WorldWideScience

Sample records for hyperpolarized noble gas

  1. Passive shimming of the fringe field of a superconducting magnet for ultra-low field hyperpolarized noble gas MRI.

    Science.gov (United States)

    Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E

    2005-05-01

    Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.

  2. MR imaging of the stomach and relaxation measurement with intraluminal hyperpolarized 129Xenon gas

    International Nuclear Information System (INIS)

    Yanagawa, Yasuhiro; Kimura, Atsuomi; Fujiwara, Hideaki; Kinoshita, Yoshimasa; Hattori, Mineyuki; Hiraga, Takashi; Iida, Hidehiro

    2001-01-01

    Using laser optical pumping, the nuclear spin polarization of noble gases can be strongly enhanced. The purpose of this study was to make a simple apparatus that can provide hyperpolarized 129 Xe gas, which can then be used in an attempt to obtain magnetic resonance imaging (MRI). We would also like to study the relaxation behavior of hyperpolarized 129 Xe gas through the measurement of the relaxation time. First, we demonstrated that hyperpolarized 129 Xe gas can be applied to magnetic resonance imaging of the stomach, by using a rat as a model. This was performed under a 4.7 T magnet field using the following imaging parameters for the hyperpolarized 129 Xe gas: TR=50 ms, TE=15 ms, FOV=10 x 10 cm 2 , matrix size 64 x 64, THK=2.54 cm. By using these parameters, we were able to obtain a hyperpolarized image of the stomach in rats for the first time. Next, we measured the relaxation times of the hyperpolarized 129 Xe gas enclosed in cavities such as the stomach of rats as well as in phantoms created by glass and gelatin bulbs. The cavity size dependency of the relaxation time was analyzed on the basis of the kinetic theory of gases. This analysis showed a linear relationship between the relaxation rate (1/T 1 ) and a square inverse of the cavity diameter (1/d 2 ). From this relationship, the wall effect on the 129 Xe relaxation can be estimated in the novel parameter t 1 , wall . This shows drastic dependency on the material of the wall, suggesting a potential use of the relaxation experiment as a diagnostic tool for organ surfaces in the future. (author)

  3. New insights into lung diseases using hyperpolarized gas MRI.

    Science.gov (United States)

    Flors, L; Altes, T A; Mugler, J P; de Lange, E E; Miller, G W; Mata, J F; Ruset, I C; Hersman, F W

    2015-01-01

    Hyperpolarized (HP) gases are a new class of contrast agents that permit to obtain high temporal and spatial resolution magnetic resonance images (MRI) of the lung airspaces. HP gas MRI has become important research tool not only for morphological and functional evaluation of normal pulmonary physiology but also for regional quantification of pathologic changes occurring in several lung diseases. The purpose of this work is to provide an introduction to MRI using HP noble gases, describing both the basic principles of the technique and the new information about lung disease provided by clinical studies with this method. The applications of the technique in normal subjects, smoking related lung disease, asthma, and cystic fibrosis are reviewed. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  4. Noble gas magnetic resonator

    Science.gov (United States)

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  5. The role of hyperpolarized 129xenon in MR imaging of pulmonary function

    International Nuclear Information System (INIS)

    Ebner, Lukas; Kammerman, Jeff; Driehuys, Bastiaan; Schiebler, Mark L.; Cadman, Robert V.; Fain, Sean B.

    2017-01-01

    Highlights: • Recent advances in hyperpolarized 129Xe MRI are reviewed. • Xenon MRI allows for functional imaging of ventilation, diffusion, and gas exchange. • Xenon’s unique gas exchange imaging capabilities are highlighted. • Applications to obstructive and restrictive lung diseases are presented. • These advances are ready for translation to clinical applications. - Abstract: In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium ( 3 He) and xenon ( 129 Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available 129 Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP 129 Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP 129 Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP 129 Xe MRI, and (4) propose clinical applications.

  6. The role of hyperpolarized {sup 129}xenon in MR imaging of pulmonary function

    Energy Technology Data Exchange (ETDEWEB)

    Ebner, Lukas [Cardiothoracic Imaging, Duke University Medical Center, Department of Radiology, Duke University, Durham, NC (United States); Kammerman, Jeff [Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Driehuys, Bastiaan [Center for In Vivo Microscopy, Duke University, Durham, NC (United States); Schiebler, Mark L. [Department of Radiology, University of Wisconsin, Madison, WI (United States); Cadman, Robert V. [Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Fain, Sean B., E-mail: sfain@wisc.edu [Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, WI (United States)

    2017-01-15

    Highlights: • Recent advances in hyperpolarized 129Xe MRI are reviewed. • Xenon MRI allows for functional imaging of ventilation, diffusion, and gas exchange. • Xenon’s unique gas exchange imaging capabilities are highlighted. • Applications to obstructive and restrictive lung diseases are presented. • These advances are ready for translation to clinical applications. - Abstract: In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium ({sup 3}He) and xenon ({sup 129}Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available {sup 129}Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP {sup 129}Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP {sup 129}Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP {sup 129}Xe MRI, and (4) propose clinical applications.

  7. Exotic species with explicit noble metal-noble gas-noble metal linkages.

    Science.gov (United States)

    Moreno, Norberto; Restrepo, Albeiro; Hadad, C Z

    2018-02-14

    We present a study of the isoelectronic Pt 2 Ng 2 F 4 and [Au 2 Ng 2 F 4 ] 2+ species with noble gas atoms (Ng = Kr, Xe, Rn) acting as links bridging the two noble metal atoms. The stability of the species is investigated using several thermodynamic, kinetic and reactivity indicators. The results are compared against [AuXe 4 ] 2+ , which is thermodynamically unstable in the gas phase but is stabilized in the solid state to the point that it has been experimentally detected as [AuXe 4 ](Sb 2 F 11 ) 2 (S. Seidel and K. Seppelt, Science, 2000, 290, 117-118). Our results indicate that improving upon [AuXe 4 ] 2+ , these exotic combinations between the a priori non-reactive noble metals and noble gases lead to metastable species, and, therefore, they have the possibility of existing in the solid state under adequate conditions. Our calculations include accurate energies and geometries at both the CCSD/SDDALL and MP2/SDDALL levels. We offer a detailed description of the nature of the bonding interactions using orbital and density-based analyses. The computational evidence suggests partially covalent and ionic interactions as the stabilization factors.

  8. Noble Gas signatures of Enhanced Oil Recovery

    Science.gov (United States)

    Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.

    2017-12-01

    Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble

  9. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129.

    Directory of Open Access Journals (Sweden)

    Joseph S Six

    Full Text Available Hyperpolarized (hp (129Xe and hp (83Kr for magnetic resonance imaging (MRI are typically obtained through spin-exchange optical pumping (SEOP in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp (129Xe MRI cumbersome. For hp (83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For (129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized (129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm(3/min. For hp (83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm(3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D(1 transition was observed and taken into account for the qualitative description of the SEOP process.

  10. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129.

    Science.gov (United States)

    Six, Joseph S; Hughes-Riley, Theodore; Stupic, Karl F; Pavlovskaya, Galina E; Meersmann, Thomas

    2012-01-01

    Hyperpolarized (hp) (129)Xe and hp (83)Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp (129)Xe MRI cumbersome. For hp (83)Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For (129)Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized (129)Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm(3)/min. For hp (83)Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm(3)/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D(1) transition was observed and taken into account for the qualitative description of the SEOP process.

  11. Noble gases in common rocks and their bearing on noble gas occurrences in the hydrological cycle

    International Nuclear Information System (INIS)

    Mazor, E.

    1978-10-01

    The comparison of the noble gases contents in different rocks and in thermal and cold water sources in the French Massif Central was aimed to define the amounts and nature of noble gases contributed by country rocks as opposed to atmospheric noble gases brought in by recharged water. No difference in the noble gas contents was found between waters coming in igneous rocks to those issuing in sedimentary rocks. In both, significant variations in the contents of atmospheric and radiogenic noble gases were found. Radiogenic helium has been found to reveal a positive correlation to the contents of atmospheric Ne, Ar, Kr. This indicates water recharge into the deep part of the systems, mixing with radiogenic He and Ar flushed from igneous and sedimentary rocks and subsequent partial gas loss. Loss of gas is evident from the observed low noble gas contents. These losses have been accompanied by a reversed retention pattern of Ne, Ar, Xc. This reversed retention pattern cannot be an artifact of sampling as well as cannot result by partial steam loss. A similar interpretation for the observed noble gas depletions that agrees with the fact that the observed fractionation patterns are not ''normal'' is given by deuterium and oxygen-18. The stable isotope data seem to exclude partial steam losses

  12. Noble gas atoms as chemical impurities in silicon

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Mudryi, A.V.; Minaev, N.S.

    1984-01-01

    The behaviour of noble gas atoms implanted in silicon is studied by the luminescence method. The energy position of Moessbauer-type luminescence bands with zero-phonon lines 1.0148, 1.0120, 1.0097, 1.0048 eV and others connected with implanted atoms of neon, helium, argon, krypton, respectively, indicates the formation of deep energy levels in the forbidden gap of silicon. Implantation of the noble gas isotopes confirms their participation in formation processes of the luminescence centers in silicon. The temperature range of existence and the symmetry of defects incorporating the noble gas atoms are found. It is noted that noble gas atoms form impurity complexes with deep energy levels and their behaviour in crystals does not differ from that of main doped or residual technological impurity atoms. (author)

  13. Monitoring of noble gas radioisotopes in nuclear power plant effluents

    International Nuclear Information System (INIS)

    Kabat, M.J.

    1985-01-01

    Monitoring of gaseous radionuclides in the effluents of nuclear facilities is an essential requirement in effluent management programs. Since there is no practical way of removing noble gas radioisotopes from air at release pathways, their accurate monitoring is essential for providing appropriate environmental protection. Emitted γ dose-rate is the limiting factor for concentration-time integral of noble gas in gaseous effluents of reactor facilities. The external exposure to the public from a semi-infinite cloud is directly proportional to both the noble gas isotope concentration and the integrated γ energy per disintegration. Both can be directly measured in gaseous effluent pathways with a suitable detector. The capability of NaI(T1), CaF 2 (Eu) and plastic scintillation detectors to measure the γ-Ci.MeV content of noble gas releases was experimentally evaluated. The combination of CaF 2 (Eu) detector in a pressurized through-flow chamber, with a charge integrating scaler well complied with both γ energy response and detection sensitivity requirements. Noble gas source terms and effluent monitoring criteria are discussed, theoretical and experimental results are presented and a practical, on-line noble gas monitoring system is described

  14. Noble gas absorption process

    International Nuclear Information System (INIS)

    Thomas, J.W.

    1975-01-01

    A method of removing a noble gas from air comprising the use of activated carbon filters in stages in which absorption and desorption steps in succession are conducted in order to increase the capacity of the filters is described. (U.S.)

  15. Molecular MRI based on hyper-polarized xenon

    International Nuclear Information System (INIS)

    Tassali, Nawal

    2012-01-01

    Magnetic Resonance Imaging (MRI) has a high importance in medicine as it enables the observation of the organs inside the body without the use of radiative or invasive techniques. However it is known to suffer from poor sensitivity. To circumvent this limitation, a key solution resides in the use of hyper-polarized species. Among the entities with which we can drastically increase nuclear polarization, xenon has very specific properties through its interactions with its close environment that lead to a wide chemical shift bandwidth. The goal is thus to use it as a tracer. This PhD thesis focuses on the concept of 129 Xe MRI-based sensors for the detection of biological events. In this approach, hyper-polarized xenon is vectorized to biological targets via functionalized host systems, and then localized thanks to fast dedicated MRI sequences. The conception and set-up of a spin-exchange optical pumping device is first described. Then studies about the interaction of the hyper-polarized noble gas with new cryptophanes susceptible to constitute powerful host molecules are detailed. Also the implementation of recent MRI sequences optimized for the transient character of the hyper-polarization and taking profit of the xenon in-out exchange is described. Applications of this approach for the detection of metallic ions and cellular receptors are studied. Finally, our first in vivo results on a small animal model are presented. (author) [fr

  16. Determination of natural in vivo noble-gas concentrations in human blood.

    Directory of Open Access Journals (Sweden)

    Yama Tomonaga

    Full Text Available Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry.

  17. Noble Gas Release Signal as a Precursor to Fracture

    Science.gov (United States)

    Bauer, S. J.; Lee, H.; Gardner, W. P.

