclear tests. It is indeed difficult to incorporate the possibility of Xe reactivity at depth in isotopic geochemical models without a precise knowledge of its chemical environment. The structure of Xe doped hydrous silica-rich melts is investigated by in situ high energy synchrotron X-ray diffraction using resistive heating diamond anvil cells. Obtained pair distribution functions reveal the oxidation of Xe between 0.2 GPa and 4 GPa at high T up to 1000 K. In addition to the usual interatomic distances, a contribution at 2.05 ± 0.05 Å is observed. This contribution is not observed in the undoped melt, and is interpreted as the Xe-O bond, with a coordination number of about 12 consistent with Xe insertion in rings of the melt structure. Xe solubility measurements by electron microprobe and particle induced X-rays emission analysis confirm that Xe and Ar have similar solubility values in wt% in silicate melts. These values are nonetheless an order of magnitude higher than those theoretically calculated for Xe. The formation of Xe-O bonds explains the enhanced solubility of Xe in deep continental crust magmas, revealing a mechanism that could store Xe and fractionate its isotopes. Xenon is indeed atypical among noble gases, the atmosphere being notably depleted in elemental Xe, and very strongly depleted in Xe light isotopes. These observations are known as the 'missing' Xe paradox, and could be solved by the present findings.

  17. Modeling of Polarization Transfer Kinetics in Protein Hydration Using Hyperpolarized Water.

    Science.gov (United States)

    Kim, Jihyun; Liu, Mengxiao; Hilty, Christian

    2017-07-13

    Water-protein interactions play a central role in protein structure, dynamics, and function. These interactions, traditionally, have been studied using nuclear magnetic resonance (NMR) by measuring chemical exchange and nuclear Overhauser effect (NOE). Polarization transferred from hyperpolarized water can result in substantial transient signal enhancements of protein resonances due to these processes. Here, we use dissolution dynamic nuclear polarization and flow-NMR for measuring the pH dependence of transferred signals to the protein trypsin. A maximum enhancement of 20 is visible in the amide proton region of the spectrum at pH 6.0, and of 47 at pH 7.5. The aliphatic region is enhanced up to 2.3 times at pH 6.0 and up to 2.5 times at pH 7.5. The time dependence of these observed signals can be modeled quantitatively using rate equations incorporating chemical exchange to amide sites and, optionally, intramolecular NOE to aliphatic protons. On the basis of these two- and three-site models, average exchange (kex) and cross-relaxation rates (σ) obtained were kex = 12 s-1, σ = -0.33 s-1 for pH 7.5 and kex = 1.8 s-1, σ = -0.72 s-1 for pH 6.0 at a temperature of 304 K. These values were validated using conventional EXSY and NOESY measurements. In general, a rapid measurement of exchange and cross-relaxation rates may be of interest for the study of structural changes of the protein occurring on the same time scale. Besides protein-water interactions, interactions with cosolvent or solutes can further be investigated using the same methods.

  18. Cerebral blood flow tomography with xenon-133

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.

  19. Breakdown characteristics of xenon HID Lamps

    Science.gov (United States)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  20. Xenon-enhanced CT imaging of local pulmonary ventilation

    Science.gov (United States)

    Tajik, Jehangir K.; Tran, Binh Q.; Hoffman, Eric A.

    1996-04-01

    We are using the unique features of electron beam CT (EBCT) in conjunction with respiratory and cardiac gating to explore the use of non-radioactive xenon gas as a pulmonary ventilation contrast agent. The goal is to construct accurate and quantitative high-resolution maps of local pulmonary ventilation in humans. We are evaluating xenon-enhanced computed tomography in the pig model with dynamic tracer washout/dilution and single breath inhalation imaging protocols. Scanning is done via an EBCT scanner which offers 50 msec scan aperture speeds. CT attenuation coefficients (image gray scale value) show a linear increase with xenon concentration (r equals 0.99). We measure a 1.55 Hounsfield Unit (HU) enhancement (kV equals 130, mA equals 623) per percentage increase in xenon gas concentration giving an approximately 155 HU enhancement with 100% xenon gas concentration as measured in a plexiglass super-syringe. Early results indicate that a single breath (from functional residual capacity to total lung capacity) of 100% xenon gas provides an average 32 +/- 1.85 (SE) HU enhancement in the lung parenchyma (maximum 50 HU) and should not encounter unwanted xenon side effects. However, changes in lung density occurring during even short breath holds (as short as 10 seconds) may limit using a single breath technique to synchronous volumetric scanning, currently possible only with EBCT. Preliminary results indicate close agreement between measured regional xenon concentration-time curves and theoretical predictions for the same sample. More than 10 breaths with inspirations to as high as 25 cmH2O airway pressure were needed to clear tracer from all lung regions and some regions had nearly linear rather than mono-exponential clearance curves. When regional parenchymal xenon concentration-time curves were analyzed, vertical gradients in ventilation and redistribution of ventilation at higher inspiratory flow rates were consistent with known pulmonary physiology. We present

  1. Modulation of the isoprenaline-induced membrane hyperpolarization of mouse skeletal muscle cells.

    Science.gov (United States)

    van Mil, H. G.; Kerkhof, C. J.; Siegenbeek van Heukelom, J.

    1995-01-01

    1. The hyperpolarization of the resting membrane potential, Vm, induced by isoprenaline in the lumbrical muscle fibres of the mouse, was investigated by use of intracellular microelectrodes. 2. In normal Krebs-Henseleit solution (potassium concentration: K+o = 5.7 mM, 'control'), Vm was -7.40 +/- 0.2 mV; lowering K+o to 0.76 mM ('low K+o') resulted in either a hyperpolarization (Vm = -95.7 +/- 2.9 mV), or a depolarization (Vm = -52.0 +/- 0.3 mV). 3. Isoprenaline (> or = 200 nM) induced a hyperpolarization of Vm by delta Vm = -5.6 +/- 0.4 mV in control solution. 4. When Vm hyperpolarized after switching to low K+o, the addition of isoprenaline resulted in increased hyperpolarization Vm: delta Vm = -16.3 +/- 3.2 mV to a final Vm = -110.1 +/- 3.4 mV. Adding iso-prenaline when Vm depolarized in low K+o, leads to a hyperpolarization of either by -11.6 +/- 0.5 mV to -63.6 +/- 0.8 mV or by -51.7 +/- 2.7 mV to -106.9 +/- 3.9 mV. 5. Ouabain (0.1 to 1 mM) did not suppress the hyperpolarization by isoprenaline in 5.7 mM K+o (delta Vm = -6.7 +/- 0.4 mV) or the hyperpolarization of the depolarized cells in low K+- (delta Vm = -9.7 +/- 1.5 mV). 6. The hyperpolarization is a logarithmically decreasing function of K+o in the range between 2 and 20 mM (12 mV/decade). 7.IBMX and 8Br-cyclic AMP mimicked the response to isoprenaline whereas forskolin (FSK) induced in low K+o a hyperpolarization of -7.0 +/- 0.7 mV that could be augmented by addition of isoprenaline (delta Vm = -8.2 +/- 1.8 mV). 8. In control and low K+o, Ba2+ (0.6 mM) inhibited the hyperpolarization induced by isoprenaline, IBMX or 8Br-cyclic AMP. Other blockers of the potassium conductance such as TEA (5 mM) and apamin (0.4 microM) had no effect. 9. We conclude that in the lumbrical muscle of the mouse the isoprenaline-induced hyperpolarization is primarily due to an increase in potassium permeability. PMID:8680720

  2. Ultra-high resolution mass separator--application to detection of nuclear weapons tests.

    Science.gov (United States)

    Peräjärvi, K; Eronen, T; Elomaa, V-V; Hakala, J; Jokinen, A; Kettunen, H; Kolhinen, V S; Laitinen, M; Moore, I D; Penttilä, H; Rissanen, J; Saastamoinen, A; Toivonen, H; Turunen, J; Aystö, J

    2010-03-01

    A Penning trap-based purification process having a resolution of about 1 ppm is reported. In this context, we present for the first time a production method for the most complicated and crucially important nuclear weapons test signature, (133m)Xe. These pure xenon samples are required by the Comprehensive Nuclear-Test-Ban Treaty Organization to standardize and calibrate the worldwide network of xenon detectors. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. [Microstructure of the lung: diffusion measurement of hyperpolarized 3Helium].

    Science.gov (United States)

    Morbach, Andreas E; Gast, Klaus K; Schmiedeskamp, Jörg; Herweling, Annette; Windirsch, Michael; Dahmen, Anja; Ley, Sebastian; Heussel, Claus-Peter; Heil, Werner; Kauczor, Hans-Ulrich; Schreiber, Wolfgang G

    2006-01-01

    Imaging methods to study the lung are traditionally based on x-ray or on radioactive contrast agents. Conventional magnetic resonance imaging (MRI) has only limited applications for lung imaging because of the low tissue density of protons concentration of hydrogen atoms, which are usually the basis for the imaging. The introduction of hyperpolarized noble gases as a contrast agent in MRI has opened new possibilities for lung diagnosis. The present paper describes this new technique. Diffusion-weighted MRI for assessment of the lung microstructure is presented here as an example of the new possibilities of functional imaging. Studies to determine the sensitivity of the diffusion measurement and regarding the correlation with traditionally established methods are also presented, along with results of the measurement of the reproducibility determined in a clinical pilot study on healthy volunteers and patients. Furthermore, a pilot measurement of the 3He diffusion tensor in the lung is presented.

  4. XEMIS: A liquid xenon detector for medical imaging

    Science.gov (United States)

    Gallego Manzano, L.; Bassetto, S.; Beaupere, N.; Briend, P.; Carlier, T.; Cherel, M.; Cussonneau, J.-P.; Donnard, J.; Gorski, M.; Hamanishi, R.; Kraeber Bodéré, F.; Le Ray, P.; Lemaire, O.; Masbou, J.; Mihara, S.; Morteau, E.; Scotto Lavina, L.; Stutzmann, J.-S.; Tauchi, T.; Thers, D.

    2015-07-01

    A new medical imaging technique based on the precise 3D location of a radioactive source by the simultaneous detection of 3γ rays has been proposed by Subatech laboratory. To take advantage of this novel technique a detection device based on a liquid xenon Compton telescope and a specific (β+, γ) emitter radionuclide, 44Sc, are required. A first prototype of a liquid xenon time projection chamber called XEMIS1 has been successfully developed showing very promising results for the energy and spatial resolutions for the ionization signal in liquid xenon, thanks to an advanced cryogenics system, which has contributed to a high liquid xenon purity with a very good stability and an ultra-low noise front-end electronics (below 100 electrons) operating at liquid xenon temperature. The very positive results obtained with XEMIS1 have led to the development of a second prototype for small animal imaging, XEMIS2, which is now under development. To study the feasibility of the 3γ imaging technique and optimize the characteristics of the device, a complete Monte Carlo simulation has been also carried out. A preliminary study shows very positive results for the sensitivity, energy and spatial resolutions of XEMIS2.

  5. Emergence in Elderly Patient Undergoing General Anesthesia with Xenon

    Directory of Open Access Journals (Sweden)

    Maria Sanfilippo

    2013-01-01

    Full Text Available Introduction. It is a consensus that the postoperative cognitive function is impaired in elderly patients after general anaesthesia, and such category patient takes more time to recover. Xenon is a noble gas with anesthetic properties mediated by antagonism of N-methyl-D-aspartate receptors. With a minimum alveolar concentration of 0.63, xenon is intended for maintaining hypnosis with 30% oxygen. The fast recovery after xenon anaesthesia was hypothesized to be advantageous in this scenario. Case Presentation. We report the case of 99-year-old woman who underwent sigmoid colon carcinoma resection with colorectal anastomosis. We carried out the induction phase by propofol, oxygen, fentanil, and rocuronium bromide, and then we proceeded to a rapid sequence endotracheal intubation consequently. The patient was monitored by IBP, NIBP, ECG, cardiac frequency, respiratory rate, capnometry, TOF Guard, blood gas analysis, and BIS. For maintenance we administrated oxygen, remifentanil, rocuronium bromide, and xenon gas 60–65%. Shortly after the end of surgery the patients started an autonomous respiratory activity, and a high BIS level was also recorded. Decision was made by our team to proceed into the emergence phase. The residual neuromuscular block was antagonized by sugammadex, modified Aldrete score was implicated, and we got our patient fully awake without any cognitive dysfunction or delirium. Conclusion. The rapid emergence to full orientation in very elderly patient who had been anesthetized by xenon shows concordance to the high BIS values and the clinical signs of the depth of anesthesia.

  6. Hugoniot measurements of double-shocked precompressed dense xenon plasmas.

    Science.gov (United States)

    Zheng, J; Chen, Q F; Gu, Y J; Chen, Z Y

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ∼6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  7. Xenon-related analgesia: a new target for pain treatment.

    Science.gov (United States)

    Giacalone, Marilù; Abramo, Antonio; Giunta, Francesco; Forfori, Francesco

    2013-07-01

    The noble gas xenon has been known for >50 years in the field of anesthesia with an emerging series of favorable features; several clinical and preclinical studies performed over the last years reveal a renewed interest because they substantially agree on attributing relevant analgesic properties to xenon. The main mechanism of action is the inhibition of N-methyl-D-aspartate receptors of glutamate; it involves the blocking of painful stimuli transmissions from peripheral tissues to the brain and it also avoids the development of pain hypersensitivity. Therefore, this mechanism is responsible for the inhibition of pain transmission at spinal and supraspinal levels, as well as the cortical level. In all these levels of pain pathways, as the development of hyperalgesia is possible, xenon efficacy can also be based on the blocking of these processes. Several forms of pain share such mechanisms in their maintenance, and xenon can be successfully used at low dosages, which have no effects on vital parameters. The literature shows that analgesic features could also emerge outside the field of anesthesia; thus, this could permit xenon to have a larger usage according to local availability.

  8. Xenon neuroprotection in experimental stroke: interactions with hypothermia and intracerebral hemorrhage

    National Research Council Canada - National Science Library

    Sheng, Siyuan P; Lei, Beilei; James, Michael L; Lascola, Christopher D; Venkatraman, Talaignair N; Jung, Jin Yong; Maze, Mervyn; Franks, Nicholas P; Pearlstein, Robert D; Sheng, Huaxin; Warner, David S

    2012-01-01

    Xenon has been proven to be neuroprotective in experimental brain injury. The authors hypothesized that xenon would improve outcome from focal cerebral ischemia with a delayed treatment onset and prolonged recovery interval...

  9. Xenon Anesthesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    National Research Council Canada - National Science Library

    Law, Lawrence Siu-Chun; Lo, Elaine Ah-Gi; Gan, Tong Joo

    ...) on xenon anesthesia has been conducted. The aim of this study was to systematically review all available evidence from RCTs comparing xenon and other inhaled and IV anesthetics on anesthetic outcomes...

  10. Perfusion imaging with a freely diffusible hyperpolarized contrast agent.

    Science.gov (United States)

    Grant, Aaron K; Vinogradov, Elena; Wang, Xiaoen; Lenkinski, Robert E; Alsop, David C

    2011-09-01

    Contrast agents that can diffuse freely into or within tissue have numerous attractive features for perfusion imaging. Here we present preliminary data illustrating the suitability of hyperpolarized (13)C labeled 2-methylpropan-2-ol (also known as dimethylethanol, tertiary butyl alcohol and tert-butanol) as a freely diffusible contrast agent for magnetic resonance perfusion imaging. Dynamic (13)C images acquired in rat brain with a balanced steady-state free precession sequence following administration of hyperpolarized 2-methylpropan-2-ol show that this agent can be imaged with 2-4 s temporal resolution, 2 mm slice thickness, and 700 μm in-plane resolution while retaining adequate signal-to-noise ratio. (13)C relaxation measurements on 2-methylpropan-2-ol in blood at 9.4 T yield T(1) = 46 ± 4s and T(2) = 0.55 ± 0.03 s. In the rat brain at 4.7 T, analysis of the temporal dynamics of the balanced steady-state free precession image intensity in tissue and venous blood indicate that 2-methylpropan-2-ol has a T(2) of roughly 2-4s and a T(1) of 43 ± 24 s. In addition, the images indicate that 2-methylpropan-2-ol is freely diffusible in brain and hence has a long residence time in tissue; this in turn makes it possible to image the agent continuously for tens of seconds. These characteristics show that 2-methylpropan-2-ol is a promising agent for robust and quantitative perfusion imaging in the brain and body. Copyright © 2011 Wiley-Liss, Inc.

  11. Regional cerebral blood flow in stroke by 133Xenon inhalation and emission tomography

    DEFF Research Database (Denmark)

    Lassen, N A; Henriksen, L; Paulson, O

    1981-01-01

    A rapidly rotating single-photon emission tomograph was used to study regional cerebral blood flow by 133Xenon inhalation. Using a rotation speed of 180 degrees/5 sec a tomographic picture of the average Xenon concentration in 3 slices is obtained. By taking a sequence of 4 one-minute tomograms...... cerebral blood flow measured tomographically by 133Xenon inhalation circumvents the extra-cranial contamination and the superposition of intracranial tissues that hamper 133Xenon inhalation flow studies using stationary detectors....

  12. Search for Dark Matter Interactions using Ionization Yield in Liquid Xenon

    Science.gov (United States)

    Uvarov, Sergey

    Cosmological observations overwhelmingly support the existence of dark matter which constitutes 87% of the universe's total mass. Weakly Interacting Massive Particles (WIMPs) are a prime candidate for dark matter, and the Large Underground Xenon (LUX) experiment aims to a direct-detection of a WIMP-nucleon interaction. The LUX detector is a dual-phase xenon time-projection chamber housed 4,850 feet underground at Sanford Underground Research Facility in Lead, South Dakota. We present the ionization-only analysis of the LUX 2013 WIMP search data. In the 1.04 x 104 kg-days exposure, thirty events were observed out of the 24.8 expected from radioactive backgrounds. We employ a cut-and-count method to set a 1-sided 90% C.L. upper limit for spin-independent WIMP-nucleon cross-sections. A zero charge yield for nuclear-recoils below 0.7 keV is included upper limit calculation. This ionization-only analysis excludes an unexplored region of WIMP-nucleon cross-section for low-mass WIMPs achieving 1.56 x 10-43 cm2 WIMP-nucleon cross-section exclusion for a 5.1 GeV/ c2 WIMP.

  13. Ionization efficiency studies for xenon ions with thesuperconducting ECR ion source VENUS

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Daniela; Lyneis, Claude M.; Todd, DamonS.; Tarvainen,Olli

    2007-06-05

    Ionization efficiency studies for high charge state xenon ions using a calibrated gas leak are presented. A 75% enriched {sup 129}Xe gas leak with a gas flow equivalent to 5.11p{mu}A was used in all the measurements. The experiments were performed at the VENUS (Versatile ECR ion source for Nuclear Science) ion source for 18 GHz, 28 GHz and double frequency operation. Overall, total ionization efficiencies close to 100% and ionization efficiencies into a single charge state up to 22% were measured. The influence of the biased disk on the ionization efficiency was studied and the results were somewhat surprising. When the biased disk was removed from the plasma chamber, the ionization efficiency was dramatically reduced for single frequency operation. However, using double frequency heating the ionization efficiencies achieved without the biased disk almost matched the ionization efficiencies achieved with the biased probe. In addition, we have studied the influence of the support gas on the charge state distribution of the xenon ions. Either pure oxygen or a mixture of oxygen and helium were used as support gases. The addition of a small amount of helium can increase the ionization efficiency into a single charge state by narrowing the charge state distribution. Furthermore by varying the helium flow the most efficient charge state can be shifted over a wide range without compromising the ionization efficiency. This is not possible using only oxygen as support gas. Results from these studies are presented and discussed.

  14. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  15. Qualification tests of 248 photomultiplier tubes for XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Ludwig [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    The dark matter direct-detection experiment XENON1T employs photosensors with high detection efficiencies to obtain a low energy threshold of the detector enabling a search for small WIMP masses. In addition, the tube is designed for a low intrinsic radioactivity to minimize the background of the experiment. The expected sensitivity of the dark matter interaction cross sections to the xenon nucleon reaches 2 x 10{sup 47} cm{sup 2} with a particle with mass of 50 GeV/c{sup 2}. This talk presents the setups and test procedures of the 248 installed photomultiplier tubes (PMTs) for XENON1T in order to decide whether they fulfil the experiment's requirements. In addition, an analysis of the performance of the used PMTs is presented and the implications for a dark matter search are outlined.

  16. Supernova Neutrino Physics with Xenon Dark Matter Detectors

    Science.gov (United States)

    Reichard, Shayne; Lang, Rafael F.; McCabe, Christopher; Selvi, Marco; Tamborra, Irene

    2017-09-01

    The dark matter experiment XENON1T is operational and sensitive to all flavors of neutrinos emitted from a supernova. We show that the proportional scintillation signal (S2) allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the backgrounds are rendered negligible during the SN burst. XENON1T (XENONnT and LZ; DARWIN) will be sensitive to a SN burst up to 25 (40; 70) kpc from Earth at a significance of more than 5σ, observing approximately 35 (123; 704) events from a 27 M ⊙ SN progenitor at 10 kpc. Moreover, it will be possible to measure the average neutrino energy of all flavors, to constrain the total explosion energy, and to reconstruct the SN neutrino light curve. Our results suggest that a large xenon detector such as DARWIN will be competitive with dedicated neutrino telescopes, while providing complementary information that is not otherwise accessible.

  17. Myocardial blood flow during general anesthesia with xenon in humans: a positron emission tomography study

    NARCIS (Netherlands)

    Schaefer, W.; Meyer, P.T.; Rossaint, R.; Baumert, J.H.; Coburn, M.; Fries, M.; Rex, S.

    2011-01-01

    BACKGROUND: Xenon has only minimal hemodynamic side effects and induces pharmacologic preconditioning. Thus, the use of xenon could be an interesting option in patients at risk for perioperative myocardial ischemia. However, little is known about the effects of xenon anesthesia on myocardial blood

  18. Xenon-induced power oscillations in a generic small modular reactor

    Science.gov (United States)

    Kitcher, Evans Damenortey

    As world demand for energy continues to grow at unprecedented rates, the world energy portfolio of the future will inevitably include a nuclear energy contribution. It has been suggested that the Small Modular Reactor (SMR) could play a significant role in the spread of civilian nuclear technology to nations previously without nuclear energy. As part of the design process, the SMR design must be assessed for the threat to operations posed by xenon-induced power oscillations. In this research, a generic SMR design was analyzed with respect to just such a threat. In order to do so, a multi-physics coupling routine was developed with MCNP/MCNPX as the neutronics solver. Thermal hydraulic assessments were performed using a single channel analysis tool developed in Python. Fuel and coolant temperature profiles were implemented in the form of temperature dependent fuel cross sections generated using the SIGACE code and reactor core coolant densities. The Power Axial Offset (PAO) and Xenon Axial Offset (XAO) parameters were chosen to quantify any oscillatory behavior observed. The methodology was benchmarked against results from literature of startup tests performed at a four-loop PWR in Korea. The developed benchmark model replicated the pertinent features of the reactor within ten percent of the literature values. The results of the benchmark demonstrated that the developed methodology captured the desired phenomena accurately. Subsequently, a high fidelity SMR core model was developed and assessed. Results of the analysis revealed an inherently stable SMR design at beginning of core life and end of core life under full-power and half-power conditions. The effect of axial discretization, stochastic noise and convergence of the Monte Carlo tallies in the calculations of the PAO and XAO parameters was investigated. All were found to be quite small and the inherently stable nature of the core design with respect to xenon-induced power oscillations was confirmed. Finally, a

  19. XEMIS: A liquid xenon detector for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gallego Manzano, L., E-mail: Lucia.Gallego-Manzano@subatech.in2p3.fr [SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Université de Nantes, 4 rue Alfred Kastler cedex 03 44307 Nantes (France); Bassetto, S. [AIR LIQUIDE Advanced Technologies Division, 2 rue Clémencière, F-38360 Sassenage (France); Beaupere, N. [SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Université de Nantes, 4 rue Alfred Kastler cedex 03 44307 Nantes (France); Briend, P. [AIR LIQUIDE Advanced Technologies Division, 2 rue Clémencière, F-38360 Sassenage (France); Carlier, T. [Centre Hospitalier Universitaire de Nantes, 1 place Alexis-Ricordeau, 44093 Nantes (France); Cherel, M. [INSERM U892 équipe 13, 8 quai Moncousu, 44000 Nantes (France); Cussonneau, J-P.; Donnard, J. [SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Université de Nantes, 4 rue Alfred Kastler cedex 03 44307 Nantes (France); Gorski, M. [AIR LIQUIDE Advanced Technologies Division, 2 rue Clémencière, F-38360 Sassenage (France); Hamanishi, R. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Kraeber Bodéré, F. [Centre Hospitalier Universitaire de Nantes, 1 place Alexis-Ricordeau, 44093 Nantes (France); Le Ray, P.; Lemaire, O.; Masbou, J. [SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Université de Nantes, 4 rue Alfred Kastler cedex 03 44307 Nantes (France); Mihara, S. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Morteau, E.; Scotto Lavina, L. [SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Université de Nantes, 4 rue Alfred Kastler cedex 03 44307 Nantes (France); and others

    2015-07-01

    A new medical imaging technique based on the precise 3D location of a radioactive source by the simultaneous detection of 3γ rays has been proposed by Subatech laboratory. To take advantage of this novel technique a detection device based on a liquid xenon Compton telescope and a specific (β{sup +}, γ) emitter radionuclide, {sup 44}Sc, are required. A first prototype of a liquid xenon time projection chamber called XEMIS1 has been successfully developed showing very promising results for the energy and spatial resolutions for the ionization signal in liquid xenon, thanks to an advanced cryogenics system, which has contributed to a high liquid xenon purity with a very good stability and an ultra-low noise front-end electronics (below 100 electrons) operating at liquid xenon temperature. The very positive results obtained with XEMIS1 have led to the development of a second prototype for small animal imaging, XEMIS2, which is now under development. To study the feasibility of the 3γ imaging technique and optimize the characteristics of the device, a complete Monte Carlo simulation has been also carried out. A preliminary study shows very positive results for the sensitivity, energy and spatial resolutions of XEMIS2. - Highlights: • We present the principle of a new functional medical imaging technique called three gamma imaging. • We present a first prototype of a liquid xenon Compton telescope, XEMIS1, developed to prove the feasibility of the three gamma imaging technique. • Good results obtained with the first prototype XEMIS1 have led to the development of a new prototype for small animal imaging, XEMIS2. • We present the main characteristics of this new prototype, which is now under construction. • A complete Monte Carlo simulation shows promising results for the sensitivity, energy and spatial resolution of XEMIS2.

  20. Hyperpolarized metabolic MR in the study of cardiac function and disease

    DEFF Research Database (Denmark)

    Lauritzen, M. H.; Søgaard, L. V.; Madsen, Pia Lisbeth

    2014-01-01

    the technique into clinical practice. Hyperpolarized MR has the prospect of transforming diagnostic cardiology by offering new insights into cardiac disease and potentially even to contribute to personalized therapy based on a thorough understanding of the individual intracellular metabolism....

  1. Modeling of direct conversion of the uranium fission product kinetic energy to laser radiation energy in an argon–xenon dusty plasma with uranium nanoparticles

    Directory of Open Access Journals (Sweden)

    M.N. Slyunyaev

    2015-12-01

    It is the first time that amplifying properties of a laser-active spatially heterogeneous nuclear-excited moving argon–xenon medium, containing uranium nanoparticles and irradiated by neutrons, have been studied. As shown by the investigation results, the LR intensity amplification may be sevenfold and more in steady-state conditions. Such a high value makes it possible to state that this medium can be used not only in a nuclear-pumped laser but also in the mode of a single-pass nuclear-pumped laser amplifier.

  2. Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy

    OpenAIRE

    Schroeder, Marie A.; Atherton, Helen J; Ball, Daniel R; Cole, Mark A; Heather, Lisa C; Griffin, Julian L.; Clarke, Kieran; Radda, George K.; Tyler, Damian J

    2009-01-01

    The Krebs cycle plays a fundamental role in cardiac energy production and is often implicated in the energetic imbalance characteristic of heart disease. In this study, we measured Krebs cycle flux in real time in perfused rat hearts using hyperpolarized magnetic resonance spectroscopy (MRS). [2-13C]Pyruvate was hyperpolarized and infused into isolated perfused hearts in both healthy and postischemic metabolic states. We followed the enzymatic conversion of pyruvate to lactate, acetylcarnitin...

  3. Vascular hyperpolarization in human physiology and cardiovascular risk conditions and disease.

    Science.gov (United States)

    Schinzari, F; Tesauro, M; Cardillo, C

    2017-01-01

    Hyperpolarization causing smooth muscle relaxation contributes to the maintenance of vascular homeostasis, particularly in small-calibre arteries and arterioles. It may also become a compensatory vasodilator mechanism upregulated in states with impaired nitric oxide (NO) availability. Bioassay of vascular hyperpolarization in the human circulation has been hampered by the complexity of mechanisms involved and the limited availability of investigational tools. Firm evidence, however, supports the notion that hyperpolarization participates in the regulation of resting vasodilator tone and vascular reactivity in healthy subjects. In addition, an enhanced endothelium-derived hyperpolarization contributes to both resting and agonist-stimulated vasodilation in a variety of cardiovascular risk conditions and disease. Thus, hyperpolarization mediated by epoxyeicosatrienoic acids (EETs) and H 2 O 2 has been observed in coronary arterioles of patients with coronary artery disease. Similarly, ouabain-sensitive and EETs-mediated hyperpolarization has been observed to compensate for NO deficiency in patients with essential hypertension. Moreover, in non-hypertensive patients with multiple cardiovascular risk factors and in hypercholesterolaemia, K Ca channel-mediated vasodilation appears to be activated. A novel paradigm establishes that perivascular adipose tissue (PVAT) is an additional regulator of vascular tone/function and endothelium is not the only agent in vascular hyperpolarization. Indeed, some PVAT-derived relaxing substances, such as adiponectin and angiotensin 1-7, may exert anticontractile and vasodilator actions by the opening of K Ca channels in smooth muscle cells. Conversely, PVAT-derived factors impair coronary vasodilation via differential inhibition of some K + channels. In view of adipose tissue abnormalities occurring in human obesity, changes in PVAT-dependent hyperpolarization may be relevant for vascular dysfunction also in this condition. © 2015

  4. Measuring diffusion limitation with a perfusion-limited gas—Hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis

    Science.gov (United States)

    Freeman, Matthew S.; Yoon, Suk W.; Liljeroth, Maria G.; Stiles, Jane V.; Roos, Justus E.; Michael Foster, W. Sivaram; Rackley, Craig R.; McAdams, H. P.; Driehuys, Bastiaan

    2014-01-01

    Although xenon is classically taught to be a “perfusion-limited” gas, 129Xe in its hyperpolarized (HP) form, when detected by magnetic resonance (MR), can probe diffusion limitation. Inhaled HP 129Xe diffuses across the pulmonary blood-gas barrier, and, depending on its tissue environment, shifts its resonant frequency relative to the gas-phase reference (0 ppm) by 198 ppm in tissue/plasma barrier and 217 ppm in red blood cells (RBCs). In this work, we hypothesized that in patients with idiopathic pulmonary fibrosis (IPF), the ratio of 129Xe spectroscopic signal in the RBCs vs. barrier would diminish as diffusion-limitation delayed replenishment of 129Xe magnetization in RBCs. To test this hypothesis, 129Xe spectra were acquired in 6 IPF subjects as well as 11 healthy volunteers to establish a normal range. The RBC:barrier ratio was 0.55 ± 0.13 in healthy volunteers but was 3.3-fold lower in IPF subjects (0.16 ± 0.03, P = 0.0002). This was caused by a 52% reduction in the RBC signal (P = 0.02) and a 58% increase in the barrier signal (P = 0.01). Furthermore, the RBC:barrier ratio strongly correlated with lung diffusing capacity for carbon monoxide (DLCO) (r = 0.89, P diffusion limitation and gas-transfer impairment and forms the basis for developing 3D MR imaging of gas exchange. PMID:25038105

  5. Measuring diffusion limitation with a perfusion-limited gas--hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Kaushik, S Sivaram; Freeman, Matthew S; Yoon, Suk W; Liljeroth, Maria G; Stiles, Jane V; Roos, Justus E; Foster, W Michael; Rackley, Craig R; McAdams, H P; Driehuys, Bastiaan

    2014-09-15

    Although xenon is classically taught to be a "perfusion-limited" gas, (129)Xe in its hyperpolarized (HP) form, when detected by magnetic resonance (MR), can probe diffusion limitation. Inhaled HP (129)Xe diffuses across the pulmonary blood-gas barrier, and, depending on its tissue environment, shifts its resonant frequency relative to the gas-phase reference (0 ppm) by 198 ppm in tissue/plasma barrier and 217 ppm in red blood cells (RBCs). In this work, we hypothesized that in patients with idiopathic pulmonary fibrosis (IPF), the ratio of (129)Xe spectroscopic signal in the RBCs vs. barrier would diminish as diffusion-limitation delayed replenishment of (129)Xe magnetization in RBCs. To test this hypothesis, (129)Xe spectra were acquired in 6 IPF subjects as well as 11 healthy volunteers to establish a normal range. The RBC:barrier ratio was 0.55 ± 0.13 in healthy volunteers but was 3.3-fold lower in IPF subjects (0.16 ± 0.03, P = 0.0002). This was caused by a 52% reduction in the RBC signal (P = 0.02) and a 58% increase in the barrier signal (P = 0.01). Furthermore, the RBC:barrier ratio strongly correlated with lung diffusing capacity for carbon monoxide (DLCO) (r = 0.89, P diffusion limitation and gas-transfer impairment and forms the basis for developing 3D MR imaging of gas exchange. Copyright © 2014 the American Physiological Society.

  6. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    Science.gov (United States)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  7. The feasibility of using a portable xenon delivery device to permit earlier xenon ventilation with therapeutic cooling of neonates during ambulance retrieval.

    Science.gov (United States)

    Dingley, John; Liu, Xun; Gill, Hannah; Smit, Elisa; Sabir, Hemmen; Tooley, James; Chakkarapani, Ela; Windsor, David; Thoresen, Marianne

    2015-06-01

    Therapeutic hypothermia is the standard of care after perinatal asphyxia. Preclinical studies show 50% xenon improves outcome, if started early. During a 32-patient study randomized between hypothermia only and hypothermia with xenon, 5 neonates were given xenon during retrieval using a closed-circuit incubator-mounted system. Without xenon availability during retrieval, 50% of eligible infants exceeded the 5-hour treatment window. With the transportable system, 100% were recruited. Xenon delivery lasted 55 to 120 minutes, using 174 mL/h (117.5-193.2) (median [interquartile range]), after circuit priming (1300 mL). Xenon delivery during ambulance retrieval was feasible, reduced starting delays, and used very little gas.

  8. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffry Todd [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    encoding module for the recently developed NMR remote detection experiment. The feasibility of using hyperpolarized xenon-129 gas as a sensor is discussed. This work also reports the use of an optical atomic magnetometer to detect the nuclear magnetization of Xe-129 gas, which has potential applicability as a detection module for NMR remote detection experiments.

  9. [Intracranial and cerebral perfusion pressure in neurosurgical patients during anaesthesia with xenon].

    Science.gov (United States)

    Rylova, A V; Gavrilov, A G; Lubnin, A Iu; Potapov, A A

    2014-01-01

    Despite difficulties in providing xenon anaesthesia, xenon still seems to be attractive for neurosurgical procedures. But data upon its effect on intracranial (ICP) and cerebral perfusion pressure (CPP) remains controversial. We monitored ICP and CPP in patients with or without intracranial hypertension during xenon inhalation in different concentrations. Our results suggest that caution should be used while inhaling xenon in high anaesthetic concentration in patients wiith known intracranial hypertension. We also address new possibilities of xenon use, e.g., for sedation in neurosurgery. The study was supported by Russian Fund for Fundamental Research, grant number 13-04-01640.

  10. [Impact of xenon anesthesia on cerebral oxygenation and metabolism in neurosurgical patients].

    Science.gov (United States)

    Rylova, A V; Lubnin, A Iu

    2011-01-01

    In recent years the background for xenon anesthesia implementation in neurosurgery has been created. A variety of researches have been conducted though very few of them concerned xenon effect upon cerebral metabolism. We assessed cerebral oxygenation and cerebral metabolism during propofol anesthesia followed by xenon closed circuit anesthesia in neurosurgical patients. Xenon inhalation was marked by higher jugular vein saturation, oxygen content and glucose level and lower arterio-venous difference. We conclude that compared to propofol xenon improves cerebral oxygenation and decreases cerebral metabolism in neurosurgical patients.

  11. [Effects of xenon anesthesia on cerebral blood flow in neurosurgical patients without intracranial hypertension].

    Science.gov (United States)

    Rylova, A V; Beliaev, A Iu; Lubnin, A Iu

    2013-01-01

    Among anesthetic agents used in neurosurgery xenon appears to be the most advantageous. It preserves arterial blood pressure, assures rapid recovery and neuroprotection. But the data is lacking on xenon effect upon cerebral blood flow under anesthetic conditions. We measured flow velocity in middle cerebral artery in neurosurgical patients without intracranial hypertension during closed circuit xenon anesthesia comparing propofol and xenon effect in the same patients. In our study xenon didn't seem to induce clinically relevant changes in cerebral blood flow and preserved cerebral vascular reactivity thus proving its safety in patients without intracranial hypertension.

  12. Local Anesthetic Inhibits Hyperpolarization-Activated Cationic Currents

    Science.gov (United States)

    Meng, Qing-tao; Xia, Zhong-yuan; Liu, Jin; Bayliss, Douglas A.