    2017-12-01

    We present empirical results of rock strain, microfracturing, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite, basalt, shale and bedded rock salt. Noble gases are released and measured real-time during deformation using mass spectrometry. The gas release represents a precursive signal to macrofracture. Gas release is associated with increased acoustic emissions indicating that microfracturing is required to release gas and create pathways for the gas to be sensed. The gas released depends on initial gas content, pore structure and its evolution during deformation, the deformation amount, matrix permeability, deformation style and the stress/strain history. Gases are released from inter and intracrystalline sites; release rate increases as strain and microfracturing increases. The gas composition depends on lithology, geologic history and age, fluids present, and radioisotope concentrations that affect radiogenic noble gas isotope (e.g. 4He,40Ar) production. Noble gas emission and its relationship to crustal processes such as seismicity and volcanism, tectonic velocities, qualitative estimates of deep permeability, age dating of groundwater, and a signature of nuclear weapon detonation. Our result show that mechanical deformation of crustal materials is an important process controlling gas release from rocks and minerals, and should be considered in techniques which utilize gas release and/or accumulation. We propose using noble gas release to signal rock deformation in boreholes, mines and waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress, strain, and/or permanent deformation dependent. Calibration of such relationships, for example relating gas release per rock unit volume to strain may be used to quantify rock deformation and develop predictive models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

  18. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    Science.gov (United States)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  19. Solubility investigations in support of ultrasensitive noble gas detector development

    International Nuclear Information System (INIS)

    Gross, K.C.; Andersen, A.; Russ, W.R.; Stuenkel, D.; Valentine, J.D.

    1998-01-01

    Argonne National Laboratory (ANL) and the University of Cincinnati (UC) have been developing a new class of ultrasensitive noble gas detectors that are based upon the ANL discovery that corn oil has a high affinity for heavy noble gas absorption at room temperature but releases the noble gases with warming or by other low-energy-input means. Environmental applications for this new class of fluid-based detectors include ultrahigh sensitivity radioxenon detectors for comprehensive test ban treaty surveillance, improved fission gas detectors for enhanced environmental surveillance in the vicinity of US Department of Energy, US Department of Defense, and US Nuclear Regulatory Commission licensed facilities, and improved integrating Rn detectors for earthquake prediction. They present the results of theoretical and experimental investigations into the solubility phenomena of heavy noble gases (Rn, Xe, and Kr) in triglyceride oils. They intend for the findings presented herein to be used to guide future selection, development, and refinement of vegetable and other hydrocarbon oils to bring further enhancements to noble gas detection efficiencies

  20. Solubility investigations in support of ultrasensitive noble gas detector development

    International Nuclear Information System (INIS)

    Gross, K. C.

    1998-01-01

    Argonne National Laboratory (ANL) and the University of Cincinnati (UC) have been developing a new class of ultrasensitive noble gas detectors that are based upon the ANL discovery that corn oil has a high affinity for heavy noble gas absorption at room temperature, but releases the noble gases with warming or by other low-energy-input means. Environmental applications for this new class of fluid-based detectors include ultrahigh sensitivity radioxenon detectors for Comprehensive Test Ban Treaty Surveillance, improved fission gas detectors for enhanced environmental surveillance in the vicinity of DOE, DOD, and NRC-licensed facilities, and improved integrating Rn detectors for earthquake prediction. The purpose of the present paper is to present the results of theoretical and experimental investigations into the solubility phenomena of heavy noble gases (Rn, Xe, and Kr) in triglyceride oils. It is the authors' intention that the findings presented herein may be used to guide future selection, development, and refinement of vegetable and other hydrocarbon oils to bring further enhancements to noble gas detection efficiencies

  1. Ab initio theory of noble gas atoms in bcc transition metals.

    Science.gov (United States)

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  2. Steady-state ozone concentration in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O 2 and noble gas-O 2 -SF 6 mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10 15 eV.cm -3 .s -1 . The experimental apparatus and proceedure were previously described. The experimentally observed stead-state ozone concentrations in noble gas-O 2 discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O 2 -SF 6 mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF 6 addition. This observation was contrary to only a small increase observed after SF 6 addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O 2 discharges

  3. Noble Gas Concept Of Operation

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-01-20

    The intent of this document is to provide the reader with an understanding of a general approach to performing the noble gas component of an On Site Inspection or OSI. The authors of this document recognize that owing to the wide range of scenarios that are possible for carrying out an underground nuclear explosion, the diverse sets of information that might be available to the inspection team initially and the potential range of political and physical constraints imposed during the inspection, a satisfactory prescriptive approach to carrying out the noble gas component of an OSI is unlikely. Rather, the authors intend only to aid the reader in understanding what a reasonable course of actions or responses may be as performed by an inspection team (IT) during a general OSI. If this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from this general scenario, it will have achieved its intent.

  4. Steady-state ozone concentrations in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O/sub 2/ and noble gas-o/sub 2/-SF/sub 6/ mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10/sup 15/ eV . cm/sup -3/ . s/sup -1/. The experimental apparatus and procedure were previously described. The experimentally observed steady-state ozone concentrations in noble gas-O/sub 2/ discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O/sub 2/-SF/sub 6/ mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF/sub 6/ addition. This observation was contrary to only a small increase observed after SF/sub 6/ addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O/sub 2/ discharges

  5. Experimental studies and model analysis of noble gas fractionation in porous media

    Science.gov (United States)

    Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.

    2016-01-01

    The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.

  6. First-principles study of noble gas stability in ThO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Kuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Han, Han, E-mail: hanhanfudan@gmail.com [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, Wei [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Wang, Hui [School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471003 (China); Wang, Chang-Ying; Guo, Yong-Liang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Ren, Cui-Lan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-07-15

    The stability of noble gases (He, Ne, Ar, Kr and Xe) in thorium dioxide is studied by means of density functional theory. The computations are performed considering insertion sites of ThO{sub 2}, including the interstitial sites, the thorium vacancies, the oxygen-thorium di-vacancy and three types of Schottky defects. Our results show that there is an approximately linear relation between the energies and the atomic radii. As the size of the noble gas atom increases, the noble gas atoms energetically prefer to incorporate into large vacancy defects rather than into interstitial positions. Moreover, the binding energy of Kr or Xe interstitial in a Schottky defect is larger than the formation energy of a Schottky defect, suggesting the Schottky defects are thermodynamically favorable in the presence of these noble gas atoms. The charged defects are also considered for noble gas atoms trapped in Th and O vacancies.

  7. Synthesis of Zeolite Materials for Noble Gas Separation

    International Nuclear Information System (INIS)

    Achey, R.; Rivera, O.; Wellons, M.; Hunter, D.

    2017-01-01

    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leader in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.

  8. Synthesis of Zeolite Materials for Noble Gas Separation

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rivera, O. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wellons, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-02

    Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leader in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.

  9. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    Science.gov (United States)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the

  10. Possible solar noble-gas component in Hawaiian basalts

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Masahiko; McDougall, I.; Patterson, D.B.; Doulgeris, A. (Australian National Univ., Canberra (Australia). Research School of Earth Sciences); Clague, D.A. (Geological Survey, Menlo Park, CA (USA))

    1991-01-10

    The noble-gas elemental and isotopic composition in the Earth is significantly different from that of the present atmosphere, and provides an important clue to the origin and history of the Earth and its atmosphere. Possible candidates for the noble-gas composition of the primordial Earth include a solar-like component, a planetary-like component (as observed in primitive meteorites) and a component similar in composition to the present atmosphere. In an attempt to identify the contributions of such components, we have measured isotope ratios of helium and neon in fresh basaltic glasses dredged from Loihi seamount and the East Rift Zone of Kilauea. We find a systematic enrichment in {sup 20}Ne and {sup 21}Ne relative to {sup 22}Ne, compared with atmospheric neon. The helium and neon isotope signatures observed in our samples can be explained by mixing of solar, present atmospheric, radiogenic and nucleogenic components. These data suggest that the noble-gas isotopic composition of the mantle source of the Hawaiian plume is different from that of the present atmosphere, and that it includes a significant solar-like component. We infer that this component was acquired during the formation of the Earth. (author).

  11. Quality management for noble gas trace analysis; Qualitaetssicherung bei der Edelgasspurenanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, S.; Konrad, M.; Kumberg, T.; Schlosser, C. [Bundesamt fuer Strahlenschutz (BfS), Freiburg (Germany); Gohla, H. [Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), Vienna International Centre, Vienna (Austria). Preparatory Commission

    2014-01-20

    The Federal Office for Radiation Protection operates measurement systems to determine the activity concentrations of Krypton-85 and Xenon-133 in air samples since the early 70s. Certified standards with stable noble gas admixtures are still missing for quality assurance (certified activity concentrations). The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is currently establishing a global noble gas monitoring network for the verification of compliance with the Treaty. In cooperation with CTBTO the BfS currently develops concepts of quality assurance for noble gas measurements. Opportunities for quality assurance without using certified standards are discussed by comparisons between individual laboratories and internal audits. The results from the first CTBTO laboratory intercomparison with synthetic radioxenon samples look very promising.

  12. Noble gas enrichment studies at JET

    International Nuclear Information System (INIS)

    Groth, M.; Andrew, P.; Fundamenski, W.; Guo, H.Y.; Hillis, D.L.; Hogan, J.T.; Horton, L.D.; Matthews, G.F.; Meigs, A.G.; Morgan, P.M.; Stamp, M.F.; Hellermann, M. von

    2001-01-01

    Adequate helium exhaust has been achieved in reactor-relevant ELMy H-mode plasmas in JET performed in the MKII AP and MKII GB divertor geometry. The divertor-characteristic quantities of noble gas compression and enrichment have been experimentally inferred from Charge Exchange Recombination Spectroscopy measurements in the core plasma, and from spectroscopic analysis of a Penning gauge discharge in the exhaust gas. The retention of helium was found to be satisfactory for a next-step device, with enrichment factors exceeding 0.1. The helium enrichment decreases with increasing core plasma density, while the neon enrichment has the opposite behaviour. Analytic and numerical analyses of these plasmas using the divertor impurity code package DIVIMP/NIMBUS support the explanation that the enrichment of noble gases depends significantly on the penetration depth of the impurity neutrals with respect to the fuel atoms. Changes of the divertor plasma configuration and divertor geometry have no effect on the enrichment

  13. Isotopic mass-dependence of noble gas diffusion coefficients inwater

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2007-06-25

    Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.

  14. A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples.

    Science.gov (United States)

    Visser, Ate; Singleton, Michael J; Hillegonds, Darren J; Velsko, Carol A; Moran, Jean E; Esser, Bradley K

    2013-11-15

    Noble gases dissolved in groundwater can reveal paleotemperatures, recharge conditions, and precise travel times. The collection and analysis of noble gas samples are cumbersome, involving noble gas purification, cryogenic separation and static mass spectrometry. A quicker and more efficient sample analysis method is required for introduced tracer studies and laboratory experiments. A Noble Gas Membrane Inlet Mass Spectrometry (NG-MIMS) system was developed to measure noble gases at natural abundances in gas and water samples. The NG-MIMS system consists of a membrane inlet, a dry-ice water trap, a carbon-dioxide trap, two getters, a gate valve, a turbomolecular pump and a quadrupole mass spectrometer equipped with an electron multiplier. Noble gases isotopes (4)He, (22)Ne, (38)Ar, (84)Kr and (132)Xe are measured every 10 s. The NG-MIMS system can reproduce measurements made on a traditional noble gas mass spectrometer system with precisions of 2%, 8%, 1%, 1% and 3% for He, Ne, Ar, Kr and Xe, respectively. Noble gas concentrations measured in an artificial recharge pond were used to monitor an introduced xenon tracer and to reconstruct temperature variations to within 2 °C. Additional experiments demonstrated the capability to measure noble gases in gas and in water samples, in real time. The NG-MIMS system is capable of providing analyses sufficiently accurate and precise for introduced noble gas tracers at managed aquifer recharge facilities, groundwater fingerprinting based on excess air and noble gas recharge temperature, and field and laboratory studies investigating ebullition and diffusive exchange. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  16. Effect of noble gas ion pre-irradiation on deuterium retention in tungsten

    NARCIS (Netherlands)

    Cheng, L.; Zhao, Z. H.; De Temmerman, G.; Yuan, Y.; Morgan, T. W.; Guo, L. P.; Wang, B.; Zhang, Y.; Wang, B. Y.; Zhang, P.; Cao, X. Z.; Lu, G. H.

    2016-01-01

    Impurity seeding of noble gases is an effective way of decreasing the heat loads onto the divertor targets in fusion devices. To investigate the effect of noble gases on deuterium retention, tungsten targets have been implanted by different noble gas ions and subsequently exposed to deuterium

  17. Noble gas separation with the use of inorganic adsorbents

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.; Christian, J.D.; Paplawsky, W.J.

    1979-01-01

    A noble gas separation process is proposed for application to airborne nuclear fuel reprocessing plant effluents. The process involves the use of inorganic adsorbents for the removal of contaminant gases and noble gas separation through selective adsorption. Water and carbon dioxide are removed with selected zeolites that do not appreciably adsorb the noble gases. Xenon is essentially quantitatively removed with a specially developed adsorbent using conventional adsorption-desorption techniques. Oxygen is removed to low ppM levels by the use of a rapid cycle adsorption technique on a special adsorbent leaving a krypton-nitrogen mixture. Krypton is separated from nitrogen with a special adsorbent operated at about -80 0 C. Because the separation process does not require high pressures and oxygen is readily removed to sufficiently limit ozone formation to insignificant levels, appreciable capital and operating cost savings with this process are possible compared with other proposed processes. In addition, the proposed process is safer to operate

  18. Noble Gas Signatures in Groundwater and Rainwater on the Island of Maui, Hawaii - Developing a New Noble Gas Application in Fractured, Volcanic Systems

    Science.gov (United States)

    Castro, M. C.; Niu, Y.; Warrier, R. B.; Hall, C. M.; Gingerich, S. B.; Scholl, M. A.; Bouvier, L.

    2014-12-01

    Recent work in the Galapagos Islands suggests that noble gas temperatures (NGTs) in fractured groundwater systems reflect the temperature of the ground surface at the time of infiltration rather than the mean annual air temperature (MAAT) value as commonly assumed in sedimentary systems where NGTs are typically used as indicators of past climate. This suggests that noble gases in fractured areas may record seasonality, and thus, provide information about timing of recharge in addition to location. Calculation of NGTs assumes that rain-derived recharge at the water table is in equilibrium with ground air. Lack of noble gas equilibration with respect to surface conditions, however, was observed in high-altitude springs in the Galapagos Islands and in a rainwater pilot study in Michigan, supporting the NGT seasonality hypothesis. Developing this new NGT application will lead to a better understanding of fractured groundwater flow systems and will contribute to improved water resource management plans. This study, carried out on Maui, Hawaii, is meant to test these hypotheses while improving knowledge of this island's groundwater flow system where limited hydrologic data are available. Here, we present the first results of noble gas analyses from samples collected in springs, groundwater wells and rainwater on northeast Maui. Results show that like most Michigan rainwater samples, rainwater from Maui is in disequilibrium with surface conditions and follows a mass-dependent pattern. Spring samples follow a similar pattern to that of rainwater and suggest that spring water originates directly from rainfall. These findings further support the hypothesis of NGT seasonality. However, while the atmospheric composition of noble gases points to direct supply from rainfall to spring aquifer systems, a direct connection between spring water and deeper aquifer levels or the mantle is apparent from He isotopic ratios which display an almost pure He mantle component in some springs.

  19. Cucurbit[6]uril: A Possible Host for Noble Gas Atoms.

    Science.gov (United States)

    Pan, Sudip; Mandal, Subhajit; Chattaraj, Pratim K

    2015-08-27

    Density functional and ab initio molecular dynamics studies are carried out to investigate the stability of noble gas encapsulated cucurbit[6]uril (CB[6]) systems. Interaction energy, dissociation energy and dissociation enthalpy are calculated to understand the efficacy of CB[6] in encapsulating noble gas atoms. CB[6] could encapsulate up to three Ne atoms having dissociation energy (zero-point energy corrected) in the range of 3.4-4.1 kcal/mol, whereas due to larger size, only one Ar or Kr atom encapsulated analogues would be viable. The dissociation energy value for the second Ar atom is only 1.0 kcal/mol. On the other hand, the same for the second Kr is -0.5 kcal/mol, implying the instability of the system. The noble gas dissociation processes are endothermic in nature, which increases gradually along Ne to Kr. Kr encapsulated analogue is found to be viable at room temperature. However, low temperature is needed for Ne and Ar encapsulated analogues. The temperature-pressure phase diagram highlights the region in which association and dissociation processes of Kr@CB[6] would be favorable. At ambient temperature and pressure, CB[6] may be used as an effective noble gas carrier. Wiberg bond indices, noncovalent interaction indices, electron density, and energy decomposition analyses are used to explore the nature of interaction between noble gas atoms and CB[6]. Dispersion interaction is found to be the most important term in the attraction energy. Ne and Ar atoms in one Ng entrapped analogue are found to stay inside the cavity of CB[6] throughout the simulation at 298 K. However, during simulation Ng2 units in Ng2@CB[6] flip toward the open faces of CB[6]. After 1 ps, one Ne atom of Ne3@CB[6] almost reaches the open face keeping other two Ne atoms inside. At lower temperature (77 K), all the Ng atoms in Ngn@CB[6] remain well inside the cavity of CB[6] throughout the simulation time (1 ps).

  20. Imaging with SiPMs in noble-gas detectors

    International Nuclear Information System (INIS)

    Yahlali, N; González, K; Fernandes, L M P; Garcia, A N C; Soriano, A

    2013-01-01

    Silicon photomultipliers (SiPMs) are photosensors widely used for imaging in a variety of high energy and nuclear physics experiments. In noble-gas detectors for double-beta decay and dark matter experiments, SiPMs are attractive photosensors for imaging. However they are insensitive to the VUV scintillation emitted by the noble gases (xenon and argon). This difficulty is overcome in the NEXT experiment by coating the SiPMs with tetraphenyl butadiene (TPB) to convert the VUV light into visible light. TPB requires stringent storage and operational conditions to prevent its degradation by environmental agents. The development of UV sensitive SiPMs is thus of utmost interest for experiments using electroluminescence of noble-gas detectors. It is in particular an important issue for a robust and background free ββ0ν experiment with xenon gas aimed by NEXT. The photon detection efficiency (PDE) of UV-enhanced SiPMs provided by Hamamatsu was determined for light in the range 250–500 nm. The PDE of standard SiPMs of the same model (S10362-33-50C), coated and non-coated with TPB, was also determined for comparison. In the UV range 250–350 nm, the PDE of the standard SiPM is shown to decrease strongly, down to about 3%. The UV-enhanced SiPM without window is shown to have the maximum PDE of 44% at 325 nm and 30% at 250 nm. The PDE of the UV-enhanced SiPM with silicon resin window has a similar trend in the UV range, although it is about 30% lower. The TPB-coated SiPM has shown to have about 6 times higher PDE than the non-coated SiPM in the range 250–315 nm. This is however below the performance of the UV-enhanced prototypes in the same wavelength range. Imaging in noble-gas detectors using UV-enhanced SiPMs is discussed.

  1. Noble gas encapsulation into carbon nanotubes: Predictions from analytical model and DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramani, Sree Ganesh; Singh, Devendra; Swathi, R. S., E-mail: swathi@iisertvm.ac.in [School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Kerala 695016 (India)

    2014-11-14

    The energetics for the interaction of the noble gas atoms with the carbon nanotubes (CNTs) are investigated using an analytical model and density functional theory calculations. Encapsulation of the noble gas atoms, He, Ne, Ar, Kr, and Xe into CNTs of various chiralities is studied in detail using an analytical model, developed earlier by Hill and co-workers. The constrained motion of the noble gas atoms along the axes of the CNTs as well as the off-axis motion are discussed. Analyses of the forces, interaction energies, acceptance and suction energies for the encapsulation enable us to predict the optimal CNTs that can encapsulate each of the noble gas atoms. We find that CNTs of radii 2.98 − 4.20 Å (chiral indices, (5,4), (6,4), (9,1), (6,6), and (9,3)) can efficiently encapsulate the He, Ne, Ar, Kr, and Xe atoms, respectively. Endohedral adsorption of all the noble gas atoms is preferred over exohedral adsorption on various CNTs. The results obtained using the analytical model are subsequently compared with the calculations performed with the dispersion-including density functional theory at the M06 − 2X level using a triple-zeta basis set and good qualitative agreement is found. The analytical model is however found to be computationally cheap as the equations can be numerically programmed and the results obtained in comparatively very less time.

  2. Intentions of fast noble gas ions with clean and with oxidized monocrystalline copper surfaces

    International Nuclear Information System (INIS)

    Wit, A.G.J. de.

    1979-01-01

    The thesis reports investigations concerning the distorted shape of the energy distribution of scattered noble gas ions, and investigations of angular distributions of these ions where a quantitative interpretation is less hampered by preferential neutralization. Low energy noble gas ion scattering is used to study the interactions between oxygen gas and Cu(110) surfaces. (Auth.)

  3. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging

    Science.gov (United States)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-01

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  4. Polarization of stable and radioactive noble gas nuclei by spin exchange with laser pumped alkali atoms

    International Nuclear Information System (INIS)

    Calaprice, F.; Happer, W.; Schreiber, D.

    1984-01-01

    The nuclei of noble gases can be strongly polarized by spin exchange with sufficiently dense optically pumped alkali vapors. Only a small fraction of the spin angular momentum of the alkali atoms is transferred to the nuclear spin of the noble gas. Most of the spin angular momentum is lost to translational angular momentum of the alkali and noble gas atoms about each other. For heavy noble gases most of the angular momentum transfer occurs in alkali-noble-gas van der Waals molecules. The transfer efficiency depends on the formation and breakup rates of the van der Waals molecules in the ambient gas. Experimental methods to measure the spin transfer efficiencies have been developed. Nuclei of radioactive noble gases have been polarized by these methods, and the polarization has been detected by observing the anisotropy of the radioactive decay products. Very precise measurements of the magnetic moments of the radioactive nuclei have been made. 12 references, 9 figures

  5. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems

    Science.gov (United States)

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.

    2017-01-01

    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  6. Subsurface Noble Gas Sampling Manual

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-18

    The intent of this document is to provide information about best available approaches for performing subsurface soil gas sampling during an On Site Inspection or OSI. This information is based on field sampling experiments, computer simulations and data from the NA-22 Noble Gas Signature Experiment Test Bed at the Nevada Nuclear Security Site (NNSS). The approaches should optimize the gas concentration from the subsurface cavity or chimney regime while simultaneously minimizing the potential for atmospheric radioxenon and near-surface Argon-37 contamination. Where possible, we quantitatively assess differences in sampling practices for the same sets of environmental conditions. We recognize that all sampling scenarios cannot be addressed. However, if this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from the scenario assumed here, it will have achieved its goal.

  7. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gardner, William Payton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of Montana, Missoula, MT (United States)

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  8. Development of detection techniques for the Swedish noble gas sampler

    International Nuclear Information System (INIS)

    Ringbom, A.

    1998-11-01

    A short review on the radioactive properties of noble gas isotopes relevant for monitoring of nuclear activities is given, together with a brief discussion of the existing systems for detection of radioactive noble gases. A 4π detection system to be used in the automatic version of the Swedish noble gas sampling device is described. Monte Carlo calculations of the total gamma and beta efficiency for different detector designs have been performed, together with estimates of the resulting minimum detectable concentration (MDC). The estimated MDC values for detection of the 133g Xe 81 keV and the 135g Xe 250 keV gamma lines are around 0.3 mBq/m 3 in both cases. This is a factor of three lower than the detection limit required for a sampling station in the Comprehensive Nuclear-Test-Ban Treaty monitoring network. The possibility to modify the system to detect 85 Kr is also discussed

  9. Development of detection techniques for the Swedish noble gas sampler

    Energy Technology Data Exchange (ETDEWEB)

    Ringbom, A

    1998-11-01

    A short review on the radioactive properties of noble gas isotopes relevant for monitoring of nuclear activities is given, together with a brief discussion of the existing systems for detection of radioactive noble gases. A 4{pi} detection system to be used in the automatic version of the Swedish noble gas sampling device is described. Monte Carlo calculations of the total gamma and beta efficiency for different detector designs have been performed, together with estimates of the resulting minimum detectable concentration (MDC). The estimated MDC values for detection of the {sup 133g}Xe 81 keV and the {sup 135g}Xe 250 keV gamma lines are around 0.3 mBq/m{sup 3} in both cases. This is a factor of three lower than the detection limit required for a sampling station in the Comprehensive Nuclear-Test-Ban Treaty monitoring network. The possibility to modify the system to detect {sup 85}Kr is also discussed 27 refs, 13 figs, 3 tabs

  10. U.S. Geological Survey Noble Gas Laboratory’s standard operating procedures for the measurement of dissolved gas in water samples

    Science.gov (United States)

    Hunt, Andrew G.

    2015-08-12

    This report addresses the standard operating procedures used by the U.S. Geological Survey’s Noble Gas Laboratory in Denver, Colorado, U.S.A., for the measurement of dissolved gases (methane, nitrogen, oxygen, and carbon dioxide) and noble gas isotopes (helium-3, helium-4, neon-20, neon-21, neon-22, argon-36, argon-38, argon-40, kryton-84, krypton-86, xenon-103, and xenon-132) dissolved in water. A synopsis of the instrumentation used, procedures followed, calibration practices, standards used, and a quality assurance and quality control program is presented. The report outlines the day-to-day operation of the Residual Gas Analyzer Model 200, Mass Analyzer Products Model 215–50, and ultralow vacuum extraction line along with the sample handling procedures, noble gas extraction and purification, instrument measurement procedures, instrumental data acquisition, and calculations for the conversion of raw data from the mass spectrometer into noble gas concentrations per unit mass of water analyzed. Techniques for the preparation of artificial dissolved gas standards are detailed and coupled to a quality assurance and quality control program to present the accuracy of the procedures used in the laboratory.