    2011-01-01

    Systemic administration of local anesthetics has beneficial perioperative properties and an anesthetic-sparing and antiarrhythmic effect, although the detailed mechanisms of these actions remain unclear. In the present study, we investigated the effects of a local anesthetic, lidocaine, on hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels that contribute to the pacemaker currents in rhythmically oscillating cells of the heart and brain. Voltage-clamp recordings were used to examine the properties of cloned HCN subunit currents expressed in Xenopus laevis oocytes and human embryonic kidney (HEK) 293 cells under control condition and lidocaine administration. Lidocaine inhibited HCN1, HCN2, HCN1-HCN2, and HCN4 channel currents at 100 μM in both oocytes and/or HEK 293 cells; it caused a decrease in both tonic and maximal current (∼30–50% inhibition) and slowed current activation kinetics for all subunits. In addition, lidocaine evoked a hyperpolarizing shift in half-activation voltage (ΔV1/2 of ∼−10 to −14 mV), but only for HCN1 and HCN1-HCN2 channels. By fitting concentration-response data to logistic functions, we estimated half-maximal (EC50) concentrations of lidocaine of ∼30 to 40 μM for the shift in V1/2 observed with HCN1 and HCN1-HCN2; for inhibition of current amplitude, calculated EC50 values were ∼50 to 70 μM for HCN1, HCN2, and HCN1-HCN2 channels. A lidocaine metabolite, monoethylglycinexylidide (100 μM), had similar inhibitory actions on HCN channels. These results indicate that lidocaine potently inhibits HCN channel subunits in dose-dependent manner over a concentration range relevant for systemic application. The ability of local anesthetics to modulate Ih in central neurons may contribute to central nervous system depression, whereas effects on If in cardiac pacemaker cells may contribute to the antiarrhythmic and/or cardiovascular toxic action. PMID:21303986

  13. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    CERN Document Server

    Kathawa, J; Thoennessen, M

    2012-01-01

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  14. Dynamics of Xenon Plasma Streams Generated by Magnetoplasma Compressor

    Science.gov (United States)

    Garkusha, I. E.; Chebotarev, V. V.; Hassanein, A.; Ladygina, M. S.; Marchenko, A. K.; Petrov, Yu. V.; Solyakov, D. G.; Tereshin, V. I.; Trubchaninov, S. A.; Byrka, O. V.

    2008-03-01

    The paper presents the investigations of parameters of xenon plasma streams generated by magnetoplasma compressor (MPC) of compact geometry with conical-shaped electrodes and pulsed gas supply. Discharge characteristics and dynamics of the plasma streams, generated by MPC in different operation modes are analyzed. First results of Xe plasma radiation measurements in EUV wave range, obtained with AXUV diodes are presented.

  15. Charge States of Krypton and Xenon in the Solar Wind

    Science.gov (United States)

    Bochsler, Peter; Fludra, Andrzej; Giunta, Alessandra

    2017-09-01

    We calculate charge state distributions of Kr and Xe in a model for two different types of solar wind using the effective ionization and recombination rates provided from the OPEN_ADAS data base. The charge states of heavy elements in the solar wind are essential for estimating the efficiency of Coulomb drag in the inner corona. We find that xenon ions experience particularly low Coulomb drag from protons in the inner corona, comparable to the notoriously weak drag of protons on helium ions. It has been found long ago that helium in the solar wind can be strongly depleted near interplanetary current sheets, whereas coronal mass ejecta are sometimes strongly enriched in helium. We argue that if the extraordinary variability of the helium abundance in the solar wind is due to inefficient Coulomb drag, the xenon abundance must vary strongly. In fact, a secular decrease of the solar wind xenon abundance relative to the other heavier noble gases (Ne, Ar, Kr) has been postulated based on a comparison of noble gases in recently irradiated and ancient samples of ilmenite in the lunar regolith. We conclude that decreasing solar activity and decreasing frequency of coronal mass ejections over the solar lifetime might be responsible for a secularly decreasing abundance of xenon in the solar wind.

  16. NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary

    Science.gov (United States)

    Pencil, Eirc S.; Benson, Scott W.

    2008-01-01

    This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.

  17. Shear Thinning Near the Critical Point of Xenon

    Science.gov (United States)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.; Yao, Minwu

    2008-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids, near the critical point of xenon. The data span a wide range of reduced shear rate: 10(exp -3) xenon at amplitudes 3 mu,m 430 mu, and frequencies 1 Hz gamma-dot tau, C(sub gamma) depends also on both x(sub 0) and omega. The data were compared with numerical calculations based on the Carreau-Yasuda relation for complex fluids: eta(gamma-dot)/eta(0)=[1+A(sub gamma)|gamma-dot tau|](exp - chi(sub eta)/3+chi(sub eta)), where chi(sub eta) =0.069 is the critical exponent for viscosity and mode-coupling theory predicts A(sub gamma) =0.121. For xenon we find A(sub gamma) =0.137 +/- 0.029, in agreement with the mode coupling value. Remarkably, the xenon data close to the critical temperature T(sub c) were independent of the cooling rate (both above and below T(sub c) and these data were symmetric about T(sub c) to within a temperature scale factor. The scale factors for the magnitude of the oscillator s response differed from those for the oscillator's phase; this suggests that the surface tension of the two-phase domains affected the drag on the screen below T(sub c).

  18. Transition from linear to nonlinear sputtering of solid xenon

    DEFF Research Database (Denmark)

    Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen

    1995-01-01

    Self-sputtering of solid xenon has been studied with molecular dynamics simulations as a model system for the transition from dominantly linear to strongly nonlinear effects. The simulation covered the projectile energy range from 20 to 750 eV. Within a relatively narrow range from 30 to 250 e...

  19. Xenon tissue/blood partition coefficient for pig urinary bladder

    DEFF Research Database (Denmark)

    Nielsen, K K; Bülow, J; Nielsen, S L

    1990-01-01

    In four landrace pigs the tissue/blood partition coefficient (lambda) for xenon (Xe) for the urinary bladder was calculated after chemical analysis for lipid, water and protein content and determination of the haematocrit. The coefficients varied from bladder to bladder owing to small differences...

  20. Hyperpolarized Xe MR imaging of alveolar gas uptake in humans.

    Directory of Open Access Journals (Sweden)

    Zackary I Cleveland

    Full Text Available BACKGROUND: One of the central physiological functions of the lungs is to transfer inhaled gases from the alveoli to pulmonary capillary blood. However, current measures of alveolar gas uptake provide only global information and thus lack the sensitivity and specificity needed to account for regional variations in gas exchange. METHODS AND PRINCIPAL FINDINGS: Here we exploit the solubility, high magnetic resonance (MR signal intensity, and large chemical shift of hyperpolarized (HP (129Xe to probe the regional uptake of alveolar gases by directly imaging HP (129Xe dissolved in the gas exchange tissues and pulmonary capillary blood of human subjects. The resulting single breath-hold, three-dimensional MR images are optimized using millisecond repetition times and high flip angle radio-frequency pulses, because the dissolved HP (129Xe magnetization is rapidly replenished by diffusive exchange with alveolar (129Xe. The dissolved HP (129Xe MR images display significant, directional heterogeneity, with increased signal intensity observed from the gravity-dependent portions of the lungs. CONCLUSIONS: The features observed in dissolved-phase (129Xe MR images are consistent with gravity-dependent lung deformation, which produces increased ventilation, reduced alveolar size (i.e., higher surface-to-volume ratios, higher tissue densities, and increased perfusion in the dependent portions of the lungs. Thus, these results suggest that dissolved HP (129Xe imaging reports on pulmonary function at a fundamental level.

  1. Pulmonary Kinematics From Tagged Hyperpolarized Helium-3 MRI

    Science.gov (United States)

    Tustison, Nicholas J.; Awate, Suyash P.; Cai, Jing; Altes, Talissa A.; Miller, G. Wilson; de Lange, Eduard E.; Mugler, John P.; Gee, James C.

    2010-01-01

    Purpose To propose and test the feasibility of a novel method for quantifying 3-D regional pulmonary kinematics from hyperpolarized helium-3 tagged MRI in human subjects using a tailored image processing pipeline and a recently developed nonrigid registration framework. Materials and Methods Following image acquisition, inspiratory and expiratory tagged helium-3 MR images were preprocessed using various image filtering techniques to enhance the tag surfaces. Segmentation of the three orthogonal sets of tag planes in each lung produced distinct point-set representations of the tag surfaces. Using these labeled point-sets, deformation fields and corresponding strain maps were obtained via nonrigid point-set registration. Kinematic analysis was performed on three volunteers. Results Tag lines in inspiratory and expiratory images were co-registered producing a continuous 3-D correspondence mapping. Average displacement and directional strains were calculated in three subjects in the inferior, mid, and superior portions of the right and left lungs. As expected, the predominant direction of displacements with expiration is from inferior to superior. Conclusion Kinematic quantitation of pulmonary motion using tagged helium-3 MRI is feasible using the applied image preprocessing filtering techniques and nonrigid point-set registration. Potential benefits from regional pulmonary kinematic quantitation include the facilitation of diagnosis and local assessment of disease progression. PMID:20432362

  2. The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth

    2015-01-01

    (MRS) is a potent technique for non-invasive in vivo investigation of tissue chemistry and cellular metabolism. Hyperpolarization by Dynamic Nuclear Polarization (DNP) is capable of creating solutions of molecules with polarized nuclear spins in a range of biological molecules and has enabled the real...

  3. A leucine zipper motif essential for gating of hyperpolarization-activated channels.

    Science.gov (United States)

    Wemhöner, Konstantin; Silbernagel, Nicole; Marzian, Stefanie; Netter, Michael F; Rinné, Susanne; Stansfeld, Phillip J; Decher, Niels

    2012-11-23

    It is poorly understood how hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) function. We have identified a leucine zipper in the S5 segment of HCNs, regulating hyperpolarization-activated and instantaneous current components. The leucine zipper is essential for HCN channel gating. The identification and functional characterization of the leucine zipper is an important step toward the understanding of HCN channel function. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pacemakers in cardiac myocytes and neurons. Although their membrane topology closely resembles that of voltage-gated K(+) channels, the mechanism of their unique gating behavior in response to hyperpolarization is still poorly understood. We have identified a highly conserved leucine zipper motif in the S5 segment of HCN family members. In order to study the role of this motif for channel function, the leucine residues of the zipper were individually mutated to alanine, arginine, or glutamine residues. Leucine zipper mutants traffic to the plasma membrane, but the channels lose their sensitivity to open upon hyperpolarization. Thus, our data indicate that the leucine zipper is an important molecular determinant for hyperpolarization-activated channel gating. Residues of the leucine zipper interact with the adjacent S6 segment of the channel. This interaction is essential for voltage-dependent gating of the channel. The lower part of the leucine zipper, at the intracellular mouth of the channel, is important for stabilizing the closed state. Mutations at these sites increase current amplitudes or result in channels with deficient closing and increased min-P(o). Our data are further supported by homology models of the open and closed state of the HCN2 channel pore. Thus, we conclude that the leucine zipper of HCN channels is a major determinant for hyperpolarization-activated channel gating.

  4. Measurement of blood flow and xenon solubility coefficient in the human liver by xenon-enhanced computed tomography.

    Science.gov (United States)

    Sase, Shigeru; Takahashi, Hideaki; Shigefuku, Ryuta; Ikeda, Hiroki; Kobayashi, Minoru; Matsumoto, Nobuyuki; Suzuki, Michihiro

    2012-12-01

    The goal of this work was to develop a method of calculating blood flow and xenon solubility coefficient (λ) in the hepatic tissue by xenon-enhanced computed tomography (Xe-CT) and to demonstrate λ can be used as a measure of fat content in the human liver. A new blood supply model is introduced which incorporates both arterial blood and portal venous blood which join and together flow into hepatic tissue. We applied Fick's law to the model. It was theoretically derived that the time course of xenon concentration in the inflow blood (the mixture of the arterial blood and the portal venous blood) can be approximated by a monoexponential function. This approximation made it possible to obtain the time-course change rate (K(I)) of xenon concentration in the inflow blood using the time course of xenon concentration in the hepatic tissue by applying the algorithm we had reported previously. K(I) was used to calculate blood flow and λ for each pixel in the CT image of the liver. Twenty-six patients (49.2 ± 18.3 years) with nonalcoholic steatohepatitis underwent Xe-CT abdominal studies and liver biopsies. Steatosis of the liver was evaluated using the biopsy specimen and its severity was divided into ten grades according to the fat deposition percentage [(severity 1) ≤ 10%, 10 % xenon in the hepatic tissue (tissue Xe solubility), which is calculated using λ and the hematocrit value of the patient, also showed a good correlation with steatosis severity (r = 0.910, P xenon in the normal liver and in the fat tissue are 0.10 and 1.3, respectively, at 37 °C. The average blood flow value ranged from 15.3 to 53.5 ml∕100 ml tissue∕min. A method of calculating blood flow and λ in the hepatic tissue was developed by means of Xe-CT. This method would be valid even if portosystemic shunts exist; it is shown that λ maps can be used to deduce fat content in the liver. As a noninvasive modality, Xe-CT would be applicable to the quantitative study of fatty change in the

  5. Investigation of Spectral Characteristics of Pulsed Xenon Lamps for Combined Photochemical Degradation of Organometallic Compounds in Liquid Radioactive Waste

    Directory of Open Access Journals (Sweden)

    M. A. Mishakov

    2017-01-01

    Full Text Available The paper considers the composition of liquid radioactive wastes from the nuclear plants. Using traditional ways to extract organometallic compounds formed, when using the deactivation solutions to clean the surfaces of nuclear plant rooms, are complicated. The paper studies the edge-cutting methods of solving this problem. Its proposal is to use a combined ultraviolet treatment for organometallic compounds degradation based on ethylenediaminetetraacetic acid (EDTA via pulsed xenon lamps. A potential use of the tubular and spherical geometry lamps is examined and advantages, disadvantages and features of these lamps are described. Instead of the pure EDTA the experiments used its disodium salt (Na2-EDTA. The hydrogen peroxide was used as an extra oxidizer. Absorption spectrums of solutions with various Na2-EDTA - hydrogen peroxide ratio were measured. It is found that the absorbance curve maximum is in the shortwave spectrum region (λ < 210 nm. The use of amalgam lamps of monochromatic radiation at wavelength λ = 254 nm will result only in formation of hydroxyl radicals but direct destruction processes of EDTA molecules due to radiation will be rare, and this decreases efficiency of their use.The spectral radiation characteristics of various continuum spectrum pulsed xenon lamps was measured. The experimental data expressed in relative units were compared with the emission spectrum of an absolutely black body. The paper shows that in spherical lamps high brightness temperature can be reached. Thus, in spherical lamps it is possible to obtain a spectrum, which is in maximum correlation with the absorption spectrum of the solutions under study, thereby making them a prospective radiation source for photo-degradation of EDTA compounds. For drawing a final conclusion it is necessary to conduct researches in order to compare Na2-EDTA degradation via tubular and spherical xenon lamps.

  6. Gas diffusion in a pulmonary acinus model: experiments with hyperpolarized helium-3.

    Science.gov (United States)

    Habib, Dayane; Grebenkov, Denis; Guillot, Geneviève

    2008-10-01

    Diffusion of hyperpolarized helium-3 in epoxy phantoms was experimentally studied by pulsed-gradient nuclear magnetic resonance (NMR). One phantom with a dichotomic branching structure densely filling a cubic volume was built using the Kitaoka algorithm to model a healthy human acinus. Two other phantoms, one with a different size and the other one with a partial destruction of the branched structure, were built to simulate changes occurring at the early stages of emphysema. Gas pressure and composition (mixture with nitrogen) were varied, thus exploring different diffusion regimes. Preliminary measurements in a cylindrical glass cell allowed us to calibrate the gradient intensity with 1% accuracy. Measurements of NMR signal attenuation due to gas diffusion were compared to a classical Gaussian model and to Monte Carlo simulations. In the slow diffusion regime, the Gaussian model was in reasonable agreement with experiments for low gradient intensity, but there was a significant systematic deviation at larger gradient intensity. An apparent diffusion coefficient Dapp was deduced, and in agreement with previous findings, a linear decrease of Dapp/D0 with D0(1/2) was observed, where D0 is the free diffusion coefficient. In the regime of intermediate diffusion, experimental data could be described by the Gaussian model for very small gradient intensities only. The corresponding Dapp/D0 values seemed to reach a constant value. Monte Carlo simulations were generally in fair agreement with the measurements in both regimes. Our results suggest that, for diffusion times typical of medical magnetic resonance imaging, an increase in alveolar size has more impact on signal attenuation than a partial destruction of the branched structure at equivalent surface-to-volume ratio.

  7. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon

    Science.gov (United States)

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Abstract Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results. Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon–oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images. Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects. Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images

  8. Optimizing the polarization matrix for ex situ dynamic nuclear polarization.

    Science.gov (United States)

    Ludwig, Christian; Marin-Montesinos, Ildefonso; Saunders, Martin G; Günther, Ulrich L

    2010-03-03

    Although recent advances in dynamic nuclear polarization techniques have boosted the otherwise low sensitivity of NMR spectroscopy, the efficiency of the hyperpolarization process depends on the composition of the polarization matrix, in particular on the contact between the radical and the target molecule and the capability of the matrix to transfer polarization through spin diffusion. A concept for optimal matrix design is presented, applied to obtain two-dimensional heterocorrelated spectra of small drug-like molecules in 1-2 min after 90 min of hyperpolarization.

  9. Variable flip angle schedules in bSSFP imaging of hyperpolarized noble gases.

    Science.gov (United States)

    Deppe, Martin H; Wild, Jim M

    2012-06-01

    Balanced steady-state free precession imaging sequences provide signal-to-noise ratio benefits for MRI of hyperpolarized nuclei. Hyperpolarized magnetization decays during the imaging sequence to thermal equilibrium, effectively necessitating imaging in a transient state characterized by nonconstant transverse magnetization and k-space filtering when using constant flip angles. This work presents an analytical method for calculation of variable flip angle schedules which maintain constant transverse magnetization in balanced steady-state free precession imaging of hyperpolarized nuclei. The approach is based on direct inversion of the Bloch equations and does not require any numerical optimization. Input parameters are pulse sequence timings and effective relaxation times, which take diffusion of hyperpolarized gas in imaging gradients into account. Provision of constant transverse magnetization is demonstrated in phantom experiments and human lung imaging using hyperpolarized (3) He. The benefit of a flat k-space filter is demonstrated by reduced blurring in (3) He and digital phantom data, and high quality (3) He ventilation images from human lungs are obtained. Copyright © 2011 Wiley-Liss, Inc.

  10. A Leucine Zipper Motif Essential for Gating of Hyperpolarization-activated Channels*

    Science.gov (United States)

    Wemhöner, Konstantin; Silbernagel, Nicole; Marzian, Stefanie; Netter, Michael F.; Rinné, Susanne; Stansfeld, Phillip J.; Decher, Niels

    2012-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pacemakers in cardiac myocytes and neurons. Although their membrane topology closely resembles that of voltage-gated K+ channels, the mechanism of their unique gating behavior in response to hyperpolarization is still poorly understood. We have identified a highly conserved leucine zipper motif in the S5 segment of HCN family members. In order to study the role of this motif for channel function, the leucine residues of the zipper were individually mutated to alanine, arginine, or glutamine residues. Leucine zipper mutants traffic to the plasma membrane, but the channels lose their sensitivity to open upon hyperpolarization. Thus, our data indicate that the leucine zipper is an important molecular determinant for hyperpolarization-activated channel gating. Residues of the leucine zipper interact with the adjacent S6 segment of the channel. This interaction is essential for voltage-dependent gating of the channel. The lower part of the leucine zipper, at the intracellular mouth of the channel, is important for stabilizing the closed state. Mutations at these sites increase current amplitudes or result in channels with deficient closing and increased min-Po. Our data are further supported by homology models of the open and closed state of the HCN2 channel pore. Thus, we conclude that the leucine zipper of HCN channels is a major determinant for hyperpolarization-activated channel gating. PMID:23048023

  11. Hyperpolarized [2-13C]-fructose: a hemiketal DNP substrate for in vivo metabolic imaging.

    Science.gov (United States)

    Keshari, Kayvan R; Wilson, David M; Chen, Albert P; Bok, Robert; Larson, Peder E Z; Hu, Simon; Van Criekinge, Mark; Macdonald, Jeffrey M; Vigneron, Daniel B; Kurhanewicz, John

    2009-12-09

    Hyperpolarized (13)C labeled molecular probes have been used to investigate metabolic pathways of interest as well as facilitate in vivo spectroscopic imaging by taking advantage of the dramatic signal enhancement provided by DNP. Due to the limited lifetime of the hyperpolarized nucleus, with signal decay dependent on T(1) relaxation, carboxylate carbons have been the primary targets for development of hyperpolarized metabolic probes. The use of these carbon nuclei makes it difficult to investigate upstream glycolytic processes, which have been related to both cancer metabolism as well as other metabolic abnormalities, such as fatty liver disease and diabetes. Glucose carbons have very short T(1)s (glycolysis. However, the pentose analogue fructose can also enter glycolysis through its phosphorylation by hexokinase and yield complementary information. The C(2) of fructose is a hemiketal that has a relatively longer relaxation time (approximately 16 s at 37 degrees C) and high solution state polarization (approximately 12%). Hyperpolarized [2-(13)C]-fructose was also injected into a transgenic model of prostate cancer (TRAMP) and demonstrated difference in uptake and metabolism in regions of tumor relative to surrounding tissue. Thus, this study demonstrates the first hyperpolarization of a carbohydrate carbon with a sufficient T(1) and solution state polarization for ex vivo spectroscopy and in vivo spectroscopic imaging studies.

  12. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons.

    Science.gov (United States)

    Lavaur, Jérémie; Le Nogue, Déborah; Lemaire, Marc; Pype, Jan; Farjot, Géraldine; Hirsch, Etienne C; Michel, Patrick P

    2017-07-01

    Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic-ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l-trans-pyrrolidine-2,4-dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N-methyl-d-aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N-methyl-d-aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder. © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  13. Time-reversal invariance violation measurement using polarized neutron scattering from polarized xenon

    CERN Document Server

    Chu, Pinghan

    2014-01-01

    We proposed to use polarized neutrons scattering from a hyperpolarized 131Xe gaseous target in order to measure time-reversal violation effect in baryon processes with nucleons. This article provides a brief introduction, historical review, and possible methods to construct a hyperpolarized 131Xe gaseous target.

  14. Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy.

    Science.gov (United States)

    Schroeder, Marie A; Atherton, Helen J; Ball, Daniel R; Cole, Mark A; Heather, Lisa C; Griffin, Julian L; Clarke, Kieran; Radda, George K; Tyler, Damian J

    2009-08-01

    The Krebs cycle plays a fundamental role in cardiac energy production and is often implicated in the energetic imbalance characteristic of heart disease. In this study, we measured Krebs cycle flux in real time in perfused rat hearts using hyperpolarized magnetic resonance spectroscopy (MRS). [2-(13)C]Pyruvate was hyperpolarized and infused into isolated perfused hearts in both healthy and postischemic metabolic states. We followed the enzymatic conversion of pyruvate to lactate, acetylcarnitine, citrate, and glutamate with 1 s temporal resolution. The appearance of (13)C-labeled glutamate was delayed compared with that of other metabolites, indicating that Krebs cycle flux can be measured directly. The production of (13)C-labeled citrate and glutamate was decreased postischemia, as opposed to lactate, which was significantly elevated. These results showed that the control and fluxes of the Krebs cycle in heart disease can be studied using hyperpolarized [2-(13)C]pyruvate.

  15. Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T

    Science.gov (United States)

    Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.

    2017-02-01

    The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.

  16. Investigating tumor perfusion and metabolism using multiple hyperpolarized 13C compounds: HP001, pyruvate and urea

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Larson, Peder E.Z.; Hu, Simon

    2012-01-01

    The metabolically inactive hyperpolarized agents HP001 (bis-1,1-(hydroxymethyl)-[1-13C]cyclopropane-d8) and urea enable a new type of perfusion magnetic resonance imaging based on a direct signal source that is background-free. The addition of perfusion information to metabolic information obtained...... by spectroscopic imaging of hyperpolarized [1-13C]pyruvate would be of great value in exploring the relationship between perfusion and metabolism in cancer. In preclinical normal murine and cancer model studies, we performed both dynamic multislice imaging of the specialized hyperpolarized perfusion compound HP001...... of separate dynamic HP001 imaging and copolarized pyruvate/urea imaging were compared. A strong and significant correlation (R=0.73, P=.02) detected between the urea and HP001 data confirmed the value of copolarizing urea with pyruvate for simultaneous assessment of perfusion and metabolism....

  17. Dark matter sensitivity of multi-ton liquid xenon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Marc; Bütikofer, Lukas [Albert Einstein Center for Fundamental Physics, Universität Bern, Sidlerstrasse 5, 3012 Bern (Switzerland); Baudis, Laura; Kish, Alexander [Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Selvi, Marco, E-mail: marc.schumann@lhep.unibe.ch, E-mail: lbaudis@physik.uzh.ch, E-mail: lukas.buetikofer@lhep.unibe.ch, E-mail: alexkish@physik.uzh.ch, E-mail: marco.selvi@bo.infn.it [INFN—Sezione di Bologna, Via Irnerio 46, 40126 Bologna (Italy)

    2015-10-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t × y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5 × 10{sup −49} cm{sup 2} can be probed for WIMP masses around 40 GeV/c{sup 2}. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.

  18. Driving Rabi oscillations at the giant dipole resonance in xenon

    CERN Document Server

    Pabst, Stefan; Santra, Robin

    2015-01-01

    Free-electron lasers (FELs) produce short and very intense light pulses in the XUV and x-ray regimes. We investigate the possibility to drive Rabi oscillations in xenon with an intense FEL pulse by using the unusually large dipole strength of the giant-dipole resonance (GDR). The GDR decays within less than 30 as due to its position, which is above the $4d$ ionization threshold. We find that intensities around 10$^{18}$ W/cm$^2$ are required to induce Rabi oscillations with a period comparable to the lifetime. The pulse duration should not exceed 100 as because xenon will be fully ionized within a few lifetimes. Rabi oscillations reveal themselves also in the photoelectron spectrum in form of Autler-Townes splittings extending over several tens of electronvolt.

  19. Search for magnetic inelastic dark matter with XENON100

    Science.gov (United States)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.

    2017-10-01

    We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP's magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c2 and 122.7 GeV/c2 are excluded at 3.3 σ and 9.3 σ, respectively.

  20. Inelastic scattering of xenon atoms by quantized vortices in superfluids

    CERN Document Server

    Pshenichnyuk, I A

    2016-01-01

    We study inelastic interactions of particles with quantized vortices in superfluids by using a semi-classical matter wave theory that is analogous to the Landau two-fluid equations, but allows for the vortex dynamics. The research is motivated by recent experiments on xenon doped helium nanodroplets that show clustering of the impurities along the vortex cores. We numerically simulate the dynamics of trapping and interactions of xenon atoms by quantized vortices in superfluid helium and the obtained results can be extended to scattering of other impurities by quantized vortices. Different energies and impact parameters of incident particles are considered. We show that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex during the interaction even if there is no capture. The capture criterion of an impurity is formulated in terms of the binding energy.

  1. Design and Performance of Liquid Xenon Detectors for PET

    Science.gov (United States)

    Muennich, Astrid; Amaudruz, Pierre; Bryman, Douglas; Kurchaninov, Leonid; Lu, Philip; Marshall, Cam; Martin, Jean Pierre; Retiere, Fabrice; Sher, Aleksey

    2009-05-01

    This work is aimed at developing liquid xenon (LXe) detectors for applications to positron emission tomography (PET). The advantages of LXe for PET compared to currently used methods include improved energy resolution by combining information from measuring the ionization as well as the scintillation light, 3-D sub-mm spatial resolution, and Compton scattering reconstruction. Results obtained for the energy resolution with a small prototype and an analysis of error sources will be presented.

  2. Xenon as a Neuroprotectant in Traumatic Brain Injury

    Science.gov (United States)

    2012-03-01

    adaptive design, meaning that we stop if it becomes statistically apparent that xenon is either protective or not. This is standard in Dr. Kristal’s...for this). 1f. Data analysis and statistics . The quantitative data are presented as means ± St Dev. Analysis in three stages: (i) Untreated, TBI... Hypoxemia . Journal of Neurotrauma. ahead of print. doi:10.1089/neu.2007.0439. 4. Choi DW, Koh JY, Peters S. Pharmacology of glutamate neurotoxicity in

  3. The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer

    DEFF Research Database (Denmark)

    Gutte Borgwardt, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth

    2015-01-01

    (MRS) is a potent technique for non-invasive in vivo investigation of tissue chemistry and cellular metabolism. Hyperpolarization by Dynamic Nuclear Polarization (DNP) is capable of creating solutions of molecules with polarized nuclear spins in a range of biological molecules and has enabled the real....... Furthermore, the method enables measuring kinetics of conversion of substrates into cell metabolites and can be integrated with anatomical proton magnetic resonance imaging (MRI). Many nuclei and substrates have been hyperpolarized using the DNP method. Currently, the most widely used compound is (13)C...

  4. The use of dynamic nuclear polarization 13C-pyruvate MRS in cancer

    DEFF Research Database (Denmark)

    Borgwardt, Henrik Gutte; Espe Hansen, Adam; Hjort Johannesen, Helle

    2015-01-01

    (MRS) is a potent technique for non-invasive in vivo investigation of tissue chemistry and cellular metabolism. Hyperpolarization by Dynamic Nuclear Polarization (DNP) is capable of creating solutions of molecules with polarized nuclear spins in a range of biological molecules and has enabled the real....... Furthermore, the method enables measuring kinetics of conversion of substrates into cell metabolites and can be integrated with anatomical proton magnetic resonance imaging (MRI). Many nuclei and substrates have been hyperpolarized using the DNP method. Currently, the most widely used compound is 13C...

  5. Intermittent exposure to xenon protects against gentamicin-induced nephrotoxicity.

    Directory of Open Access Journals (Sweden)

    Ping Jia

    Full Text Available Aminoglycoside antibiotics, especially gentamicin, are widely used to treat Gram-negative infections due to their efficacy and low cost. Nevertheless the use of gentamicin is limited by its major side effect, nephrotoxicity. Xenon (Xe provided substantial organoprotective effects in acute injury of the brain and the heart and protected against renal ischemic-reperfusion injury. In this study, we investigated whether xenon could protect against gentamicin-induced nephrotoxicity. Male Wistar rats were intermittently exposed to either 70% xenon or 70% nitrogen (N2 balanced with 30% oxygen before and during gentamicin administration at a dose of 100 mg/kg for 7 days to model gentamicin-induced kidney injury. We observed that intermittent exposure to Xe provided morphological and functional renoprotection, which was characterized by attenuation of renal tubular damage, apoptosis, and oxidative stress, but not a reduction in inflammation. We also found that Xe pretreatment upregulated hypoxia-inducible factor 2α (HIF-2α and its downstream effector vascular endothelial growth factor, but not HIF-1α. With regard to the three HIF prolyl hydroxylases, Xe pretreatment upregulated prolyl hydroxylase domain-containing protein-2 (PHD2, suppressed PHD1, and had no influence on PHD3 in the rat kidneys. Pretreatment with Xe also increased the expression of miR-21, a microRNA known to have anti-apoptotic effects. These results support Xe renoprotection against gentamicin-induced nephrotoxicity.

  6. Highly ionized xenon and volumetric weighting in restricted focal geometries

    CERN Document Server

    Strohaber, J; Schuessler, H A

    2015-01-01

    The ionization of xenon atoms subjected to 42fs, 800nm pulses of radiation from a Ti:Sapphire laser was investigated. In our experiments a maximum laser intensity of $\\sim2\\times 10^{15} \\textrm{W}/\\textrm{cm}^2$ was used. Xenon ions were measured using a time-of-flight ion mass spectrometer having an entrance slit with dimensions of $12\\mu \\textrm{m} \\times 400\\mu \\textrm{m}$. The observed yields $\\textrm{Xe}^{n+} (n=1-7)$ were partially free of spatial averaging. The ion yields showed sequential and nonsequential multiple ionization and dip structures following saturation. To investigate the dip structures and to perform a comparison between experimental and simulated data, with the goal of clarifying the effects of residual spatial averaging, we derived a hybrid analytical-numerical solution for the integration kernel in restricted focal geometries. We simulated xenon ionization using Ammosov-Delone-Krainov and Perelomov-Popov-Terent'ev theories and obtained agreement with the results of observations. Sinc...

  7. NMR investigations of surfaces and interfaces using spin-polarized xenon

    Energy Technology Data Exchange (ETDEWEB)

    Gaede, Holly Caroline [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-07-01

    129Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional 129Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 105times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the 13C signal of CO2 of xenon occluded in solid CO2 by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of ~1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6.

  8. Diagnosis of subdural haematoma by computed axial tomography: use of xenon inhalation for contrast enhancement.

    Science.gov (United States)

    Zilkha, E; Kendall, B E; Loh, L; Hayward, R; Radue, E W; ingram, G S

    1978-01-01

    A subdural haematoma is described in which a definite computed tomographic (CT) scan diagnosis was made only after contrast enhancement had been achieved by the inhalation of xenon. The different types of enhancement obtained with iodide containing contrast media and with xenon are discussed. The use of xenon to obtain further information in conditions which are inadequately elucidated by conventional CT must be balanced against its anaesthetic effects and relatively high cost. Images PMID:650246

  9. Hyperpolarized Metabolic MR in the Study of Cardiac Function and Disease

    DEFF Research Database (Denmark)

    Lauritzen, M H; Sogaard, L V; Madsen, P L

    2014-01-01

    signal from a biological molecule of interest by more than 10,000 times, making it possible to measure its cellular uptake and conversion in specific enzymatic pathways in real time. We review the role of hyperpolarized MR in identifying changes in cardiac metabolism in vivo, and present the extensive...... the technique into clinical practice. Hyperpolarized MR has the prospect of transforming diagnostic cardiology by offering new insights into cardiac disease and potentially even to contribute to personalized therapy based on a thorough understanding of the individual intracellular metabolism....

  10. Multi-Ton Argon and Xenon

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Ricardo; Balascuta, Septimiu; Alton, Drew; Aprile, Elena; Giboni, Karl-Ludwig; Haruyama, Tom; Lang, Rafael; Melgarejo, Antonio Jesus; Ni, Kaixuan; Plante, Guillaume; Choi, Bin [et al.

    2009-01-01

    There is a wide range of astronomical evidence that the visible stars and gas in all galaxies, including our own, are immersed in a much larger cloud of non-luminous matter, typically an order of magnitude greater in total mass. The existence of this ''dark matter'' is consistent with evidence from large-scale galaxy surveys and microwave background measurements, indicating that the majority of matter in the universe is non-baryonic. The nature of this non-baryonic component is still totally unknown, and the resolution of the ''dark matter puzzle'' is of fundamental importance to cosmology, astrophysics, and elementary particle physics. A leading explanation, motivated by supersymmetry theory, is the existence of as yet undiscovered Weakly Interacting Massive Particles (WIMPs), formed in the early universe and subsequently clustered in association with normal matter. WIMPs could, in principle, be detected in terrestrial experiments by their collisions with ordinary nuclei, giving observable low energy (< 100 keV) nuclear recoils. The predicted low collision rates require ultra-low background detectors with large (0.1-10 ton) target masses, located in deep underground sites to eliminate neutron background from cosmic ray muons. The establishment of the Deep Underground Science and Engineering Laboratory for large-scale experiments of this type would strengthen the current leadership of US researchers in this and other particle astrophysics areas. We propose to detect nuclear recoils by scintillation and ionization in ton-scale liquid noble gas targets, using techniques already proven in experiments at the 0.01-0.1 ton level. The experimental challenge is to identify these events in the presence of background events from gammas, neutrons, and alphas.

  11. Xenon in the treatment of panic disorder: an open label study

    National Research Council Canada - National Science Library

    Alexander Dobrovolsky; Thomas E Ichim; Daqing Ma; Santosh Kesari; Vladimir Bogin

    2017-01-01

    .... The established safety profile of subanesthetic concentrations of xenon gas, which is known to act as a glutamate subtype NMDA receptor antagonist, coupled with preclinical studies demonstrating...

  12. [Characteristics of perioperative period in Xenon-based combined general anaesthesia in neurosurgery].

    Science.gov (United States)

    Viatkin, A A; Petrosian, L G; Mizikov, V M; Vasil'ev, S A

    2013-01-01

    Neuroprotection could be the aim to use Xenon for general anesthesia. However the experience of Xenon anesthesia in neurosurgery is quite limited. The appraisal of Xenon based anesthesia was accomplished in 12 patients during various brain surgery. Xe in concentration 65% was used to maintenance of anesthesia, other medication was avoided. As a resuIt there were 8 cases of arterial hypertension and 2 cases of superficial hypnotic state. Excitation (n = 3), hyperdynamic reaction (n = 8), PONV (n = 8) were detected in early postoperative period. An analysis of this study suggests a conclusion that studied method of Xenon-based anesthesia is inexpedient for neurosurgery.

  13. Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations

    Science.gov (United States)

    Liu, Lu Tian; Xu, Yan; Tang, Pei

    2010-01-01

    Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662

  14. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    Science.gov (United States)

    2010-01-01

    Background The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using in vitro patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using in vivo patch-clamp method. Results In vitro, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. In vivo, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist. Conclusions Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn via a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon. PMID:20444263

  15. Diffusion NMR methods applied to xenon gas for materials study

    Science.gov (United States)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  16. Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study.

    Science.gov (United States)

    Dingley, John; Tooley, James; Liu, Xun; Scull-Brown, Emma; Elstad, Maja; Chakkarapani, Ela; Sabir, Hemmen; Thoresen, Marianne

    2014-05-01

    Therapeutic hypothermia has become standard of care in newborns with moderate and severe neonatal encephalopathy; however, additional interventions are needed. In experimental models, breathing xenon gas during cooling offers long-term additive neuroprotection. This is the first xenon feasibility study in cooled infants. Xenon is expensive, requiring a closed-circuit delivery system. Cooled newborns with neonatal encephalopathy were eligible for this single-arm, dose-escalation study if clinically stable, under 18 hours of age and requiring less than 35% oxygen. Xenon duration increased stepwise from 3 to 18 hours in 14 subjects; 1 received 25% xenon and 13 received 50%. Respiratory, cardiovascular, neurologic (ie, amplitude-integrated EEG, seizures), and inflammatory (C-reactive protein) effects were examined. The effects of starting or stopping xenon rapidly or slowly were studied. Three matched control subjects per xenon treated subject were selected from our cooling database. Follow-up was at 18 months using mental developmental and physical developmental indexes of the Bayley Scales of Infant Development II. No adverse respiratory or cardiovascular effects, including post-extubation stridor, were seen. Xenon increased sedation and suppressed seizures and background electroencephalographic activity. Seizures sometimes occurred during rapid weaning of xenon but not during slow weaning. C-reactive protein levels were similar between groups. Hourly xenon consumption was 0.52 L. Three died, and 7 of 11 survivors had mental and physical developmental index scores ≥70 at follow-up. Breathing 50% xenon for up to 18 hours with 72 hours of cooling was feasible, with no adverse effects seen with 18 months' follow-up. Copyright © 2014 by the American Academy of Pediatrics.