  11. First ECR-Ionized Noble Gas Radioisotopes at ISOLDE

    CERN Document Server

    Wenander, F; Gaubert, G; Jardin, P; Lettry, Jacques

    2004-01-01

    The production of light noble gas radioisotopes with high ionization potentials has been hampered by modest ionization efficiencies for standard plasma ion-sources. However, the decay losses are minimal as the lingering time of light noble gases within plasma ion-sources is negligible when compared to its diffusion out of the target material. Previous singly charged ECRIS have shown a higher efficiency but also a lingering time of the order of 1 s and a total weight that prevents remote handling by the ISOLDE robot. The compact MINIMONO efficiently addressed the lingering time and weight issues. In addition, the MINIMONO maintained the high off-line ionization efficiency for light noble gases. This paper describes a standard ISOLDE target unit equipped with a MINIMONO ion-source and the first tests. The ion-source has been tested off-line and equipped with a CaO target for on-line tests. Valuable information was gained about high current (100-500 muA) transport through the ISOLDE mass separators designed for ...

  12. Noble gas, binary mixtures for commercial gas-cooled reactor systems

    International Nuclear Information System (INIS)

    El-Genk, M. S.; Tournier, J. M.

    2007-01-01

    Commercial gas cooled reactors employ helium as a coolant and working fluid for the Closed Brayton Cycle (CBC) turbo-machines. Helium has the highest thermal conductivity and lowest dynamic viscosity of all noble gases. This paper compares the relative performance of pure helium to binary mixtures of helium and other noble gases of higher molecular weights. The comparison is for the same molecular flow rate, and same operating temperatures and geometry. Results show that although helium is a good working fluid because of its high heat transfer coefficient and significantly lower pumping requirement, a binary gas mixture of He-Xe with M = 15 gm/mole has a heat transfer coefficient that is ∼7% higher than that of helium and requires only 25% of the number stages of the turbo-machines. The binary mixture, however, requires 3.5 times the pumping requirement with helium. The second best working fluid is He-Kr binary mixture with M = 10 gm/mole. It has 4% higher heat transfer coefficient than He and requires 30% of the number of stages in the turbo-machines, but requires twice the pumping power

  13. Noble gas geochemistry to monitor CO2 geological storages

    International Nuclear Information System (INIS)

    Lafortune, St.

    2007-11-01

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO 2 emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO 2 could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO 2 in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO 2 storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO 2 accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  14. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    Science.gov (United States)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  15. Noble Gases in Lakes and Ground Waters

    OpenAIRE

    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin

    2002-01-01

    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  16. Electron--noble-gas spin-flip scattering at low energy

    International Nuclear Information System (INIS)

    Walker, T.G.; Bonin, K.; Happer, W.

    1987-01-01

    The spin-exchange rates and spin-relaxation rates for thermal electrons colliding with noble-gas atoms are calculated using the orthogonalized-plane-wave approximation and via partial-wave analysis. The two techniques give similar results and are in order-of-magnitude agreement with the experimental rate in Ar

  17. Noble gas atmospheric monitoring for international safeguards at reprocessing plants

    International Nuclear Information System (INIS)

    Nakhleh, C.W.; Poths, J.; Stanbro, W.D.; Perry, R.T. Jr.; Wilson, W.B.; Fearey, B.L.

    1997-01-01

    The use of environmental sampling is a major component of the improvements of International Atomic Energy Agency safeguards being carried out under Program 93+2. Nonradioactive noble gas isotopic measurements in the effluent stream of large reprocessing facilities may provide useful confirmatory information on the burnup and reactor type of the spent fuel undergoing reprocessing. The authors have taken and analyzed stack samples at an operating facility. The data show clear fission signals. The authors are currently applying a maximum-likelihood estimation procedure to determine the fuel burnup from these data. They anticipate that the general features involved in the table noble gas problem--selection of appropriate signals, measurement of those signals under realistic conditions, and inverse calculation of parameters of interest from the environmental data--will be present in all environmental sampling problems. These methods should therefore be widely applicable

  18. Attosecond Time Delay in Photoionization of Noble-Gas and Halogen Atoms

    Directory of Open Access Journals (Sweden)

    Liang-Wen Pi

    2018-02-01

    Full Text Available Ultrafast processes are now accessible on the attosecond time scale due to the availability of ultrashort XUV laser pulses. Noble-gas and halogen atoms remain important targets due to their giant dipole resonance and Cooper minimum. Here, we calculate photoionization cross section, asymmetry parameter and Wigner time delay using the time-dependent local-density approximation (TDLDA, which includes the electron correlation effects. Our results are consistent with experimental data and other theoretical calculations. The asymmetry parameter provides an extra layer of access to the phase information of the photoionization processes. We find that halogen atoms bear a strong resemblance on cross section, asymmetry parameter and time delay to their noble-gas neighbors. Our predicted time delay should provide a guidance for future experiments on those atoms and related molecules.

  19. A review of noble gas geochemistry in relation to early Earth history

    Science.gov (United States)

    Kurz, M. D.

    1985-01-01

    One of the most fundamental noble gas constraints on early Earth history is derived from isotopic differences in (129)Xe/(130)Xe between various terrestrial materials. The short half life (17 m.y.) of extinct (129I, parent of (129)Xe, means that these differences must have been produced within the first 100 m.y. after terrestrial accretion. The identification of large anomalies in (129)Xe/(130)Xe in mid ocean ridge basalts (MORB), with respect to atmospheric xenon, suggests that the atmosphere and upper mantle have remained separate since that time. This alone is a very strong argument for early catastrophic degassing, which would be consistent with an early fractionation resulting in core formation. However, noble gas isotopic systematics of oceanic basalts show that the mantle cannot necessarily be regarded as a homogeneous system, since there are significant variations in (3)He/(4)He, (40)Ar/(36)Ar, and (129)Xe/(130)Xe. Therefore, the early degassing cannot be considered to have acted on the whole mantle. The specific mechanisms of degassing, in particular the thickness and growth of the early crust, is an important variable in understanding present day noble gas inventories. Another constraint can be obtained from rocks that are thought to be derived from near the lithosphere asthenosphere boundary: ultramafic xenoliths.

  20. The Noble-Abel Stiffened-Gas equation of state

    Science.gov (United States)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  1. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    Science.gov (United States)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  2. Resonance ionization spectroscopy: Counting noble gas atoms

    International Nuclear Information System (INIS)

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Willis, R.D.; Lehmann, B.E.; Kramer, S.D.

    1981-01-01

    The purpose of this paper is to describe new work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions). When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. We show that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective. (orig./FKS)

  3. Wigner Distribution Functions as a Tool for Studying Gas Phase Alkali Metal Plus Noble Gas Collisions

    Science.gov (United States)

    2014-03-27

    WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR STUDYING GAS PHASE ALKALI METAL PLUS NOBLE GAS COLLISIONS THESIS Keith A. Wyman, Second Lieutenant, USAF...the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-14-M-39 WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENP-14-M-39 WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR STUDYING GAS PHASE ALKALI METAL PLUS

  4. Chemical reactivity of the compressed noble gas atoms and their ...

    Indian Academy of Sciences (India)

    Attempts are made to gain insights into the effect of confinement of noble gas atoms on their various reactivity indices. Systems become harder, less polarizable and difficult to excite as the compression increases. Ionization also causes similar effects. A quantum fluid density functional technique is adopted in order to study ...

  5. The Origin of Noble Gas Isotopic Heterogeneity in Icelandic Basalts

    Science.gov (United States)

    Dixon, E. T.; Honda, M.; McDougall, I.

    2001-01-01

    Two models for generation of heterogeneous He, Ne and Ar isotopic ratios in Icelandic basalts are evaluated using a mixing model and the observed noble gas elemental ratios in Icelandic basalts,Ocean island Basalt (OIBs) and Mid-Ocean Ridge Basalt (MORBs). Additional information is contained in the original extended abstract.

  6. Linear and nonlinear instability theory of a noble gas MHD generator

    International Nuclear Information System (INIS)

    Mesland, A.J.

    1982-01-01

    This thesis deals with the stability of the working medium of a seeded noble gas magnetohydrodynamic generator. The aim of the study is to determine the instability mechanism which is most likely to occur in experimental MHD generators and to describe its behaviour with linear and nonlinear theories. In chapter I a general introduction is given. The pertinent macroscopic basic equations are derived in chapter II, viz. the continuity, the momentum and the energy equation for the electrons and the heavy gas particles, consisting of the seed particles and the noble gas atoms. Chapter III deals with the linear plane wave analysis of small disturbances of a homogeneous steady state. The steady state is discussed in chapter IV. The values for the steady state parameters used for the calculations both for the linear analysis as for the nonlinear analysis are made plausible with the experimental values. Based on the results of the linear plane wave theory a nonlinear plane wave model of the electrothermal instability is introduced in chapter V. (Auth.)

  7. Mantle Noble Gas Contents Controlled by Subduction of Serpentinite

    Science.gov (United States)

    Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.

    2017-12-01

    Geochemical analyses of exhumed subduction zone material1, well gases2, MORB, and OIBs3 indicate that noble gases are being recycled from the surface of the earth into the mantle. However, the path taken by these noble gases is unclear. To estimate the distribution and quantity of Ar, Kr, and Xe in subducting slabs, a model consisting of layers of sediments, altered oceanic crust (AOC), and serpentinite (hydrously altered mantle) has been developed. The noble gas contents of sediments and AOC were calculated using the least air-like and most gas-rich analyses from natural systems4,5, while serpentinite was modelled using both data from natural systems1 and experimentally determined solubilities. Layer thicknesses were assessed over a range of values: 1 to 12 km of sediments, 5 to 9 km of AOC, and 1 to 30 km of serpentinite. In all cases, the serpentinite layer contains at least an order of magnitude more Ar and Kr than the other layers. For realistic layer thicknesses (1 km of sediments, 6 km of AOC, and 3 km of serpentinite), Xe is distributed roughly equally between the three layers. By incorporating global subduction rates6, fluxes of the heavy noble gases into the mantle have been calculated as 4 · 1012 mol/Ma for 36Ar, 6 · 1011 mol/Ma for 84Kr, and 8 · 109 mol/Ma for 130Xe. These fluxes are equivalent to the total 84Kr and 130Xe contents of the depleted and bulk mantle over 1 and 10 Ma7. Similarly, the flux of 36Ar is equivalent over 1 and 100 Ma. Since the Kr and Xe have not been completely overprinted by recycling, the large majority of subducted noble gases must escape in the subduction zone. However, even the small amounts that are subducted deeper have affected the mantle as measured in both MORB and OIBs. 1. Kendrick, M.A. et al., Nature Geoscience, 4, 807-812, 2011 2. Holland, G. and Ballentine, C.J., Nature, 441, 186-191, 2006 3. Parai, R. and Mukhopadhyay, S., G3, 16, 719-735, 2015 4. Matsuda, J. and Nagao, K., Geochemical Journal, 20, 71-80, 1986

  8. Noble Gases

    Science.gov (United States)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  9. Scattering of low energy noble gas ions from a metal surface

    International Nuclear Information System (INIS)

    Luitjens, S.B.

    1980-01-01

    Reflection of low energy (0.1-10 keV) noble gas ions can be used to analyse a solid surface. To study charge exchange processes, the ion fractions of neon and of argon, scattered from a Cu(100) surface, have been determined. (Auth.)

  10. Noble gas systematics of submarine alkalic lavas near the Hawaiian hotspot

    NARCIS (Netherlands)

    Hanyu, T.; Clague, D.A.; Kaneoka, I.; Dunai, T.J.; Davies, G.R.

    2005-01-01

    Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism and hence understand the details of mantle upwelling beneath Hawaii. Samples were collected by dredging or using submersibles from

  11. Methane oxidation over noble metal catalysts as related to controlling natural gas vehicle exhaust emissions

    International Nuclear Information System (INIS)

    Oh, S.H.; Mitchell, P.J.; Siewert, R.M.

    1992-01-01

    Natural gas has considerable potential as an alternative automotive fuel. This paper reports on methane, the principal hydrocarbon species in natural-gas engine exhaust, which has extremely low photochemical reactivity but is a powerful greenhouse gas. Therefore, exhaust emissions of unburned methane from natural-gas vehicles are of particular concern. This laboratory reactor study evaluates noble metal catalysts for their potential in the catalytic removal of methane from natural-gas vehicle exhaust. Temperature run-up experiments show that the methane oxidation activity decreases in the order Pd/Al 2 O 3 > Rh/Al 2 O 3 > Pt/Al 2 O 3 . Also, for all the noble metal catalysts studied, methane conversion can be maximized by controlling the O 2 concentration of the feedstream at a point somewhat rich (reducing) of stoichiometry

  12. Hyperpolarized 129Xe as an NMR probe for functional studies

    International Nuclear Information System (INIS)

    Wolber, J.

    2000-01-01

    The nuclear spin polarization of 129 Xe can be enhanced by several orders of magnitude using optical pumping techniques, resulting in a dramatic enhancement of the 129 Xe Nuclear Magnetic Resonance (NMR) signal. The 'hyperpolarized' gas can be used for Magnetic Resonance Imaging (MRI) of the void spaces of the lungs after introduction of the gas into the respiratory system. Furthermore, the high solubility of xenon in blood and lipids suggests the use of 129 Xe NMR for studying blood flow, permeability, perfusion and blood volume. Hyperpolarized 129 Xe MRI has the potential of combining the high sensitivity and functional information of radioactive tracer studies with the high spatial and temporal resolution of MRI. The spin-lattice relaxation time T 1 of 129 Xe in blood determines the loss of polarization during transit from the lungs to the tissue of interest. A difference in the relaxation times of xenon in oxygenated and deoxygenated blood could be used as a contrast mechanism in functional Magnetic Resonance Imaging (fMRI). In this thesis, the hyperpolarized 129 Xe T 1 in human blood is measured in vitro as a function of blood oxygenation, and the relevant relaxation mechanisms are discussed. A new and unexpected finding is that the hyperpolarized 129 Xe NMR spectrum in blood is highly sensitive to blood oxygenation. Therefore, hyperpolarized 129 Xe NMR provides a powerful means of measuring blood oxygenation quantitatively and non-invasively. The interaction of xenon with hemoglobin is responsible for an oxygen-dependent shift of the 129 Xe NMR resonance of xenon in red blood cells. Injection delivery of hyperpolarized 129 Xe in solution could be a more efficient method of administrating the gas for functional NMR studies. For this purpose, suitable biocompatible carrier media have been studied. In particular, the use of perfluorocarbon emulsions, which are already in use as blood substitutes, as delivery media for hyperpolarized 129 Xe has been investigates

  13. Mixed noble gas effect on cut green peppers

    Science.gov (United States)

    Raymond, L. V.; Zhang, M.; Karangwa, E.; Chesereka, M. J.

    2013-01-01

    Increasing attempts at using gas which leads to hydrate formation as a preservative tool in fresh-cut fruits and vegetables have been reported. In this study, changes in some physical and biochemical properties of fresh-cut green peppers under compressed noble gas treatments were examined. Mixed argonkrypton and argon treatments were performed before cold storage at 5°C for 15 days. Mass loss and cell membrane permeability were found to be the lowest in mixed argon-krypton samples. Besides, a lower CO2 concentration and vitamin C loss were detected in gastreated samples compared to untreated samples (control). While the total phenol degradation was moderately reduced, the effect of the treatment on polyphenoloxidase activity was better at the beginning of the storage period. The minimum changes in quality observed in cut peppers resulted from both mixed and gas treatment alone.

  14. Spatial profiling of ion and neutral excitation in noble gas electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Rhoades, R.L.; Gorbatkin, S.M.

    1994-01-01

    Optical emission from neutrals and ions of several noble gases has been profiled in an electron cyclotron resonance plasma system. In argon plasmas with a net microwave power of 750 W, the neutral (696.5-nm) and ion (488-nm) emission profiles are slightly center peaked at 0.32 mTorr and gradually shift to a hollow appearance at 2.5 mTorr. Neon profiles show a similar trend from 2.5 to 10.0 mTorr. For the noble gases, transition pressure scales with the ionization potential of the gas, which is consistent with neutral depletion. Studies of noble gas mixtures, however, indicate that neutral depletion is not always dominant in the formation of hollow profiles. For Kr/Ar, Ar/Ne, and Ne/He plasmas, the majority gas tends to set the overall shape of the profile at any given pressure. For the conditions of the current system, plasma density appears to be more dominant than electron temperature in the formation of hollow profiles. The general method described is also a straightforward, inexpensive technique for measuring the spatial distribution of power deposited in plasmas, particularly where absolute scale can be calibrated by some other means

  15. Attosecond time delays in the photoionization of noble gas atoms studied in TDLDA

    International Nuclear Information System (INIS)

    Magrakvelidze, Maia; Chakraborty, Himadri; Madjet, Mohamed

    2015-01-01

    We perform time-dependent local density functional calculations of the quantum phase and time delays of valence photoionization of noble gas atoms. Results may be accessed by XUV-IR interferometric metrology. (paper)

  16. Noble gas control room accident filtration system for severe accident conditions (N-CRAFT)

    International Nuclear Information System (INIS)

    Hill, Axel; Stiepani, Cristoph; Drechsler, Michael

    2015-01-01

    Severe accidents might cause the release of airborne radioactive substances to the environment of the NPP either due to containment leakages or due to intentional filtered containment venting. In the latter case aerosols and iodine are retained, however noble gases are not retainable by the FCVS or by conventional air filtration systems like HEPA filters and iodine absorbers. Radioactive noble gases nevertheless dominate the activity release depending on the venting procedure and the weather conditions. To prevent unacceptable contamination of the control room atmosphere by noble gases, AREVA GmbH has developed a noble gas control room accident filtration system (CRAFT) which can supply purified fresh air to the control room without time limitation. The retention process is based on dynamic adsorption of noble gases on activated carbon. The system consists of delay lines (carbon columns) which are operated by a continuous and simultaneous adsorption and desorption process. CRAFT allows minimization of the dose rate inside the control room and ensures low radiation exposure to the staff by maintaining the control room environment suitable for prolonged occupancy throughout the duration of the accident. CRAFT consists of a proven modular design either transportable or permanently installed. (author)

  17. Modeling of noble gas injection into tokamak plasmas

    International Nuclear Information System (INIS)

    Morozov, D.Kh.; Yurchenko, E.I.; Lukash, V.E.; Baronova, E.O.; Rozhansky, V.A.; Senichenkov, I.Yu.; Veselova, I.Yu.; Schneider, R.

    2005-01-01

    Noble gas injection for mitigation of the disruption in DIII-D is simulated. The simulation of the first two stages is performed: of the neutral gas jet penetration through the background plasmas, and of the thermal quench. In order to simulate the first stage the 1.5-dimensional numerical code LLP with improved radiation model for noble gas is used. It is demonstrated that the jet remains mainly neutral and thus is able to penetrate to the central region of the tokamak in accordance with experimental observations. Plasma cooling at this stage is provided by the energy exchange with the jet. The radiation is relatively small, and the plasma thermal energy is spent mainly on the jet expansion. The magnetic surfaces in contact with the jet are cooled significantly. The cooling front propagates towards the plasma center. The simulations of the plasma column dynamics in the presence of moving jet is performed by means of the free boundary transport modeling DINA code. It has been shown that the cooling front is accompanied by strongly localized 'shark fin-like' perturbation in toroidal current density profile. After few milliseconds the jet (together with the current perturbation) achieves the region where safety factor is slightly higher than unity and a new type of the non-local kink mode develops. The unstable kink perturbation is non-resonant for any magnetic surface, both inside the plasma column, and in the vacuum space. The mode disturbs mainly the core region. The growth time of the 'shark fin-like' mode is higher than the Alfven time by a factor of 100 for DIII-D parameters. Hence, the simulation describes the DIII-D experimental results, at least, qualitatively. (author)

  18. Characterisation of an ion source on the Helix MC Plus noble gas mass spectrometer - pressure dependent mass discrimination

    Science.gov (United States)

    Zhang, X.

    2017-12-01

    Characterisation of an ion source on the Helix MC Plusnoble gas mass spectrometer - pressure dependent mass discrimination Xiaodong Zhang* dong.zhang@anu.edu.au Masahiko Honda Masahiko.honda@anu.edu.au Research School of Earth Sciences, The Australian National University, Canberra, Australia To obtain reliable measurements of noble gas elemental and isotopic abundances in a geological sample it is essential that the mass discrimination (instrument-induced isotope fractionation) of the mass spectrometer remain constant over the working range of noble gas partial pressures. It is known, however, that there are pressure-dependent variations in sensitivity and mass discrimination in conventional noble gas mass spectrometers [1, 2, 3]. In this study, we discuss a practical approach to ensuring that the pressure effect in the Helix MC Plus high resolution, multi-collector noble gas mass spectrometer is minimised. The isotopic composition of atmospheric Ar was measured under a range of operating conditions to test the effects of different parameters on Ar mass discrimination. It was found that the optimised ion source conditions for pressure independent mass discrimination for Ar were different from those for maximised Ar sensitivity. The optimisation can be achieved by mainly adjusting the repeller voltage. It is likely that different ion source settings will be required to minimise pressure-dependent mass discrimination for different noble gases. A recommended procedure for tuning an ion source to reduce pressure dependent mass discrimination will be presented. References: Honda M., et al., Geochim. Cosmochim. Acta, 57, 859 -874, 1993. Burnard P. G., and Farley K. A., Geochemistry Geophysics Geosystems, Volume 1, 2000GC00038, 2000. Mabry J., et al., Journal of Analytical Atomic Spectrometry, 27, 1012 - 1017, 2012.

  19. Physical interactions of hyperpolarized gas in the lung

    Science.gov (United States)

    Chen, Xiu-Hao Josette

    1999-09-01

    This thesis addresses key interactions of hyperpolarized (HP) gas within the biological environment of the lung using magnetic resonance imaging (MRI). The first excised lung image was obtained in 1994 by Albert et al ., indicating the relative youth of the HP gas MRI field. Thus, there are a multitude of parameters which need to be explored to optimize contrast mechanisms and pulse sequences for in vivo applications. To perform HP gas MRI, both the production of HP gas and development of appropriate MRI pulse sequences were necessary. The apparatus for gas polarization was transferred from Princeton University, then modified and optimized to provide larger quantities and higher polarizations. It was ultimately replaced by a prototype commercial apparatus. Existing MRI pulse sequences were changed to accommodate and exploit the unique situation of non-equilibrium polarized gas. Several physical parameters of the gas relating to structure and function in the lung were investigated. It was found that using a range of excitation powers, acquisition windows, and ventilatory cycle segments yielded dramatically different types of images in the guinea pig. Spatially localized lineshapes of HP 3He showed differentiated peaks (corresponding to frequency shifts) which represent gas in major airways (2 ppm) and alveoli (1-2 ppm). Quantitative maps of the diffusion coefficient (D) showed evidence of free diffusion in the trachea (average of 2.4 cm2/s for 3He and 0.68 cm2/s for 129Xe) and restricted diffusion combined with effects of gas mixtures in the distal pulmonary airspaces (average of 0.16 cm2/s for 3He and 0.021 cm2/s for 129Xe). Experimental measurements were verified with gas mixture and porous media theory for both 3He and 129Xe. The dephasing parameter, T*2 , was mapped showing sensitivity to changes in tidal volume and oxygen level. The T*2 values ranged from 9.2 to 15.9 ms in the intrapulmonary airspaces depending on the breathing paradigm. Experimental results

  20. Migration of noble gas atoms in interaction with vacancies in silicon

    International Nuclear Information System (INIS)

    Pizzagalli, L; Charaf-Eddin, A

    2015-01-01

    First principles calculations in combination with the nudged elastic band method have been performed in order to determine the mobility properties of various noble gas species (He, Ne, Ar, Kr, and Xe) in silicon, a model semiconducting material. We focussed on single impurity, in interstitial configuration or forming a complex with a mono- or a di-vacancy, since the latter are known to be present and to play a key role in the formation of extended defects like bubbles or platelets. We determined several migration mechanisms and associated activation energies and have discussed these results in relation to available experiments. In particular, conflicting measured values of the migration energy of helium are explained by the present calculations. We also predict that helium diffuses solely as an interstitial, while an opposite behaviour is found for heavier species such as Ar, Kr, and Xe, with the prevailing role of complexes in that case. Finally, our calculations indicate that extended defects evolution by Ostwald ripening is possible for helium and maybe neon, but is rather unlikely for heavier noble gas species. (paper)

  1. Noble gas solubility in silicate melts:a review of experimentation and theory, and implications regarding magma degassing processes

    Directory of Open Access Journals (Sweden)

    A. Paonita

    2005-06-01

    Full Text Available Noble gas solubility in silicate melts and glasses has gained a crucial role in Earth Sciences investigations and in the studies of non-crystalline materials on a micro to a macro-scale. Due to their special geochemical features, noble gases are in fact ideal tracers of magma degassing. Their inert nature also allows them to be used to probe the structure of silicate melts. Owing to the development of modern high pressure and temperature technologies, a large number of experimental investigations have been performed on this subject in recent times. This paper reviews the related literature, and tries to define our present state of knowledge, the problems encountered in the experimental procedures and the theoretical questions which remain unresolved. Throughout the manuscript I will also try to show how the thermodynamic and structural interpretations of the growing experimental dataset are greatly improving our understanding of the dissolution mechanisms, although there are still several points under discussion. Our improved capability of predicting noble gas solubilities in conditions closer to those found in magma has allowed scientists to develop quantitative models of magma degassing, which provide constraints on a number of questions of geological impact. Despite these recent improvements, noble gas solubility in more complex systems involving the main volatiles in magmas, is poorly known and a lot of work must be done. Expertise from other fields would be extremely valuable to upcoming research, thus focus should be placed on the structural aspects and the practical and commercial interests of the study of noble gas solubility.

  2. Noble gas bond and the behaviour of XeO3 under pressure.

    Science.gov (United States)

    Hou, Chunju; Wang, Xianlong; Botana, Jorge; Miao, Maosheng

    2017-10-18

    Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO 3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO 3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.