  17. Hyperpolarization-Activated Currents and Subthreshold Resonance in Granule Cells of the Olfactory Bulb

    NARCIS (Netherlands)

    Hu, Ruilong; Ferguson, Katie A; Whiteus, Christina B; Meijer, Dimphna H; Araneda, Ricardo C

    2016-01-01

    An important contribution to neural circuit oscillatory dynamics is the ongoing activation and inactivation of hyperpolarization-activated currents (Ih). Network synchrony dynamics play an important role in the initial processing of odor signals by the main olfactory bulb (MOB) and accessory

  18. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry

    CERN Document Server

    Reed, Galen D; Verkman, Alan S; Koelsch, Bertram L; Chaumeil, Myriam M; Lustig, Michael; Ronen, Sabrina M; Sands, Jeff M; Larson, Peder E Z; Wang, Zhen J; Larsen, Jan Henrik Ardenkjær; Vigneron, Daniel B

    2015-01-01

    \\textit{In vivo} spin spin relaxation time ($T_2$) heterogeneity of hyperpolarized \\textsuperscript{13}C urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized \\textsuperscript{13}C signal with a macromolecular relaxation agent revealed that a long-$T_2$ component of the \\textsuperscript{13}C urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the \\textsuperscript{13}C urea to be distinguished via multi-exponential analysis. The $T_2$ response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized \\textsuperscript{13}C urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-\\textsuperscript{13}C-cyclopropane-$^2\\textrm{H}_8$. Large $T_2$ increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis suggesting that $T_2$ relaxometry may be used to monitor the inner-medullary urea transporter (UT)-...

  19. A novel MR contrast agent for angiography and perfusion: Hyperpolarized water

    DEFF Research Database (Denmark)

    Lipsø, Hans Kasper Wigh

    , hyperpolarized water is applied for angiographic imaging and perfusion measurements in a pig model. Renal angiography of 0.55 mm in-plane isotropic resolution is demonstrated and perfusion measurements provides values comparable to conventional Gd-T1-DCE analysis. Finally, it is demonstrated that the method can...

  20. HP-Xe to go: Storage and Transportation of Hyperpolarized 129-Xe

    NARCIS (Netherlands)

    Repetto, M.; Zimmer, S.; Almendinger, F.; Blümler, P.; Doll, M.; Grasdijk, J.O.; Heil, W.; Jungmann, K.; Karpuk, S.; Krause, H.-J.; Offenhaeusser, A.; Schmidt, U.; Sobolev, Y.; Willmann, L.

    2016-01-01

    Recently the spin-lattice relaxation time T1 of hyperpolarized (HP)-129Xe was significantly improved by using uncoated and Rb-free storage vessels of GE180 glass. For these cells, a simple procedure was established to obtain reproducible wall relaxation times of about 18 h. Then the limiting

  1. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-¹³C]pyruvate

    DEFF Research Database (Denmark)

    Nelson, Sarah J; Kurhanewicz, John; Vigneron, Daniel B

    2013-01-01

    by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect ¹³C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being...

  2. Imaging cerebral 2-ketoisocaproate metabolism with hyperpolarized (13)C Magnetic Resonance Spectroscopic Imaging

    DEFF Research Database (Denmark)

    Butt, Sadia Asghar; Søgaard, Lise Vejby-Christensen; Magnusson, Peter O.

    2012-01-01

    The branched chain amino acid transaminase (BCAT) has an important role in nitrogen shuttling and glutamate metabolism in the brain. The purpose of this study was to describe the cerebral distribution and metabolism of hyperpolarized 2-keto[1-(13)C]isocaproate (KIC) in the normal rat using magnetic...

  3. Role of endothelium-derived hyperpolarization in the vasodilatation of rat intrarenal arteries

    DEFF Research Database (Denmark)

    Pinilla, Estéfano; Sánchez-Pina, Ana; Muñoz Picos, Mercedes

    2016-01-01

    Background and purpose: Endothelium-dependent vasodilation plays an important role in the regulation of vascular tone in different vascular beds. Besides the release of prostacyclin (PGI2) and nitric oxide (NO), the endothelium mediates vasodilation through endothelium-derived hyperpolarization (...

  4. Hyperpolarized 1-13C Pyruvate Imaging of Porcine Cardiac Metabolism shift by GIK Intervention

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Tougaard, Rasmus Stilling; Mikkelsen, Emmeli

    Cardiac metabolism has gained considerable attention worldwide lately, both as a diagnostic and prognostication tool, as well as a novel target for treatment. As human trials involving hyperpolarized MR in the heart are imminent, we employed a clinically relevant, large animal model, and sought...

  5. Characterization and flip angle calibration of 13C surface coils for hyperpolarization studies

    DEFF Research Database (Denmark)

    Hansen, Rie Beck; Gutte, Henrik; Larsen, Majbrit M E

    The aim of the present work is to address the challenge of optimal The aim of the present work is to address the challenge of optimal flflip angle calibration of ip angle calibration of C surface coils in C surface coils in hyperpolarization studies. To this end, we characterize the spatial pro h...

  6. In vivo lung morphometry with accelerated hyperpolarized (3) He diffusion MRI: a preliminary study.

    Science.gov (United States)

    Chang, Yulin V; Quirk, James D; Yablonskiy, Dmitriy A

    2015-04-01

    Parallel imaging can be used to reduce imaging time and to increase the spatial coverage in hyperpolarized gas magnetic resonance imaging of the lung. In this proof-of-concept study, we investigate the effects of parallel imaging on the morphometric measurement of lung microstructure using diffusion magnetic resonance imaging with hyperpolarized (3) He. Fully sampled and under-sampled multi-b diffusion data were acquired from human subjects using an 8-channel (3) He receive coil. A parallel imaging reconstruction technique (generalized autocalibrating partially parallel acquisitions [GRAPPA]) was used to reconstruct under-sampled k-space data. The morphometric results of the generalized autocalibrating partially parallel acquisitions-reconstructed data were compared with the results of fully sampled data for three types of subjects: healthy volunteers, mild, and moderate chronic obstructive pulmonary disease patients. Morphometric measurements varied only slightly at mild acceleration factors. The results were largely well preserved compared to fully sampled data for different lung conditions. Parallel imaging, given sufficient signal-to-noise ratio, provides a reliable means to accelerate hyperpolarized-gas magnetic resonance imaging with no significant difference in the measurement of lung morphometry from the fully sampled images. GRAPPA is a promising technique to significantly reduce imaging time and/or to improve the spatial coverage for the morphometric measurement with hyperpolarized gases. © 2014 Wiley Periodicals, Inc.

  7. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering.

    Science.gov (United States)

    Baxter, D; Chen, C J; Crisler, M; Cwiok, T; Dahl, C E; Grimsted, A; Gupta, J; Jin, M; Puig, R; Temples, D; Zhang, J

    2017-06-09

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19±6  keV (1σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3×10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_{3}I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  8. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering

    Science.gov (United States)

    Baxter, D.; Chen, C. J.; Crisler, M.; Cwiok, T.; Dahl, C. E.; Grimsted, A.; Gupta, J.; Jin, M.; Puig, R.; Temples, D.; Zhang, J.

    2017-06-01

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a Cf 252 neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19 ±6 keV (1 σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3 ×10-7 bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF3 I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  9. Fast Padé Transform Accelerated CSI for Hyperpolarized MRS

    DEFF Research Database (Denmark)

    Hansen, Esben Szocska Søvsø; Kim, Sun; Miller, Jack J

    2016-01-01

    The fast Padé transform (FPT) is a method of spectral analysis that can be used to reconstruct nuclear magnetic resonance spectra from truncated free induction decay signals with superior robustness and spectral resolution compared with conventional Fourier analysis. The aim of this study is to s...

  10. New insight into the assessment of asthma using xenon ventilation computed tomography.

    Science.gov (United States)

    Jung, Jae-Woo; Kwon, Jae-Woo; Kim, Tae-Wan; Lee, So-Hee; Kim, Kyung-Mook; Kang, Hye-Ryun; Park, Heung-Woo; Lee, Chang-Hyun; Goo, Jin-Mo; Min, Kyung-Up; Cho, Sang-Heon

    2013-08-01

    Image analyses include computed tomography (CT), magnetic resonance imaging, and xenon ventilation CT, which is new modality to evaluate pulmonary functional imaging. To examine the usefulness of dual-energy xenon ventilation CT in asthmatic patients. A total of 43 patients 18 years or older who were nonsmokers were included in the study. Xenon CT images in wash-in and wash-out phases were obtained at baseline and after inhalation of methacholine and salbutamol. The degrees of ventilation defects and xenon trappings were evaluated through visual analysis. Ventilation defects and xenon trapping were significantly increased and decreased after methacholine challenge and salbutamol inhalation, respectively (P Xenon trappings after salbutamol inhalation were negatively related to the scores of the asthma control test, wheezing, or night symptoms, with statistical significance (P inhalation in xenon CT (P xenon ventilation CT can be used as a new method to assess ventilation abnormalities in asthma, and these ventilation abnormalities can be used as novel parameters that reflect the status of asthma control and symptom severity. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats.

    Science.gov (United States)

    Zhao, Hailin; Luo, Xianghong; Zhou, Zhaowei; Liu, Juying; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2014-01-01

    Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1α individually. In the Fischer-to-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts.

  12. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    Science.gov (United States)

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.

  13. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET)

    DEFF Research Database (Denmark)

    Gutte Borgwardt, Henrik; Hansen, Adam E; Henriksen, Sarah T

    2015-01-01

    have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO2 ((13)C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization...... (DNP) and use of (13)C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of (13)C-pyruvate to (13)C-lactate. In this study, we combined it with (18)F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified...... increased (13)C-lactate production, which also corresponded to high (18)F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high (18)F...

  14. Model free approach to kinetic analysis of real-time hyperpolarized 13C magnetic resonance spectroscopy data.

    Directory of Open Access Journals (Sweden)

    Deborah K Hill

    Full Text Available Real-time detection of the rates of metabolic flux, or exchange rates of endogenous enzymatic reactions, is now feasible in biological systems using Dynamic Nuclear Polarization Magnetic Resonance. Derivation of reaction rate kinetics from this technique typically requires multi-compartmental modeling of dynamic data, and results are therefore model-dependent and prone to misinterpretation. We present a model-free formulism based on the ratio of total areas under the curve (AUC of the injected and product metabolite, for example pyruvate and lactate. A theoretical framework to support this novel analysis approach is described, and demonstrates that the AUC ratio is proportional to the forward rate constant k. We show that the model-free approach strongly correlates with k for whole cell in vitro experiments across a range of cancer cell lines, and detects response in cells treated with the pan-class I PI3K inhibitor GDC-0941 with comparable or greater sensitivity. The same result is seen in vivo with tumor xenograft-bearing mice, in control tumors and following drug treatment with dichloroacetate. An important finding is that the area under the curve is independent of both the input function and of any other metabolic pathways arising from the injected metabolite. This model-free approach provides a robust and clinically relevant alternative to kinetic model-based rate measurements in the clinical translation of hyperpolarized (13C metabolic imaging in humans, where measurement of the input function can be problematic.

  15. Xenon anesthesia reduces TNFα and IL10 in bariatric patients.

    Science.gov (United States)

    Abramo, Antonio; Di Salvo, Claudio; Baldi, Giacomo; Marini, Elena; Anselmino, Marco; Salvetti, Guido; Giunta, Francesco; Forfori, Francesco

    2012-02-01

    Anesthesia is able to modulate the balance between proinflammatory and anti-inflammatory cytokine production during surgery. The aim of this study is to assess the effect of three anesthesia approaches, total intravenous anesthesia (TIVA), inhalation anesthesia, and xenon anesthesia, on sieric levels of nitric oxide (NO), IL6, IL10, and TNFα in obese patients undergoing Roux-en-Y laparoscopic gastric bypass. Thirty adult morbidly obese patients (BMI > 35) scheduled for Roux-en-Y laparoscopic gastric bypass were randomly recruited and allocated to TIVA (N = 10), inhalation anesthesia (SEV, N = 10), and xenon anesthesia (XE, N = 10). Exclusion criteria were ASA IV, age 60 years, and Mallampati IV. Opioid dosage and ventilation parameters were standardized. Sieric levels of NO, IL6, IL10, and TNFα were assessed at T0 (before induction of anesthesia), T1 (end of surgery), and T2 (12 h after the end of surgery). We compared the relative cytokine level variations (delta) at T1 and T2 and the cytokine exposure levels calculated as the area under the curve (AUC) between T0 and T2 in the XE and non-XE (SEV + TIVA) groups. At T1, we found a significant ΔIL10 (reduction) and ΔTNFα (reduction) between XE and SEV (p Xenon anesthesia seems able to inhibit postoperative proinflammatory cytokine imbalance in morbidly obese patients undergoing Roux-en-Y laparoscopic gastric bypass; the reduced ΔTNFα at T1 and the reduced global exposition to TNFα in the XE group may explain the reduced ΔIL10 at T1 and T2.

  16. 129Xe chemical shift in human blood and pulmonary blood oxygenation measurement in humans using hyperpolarized 129Xe NMR

    OpenAIRE

    Norquay, G.; Leung, G; Stewart, N J; Wolber, J.; Wild, J.M.

    2016-01-01

    Purpose To evaluate the dependency of the 129Xe?red blood cell (RBC) chemical shift on blood oxygenation, and to use this relation for noninvasive measurement of pulmonary blood oxygenation in vivo with hyperpolarized 129Xe NMR. Methods Hyperpolarized 129Xe was equilibrated with blood samples of varying oxygenation in vitro, and NMR was performed at 1.5 T and 3 T. Dynamic in vivo NMR during breath hold apnea was performed at 3 T on two healthy volunteers following inhalation of hyperpolarized...

  17. An improved interatomic potential for xenon in UO2: a combined density functional theory/genetic algorithm approach.

    Science.gov (United States)

    Thompson, Alexander E; Meredig, Bryce; Wolverton, C

    2014-03-12

    We have created an improved xenon interatomic potential for use with existing UO2 potentials. This potential was fit to density functional theory calculations with the Hubbard U correction (DFT + U) using a genetic algorithm approach called iterative potential refinement (IPR). We examine the defect energetics of the IPR-fitted xenon interatomic potential as well as other, previously published xenon potentials. We compare these potentials to DFT + U derived energetics for a series of xenon defects in a variety of incorporation sites (large, intermediate, and small vacant sites). We find the existing xenon potentials overestimate the energy needed to add a xenon atom to a wide set of defect sites representing a range of incorporation sites, including failing to correctly rank the energetics of the small incorporation site defects (xenon in an interstitial and xenon in a uranium site neighboring uranium in an interstitial). These failures are due to problematic descriptions of Xe-O and/or Xe-U interactions of the previous xenon potentials. These failures are corrected by our newly created xenon potential: our IPR-generated potential gives good agreement with DFT + U calculations to which it was not fitted, such as xenon in an interstitial (small incorporation site) and xenon in a double Schottky defect cluster (large incorporation site). Finally, we note that IPR is very flexible and can be applied to a wide variety of potential forms and materials systems, including metals and EAM potentials.

  18. Radiant flash pyrolysis of biomass using a xenon flashtube

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, M.W.; Antal, M.J. Jr.

    1984-06-01

    Biomass materials, including lignin, redwood, corn cob, Calotropis Procera, Leucaena wood, Kraft paper, newsprint, cow manure, D-glucose, and D-cellobiose, were pyrolyzed in vacuum by the visible radiant flux emitted from a Xenon flashtube. The flux density exceeded 8 kW/cm/sup 2/ during the 1 ms flash. Sirup yields were low (avg 25%), while the gas yield was high (avg 32%). The gaseous products were composed primarily of CO and CO/sub 2/. The high relative yields of CO establish the existence of a high temperature fragmentation pathway active during the flash pyrolysis of all biomass materials. 39 references, 2 figures, 5 tables.

  19. Development of Liquid Xenon Imaging Gamma-Ray Spectrophotometers

    Science.gov (United States)

    1990-07-01

    quartz windows and are absorbed in a second stage detector - a photomultiplier tube (PMT) or a multiwire proportional counter ( MWPC ) filled with tetrakis...34. . " . ... ....... ~:":’--~~~.. .. .........iiiiiiiii~i ’’ 3 S0 Ed The lower quartz disk also forms the window for the MWPC below (Fig. 2). The MWPC is a 20 x 20 x 2.5cm aluminum...COO OM Cs-137 S(LFRE VACUU SP-20 TMAE IPC Figure 2. A scaled diagram of the prototype imaging liquid xenon counter - shown with a TMAE MWPC as the

  20. A hemispherical high-pressure xenon gamma radiation spectrometer

    CERN Document Server

    Kessick, R

    2002-01-01

    A prototype hemispherical high-pressure xenon gamma radiation spectrometer was designed, constructed and tested. The detector consists of a pair of concentric hemispherical electrodes contained inside a thin-walled stainless steel pressure dome. Detector performance parameters such as energy resolution, linearity and vibration sensitivity were determined and compared to previous cylindrical and planar designs. Without a Frisch grid, the hemispherical detector provides a total room temperature energy resolution of 6% at 662 keV and is relatively insensitive to acoustic interference.

  1. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    Science.gov (United States)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated

  2. The FOXFIRE liquid xenon detector research and development project

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, G., E-mail: giovanni.signorelli@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dussoni, S.; Baldini, A.; Cerri, C.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Papa, A. [Paul Scherrer Institute PSI, CH-5232 Villigen (Switzerland); Tenchini, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica dell' Università degli Studi di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2013-08-01

    The FOXFIRE project (Feasibility Of a Xenon detector with Frontend for Ionization Real-time Extraction) aims at studying and developing new techniques for the detection of rare processes in elementary particle physics by means of condensed noble gases detectors. Particles in noble liquids release energy in both scintillation light and electron–ion pair formation. The combined usage of this information is being exploited by many research groups. We are studying the extension of these techniques towards high-rate, high-energy (tens of MeV) environments with particular emphasis on real-time event reconstruction.

  3. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J. [Fermilab; Cease, H. [Fermilab; Jaskierny, W. F. [Fermilab; Markley, D. [Fermilab; Pahlka, R. B. [Fermilab; Balakishiyeva, D. [Florida U.; Saab, T. [Florida U.; Filipenko, M. [Erlangen - Nuremberg U., ECAP

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used a conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.

  4. Simultaneous Hyperpolarized 13C-Pyruvate MRI and 18F-FDG PET (HyperPET) in 10 Dogs with Cancer.

    Science.gov (United States)

    Gutte, Henrik; Hansen, Adam E; Larsen, Majbrit M E; Rahbek, Sofie; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Kristensen, Annemarie T; Højgaard, Liselotte; Kjær, Andreas

    2015-11-01

    With the introduction of combined PET/MR spectroscopic (MRS) imaging, it is now possible to directly and indirectly image the Warburg effect with hyperpolarized (13)C-pyruvate and (18)F-FDG PET imaging, respectively, via a technique we have named hyperPET. The main purpose of this present study was to establish a practical workflow for performing (18)F-FDG PET and hyperpolarized (13)C-pyruvate MRS imaging simultaneously for tumor tissue characterization and on a larger scale test its feasibility. In addition, we evaluated the correlation between (18)F-FDG uptake and (13)C-lactate production. Ten dogs with biopsy-verified spontaneous malignant tumors were included for imaging. All dogs underwent a protocol of simultaneous (18)F-FDG PET, anatomic MR, and hyperpolarized dynamic nuclear polarization with (13)C-pyruvate imaging. The data were acquired using a combined clinical PET/MR imaging scanner. We found that combined (18)F-FDG PET and (13)C-pyruvate MRS imaging was possible in a single session of approximately 2 h. A continuous workflow was obtained with the injection of (18)F-FDG when the dogs was placed in the PET/MR scanner. (13)C-MRS dynamic acquisition demonstrated in an axial slab increased (13)C-lactate production in 9 of 10 dogs. For the 9 dogs, the (13)C-lactate was detected after a mean of 25 s (range, 17-33 s), with a mean to peak of (13)C-lactate at 49 s (range, 40-62 s). (13)C-pyruvate could be detected on average after 13 s (range, 5-26 s) and peaked on average after 25 s (range, 13-42 s). We noticed concordance of (18)F-FDG uptake and production of (13)C-lactate in most, but not all, axial slices. In this study, we have shown in a series of dogs with cancer that hyperPET can easily be performed within 2 h. We showed mostly correspondence between (13)C-lactate production and (18)F-FDG uptake and expect the combined modalities to reveal additional metabolic information to improve prognostic value and improve response monitoring. © 2015 by the Society

  5. Nonlinear control for core power of pressurized water nuclear reactors using constant axial offset strategy

    Directory of Open Access Journals (Sweden)

    Gholam Reza Ansarifar

    2015-12-01

    Full Text Available One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC, which is a robust nonlinear controller, is presented. SMC is a means to control pressurized water nuclear reactor (PWR power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

  6. Hyperpolarized Renal Magnetic Resonance Imaging: Potential and Pitfalls

    Directory of Open Access Journals (Sweden)

    Christoffer eLaustsen

    2016-03-01

    Full Text Available The introduction of dissolution dynamic nuclear polarization (d-DNP technology has enabled a new paradigm for renal imaging investigations. It allows standard magnetic resonance imaging complementary renal metabolic and functional fingerprints within seconds without the use of ionizing radiation. Increasing evidence supports its utility in preclinical research in which the real-time interrogation of metabolic turnover can aid the physiological and pathophysiological metabolic and functional effects in ex vivo and in vivo models. The method has already been translated to humans, although the clinical value of this technology is unknown. In this paper, I review the potential benefits and pitfalls associated with dissolution dynamic nuclear polarization in preclinical research and its translation to renal patients.

  7. Xenon improves neurologic outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury.

    Science.gov (United States)

    Campos-Pires, Rita; Armstrong, Scott P; Sebastiani, Anne; Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert

    2015-01-01

    To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury and to determine whether application of xenon has a clinically relevant therapeutic time window. Controlled animal study. University research laboratory. Male C57BL/6N mice (n = 196). Seventy-five percent xenon, 50% xenon, or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Outcome following trauma was measured using 1) functional neurologic outcome score, 2) histological measurement of contusion volume, and 3) analysis of locomotor function and gait. Our study shows that xenon treatment improves outcome following traumatic brain injury. Neurologic outcome scores were significantly (p < 0.05) better in xenon-treated groups in the early phase (24 hr) and up to 4 days after injury. Contusion volume was significantly (p < 0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p < 0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 or 3 hours after injury. Neurologic outcome was significantly (p < 0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p < 0.05) were observed in the xenon-treated group, 1 month after trauma. These results show for the first time that xenon improves neurologic outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in patients with brain trauma.

  8. First Axion Results from the XENON100 Experiment

    CERN Document Server

    Aprile, E.; Alfonsi, M.; Arisaka, K.; Arneodo, F.; Auger, M.; Balan, C.; Barrow, P.; Baudis, L.; Bauermeister, B.; Behrens, A.; Beltrame, P.; Bokeloh, K.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Cardoso, J.M.R.; Colijn, A.P.; Contreras, H.; Cussonneau, J.P.; Decowski, M.P.; Duchovni, E.; Fattori, S.; Ferella, A.D.; Fulgione, W.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L.W.; Grignon, C.; Gross, E.; Hampel, W.; Itay, R.; Kaether, F.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R.F.; Calloch, M. Le; Lellouch, D.; Levy, C.; Lindemann, S.; Lindner, M.; Lopes, J.A.M.; Lung, K.; Lyashenko, A.; Macmullin, S.; Marrodan Undagoitia, T.; Masbou, J.; Massoli, F.V.; Mayani Paras, D.; Melgarejo Fernandez, A. J.; Meng, Y.; Messina, M.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Oberlack, U.; Orrigo, S.E.A.; Pantic, E.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; dos Santos, J. M. F.; Sartorelli, G.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Simgen, H.; Teymourian, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Vitells, O.; Wang, H.; Weber, M.; Weinheimer, C.

    2014-01-01

    We present the first results of searches for axions and axion-like-particles with the XENON100 experiment. The axion-electron coupling constant, $g_{Ae}$, has been tested by exploiting the axio-electric effect in liquid xenon. A profile likelihood analysis of 224.6 live days $\\times$ 34 kg exposure has shown no evidence for a signal. By rejecting $g_{Ae}$, larger than $7.7 \\times 10^{-12}$ (90% CL) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 eV/c$^2$ and 80 eV/c$^2$, respectively. For axion-like-particles, under the assumption that they constitute the whole abundance of dark matter in our galaxy, we constrain $g_{Ae}$, to be lower than $1 \\times 10^{-12}$ (90% CL) for masses between 5 and 10 keV/c$^2$.

  9. Vacuum ultraviolet radiometry of xenon positive column discharges

    Science.gov (United States)

    Doughty, D. A.; Fobare, D. F.

    1995-10-01

    In order to judge the potential fluorescent lamp applications of various low-pressure positive column discharges it is necessary to measure the absolute power emitted in the ultraviolet region of the spectrum. For rare-gas discharges the principle emission occurs in the vacuum ultraviolet so that it is difficult to measure the radiant emittance (power per unit area) of the resonance radiation by standard methods. Two independent techniques are discussed for measuring the radiant emittance of positive column discharges in the vacuum ultraviolet. These techniques are used to study xenon positive column discharges at the resonance wavelength of 147 nm. The first method relies on the measurement of the resonance level density by absorption techniques. The effective decay rate of the resonance level is then determined by the simulation of resonance radiation transport. These two quantities are combined to yield the radiant emittance at 147 nm without implementing vacuum ultraviolet techniques. The second method uses a measurement of the resonance radiation normal to the positive column axis made with a calibrated vacuum ultraviolet detector. The angular distribution of the resonance radiation leaving the tube is determined by the simulation of resonance radiation transport. The detector measurement places the angular distribution of the radiance on an absolute scale, which can then be integrated to yield the radiant emittance. These two techniques are compared for pure xenon discharges at various pressures and currents.

  10. Xenon plasma sustained by pulse-periodic laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu., E-mail: yakimov@lantanlaser.ru [Russian Academy of Sciences, A. Ishlinsky Institute for Problems in Mechanics (Russian Federation)

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  11. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    Science.gov (United States)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  12. Formulation and utilization of choline based samples for dissolution dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Bowen, Sean; Ardenkjær-Larsen, Jan Henrik

    2013-01-01

    Hyperpolarization by the dissolution dynamic nuclear polarization (DNP) technique permits the generation of high spin polarization of solution state. However, sample formulation for dissolution-DNP is often difficult, as concentration and viscosity must be optimized to yield a dissolved sample...

  13. Double-hadron leptoproduction in the nuclear medium.

    Science.gov (United States)

    Airapetian, A; Akopov, N; Akopov, Z; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetissian, E; Bailey, P; Belostotski, S; Bianchi, N; Blok, H P; Böttcher, H; Borissov, A; Borysenko, A; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Gharibyan, V; Giordano, F; Grebeniouk, O; Gregor, I M; Griffioen, K; Guler, H; Hadjidakis, C; Hartig, M; Hasch, D; Hasegawa, T; Hesselink, W H; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kisselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lu, J; Lu, S; Ma, B-Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Mikloukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Y; Negodaev, M; Nowak, W-D; Ohsuga, H; Osborne, A; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Roelon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shearer, C; Shibata, T-A; Shutov, V; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Streit, J; Tait, P; Tanaka, H; Taroian, S; Tchuiko, B; Terkulov, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; van der Nat, P B; van der Steenhoven, G; van Haarlem, Y; Veretennikov, D; Vikhrov, V; Vogel, C; Wang, S; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P

    2006-04-28

    The first measurements of double-hadron production in deep-inelastic scattering within the nuclear medium were made with the HERMES spectrometer at DESY HERA using a 27.6 GeV positron beam. By comparing data for deuterium, nitrogen, krypton, and xenon nuclei, the influence of the nuclear medium on the ratio of double-hadron to single-hadron yields was investigated. Nuclear effects on the additional hadron are clearly observed, but with little or no difference among nitrogen, krypton, or xenon, and with smaller magnitude than effects seen on previously measured single-hadron multiplicities. The data are compared with models based on partonic energy loss or prehadronic scattering and with a model based on a purely absorptive treatment of the final-state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter.

  14. On the impact of a doubled sampling frequency on the detection capability and accuracy of a xenon station at the example of the German IMS RN station Schauinsland

    Science.gov (United States)

    Becker, Andreas; Schlosser, Clemens; Auer, Matthias; Gohla, Herbert; Kumberg, Timo; Wernsperger, Bernd

    2010-05-01

    In order to detect any kind of nuclear explosion world-wide the Provisional Technical Secretariat to the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is building up a verification regime that performs global monitoring for typical signals expected from such an event. Backbone of this regime is the 321 facilities International Monitoring System (IMS) comprising also 80 stations to monitor for airborne radionuclides known to be fission or activation products of a nuclear explosion. Whereas particulate radionuclides are very likely fully contained in the cavity of an underground nuclear test explosion, radioactive noble gases bear a good chance to be still vented or seeped through the lithosphere into the atmosphere. As the corresponding relevant isotopes Xe-131m, Xe-133, Xe-133m, and Xe-135, which have the highest fission yields among the noble gases, are also not subdued to wet deposition in the atmosphere, they were regarded as important enough to add a xenon detection capability to 50% of the aforementioned 80 radionuclide stations. This, however, requires measurement methods being completely different to the one utilized for particulate monitoring. Despite tremendous progress that has been made with regard to the detection capability of radio-xenon systems in the past 10 years, gaining one order of magnitude in this metric, certain challenges still occur with regard to noble gas monitoring: • Only four xenon isotopes instead of more than 90 different particulate radio-isotopes are characteristic for the detection of a nuclear explosion with the IMS. • These four nuclides feature very different - abundances (background concentrations) that are strongly related to their different half-life times and the site. • There are known but CTBT irrelevant sources of radioxenon surrounding noble-gas stations at partly short distances (at least much shorter than the average station to station distance of the noble gas network). • Mountainous IMS stations and their

  15. Experimental Investigation from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster

    Science.gov (United States)

    Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis

    2004-01-01

    A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  16. Experimental Investigations from the Operation of a 2 Kw Brayton Power Conversion Unit and a Xenon Ion Thruster

    Science.gov (United States)

    Mason, Lee; Birchenough, Arthur; Pinero, Luis

    2004-01-01

    A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  17. A Detailed Look at the First Results from the Large Underground Xenon (LUX) Dark Matter Experiment

    CERN Document Server

    Szydagis, M; Araujo, H M; Bai, X; Bailey, A J; Balajthy, J; Bernard, E; Bernstein, A; Bradley, A; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chapman, J J; Chiller, A A; Chiller, C; Coffey, T; Currie, A; de Viveiros, L; Dobi, A; Dobson, J; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Flores, C; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C; Hertel, S A; Horn, M; Huang, D Q; Ihm, M; Jacobsen, R G; Kazkaz, K; Knoche, R; Larsen, N A; Lee, C; Lindote, A; Lopes, M I; Malling, D C; Mannino, R; McKinsey, D N; Mei, D -M; Mock, J; Moongweluwan, M; Morad, J; Murphy, A St J; Nehrkorn, C; Nelson, H; Neves, F; Ott, R A; Pangilinan, M; Parker, P D; Pease, E K; Pech, K; Phelps, P; Reichhart, L; Shutt, T; Silva, C; Solovov, V N; Sorensen, P; O'Sullivan, K; Taylor, D; Tennyson, B; Tiedt, D R; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, J T; Witherell, M S; Wolfs, F L H; Woods, M; Zhang, C

    2014-01-01

    LUX, the world's largest dual-phase xenon time-projection chamber, with a fiducial target mass of 118 kg and 10,091 kg-days of exposure thus far, is currently the most sensitive direct dark matter search experiment. The initial null-result limit on the spin-independent WIMP-nucleon scattering cross-section was released in October 2013, with a primary scintillation threshold of 2 phe, roughly 3 keVnr for LUX. The detector has been deployed at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, and is the first experiment to achieve a limit on the WIMP cross-section lower than $10^{-45}$ cm$^{2}$. Here we present a more in-depth discussion of the novel energy scale employed to better understand the nuclear recoil light and charge yields, and of the calibration sources, including the new internal tritium source. We found the LUX data to be in conflict with low-mass WIMP signal interpretations of other results.

  18. Local structure of xenon adsorbed in the nanospaces of zeolites as studied by high-pressure 129Xe NMR.

    Science.gov (United States)

    Omi, Hironori; Ueda, Takahiro; Kato, Noriko; Miyakubo, Keisuke; Eguchi, Taro

    2006-09-07

    Pressure (0-10 MPa) and local density dependence of 129Xe NMR chemical shift of xenon in various microporous materials was investigated using an in situ high-pressure probe. The density dependence of the chemical shift was analyzed using virial expansion of the chemical shift by xenon density. Results indicate that the second virial coefficient depends on the pore size and shape, and that the void space affects xenon-xenon interaction in both microporous and mesoporous materials. Furthermore, to interpret the magnitude of the virial coefficient in terms of the local structure of the adsorbed xenon, we analyzed the local structure of adsorbed xenon in molecular sieve 5A using Xe(n) clusters, thereby allowing description of the density dependence of the chemical shift. We also demonstrated the cluster model's validity by applying it to molecular sieves 13X and ZSM-5. The latter showed that the adsorbed xenon exists as a xenon monomer up to the filling of about 0.6 in micropores. Larger xenon clusters up to n = 4 have been grown with increasing filling of xenon. According to analyses using the Xe(n) cluster model, the second virial coefficient is related closely with the xenon cluster size, which contributes greatly to the chemical shift in the low loading region.

  19. Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water-Xe system.

    Science.gov (United States)

    Artyukhov, Vasilii I; Pulver, Alexander Yu; Peregudov, Alex; Artyuhov, Igor

    2014-07-21

    Motivated by recent experiments showing the promise of noble gases as cryoprotectants, we perform molecular dynamics modeling of phase transitions in water with xenon under cooling. We follow the structure and dynamics of xenon water solution as a function of temperature. Homogeneous nucleation of clathrate hydrate phase is observed and characterized. As the temperature is further reduced we observe hints of dissociation of clathrate due to stronger hydrophobic hydration, pointing towards a possible instability of clathrate at cryogenic temperatures and conversion to an amorphous phase comprised of "xenon + hydration shell" Xe·(H2O)21.5 clusters. Simulations of ice-xenon solution interface in equilibrium and during ice growth reveal the effects of xenon on the ice-liquid interface, where adsorbed xenon causes roughening of ice surface but does not preferentially form clathrate. These results provide evidence against the ice-blocker mechanism of xenon cryoprotection.

  20. The breakthrough curve combination for xenon sampling dynamics in a carbon molecular sieve column.

    Science.gov (United States)

    Shu-jiang, Liu; Zhan-ying, Chen; Yin-zhong, Chang; Shi-lian, Wang; Qi, Li; Yuan-qing, Fan; Huai-mao, Jia; Xin-jun, Zhang; Yun-gang, Zhao

    2015-01-21

    In the research of xenon sampling and xenon measurements, the xenon breakthrough curve plays a significant role in the xenon concentrating dynamics. In order to improve the theoretical comprehension of the xenon concentrating procedure from the atmosphere, the method of the breakthrough curve combination for sampling techniques should be developed and investigated under pulse injection conditions. In this paper, we describe a xenon breakthrough curve in a carbon molecular sieve column, the combination curve method for five conditions is shown and debated in detail; the fitting curves and the prediction equations are derived in theory and verified by the designed experiments. As a consequence, the curves of the derived equations are in good agreement with the fitting curves by tested. The retention times of the xenon in the column are 61.2, 42.2 and 23.5 at the flow rate of 1200, 1600 and 2000 mL min(-1), respectively, but the breakthrough times are 51.4, 38.6 and 35.1 min.

  1. Removing krypton from xenon by cryogenic distillation to the ppq level

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Goetzke, L.W.; Greene, Z.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Orrigo, S.E.A.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wei, Y.; Wulf, J. [Physik-Institut, University of Zurich, Zurich (Switzerland); Bauermeister, B. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindemann, S.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Gallo Rosso, A.; Molinario, A. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Duchovni, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. v. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Calven, J.; Conrad, J.; Ferella, A.D.; Pelssers, B. [Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Cervantes, M.; Lang, R.F.; Masson, D.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Le Calloch, M.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Fei, J.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Huhmann, C.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Lin, Q. [Laboratori Nazionali del Gran Sasso, Assergi (Italy); Meng, Y.; Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Miguez, B.; Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Lavina, L.S. [LPNHE, Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, Paris (France); Tunnell, C. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Cristescu, I. [Karlsruhe Institute of Technology, Tritium Laboratory Karlsruhe, Eggenstein-Leopoldshafen (Germany); Collaboration: XENON Collaboration

    2017-05-15

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β-emitter {sup 85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon {sup nat}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq = 10{sup -15} mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 . 10{sup 5} with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of {sup nat}Kr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN. (orig.)

  2. Xenon neurotoxicity in rat hippocampal slice cultures is similar to isoflurane and sevoflurane.

    Science.gov (United States)

    Brosnan, Heather; Bickler, Philip E

    2013-08-01

    Anesthetic neurotoxicity in the developing brain of rodents and primates has raised concern. Xenon may be a nonneurotoxic alternative to halogenated anesthetics, but its toxicity has only been studied at low concentrations, where neuroprotective effects predominate in animal models. An equipotent comparison of xenon and halogenated anesthetics with respect to neurotoxicity in developing neurons has not been made. Organotypic hippocampal cultures from 7-day-old rats were exposed to 0.75, 1, and 2 minimum alveolar concentrations (MAC) partial pressures (60% xenon at 1.2, 2.67, and 3.67 atm; isoflurane at 1.4, 1.9, and 3.8%; and sevoflurane at 3.4 and 6.8%) for 6 h, at atmospheric pressure or in a pressure chamber. Cell death was assessed 24 h later with fluorojade and fluorescent dye exclusion techniques. Xenon caused death of hippocampal neurons in CA1, CA3, and dentate regions after 1 and 2 MAC exposures, but not at 0.75 MAC. At 1 MAC, xenon increased cell death 40% above baseline (P xenon, isoflurane, and sevoflurane. Xenon causes neuronal cell death in an in vitro model of the developing rodent brain at 1 MAC, as does isoflurane and sevoflurane at similarly potent concentrations. Preconditioning with a subtoxic dose of isoflurane eliminates this toxicity.

  3. [Effects of xenon preconditioning against ischemia/reperfusion injury and oxidative stress in immature heart].