  3. Transportable hyperpolarized metabolites

    Science.gov (United States)

    Ji, Xiao; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Gajan, David; Rossini, Aaron J.; Emsley, Lyndon; Bodenhausen, Geoffrey; Jannin, Sami

    2017-01-01

    Nuclear spin hyperpolarization of 13C-labelled metabolites by dissolution dynamic nuclear polarization can enhance the NMR signals of metabolites by several orders of magnitude, which has enabled in vivo metabolic imaging by MRI. However, because of the short lifetime of the hyperpolarized magnetization (typically <1 min), the polarization process must be carried out close to the point of use. Here we introduce a concept that markedly extends hyperpolarization lifetimes and enables the transportation of hyperpolarized metabolites. The hyperpolarized sample can thus be removed from the polarizer and stored or transported for use at remote MRI or NMR sites. We show that hyperpolarization in alanine and glycine survives 16 h storage and transport, maintaining overall polarization enhancements of up to three orders of magnitude. PMID:28072398

  4. Analysis of noble gas recycling at a fusion plasma divertor

    International Nuclear Information System (INIS)

    Brooks, J.N.

    1996-01-01

    Near-surface recycling of neon and argon atoms and ions at a divertor has been studied using impurity transport and surface interaction codes. A fixed background deuterium endash tritium plasma model is used corresponding to the International Thermonuclear Experimental Reactor (ITER) [ITER EDA Agreement and Protocol 2, ITER EDA Documentation Series No. 5 (International Atomic Energy Agency, Vienna, 1994)] radiative plasma conditions (T e ≤10 eV). The noble gas transport depends critically on the divertor surface material. For low-Z materials (Be and C) both neon and argon recycle many (e.g., ∼100) times before leaving the near-surface region. This is also true for an argon on tungsten combination. For neon on tungsten, however, there is low recycling. These variations are due to differences in particle and energy reflection coefficients, mass, and ionization rates. In some cases a high flux of recycling atoms is ionized within the magnetic sheath and this can change local sheath parameters. Due to inhibited backflow, high recycling, and possibly high sputtering, noble gas seeding (for purposes of enhancing radiation) may be incompatible with Be or C surfaces, for fusion reactor conditions. On the other hand, neon use appears compatible with tungsten. copyright 1996 American Institute of Physics

  5. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology.

    Science.gov (United States)

    Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A

    2013-06-21

    The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.

  6. Noble gas control room accident filtration system for severe accident conditions N-CRAFT. System design

    International Nuclear Information System (INIS)

    Hill, Axel

    2014-01-01

    Severe accidents might cause the release of airborne radioactive substances to the environment of the NPP. This can either be due to leakages of the containment or due to a filtered containment venting in order to ensure the overall integrity of the containment. During the containment venting process aerosols and iodine can be retained by the FCVS which prevents long term ground contamination. Noble gases are not retainable by the FCVS. From this it follows that a large amount of radioactive noble gases (e.g. xenon, krypton) might be present in the nearby environment of the plant dominating the activity release, depending on the venting procedure and the weather conditions. Accident management measures are necessary in case of severe accidents and the prolonged stay of staff inside the main control room (MCR) or emergency response center (ERC) is essential. Therefore, the in leakage and contamination of the MRC and ERC with airborne activity has to be prevented. The radiation exposure of the crises team needs to be minimized. The entrance of noble gases cannot be sufficiently prevented by the conventional air filtration systems such as HEPA filters and iodine absorbers. With the objective to prevent an unacceptable contamination of the MCR/ERC atmosphere by noble gases AREVA GmbH has developed a noble gas retention system. The noble gas control room accident filtration system CRAFT is designed for this case and provides supply of fresh air to the MCR/ERC without time limitation. The retention process of the system is based on the dynamic adsorption of noble gases on activated carbon. The system consists of delay lines (carbon columns) which are operated by a continuous and simultaneous adsorption and desorption process. These cycles ensure a periodic load and flushing of the delay lines retaining the noble gases from entering the MCR. CRAFT allows a minimization of the dose rate inside MCR/ERC and ensures a low radiation exposure to the staff on shift maintaining

  7. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    Science.gov (United States)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  8. Mechanisms of disruptions caused by noble gas injection into tokamak plasmas

    International Nuclear Information System (INIS)

    Morozov, D.Kh.; Yurchenko, E.I.; Lukash, V.E.; Baronova, E.O.; Pozdnyakov, Yu.I.; Rozhansky, V.A.; Senichenkov, I.Yu.; Veselova, I.Yu.; Schneider, R.

    2005-01-01

    Noble gas injection for disruption mitigation in DIII-D is simulated. The simulation of the first two stages of the disruption is performed: the first one is the neutral gas jet penetration through the background plasmas, and the second one is the instability growth. In order to simulate the first stage, the MHD pellet code LLP with improved radiation model for noble gas is used. Plasma cooling at this stage is provided by the energy exchange with the jet. The opacity effects in radiation losses are found to be important in the energy balance calculations. The magnetic surfaces in contact with the jet are cooled significantly; however, the temperature as well as the electric conductivity, remains high. The cooling front propagates towards the plasma centre. It has been shown that the cooling front is accompanied by strongly localized 'shark fin-like' perturbation in toroidal current density profile. The simplified cylindrical model shows that the cooling front is able to produce the internal kink-like mode with growth rate significantly higher than the tearing mode. The unstable kink perturbation obtained is non-resonant for any magnetic surface, both inside the plasma column, and in the vacuum space outside the separatrix. The mode disturbs mainly the core region. The growth time of the 'shark fin-like' mode is higher than the Alfven time by a factor of 10-100 for DIII-D parameters

  9. Muonium formation in noble gases and noble gas mixtures

    International Nuclear Information System (INIS)

    Stambaugh, R.D.; Casperson, D.E.; Crane, T.W.; Hughes, V.W.; Kaspar, H.F.; Souder, P.; Thompson, P.A.; Orth, H.; zu Putlitz, G.; Denison, A.B.

    1974-01-01

    An experiment is reported to study the behavior of positive muons stopped in He, Ne, and Xe in order to provide a more complete understanding of muonium formation in the noble gases. Free muon and muonium precession are plotted. (U.S.)

  10. Potential energy surfaces for alkali plus noble gas pairs: a systematic comparison

    Science.gov (United States)

    Blank, L. Aaron; Kedziora, Gary S.; Weeks, David E.

    2010-02-01

    Optically Pumped Alkali Lasers (OPAL) involve interactions of alkali atoms with a buffer gas typically consisting of a noble gas together with C2H4. Line broadening mechanisms are of particular interest because they can be used to match a broad optical pumping source with relatively narrow alkali absorption spectra. To better understand the line broadening processes at work in OPAL systems we focus on the noble gas collisional partners. A matrix of potential energy surfaces (PES) has been generated at the multi-configurational self consistent field (MCSCF) level for M + Ng, where M=Li, Na, K, Rb, Cs and Ng=He, Ne, Ar. The PES include the X2Σ ground state surface and the A2II, B2Σ excited state surfaces. In addition to the MCSCF surfaces, PES for Li+He have been calculated at the multi-reference singles and doubles configuration interaction (MRSDCI) level with spin-orbit splitting effects included. These surfaces provide a way to check the qualitative applicability of the MCSCF calculations. They also exhibit the avoided crossing between the B2Σ and A2II1/2 surfaces that is partially responsible for collision induced relaxation from the 2P3/2 to the 2P1/2 atomic levels.

  11. Using Noble Gas Measurements to Derive Air-Sea Process Information and Predict Physical Gas Saturations

    Science.gov (United States)

    Hamme, Roberta C.; Emerson, Steven R.; Severinghaus, Jeffrey P.; Long, Matthew C.; Yashayaev, Igor

    2017-10-01

    Dissolved gas distributions are important because they influence oceanic habitats and Earth's climate, yet competing controls by biology and physics make gas distributions challenging to predict. Bubble-mediated gas exchange, temperature change, and varying atmospheric pressure all push gases away from equilibrium. Here we use new noble gas measurements from the Labrador Sea to demonstrate a technique to quantify physical processes. Our analysis shows that water-mass formation can be represented by a quasi steady state in which bubble fluxes and cooling push gases away from equilibrium balanced by diffusive gas exchange forcing gases toward equilibrium. We quantify the rates of these physical processes from our measurements, allowing direct comparison to gas exchange parameterizations, and predict the physically driven saturation of other gases. This technique produces predictions that reasonably match N2/Ar observations and demonstrates that physical processes should force SF6 to be ˜6% more supersaturated than CFC-11 and CFC-12, impacting ventilation age calculations.

  12. Element distribution and noble gas isotopic abundances in lunar meteorite Allan Hills A81005

    International Nuclear Information System (INIS)

    Kraehenbuehl, U.; Eugster, O.; Niedermann, S.

    1986-01-01

    Antarctic meteorite ALLAN HILLS A81005, an anorthositic breccia, is recognized to be of lunar origin. The noble gases in this meteorite were analyzed and found to be solar-wind implanted gases, whose absolute and relative concentrations are quite similar to those in lunar regolith samples. A sample of this meteorite was obtained for the analysis of the noble gas isotopes, including Kr(81), and for the determination of the elemental abundances. In order to better determine the volume derived from the surface correlated gases, grain size fractions were prepared. The results of the instrumental measurements of the gamma radiation are listed. From the amounts of cosmic ray produced noble gases and respective production rates, the lunar surface residence times were calculated. It was concluded that the lunar surface time is about half a billion years

  13. Noble gas separation from nuclear reactor effluents using selective adsorption with inorganic adsorbents

    International Nuclear Information System (INIS)

    Pence, D.T.; Paplawsky, W.J.

    1981-01-01

    A radioactive waste gas treatment system utilizing selective adsorption on inorganic adsorbents is described for application to PWRs. The system operates at near ambient pressure, does not require a hydrogen recombiner, has low radioactive gas inventories, and is cost competitive with existing treatment systems. The proposed technique is also applicable for recovery of noble gases from the containment building of a nuclear reactor after an accident. A system design for this application is also presented

  14. A novel method for producing multiple ionization of noble gas

    International Nuclear Information System (INIS)

    Wang Li; Li Haiyang; Dai Dongxu; Bai Jiling; Lu Richang

    1997-01-01

    We introduce a novel method for producing multiple ionization of He, Ne, Ar, Kr and Xe. A nanosecond pulsed electron beam with large number density, which could be energy-controlled, was produced by incidence a focused 308 nm laser beam onto a stainless steel grid. On Time-of-Flight Mass Spectrometer, using this electron beam, we obtained multiple ionization of noble gas He, Ne, Ar and Xe. Time of fight mass spectra of these ions were given out. These ions were supposed to be produced by step by step ionization of the gas atoms by electron beam impact. This method may be used as a ideal soft ionizing point ion source in Time of Flight Mass Spectrometer

  15. Noble gas composition of subcontinental lithospheric mantle: An extensively degassed reservoir beneath Southern Patagonia

    Science.gov (United States)

    Jalowitzki, Tiago; Sumino, Hirochika; Conceição, Rommulo V.; Orihashi, Yuji; Nagao, Keisuke; Bertotto, Gustavo W.; Balbinot, Eduardo; Schilling, Manuel E.; Gervasoni, Fernanda

    2016-09-01

    Patagonia, in the Southern Andes, is one of the few locations where interactions between the oceanic and continental lithosphere can be studied due to subduction of an active spreading ridge beneath the continent. In order to characterize the noble gas composition of Patagonian subcontinental lithospheric mantle (SCLM), we present the first noble gas data alongside new lithophile (Sr-Nd-Pb) isotopic data for mantle xenoliths from Pali-Aike Volcanic Field and Gobernador Gregores, Southern Patagonia. Based on noble gas isotopic compositions, Pali-Aike mantle xenoliths represent intrinsic SCLM with higher (U + Th + K)/(3He, 22Ne, 36Ar) ratios than the mid-ocean ridge basalt (MORB) source. This reservoir shows slightly radiogenic helium (3He/4He = 6.84-6.90 RA), coupled with a strongly nucleogenic neon signature (mantle source 21Ne/22Ne = 0.085-0.094). The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 510 up to 17700, with mantle source 40Ar/36Ar between 31100-6800+9400 and 54000-9600+14200. In addition, the 3He/22Ne ratios for the local SCLM endmember, at 12.03 ± 0.15 to 13.66 ± 0.37, are higher than depleted MORBs, at 3He/22Ne = 8.31-9.75. Although asthenospheric mantle upwelling through the Patagonian slab window would result in a MORB-like metasomatism after collision of the South Chile Ridge with the Chile trench ca. 14 Ma, this mantle reservoir could have remained unhomogenized after rapid passage and northward migration of the Chile Triple Junction. The mantle endmember xenon isotopic ratios of Pali-Aike mantle xenoliths, which is first defined for any SCLM-derived samples, show values indistinguishable from the MORB source (129Xe/132Xe =1.0833-0.0053+0.0216 and 136Xe/132Xe =0.3761-0.0034+0.0246). The noble gas component observed in Gobernador Gregores mantle xenoliths is characterized by isotopic compositions in the MORB range in terms of helium (3He/4He = 7.17-7.37 RA), but with slightly nucleogenic neon (mantle source 21Ne/22Ne = 0.065-0.079). We

  16. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  17. Hydration of the Atlantis Massif: Halogen, Noble Gas and In-Situ δ18O Constraints

    Science.gov (United States)

    Williams, M. J.; Kendrick, M. A.; Rubatto, D.