    Science.gov (United States)

    Li, Qian; Lian, Chun-Wei; Fang, Li-Qun; Liu, Bin; Yang, Bo

    2014-09-01

    To investigate whether xenon preconditioning (PC) could protect immature myocardium against ischemia-reperfusion (I/R) injury in a dose-dependent manner and clarify the role of xenon PC on oxidative stress. Forty-eight isolated perfused immature rabbit hearts were randomly divided into four groups (n = 12): The sham group had the hearts perfused continuously for 300 min. In I/R group, the hearts were subjected to 60 min perfusion followed by 60 min ischemia and 180 min reperfusion. In 1 minimum alveolar concentration (MAC) and 0.5 MAC xenon PC groups, the hearts were preconditioned with 1 MAC or 0.5 MAC xenon respectively, following 60 min ischemia and 180 min reperfusion. The cardiac function, myocardial infarct size, mitochondrial structure, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in each group were determined after reperfusion. Compared with I/R group, both 1 MAC and 0. 5 MAC xenon preconditioning significantly improved cardiac function (P xenon group (P > 0.05). Xenon preconditioning at 0. 5 and 1 MAC produce similar cardioprotective effects against I/R injury in isolated perfused immature heart.

  4. Xenon treatment attenuates early renal allograft injury associated with prolonged hypothermic storage in rats.

    Science.gov (United States)

    Zhao, Hailin; Yoshida, Akira; Xiao, Wei; Ologunde, Rele; O'Dea, Kieran P; Takata, Masao; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2013-10-01

    Prolonged hypothermic storage elicits severe ischemia-reperfusion injury (IRI) to renal grafts, contributing to delayed graft function (DGF) and episodes of acute immune rejection and shortened graft survival. Organoprotective strategies are therefore needed for improving long-term transplant outcome. The aim of this study is to investigate the renoprotective effect of xenon on early allograft injury associated with prolonged hypothermic storage. Xenon exposure enhanced the expression of heat-shock protein 70 (HSP-70) and heme oxygenase 1 (HO-1) and promoted cell survival after hypothermia-hypoxia insult in human proximal tubular (HK-2) cells, which was abolished by HSP-70 or HO-1 siRNA. In the brown Norway to Lewis rat renal transplantation, xenon administered to donor or recipient decreased the renal tubular cell death, inflammation, and MHC II expression, while delayed graft function (DGF) was therefore reduced. Pathological changes associated with acute rejection, including T-cell, macrophage, and fibroblast infiltration, were also decreased with xenon treatment. Donors or recipients treated with xenon in combination with cyclosporin A had prolonged renal allograft survival. Xenon protects allografts against delayed graft function, attenuates acute immune rejection, and enhances graft survival after prolonged hypothermic storage. Furthermore, xenon works additively with cyclosporin A to preserve post-transplant renal function.

  5. Simulation and comparison of coils for Hyperpolarized 13C MRS cardiac metabolism studies in pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Hartwig, V.; Frijia, Francesca

    2015-01-01

    Hyperpolarized 13C Magnetic Resonance represents a promising modality for in vivo spectroscopy since it provides a unique opportunity for the non-invasive assessment of regional cardiac metabolism. Although it represents a powerful tool for the study of the heart physiology in pig models, by perm...... coil configurations, constituted by various arrangement of circular, butterfly and birdcage coils designed for hyperpolarized studies of pig heart with a clinical 3T scanner. The coils characterization is performed by developing a Signal-to-Noise Ratio (SNR) model, previously validated...... with experimental results, for coils performance evaluation in terms of coil resistance, sampleinduced resistance and magnetic field pattern. In particular, coil resistances were calculated from Ohm’s law, while magnetic field patterns and sample induced resistances were calculated using a numerical Finite...

  6. Magnetic resonance butterfly coils: Design and application for hyperpolarized 13C studies

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Attanasio, Simona

    2013-01-01

    Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables cardiac metabolism assessment and provides a powerful tool for heart physiology studies, although the low molar concentration of derivate metabolites gives rise to technological limitations in terms of data quality. The design...... of dedicated coils capable of providing large field of view with high Signal-to-Noise Ratio (SNR) data is of fundamental importance. This work presents magnetostatic simulations and tests of two butterfly coils with different geometries, both designed for 13C hyperpolarized studies of pig heart with a clinical...... 3T scanner. In particular, the paper provides details of the design, modeling, construction and application of the butterfly style coils. While both coils could be successfully employed in single configuration (linear mode), the second prototype was used to design a quadrature surface coil...

  7. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoqi Zhao

    Full Text Available Abstract Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the body. Evidence exhibits that HCN channels play critical roles in the generation and conduction of the electrical impulse and the physiopathological process of some cardiac diseases. They may constitute promising drug targets in the treatment of these cardiac diseases. Pharmacological treatment targeting HCN channels is of benefit to these cardiac conditions.

  8. Design of a quadrature surface coil for hyperpolarized 13C MRS cardiac metabolism studies in pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Frijia, F.; Hartwig, V.

    2013-01-01

    This work describes the design of a quadrature surface coil constituted by a circular loop and a butterfly coil, employed in transmit/receive (TX/RX) mode for hyperpolarized 13C studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model......, the performance of the quadrature coil was compared with the single TX/RX circular and TX/RX butterfly coil, in order to verify the advantage of the proposed configuration over the single coils throughout the volume of interest for cardiac imaging in pig. Finally, the quadrature surface coil was tested...... by acquiring metabolic maps with hyperpolarized [1-13C]pyruvate injected i.v. in a pig. © 2013 Wiley Periodicals, Inc....

  9. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  10. Xenon-Enhanced Dual-Energy CT Imaging in Combined Pulmonary Fibrosis and Emphysema.

    Science.gov (United States)

    Sugino, Keishi; Kobayashi, Masahiro; Nakamura, Yasuhiko; Gocho, Kyoko; Ishida, Fumiaki; Isobe, Kazutoshi; Shiraga, Nobuyuki; Homma, Sakae

    2017-01-01

    Little has been reported on the feasibility of xenon-enhanced dual-energy computed tomography (Xe-DECT) in the visual and quantitative analysis of combined pulmonary fibrosis and emphysema (CPFE). We compared CPFE with idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), as well as correlation with parameters of pulmonary function tests (PFTs). Studied in 3 groups were 25 patients with CPFE, 25 with IPF without emphysema (IPF alone), 30 with COPD. Xe-DECT of the patients' entire thorax was taken from apex to base after a patient's single deep inspiration of 35% stable nonradioactive xenon. The differences in several parameters of PFTs and percentage of areas enhanced by xenon between 3 groups were compared and analyzed retrospectively. The percentage of areas enhanced by xenon in both lungs were calculated as CPFE/IPF alone/COPD = 72.2 ± 15.1% / 82.2 ± 14.7% /45.2 ± 23.2%, respectively. In the entire patients, the percentage of areas enhanced by xenon showed significantly a positive correlation with FEV1/FVC (R = 0.558, P xenon in patients with CPFE showed significantly a negative correlation with RV/TLC (R = -0.529, P = 0.007). Xenon enhancement of CPFE indicated 3 different patterns such as upper predominant, diffuse, and multifocal defect. The percentage of areas enhanced by xenon in upper predominant defect pattern was significantly higher than that in diffuse defect and multifocal defect pattern among these 3 different patterns in CPFE. The percentage of areas enhanced by xenon demonstrated strong correlations with obstructive ventilation impairment. Therefore, we conclude that Xe-DECT may be useful for distinguishing emphysema lesion from fibrotic lesion in CPFE.

  11. Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange

    Science.gov (United States)

    2016-09-12

    long T1 relaxation times exceeding 1 min.8,9 Recent advances in catalysis have also enabled PHIP hyperpolarization of 13C contrast agents in...list of substrate molecules18,19 amenable to SABRE and recent demonstration of heterogeneous SABRE (HET-SABRE, where the solubilized substrate...perspective of practical consideration, deactivation of this catalyst occurs when the substrate (Py or others) is either absent or present in

  12. A catalyzing phantom for reproducible dynamic conversion of hyperpolarized [1-¹³C]-pyruvate.

    Directory of Open Access Journals (Sweden)

    Christopher M Walker

    Full Text Available In vivo real time spectroscopic imaging of hyperpolarized ¹³C labeled metabolites shows substantial promise for the assessment of physiological processes that were previously inaccessible. However, reliable and reproducible methods of measurement are necessary to maximize the effectiveness of imaging biomarkers that may one day guide personalized care for diseases such as cancer. Animal models of human disease serve as poor reference standards due to the complexity, heterogeneity, and transient nature of advancing disease. In this study, we describe the reproducible conversion of hyperpolarized [1-¹³C]-pyruvate to [1-¹³C]-lactate using a novel synthetic enzyme phantom system. The rate of reaction can be controlled and tuned to mimic normal or pathologic conditions of varying degree. Variations observed in the use of this phantom compare favorably against within-group variations observed in recent animal studies. This novel phantom system provides crucial capabilities as a reference standard for the optimization, comparison, and certification of quantitative imaging strategies for hyperpolarized tracers.

  13. A catalyzing phantom for reproducible dynamic conversion of hyperpolarized [1-¹³C]-pyruvate.

    Science.gov (United States)

    Walker, Christopher M; Lee, Jaehyuk; Ramirez, Marc S; Schellingerhout, Dawid; Millward, Steven; Bankson, James A

    2013-01-01

    In vivo real time spectroscopic imaging of hyperpolarized ¹³C labeled metabolites shows substantial promise for the assessment of physiological processes that were previously inaccessible. However, reliable and reproducible methods of measurement are necessary to maximize the effectiveness of imaging biomarkers that may one day guide personalized care for diseases such as cancer. Animal models of human disease serve as poor reference standards due to the complexity, heterogeneity, and transient nature of advancing disease. In this study, we describe the reproducible conversion of hyperpolarized [1-¹³C]-pyruvate to [1-¹³C]-lactate using a novel synthetic enzyme phantom system. The rate of reaction can be controlled and tuned to mimic normal or pathologic conditions of varying degree. Variations observed in the use of this phantom compare favorably against within-group variations observed in recent animal studies. This novel phantom system provides crucial capabilities as a reference standard for the optimization, comparison, and certification of quantitative imaging strategies for hyperpolarized tracers.

  14. A Bacterial Toxin with Analgesic Properties: Hyperpolarization of DRG Neurons by Mycolactone

    Directory of Open Access Journals (Sweden)

    Ok-Ryul Song

    2017-07-01

    Full Text Available Mycolactone, a polyketide molecule produced by Mycobacterium ulcerans, is the etiological agent of Buruli ulcer. This lipid toxin is endowed with pleiotropic effects, presents cytotoxic effects at high doses, and notably plays a pivotal role in host response upon colonization by the bacillus. Most remarkably, mycolactone displays intriguing analgesic capabilities: the toxin suppresses or alleviates the pain of the skin lesions it inflicts. We demonstrated that the analgesic capability of mycolactone was not attributable to nerve damage, but instead resulted from the triggering of a cellular pathway targeting AT2 receptors (angiotensin II type 2 receptors; AT2R, and leading to potassium-dependent hyperpolarization. This demonstration paves the way to new nature-inspired analgesic protocols. In this direction, we assess here the hyperpolarizing properties of mycolactone on nociceptive neurons. We developed a dedicated medium-throughput assay based on membrane potential changes, and visualized by confocal microscopy of bis-oxonol-loaded Dorsal Root Ganglion (DRG neurons. We demonstrate that mycolactone at non-cytotoxic doses triggers the hyperpolarization of DRG neurons through AT2R, with this action being not affected by known ligands of AT2R. This result points towards novel AT2R-dependent signaling pathways in DRG neurons underlying the analgesic effect of mycolactone, with the perspective for the development of new types of nature-inspired analgesics.

  15. Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach

    Energy Technology Data Exchange (ETDEWEB)

    Zaidabadinejad, Majid; Ansarifar, Gholam Reza [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2017-11-15

    In nuclear reactor imbalance of axial power distribution induces xenon oscillations. These fluctuations must be maintained bounded within allowable limits. Otherwise, the nuclear power plant could become unstable. Therefore, bounded these oscillations is considered to be a restriction for the load following operation. Also, in order to design the nuclear reactor control systems, poisons concentrations, especially xenon must be accessible. But, physical measurement of these parameters is impossible. In this paper, for the first time, in order to estimate the axial xenon oscillations and ensures these oscillations are kept bounded within allowable limits during load-following operation, a robust observer based nonlinear control based on multipoint kinetics reactor model for pressurized-water nuclear reactors is presented. The reactor core is simulated based on the multi-point nuclear reactor model (neutronic and thermal-hydraulic). Simulation results are presented to demonstrate the effectiveness of the proposed observer based controller for the load-following operation.

  16. Online {sup 222}Rn removal by cryogenic distillation in the XENON100 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Orrigo, S.E.A.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wei, Y.; Wulf, J. [University of Zurich, Physik-Institut, Zurich (Switzerland); Bauermeister, B. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Stockholm University, AlbaNova, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Gallo Rosso, A.; Molinario, A. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Duchovni, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. v. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Calven, J.; Conrad, J.; Ferella, A.D.; Pelssers, B. [Stockholm University, AlbaNova, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Cervantes, M.; Lang, R.F.; Masson, D.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Le Calloch, M.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Fei, J.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Lindemann, S. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Meng, Y.; Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Miguez, B.; Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Lavina, L.S. [LPNHE, Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, Paris (France); Tunnell, C. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Cristescu, I. [Karlsruhe Institute of Technology, Tritium Laboratory Karlsruhe, Eggenstein-Leopoldshafen (Germany); Collaboration: XENON Collaboration

    2017-06-15

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant {sup 222}Rn background originating from radon emanation. After inserting an auxiliary {sup 222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the {sup 222}Rn activity concentration inside the XENON100 detector. (orig.)

  17. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kriz, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5 day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.

  18. Reflectance dependence of polytetrafluoroethylene on thickness for xenon scintillation light

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, J.; Neff, A.; Arthurs, M.; Batista, E.; Morton, D.; Okunawo, M.; Pushkin, K.; Sander, A. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Stephenson, S. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); University of California Davis, Department of Physics, One Shields Ave., Davis, CA 95616 (United States); Wang, Y. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Lorenzon, W., E-mail: lorenzon@umich.edu [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2017-06-01

    Many rare event searches including dark matter direct detection and neutrinoless double beta decay experiments take advantage of the high VUV reflective surfaces made from polytetrafluoroethylene (PTFE) reflector materials to achieve high light collection efficiency in their detectors. As the detectors have grown in size over the past decade, there has also been an increased need for ever thinner detector walls without significant loss in reflectance to reduce dead volumes around active noble liquids, outgassing, and potential backgrounds. We report on the experimental results to measure the dependence of the reflectance on thickness of two PTFE samples at wavelengths near 178 nm. No change in reflectance was observed as the wall thickness of a cylindrically shaped PTFE vessel immersed in liquid xenon was varied between 1 mm to 9.5 mm.

  19. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Ongari, Daniele [Laboratory of Molecular Simulation, Institut des Sciences et Ingeénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l' Industrie 17 1951 Sion Valais Switzerland; Xu, Wenqian [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Mohamed, Mona H. [Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Haranczyk, Maciej [IMDEA Materials Institute, c/Eric Kandel 2 28906 Getafe, Madrid Spain; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity, Xe/N2 and Xe/O2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.

  20. A liquid xenon detector for PET applications: simulated performance

    Science.gov (United States)

    Miceli, A.; Andreyev, A.; Bryman, D.; Glister, J.; Kurchaninov, L.; Muennich, A.; Retiere, F.; Sossi, V.

    2012-03-01

    We are investigating a liquid xenon (LXe) gamma ray detector-based PET system for small animals. The proposed system consists of 12 modules arranged into a ring. Each detector module is a trapezoidal LXe time projection chamber (TPC) viewed by two arrays of large area avalanche photodiodes (LAAPD). We developed a Geant4-based Monte Carlo code to model the LXe PET system and study its imaging performance. Events depositing energy in multiple locations were reconstructed with a Compton reconstruction algorithm. The simulated data were stored in a list-mode file and reconstructed with the maximum likelihood expectation maximization iterative algorithm (MLEM). Simulation results indicate an absolute sensitivity at the center of the field of view (FOV) of 12.6% and a 3D position resolution <= 0.8 mm (FWHM) throughout the FOV. A simulated image of a micro-Derenzo phantom shows that rods of 0.6 mm diameter are visible.

  1. Topological signature in the NEXT high pressure xenon TPC

    Science.gov (United States)

    Ferrario, Paola; NEXT Collaboration

    2017-09-01

    The NEXT experiment aims to observe the neutrinoless double beta decay of 136Xe in a high-pressure xenon gas TPC using electroluminescence to amplify the signal from ionization. One of the main advantages of this technology is the possibility to use the topology of events with energies close to Qββ as an extra tool to reject background. In these proceedings we show with data from prototypes that an extra background rejection factor of 24.3 ± 1.4 (stat.)% can be achieved, while maintaining an efficiency of 66.7 ± 1.% for signal events. The performance expected in NEW, the next stage of the experiment, is to improve to 12.9% ± 0.6% background acceptance for 66.9% ± 0.6% signal efficiency.

  2. Electron motion enhanced high harmonic generation in xenon clusters

    CERN Document Server

    Li, Na; Bai, Ya; Peng, Peng; Li, Ruxin; Xu, Zhizhan

    2016-01-01

    Atomic clusters presents an isolated system that models the bulk materials whose mechanism of HHG remains uncertain, and a promising medium to produce HHG beyond the limited conversion efficiency for gaseous atoms. Here we reveal that the oscillation of collective electron motion within clusters develops after the interaction of intense laser fields, and it significantly enhances the harmonic dipole and increases the quantum phase of the harmonics. Experimentally, the phase matching conditions of HHG from nanometer xenon clusters and atoms are distinguished, which confirms the enhanced internal field that was proposed theoretically a decade ago. The separation of HHG from atoms and clusters allows the determination of the amplitude of the HHG for clusters to be 5 orders higher, corresponding to 4 times higher conversion efficiency for atomic response. The finding provides an insight on the HHG mechanism of bulk materials and a means by which an efficient coherent X-ray source can be developed.

  3. Design of a hyperpolarized (15)N NMR probe that induces a large chemical-shift change upon binding of calcium ions.

    Science.gov (United States)

    Hata, Ryunosuke; Nonaka, Hiroshi; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke

    2015-08-07

    Ca(2+) is a fundamental metal ion for physiological functioning. Therefore, molecular probes for Ca(2+) analysis are required. Recently, a hyperpolarized NMR probe has emerged as a promising tool. Here, we report a new design of a hyperpolarized NMR probe for Ca(2+), which showed a large chemical shift change upon binding to Ca(2+) and was applied for Ca(2+) sensing in a hyperpolarized state.

  4. Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling

    OpenAIRE

    Meutter, Pieter; Camps, Johan; Delcloo, Andy; Termonia, Piet

    2017-01-01

    On 6 January 2016, the Democratic People?s Republic of Korea announced to have conducted its fourth nuclear test. Analysis of the corresponding seismic waves from the Punggye-ri nuclear test site showed indeed that an underground man-made explosion took place, although the nuclear origin of the explosion needs confirmation. Seven weeks after the announced nuclear test, radioactive xenon was observed in Japan by a noble gas measurement station of the International Monitoring System. In this pa...

  5. Xenon improves neurological outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury

    Science.gov (United States)

    Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert

    2015-01-01

    Objectives To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury, and to determine whether application of xenon has a clinically relevant therapeutic time window. Design Controlled animal study. Setting University research laboratory. Subjects Male C57BL/6N mice (n=196) Interventions 75% xenon, 50% xenon or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Measurements & Main Results Outcome following trauma was measured using: 1) functional neurological outcome score, 2) histological measurement of contusion volume, 3) analysis of locomotor function and gait. Our study shows that xenon-treatment improves outcome following traumatic brain injury. Neurological outcome scores were significantly (pxenon-treated groups in the early phase (24 hours) and up to 4 days after injury. Contusion volume was significantly (pxenon-treated groups. Xenon treatment significantly (pxenon was given 15 minutes after injury or when treatment was delayed 1 hour or 3 hours after injury. Neurological outcome was significantly (pxenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (pxenon-treated group, 1 month after trauma. Conclusions These results show for the first time that xenon improves neurological outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in brain trauma patients. PMID:25188549

  6. The effect of xenon on isoflurane protection against experimental myocardial infarction.

    NARCIS (Netherlands)

    Baumert, J.H.; Hein, M.; Gerets, C.; Baltus, T.; Hecker, K.E.; Rossaint, R.

    2009-01-01

    OBJECTIVES: To investigate if the protective effects of xenon and isoflurane against myocardial ischemia-reperfusion damage would be additive. DESIGN: A prospective, randomized laboratory investigation. SETTING: An animal laboratory of a university hospital. PARTICIPANTS: Thirty-six pigs (female

  7. Optimization of Dual-Energy Xenon-CT for Quantitative Assessment of Regional Pulmonary Ventilation

    Science.gov (United States)

    Fuld, Matthew K.; Halaweish, Ahmed; Newell, John D.; Krauss, Bernhard; Hoffman, Eric A.

    2013-01-01

    Objective Dual-energy X-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study we seek to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. Materials and Methods The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon-oxygen gas mixtures (0, 20, 25, 33, 50, 66, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved three-material decomposition calibration parameters. Additionally, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine in order to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Results Attenuation curves for xenon were obtained from the syringe test objects and were used to develop improved three-material decomposition parameters (HU enhancement per percent xenon: Within the chest phantom: 2.25 at 80kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; In open air: 2.5 at 80kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally non-dependent portion of the airway tree test-object, while not affecting quantitation of xenon in the three-material decomposition DECT. 40%Xe

  8. Comparison of recovery parameters for xenon versus other inhalation anesthetics: systematic review and meta-analysis.

    Science.gov (United States)

    Hou, Bingzong; Li, Fujing; Ou, Shanshan; Yang, Lukun; Zhou, Shaopeng

    2016-03-01

    To summarize and evaluate the available data describing the recovery parameters of xenon anesthesia. Systematic review and meta-analysis. Anesthesia for elective surgeries. Systematic review of randomized controlled trials (RCTs) from databases including Medline (1964-2013), the Cochrane Central Register of Controlled Trials (CENTRAL, 1990-2012), and Google Scholar (1966-2013). Inhalation of xenon or other anesthetics was administered in elective surgery. Recovery parameters (time to recovery, alertness/sedation scale scores at "eye opening," bispectral index at "reaction on demand," time to extubation, and time to orientation). Eleven RCTs (N = 661 patients) met the inclusion criteria. Recovery from xenon anesthesia was significantly faster in terms of the time to eye opening (mean difference [MD], -4.18 minutes; 95% confidence interval [CI], -5.03 to -3.32 minutes; P xenon anesthesia is faster than other inhalation anesthesia. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    CERN Document Server

    Troyer, G L

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse r...

  10. Optimization of dual-energy xenon-computed tomography for quantitative assessment of regional pulmonary ventilation.

    Science.gov (United States)

    Fuld, Matthew K; Halaweish, Ahmed F; Newell, John D; Krauss, Bernhard; Hoffman, Eric A

    2013-09-01

    Dual-energy x-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study, we sought to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon/oxygen gas mixtures (0%, 20%, 25%, 33%, 50%, 66%, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved 3-material decomposition calibration parameters. In addition, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Attenuation curves for xenon were obtained from the syringe test-objects and were used to develop improved 3-material decomposition parameters (Hounsfield unit enhancement per percentage xenon: within the chest phantom, 2.25 at 80 kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; in open air, 2.5 at 80 kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally nondependent portion of the airway tree test-object, while not affecting the quantitation of xenon in the 3-material decomposition DECT. The mixture 40% Xe/40% He/20% O2

  11. A technique for administering xenon gas anesthesia during surgical procedures in mice.

    Science.gov (United States)

    Ruder, Arne Mathias; Schmidt, Michaela; Ludiro, Alessia; Riva, Marco A; Gass, Peter

    2014-11-01

    Carrying out invasive procedures in animals requires the administration of anesthesia. Xenon gas offers advantages as an anesthetic agent compared with other agents, such as its protection of the brain and heart from hypoxia-induced damage. The high cost of xenon gas has limited its use as an anesthetic in animal experiments, however. The authors designed and constructed simple boxes for the induction and maintenance of xenon gas and isoflurane anesthesia in small rodents in order to minimize the amount of xenon gas that is wasted. While using their anesthesia delivery system to anesthetize pregnant mice undergoing caesarean sections, they measured the respiratory rates of the anesthetized mice, the survival of the pups and the percentages of oxygen and carbon dioxide within the system to confirm the system's safety.

  12. Determination of the average ionization and thermodynamic regimes of xenon plasmas with an application to the characterization of blast waves launched in xenon clusters

    Science.gov (United States)

    Rodriguez, R.; Gil, J. M.; Florido, R.; Rubiano, J. G.; Mendoza, M. A.; Martel, P.; Minguez, E.; Symes, D. R.; Hohenberger, M.; Smith, R. A.

    2011-06-01

    Radiative shock waves play a pivotal role in the transport energy into the stellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible laboratory conditions and their study has been highlighted as an area requiring further experimental investigations. Low density material with high atomic mass is suitable to achieve radiative regime, and, therefore, low density xenon gas is commonly used for the medium in which the radiative shock propagates. In this work the average ionization and the thermodynamic regimes of xenon plasmas are determined as functions of the matter density and temperature in a wide range of plasma conditions. The results obtained will be applied to characterize blast waves launched in xenon clusters.

  13. A measurement of the relativistic rise in xenon-filled ionisation chambers for cosmic ray iron

    Science.gov (United States)

    Gregory, J. C.; Parnell, T. A.

    1980-01-01

    The relativistic rise of ionization in a pair of xenon-filled pulse ion chambers was measured for primary iron nuclei during a recent balloon flight. Energy calibration over the range 21.5-60 GeV/n was made with a Freon-12 gas Cerenkov detector. This allowed a comparison with recent calculations of the relativistic rise in xenon counters and an estimate of the ion chamber resolution above 21.5 GeV/n to be made.

  14. Effect of xenon on excitatory and inhibitory transmission in rat spinal ventral horn neurons.

    Science.gov (United States)

    Yamamoto, Tomohiro; Honda, Hiroyuki; Baba, Hiroshi; Kohno, Tatsuro

    2012-05-01

    The minimum alveolar concentration is determined in the spinal cord rather than in the brain. Xenon inhibits glutamatergic excitatory synaptic transmission in the dorsal horn neurons. However, its actions in the ventral horn neurons have not been investigated. The effects of 50 or 75% xenon on excitatory and inhibitory synaptic transmission were examined in the spinal lamina IX neurons of neonatal rats by using a whole cell patch clamp technique. Fifty percent xenon inhibited the α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid-induced currents (amplitudes = 72 ± 9% and integrated area = 73 ± 13% of the control values), and α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid receptor-mediated electrically evoked excitatory postsynaptic currents (amplitudes = 69 ± 13% of the control values). Seventy-five percent xenon similarly inhibited α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid-induced currents. However, xenon had no effect on the N-methyl-D-aspartate-induced currents or N-methyl-D-aspartate receptor-mediated electrically evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There were no discernible effects on the currents induced by γ-aminobutyric acid or glycine or on miniature inhibitory postsynaptic currents. Xenon inhibits α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid receptor-mediated glutamatergic excitatory transmission in the spinal lamina IX neurons via a postsynaptic mechanism. In contrast, there are no substantial effects on N-methyl-D-aspartate receptor-mediated or inhibitory synaptic transmission. The suppressive effects on excitatory synaptic transmission in the ventral horn neurons partly account for the mechanism behind xenon's ability to produce immobility in response to noxious stimuli and to determine the minimum alveolar concentration.

  15. Post-Test Inspection of Nasa's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics

    Science.gov (United States)

    Soulas, George C.; Shastry, Rohit

    2016-01-01

    A Long Duration Test (LDT) was initiated in June 2005 as a part of NASAs Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. This presentation will present the post-test inspection results to date for the thrusters ion optics.

  16. Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia.

    Science.gov (United States)

    Faulkner, Stuart; Bainbridge, Alan; Kato, Takenori; Chandrasekaran, Manigandan; Kapetanakis, Andrew B; Hristova, Mariya; Liu, Mengyan; Evans, Samantha; De Vita, Enrico; Kelen, Dorottya; Sanders, Robert D; Edwards, A David; Maze, Mervyn; Cady, Ernest B; Raivich, Gennadij; Robertson, Nicola J

    2011-07-01

    Additional treatments for therapeutic hypothermia are required to maximize neuroprotection for perinatal asphyxial encephalopathy. We assessed neuroprotective effects of combining inhaled xenon with therapeutic hypothermia after transient cerebral hypoxia-ischemia in a piglet model of perinatal asphyxia using magnetic resonance spectroscopy (MRS) biomarkers supported by immunohistochemistry. Thirty-six newborn piglets were randomized (all groups n = 9), with intervention from 2 to 26 hours, to: (1) normothermia; (2) normothermia + 24 hours 50% inhaled xenon; (3) 24 hours hypothermia (33.5°C); or (4) 24 hours hypothermia (33.5°C) + 24 hours 50% inhaled xenon. Serial MRS was acquired before, during, and up to 48 hours after hypoxia-ischemia. Mean arterial blood pressure was lower in all treatment groups compared with normothermia (p 40mmHg); the combined therapy group required more fluid boluses (p xenon-augmented hypothermia reduced the temporal regression slope magnitudes for phosphorus-MRS inorganic phosphate/exchangeable phosphate pool (EPP) and phosphocreatine/EPP (both p xenon-augmented hypothermia reduced the slope (p Xenon-augmented hypothermia also reduced transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)(+) nuclei and caspase 3 immunoreactive cells in parasagittal cortex and putamen and increased microglial ramification in midtemporal cortex compared with the no treatment group (p xenon-augmented hypothermia reduced cerebral MRS abnormalities and cell death markers in some brain regions. Compared with hypothermia, xenon-augmented hypothermia did not reach statistical significance for any measure. The safety and possible improved efficacy support phase II trials. Copyright © 2011 American Neurological Association.

  17. Recovery index, attentiveness and state of memory after xenon or isoflurane anaesthesia: a randomized controlled trial

    OpenAIRE

    Langer Sebastian; Schäfer Claudia; Schultz Kati; Jakubetz Jens; Stuttmann Ralph; Ullmann Utz; Hilbert Peter

    2010-01-01

    Abstract Background Performance of patients immediately after anaesthesia is an area of special interest and so a clinical trial was conducted to compare Xenon with Isoflurane anaesthesia. In order to assess the early cognitive recovery the syndrome short test (SST) according to Erzigkeit (Geromed GmbH) was applied. Methods ASA I and II patients undergoing long and short surgical interventions were randomised to receive either general anaesthesia with Xenon or Isoflurane. The primary endpoint...

  18. Xenon ventilation computed tomography and the management of asthma in the elderly.

    Science.gov (United States)

    Park, Heung-Woo; Jung, Jae-Woo; Kim, Kyung-Mook; Kim, Tae-Wan; Lee, So-Hee; Lee, Chang Hyun; Goo, Jin Mo; Min, Kyung-Up; Cho, Sang-Heon

    2014-04-01

    Xenon ventilation computed tomography (CT) has shown potential in assessing the regional ventilation status in subjects with asthma. The purpose of this study was to evaluate the usefulness of xenon ventilation CT in the management of asthma in the elderly. Treatment-naïve asthmatics aged 65 years or older were recruited. Before initiation of medication, spirometry with bronchodilator (BD) reversibility, questionnaires to assess the severity of symptoms including a visual analogue scale (VAS), tests to evaluate cognitive function and mood, and xenon ventilation CT were performed. Xenon gas trapping (XT) on xenon ventilation CT represents an area where inhaled xenon gas was not expired and was trapped. Symptoms and lung functions were measured again after the 12-week treatment. A total of 30 elderly asthmatics were enrolled. The severity of dyspnoea measured by the VAS showed a significant correlation with the total number of areas of XT on the xenon ventilation CT taken in the pre-BD wash-out phase (r = -0.723, P inhalation, and differences in the total number of areas of XT (between the pre- and post-BD wash-out phases) at baseline showed significant correlations with the per cent increases in forced expiratory volume in 1 s after subsequent anti-asthma treatment (r = -0.775, P Xenon ventilation CT may be an objective and promising tool in the measurement of dyspnoea and prediction of the treatment response in elderly asthmatics. © 2014 The Authors. Respirology © 2014 Asian Pacific Society of Respirology.

  19. Xenon as a Component of Anesthetic Maintenance for Early Activation of Patients after Myocardial Revascularization

    OpenAIRE

    Ye. V. Dzybinskaya; O. V. Stepanova; I. A. Kozlov

    2009-01-01

    Objective: to make a complex analysis of the efficacy of xenon as the major agent in maintaining anesthesia during early activation of patients operated on under extracorporeal circulation for coronary heart disease. Subjects and methods. Forty-two patients aged 59±3 years were examined. A total of 3±0.2 coronary arteries were shunted. General anesthesia was induced and maintained by propofol and fentanyl under extracorporeal circulation. Anesthesia was maintained by xenon inhalation in the p...

  20. Xenon neuroprotection in experimental stroke: interactions with hypothermia and intracerebral hemorrhage.

    Science.gov (United States)

    Sheng, Siyuan P; Lei, Beilei; James, Michael L; Lascola, Christopher D; Venkatraman, Talaignair N; Jung, Jin Yong; Maze, Mervyn; Franks, Nicholas P; Pearlstein, Robert D; Sheng, Huaxin; Warner, David S

    2012-12-01

    Xenon has been proven to be neuroprotective in experimental brain injury. The authors hypothesized that xenon would improve outcome from focal cerebral ischemia with a delayed treatment onset and prolonged recovery interval. Rats were subjected to 70 min temporary focal ischemia. Ninety minutes later, rats were treated with 0, 15, 30, or 45% Xe for 20 h or 0 or 30% Xe for 8, 20, or 44 h. Outcome was measured after 7 days. In another experiment, after ischemia, rats were maintained at 37.5° or 36.0°C for 20 h with or without 30% Xe. Outcome was assessed 28 days later. Finally, mice were subjected to intracerebral hemorrhage with or without 30% Xe for 20 h. Brain water content, hematoma volume, rotarod function, and microglial activation were measured. Cerebral infarct sizes (mean±SD) for 0, 15, 30, and 45% Xe were 212±27, 176±55, 160±32, and 198±54 mm, respectively (P=0.023). Neurologic scores (median±interquartile range) followed a similar pattern (P=0.002). Infarct size did not vary with treatment duration, but neurologic score improved (P=0.002) at all xenon exposure durations (8, 20, and 44 h). Postischemic treatment with either 30% Xe or subtherapeutic hypothermia (36°C) had no effect on 28-day outcome. Combination of these interventions provided long-term benefit. Xenon improved intracerebral hemorrhage outcome measures. Xenon improved focal ischemic outcome at 7, but not 28 days postischemia. Xenon combined with subtherapeutic hypothermia produced sustained recovery benefit. Xenon improved intracerebral hemorrhage outcome. Xenon may have potential for clinical stroke therapy under carefully defined conditions.

  1. Xenon pretreatment may prevent early memory decline after isoflurane anesthesia and surgery in mice.

    Directory of Open Access Journals (Sweden)

    Marcela P Vizcaychipi

    Full Text Available Postoperative cognitive decline (POCD is a common complication following surgery, but its aetiology remains unclear. We hypothesized that xenon pretreatment prevents POCD by suppressing the systemic inflammatory response or through an associated protective signaling pathway involving heat shock protein 72 (Hsp72 and PI3-kinase. Twenty-four hours after establishing long-term memory using fear conditioning training, C57BL/6 adult male mice (n = 12/group received one of the following treatments: 1 no treatment group (control; 2 1.8% isoflurane anesthesia; 3 70% xenon anesthesia; 4 1.8% isoflurane anesthesia with surgery of the right hind leg tibia that was pinned and fractured; or 5 pretreatment with 70% xenon for 20 minutes followed immediately by 1.8% isoflurane anesthesia with the surgery described above. Assessments of hippocampal-dependent memory were performed on days 1 and 7 after treatment. Hsp72 and PI3-kinase in hippocampus, and plasma IL-1β, were measured using western blotting and ELISA respectively, from different cohorts on day 1 after surgery. Isoflurane induced memory deficit after surgery was attenuated by xenon pretreatment. Xenon pretreatment prevented the memory deficit typically seen on day 1 (P = 0.04 but not on day 7 (P = 0.69 after surgery under isoflurane anesthesia, when compared with animals that underwent surgery without pretreatment. Xenon pretreatment modulated the expression of Hsp72 (P = 0.054 but had no significant effect on PI3-kinase (P = 0.54, when compared to control. Xenon pretreatment also reduced the plasma level increase of IL-1β induced by surgery (P = 0.028. Our data indicated that surgery and/or Isoflurane induced memory deficit was attenuated by xenon pretreatment. This was associated with a reduction in the plasma level of IL-1β and an upregulation of Hsp72 in the hippocampus.

  2. Comparison of Medium Power Hall Effect Thruster Ion Acceleration for Krypton and Xenon Propellants

    Science.gov (United States)

    2016-09-14

    that of the most common liquid monopropellant, hydrazine, which as a specific gravity of approximately 1. While xenon remains an ideal propellant for...changes in propellant as well as for validation of numerical models simulat- ing these thrusters and fundamentally understanding that impact. Laser...Krypton and Xenon Propellants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) William A. Hargus, Jr.; Gregory M. Azarnia; Michael R

  3. Recovery index, attentiveness and state of memory after xenon or isoflurane anaesthesia: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Langer Sebastian

    2010-05-01

    Full Text Available Abstract Background Performance of patients immediately after anaesthesia is an area of special interest and so a clinical trial was conducted to compare Xenon with Isoflurane anaesthesia. In order to assess the early cognitive recovery the syndrome short test (SST according to Erzigkeit (Geromed GmbH was applied. Methods ASA I and II patients undergoing long and short surgical interventions were randomised to receive either general anaesthesia with Xenon or Isoflurane. The primary endpoint was the validated SST which covering memory disturbances and attentiveness. The test was used on the day prior to intervention, one and three hours post extubation. The secondary endpoint was the recovery index (RI measured after the end of the inhalation of Xenon or Isoflurane. In addition the Aldrete score was evaluated up to 180 min. On the first post-operative day the patients rated the quality of the anaesthetic using a scoring system from 1-6. Results The demographics of the groups were similar. The sum score of the SST delivered a clear trend one hour post extubation and a statistically significant superiority for Xenon three hours post extubation (p Conclusions The results show that recovery from anaesthesia and the early return of post-operative cognitive functions are significantly better after Xenon anaesthesia compared to Isoflurane. The results of the RI for Xenon are similar with the previously published results. Trial Registration The trial was registered with the number ISRCTN01110844 http://www.controlled-trials.com/isrctn/pf/01110844.

  4. Xenon-inhalation computed tomography for noninvasive quantitative measurement of tissue blood flow in pancreatic tumor.

    Science.gov (United States)

    Kubota, Masaru; Murakami, Takamichi; Nagano, Hiroaki; Eguchi, Hidetoshi; Marubashi, Shigeru; Kobayashi, Shogo; Wada, Hiroshi; Tanemura, Masahiro; Dono, Keizo; Nakamori, Shoji; Sakon, Masato; Monden, Morito; Mori, Masaki; Doki, Yuichiro

    2012-03-01

    The purpose of this prospective study was to demonstrate the ability to measure pancreatic tumor tissue blood flow (TBF) with a noninvasive method using xenon inhalation computed tomography (xenon-CT) and to correlate TBF with histological features, particularly microvascular density (MVD). TBFs of pancreatic tumors in 14 consecutive patients were measured by means of xenon-CT at diagnosis and following therapy. Serial abdominal CT scans were obtained before and after inhalation of nonradioactive xenon gas. TBF was calculated using the Fick principle. Furthermore, intratumoral microvessels were stained with anti-CD34 monoclonal antibodies before being quantified by light microscopy (×200). We evaluated MVD based on CD34 expression and correlated it with TBF. The quantitative TBF of pancreatic tumors measured by xenon CT ranged from 22.3 to 111.4 ml/min/100 g (mean ± SD, 59.6 ± 43.9 ml/min/100 g). High correlation (r = 0.885, P Xenon-CT is feasible in patients with pancreatic tumors and is able to accurately estimate MVD noninvasively.

  5. Xenon treatment protects against cold ischemia associated delayed graft function and prolongs graft survival in rats.

    Science.gov (United States)

    Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D

    2013-08-01

    Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia-hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  6. Radioxenon Production and Transport from an Underground Nuclear Detonation to Ground Surface

    Science.gov (United States)

    Sun, Yunwei; Carrigan, Charles R.; Hao, Yue

    2015-02-01

    Radioxenon isotopes are considered as possible indicators for detecting and discriminating underground nuclear explosions. To monitor and sample the release of radioxenon isotopes, both independent and chain-reaction yields need to be considered together with multiphase transport in geological systems from the detonation point to the ground surface. For the sake of simplicity, modeling of radioxenon isotopic radioactivities has typically been focused either on chain reactions in a batch reactor without considering multiphase transport or on radionuclide transport with simplified reactions. Although numerical methods are available for integrating coupled differential equations of complex decay networks, the stiffness of ordinary differential equations due to greatly differing decay rates may require substantial additional effort to obtain solutions for the fully coupled system. For this reason, closed-form solutions for sequential reactions and numerical solutions for multiparent converging and multidaughter branching reactions were previously developed and used to simulate xenon isotopic radioactivities in the batch reactor mode. In this paper, we develop a fully coupled numerical model, which involves tracking 24 components (i.e., 22 radionuclide components plus air and water) in two phases to enhance model predictability of simultaneously simulating xenon isotopic transport and fully coupled chain reactions. To validate the numerical model and verify the corresponding computer code, we derived closed-form solutions for first-order xenon reactions in a batch reactor mode and for single-gas phase transport coupled with the xenon reactions in a one-dimensional column. Finally, cylindrical 3-D simulations of two-phase flow within a dual permeability fracture-matrix medium, simulating the geohydrologic regime of an underground nuclear explosion, indicate the existence of both a strong temporal and spatial dependence of xenon isotopic ratios sampled at the surface. In

  7. Xenon depresses aEEG background voltage activity whilst maintaining cardiovascular stability in sedated healthy newborn pigs

    OpenAIRE

    Thoresen, Marianne; Wood, Thomas Ragnar; Gill, Hannah; Hemmen, Sabir; Liu, Xun; Dingley, John

    2016-01-01

    Background Changes in electroencephalography (EEG) voltage range are used to monitor the depth of anaesthesia, as well as predict outcome after hypoxia-ischaemia in neonates. Xenon is being investigated as a potential neuroprotectant after hypoxic-ischaemic brain injury, but the effect of Xenon on EEG parameters in children or neonates is not known. This study aimed to examine the effect of 50% inhaled Xenon on background amplitude-integrated EEG (aEEG) activity in sedated healthy newborn pig...

  8. Xenon as a Component of Anesthetic Maintenance for Early Activation of Patients after Myocardial Revascularization

    Directory of Open Access Journals (Sweden)

    Ye. V. Dzybinskaya

    2009-01-01

    Full Text Available Objective: to make a complex analysis of the efficacy of xenon as the major agent in maintaining anesthesia during early activation of patients operated on under extracorporeal circulation for coronary heart disease. Subjects and methods. Forty-two patients aged 59±3 years were examined. A total of 3±0.2 coronary arteries were shunted. General anesthesia was induced and maintained by propofol and fentanyl under extracorporeal circulation. Anesthesia was maintained by xenon inhalation in the preperfusion and postperfusion periods. General anesthesia was combined with high (Th3—Th4 epidural anesthesia in 10 cases. Results. During xenon inhalation, the central hemodynamic parameters were maximally steady-state both before and after extracorporeal circulation. The coronary perfusion conditions estimated from the coronary perfusion gradients were stable. The study of the conditions for coronary perfusion and the values of myocardial demand showed the persistence of their balance (r=0.55—0.83; p<0.05. With the use of epidural anesthesia as a component of maintenance, there was a two-fold increase (p<0.05 in the use of sympathomimetic agents. Lower Pa02 after initiation of xenon inhalation and, accordingly, decreased Fi02 were not associated with worse Pa02/Fi02 and increased intrapulmonary blood shunting; there were no changes in blood oxygen-transport function. Emergence from anesthesia occurred 9±1.2 min after the termination of xenon delivery and failed to be accelerated when epidural anesthesia was applied. The latter could reduce the inhaled concentration of xenon from 59.2±0.5 to 51.5±0.5% (p<0.05 and the dosage of fentanyl from 2.9±0.15 to 2.1±0.26 ^g/kg/hr xenon as a basic anesthetic has prospects during early activation after myocardial revascularization under extracorporeal circulation. The advantage of xenon is the absence of negative effects on central hemodynamics and the presence of conditions for coronary

  9. Ovariectomy increases the participation of hyperpolarizing mechanisms in the relaxation of rat aorta.

    Directory of Open Access Journals (Sweden)

    Ana Sagredo

    Full Text Available This study examines the downstream NO release pathway and the contribution of different vasodilator mediators in the acetylcholine-induced response in rat aorta 5-months after the loss of ovarian function. Aortic segments from ovariectomized and control female Sprague-Dawley rats were used to measure: the levels of superoxide anion, the superoxide dismutases (SODs activity, the cGMP formation, the cGMP-dependent protein kinase (PKG activity and the involvement of NO, cGMP, hydrogen peroxide and hyperpolarizing mechanisms in the ACh-induced relaxation. The results showed that ovariectomy did not alter ACh-induced relaxation; incubation with L-NAME, a NO synthase inhibitor, decreased the ACh-induced response to a lesser extent in aorta from ovariectomized than from control rats, while ODQ, a guanylate cyclase inhibitor, decreased that response to a similar extent; the blockade of hyperpolarizing mechanisms, by precontracting arteries with KCl, decreased the ACh-induced response to a greater extent in aortas from ovariectomized than those from control rats; catalase, that decomposes hydrogen peroxide, decreased the ACh-induced response only in aorta from ovariectomized rats. In addition, ovariectomy increased superoxide anion levels and SODs activity, decreased cGMP formation and increased PKG activity. Despite the increased superoxide anion and decreased cGMP in aorta from ovariectomized rats, ACh-induced relaxation is maintained by the existence of hyperpolarizing mechanisms in which hydrogen peroxide participates. The greater contribution of hydrogen peroxide in ACh-induced relaxation is due to increased SOD activity, in an attempt to compensate for increased superoxide anion formation. Increased PKG activity could represent a redundant mechanism to ensure vasodilator function in the aorta of ovariectomized rats.

  10. Monitoring chemotherapeutic response by hyperpolarized 13C-fumarate MRS and diffusion MRI.

    Science.gov (United States)

    Mignion, Lionel; Dutta, Prasanta; Martinez, Gary V; Foroutan, Parastou; Gillies, Robert J; Jordan, Bénédicte F

    2014-02-01

    Targeted chemotherapeutic agents often do not result in tumor shrinkage, so new biomarkers that correlate with clinical efficacy are needed. In this study, we investigated noninvasive imaging protocols to monitor responses to sorafenib, a multikinase inhibitor approved for treatment of renal cell and hepatocellular carcinoma. Healthy cells are impermeable to fumarate, so conversion of this metabolite to malate as detected by (13)C-magnetic resonance spectroscopy (MRS) has been suggested as one marker for cell death and treatment response in tumors. Diffusion MRI also has been suggested as a measure of therapy-induced cytotoxic edema because viable cells act as a diffusion barrier in tissue. For these reasons, we assessed sorafenib responses using hyperpolarized (13)C-fumarate, diffusion-weighted MRI (DW-MRI) in a xenograft model of human breast cancer in which daily administration of sorafenib was sufficient to stabilize tumor growth. We detected signals from fumarate and malate following intravenous administration of hyperpolarized fumarate with a progressive increase in the malate-to-fumarate (MA/FA) ratio at days 2 to 5 after sorafenib infusion. The apparent diffusion coefficient (ADC) measured by DW-MRI increased in the treated group consistent with cytotoxic edema. However, the MA/FA ratio was a more sensitive marker of therapeutic response than ADC, with 2.8-fold versus 1.3-fold changes, respectively, by day 5 of drug treatment. Histologic analyses confirmed cell death in the sorafenib-treated cohort. Notably, (13)C-pyruvate-to-lactate conversion was not affected by sorafenib in the breast cancer model examined. Our results illustrate how combining hyperpolarized substrates with DW-MRI can allow noninvasive monitoring of targeted therapeutic responses at relatively early times after drug administration.

  11. Cardiac perfusion imaging using hyperpolarized 13c urea using flow sensitizing gradients

    Science.gov (United States)

    Miller, Jack J.; Robson, Matthew D.; Tyler, Damian J.

    2015-01-01

    Purpose To demonstrate the feasibility of imaging the first passage of a bolus of hyperpolarized 13C urea through the rodent heart using flow‐sensitizing gradients to reduce signal from the blood pool. Methods A flow‐sensitizing bipolar gradient was optimized to reduce the bright signal within the cardiac chambers, enabling improved contrast of the agent within the tissue capillary bed. The gradient was incorporated into a dynamic golden angle spiral 13C imaging sequence. Healthy rats were scanned during rest (n = 3) and under adenosine stress‐induced hyperemia (n = 3). Results A two‐fold increase in myocardial perfusion relative to rest was detected during adenosine stress‐induced hyperemia, consistent with a myocardial perfusion reserve of two in rodents. Conclusion The new pulse sequence was used to obtain dynamic images of the first passage of hyperpolarized 13C urea in the rodent heart, without contamination from bright signal within the neighboring cardiac lumen. This probe of myocardial perfusion is expected to enable new hyperpolarized 13C studies in which the cardiac metabolism/perfusion mismatch can be identified. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1474–1483, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. PMID:25991580

  12. Xenon is an inhibitor of tissue-plasminogen activator: adverse and beneficial effects in a rat model of thromboembolic stroke

    Science.gov (United States)

    David, Hélène N; Haelewyn, Benoît; Risso, Jean-Jacques; Colloc'h, Nathalie; Abraini, Jacques H

    2010-01-01

    Preclinical evidence in rodents has proven that xenon may be a very promising neuroprotective agent for treating acute ischemic stroke. This has led to the general thinking that clinical trials with xenon could be initiated in acute stroke patients in a next future. However, an unappreciated physicochemical property of xenon has been that this gas also binds to the active site of a series of serine proteases. Because the active site of serine proteases is structurally conserved, we have hypothesized and investigated whether xenon may alter the catalytic efficiency of tissue-type plasminogen activator (tPA), a serine protease that is the only approved therapy for acute ischemic stroke today. Here, using molecular modeling and in vitro and in vivo studies, we show (1) xenon is a tPA inhibitor; (2) intraischemic xenon dose dependently inhibits tPA-induced thrombolysis and subsequent reduction of ischemic brain damage; (3) postischemic xenon virtually suppresses ischemic brain damage and tPA-induced brain hemorrhages and disruption of the blood–brain barrier. Taken together, these data indicate (1) xenon should not be administered before or together with tPA therapy; (2) xenon could be a golden standard for treating acute ischemic stroke if given after tPA-induced reperfusion, with both unique neuroprotective and antiproteolytic (anti-hemorrhaging) properties. PMID:20087367

  13. In vivo measurement of apparent diffusion coefficients of hyperpolarized 13C‐labeled metabolites

    DEFF Research Database (Denmark)

    Søgaard, Lise Vejby; Schilling, Franz; Janich, Martin A.

    2014-01-01

    The combination of hyperpolarized MRS with diffusion weighting (dw) allows for determination of the apparent diffusion coefficient (ADC), which is indicative of the intra‐ or extracellular localization of the metabolite. Here, a slice‐selective pulsed‐gradient spin echo sequence was implemented...... of two lower than the ADC of [1‐13C]pyruvate (1.1–1.5 µm2/ms). This indicates a more restricted diffusion space for the former two metabolites consistent with lactate and alanine being intracellular. The higher ADC for pyruvate (similar to the proton ADC) reflected that the injected substance...

  14. Hyperpolarization-activated cyclic-nucleotide-gated channels potentially modulate axonal excitability at different thresholds.

    Science.gov (United States)

    Weerasinghe, Dinushi; Menon, Parvathi; Vucic, Steve

    2017-12-01

    Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels mediate differences in sensory and motor axonal excitability at different thresholds in animal models. Importantly, HCN channels are responsible for voltage-gated inward rectifying (Ih) currents activated during hyperpolarization. The Ih currents exert a crucial role in determining the resting membrane potential and have been implicated in a variety of neurological disorders, including neuropathic pain. In humans, differences in biophysical properties of motor and sensory axons at different thresholds remain to be elucidated and could provide crucial pathophysiological insights in peripheral neurological diseases. Consequently, the aim of this study was to characterize sensory and motor axonal function at different threshold. Median nerve motor and sensory axonal excitability studies were undertaken in 15 healthy subjects (45 studies in total). Tracking targets were set to 20, 40, and 60% of maximum for sensory and motor axons. Hyperpolarizing threshold electrotonus (TEh) at 90-100 ms was significantly increased in lower threshold sensory axons times (F = 11.195, P sensory axons. In conclusion, variation in the kinetics of HCN isoforms could account for the findings in motor and sensory axons. Importantly, assessing the function of HCN channels in sensory and motor axons of different thresholds may provide insights into the pathophysiological processes underlying peripheral neurological diseases in humans, particularly focusing on the role of HCN channels with the potential of identifying novel treatment targets.NEW & NOTEWORTHY Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels, which underlie inward rectifying currents (Ih), appear to mediate differences in sensory and motor axonal properties. Inward rectifying currents are increased in lower threshold motor and sensory axons, although different HCN channel isoforms appear to underlie these changes. While faster activating HCN

  15. Hyperpolarized 13C Urea Relaxation Mechanism Reveals Renal Changes in Diabetic Nephropathy

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Stokholm Nørlinger, Thomas; Christoffer Hansen, David

    2016-01-01

    Purpose: Our aim was to assess a novel 13C radial fast spin echo golden ratio single shot method for interrogating early renal changes in the diabetic kidney, using hyperpolarized (HP) [13C,15N2]urea as a T2 relaxation based contrast bio-probe. Methods: A novel HP 13C MR contrast experiment...... saturation level and the relaxation times were observed in the healthy controls. Conclusion: HP [13C,15N2]urea apparent T2 mapping may be a useful for interrogating local renal pO2 status and renal tissue alterations....

  16. Hyperpolarized [1-13C]-acetate Renal Metabolic Clearance Rate Mapping

    DEFF Research Database (Denmark)

    Mikkelsen, Emmeli F R; Mariager, Christian Østergaard; Nørlinger, Thomas

    2017-01-01

    of furosemide, a loop diuretic known to alter both the hemodynamics and oxygen consumption in the kidney. The metabolic clearance rates (MCR) were estimated and compared between the two modalities experimentally in vivo and in simulations. There was a clear dependency on the mean transit time and MCR for both...... 13C-acetate and 11C-acetate following furosemide administration, while no dependencies on the apparent renal perfusion were observed. This study demonstrated that hyperpolarized 13C-acetate MRI is feasible for measurements of the intrarenal energetic demand via the MCR, and that the quantitative...

  17. Diabetes induced renal urea transport alterations assessed with 3D hyperpolarized 13 C,15 N-Urea.

    Science.gov (United States)

    Bertelsen, Lotte B; Nielsen, Per M; Qi, Haiyun; Nørlinger, Thomas S; Zhang, Xiaolu; Stødkilde-Jørgensen, Hans; Laustsen, Christoffer

    2017-04-01

    In the current study, we investigated hyperpolarized urea as a possible imaging biomarker of the renal function by means of the intrarenal osmolality gradient. Hyperpolarized three-dimensional balanced steady state 13 C MRI experiments alongside kidney function parameters and quantitative polymerase chain reaction measurements was performed on two groups of rats, a streptozotocin type 1 diabetic group and a healthy control group. A significant decline in intrarenal steepness of the urea gradient was found after 4 weeks of untreated insulinopenic diabetes in agreement with an increased urea transport transcription. MRI and hyperpolarized [13 C,15 N]urea can monitor the changes in the corticomedullary urea concentration gradients in diabetic and healthy control rats. Magn Reson Med 77:1650-1655, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Investigating tumor perfusion by hyperpolarized (13) C MRI with comparison to conventional gadolinium contrast-enhanced MRI and pathology in orthotopic human GBM xenografts

    DEFF Research Database (Denmark)

    Park, Ilwoo; von Morze, Cornelius; Lupo, Janine M

    2016-01-01

    was to validate hyperpolarized perfusion imaging methods by comparing with conventional gadolinium (Gd)-based perfusion MRI techniques and pathology. Dynamic (13) C data using metabolically inactive hyperpolarized bis-1,1-(hydroxymethyl)-[1-(13) C]cyclopropane-d8 (HMCP) were obtained from an orthotopic human...

  19. Production of fusion radionuclides: Molybdenum-99/ Iodine - 131 and Xenon-133; Produccion de los radionucleidos de fision: Molibdeno-99, Yodo-131 y Xenon-133

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, M.; Carrillo, D.

    1982-07-01

    This report presents a new radiochemical method for industrial production of the radionuclides: molybdenum-99, iodine-131 and xenon-133. The above mentioned method based on the alkaline metathesis reaction of irradiated uranium (IV) fluoride, presents the best characteristics for the proposed objective. The study deals with the analysis of that reaction and the separation and purification processes. (Author) 71 refs.

  20. Discrimination Between Patients With Alzheimer Disease and Healthy Subjects Using Layer Analysis of Cerebral Blood Flow and Xenon Solubility Coefficient in Xenon-Enhanced Computed Tomography.

    Science.gov (United States)

    Sase, Shigeru; Yamamoto, Homaro; Kawashima, Ena; Tan, Xin; Sawa, Yutaka

    The aim of this study was to develop a method for discriminating between patients with Alzheimer disease (AD) and healthy subjects using layer analysis of cerebral blood flow (CBF) and xenon solubility coefficient (λ) in xenon-enhanced computed tomography (CT). Xenon-enhanced CT was performed on 27 patients with AD (81.7 [3.3] years old) and 15 healthy volunteers (78.6 [4.0] years old) using a wide volume CT. For each subject, we created the first- (surface) to sixth-layer images of CBF and λ for the 6 viewing directions (layer thickness, 5 mm). For the discriminant views, receiver operating characteristic curves for the ratio of CBF to λ were created to identify patients with AD. For the third- and fourth-layer left lateral views, which were designated as the discriminant views, areas under the receiver operating characteristic curve were 96.8% and 97.4%, respectively. With the use of the discriminant views obtained by xenon-enhanced CT, we could effectively discriminate between patients with AD and healthy subjects using both CBF and λ.

  1. Post-conditioning by xenon reduces ischaemia-reperfusion injury of the spinal cord in rats.

    Science.gov (United States)

    Yang, Y W; Lu, J K; Qing, E M; Dong, X H; Wang, C B; Zhang, J; Zhao, L Y; Gao, Z F; Cheng, W P

    2012-11-01

    The neuroprotective effects of xenon post-conditioning following spinal cord injury remain unknown. We monitored the effect of xenon post-conditioning on the spinal cord following ischaemia-reperfusion injury and determined its mechanism of action. Spinal cord ischaemia was induced following balloon occlusion of the thoracic aorta in male Sprague-Dawley rats. Rats were divided into three groups (n = 30 in each group). The control group underwent ischaemia-reperfusion injury and immediately inhaled 50% (v/v) nitrogen at the time of reperfusion for 60 min continuously. The xenon-post-conditioning group underwent the same surgical procedure and immediately inhaled 50% (v/v) xenon at the time of reperfusion for 60 min continuously. The sham operation group underwent the same surgical procedure without aortic catheter occlusion and inhaled the same gas as that in control rats. Neurologic function was assessed using the Basso, Beattie, and Bresnahan score at 4, 24, and 48 h after reperfusion. Histological changes were observed using Nissl staining, the ultrastructure of the spinal cord was examined using transmission electron microscopy, and apoptosis was monitored using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling. Compared with the control group, the xenon-post-conditioning group showed improved neurologic outcomes (11.3 ± 1.6 vs. 15.7 ± 3.1, respectively) and had more morphologically normal neurons (6 ± 2 vs. 12 ± 3) at 48 h after reperfusion. Moreover, apoptotic cell death in xenon-treated rats was reduced when compared with control rats (18.29 ± 3.06 vs. 27.34 ± 3.63, P Xenon post-conditioning exerts a neuroprotective effect on the spinal cord following ischaemia-reperfusion injury via its anti-apoptotic role. © 2012 The Authors. Acta Anaesthesiologica Scandinavica © 2012 The Acta Anaesthesiologica Scandinavica Foundation.

  2. Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener

    Science.gov (United States)

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan

    2010-01-01

    Background Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K+ channel openers is hampered by their inability to cross the blood–brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. Methods To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. Results Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration–inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 ± 4 to 96 ± 6 μm. Conclusions Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood–brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke. PMID:20179498

  3. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Ongari, Daniele [Laboratory of Molecular Simulation, Institut des Sciences et Ingeénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l' Industrie 17 1951 Sion Valais Switzerland; Xu, Wenqian [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Mohamed, Mona H. [Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia Alexandria 21321 Egypt; Haranczyk, Maciej [IMDEA Materials Institute, c/Eric Kandel 2 28906 Getafe, Madrid Spain; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity, Xe/O2, Xe/N2 and Xe/CO2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.

  4. Noble Liquid (Xenon or Krypton) Totally Active Calorimetry

    CERN Multimedia

    2002-01-01

    Main Goals\\\\ \\\\ Determine ionization and scintillation yields in liquid Xenon (LXe) or Krypton.\\\\ \\\\ Determine the electron lifetime and photon mean free path in LXe or LKr. \\\\ \\\\ Determine energy resolution of LXe or LKr via ionization or scintillation.\\\\ \\\\ Determine correlation of fluctuations between ionization and scintillation. Summary of Results \\\\ \\\\ -~measured the electron lifetime in LXe, ($\\tau$~$>$~400 $\\mu$s).\\\\ \\\\ -~measured the energy to create an ionization electron in LXe, W=9.8 eV.\\\\ \\\\ -~measured the energy to create a LXe scintillation photon, W$ _{s} $~=~14.2~eV. \\\\ \\\\ -~measured the anticorrelation of scintillation and ionization yields. \\\\ \\\\ -~measured the energy resolution in LXe via ionization, $ sigma _{E} / $E=0.07\\%/$\\sqrt$E(GeV). \\\\ \\\\ -~measured resolution in LXe via scintillation $ sigma _{E} / $E=0.24\\%/$\\sqrt$E(GeV)+0.26\\%. \\\\ \\\\ -~measured electron drift velocity in LXe:~neat (2.5 mm/$\\mu$s), doped (4.4~mm/$\\mu$s). \\\\ \\\\ -~measured the photon mean free path in LXe vs $ lambd...

  5. Human Regional Pulmonary Gas Exchange with Xenon Polarization Transfer (XTC)

    Science.gov (United States)

    Muradian, Iga; Butler, James; Hrovat, Mirko; Topulos, George; Hersman, Elizabeth; Ruset, Iulian; Covrig, Silviu; Frederick, Eric; Ketel, Stephen; Hersman, F. W.; Patz, Samuel

    2007-03-01

    Xenon Transfer Contrast (XTC) is an existing imaging method (Ruppert et al, Magn Reson Med, 51:676-687, 2004) that measures the fraction F of ^129Xe magnetization that diffuses from alveolar gas spaces to septal parenchymal tissue in lungs in a specified exchange time. As previously implemented, XTC is a 2-breath method and has been demonstrated in anesthetized animals. To use XTC in humans and to avoid issues associated with obtaining identical gas volumes on subsequent breath-hold experiments as well as precise image registration in post-processing, a single breath XTC method was developed that acquires three consecutive gradient echo images in an 8s acquisition. We report here initial measurements of the mean and variance of F for 5 normal healthy subjects as well as 7 asymptomatic smokers. The experiments were performed at two lung volumes (˜45 and 65% of TLC). We found that both the mean and variance of F increased with smoking history. In comparison, standard pulmonary function tests such as DLCO FEV1 showed no correlation with smoking history.

  6. The Enriched Xenon Observatory: EXO-200 and Ba+ tagging

    Science.gov (United States)

    Dolinski, M. J.; EXO Collaboration

    2012-08-01

    The Enriched Xenon Observatory (EXO) is a proposed ton-scale double beta decay experiment with a tentative design sensitivity to the Majorana mass of ˜10 meV. The first phase of EXO is EXO-200, which uses 200 kg of Xe enriched to 80% in 136Xe to search for neutrinoless double beta decay. EXO-200 is a liquid Xe time projection chamber with the ability to detect both scintillation and ionization signals. The detector is constructed from ultra-low background materials and is currently installed at the Waste Isolation Pilot Plant, a salt mine with a 1600 meter water equivalent overburden. The projected 2 year sensitivity for EXO-200 is T1/20ν>6.4×1025 y at 90% confidence level. Looking toward a ton-scale EXO, one unique feature of the experiment is the proposal to identify the barium daughter produced by 136Xe double beta decay on an event-by-event basis. This technique will allow for the elimination of all backgrounds other than the background from the two-neutrino double beta decay spectrum. The EXO Collaboration is exploring a number of options to implement Ba-daughter tagging in the next generation EXO experiment.

  7. A metastable xenon isotope detector for treaty verification

    CERN Document Server

    Lopes, J A M; Conde, C A N

    2003-01-01

    A system to selectively detect and quantify the xenon metastable isotopes sup 1 sup 3 sup 1 sup m Xe, sup 1 sup 3 sup 3 sup m Xe, sup 1 sup 3 sup 3 Xe, and sup 1 sup 3 sup 5 Xe has been designed, fabricated, and tested. The system combines high-resolution electron and gamma-ray spectrometry with coincidence/anti-coincidence timing for signal selectivity and background rejection. By utilizing X-ray-fluorescence gating, backgrounds from other sources are expected to be reduced to the sub-becquerel level. Coincidence and anti-coincidence triggers are formed from the several individual detectors that comprise the system and used to identify K-shell conversion electrons and fluorescence X-rays from a sup 1 sup 0 sup 9 Cd test source with good efficiencies and energy resolutions (20 keV for the low-energy electrons, approx 1.2 keV for the fluorescence X-rays, respectively).

  8. An homeopathic cure to pure Xenon large diffusion

    CERN Document Server

    Azevedo, C D R; Freitas, E.D.C.; Gonzalez-Diaz, D.; Monrabal, F.; Monteiro, C.M.B.; Santos, J. M. F. Dos; Veloso, J.F.C.A.; Gomez-Cadenas, J. J

    2016-01-01

    The NEXT neutrinoless double beta decay experiment will use a high- pressure gas electroluminescence-based TPC to search for the decay of Xe-136. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qbb. The rejection potential associated to the topology reconstruction is limited by our capacity to prop- erly reconstruct the original path of the electrons in the gas. This reconstruction is limited by different factors that include the geometry of the detector, the density of the sensors in the tracking plane and the separation among them, etc. Ultimately, the resolution is limited by the physics of electron diffusion in the gas. In this paper we present a series of molecular additives that can be used in Xenon gas at very low partial pressure to reduce both longitudinal and transverse diffusion. We will show the results of different Monte-Carlo simulations of electron transport in the gas mixtures from wich we have extracted the value of...

  9. Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster (NEXT)

    Science.gov (United States)

    Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.

    2010-01-01

    Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster (NEXT) ion engine using a standard pendulum style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few off-nominal operating conditions. Measurements differ from the nominal NASA throttle table 10 (TT10) values by 3.1 percent at most, while at 30 throttle levels (TLs) the difference is less than 2.0 percent. When measurements are compared to TT10 values that have been corrected using ion beam current density and charge state data obtained at The Aerospace Corporation, they differ by 1.2 percent at most, and by 1.0 percent or less at 37 TLs. Thrust correction factors calculated from direct thrust measurements and from The Aerospace Corporation s plume data agree to within measurement error for all but one TL. Thrust due to cold flow and "discharge only" operation has been measured, and analytical expressions are presented which accurately predict thrust based on thermal thrust generation mechanisms.

  10. Monte Carlo model for electron degradation in xenon gas

    CERN Document Server

    Mukundan, Vrinda

    2016-01-01

    We have developed a Monte Carlo model for studying the local degradation of electrons in the energy range 9-10000 eV in xenon gas. Analytically fitted form of electron impact cross sections for elastic and various inelastic processes are fed as input data to the model. Two dimensional numerical yield spectrum, which gives information on the number of energy loss events occurring in a particular energy interval, is obtained as output of the model. Numerical yield spectrum is fitted analytically, thus obtaining analytical yield spectrum. The analytical yield spectrum can be used to calculate electron fluxes, which can be further employed for the calculation of volume production rates. Using yield spectrum, mean energy per ion pair and efficiencies of inelastic processes are calculated. The value for mean energy per ion pair for Xe is 22 eV at 10 keV. Ionization dominates for incident energies greater than 50 eV and is found to have an efficiency of 65% at 10 keV. The efficiency for the excitation process is 30%...

  11. First Detection of Krypton and Xenon in a White Dwarf

    Science.gov (United States)

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-01-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 KrVI-VII and Xe VI-VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 plus or minus 0.5 and log Xe = -4.2 plus or minus 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the-precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and thaI the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell nash or a binary white dwarf merger.

  12. Storage of nuclear magnetization as long-lived singlet order in low magnetic field.

    Science.gov (United States)

    Pileio, Giuseppe; Carravetta, Marina; Levitt, Malcolm H

    2010-10-05

    Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T(1), which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet-triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of (15)N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T(1) is less than 3 min under the same conditions.

  13. Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling.

    Science.gov (United States)

    De Meutter, Pieter; Camps, Johan; Delcloo, Andy; Termonia, Piet

    2017-08-18

    On 6 January 2016, the Democratic People's Republic of Korea announced to have conducted its fourth nuclear test. Analysis of the corresponding seismic waves from the Punggye-ri nuclear test site showed indeed that an underground man-made explosion took place, although the nuclear origin of the explosion needs confirmation. Seven weeks after the announced nuclear test, radioactive xenon was observed in Japan by a noble gas measurement station of the International Monitoring System. In this paper, atmospheric transport modelling is used to show that the measured radioactive xenon is compatible with a delayed release from the Punggye-ri nuclear test site. An uncertainty quantification on the modelling results is given by using the ensemble method. The latter is important for policy makers and helps advance data fusion, where different nuclear Test-Ban-Treaty monitoring techniques are combined.

  14. Applications of dynamic nuclear polarization to the study of reactions and reagents in organic and biomolecular chemistry.

    Science.gov (United States)

    Hilty, Christian; Bowen, Sean

    2010-08-07

    Nuclear Magnetic Resonance (NMR) is an important spectroscopic tool for the identification and structural characterization of molecules in chemistry and biochemistry. The most significant limitation of NMR compared to other spectroscopies is its relatively low sensitivity, which thus often requires long measurement times or large amounts of sample. A way of increasing sensitivity of single scan NMR spectra by several orders of magnitude is through hyperpolarization of nuclear spins. Dynamic nuclear polarization allows hyperpolarization of most spins in small molecules encountered in chemistry and biochemistry. NMR spectra of small amounts of samples from natural source, or from chemical synthesis can readily be acquired. Perhaps more interestingly, the availability of the entire hyperpolarized NMR signal in one single scan allows the measurement of transient processes in real time, if applied together with a stopped-flow technique. Through observation of chemical shift, different reactant and product species can be distinguished, and kinetics and mechanisms, for example in enzyme catalyzed reactions, can be elucidated. Real-time hyperpolarization-enhanced NMR is uniquely amenable to correlating atomic positions not only through space, but also over time between reactant and product species. Such correlations carry mechanistic information about a reaction, and can prove reaction pathways. Applications of this technique are emerging in different areas of chemistry concerned with rapid reactions, including not only enzymatic processes, but also chemical catalysis and protein folding.

  15. In Vivo Measurement in Pigs of Wash-In Kinetics of Xenon at its Site of Action.

    Science.gov (United States)

    Froeba, Gebhard; Adolph, Oliver

    2016-01-01

    Xenon (Xe) in many respects is an ideal anaesthetic agent. Its blood/gas partition coefficient is lower than that of any other anaesthetic, enabling rapid induction of and emergence from anaesthesia. While the whole body kinetics during wash-in of inhalational anaesthesia is well known, data describing the pharmacokinetics of xenon in the cerebral compartment at the site of action are still largely missing. In order to illuminate xenon's cerebral pharmacokinetics, we anaesthetised five pigs and measured arterial, mixed- and sagittal sinus-venous blood, as well as end-expiratory gas concentrations of xenon by gas chromatography-mass spectrometry (GCMS) up to 30 minutes after starting the anaesthetic gas mixture. Despite xenon's fast onset of effect the half-time for equilibration between xenon concentration in arterial blood and at the site of action is measured to be 1.49 ± 0.04 minutes versus 3.91 ± 0.1 minutes. Successful loading of xenon in the brain during inhalational anesthesia was accomplished after approximately 15 minutes although the end-expiratory xenon concentration reached a plateau after 7 minutes. Thus cerebral xenon uptake rate is only moderate, xenon fast onset of action being largely due to its extremely fast alveolar uptake. To ensure safety and precise control during anaesthesia we need a profound knowledge about to what extent the measured end-tidal concentrations reflect the drug concentrations in the target tissue. The results of this study expand our knowledge about the temporal characteristics of xenon´s pharmacokinetics at its site of action and provide the basis for appropriate clinical protocols and experimental designs of future studies.

  16. Quantified pH imaging with hyperpolarized (13) C-bicarbonate.

    Science.gov (United States)

    Scholz, David Johannes; Janich, Martin A; Köllisch, Ulrich; Schulte, Rolf F; Ardenkjaer-Larsen, Jan H; Frank, Annette; Haase, Axel; Schwaiger, Markus; Menzel, Marion I

    2015-06-01

    Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method-based errors, and applied in vivo. In vitro and in vivo (13) C mapping were performed for various flip angles for bicarbonate (BiC) and CO2 with spectral-spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction. After optimizing the signal to noise ratio of the hyperpolarized (13) C-bicarbonate, error estimation of the spectral-spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (bicarbonate signal. pH maps reflect the induction of acute metabolic alkalosis. Inflamed, infected regions exhibit lower pH. Hyperpolarized (13) C-bicarbonate pH mapping was shown to be sensitive in the biologically relevant pH range. The mapping of pH was applied to healthy in vivo organs and interpreted within inflammation and acute metabolic alkalosis models. © 2014 Wiley Periodicals, Inc.

  17. Hyperpolarized Helium-3 MRI of exercise-induced bronchoconstriction during challenge and therapy.

    Science.gov (United States)

    Kruger, Stanley J; Niles, David J; Dardzinski, Bernard; Harman, Amy; Jarjour, Nizar N; Ruddy, Marcella; Nagle, Scott K; Francois, Christopher J; Sorkness, Ronald L; Burton, Ryan M; Munoz del Rio, Alejandro; Fain, Sean B

    2014-05-01

    To investigate the utility of hyperpolarized He-3 MRI for detecting regional lung ventilated volume (VV) changes in response to exercise challenge and leukotriene inhibitor montelukast, human subjects with exercise induced bronchoconstriction (EIB) were recruited. This condition is described by airway constriction following exercise leading to reduced forced expiratory volume in 1 second (FEV1) coinciding with ventilation defects on hyperpolarized He-3 MRI. Thirteen EIB subjects underwent spirometry and He-3 MRI at baseline, postexercise, and postrecovery at multiple visits. On one visit montelukast was given and on two visits placebo was given. Regional VV was calculated in the apical/basilar dimension, in the anterior/posterior dimension, and for the entire lung volume. The whole lung VV was used as an end-point and compared with spirometry. Postchallenge FEV1 dropped with placebo but not with treatment, while postchallenge VV dropped more with placebo than treatment. Sources of variability for VV included region (anterior/posterior), scan, and treatment. VV correlated with FEV1/ forced vital capacity (FVC) and forced expiratory flow between 25 and 75% of FVC and showed gravitational dependence after exercise challenge. A paradigm testing the response of ventilation to montelukast revealed both a whole-lung and regional response to exercise challenge and therapy in EIB subjects. Copyright © 2013 Wiley Periodicals, Inc.

  18. Sensory deprivation regulates the development of the hyperpolarization-activated current in auditory brainstem neurons.