    2017-12-01

    A combination of halogen (Cl, Br, I), noble gases (He, Ne, Ar, Kr and Xe) and in situ oxygen isotope analysis have been utilized to investigate the fluid-mobile element record of hydration and alteration processes at the Atlantis Massif (30°N on the Mid-Atlantic Ridge). The sample suite investigated includes serpentinite, talc-amphibole ± chlorite schist and hydrated gabbro recovered by seafloor drilling undertaken at sites on a transect across the Atlantis Massif during IODP Expedition 357. Serpentine mesh and veins analysed in-situ by SHRIMP SI exhibit δ18O from 6‰ down to ≈0‰, suggesting serpentinization temperatures of 150 to >280°C and water/rock ratios >5. Differences of 1.5-2.5‰ are observed between adjacent generations of serpentine, but the δ18O range is similar at each investigated drilling site. Halogen and noble gas abundances in serpentinites, talc-amphibole schist and hydrated gabbro have been measured by noble gas mass spectrometry of both irradiated and non-irradiated samples. Serpentinites contain low abundances of halogens and noble gases (e.g. 70-430 ppm Cl, 4.7-12.2 x 10-14 mol/g 36Ar) relative to other seafloor serpentinites. The samples have systematically different Br/Cl and I/Cl ratios related to their mineralogy. Serpentinites retain mantle-like Br/Cl with a wide variation in I/Cl that stretches toward seawater values. Talc-amphibole schists exhibit depletion of Br and I relative to Cl with increasing Cl abundances, suggesting tremolite exerts strong control on halogen abundance ratios. Serpentinites show no evidence of interaction with halogen-rich sedimentary pore fluids. Iodine abundances are variable across serpentinites, and are decoupled from Br and Cl; iodine enrichment (up to 530 ppb) is observed within relatively oxidised and clay-bearing samples. Serpentinized harzburgites exhibit distinct depletion of Kr and Xe relative to atmospheric 36Ar in seawater. Oxygen isotope compositions and low abundances of both halogens

  18. Cryogenic system for collecting noble gases from boiling water reactor off-gas

    International Nuclear Information System (INIS)

    Schmauch, G.E.

    1973-01-01

    In boiling water reactors, noncondensible gases are expelled from the main condenser. This off-gas stream is composed largely of radiolytic hydrogen and oxygen, air in-leakage, and traces of fission product krypton and xenon. In the Air Products' treatment system, the stoichiometric hydrogen and oxygen are reacted to form water in a catalytic recombiner. The design of the catalytic recombiner is an extension of industrial gas technology developed for purification of argon and helium. The off-gas after the recombiner is processed by cryogenic air-separation technology. The gas is compressed, passed into a reversing heat exchanger where water vapor and carbon dioxide are frozen out, further cooled, and expanded into a distillation column where refrigeration is provided by addition of liquid nitrogen. More than 99.99 percent of the krypton and essentially 100 percent of the xenon entering the column are accumulated in the column bottoms. Every three to six months, the noble-gas concentrate accumulated in the column bottom is removed as liquid, vaporized, diluted with steam, mixed with hydrogen in slight excess of oxygen content, and fed to a small recombiner where all the oxygen reacts to form water. The resulting gas stream, containing from 20 to 40 percent noble gases, is compressed into small storage cylinders for indefinite retention or for decay of all fission gases except krypton-85, followed by subsequent release under controlled conditions and favorable meteorology. This treatment system is based on proven technology that is practiced throughout the industrial gas industry. Only the presence of radioactive materials in the process stream and the application in a nuclear power plant environment are new. Adaptations to meet these new conditions can be made without sacrificing performance, reliability, or safety

  19. Binary-collision-approximation-based simulation of noble gas irradiation to tungsten materials

    International Nuclear Information System (INIS)

    Saito, Seiki; Takayama, Arimichi; Ito, Atsushi M.; Nakamura, Hiroaki

    2013-01-01

    To reveal the possibility of fuzz formation of tungsten material under noble gas irradiation, helium, neon, and argon atom injections into tungsten materials are performed by binary-collision-approximation-based simulation. The penetration depth is strongly depends on the structure of the target material. Therefore, the penetration depth for amorphous and bcc crystalline structure is carefully investigated in this paper

  20. Detection of low-level environmental exposure rates due to noble gas releases from the Muehleberg nuclear power plant

    International Nuclear Information System (INIS)

    Czarnecki, J.; Volkle, H.; Pretre, S.

    1980-01-01

    The increase of radiation doses in the vicinity of the Swiss Nuclear Power Stations due to airborne releases is generally expected to be below one mrem/year (about one percent of the natural radiation dose). To prove this expected rate, long term measurements with pressure ionization chambers in the vicinity of the Muhleberg plant (BWR) were conducted. Two of these chambers were installed at places where the greatest dose rates from the noble gas plumes were expected in the two prevailing wind directions. The local dose rates were continuously registered on magnetic tape to allow minicomputer evaluation. After the fuel change in the summer of 1976 the noble gas releases from Muhleberg dropped considerably. From that time the noble gas releases consisted of a very low continuous component and some rare short-time spike compoments resulting from turbine and reactor trips. The dose due to the low continuous component was determined by correlating the dose rates at the measuring points with the release measure--ments at the stack and with weather conditions, and by subtracting the natural background. The short noble gas spikes lasted from minutes to some hours and caused small dose rate increases which were easily measured with the ionization chambers, and usually amounted to doses of some microroentgens. By further correlating these dose peaks with wind direction and stack emission measurements, determination of short time atmospheric dilution factors for existing weather situations became possible. By this process, the very low annual environmental doses in the range of 1 mrem per year were determined. (author)

  1. Small angle elastic scattering of electrons by noble gas atoms

    International Nuclear Information System (INIS)

    Wagenaar, R.W.

    1984-01-01

    In this thesis, measurements are carried out to obtain small angle elastic differential cross sections in order to check the validity of Kramers-Kronig dispersion relations for electrons scattered by noble gas atoms. First, total cross sections are obtained for argon, krypton and xenon. Next, a parallel plate electrostatic energy analyser for the simultaneous measurement of doubly differential cross section for small angle electron scattering is described. Also absolute differential cross sections are reported. Finally the forward dispersion relation for electron-helium collisions is dealt with. (Auth.)

  2. Long-range interactions of excited He atoms with ground-state noble-gas atoms

    KAUST Repository

    Zhang, J.-Y.; Qian, Ying; Schwingenschlö gl, Udo; Yan, Z.-C.

    2013-01-01

    The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition

  3. Determining the source and genetic fingerprint of natural gases using noble gas geochemistry: a northern Appalachian Basin case study

    Science.gov (United States)

    Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.

    2012-01-01

    Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1  C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1  103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85  103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar

  4. The International Monitoring System's Noble Gas Network

    International Nuclear Information System (INIS)

    Auer, M.

    2015-01-01

    The International Monitoring System (IMS) is a unique global network for surveillance of the Comprehensive Nuclear-Test-Ban Treaty. A major component of the IMS is the radionuclide monitoring network since, among all IMS technologies, it can provide the most unequivocal evidence for a nuclear explosion. The radionuclide monitoring component is unprecedented in its combination of global coverage, sensitivity, network density and temporal resolution. In particular for the detection of underground or underwater nuclear tests, forty of the eighty radionuclide stations will eventually be equipped with sensors to measure the Xenon isotopes Xe-131m (τ 1/2 = 11:8 d), Xe-133 (τ 1/2 = 5:25 d), Xe-133m (τ 1/2 = 2:2 d) and Xe-135 (τ 1/2 = 9:14 h). These are among the isotopes with the highest yields in fission of uranium or plutonium with half-lives long enough to be detected at large distances from the point of emission. As of today, 31 noble gas systems have been installed and are sending data to the International Data Centre. The noble gas systems installed at the stations are automated and sample Xenon continuously from atmospheric air for 12 or 24 hours at an air flow of 0.5 to several m 3 /h by absorption of Xenon on activated charcoal. Detection of the Xenon isotopes is either by high resolution gamma spectrometry or by beta-gamma coincidence spectrometry. With the currently available equipment, detection limits of 0.2 mBq/m 3 can be achieved. An overview on the existing technology and future developments as well as on the interpretation of measurement results is given. (author)

  5. ABOUT THE POSSIBLE ROLE OF HYDROCARBON LAKES IN THE ORIGIN OF TITAN'S NOBLE GAS ATMOSPHERIC DEPLETION

    International Nuclear Information System (INIS)

    Cordier, D.; Mousis, O.; Lunine, J. I.; Lebonnois, S.; Lavvas, P.; Lobo, L. Q.; Ferreira, A. G. M.

    2010-01-01

    An unexpected feature of Titan's atmosphere is the strong depletion in primordial noble gases revealed by the Gas Chromatograph Mass Spectrometer aboard the Huygens probe during its descent on 2005 January 14. Although several plausible explanations have already been formulated, no definitive response to this issue has yet been found. Here, we investigate the possible sequestration of these noble gases in the liquid contained in lakes and wet terrains on Titan and the consequences for their atmospheric abundances. Considering the atmosphere and the liquid existing on the soil as a whole system, we compute the abundance of each noble gas relative to nitrogen. To do so, we make the assumption of thermodynamic equilibrium between the liquid and the atmosphere, the abundances of the different constituents being determined via regular solution theory. We find that xenon's atmospheric depletion can be explained by its dissolution at ambient temperature in the liquid presumably present on Titan's soil. In the cases of argon and krypton, we find that the fractions incorporated in the liquid are negligible, implying that an alternative mechanism must be invoked to explain their atmospheric depletion.

  6. Chemical activity of noble gases Kr and Xe and its impact on fission gas accumulation in the irradiated UO2 fuel

    International Nuclear Information System (INIS)

    Szuta, M.

    2006-01-01

    It is generally accepted that most of the insoluble inert gas atoms Xe and Kr produced during fissioning are retained in the fuel irradiated at a temperature lower than the threshold. Experimental data imply that we can assume that after irradiation exposure in excess of 10 18 fissions/cm 3 the single gas atom diffusion can be disregarded in description of fission gas behaviour. It is assumed that the vicinity of the fission fragment trajectory is the place of intensive irradiation induced chemical interaction of the fission gas products with UO 2 . Significant part of fission gas product is thus expected to be chemically bound in the matrix of UO 2 . Experiments with mixture of noble gases, coupled with theoretical calculations, provide strong evidence for direct bonds between Ar, Kr, or Xe atoms and the U atom of the CUO molecule. Because of its positive charge, the UO 2 2+ ion, which is isoelectronic with CUO, should form even stronger bonds with noble gas atoms, which could lead to a growing number of complexes that contain direct noble gas - to - actinide bonds. Considering the huge amount of gas immobilised in the UO 2 fuel the solution process and in consequence the re-solution process of rare gases is to be replaced by the chemical bonding process. This explains the fission gas accumulation in the irradiated UO 2 fuel. (author)

  7. Potential Energy Curves and Associated Line Shape of Alkali-Metal and Noble-Gas Interactions

    Science.gov (United States)

    2014-10-20

    work. The ab initio calculations for M + Ng molecular combina- tions are reported and discussed in Chapter 3. Chapter 4 discusses both pedagogical ...mass of the noble-gas atom decreases. These barriers at R = rb are accompanied by shallow wells at R = rmin2 and, together with the shallow wells

  8. Testing of a prototype of calibration facility for noble gas monitoring using 41Ar

    International Nuclear Information System (INIS)

    Saibathulham, Holnisar; Wurdiyanto, Gatot; Marsum, Pujadi

    2012-01-01

    A prototype of a calibration facility for noble gas monitoring using 41 Ar in the PTKMR-BATAN has been tested. The facility was designed in such a way that the standard source of gas can be reused. The radioactive 41 Ar source was obtained by thermal neutron reaction of 40 Ar(n, γ) 41 Ar using a thermal neutron flux of 4.8×10 13 neutrons per cm 2 per second in two minutes on the multipurpose G.A. Siwabessy Reactor (Batan, Serpong, Indonesia). Gamma spectrometry was used to measure the radioactivity and purity of 41 Ar. The spectrum of the 41 Ar observed yields an energy of 1294 keV because of the highest intensity (99.2%). The activity of 41 Ar was 2821 kBq and 4% of the expanded uncertainty. The time required for 41 Ar to reach homogeneity was 7 min, and the effectiveness of resuse was 53%. - Highlights: ► Testing of a calibration facility prototype for noble gas monitor using 41 Ar in PTKMR-BATAN. ► This facility was designed such that a standard radioactive gas source can be used repeatedly. ► Standardization of the 41 Ar is performed using gamma spectrometry. ► The time required for the 41 Ar gas to be distributed evenly throughout the cavity of the facility was 7 min. ► The effectiveness of repeated use was 53%.