    Science.gov (United States)

    Hassfurth, Benjamin; Magnusson, Anna K; Grothe, Benedikt; Koch, Ursula

    2009-10-01

    Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are highly expressed in the superior olivary complex, the primary locus for binaural information processing. This hyperpolarization-activated current (I(h)) regulates the excitability of neurons and enhances the temporally precise analysis of the binaural acoustic cues. By using the whole-cell patch-clamp technique, we examined the properties of I(h) current in neurons of the lateral superior olive (LSO) and the medial nucleus of the trapezoid body (MNTB) before and after hearing onset. Moreover, we tested the hypothesis that I(h) currents are actively regulated by sensory input activity by performing bilateral and unilateral cochlear ablations before hearing onset, resulting in a chronic auditory deprivation. The results show that after hearing onset, I(h) currents are rapidly upregulated in LSO neurons, but change only marginally in neurons of the MNTB. We also found a striking difference in maximal current density, voltage dependence and activation time constant between the LSO and the MNTB in mature-like animals. Following bilateral cochlear ablations before hearing onset, the I(h) currents were scaled up in the LSO and scaled down in the MNTB. Consequently, in the LSO this resulted in a depolarized resting membrane potential and a lower input resistance of these neurons. This type of activity-dependent homeostatic change could thus result in an augmented response to the remaining inputs.

  19. Tonotopic Organization of the Hyperpolarization-activated Current (Ih in the Mammalian Medial Superior Olive

    Directory of Open Access Journals (Sweden)

    Veronika eBaumann

    2013-07-01

    Full Text Available Abstract Neuronal membrane properties can largely vary even within distinct morphological cell classes. The mechanisms and functional consequences of this diversity, however, are little explored. In the medial superior olive (MSO, a brainstem nucleus that performs binaural coincidence detection, membrane properties at rest are largely governed by the hyperpolarization-activated inward current (Ih which enables the temporally precise integration of excitatory and inhibitory inputs. Here, we report that Ih density varies along the putative tonotopic axis of the MSO with Ih being largest in ventral, high-frequency processing neurons. Also Ih half-maximal activation voltage and time constant are differentially distributed such that Ih of the putative high-frequency processing neurons activate faster and at more depolarized levels. Intracellular application of saturating concentrations of cyclic AMP removed the regional difference in hyperpolarization-activated cyclic nucleotide gated (HCN channel activation, but not Ih density. Experimental data in conjunction with a computational model suggest that increased Ih levels are helpful in counteracting temporal summation of phase-locked inhibitory inputs which is particularly prominent in high-frequency neurons.

  20. Incorporation of prior knowledge in compressed sensing for faster acquisition of hyperpolarized gas images.

    Science.gov (United States)

    Ajraoui, S; Parra-Robles, J; Wild, J M

    2013-02-01

    Adding prior knowledge to compressed sensing reconstruction can improve image reconstruction. In this work, two approaches are investigated to improve reconstruction of two-dimensional hyperpolarized (3)He lung ventilation images using prior knowledge. When compared against a standard compressed sensing reconstruction, the proposed methods allowed acquisition of images with higher under-sampling factors and reduction of the blurring effects that increase with higher reduction factors when fixed flip angles are used. These methods incorporate the prior knowledge of polarization decay of hyperpolarized (3)He and the mutual anatomical information from a registered (1)H image acquired in the same breath. Three times accelerated two-dimensional images reconstructed with compressed sensing and prior knowledge gave lower root-mean square error, than images reconstructed without introduction of any prior information. When introducing the polarization decay as prior knowledge, a significant improvement was achieved in the lung region, the root mean square value decreased by 45% and from the whole image by 36%. When introducing the mutual anatomical information as prior knowledge, the root mean square decreased by 21% over the lung region and by 15% over the whole image. Copyright © 2012 Wiley Periodicals, Inc.

  1. Modeling the Removal of Xenon from Lithium Hydrate with Aspen HYSYS

    Science.gov (United States)

    Efthimion, Phillip; Gentile, Charles

    2011-10-01

    The Laser Inertial Fusion Engine (LIFE) project mission is to provide a long-term, carbon-free source of sustainable energy, in the form of electricity. A conceptual xenon removal system has been modeled with the aid of Aspen HYSYS, a chemical process simulator. Aspen HYSYS provides excellent capability to model chemical flow processes, which generates outputs which includes specific variables such as temperature, pressure, and molar flow. The system is designed to strip out hydrogen isotopes deuterium and tritium. The base design bubbles plasma exhaust laden with x filled with liquid helium. The system separates the xenon from the hydrogen, deuterium, and tritium with a lithium hydrate and a lithium bubbler. After the removal of the hydrogen and its isotopes, the xenon is then purified by way of the process of cryogenic distillation. The pure hydrogen, deuterium, and tritium are then sent to the isotope separation system (ISS). The removal of xenon is an integral part of the laser inertial fusion engine and Aspen HYSYS is an excellent tool to calculate how to create pure xenon.

  2. New constraints and discovery potential of sub-GeV dark matter with xenon detectors

    Science.gov (United States)

    McCabe, Christopher

    2017-08-01

    Existing xenon dark matter (DM) direct detection experiments can probe the DM-nucleon interaction of DM with a sub-GeV mass through a search for photon emission from the recoiling xenon atom. We show that LUX's constraints on sub-GeV DM, which utilize the scintillation (S1) and ionization (S2) signals, are approximately 3 orders of magnitude more stringent than previous xenon constraints in this mass range, derived from the XENON10 and XENON100 S2-only searches. The new LUX constraints provide the most stringent direct detection constraints for DM particles with a mass below 0.5 GeV. In addition, the photon emission signal in LUX and its successor LZ maintain the discrimination between background and signal events so that an unambiguous discovery of sub-GeV DM is possible. We show that LZ has the potential to reconstruct the DM mass with ≃20 % accuracy for particles lighter than 0.5 GeV.

  3. NASA's Evolutionary Xenon Thruster (NEXT) Component Verification Testing

    Science.gov (United States)

    Herman, Daniel A.; Pinero, Luis R.; Sovey, James S.

    2009-01-01

    Component testing is a critical facet of the comprehensive thruster life validation strategy devised by the NASA s Evolutionary Xenon Thruster (NEXT) program. Component testing to-date has consisted of long-duration high voltage propellant isolator and high-cycle heater life validation testing. The high voltage propellant isolator, a heritage design, will be operated under different environmental condition in the NEXT ion thruster requiring verification testing. The life test of two NEXT isolators was initiated with comparable voltage and pressure conditions with a higher temperature than measured for the NEXT prototype-model thruster. To date the NEXT isolators have accumulated 18,300 h of operation. Measurements indicate a negligible increase in leakage current over the testing duration to date. NEXT 1/2 in. heaters, whose manufacturing and control processes have heritage, were selected for verification testing based upon the change in physical dimensions resulting in a higher operating voltage as well as potential differences in thermal environment. The heater fabrication processes, developed for the International Space Station (ISS) plasma contactor hollow cathode assembly, were utilized with modification of heater dimensions to accommodate a larger cathode. Cyclic testing of five 1/22 in. diameter heaters was initiated to validate these modified fabrication processes while retaining high reliability heaters. To date two of the heaters have been cycled to 10,000 cycles and suspended to preserve hardware. Three of the heaters have been cycled to failure giving a B10 life of 12,615 cycles, approximately 6,000 more cycles than the established qualification B10 life of the ISS plasma contactor heaters.

  4. Probe of Multi-electron Dynamics in Xenon by Caustics in High Order Harmonic Generation

    CERN Document Server

    Faccialà, Davide; Bruner, Barry D; Ciriolo, Anna G; De Silvestri, Sandro; Devetta, Michele; Negro, Matteo; Soifer, Hadas; Stagira, Salvatore; Dudovich, Nirit; Vozzi, Caterina

    2016-01-01

    We investigated the giant resonance in Xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a non-perturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring sub-cycles resulting in the appearance of spectral caustics at two distinct cut-off energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this paper we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in Xenon. The collective excitations of the giant dipole resonance in Xenon combined with the spectral manipulation associated with the two color driving field allow to see features that are normally not accessible and to obtain a quantitative good agreement between the experimental results and the theoretical predictions.

  5. Search for bosonic super-WIMP interactions with the XENON100 experiment

    Science.gov (United States)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Capelli, C.; Cardoso, J. M. R.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2017-12-01

    We present results of searches for vector and pseudoscalar bosonic super-weakly interacting massive particles (WIMPs), which are dark matter candidates with masses at the keV-scale, with the XENON100 experiment. XENON100 is a dual-phase xenon time projection chamber operated at the Laboratori Nazionali del Gran Sasso. A profile likelihood analysis of data with an exposure of 224.6 live days ×34 kg showed no evidence for a signal above the expected background. We thus obtain new and stringent upper limits in the (8 - 125 ) keV /c2 mass range, excluding couplings to electrons with coupling constants of ga e>3 ×10-13 for pseudo-scalar and α'/α >2 ×10-28 for vector super-WIMPs, respectively. These limits are derived under the assumption that super-WIMPs constitute all of the dark matter in our galaxy.

  6. Status of the 2D Bayesian analysis of XENON100 data

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Stefan [JGU, Staudingerweg 7, 55128 Mainz (Germany)

    2015-07-01

    The XENON100 experiment is located in the underground laboratory at LNGS in Italy. Since Dark Matter particles will only interact very rarely with normal matter, an environment with ultra low background, which is shielded from cosmic radiation is needed. The standard analysis of XENON100 data has made use of the profile likelihood method (a most frequent approach) and still provides one of the most sensitive exclusion limits to WIMP Dark Matter. Here we present work towards a Bayesian approach to the analysis of XENON100 data, where we attempt to include the measured primary (S1) and secondary (S2) scintillation signals in a more complete way. The background and signal models in the S1-S2 space have to be defined and a corresponding likelihood function, describing these models, has to be constructed.

  7. Xenon Anesthesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Law, Lawrence Siu-Chun; Lo, Elaine Ah-Gi; Gan, Tong Joo

    2016-03-01

    Xenon anesthesia has been studied for decades. However, no meta-analysis of randomized controlled trials (RCTs) on xenon anesthesia has been conducted. The aim of this study was to systematically review all available evidence from RCTs comparing xenon and other inhaled and IV anesthetics on anesthetic outcomes. Our meta-analysis attempted to quantify the effects of xenon anesthesia on clinical outcomes in relation to other anesthetics. We found 43 RCTs from PubMed, MEDLINE, CENTRAL, EMBASE, and CINAHL (until January 2015). A total of 31 studies comparing xenon (841 patients) with other inhaled agents (836 patients) and 12 studies comparing xenon (373 patients) with propofol (360 patients) were found. We evaluated clinical outcomes, such as intraoperative hemodynamics, emergence, and postoperative nausea and vomiting (PONV). Patients undergoing xenon anesthesia had a lower heart rate and higher mean arterial pressure (MAP) intraoperatively than those receiving volatile anesthesia (mean difference = -6 min⁻¹ [99% confidence interval {99% CI} -10.0 to -2.3]; mean difference = 9 mm Hg [99% CI 3.1-14.4]) and propofol anesthesia (mean difference = -10 min⁻¹ [99% CI -12.4 to -6.6]; mean difference = 7 mm Hg [99% CI 0.85-13.2]). Compared with baseline, intraoperative MAP remained relatively stable (change xenon anesthesia, but MAP decreased by ≥15% under volatile (mean difference = -17 mm Hg [99% CI -29.5 to - 4.9], percentage change = -17.5%) and propofol (mean difference = -14 mm Hg [99% CI -26.1 to -2.5], percentage change = -15.0%) anesthesia. Patients had faster emergence from xenon than from volatile anesthesia: eyes opening (versus all volatile agents: mean 4 vs 7 minutes, percentage change = -49.8% [99% CI -55.1% to -44.0%]), tracheal extubation (versus all volatile agents: mean 4 vs 8 minutes percentage change = -44.6% [99% CI -57.3% to -28.1%]), orientation (versus sevoflurane: mean 5 vs 10 minutes, percentage change = -45.1% [99% CI -58.5% to -28

  8. Bonding xenon and krypton on the surface of uranium dioxide single crystal

    Directory of Open Access Journals (Sweden)

    Dąbrowski Ludwik

    2014-08-01

    Full Text Available We present density functional theory (DFT calculation results of krypton and xenon atoms interaction on the surface of uranium dioxide single crystal. A pseudo-potential approach in the generalised gradient approximation (GGA was applied using the ABINIT program package. To compute the unit cell parameters, the 25 atom super-cell was chosen. It has been revealed that close to the surface of a potential well is formed for xenon and krypton atom due to its interaction with the atoms of oxygen and uranium. Depth and shape of the well is the subject of ab initio calculations in adiabatic approximation. The calculations were performed both for the case of oxygenic and metallic surfaces. It has been shown that the potential well for the oxygenic surface is deeper than for the metallic surface. The thermal stability of immobilising the atoms of krypton and xenon in the potential wells were evaluated. The results are shown in graphs.

  9. Assessment of Metformin-Induced Changes in Cardiac and Hepatic Redox State Using Hyperpolarized[1-13C]Pyruvate.

    Science.gov (United States)

    Lewis, Andrew J M; Miller, Jack J J; McCallum, Chloe; Rider, Oliver J; Neubauer, Stefan; Heather, Lisa C; Tyler, Damian J

    2016-12-01

    Metformin improves cardiovascular outcomes in type 2 diabetes, but its exact mechanisms of action remain controversial. We used hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopy to determine the effects of metformin treatment on heart and liver pyruvate metabolism in rats in vivo. Both oral treatment for 4 weeks and a single intravenous metformin infusion significantly increased the cardiac [1-13C]lactate:[1-13C]pyruvate ratio but had no effect on the [1-13C]bicarbonate + 13CO2:[1-13C]pyruvate ratio, an index of pyruvate dehydrogenase flux. These changes were paralleled by a significant increase in the heart and liver cytosolic redox state, estimated from the [lactate]:[pyruvate] ratio but not the whole-cell [NAD+]/[NADH] ratio. Hyperpolarized MRI localized the increase in cardiac lactate to the left ventricular myocardium, implying a direct myocardial effect, though metformin had no effect on systolic or diastolic cardiac function. These findings demonstrate the ability of hyperpolarized pyruvate magnetic resonance spectroscopy to detect metformin-induced changes in cytosolic redox biology, suggest that metformin has a previously unrecognized effect on cardiac redox state, and help to refine the design of impending hyperpolarized magnetic resonance studies in humans. © 2016 by the American Diabetes Association.

  10. Influence of K+-channels and gap junctions on endothelium derived hyperpolarization-induced renal vasodilation in rats

    DEFF Research Database (Denmark)

    Rasmussen, Kasper Møller; Brasen, Jens Christian; Salomonsson, Max

    2015-01-01

    , involvement of renal myoendothelial gap junctions was evaluated in vitro. Because assessment of endothelial derived hyperpolarization-induced renal vasodilation in vivo is hampered by experimental limitations, we have combined in vivo and in vitro experiments. Isometric tension in rat renal interlobar...

  11. Probing cardiac metabolism by hyperpolarized 13C MR using an exclusively endogenous substrate mixture and photo-induced nonpersistent radicals

    DEFF Research Database (Denmark)

    Bastiaansen, Jessica A M; Yoshihara, Hikari A I; Capozzi, Andrea

    2018-01-01

    To probe the cardiac metabolism of carbohydrates and short chain fatty acids simultaneously in vivo following the injection of a hyperpolarized 13 C-labeled substrate mixture prepared using photo-induced nonpersistent radicals. Droplets of mixed [1-13 C]pyruvic and [1-13 C]butyric acids were frozen...

  12. Acute afterload-imposed change in porcine cardiac metabolism imaged by hyperpolarized [1-13C]Pyruvate

    DEFF Research Database (Denmark)

    Tougaard, Rasmus Stilling; Søvsø Szocska Hansen, Esben; Laustsen, Christoffer

    Deranged metabolism is now considered a key causal factor in heart failure and has therefore gained considerable scientific interest. The novel technique hyperpolarized MR has emerged as a leading methodological candidate to study these derangements. We employed a clinically relevant, large animal...

  13. Imaging regional metabolic changes in the ischemic rat heart in vivo using hyperpolarized(1-13C)Pyruvate

    DEFF Research Database (Denmark)

    Lauritzen, Mette Hauge; Magnusson, Peter; Laustsen, Christoffer

    2017-01-01

    We evaluated the use of hyperpolarized 13C magnetic resonance imaging (MRI) in an open-chest rat model of myocardial infarction to image regional changes in myocardial metabolism. In total, 10 rats were examined before and after 30 minutes of occlusion of the left anterior descending coronary art...

  14. Feasibility and cardiac safety of inhaled xenon in combination with therapeutic hypothermia following out-of-hospital cardiac arrest.

    Science.gov (United States)

    Arola, Olli J; Laitio, Ruut M; Roine, Risto O; Grönlund, Juha; Saraste, Antti; Pietilä, Mikko; Airaksinen, Juhani; Perttilä, Juha; Scheinin, Harry; Olkkola, Klaus T; Maze, Mervyn; Laitio, Timo T

    2013-09-01

    Preclinical studies reveal the neuroprotective properties of xenon, especially when combined with hypothermia. The purpose of this study was to investigate the feasibility and cardiac safety of inhaled xenon treatment combined with therapeutic hypothermia in out-of-hospital cardiac arrest patients. An open controlled and randomized single-centre clinical drug trial (clinicaltrials.gov NCT00879892). A multipurpose ICU in university hospital. Thirty-six adult out-of-hospital cardiac arrest patients (18-80 years old) with ventricular fibrillation or pulseless ventricular tachycardia as initial cardiac rhythm. Patients were randomly assigned to receive either mild therapeutic hypothermia treatment with target temperature of 33°C (mild therapeutic hypothermia group, n=18) alone or in combination with xenon by inhalation, to achieve a target concentration of at least 40% (Xenon+mild therapeutic hypothermia group, n=18) for 24 hours. Thirty-three patients were evaluable (mild therapeutic hypothermia group, n=17; Xenon+mild therapeutic hypothermia group, n=16). Patients were treated and monitored according to the Utstein protocol. The release of troponin-T was determined at arrival to hospital and at 24, 48, and 72 hours after out-of-hospital cardiac arrest. The median end-tidal xenon concentration was 47% and duration of the xenon inhalation was 25.5 hours. The frequency of serious adverse events, including inhospital mortality, status epilepticus, and acute kidney injury, was similar in both groups and there were no unexpected serious adverse reactions to xenon during hospital stay. In addition, xenon did not induce significant conduction, repolarization, or rhythm abnormalities. Median dose of norepinephrine during hypothermia was lower in xenon-treated patients (mild therapeutic hypothermia group=5.30 mg vs Xenon+mild therapeutic hypothermia group=2.95 mg, p=0.06). Heart rate was significantly lower in Xenon+mild therapeutic hypothermia patients during hypothermia

  15. Xenon administration immediately after but not before or during cardiopulmonary bypass with cerebral air embolism impairs cerebral outcome in rats.

    Science.gov (United States)

    Jungwirth, Bettina; Gordan, Maria L; Kellermann, Kristine; Blobner, Manfred; Kochs, Eberhard F

    2011-12-01

    The neuroprotective properties of xenon might improve cerebral outcome after cardiac surgery using cardiopulmonary bypass. However, in the presence of cerebral air emboli, xenon impaired cognitive and histological outcome in a rat cardiopulmonary bypass model, a result which is due to the property of xenon to expand air bubbles. The current study was designed to assess whether cerebral outcome in the setting of cardiopulmonary bypass with cerebral air embolism could be altered by administration of xenon restricted to periods when the occurrence of cerebral air embolism is unlikely. With institutional review board approval, 40 rats were allocated randomly to one of four groups (n = 10) which determined the period of xenon inhalation: 'before', 'during' or 'after' cardiopulmonary bypass or 'none'. Rats were subjected to 90  min of normothermic cardiopulmonary bypass combined with 10 small cerebral air emboli. Xenon was administered according to group assignment: the 'none' group received no xenon; in the other groups, the lungs were ventilated with 56% xenon before, during or after cardiopulmonary bypass and cerebral air embolism. Motor and cognitive outcomes were tested using the modified hole-board test. Cerebral infarction volumes were determined on postoperative day 21. Animals that received xenon after cardiopulmonary bypass and cerebral air embolism had impaired motor function scores [after: median 6.6 (range 0.25-8), before: 0.5 (0-3), during: 1.5 (0.25-2.75), none: 1 (0-1.75)] and cognitive performance [after: 9 (6.5-9), before: 0 (0-5.5), during: 1 (0-5.5), none: 1 (0-4)] compared with all other groups (P xenon after cardiopulmonary bypass and cerebral air embolism also led to larger cerebral infarction volumes [after: 74 μl (54-157), before: 45 μl (20-82), during: 33 μl (23-54), none: 22 μl (17-78)] compared with the groups that received xenon during cardiopulmonary bypass and cerebral air embolism or no xenon at all (P Xenon

  16. E- to H-mode Transition in Inductively Coupled Xenon Discharge Lamp

    Science.gov (United States)

    Nazri, Ahmad; Inui, Shuji; Motomura, Hideki; Jinno, Masafumi; Aono, Masaharu

    In this paper the phenomena of mode transition and hysteresis in xenon ICP (Inductively Coupled Plasma) discharge are studied. Xenon has been used as an alternative for mercury since there are environmental issues related to mercury. The transition from E-mode (electrostatic mode) discharge to H-mode (electromagnetic mode) discharge in a xenon cylindrical tube was investigated. RF energy at 13.56 MHz was induced to the tube through matching network. In this study, all the transitions occurred at a certain threshold input power which is a function of the xenon pressure. Hysteresis was observed as the input power was varied from 1 to 100 W. When the input power is increased the discharge starts in E-mode changes into H-mode, whereas when the input power is decreased the H-mode turns into the E-mode or there is a sudden switch-off as the function of the gas pressures. Mode transition is determined by sudden and huge change of luminance. H-mode is characterized by a much higher luminance and plasma density. Luminance and optical emission spectra were recorded. At high pressure more power is required to transform the discharge mode compared to low pressure. Continuum visible emission was obtained only in H-mode. At H-mode, many ionic and atomic spectrum are observed compared to E-mode. With high luminance and continuum visible emission that obtained from H-mode xenon ICP discharge, xenon is one of the most suitable alternatives in developing mercury-free light sources.

  17. Neither xenon nor fentanyl induces neuroapoptosis in the newborn pig brain.

    Science.gov (United States)

    Sabir, Hemmen; Bishop, Sarah; Cohen, Nicki; Maes, Elke; Liu, Xun; Dingley, John; Thoresen, Marianne

    2013-08-01

    Some inhalation anesthetics increase apoptotic cell death in the developing brain. Xenon, an inhalation anesthetic, increases neuroprotection when combined with therapeutic hypothermia after hypoxic-ischemic brain injury in newborn animals. The authors, therefore, examined whether there was any neuroapoptotic effect of breathing 50% xenon with continuous fentanyl sedation for 24 h at normothermia or hypothermia on newborn pigs. Twenty-six healthy pigs (inhaled xenon with fentanyl at hypothermia (Trec = 33.5 °C), (2) 24 h of 50% inhaled xenon with fentanyl at normothermia (Trec = 38.5 °C), (3) 24 h of fentanyl at normothermia, or (4) nonventilated juvenile controls at normothermia. Five additional nonrandomized pigs inhaled 2% isoflurane at normothermia for 24 h to verify any proapoptotic effect of inhalation anesthetics in our model. Pathological cells were morphologically assessed in cortex, putamen, hippocampus, thalamus, and white matter. To quantify the findings, immunostained cells (caspase-3 and terminal deoxynucleotidyl transferase-mediated deoxyuridine-triphosphate nick-end labeling) were counted in the same brain regions. For groups (1) to (4), the total number of apoptotic cells was less than 5 per brain region, representing normal developmental neuroapoptosis. After immunostaining and cell counting, regression analysis showed that neither 50% xenon with fentanyl nor fentanyl alone increased neuroapoptosis. Isoflurane caused on average a 5- to 10-fold increase of immunostained cells. At normothermia or hypothermia, neither 24 h of inhaled 50% xenon with fentanyl sedation nor fentanyl alone induces neuroapoptosis in the neonatal pig brain. Breathing 2% isoflurane increases neuroapoptosis in neonatal pigs.

  18. Kinetic analysis of hyperpolarized data with minimum a priori knowledge: Hybrid maximum entropy and nonlinear least squares method (MEM/NLS).

    Science.gov (United States)

    Mariotti, Erika; Veronese, Mattia; Dunn, Joel T; Southworth, Richard; Eykyn, Thomas R

    2015-06-01

    To assess the feasibility of using a hybrid Maximum-Entropy/Nonlinear Least Squares (MEM/NLS) method for analyzing the kinetics of hyperpolarized dynamic data with minimum a priori knowledge. A continuous distribution of rates obtained through the Laplace inversion of the data is used as a constraint on the NLS fitting to derive a discrete spectrum of rates. Performance of the MEM/NLS algorithm was assessed through Monte Carlo simulations and validated by fitting the longitudinal relaxation time curves of hyperpolarized [1-(13) C] pyruvate acquired at 9.4 Tesla and at three different flip angles. The method was further used to assess the kinetics of hyperpolarized pyruvate-lactate exchange acquired in vitro in whole blood and to re-analyze the previously published in vitro reaction of hyperpolarized (15) N choline with choline kinase. The MEM/NLS method was found to be adequate for the kinetic characterization of hyperpolarized in vitro time-series. Additional insights were obtained from experimental data in blood as well as from previously published (15) N choline experimental data. The proposed method informs on the compartmental model that best approximate the biological system observed using hyperpolarized (13) C MR especially when the metabolic pathway assessed is complex or a new hyperpolarized probe is used. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc.

  19. Charged particle identification with the liquid Xenon calorimeter of the CMD-3 detector

    Science.gov (United States)

    Ivanov, V. L.; Fedotovich, G. V.; Anisenkov, A. V.; Grebenuk, A. A.; Mikhailov, K. Yu.; Kozyrev, A. A.; Shebalin, V. E.; Ruban, A. A.; Bashtovoy, N. S.

    2017-09-01

    This paper describes a procedure of particle identification with the liquid Xenon calorimeter of the CMD-3 detector currently being developed. The procedure uses the boosted decision tree classification method with specific energy losses of charged particles in the liquid Xenon calorimeter as input variables. The efficiency of the procedure is illustrated by an example of the measurement of the cross section of the process e+e-→K+K- in the center-of-mass energy range from 1.8 to 2.0 GeV.

  20. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Drew; Scime, Earl; Short, Zachary, E-mail: zdshort@mix.wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26056 (United States)

    2016-11-15

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  1. On electron attachment effect on characteristics of the DBD in chlorine and its mixtures with xenon

    Science.gov (United States)

    Avtaeva, S. V.

    2017-11-01

    The electron attachment effect on DBD characteristics in chlorine and its mixtures with xenon has been studied. Characteristics of the DBDs in pure chlorine and in xenon-chlorine mixtures with a chlorine fraction of 0.1-5% were modeled using the fluid model. It is shown that the electron attachment limits a magnitude of the DBD current, contributes to formation of multiple current spikes, appearance of a double layer near the dielectric surface and formation of XeCl* excimer molecules, and leads to a redistribution of the power deposited into the discharge: more power is deposited into ions and less power is deposited into electrons.

  2. Xenon N4,500 Auger spectrum - a useful calibration source

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, T.X.; Bozek, J.D.; Kukk, E.; Myrseth, V.; Saethre, L.J.; Thomas, T.D.; Wiesner, Karoline

    2002-02-06

    In the xenon N4,5OO Auger spectrum there are 19 prominent lines ranging from 8 to 36 eV that provide a convenient set of standards for calibrating electron spectrometers. Combining optical data with recent measurements of this spectrum gives energies for these lines that are absolutely accurate to 11 meV. For most lines the relative accuracy is better than 1 meV; for a few it is about 3 meV. The spin-orbit splitting of the xenon 4d lines is measured to be 1979.0 +- 0.5meV.

  3. 900-L liquid xenon cryogenic system operation for the MEG experiment

    CERN Document Server

    Haruyama, T; Mihara, S; Hisamatsu, Y; Iawamoto, W; Mori, T; Nishiguchi, H; Otani, W; Sawada, R; Uchiyama, Y; Nishitani, T

    2009-01-01

    A cryogenic system for the MEG (muon rare decay) experiment has started operation at the Paul Sherrer Institute in Zurich. The main part of the MEG detector is the 900-L liquid xenon calorimeter for gamma ray detection, equipped with 850 photo multipliers directly immersed in liquid xenon. A 200 W pulse tube cryocooler enabled LN2-free operation of this calorimeter. A liquid purification system; using a liquid pump and a zero boil-off 1000-L cryogenic buffer dewar is also included in the system. The first entire engineering run was carried out in November-December 2007 and satisfactory cryogenic performances were confirmed.

  4. Measuring xenon in human plasma and blood by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Thevis, Mario; Piper, Thomas; Geyer, Hans; Thomas, Andreas; Schaefer, Maximilian S; Kienbaum, Peter; Schänzer, Wilhelm

    2014-07-15

    Due to the favorable pharmacokinetic properties and minimal side effects of xenon, its use in modern anesthesia has been well accepted, and recent studies further demonstrated the intra- and postoperative neuro-, cardio-, and reno-protective action of the noble gas. Since the production of the hypoxia-inducible factor 1α (HIF-1α) and its downstream effector erythropoietin as well as noradrenalin reuptake inhibition have been found to play key roles in this context, the question arose as to whether the use of xenon is a matter for doping controls and preventive doping research. The aim of the present study was hence to evaluate whether the (ab)use of xenon can be detected from doping control samples with the instrumentation commonly available in sports drug testing laboratories. Plasma was saturated with xenon according to reported protocols, and the target analyte was measured by means of gas chromatography/time-of-flight and triple quadrupole mass spectrometry with headspace injection. Recording the accurate mass of three major xenon isotopes at m/z 128.9048, 130.9045 and 131.9042 allowed for the unequivocal identification of the analyte and the detection assay was characterized concerning limit of detection (LOD), intraday precision, and specificity as well as analyte recovery under different storage conditions. Xenon was detected in fortified plasma samples with detection limits of approximately 0.5 nmol/mL to 50 nmol/mL, depending on the type of mass spectrometer used. The method characteristics of intraday precision (coefficient of variation xenon at non-physiological concentrations in human plasma and blood. Eventually, authentic plasma and blood samples collected pre-, intra-, and post-operative (4, 8, and 24 h) were positively analyzed after storage for up to 30 h, and provided proof-of-concept for the developed assay. If relevant to doping controls, xenon can be determined from plasma and blood samples, i.e. common specimens of routine sports

  5. Xenon does not increase heart rate-corrected cardiac QT interval in volunteers and in patients free of cardiovascular disease.

    Science.gov (United States)

    Neukirchen, Martin; Schaefer, Maximilian S; Kern, Carolin; Brett, Sarah; Werdehausen, Robert; Rellecke, Philipp; Reyle-Hahn, Matthias; Kienbaum, Peter

    2015-09-01

    Impaired cardiac repolarization, indicated by prolonged QT interval, may cause critical ventricular arrhythmias. Many anesthetics increase the QT interval by blockade of rapidly acting potassium rectifier channels. Although xenon does not affect these channels in isolated cardiomyocytes, the authors hypothesized that xenon increases the QT interval by direct and/or indirect sympathomimetic effects. Thus, the authors tested the hypothesis that xenon alters the heart rate-corrected cardiac QT (QTc) interval in anesthetic concentrations. The effect of xenon on the QTc interval was evaluated in eight healthy volunteers and in 35 patients undergoing abdominal or trauma surgery. The QTc interval was recorded on subjects in awake state, after their denitrogenation, and during xenon monoanesthesia (FetXe > 0.65). In patients, the QTc interval was recorded while awake, after anesthesia induction with propofol and remifentanil, and during steady state of xenon/remifentanil anesthesia (FetXe > 0.65). The QTc interval was determined from three consecutive cardiac intervals on electrocardiogram printouts in a blinded manner and corrected with Bazett formula. In healthy volunteers, xenon did not alter the QTc interval (mean difference: +0.11 ms [95% CI, -22.4 to 22.7]). In patients, after anesthesia induction with propofol/remifentanil, no alteration of QTc interval was noted. After propofol was replaced with xenon, the QTc interval remained unaffected (417 ± 32 ms vs. awake: 414 ± 25 ms) with a mean difference of 4.4 ms (95% CI, -4.6 to 13.5). Xenon monoanesthesia in healthy volunteers and xenon/remifentanil anesthesia in patients without clinically relevant cardiovascular disease do not increase QTc interval.

  6. Remodeling of hyperpolarization-activated current, Ih, in Ah-type visceral ganglion neurons following ovariectomy in adult rats.

    Directory of Open Access Journals (Sweden)

    Guo-Fen Qiao

    Full Text Available Hyperpolarization-activated currents (Ih mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN channels modulate excitability of myelinated A- and Ah-type visceral ganglion neurons (VGN. Whether alterations in Ih underlie the previously reported reduction of excitability of myelinated Ah-type VGNs following ovariectomy (OVX has remained unclear. Here we used the intact nodose ganglion preparation in conjunction with electrophysiological approaches to examine the role of Ih remodeling in altering Ah-type neuron excitability following ovariectomy in adult rats. Ah-type neurons were identified based on their afferent conduction velocity. Ah-type neurons in nodose ganglia from non-OVX rats exhibited a voltage 'sag' as well as 'rebound' action potentials immediately following hyperpolarizing current injections, which both were suppressed by the Ih blocker ZD7288. Repetitive spike activity induced afterhyperpolarizations lasting several hundreds of milliseconds (termed post-excitatory membrane hyperpolarizations, PEMHs, which were significantly reduced by ZD7288, suggesting that they resulted from transient deactivation of Ih during the preceding spike trains. Ovariectomy reduced whole-cell Ih density, caused a hyperpolarizing shift of the voltage-dependence of Ih activation, and slowed Ih activation. OVX-induced Ih remodeling was accompanied by a flattening of the stimulus frequency/response curve and loss of PEMHs. Also, HCN1 mRNA levels were reduced by ∼30% in nodose ganglia from OVX rats compared with their non-OVX counterparts. Acute exposure of nodose ganglia to 17beta-estradiol partly restored Ih density and accelerated Ih activation in Ah-type cells. In conclusion, Ih plays a significant role in modulating the excitability of myelinated Ah-type VGNs in adult female rats.

  7. Nuclear Medicine

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  8. Xenon-enhanced cerebral blood flow at 28% xenon provides uniquely safe access to quantitative, clinically useful cerebral blood flow information: a multicenter study.

    Science.gov (United States)

    Carlson, A P; Brown, A M; Zager, E; Uchino, K; Marks, M P; Robertson, C; Sinson, G P; Marmarou, A; Yonas, H

    2011-08-01

    Xe-CT measures CBF and can be used to make clinical treatment decisions. Availability has been limited, in part due to safety concerns. Due to improvements in CT technology, the concentration of inhaled xenon gas has been decreased from 32% to 28%. To our knowledge, no data exist regarding the safety profile of this concentration. We sought to better determine the safety profile of this lower concentration through a multicenter evaluation of adverse events reported by all centers currently performing xenon/CT studies in the US. Patients were prospectively recruited at 7 centers to obtain safety and efficacy information. All studies were performed to answer a clinical question. All centers used the same xenon delivery system. CT imaging was used during a 4.3-minute inhalation of 28% xenon gas. Vital signs were monitored on all patients throughout each procedure. Occurrence and severity of adverse events were recorded by the principal investigator at each site. At 7 centers, 2003 studies were performed, 1486 (74.2%) in nonventilated patients. The most common indications were occlusive vascular disease and ischemic stroke; 93% of studies were considered clinically useful. Thirty-nine studies (1.9%) caused respiratory suppression of >20 seconds, all of which resolved spontaneously. Shorter respiratory pauses occurred in 119 (5.9%), and hyperventilation, in 34 (1.7%). There were 53 additional adverse events (2.9%), 7 of which were classified as severe. No adverse event resulted in any persistent neurologic change or other sequelae. Xe-CT CBF can be performed safely, with a very low risk of adverse events and, to date, no risk of permanent morbidity or sequelae. On the basis of the importance of the clinical information gained, Xe-CT should be made widely available.

  9. In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance.

    Science.gov (United States)

    Mishkovsky, Mor; Comment, Arnaud; Gruetter, Rolf

    2012-12-01

    The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undetectable. In particular, it provides direct evidence that transport across the inner mitochondria membrane is rate limiting in the brain. The hyperpolarized magnetic resonance protocol designed for this study opens the way to direct and real-time studies of TCA cycle kinetics.

  10. Assessment of early diabetic renal changes with hyperpolarized [1‐13C]pyruvate

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Østergaard, Jakob Appel; Lauritzen, Mette Hauge

    2013-01-01

    and the control kidneys in vivo. The diabetic kidney showed a 149% increase in the lactate/pyruvate ratio compared with the control rat kidney, whereas the bicarbonate/pyruvate ratio was unchanged between the diabetic and the control rat kidneys, consistent with literature findings. These metabolic findings......This experimental study explores a novel magnetic resonance imaging/spectroscopic (MRI/MRS) method that measures changes in renal metabolism in a diabetic rat model. This hyperpolarized metabolic MRI/MRS method allows monitoring of metabolic processes in seconds by >10 000‐fold enhancement...... of the MR signal. The method has shown that the conversion of pyruvate to bicarbonate, i.e. pyruvate dehydrogenase (PDH) activity, is significantly altered in the myocardium already at the onset of diabetes, and the predominant Warburg effect is a valuable cancer maker via the lactate dehydrogenase (LDH...

  11. Apparent rate constant mapping using hyperpolarized [1-(13) C]pyruvate

    DEFF Research Database (Denmark)

    Khegai, O.; Schulte, R. F.; Janich, M. A.

    2014-01-01

    ) and suppression of high perfusion regions with low conversion (e.g. blood vessels). Apparent build-up rate constant mapping provides a novel quantitative image contrast for the characterization of metabolic activity. Its possible implementation as a quantitative standard will be subject to further studies......-13C]pyruvate. Using temporally resolved IDEAL spiral CSI, spatially resolved apparent rate constant maps are also extracted. In comparison to single metabolite images, apparent build-up rate constant maps provide improved contrast by emphasizing metabolically active tissues (e.g. tumors......Hyperpolarization of [1-13C]pyruvate in solution allows real-time measurement of uptake and metabolism using MR spectroscopic methods. After injection and perfusion, pyruvate is taken up by the cells and enzymatically metabolized into downstream metabolites such as lactate, alanine, and bicarbonate...

  12. Acute renal metabolic effect of metformin treatment assessed with hyperpolarized magnetic resonance imaging

    DEFF Research Database (Denmark)

    Qi, Haiyun; Nielsen, Per Mose; Schroeder, Marie

    2017-01-01

    Metformin is the primary anti-diabetic drug in type-2 diabetes patients. However, controversy exists on its use in patients with renal impairment. Here we investigated the acute metabolic effects of metformin treatment in rat kidneys, with hyperpolarized 13C pyruvate and Clark......-electrodes. A significantly altered metabolic phenotype was observed 30 min post metformin treatment. Anaerobic metabolism was elevated in the cytosol, indicated by increased lactate/pyruvate ratio, and mitochondrial aerobic metabolism was reduced, indicated by decreased bicarbonate/pyruvate ratio. Acute metformin treatment...... increased renal blood flow with higher O2 saturation and did not change tubular O2 consumption. These results indicate that metformin reduces mitochondrial respiration and enhances anaerobic metabolism, even with enough oxygen supply, within only 30 min of treatment....

  13. Hyperpolarized 13 C,15 N2 -urea T2 relaxation changes in acute kidney injury

    DEFF Research Database (Denmark)

    Mariager, Christian Østergaard; Nielsen, Per Mose; Qi, Haiyun

    2017-01-01

    PURPOSE: To investigate the correlation between renal ischemia and 13 C-urea T2 relaxation rate in an acute kidney injury (AKI) rat model. METHODS: Six rats subjected to unilateral renal ischemia were investigated. Creatinine clearance, urine output, plasma creatinine as well as blood-urea nitrogen...... (BUN) values were acquired before and after the procedure. 1 H T2* mapping was acquired using blood oxygenation level dependent (BOLD) MRI and hyperpolarized 13 C-urea T2 mapping was acquired using a 2D golden-angle radial approach. Kidney perfusion was estimated using noncontrast flow alternating...... inversion recovery arterial spin labeling. RESULTS: All rats showed clinical signs of AKI with increased plasma creatinine and increased BUN. Whole kidney 13 C-urea T2 significantly decreased 26% (P = 0.001) 24 h after reperfusion. A significantly different (3.7 times steeper; P = 0.008) osmolality gradient...

  14. Inhibition by enflurane and methoxyflurane of postdrive hyperpolarization in canine Purkinje fibers.

    Science.gov (United States)

    Pratila, M; Vogel, S; Sperelakis, N

    1984-05-01

    When a pacemaker cell is driven with a train of stimuli at a rate faster than its own, the termination of the drive is followed by a transient hyperpolarization, due to the activity of an electrogenic Na+-K+ pump. In this study, the effect of the halogenated ethers, enflurane and methoxyflurane, on postdrive hyperpolarization (PDH) was determined in cardiac Purkinje fibers. The fibers were removed from freshly excised canine hearts and superfused with a Tyrode's solution (containing 2.7 or 3.5 mM K+). The preparation was paced at 0.2 Hz before and after drives, and at 2 Hz during drives. Under control conditions, drives of 2 min produced a PDH of 5.5 +/- 0.2 mV. Enflurane (1.5-5%) significantly reduced the PDH. At 4 to 5%, enflurane reduced the PDH to a mean value of 42% of the control. Methoxyflurane was more potent than enflurane in affecting the PDH. At 0.5 to 0.75%, methoxyflurane reduced the PDH to 5% of the control. At higher (1-1.5%) concentrations of methoxyflurane, the PDH was converted to a depolarization, which varied between 0.5 and 8.0 mV. The PDH was restored to control levels within 10 to 20 min after washout of either anesthetic agent. Methoxyflurane (0.5 or 1%) enhanced the automaticity of spontaneously firing cells (2.35 mM K+ Tyrode's solution used). This positive chronotropic action coincided with a depolarization of 2 to 8 mV. Enflurane, at concentrations of 3 to 5%, gave similar results. On the action potential, methoxyflurane, at 1%, reduced the amplitude and duration (measured at 50% repolarization) of the plateau, and also the maximal upstroke velocity (+Vmax) of the rising phase.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Hyperpolarization-activated cyclic nucleotide-gated channels may contribute to regional anesthetic effects of lidocaine.

    Science.gov (United States)

    Zhou, Cheng; Ke, Bowen; Zhao, Yi; Liang, Peng; Liao, Daqing; Li, Tao; Liu, Jin; Chen, Xiangdong

    2015-03-01

    Local anesthetics (e.g., lidocaine) have been found to inhibit hyperpolarization-activated cyclic nucleotide-gated (HCN) channels besides sodium channels. However, the exact role of HCN channels in regional anesthesia in vivo is still elusive. Sciatic nerve block and intrathecal anesthesia were performed using lidocaine in wild-type and HCN1 channel knockout (HCN1) mice. EC50 of lidocaine and durations of 1% lidocaine were determined. In electrophysiologic recordings, effects of lidocaine on HCN channel currents, voltage-gated sodium channel currents, and neural membrane properties were recorded on dorsal root ganglia neurons. In both sciatic nerve block and intrathecal anesthesia, EC50 of lidocaine for tactile sensory blockade (2 g von Frey fiber) was significantly increased in HCN1 mice, whereas EC50 of lidocaine for pinprick blockade was unaffected. Durations of 1% lidocaine were significantly shorter in HCN1 mice for both sciatic nerve block and intrathecal anesthesia (n = 10). ZD7288 (HCN blocker) could significantly prolong durations of 1% lidocaine including pinprick blockade in sciatic nerve block (n = 10). Forskolin (raising cyclic adenosine monophosphate to enhance HCN2) could significantly shorten duration of pinprick blockade of 1% lidocaine in sciatic nerve block (n = 10). In electrophysiologic recordings, lidocaine could nonselectively inhibit HCN channel and sodium channel currents both in large and in small dorsal root ganglia neurons (n = 5 to 6). Meanwhile, lidocaine caused neural membrane hyperpolarization and increased input resistance of dorsal root ganglia neurons but not in large dorsal root ganglia neurons from HCN1 mice (n = 5-7). These data indicate that HCN channels may contribute to regional anesthetic effects of lidocaine. By inhibiting HCN channels, lidocaine could alter membrane properties of neurons.

  16. Production of krypton and xenon isotopes in thick stony and iron targets isotropically irradiated with 1600 MeV protons

    CERN Document Server

    Gilabert, E; Lavielle, B; Leya, I; Michel, R; Neumann, S

    2002-01-01

    Two spherical targets made of gabbro with a radius of 25 cm and of steel with a radius of 10 cm were irradiated isotropically with 1600 MeV protons at the SATURNE synchrotron at Laboratoire National Saturne (LNS)/CEN Saclay, in order to simulate the production of nuclides in meteorites induced by galactic cosmic-ray protons in space. These experiments supply depth-dependent production rate data for a wide range of radioactive and stable isotopes in up to 28 target elements. In this paper, we report results for /sup 78/Kr, /sup 80-86/Kr isotopes in Rb, Sr, Y and Zr and for /sup 124/Xe, /sup 126/Xe, /sup 128-132/Xe, /sup 134/Xe, /sup 136/Xe isotopes in Ba and La. Krypton and xenon concentrations have been measured at different depths in the spheres by using conventional mass spectrometry. Based on Monte-Carlo techniques, theoretical production rates are calculated by folding depth-dependent spectra of primary and secondary protons and secondary neutrons with the excitation functions of the relevant nuclear reac...

  17. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    Science.gov (United States)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  18. Electron attachment of oxygen in a drift chamber filled with xenon + 10% methane

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Y.; Hayashibara, I.; Ohsugi, T.; Sakanoue, T.; Taketani, A.; Terunuma, N.; Suzuki, Y.; Tsukamoto, A.; Yamamoto, H.; Fukushima, Y.

    1988-06-01

    The existence of O/sub 2/ contamination attenuates the pulse height and degrades its resolution in a drift chamber filled with xenon-methane (90/10) gas. The first measurement of the electron attachment coefficient due to oxygen in such a mixture is reported.

  19. Xenon NMR: Chemical Shifts of a General Anesthetic in Common Solvents, Proteins, and Membranes

    Science.gov (United States)

    Miller, Keith W.; Reo, Nicholas V.; Schoot Uiterkamp, Antonius J. M.; Stengle, Diane P.; Stengle, Thomas R.; Williamson, Kenneth L.

    1981-08-01

    The rare gas xenon contains two NMR-sensitive isotopes in high natural abundance. The nuclide 129Xe has a spin of {textstyle1/2}; 131Xe is quadrupolar with a spin of {textstyle3/2}. The complementary NMR characteristics of these nuclei provide a unique opportunity for probing their environment. The method is widely applicable because xenon interacts with a useful range of condensed phases including pure liquids, protein solutions, and suspensions of lipid and biological membranes. Although xenon is chemically inert, it does interact with living systems; it is an effective general anesthetic. We have found that the range of chemical shifts of 129Xe dissolved in common solvents is ca. 200 ppm, which is 30 times larger than that found for 13C in methane dissolved in various solvents. Resonances were also observed for 131Xe in some systems; they were broader and exhibited much greater relaxation rates than did 129Xe. The use of 129Xe NMR as a probe of biological systems was investigated. Spectra were obtained from solutions of myoglobin, from suspensions of various lipid bilayers, and from suspensions of the membranes of erythrocytes and of the acetylcholine receptor-rich membranes of Torpedo californica. These systems exhibited a smaller range of chemical shifts. In most cases there was evidence of a fast exchange of xenon between the aqueous and organic environments, but the exchange was slow in suspensions of dimyristoyl lecithin vesicles.

  20. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C.

    2015-01-01

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our

  1. Safety and efficacy of xenon in routine use as an inhalational anaesthetic

    NARCIS (Netherlands)

    B.F. Lachmann (Burkhard); S. Armbruster (S.); W. Schairer (W.); A.M. Landstra (A. M.); A. Trouwborst (Adrianus); G.J. van Daal; A. Kusuma (Ari); W. Erdmann (Wilhelm)

    1990-01-01

    markdownabstractAbstract 40 patients (24 male, 16 female, aged 21-59 years) of American Society of Anesthesiologists class I or II who were undergoing routine surgery took part in a randomised, double-blind comparison of the anaesthetic efficacy and potency of xenon and nitrous oxide and their

  2. Reflectance measurements of PTFE, Kapton, and PEEK for xenon scintillation light for the LZ detector.

    Science.gov (United States)

    Arthurs, M.; Batista, E.; Haefner, J.; Lorenzon, W.; Morton, D.; Neff, A.; Okunawo, M.; Pushkin, K.; Sander, A.; Stephenson, S.; Wang, Y.; LZ Collaboration

    2017-01-01

    LZ (LUX-Zeplin) is an international collaboration that will look for dark matter candidates, WIMPs (Weakly Interacting Massive Particles), through direct detection by dual-phase time projection chamber (TPC) using liquid xenon. The LZ detector will be located nearly a mile underground at SURF, South Dakota, shielded from cosmic background radiation. Seven tons active mass of liquid xenon will be used for detecting the weak interaction of WIMPs with ordinary matter. Over three years of operation it is expected to reach the ultimate sensitivity of 2x10-48 cm2 for a WIMP mass of 50 GeV. As for many other rare event searches, high light collection efficiency is essential for LZ detector. Moreover, in order to achieve greater active volume for detection as well as reduce potential backgrounds, thinner detector walls without significant loss in reflectance are desired. Reflectance measurements of polytetrafluoroethylene (PTFE), Kapton, and PEEK for xenon scintillation light (178 nm), conducted at the University of Michigan using the Michigan Xenon Detector (MiX) will be presented. The University of Michigan, LZ Collaboration, The US Department of Energy.

  3. Evaluation of hemodynamic effects of xenon in dogs undergoing hemorrhagic shock.

    Science.gov (United States)

    Franceschi, Ruben C; Malbouisson, Luiz; Yoshinaga, Eduardo; Auler, Jose Otavio Costa; Figueiredo, Luiz Francisco Poli de; Carmona, Maria Jose C

    2013-01-01

    The anesthetic gas xenon is reported to preserve hemodynamic stability during general anesthesia. However, the effects of the gas during shock are unclear. The objective of this study was to evaluate the effect of Xe on hemodynamic stability and tissue perfusion in a canine model of hemorrhagic shock. Twenty-six dogs, mechanically ventilated with a fraction of inspired oxygen of 21% and anesthetized with etomidate and vecuronium, were randomized into Xenon (Xe; n = 13) or Control (C; n = 13) groups. Following hemodynamic monitoring, a pressure-driven shock was induced to reach an arterial pressure of 40 mmHg. Hemodynamic data and blood samples were collected prior to bleeding, immediately after bleeding and 5, 20 and 40 minutes following shock. The Xe group was treated with 79% Xe diluted in ambient air, inhaled for 20 minutes after shock. The mean bleeding volume was 44 mL.kg-1 in the C group and 40 mL.kg-1 in the Xe group. Hemorrhage promoted a decrease in both the cardiac index (pInhalation of xenon did not cause further worsening of hemodynamics or tissue perfusion markers. Xenon did not alter hemodynamic stability or tissue perfusion in an experimentally controlled hemorrhagic shock model. However, further studies are necessary to validate this drug in other contexts.

  4. Xenon protects left ventricular diastolic function during acute ischemia, less than ischemic preconditioning

    Directory of Open Access Journals (Sweden)

    Jan H Baumert

    2016-01-01

    Full Text Available Anesthetics modify regional left ventricular (LV dysfunction following ischemia/reperfusion but their effects on global function in this setting are less clear. Aim of this study was to test the hypothesis that xenon would limit global LV dysfunction as caused by acute anterior wall ischemia, comparable to ischemic preconditioning. In an open-chest model under thiopental anesthesia, 30 pigs underwent 60-minute left anterior descending coronary artery occlusion, followed by 120 minutes of reperfusion. A xenon group (constant inhalation from previous to ischemia through end of reperfusion was compared to control and ischemic preconditioning. Load-independent measures of diastolic function (end-diastolic pressure-volume relation, time constant of relaxation and systolic function (end-systolic pressure-volume relation, preload-recruitable stroke work were determined. Heart rate, arterial pressure, cardiac output, and arterial elastance were recorded. Data were compared in 26 pigs. Ischemia impaired global diastolic but not systolic function in control, which recovered during reperfusion. Xenon limited and preconditioning abolished diastolic dysfunction during ischemia. Arterial pressure decreased during reperfusion while arterial elastance increased. Tachycardia and antero-septal wall edema during reperfusion were observed in all groups. In spite of ischemia of 40% of LV mass, global systolic function was preserved. Deterioration in global diastolic function was limited by xenon and prevented by preconditioning.

  5. Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations

    Science.gov (United States)

    Gilligan, Patrick; Tomsik, Thomas

    2016-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  6. Attosecond streaking of shake-up and Auger electrons in xenon

    Directory of Open Access Journals (Sweden)

    Drescher M.

    2013-03-01

    Full Text Available We present first results of simultaneous attosecond streaking measurements of shake-up electrons and Auger electrons emitted from xenon. We extract relative photo-emission delays for electrons emitted from the 4d, 5s and 5p subshell, as well as for the 5p−25d correlation satellite (shake-up electrons.

  7. Tissue/blood partition coefficients for xenon in various adipose tissue depots in man

    DEFF Research Database (Denmark)

    Bülow, J; Jelnes, Rolf; Astrup, A

    1987-01-01

    Tissue/blood partition coefficients (lambda) for xenon were calculated for subcutaneous adipose tissue from the abdominal wall and the thigh, and for the perirenal adipose tissue after chemical analysis of the tissues for lipid, water and protein content. The lambda in the perirenal tissue...

  8. XAMS - development of liquid xenon detector technology for dark matter searches

    NARCIS (Netherlands)

    Schön, R.

    2015-01-01

    One of the most promising detector technologies to directly detect weakly interacting massive particle (WIMP) dark matter are time projection chambers (TPCs) filled with dual-phase (liquid and gaseous) xenon. The hypothetical WIMP could scatter with atoms in the liquid and the transferred recoil

  9. Clearance of xenon-133 from bone marrow in patients with small-cell lung cancer

    DEFF Research Database (Denmark)

    Petersen, L J; Friberg, L; Jensen, J

    1991-01-01

    with the xenon-133 washout technique. The 133Xe clearance measurement took place in conjunction with the pre-treatment bone-marrow staging procedure (ad modern Radner). Tissue samples were taken for microscopy and for the determination of the blood-to-tissue partition coefficient lambda. After the bone...

  10. Measurement of radon and xenon binding to a cryptophane molecular host

    Science.gov (United States)

    Jacobson, David R.; Khan, Najat S.; Collé, Ronald; Fitzgerald, Ryan; Laureano-Pérez, Lizbeth; Bai, Yubin; Dmochowski, Ivan J.

    2011-01-01

    Xenon and radon have many similar properties, a difference being that all 35 isotopes of radon (195Rn–229Rn) are radioactive. Radon is a pervasive indoor air pollutant believed to cause significant incidence of lung cancer in many geographic regions, yet radon affinity for a discrete molecular species has never been determined. By comparison, the chemistry of xenon has been widely studied and applied in science and technology. Here, both noble gases were found to bind with exceptional affinity to tris-(triazole ethylamine) cryptophane, a previously unsynthesized water-soluble organic host molecule. The cryptophane–xenon association constant, Ka = 42,000 ± 2,000 M-1 at 293 K, was determined by isothermal titration calorimetry. This value represents the highest measured xenon affinity for a host molecule. The partitioning of radon between air and aqueous cryptophane solutions of varying concentration was determined radiometrically to give the cryptophane–radon association constant Ka = 49,000 ± 12,000 M-1 at 293 K. PMID:21690357

  11. Linear and nonlinear effects at low energy ion bombardment of solid xenon

    DEFF Research Database (Denmark)

    Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen

    1996-01-01

    Elastic sputtering of crystalline xenon by 20-750 eV Xe ions has been studied with molecular dynamics. The nonlinear effects are dominant at 250 eV ion bombardment. They result in a partly amorphization of the impact volume as well as in a considerable reduction of the surface binding energy...

  12. An exciting prospect: Detecting inelastic transitions of xenon caused by dark matter

    NARCIS (Netherlands)

    McCabe, C.

    2016-01-01

    Dark matter can scatter and excite the xenon isotopes 129Xe and 131Xe to a low-lying excitation in a direct detection experiment. This signature is distinct from the canonical elastic scattering signal because the inelastic signal also contains the energy deposited from the subsequent prompt

  13. Performance analysis of photoresistor and phototransistor for automotive’s halogen and xenon bulbs light output

    Science.gov (United States)

    Rammohan, A.; Kumar, C. Ramesh

    2017-11-01

    Illumination of any light is measured using a different kind of calibrated equipment’s available in the market such as a goniometer, spectral radiometer, photometer, Lux meter and camera based systems which directly display the illumination of automotive headlights light distribution in the unit of lux, foot-candles, lumens/sq. ft. and Lambert etc., In this research, we dealt with evaluating the photo resistor or Light Dependent Resistor (LDR) and phototransistor whether it is useful for sensing light patterns of Automotive Halogen and Xenon bulbs. The experiments are conducted during night hours under complete dark space. We have used the headlamp setup available in TATA SUMO VICTA vehicle in the Indian market and conducted the experiments separately for Halogen and Xenon bulbs under low and high beam operations at various degrees and test points within ten meters of distance. Also, we have compared the light intensity of halogen and xenon bulbs to prove the highest light intensity between halogen and Xenon bulbs. After doing a rigorous test with these two sensors it is understood both are good to sensing beam pattern of automotive bulbs and even it is good if we use an array of sensors or a mixed combination of sensors for measuring illumination purposes under perfect calibrations.

  14. Xenon protects left ventricular diastolic function during acute ischemia, less than ischemic preconditioning.

    Science.gov (United States)

    Baumert, Jan-H; Roehl, Anna B; Funcke, Sandra; Hein, Marc

    2016-01-01

    Anesthetics modify regional left ventricular (LV) dysfunction following ischemia/reperfusion but their effects on global function in this setting are less clear. Aim of this study was to test the hypothesis that xenon would limit global LV dysfunction as caused by acute anterior wall ischemia, comparable to ischemic preconditioning. In an open-chest model under thiopental anesthesia, 30 pigs underwent 60-minute left anterior descending coronary artery occlusion, followed by 120 minutes of reperfusion. A xenon group (constant inhalation from previous to ischemia through end of reperfusion) was compared to control and ischemic preconditioning. Load-independent measures of diastolic function (end-diastolic pressure-volume relation, time constant of relaxation) and systolic function (end-systolic pressure-volume relation, preload-recruitable stroke work) were determined. Heart rate, arterial pressure, cardiac output, and arterial elastance were recorded. Data were compared in 26 pigs. Ischemia impaired global diastolic but not systolic function in control, which recovered during reperfusion. Xenon limited and preconditioning abolished diastolic dysfunction during ischemia. Arterial pressure decreased during reperfusion while arterial elastance increased. Tachycardia and antero-septal wall edema during reperfusion were observed in all groups. In spite of ischemia of 40% of LV mass, global systolic function was preserved. Deterioration in global diastolic function was limited by xenon and prevented by preconditioning.

  15. A liquid hydrogen target for the calibration of the MEG and MEG II liquid xenon calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, G., E-mail: giovanni.signorelli@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bemporad, C.; Cei, F.; Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Galli, L.; Gallucci, G.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Papa, A. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Sergiampietri, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Venturini, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2016-07-11

    We designed, built and operated a liquid hydrogen target for the calibration of the liquid xenon calorimeter of the MEG experiment. The target was used throughout the entire data taking period, from 2008 to 2013 and it is being refurbished and partly re-designed to be integrated and used in the MEG-II experiment.

  16. Cerebral blood flow in acute and chronic ischemic stroke using xenon-133 inhalation tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Paulson, O B; Lassen, N A

    1986-01-01

    Serial measurements of cerebral blood flow (CBF) were performed in 12 patients with acute symptoms of ischemic cerebrovascular disease. CBF was measured by xenon-133 inhalation and single photon emission computer tomography. Six patients had severe strokes and large infarcts on the CT scan...

  17. Crystallographic studies with xenon and nitrous oxide provide evidence for protein-dependent processes in the mechanisms of general anesthesia.

    Science.gov (United States)

    Abraini, Jacques H; Marassio, Guillaume; David, Helene N; Vallone, Beatrice; Prangé, Thierry; Colloc'h, Nathalie

    2014-11-01

    The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein-gas interactions. To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins. Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other's effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites. These data demonstrate that xenon and nitrous oxide obey different binding mechanisms, a finding that argues against all unitary hypotheses of narcosis and anesthesia, and indicate that the Meyer-Overton rule of a high correlation between anesthetic potency and solubility in lipids of general anesthetics is often overinterpreted. This study provides evidence that the mechanisms of gas binding to proteins and therefore of general anesthesia should be considered as the result of a fully reversible interaction between a drug ligand and a receptor as this occurs in classical pharmacology.

  18. Quantitative analysis of dynamic airway changes after methacholine and salbutamol inhalation on xenon-enhanced chest CT.

    Science.gov (United States)

    Park, Sang Joon; Lee, Chang Hyun; Goo, Jin Mo; Kim, Jong Hyo; Park, Eun-Ah; Jung, Jae-Woo; Park, Heung-Woo; Cho, Sang-Heon

    2012-11-01

    To investigate the dynamic changes in airways in response to methacholine and salbutamol inhalation and to correlate the xenon ventilation index on xenon-enhanced chest CTs in asthmatics. Thirty-one non-smokers (6 normal, 25 asthmatics) underwent xenon-enhanced chest CT and pulmonary function tests. Images were obtained at three stages (basal state, after methacholine inhalation and after salbutamol inhalation), and the total xenon ventilation index (TXVI) as well as airway values were measured and calculated. The repeated measures ANOVA and Spearman's correlation coefficient were used for statistical analysis. TXVI in the normal group did not significantly change (P > 0.05) with methacholine and salbutamol. For asthmatics, however, the TXVI significantly decreased after methacholine inhalation and increased after salbutamol inhalation (P inhalation in all airways (P inhalation (P > 0.05). IA of the large airways was well correlated with basal TXVI, FEV(1) and FVC (P inhalation, and correlates well with TXVI in asthmatics on xenon-enhanced CT. • In asthmatics, xenon ventilation decreases after methacholine and increases after salbutamol inhalation. • Inner airway area (IA) correlates well with xenon ventilation. • IA is the most reliable parameter reflecting airway changes in drug responses.

  19. Pretreatment with xenon protected immature rabbit heart from ischaemia/reperfusion injury by opening of the mitoKATP channel.

    Science.gov (United States)

    Li, Qian; Lian, Chunwei; Zhou, Ronghua; Li, Tao; Xiang, Xujin; Liu, Bin

    2013-04-01

    The noble gas anaesthetic, xenon has previously been shown to protect the adult myocardium from ischaemia/reperfusion (I/R) injury, however its effect on immature myocardium is unclear. The aim of this study was to investigate the effect of xenon on the isolated immature heart. Isolated, immature (2-3weeks old) New Zealand rabbit hearts were perfused with Krebs-Henseleit buffer via Langendorff-mode. After 20min of baseline equilibration, hearts were pretreated with 75% xenon, 75% xenon+100μM diazoxide, or 75% xenon+100μM 5-hydroxydecanoate, and then subjected to 1h of global ischaemia and 3h of reperfusion. Pretreatment with 75% xenon significantly improved cardiac function (Pxenon pretreatment (1.37±0.16, Pxenon, but the specific mitoKATP channel blocker 5-hydroxydecanoate completely abolished this effect. Our study demonstrated that pretreatment with 75% xenon protected immature heart from I/R injury, and this protection was probably mediated by preservation of myocardial mitochondria and opening of mitoKATP channel. Copyright © 2012 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  20. Imaging of ventilation with dual-energy CT during breath hold after single vital-capacity inspiration of stable xenon.

    Science.gov (United States)

    Honda, Norinari; Osada, Hisato; Watanabe, Wataru; Nakayama, Mitsuo; Nishimura, Keiichiro; Krauss, Bernhard; Otani, Katharina

    2012-01-01

    To assess single-breath-hold technique for ventilation mapping by using dual-energy computed tomography (CT) in phantom experiments and volunteers. Institutional review board approved this study, and written informed consent was obtained from all volunteers. A rubber bag filled with a mixture of xenon (0%-35.4%) and oxygen was scanned with dual-source dual-energy CT (80 kV and 140 kV with tin [Sn] filter [Sn/140 kV] and 100 kV and Sn/140 kV). A cylinder containing six tubes of identical sizes with different apertures was ventilated once with a mixture of 35% xenon and 65% oxygen and was scanned in dual-energy mode (80 kV and Sn/140 kV). Xenon-enhanced images were derived by using three-material decomposition technique. Four volunteers were scanned twice in dual-energy mode (80 kV and Sn/140 kV) during breath hold after a single vital-capacity inspiration of air (nonenhanced) and of 35% xenon. Xenon-enhanced images were obtained by using two methods: three-material decomposition and subtraction of nonenhanced from xenon-enhanced images. Regression analysis with t and F tests was applied to the data of the rubber bag scans, with the significance level set at .05. Mean pixel values of gas in the bag were linearly related to xenon concentration for all x-ray tube voltages (r(2) = 1.00, P lungs of healthy volunteers, with higher pixel values in the trachea and lower pixel values in the bullae. Xenon-enhanced images calculated by using three-material decomposition had better image quality on visual comparison than those calculated by using subtraction. Xenon-enhanced dual-energy CT with the single-breath-hold technique could depict ventilation in phantoms and in four volunteers. © RSNA, 2011.

  1. Xenon-enhanced dual-energy CT of patients with asthma: dynamic ventilation changes after methacholine and salbutamol inhalation.

    Science.gov (United States)

    Kim, Won Wha; Lee, Chang Hyun; Goo, Jin Mo; Park, Sang Joon; Kim, Jong Hyo; Park, Eun-Ah; Cho, Sang-Heon

    2012-11-01

    The purpose of this study was to evaluate the use of xenon-enhanced dual-energy CT of the chest to assess ventilation changes after methacholine and salbutamol inhalation in subjects with asthma and healthy subjects. Twenty-five subjects with asthma and 10 healthy subjects underwent three-phase (basal, after methacholine inhalation, after salbutamol inhalation) xenon-enhanced chest CT. Each phase was composed of wash-in and washout scans. For visual analysis, two radiologists evaluated ventilation defects and gas trapping lobe by lobe on a 10-point scale. Total ventilation defect and gas trapping scores were calculated by adding ventilation defect and gas trapping scores. Xenon and total lung volume were quantified automatically. Total xenon concentration index was calculated as total xenon concentration divided by lung volume. Repeated measures analysis of variance and Student t test were used for comparisons of total ventilation defect score, total gas trapping score, and total xenon concentration index between the two groups. The Friedman test was used for within-group analysis. In the basal state, subjects with asthma had a higher total ventilation defect score (p = 0.004) and higher total gas trapping score (p = 0.05) than did healthy subjects. On washout images, total ventilation defect score, total gas trapping score, and total xenon concentration index after methacholine and salbutamol inhalation were statistically different between the two groups (p xenon concentration index on wash-in images was not significantly different between the two groups. In within-group analysis, total ventilation defect score and total gas trapping score in subjects with asthma and total ventilation defect score in healthy subjects increased significantly after methacholine inhalation and decreased significantly after salbutamol inhalation (p Xenon-enhanced chest CT may be a useful technique for visualizing dynamic changes in airflow in response to methacholine and salbutamol

  2. Assessment of real-time myocardial uptake and enzymatic conversion of hyperpolarized [1-¹³C]pyruvate in pigs using slice selective magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Menichetti, Luca; Frijia, Francesca; Flori, Alessandra

    2012-01-01

    . We applied a numerical approach for spectral analysis and kinetic fitting (LSFIT/KIMOfit), making a comparison with a well-known jMRUI/AMARES analysis and γ-variate function, and we estimated the apparent conversion rate of hyperpolarized [1-¹³C]pyruvate into its downstream metabolites [1-¹³C......Hyperpolarization of ¹³C-labeled energy substrates enables the noninvasive detection and mapping of metabolic activity, in vivo, with magnetic resonance spectroscopy (MRS). Therefore, hyperpolarization and ¹³C MRS can potentially become a powerful tool to study the physiology of organs...... such as the heart, through the quantification of kinetic patterns under both normal and pathological conditions. In this study we assessed myocardial uptake and metabolism of hyperpolarized [1-¹³C]pyruvate in anesthetized pigs. Pyruvate metabolism was studied at baseline and during dobutamine-induced stimulation...

  3. Laser-polarized xenon-129 magnetic resonance spectroscopy and imaging. The development of a method for in vivo perfusion measurement

    Science.gov (United States)

    Rosen, Matthew Scot

    2001-07-01

    This thesis presents in vivo nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) studies with laser-polarized 129Xe delivered to living rats by inhalation and transported to tissue via blood flow. The results presented herein include the observation, assignment, and dynamic measurement of 129Xe resonances in the brain and body, the first one- and two-dimensional chemical-shift-resolved images of 129Xe in blood, tissue, and gas in the thorax, and the first images of 129Xe in brain tissue. These results establish that laser-polarized 129Xe can be used as a magnetic resonance tracer in vivo. NMR resonances at 0, 191, 198, and 209 ppm relative to the 129 Xe gas resonance are observed in the rat thorax and assigned to 129Xe in gas, fat, tissue, and blood respectively. Resonances at 189, 192, 195, 198, and 209 ppm are observed in the brain, and the 195 and 209 ppm resonances are assigned to 129Xe in grey matter, and blood, respectively. The design and construction of a laser-polarized 129Xe production and delivery system is described. This system produces liter-volumes of laser- polarized 129Xe by spin-exchange optical- pumping. It represented an order of magnitude increase over previously reported production volumes of polarized 129Xe. At approximately 3-7% polarization, 157 cc-atm of xenon is produced and stored as ice every 5 minutes. This reliable, effective, and simple production method for large volumes of 129Xe can be applied to other areas of research involving the use of laser-polarized noble gases. A model of the in vivo transport of laser polarized 129Xe to tissue under realistic experimental NMR conditions is described. Appropriate control of the NMR parameters is shown to allow tissue perfasion and 129Xe tissue T1 to be extracted from measurement of the steady-state 129Xe tissue signal. In vivo rodent 129Xe NMR results are used to estimate the signal-to-noise ratio of this technique, and an inhaled 30% xenon/70% O2 mixture polarized to 5

  4. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon: Results of a preliminary study.

    Science.gov (United States)

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results.Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon-oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images.Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects.Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected

  5. Retinal endoilluminator toxicity of xenon and light-emitting diode (LED) light source: rabbit model.

    Science.gov (United States)

    Aydin, Bahri; Dinç, Erdem; Yilmaz, S Necat; Altiparmak, U Emrah; Yülek, Fatma; Ertekin, Sevda; Yilmaz, Mustafa; Yakın, Mehmet

    2014-09-01

    This study evaluates retinal toxicity due to endoillumination with the light-emitting diode (LED) light source in comparison to endoillumination with xenon light source. Twenty-five eyes of 14 New Zealand pigmented rabbits were used in the study. The LED light (Omesis Medical Systems, Turkey) group was composed of 7 right eyes, while the other 7 right eyes constituted the xenon group (420 nm filter, 357mW/cm(2)) (Bright Star; DORC, Zuidland, Netherlands). Eleven untreated left eyes composed the control group. Twenty gauge pars plana incision 1.5 mm behind the limbus was performed in the right eyes. Twenty gauge bullet type fiberoptic endoilluminator was inserted into the eye from the incision without any pars plana vitrectomy. Fiberoptic endoilluminator was placed in such a way that it was directed toward visual streak of the rabbit retina with a 5 mm distance to retinal surface. Endoillumination was then applied for 20 min with a maximum light intensity for LED and xenon light. In left control eyes, no surgical procedure and no endoillumination were performed. One week after the endoillumination procedure, both eyes of the rabbits were enucleated following electroretinography. Sections stained with hematoxylin and eosin to evaluate morphologic changes. Retina tissues were assessed by active caspase-3 staining. There was no difference in the shape of the waveforms recorded in the eyes endoilluminated with LED light and xenon light sources compared to control eyes both before and after endoillumination application (p > 0.05). Microscopic evaluation of the retinas with hematoxylin and eosin staining demonstrated that all study groups have normal histologic properties similar to control group. No apoptosis positive cells were found within all sections in all groups. When the LED light source is used with maximum power and limited duration for endoillumination in rabbit eyes it does not produce phototoxic effects that may be detectable by electrophysiology

  6. Xenon and isoflurane reduce left ventricular remodeling after myocardial infarction in the rat.

    Science.gov (United States)

    Roehl, Anna B; Funcke, Sandra; Becker, Michael M; Goetzenich, Andreas; Bleilevens, Christian; Rossaint, Rolf; Steendijk, Paul; Hein, Marc

    2013-06-01

    Xenon and isoflurane are known to have cardioprotective properties. We tested the hypothesis that these anesthetics positively influence myocardial remodeling 28 days after experimental perioperative myocardial infarction and compared their effects. A total of 60 male Sprague-Dawley rats were subjected to 60 min of coronary artery occlusion and 120 min of reperfusion. Prior to ischemia, the animals were randomized for the different narcotic regimes (0.6 vol% isoflurane, 70 vol% xenon, or intraperitoneal injection of s-ketamine). Acute injury was quantified by echocardiography and troponin I. After 4 weeks, left ventricular function was assessed by conductance catheter to quantify hemodynamic compromise. Cardiac remodeling was characterized by quantification of dilatation, hypertrophy, fibrosis, capillary density, apoptosis, and expression of fetal genes (α/β myosin heavy chains, α-skeletal actin, periostin, and sarco/endoplasmic reticulum Ca2+-ATPase). Whereas xenon and isoflurane impeded the acute effects of ischemia-reperfusion on hemodynamics and myocardial injury at a comparable level, differences were found after 4 weeks. Xenon in contrast to isoflurane or ketamine anesthetized animals demonstrated a lower remodeling index (0.7 ± 0.1 vs. 0.9 ± 0.3 and 1.0 ± 0.3g/ml), better ejection fraction (62 ± 9 vs. 49 ± 7 and 35 ± 6%), and reduced expression of β-myosin heavy chain and periostin. The effects on hypertrophy, fibrosis, capillary density, and apoptosis were comparable. Compared to isoflurane and s-ketamine, xenon limited progressive adverse cardiac remodeling and contractile dysfunction 28 days after perioperative myocardial infarction.

  7. Establishment of a porcine right ventricular infarction model for cardioprotective actions of xenon and isoflurane.

    Science.gov (United States)

    Hein, M; Roehl, A B; Baumert, J H; Bantes, B; Bleilevens, C; Bernstein, N; Steendijk, P; Rossaint, R

    2008-10-01

    Right ventricular (RV) function is an important determinant of post-operative outcome. Consequences of RV infarction might be limited by pre-conditioning with volatile anesthetic drugs. Therefore, we used a porcine model of RV ischemia and reperfusion (IR) injury to study the influence of isoflurane and xenon on the extent and degree of myocardial injury. IR injury was induced by a 90-min ligation of the distal right coronary artery and 120-min reperfusion in thiopental anesthetized pigs. A control group (n=12) was compared with two groups, which received either 0.55 minimum alveolar concentration (MAC) isoflurane (n=10) or xenon (n=12) starting 60 min before ischemia. Myocardial injury was described by three criteria: the infarct size related to area at risk (IS/AAR), the infiltration of neutrophils as determined by myeloperoxidase (MPO) activity, and the plasma levels of tumor necrosis factor alpha (TNFalpha), interleukin 6 (IL-6), myoglobin and troponin-T (TnT). IS/AAR was reduced from 58.3+/-6.2% in the control group to 41.8+/-7.8% after isoflurane and 42.7+/-8.5% after xenon pre-treatment, which equals an absolute reduction of 16.5% [95% confidence interval (CI): 10.9-22.1] and 15.5% (95% CI: 10.1-20.9). The maximum increase of TnT could be observed within the xenon group. Both treatment groups were characterized by lower MPO activity, in the infarct and periinfarct region and lower plasma concentrations of TNFalpha and IL-6. It could be demonstrated for the first time in a model of RV infarction that the continuous application of isoflurane or xenon before, during and after ischemia reduced the extent (size) and severity (inflammation) of myocardial injury.

  8. Suppression of spikes during posttetanic hyperpolarization in auditory neurons: the role of temperature, Ih currents, and the Na+-K+-ATPase pump

    OpenAIRE

    Kim, Jun Hee; von Gersdorff, Henrique

    2012-01-01

    In vivo recordings from postsynaptic neurons in the medial nucleus of the trapezoid body (MNTB), an auditory brain stem nucleus, show that acoustic stimulation produces a burst of spikes followed by a period of hyperpolarization and suppressed spiking activity. The underlying mechanism for this hyperpolarization and reduced spiking is unknown. Furthermore, the mechanisms that control excitability and resting membrane potential are not fully determined for these MNTB neurons. In this study we ...

  9. Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells.

    Science.gov (United States)

    Soto-Cerrato, Vanessa; Manuel-Manresa, Pilar; Hernando, Elsa; Calabuig-Fariñas, Silvia; Martínez-Romero, Alicia; Fernández-Dueñas, Víctor; Sahlholm, Kristoffer; Knöpfel, Thomas; García-Valverde, María; Rodilla, Ananda M; Jantus-Lewintre, Eloisa; Farràs, Rosa; Ciruela, Francisco; Pérez-Tomás, Ricardo; Quesada, Roberto

    2015-12-23

    Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.

  10. How the signal‐to‐noise ratio influences hyperpolarized 13C dynamic MRS data fitting and parameter estimation

    DEFF Research Database (Denmark)

    Santarelli, Maria Filomena; Positano, Vincenzo; Giovannetti, Giulio

    2012-01-01

    signals with low signal‐to‐noise ratio (SNR). The relationship between SNR and the precision of quantitative analysis for the evaluation of the in vivo kinetic behavior of metabolites is unknown. In this article, this topic is addressed by Monte Carlo simulations, covering the problem of MRS signal model......MRS of hyperpolarized 13C‐labeled compounds represents a promising technique for in vivo metabolic studies. However, robust quantification and metabolic modeling are still important areas of investigation. In particular, time and spatial resolution constraints may lead to the analysis of MRS...... parameter estimation, with strong emphasis on the peak amplitude and kinetic model parameters. The results of Monte Carlo simulation were confirmed by in vivo experiments on medium‐sized animals injected with hyperpolarized [1‐13C]pyruvate. The results of this study may be useful for the establishment...

  11. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Yang, Dong Hyun; Seo, Joon Beom; Chae, Eun Jin; Lee, Jeongjin [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-gu, Seoul (Korea); Hong, Soo-Jong; Yu, Jinho; Kim, Byoung-Ju [University of Ulsan College of Medicine, Department of Pediatrics, Asan Medical Center, Seoul (Korea); Krauss, Bernhard [Siemens Medical Solutions AG-Computed Tomography, Forchheim (Germany)

    2010-09-15

    Xenon ventilation CT using dual-source and dual-energy technique is a recently introduced, promising functional lung imaging method. To expand its clinical applications evidence of additional diagnostic value of xenon ventilation CT over conventional chest CT is required. To evaluate the usefulness of xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans (BO). Seventeen children (age 7-18 years; 11 boys) with BO underwent xenon ventilation CT using dual-source and dual-energy technique. Xenon and CT density values were measured in normal and hyperlucent lung regions on CT and were compared between the two regions. Volumes of hyperlucent regions and ventilation defects were calculated with thresholds determined by visual and histogram-based analysis. Indexed volumes of hyperlucent lung regions and ventilation defects were correlated with pulmonary function test results. Effective doses of xenon CT were calculated. Xenon (14.6 {+-} 6.4 HU vs 26.1 {+-} 6.5 HU; P < 0.001) and CT density (-892.8 {+-} 25.4 HU vs -812.3 {+-} 38.7 HU; P < 0.001) values were significantly lower in hyperlucent regions than in normal lung regions. Xenon and CT density values showed significant positive correlation for the entire lung in 16 children ({gamma} = 0.55 {+-} 0.17, P < 0.001 or =0.017) and for hyperlucent regions in 13 children ({gamma} = 0.44 {+-} 0.16, P < 0.001 or =0.001-0.019). Indexed volumes and volume percentages of hyperlucent lung regions and ventilation defects showed strong negative correlations with forced expiratory volume [FEV1, ({gamma} = -0.64-0.85, P {<=} 0.006)], FEV1/forced vital capacity [FVC, ({gamma} = -0.63-0.84, P {<=} 0.008)], and forced midexpiratory flow rate [FEF{sub 25-75}, ({gamma} = -0.68-0.88, P {<=} 0.002). Volume percentages of xenon ventilation defects (35.0 {+-} 16.4%)] were not significantly different from those of hyperlucent lung regions (38.2 {+-} 18.6%). However, mismatches between the

  12. Hyperpolarization of the Membrane Potential Caused by Somatostatin in Dissociated Human Pituitary Adenoma Cells that Secrete Growth Hormone

    Science.gov (United States)

    Yamashita, Naohide; Shibuya, Naohiko; Ogata, Etsuro

    1986-08-01

    Membrane electrical properties and the response to somatostatin were examined in dissociated human pituitary adenoma cells that secrete growth hormone (GH). Under current clamp condition with a patch electrode, the resting potential was -52.4 ± 8.0 mV, and spontaneous action potentials were observed in 58% of the cells. Under voltage clamp condition an outward K+ current, a tetrodotoxin-sensitive Na+ current, and a Ca2+ current were observed. Cobalt ions suppressed the Ca2+ current. The threshold of Ca2+ current activation was about -60 mV. Somatostatin elicited a membrane hyperpolarization associated with increased membrane permeability in these cells. The reversal potential of somatostatin-induced hyperpolarization was -78.4 ± 4.3 mV in 6 mM K+ medium and -97.2 ± 6.4 mV in 3 mM K+ medium. These reversal potential values and a shift with the external K+ concentration indicated that membrane hyperpolarization was caused by increased permeability to K+. The hyperpolarized membrane potential induced by somatostatin was -63.6 ± 5.9 mV in the standard medium. This level was subthreshold for Ca2+ and Na+ currents and was sufficient to inhibit spontaneous action potentials. Hormone secretion was significantly suppressed by somatostatin and cobalt ions. Therefore, we suggest that Ca2+ entering the cell through voltage-dependent channels are playing an important role for GH secretion and that somatostatin suppresses GH secretion by blocking Ca2+ currents. Finally, we discuss other possibilities for the inhibitory effect of somatostatin on GH secretion.

  13. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels.

    Science.gov (United States)

    Sartiani, Laura; Mannaioni, Guido; Masi, Alessio; Novella Romanelli, Maria; Cerbai, Elisabetta

    2017-10-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Nuclear-electric propulsion - Manned Mars propulsion options

    Science.gov (United States)

    Palaszewski, Bryan; Brophy, John; King, David

    1989-01-01

    Nuclear-electric propulsion can significantly reduce the launch mass for manned Mars missions. By using high-specific-impulse (lsp) electric propulsion systems with advanced nuclear reactors, the total mass-to-orbit for a series of manned Mars flight is reduced. Propulsion technologies required for the manned Mars mission are described. Multi-megawatt Ion and Magneto-Plasma-Dynamic (MPD) propulsion thrusters, Power-Processing Units and nuclear power source are needed. Xenon (Xe)-Ion and MPD thruster performance are detailed. Mission analyses for several Mars mission options are addressed. Both MPD and Ion propulsion were investigated. A four-megawatt propulsion system power level was assumed. Mass comparisons for all-chemical oxygen/hydrogen propulsion missions and combined chemical and nuclear-electric propulsion Mars fleets are included. With fleets of small nuclear-electric vehicles, short trip times to Mars are also enabled.

  15. Protection of xenon against postoperative oxygen impairment in adults undergoing Stanford Type-A acute aortic dissection surgery: Study protocol for a prospective, randomized controlled clinical trial.

    Science.gov (United States)

    Jin, Mu; Cheng, Yi; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Cheng, Weiping

    2017-08-01

    The available evidence shows that hypoxemia after Stanford Type-A acute aortic dissection (AAD) surgery is a frequent cause of several adverse consequences. The pathogenesis of postoperative hypoxemia after AAD surgery is complex, and ischemia/reperfusion and inflammation are likely to be underlying risk factors. Xenon, recognized as an ideal anesthetic and anti-inflammatory treatment, might be a possible treatment for these adverse effects. The trial is a prospective, double-blind, 4-group, parallel, randomized controlled, a signal-center clinical trial. We will recruit 160 adult patients undergoing Stanford type-A AAD surgery. Patients will be allocated a study number and will be randomized on a 1:1:1:1 basis to receive 1 of the 3 treatment options (pulmonary inflated with 50% xenon, 75% xenon, or 100% xenon) or no treatment (control group, pulmonary inflated with 50% nitrogen). The aims of this study are to clarify the lung protection capability of xenon and its possible mechanisms in patients undergoing the Stanford type-A AAD surgery. This trial uses an innovative design to account for the xenon effects of postoperative oxygen impairment, and it also delineates the mechanism for any benefit from xenon. The investigational xenon group is considered a treatment intervention, as it includes 3 groups of pulmonary static inflation with 50%, 75%, and 100% xenon. It is suggested that future trials might define an appropriate concentration of xenon for the best practice intervention.

  16. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.

    Science.gov (United States)

    Harris, Katie; Armstrong, Scott P; Campos-Pires, Rita; Kiru, Louise; Franks, Nicholas P; Dickinson, Robert

    2013-11-01

    Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury. The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-D-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection. Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43±1% protection at 72 h after injury [N=104]; argon 30±6% protection [N=44]; mean±SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50±5% reduction in secondary injury at 72 h after injury [N=104]; argon 34±8% reduction [N=44]; mean±SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-D-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-D-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels. Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.

  17. Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans.

    Science.gov (United States)

    Witte, Christopher; Martos, Vera; Rose, Honor May; Reinke, Stefan; Klippel, Stefan; Schröder, Leif; Hackenberger, Christian P R

    2015-02-23

    The targeting of metabolically labeled glycans with conventional MRI contrast agents has proved elusive. In this work, which further expands the utility of xenon Hyper-CEST biosensors in cell experiments, we present the first successful molecular imaging of such glycans using MRI. Xenon Hyper-CEST biosensors are a novel class of MRI contrast agents with very high sensitivity. We designed a multimodal biosensor for both fluorescent and xenon MRI detection that is targeted to metabolically labeled sialic acid through bioorthogonal chemistry. Through the use of a state of the art live-cell bioreactor, it was demonstrated that xenon MRI biosensors can be used to image cell-surface glycans at nanomolar concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Xenon isotopic composition of the Mid Ocean Ridge Basalt (MORB) source

    Science.gov (United States)

    Peto, M. K.; Mukhopadhyay, S.

    2012-12-01

    Although convection models do not preclude preservation of smaller mantle regions with more pristine composition throughout Earth's history, it has been widely assumed that the moon forming giant impact likely homogenizes the whole mantle following a magma ocean that extended all the way to the bottom of the mantle. Recent findings of tungsten and xenon heterogeneities in the mantle [1,2,3,4], however, imply that i) the moon forming giant impact may not have homogenized the whole mantle and ii) plate tectonics was inefficient in erasing early formed compositional differences, particularly for the xenon isotopes. Therefore, the xenon isotope composition in the present day mantle still preserves a memory of early Earth processes. However, determination of the xenon isotopic composition of the mantle source is still scarce, since the mantle composition is overprinted by post-eruptive atmospheric contamination in basalts erupted at ocean islands and mid ocean ridges. The xenon composition of the depleted upper mantle has been defined by the gas rich sample, 2πD43 (also known as "popping rock"), from the North Atlantic (13° 469`N). However, the composition of a single sample is not likely to define the composition of the upper mantle, especially since popping rock has an "enriched" trace element composition. We will present Ne, Ar and Xe isotope data on MORB glass samples with "normal" helium isotope composition (8±1 Ra) from the Southeast Indian Ridge, the South Atlantic Ridge, the Sojourn Ridge, the Juan de Fuca, the East Pacific Rise, and the Gakkel Ridge. Following the approach of [1], we correct for syn- and post-eruptive atmosphere contamination, and determine the variation of Ar and Xe isotope composition of the "normal" MORB source. We investigate the effect of atmospheric recycling in the variation of MORB mantle 40Ar/36Ar and 129Xe/130Xe ratios, and attempt to constrain the average upper mantle argon and xenon isotopic compositions. [1] Mukhopadhyay, Nature

  19. Xenon depresses aEEG background voltage activity whilst maintaining cardiovascular stability in sedated healthy newborn pigs.

    Science.gov (United States)

    Sabir, Hemmen; Wood, Thomas; Gill, Hannah; Liu, Xun; Dingley, John; Thoresen, Marianne

    2016-04-15

    Changes in electroencephalography (EEG) voltage range are used to monitor the depth of anaesthesia, as well as predict outcome after hypoxia-ischaemia in neonates. Xenon is being investigated as a potential neuroprotectant after hypoxic-ischaemic brain injury, but the effect of Xenon on EEG parameters in children or neonates is not known. This study aimed to examine the effect of 50% inhaled Xenon on background amplitude-integrated EEG (aEEG) activity in sedated healthy newborn pigs. Five healthy newborn pigs, receiving intravenous fentanyl sedation, were ventilated for 24 h with 50%Xenon, 30%O2 and 20%N2 at normothermia. The upper and lower voltage-range of the aEEG was continuously monitored together with cardiovascular parameters throughout a 1 h baseline period with fentanyl sedation only, followed by 24 h of Xenon administration. The median (IQR) upper and lower aEEG voltage during 1 h baseline was 48.0 μV (46.0-50.0) and 25.0 μV (23.0-26.0), respectively. The median (IQR) aEEG upper and lower voltage ranges were significantly depressed to 21.5 μV (20.0-26.5) and 12.0 μV (12.0-16.5) from 10 min after the onset of 50% Xenon administration (p=0.002). After the initial Xenon induced depression in background aEEG voltage, no further aEEG changes were seen over the following 24h of ventilation with 50% xenon under fentanyl sedation. Mean arterial blood pressure and heart rate remained stable. Mean arterial blood pressure and heart rate were not significantly influenced by 24h Xenon ventilation. 50% Xenon rapidly depresses background aEEG voltage to a steady ~50% lower level in sedated healthy newborn pigs. Therefore, care must be taken when interpreting the background voltage in neonates also receiving Xenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A Laboratory Evaluation of the Suitability of a Xenon Flashtube Signal as an Aid-to-Navigation

    Science.gov (United States)

    1981-12-01

    duration, corldensor discharge beacon , strobe 20. AII fISACT (Continu am rveree sn ide If ffoso&e Md IdeNtIip by &fee& ouaser) Single flick xenon flashtubes... floodlighted navigational bridge luminance for chart reading should not exceed 1.0 fL. In addition to simulating a chart being illuminated by the mariner, this...BIBLIOGRAPHY Anonymous, Automatic Power Division of Pennwalt Corp., Signal Bulletin #19, Small Xenon Flashtube Beacons , received 1980

  1. Renal function following xenon anesthesia for partial nephrectomy-An explorative analysis of a randomized controlled study.

    Directory of Open Access Journals (Sweden)

    Ana Stevanovic

    Full Text Available Perioperative preservation of renal function has a significant impact on morbidity and mortality in kidney surgery. Nephroprotective effects of the anesthetic xenon on ischemia-reperfusion injury were found in several experimental studies.We aimed to explore whether xenon anesthesia can reduce renal damage in humans undergoing partial nephrectomy and to gather pilot data of possible nephroprotection in these patients.A prospective randomized, single-blinded, controlled study.Single-center, University Hospital of Aachen, Germany between July 2013-October 2015.Forty-six patients with regular renal function undergoing partial nephrectomy.Patients were randomly assigned to receive xenon- (n = 23 or isoflurane (n = 23 anesthesia.Primary outcome was the maximum postoperative glomerular filtration rate (GFR decline within seven days after surgery. Secondary outcomes included intraoperative and tumor-related data, assessment of further kidney injury markers, adverse events and optional determination of renal function after 3-6 months.Unexpected radical nephrectomy was performed in 5 patients, thus they were excluded from the per-protocol analysis, but included in the intention-to-treat analysis. The maximum postoperative GFR decline was attenuated by 45% in the xenon-group (10.9 ml min-1 1.73 cm-2 versus 19.7 ml min-1 1.73 cm-2 in the isoflurane group, but without significance (P = 0.084. Occurrence of adverse events was reduced (P = 0.003 in the xenon group. Renal function was similar among the groups after 3-6 months.Xenon anesthesia was feasible and safe in patients undergoing partial nephrectomy with regard to postoperative renal function. We found no significant effect on early renal function but less adverse events in the xenon group. Larger randomized controlled studies in more heterogeneous collectives are required, to confirm or refute the possible clinical benefit on renal function by xenon.ClinicalTrials.gov NCT01839084 and EudraCT 2012-005698-30.

  2. Timing of xenon-induced delayed postconditioning to protect against spinal cord ischaemia-reperfusion injury in rats.

    Science.gov (United States)

    Yang, Y W; Cheng, W P; Lu, J K; Dong, X H; Wang, C B; Zhang, J; Zhao, L Y; Gao, Z F

    2014-07-01

    This study was designed to assess the neuroprotective effect of xenon-induced delayed postconditioning on spinal cord ischaemia-reperfusion injury (IRI) and to determine the time of administration for best neuroprotection in a rat model of spinal cord IRI. Fifty male rats were randomly divided equally into a sham group, control group, and three xenon postconditioning groups (n=10 per group). The control group underwent spinal cord IRI and immediately inhaled 50% nitrogen/50% oxygen for 3 h at the initiation of reperfusion. The three xenon postconditioning groups underwent the same surgical procedure and immediately inhaled 50% xenon/50% oxygen for 3 h at the initiation of reperfusion or 1 and 2 h after reperfusion. The sham operation group underwent the same surgical procedure without aortic occlusion, and inhaled 50% nitrogen/50% oxygen. Neurological function was assessed using the Basso, Beattie, and Bresnahan score at 4, 24, and 48 h of reperfusion. Histological examination was performed using Nissl staining and immunohistochemistry, and apoptosis was detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labelling staining. Compared with the control group, the three xenon postconditioning groups showed improvements in neurological outcomes, and had more morphologically normal neurones at 48 h of reperfusion. Apoptotic cell death was reduced and the ratio of Bcl-2/Bax immunoreactivity increased in xenon-treated rats compared with controls. Xenon postconditioning up to 2 h after reperfusion provided protection against spinal cord IRI in rats, but the greatest neuroprotection occurred with administration of xenon for 1 h at reperfusion. © The Author [2013]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Renal function following xenon anesthesia for partial nephrectomy-An explorative analysis of a randomized controlled study.

    Science.gov (United States)

    Stevanovic, Ana; Schaefer, Patrick; Coburn, Mark; Rossaint, Rolf; Stoppe, Christian; Boor, Peter; Pfister, David; Heidenreich, Axel; Christ, Hildegard; Hellmich, Martin; Fahlenkamp, Astrid V

    2017-01-01

    Perioperative preservation of renal function has a significant impact on morbidity and mortality in kidney surgery. Nephroprotective effects of the anesthetic xenon on ischemia-reperfusion injury were found in several experimental studies. We aimed to explore whether xenon anesthesia can reduce renal damage in humans undergoing partial nephrectomy and to gather pilot data of possible nephroprotection in these patients. A prospective randomized, single-blinded, controlled study. Single-center, University Hospital of Aachen, Germany between July 2013-October 2015. Forty-six patients with regular renal function undergoing partial nephrectomy. Patients were randomly assigned to receive xenon- (n = 23) or isoflurane (n = 23) anesthesia. Primary outcome was the maximum postoperative glomerular filtration rate (GFR) decline within seven days after surgery. Secondary outcomes included intraoperative and tumor-related data, assessment of further kidney injury markers, adverse events and optional determination of renal function after 3-6 months. Unexpected radical nephrectomy was performed in 5 patients, thus they were excluded from the per-protocol analysis, but included in the intention-to-treat analysis. The maximum postoperative GFR decline was attenuated by 45% in the xenon-group (10.9 ml min-1 1.73 cm-2 versus 19.7 ml min-1 1.73 cm-2 in the isoflurane group), but without significance (P = 0.084). Occurrence of adverse events was reduced (P = 0.003) in the xenon group. Renal function was similar among the groups after 3-6 months. Xenon anesthesia was feasible and safe in patients undergoing partial nephrectomy with regard to postoperative renal function. We found no significant effect on early renal function but less adverse events in the xenon group. Larger randomized controlled studies in more heterogeneous collectives are required, to confirm or refute the possible clinical benefit on renal function by xenon. ClinicalTrials.gov NCT01839084 and EudraCT 2012-005698-30.

  4. μ opioid receptor activation hyperpolarizes respiratory-controlling Kölliker-Fuse neurons and suppresses post-inspiratory drive.

    Science.gov (United States)

    Levitt, Erica S; Abdala, Ana P; Paton, Julian F R; Bissonnette, John M; Williams, John T

    2015-10-01

    In addition to reductions in respiratory rate, opioids also cause aspiration and difficulty swallowing, indicating impairment of the upper airways. The Kölliker-Fuse (KF) maintains upper airway patency and a normal respiratory pattern. In this study, activation of μ opioid receptors in the KF reduced respiratory frequency and tidal volume in anaesthetized rats. Nerve recordings in an in situ preparation showed that activation of μ opioid receptors in the KF eliminated the post-inspiration phase of the respiratory cycle. In brain slices, μ opioid agonists hyperpolarized a distinct population (61%) of KF neurons by activation of an inwardly rectifying potassium conductance. These results suggest that KF neurons that are hyperpolarized by opioids could contribute to opioid-induced respiratory disturbances, particularly the impairment of upper airways. Opioid-induced respiratory effects include aspiration and difficulty swallowing, suggesting impairment of the upper airways. The pontine Kölliker-Fuse nucleus (KF) controls upper airway patency and regulates respiration, in particular the inspiratory/expiratory phase transition. Given the importance of the KF in coordinating respiratory pattern, the mechanisms of μ opioid receptor activation in this nucleus were investigated at the systems and cellular level. In anaesthetized, vagi-intact rats, injection of opioid agonists DAMGO or [Met(5) ]enkephalin (ME) into the KF reduced respiratory frequency and amplitude. The μ opioid agonist DAMGO applied directly into the KF of the in situ arterially perfused working heart-brainstem preparation of rat resulted in robust apneusis (lengthened low amplitude inspiration due to loss of post-inspiratory drive) that was rapidly reversed by the opioid antagonist naloxone. In brain slice preparations, activation of μ opioid receptors on KF neurons hyperpolarized a distinct population (61%) of neurons. As expected, the opioid-induced hyperpolarization reduced the excitability of

  5. Comparison of the effects of xenon and sevoflurane anaesthesia on leucocyte function in surgical patients: a randomized trial.

    Science.gov (United States)

    Fahlenkamp, A V; Coburn, M; Rossaint, R; Stoppe, C; Haase, H

    2014-02-01

    While most anaesthetics are known to suppress immune reactions, data from experimental studies indicate the enhancement of reactivity to inflammatory stimulators under xenon treatment. We investigated the effect of xenon anaesthesia on leucocyte function in surgical patients. We performed a subgroup analysis of subjects undergoing xenon or sevoflurane anaesthesia in a randomized clinical trial. After oral premedication with midazolam, two separate blood samples were obtained from subjects undergoing elective abdominal surgery, directly before and 1 h after induction of anaesthesia. General anaesthesia was maintained with either 60% xenon or 2.0% sevoflurane in 30% O2. Leucocyte count, phagocytotic function, and pro-inflammatory cytokine release after ex vivo lipopolysaccharide (LPS) stimulation were determined. Except for lymphocyte numbers, leucocyte subpopulations did not differ between the groups. Phagocytosis and oxidative burst of granulocytes were reduced in both groups after 1 h of anaesthesia, whereas monocytes were not affected. Pro-inflammatory cytokine release in response to LPS was not affected. In vivo, xenon and sevoflurane anaesthesia did not have a pro-inflammatory effect, at least in combination with the types of surgery performed in this study. Notably, the impact of xenon anaesthesia did not differ significantly from sevoflurane anaesthesia with regard to leucocyte function. However, an underestimation of treatment effects due to limited sample sizes cannot be fully excluded.

  6. Delayed post-ischaemic administration of xenon reduces brain damage in a rat model of global ischaemia.

    Science.gov (United States)

    Metaxa, V; Lagoudaki, R; Meditskou, S; Thomareis, O; Oikonomou, L; Sakadamis, A

    2014-01-01

    Xenon and nitrous oxide have been shown to be neuroprotective in vivo and in vitro, but mainly in models of focal cerebral ischaemia. This study aimed to investigate whether the two gases are able to attenuate cerebral injury after global cerebral ischaemia. Adult male Wistar rats underwent bilateral common carotid artery occlusion and were ventilated for 1 hour with 21% O₂/78% N₂. They were then randomized to three groups which continued to receive atmospheric air, 50% N2O/50% O₂ and 50% Xe/50% O₂ for an additional period of 45 minutes. The number of ischaemic neurons, the cortical volume loss and the immunochemical and molecular expression of c-fos and MMP-9 were evaluated. Xenon reduced the number of ischaemic neurons in the cortex and CA1 hippocampal region (p xenon. The molecular analysis revealed significant effects of N2O and xenon administration on c-fos and MMP-9 expression. The data indicate that N2O and xenon administration is neuroprotective 1 hour after bilateral common carotid artery occlusion. These findings provide valuable evidence on the beneficial role of N2O and xenon in global cerebral injury.

  7. Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level?

    Directory of Open Access Journals (Sweden)

    Cornelia ePirulli

    2014-06-01

    Full Text Available Cathodal transcranial direct current stimulation (c-tDCS is usually considered an inhibitory stimulation. From a physiological perspective, c-tDCS stimulation induces hyperpolarization at the neural level. However, from a behavioral perspective, c-tDCS application does not always result in performance deterioration. In this work, we investigated the role of several important stimulation parameters (i.e., timing, presence of pauses, duration and intensity in shaping the behavioral effects of c-tDCS over the primary visual cortex.In Experiment 1, we applied c-tDCS at two different times (before or during an orientation discrimination task. We also studied the effects of pauses during the stimulation. In Experiments 2 and 3, we compared different durations (9 minutes vs. 22 minutes and intensities (0.75 mA vs. 1.5 mA of stimulation.c-tDCS applied before task execution induced an improvement of performance, highlighting the importance of the activation state of the cortex. However, this result depended on the duration and intensity of stimulation.We suggest that the application of c-tDCS induces depression of cortical activity over a specific stimulated area; but to keep reactivity within given limits, the brain react in order to restore the equilibrium and this might result in increased sensitivity in visual performance. This is a further example of how the nervous system dynamically maintains a condition that permits adequate performance in different environments.

  8. Measurement of lung airways in three dimensions using hyperpolarized helium-3 MRI

    Science.gov (United States)

    Peterson, Eric T; Dai, Jionghan; Holmes, James H; Fain, Sean B

    2011-01-01

    Large airway measurement is clinically important in cases of airway disease and trauma. The gold standard is computed tomography (CT), which allows for airway measurement. However, the ionizing radiation dose associated with CT is a major limitation in longitudinal studies and trauma. To avoid ionizing radiation from CT, we present a method for measuring large airway diameter in humans using hyperpolarized helium-3 (HPHe) MRI in conjunction with a dynamic 3D radial acquisition. An algorithm is introduced which utilizes the significant airway contrast for semi-automated segmentation and skeletonization which is used to derive airway lumen diameter. The HPHe MRI method was validated with quantitative CT in an excised and desiccated porcine lung (linear regression R2 = 0.974 and slope = 0.966 over 32 airway segments). The airway lumen diameters were then compared in 24 human subjects (22 asthmatics and 2 normals; linear regression R2 value of 0.799 and slope = 0.768 over 309 airway segments). Feasibility for airway path analysis to areas of ventilation defect is also demonstrated. PMID:21521907

  9. Mitochondrial hyperpolarization and cytochrome-c release in microwave-exposed MCF-7 cells.

    Science.gov (United States)

    Esmekaya, Meric A; Canseven, Ayşe G; Kayhan, Handan; Tuysuz, Mehmet Z; Sirav, Bahriye; Seyhan, Nesrin

    2017-04-01

    This study examines the effects of a 2.1-GHz WCDMA-modulated microwave (MW) radiation on apoptotic activity and mitochondrial membrane potential (ΔΨm) in MCF-7 cells. The cells were exposed to the MW at a specific absorption rate (SAR) of 0.528 W/kg for 4 or 24 h. The antiproliferative effect of MW exposure was determined by the MTT test. Cytochrome-c and p53 levels were determined by an ELISA method. The relative ΔΨm was analysed by JC-1 staining using flow cytometer. Apoptotic rate of the cells was measured by Annexin-V-FITC staining. All assays were performed after certain time of incubations (15 min-4 h) following MW exposure. MW-exposed cells showed a significant decrease in viability when compared to unexposed cells. A significantly larger decrease was observed after longer exposure. The percentage of apoptotic cells, amount of cytochrome-c, and relative ΔΨm were significantly higher in MW-exposed cells. The percent of apoptotic cells and relative ΔΨm in 24 h MW-exposed group was significantly higher than those in 4 h MW-exposed group. However, no significant change was observed in p53 levels. These results demonstrated that exposure to 2.1-GHz WCDMA-modulated MW radiation caused hyperpolarization of mitochondria that in turn induced apoptosis in MCF-7 cells.

  10. Quantified pH imaging with hyperpolarized 13C‐bicarbonate

    DEFF Research Database (Denmark)

    Scholz, David Johannes; Janich, Martin A.; Köllisch, Ulrich

    2015-01-01

    Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method‐based errors, and applied in vivo. In vitro and in vivo 13C mapping were performed...... for various flip angles for bicarbonate (BiC) and CO2 with spectral‐spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction....... After optimizing the signal to noise ratio of the hyperpolarized 13C‐bicarbonate, error estimation of the spectral‐spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (pH maps shows negligible impact...

  11. Hyperpolarization-activated current, Ih, in inspiratory brainstem neurons and its inhibition by hypoxia.

    Science.gov (United States)

    Mironov, S L; Langohr, K; Richter, D W

    2000-02-01

    A hyperpolarization-activated current, Ih, is often implied in pacemaker-like depolarizations during rhythmic oscillatory activity. We describe Ih in the isolated respiratory centre of immature mice (P6-P11). Ih was recorded in 15% (22/146) of all inspiratory neurons examined. The mean half-maximal Ih activation occurred at -78 mV and the reversal potential was -40 mV. Ih was inhibited by Cs+ (1-5 mM) and by organic blockers N-ethyl-1,6-dihydro-1, 2-dimethyl-6-(methylimino)-N-phenyl-4-pyrimidinamine (ZD 7288; 0.3-3 microM) and N,N'-bis-(3,4-dimethylphenylethyl)-N-methylamine (YS 035, 3-30 microM), but not by Ba2+ (0.5 mM). The organic Ih blockers did not change the inspiratory bursts recorded from the XIIth nerve and synaptic drives in inspiratory neurons. Hypoxia reversibly inhibited Ih but, in the presence of organic blockers, the hypoxic reaction remained unchanged. We conclude that although Ih channels are functional in a minority of inspiratory neurons, Ih does not contribute to respiratory rhythm generation or its modulation by hypoxia.

  12. Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness.

    Science.gov (United States)

    Lui, Justin K; Parameswaran, Harikrishnan; Albert, Mitchell S; Lutchen, Kenneth R

    2015-01-01

    Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject's forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy.

  13. Hyperpolarized 3He Functional Magnetic Resonance Imaging of Bronchoscopic Airway Bypass in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Lindsay Mathew

    2012-01-01

    Full Text Available A 73-year-old exsmoker with Global initiative for chronic Obstructive Lung Disease stage III chronic obstructive pulmonary disease underwent airway bypass (AB as part of the Exhale Airway Stents for Emphysema (EASE trial, and was the only EASE subject to undergo hyperpolarized 3He magnetic resonance imaging for evaluation of lung function pre- and post-AB. 3He magnetic resonance imaging was acquired twice previously (32 and eight months pre-AB and twice post-AB (six and 12 months post-AB. Six months post-AB, his increase in forced vital capacity was <12% predicted, and he was classified as an AB nonresponder. However, post-AB, he also demonstrated improvements in quality of life scores, 6 min walk distance and improvements in 3He gas distribution in the regions of stent placement. Given the complex relationship between well-established pulmonary function and quality of life measurements, the present case provides evidence of the value-added information functional imaging may provide in chronic obstructive pulmonary disease interventional studies.

  14. Monitoring Cancer Response to Treatment with Hyperpolarized 13C MRS

    DEFF Research Database (Denmark)

    Eldirdiri, Abubakr

    technique for imaging tumor function by measuring the uptake of the glucose analogue FDG. FDG-PET can visualize changes in metabolic activity and indicate if a patient will respond to a particular therapy, sometimes within hours of the first treatment. However, PET is not effective in all tumor types....... Firstly, we investigate the effectiveness of hyperpolarized [1-13C]pyruvate in detecting the treatment response in two types of NSCLC xenografted in mice, in comparison with FDG- and FLT-PET. We show here a significant reduction in tumor lactate levels, obtained by MRS, in HCC-827 tumors, as well as lower...... FLT- and FDG-PET uptake with erlotinib treatment. These findings were validated ex vivo, where LDH activity level and Ki-67 IHC staining was significantly lower in treated HCC-827 tumors. Furthermore, the reduction in LDH activity levels correlated with the lactate levels found using 13C MRS...

  15. Semiautomatic Segmentation of Ventilated Airspaces in Healthy and Asthmatic Subjects Using Hyperpolarized He MRI

    Directory of Open Access Journals (Sweden)

    J. K. Lui

    2013-01-01

    Full Text Available A segmentation algorithm to isolate areas of ventilation from hyperpolarized helium-3 magnetic resonance imaging (HP 3He MRI is described. The algorithm was tested with HP 3He MRI data from four healthy and six asthmatic subjects. Ventilated lung volume (VLV measured using our semiautomated technique was compared to that obtained from manual outlining of ventilated lung regions and to standard spirometric measurements. VLVs from both approaches were highly correlated (R=0.99; P<0.0001 with a mean difference of 3.8 mL and 95% agreement indices of −30.8 mL and 38.4 mL. There was no significant difference between the VLVs obtained through the semiautomatic approach and the manual approach. A Dice coefficient which quantified the intersection of the two datasets was calculated and ranged from 0.95 to 0.97 with a mean of 0.96 ± 0.01 (mean ± SD. VLVs obtained through the semiautomatic algorithm were also highly correlated with measurements of forced expiratory volume in one second (FEV1 (R=0.82; P=0.0035 and forced vital capacity (FVC (R=0.95; P<0.0001. The technique may open new pathways toward advancing more quantitative characterization of ventilation for routine clinical assessment for asthma severity as well as a number of other respiratory diseases.

  16. Minocycline inhibits hyperpolarization-activated currents in rat substantia gelatinosa neurons.

    Science.gov (United States)

    Liu, Nana; Zhang, Daying; Zhu, Mengye; Luo, Shiwen; Liu, Tao

    2015-08-01

    Minocycline is a widely used glial activation inhibitor that could suppress pain-related behaviors in a number of different pain animal models, yet, its analgesic mechanisms are not fully understood. Hyperpolarization-activated cation channel-induced Ih current plays an important role in neuronal excitability and pathological pain. In this study, we investigated the possible effect of minocycline on Ih of substantia gelatinosa neuron in superficial spinal dorsal horn by using whole-cell patch-clamp recording. We found that extracellular minocycline rapidly decreases Ih amplitude in a reversible and concentration-dependent manner (IC50 = 41 μM). By contrast, intracellular minocycline had no effect. Minocycline-induced inhibition of Ih was not affected by Na(+) channel blocker tetrodotoxin, glutamate-receptor antagonists (CNQX and D-APV), GABAA receptor antagonist (bicuculine methiodide), or glycine receptor antagonist (strychnine). Minocycline also caused a negative shift in the activation curve of Ih, but did not alter the reversal potential. Moreover, minocycline slowed down the inter-spike depolarizing slope and produced a robust decrease in the rate of action potential firing. Together, these results illustrate a novel cellular mechanism underlying minocycline's analgesic effect by inhibiting Ih currents of spinal dorsal horn neurons. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge

    Science.gov (United States)

    MacDonald, N. A.; Cappelli, M. A.; Hargus, W. A.

    2012-11-01

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s^' }[1/2]10 - 6p^' }[3/2]2 xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  18. Schlieren-cinematographic and holographic diagnostic of a laser-produced plasma in xenon.

    Science.gov (United States)

    Hugenschmidt, M; Vollrath, K; Hirth, A

    1972-02-01

    We have studied extensively a gas breakdown in xenon produced by a giant pulse ruby laser with a power theory, to relate the optically measured expansion velocity with the plasma parameters involved. The mean specific internal energy epsilon , for instance, attained values in excess of 10(12) erg/g which decayed rapidly during the first 100 nsec to about 5. 10(10) erg/g. By comparing the results to theoretical calculations of we obtained a first estimate of the temperature, taking into consideration the partial densities n(j) as well as the partition functions Z(j)((i)) of the xenon atoms, the single-charged ions, and the double-charged ones. Furthermore, a two-step iteration computer program was used to give more detailed and more accurate results on the variations of the pressure, temperature, partial densities, and enthalpy as a function of time.

  19. A neuro-fuzzy controller for xenon spatial oscillations in load-following operation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Man Gyun [Chosun University, Kwangju (Korea, Republic of); Upadhyaya, Belle R. [The University of Tennessee, Knoxville (United States)

    1997-12-31

    A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent method. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control method exhibits very responses to a step or a ramp change of target axial offest without any residual flux oscillations. 9 refs., 5 figs. (Author)

  20. Interaction of cover and target with xenon gas in the IFE-reaction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kuteev, Boris V. [State Technical Univ., St. Petersburg (Russian Federation)

    2001-11-01

    Interaction of a direct drive target and a cover, which is shielding the target against gas particle and heat flows in the reaction chamber of the Inertial Confinement Reactor, is considered. The cover is produced from solid gas -deuterium, neon of xenon. It is shown that at the SOMBRERO parameters the xenon cover with 5.6-mm size significantly reduces the heat flows onto the 4-mm target. The gas drag produces the deceleration of the target much larger than that for the cover due to large mass difference between them. The distance between the target and the cover is about 15 mm at the explosion point, which is sufficient for normal irradiation of the target by laser beams. Protection of the target against the wall radiation is necessary during the flight. Along with creation of reflecting layers over the target surface ablating layers from solid hydrogen or neon seem to be a solution. (author)