  9. Gradient-induced longitudinal relaxation of hyperpolarized noble gases in the fringe fields of superconducting magnets used for magnetic resonance.

    Science.gov (United States)

    Zheng, Wangzhi; Cleveland, Zackary I; Möller, Harald E; Driehuys, Bastiaan

    2011-02-01

    When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of (3)He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum (3)He relaxation rate of 3.83×10(-3) s(-1) (T(1)=4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T(1) would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T(1) of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient-induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Gas transport below artificial recharge ponds: insights from dissolved noble gases and a dual gas (SF6 and 3He) tracer experiment.

    Science.gov (United States)

    Clark, Jordan F; Hudson, G Bryant; Avisar, Dror

    2005-06-01

    A dual gas tracer experiment using sulfur hexafluoride (SF6) and an isotope of helium (3He) and measurements of dissolved noble gases was performed at the El Rio spreading grounds to examine gas transport and trapped air below an artificial recharge pond with a very high recharge rate (approximately 4 m day(-1)). Noble gas concentrations in the groundwater were greater than in surface water due to excess air formation showing that trapped air exists below the pond. Breakthrough curves of SF6 and 3He at two nearby production wells were very similar and suggest that nonequilibrium gas transfer was occurring between the percolating water and the trapped air. At one well screened between 50 and 90 m below ground, both tracers were detected after 5 days and reached a maximum at approximately 24 days. Despite the potential dilution caused by mixing within the production well, the maximum concentration was approximately 25% of the mean pond concentration. More than 50% of the SF6 recharged was recovered by the production wells during the 18 month long experiment. Our results demonstrate that at artificial recharge sites with high infiltration rates and moderately deep water tables, transport times between recharge locations and wells determined with gas tracer experiments are reliable.

  11. Metal-organic frameworks for adsorption and separation of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  12. Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas

    Science.gov (United States)

    Burant, Alex; Antonacci, Michael; McCallister, Drew; Zhang, Le; Branca, Rosa Tamara

    2018-06-01

    SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.

  13. Primordial Noble Gases from Earth's Core

    Science.gov (United States)

    Wang, K.; Lu, X.; Brodholt, J. P.

    2016-12-01

    Recent partitioning experiment suggests helium is more compatible in iron melt than in molten silicates at high pressures (> 10 GPa) (1), thus provide the possibility of the core as being the primordial noble gases warehouse that is responsible for the high primordial/radiogenic noble gas isotopic ratios observed in plume-related basalts. However, the possible transportation mechanism of the noble gases from the core to the overlying mantle is still ambiguous, understanding how this process would affect the noble gas isotopic characteristics of the mantle is critical to validate this core reservoir model. As diffusion is a dominant mass transport process that plays an important role in chemical exchange at the core-mantle boundary (CMB), we have determined the diffusion coefficients of helium, neon and argon in major lower mantle minerals, i.e. periclase (MgO), bridgemanite (MgSiO3-Pv) and post-perovskite (MgSiO3-PPv), by first-principles calculation based on density functional theory (DFT). As expected, the diffusion rate of helium is the fastest at the CMB, which is in the range of 3 × 10-10 to 1 × 10-8 m2/s. The neon diffusion is slightly slower, from 5 × 10-10 to 5 × 10-9 m2/s. Argon diffuses slowest at the rate from 1 × 10-10 to 2 × 10-10 m2/s. We have further simulated the evolution of noble gas isotopic ratios in the mantle near the CMB. Considering its close relationship with the mantle plumes and very likely to be the direct source of "hot-spot" basalts, we took a close investigation on the large low-shear-velocity provinces (LLSVPs). Under reasonable assumptions based on our diffusion parameters, the modelling results indicate that LLSVP is capable of generating all the noble gas isotope signals, e.g., 3He/4He = 55 Ra, 3He/22Ne = 3.1, 3He/36Ar = 0.82, 40Ar/36Ar = 9500, that are in good agreement with the observed values in "hot-spot" basalts (2). Therefore, this core-reservior hypothesis is a self-consistent model that can fits in multiple noble gas

  14. Discharges in the inlet region of a noble gas MHD generator

    International Nuclear Information System (INIS)

    Borghi, C.A.

    1982-01-01

    In this work the onset of the development of the non-equilibrium conductivity in the entrance region of a noble gas MHD generator is investigated both theoretically and experimentally. At low electron densities the discharge seems to be affected by a non-Maxwellian electron distribution. In Chapter II a self-consistent model of a stationary discharge in an Ar-Cs mixture at atmospheric pressure, is set up. It includes the possibility of deviations from a Maxwellian electron energy distribution. The model allows to calculate at what discharge parameters deviations from the Maxwellian electron distribution will become important. In Chapter III the relaxation of the plasma to a new equilibrium situation following a sudden change in the electron thermal energy is calculated by a model which can take radiation and a non-Maxwellian distribution into account. In Chapter IV an Ar-Cs discharge experiment is described with plasma parameters similar to those present in the entrance region of the generator. The ionization relaxation process in a noble gas MHD generator is experimentally studied and described in Chapter V. In this chapter the relaxation ionization region with and without pre-ionization is investigated. Current voltage characteristics are obtained by varying the applied voltage or the external load. The results are confronted with the theoretical results of the non-Maxwellian model developed in Chapter II. Conclusions of this work are drawn in Chapter VI. (Auth.)

  15. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  16. EOSN: A TOUGH2 module for noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chao; Pruess, Karsten

    2003-03-07

    We developed a new fluid property module for TOUGH2, called EOSN, to simulate transport of noble gases in the subsurface. Currently, users may select any of five different noble gases as well as CO2, two at a time. For the three gas components (air and two user-specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas phase are no longer assumed constants, but are temperature dependent. We used the Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987) correlations to calculate gas phase diffusivities. The new module requires users to provide names of the selected noble gases, which properties are provided internally. There are options for users to specify any (non-zero) molecular weights and half-lives for the gas components. We provide two examples to show applications of TOUGH2IEOSN. While temperature effects are relatively insignificant for one example problem where advection is dominant, they cause almost an order of magnitude difference for the other case where diffusion becomes a dominant process and temperature variations are relatively large. It appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be important for low-permeability porous media and zones with large temperature variations.

  17. EOSN: A TOUGH2 module for noble gases

    International Nuclear Information System (INIS)

    Shan, Chao; Pruess, Karsten

    2003-01-01

    We developed a new fluid property module for TOUGH2, called EOSN, to simulate transport of noble gases in the subsurface. Currently, users may select any of five different noble gases as well as CO2, two at a time. For the three gas components (air and two user-specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas phase are no longer assumed constants, but are temperature dependent. We used the Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987) correlations to calculate gas phase diffusivities. The new module requires users to provide names of the selected noble gases, which properties are provided internally. There are options for users to specify any (non-zero) molecular weights and half-lives for the gas components. We provide two examples to show applications of TOUGH2IEOSN. While temperature effects are relatively insignificant for one example problem where advection is dominant, they cause almost an order of magnitude difference for the other case where diffusion becomes a dominant process and temperature variations are relatively large. It appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be important for low-permeability porous media and zones with large temperature variations

  18. Fireworks in noble gas clusters a first experiment with the new "free-electron laser"

    CERN Document Server

    2002-01-01

    An international group of scientists has published first experiments carried out using the new soft X-ray free-electron laser (FEL) at the research center DESY in Hamburg, Germany. Using small clusters of noble gas atoms, for the first time, researchers studied the interaction of matter with intense X-ray radiation from an FEL on extremely short time scales (1 page).

  19. On the noble gas isotopic fractionation in naturally occurring gases

    International Nuclear Information System (INIS)

    Marty, B.

    1984-01-01

    The isotopic composition of neon in the mantle is an important geochemical constraint on the formation of the earth and subsequent degassing. Some deviation of neon isotopic composition in natural gas and rock samples from the atmospheric value which can not be accounted for by the known nuclear process has been reported, and Nagao et al. interpreted the deviation as the result of mass fractionation in natural gas in Japan. The possible cause of such fractionation was investigated. Gaseous diffusion, such as (a) free-molecule diffusion, (b) mutual diffusion and (c) thermal diffusion, is able to cause isotopic fractionation. After the detailed consideration on these three diffusion processes, conclusion that free-molecule diffusion occurs only in very particular condition, and it is questionable that thermal diffusion occurs in nature, were obtained. (b) which means the interaction of two or more gases, is supposed to occur in nature, and is able to confirm experimentally. In mutual diffusion only, gas transfer is concerned, but other form of fractionation should not be neglected. In solid diffusion, gas is trapped by fine grained sedimentary rocks, and may be fractionated by adsorption and communication to exterior through minute channels. Underground water also works as noble gas reservoir. For example, when gas stream is in contact with water, continuous exchange is possible to take place at the interface of gas and liquid, which contributes to the fractionation. (Ishimitsu, A.)

  20. Photoionization of the subvalent subshells of noble gas endohedrals: interference of three resonances

    International Nuclear Information System (INIS)

    Amusia, M Ya; Baltenkov, A S; Chernysheva, L V

    2008-01-01

    We demonstrate strong interference patterns in the photoionization cross-section of the subvalent subshells of noble gas (NG) endohedral atoms NG at F. This interference is a result of common action of three factors: the effect of neighbouring atomic subshells, reflection of photoelectron waves by the fullerene F shell and resonance modification of the incoming photon beam by the complex effect under the action of the F electrons. We have considered the outer ns-subshells for Ne, Ar, Kr and Xe noble gas atoms. The polarization of the fullerene shell is expressed via the F total photoabsorption cross-section. The photoelectron reflection from the static F potential is taken into account in the frame of the so-called bubble potential which is a spherical δ-type potential. It is assumed that the NG atom is centrally located in the fullerene. It is also assumed in accordance with the available experimental data that the fullerene radius is much bigger than the atomic radius and the thickness of the fullerene shell. These assumptions permit the NG at F photoionization cross-section to be presented as a product of the NG atomic cross-section and two calculated factors that account for polarization of the F electron shell and reflection of photoelectrons by the fullerene static potential

  1. Photoionization of the subvalent subshells of noble gas endohedrals: interference of three resonances

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Baltenkov, A S [Arifov Institute of Electronics, Tashkent 100125 (Uzbekistan); Chernysheva, L V [Ioffe Physical-Technical Institute, St.-Petersburg 194021 (Russian Federation)], E-mail: amusia@vms.huji.ac.il

    2008-08-28

    We demonstrate strong interference patterns in the photoionization cross-section of the subvalent subshells of noble gas (NG) endohedral atoms NG at F. This interference is a result of common action of three factors: the effect of neighbouring atomic subshells, reflection of photoelectron waves by the fullerene F shell and resonance modification of the incoming photon beam by the complex effect under the action of the F electrons. We have considered the outer ns-subshells for Ne, Ar, Kr and Xe noble gas atoms. The polarization of the fullerene shell is expressed via the F total photoabsorption cross-section. The photoelectron reflection from the static F potential is taken into account in the frame of the so-called bubble potential which is a spherical {delta}-type potential. It is assumed that the NG atom is centrally located in the fullerene. It is also assumed in accordance with the available experimental data that the fullerene radius is much bigger than the atomic radius and the thickness of the fullerene shell. These assumptions permit the NG at F photoionization cross-section to be presented as a product of the NG atomic cross-section and two calculated factors that account for polarization of the F electron shell and reflection of photoelectrons by the fullerene static potential.

  2. Detection of Noble Gas Radionuclides from an Underground Nuclear Explosion During a CTBT On-Site Inspection

    Science.gov (United States)

    Carrigan, Charles R.; Sun, Yunwei

    2014-03-01

    The development of a technically sound approach to detecting the subsurface release of noble gas radionuclides is a critical component of the on-site inspection (OSI) protocol under the Comprehensive Nuclear Test Ban Treaty. In this context, we are investigating a variety of technical challenges that have a significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments—a lesson we learned previously from the non-proliferation experiment (NPE). Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied by field experiments, making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated and complete the discussion of these issues with a description of a preliminary design for subsurface sampling that addresses some of the sampling challenges discussed here.

  3. Cross-Calibration of Secondary Electron Multiplier in Noble Gas Analysis

    Science.gov (United States)

    Santato, Alessandro; Hamilton, Doug; Deerberg, Michael; Wijbrans, Jan; Kuiper, Klaudia; Bouman, Claudia

    2015-04-01

    The latest generation of multi-collector noble gas mass spectrometers has decisively improved the precision in isotopic ratio analysis [1, 2] and helped the scientific community to address new questions [3]. Measuring numerous isotopes simultaneously has two significant advantages: firstly, any fluctuations in signal intensity have no effect on the isotope ratio and secondly, the analysis time is reduced. This particular point becomes very important in static vacuum mass spectrometry where during the analysis, the signal intensity decays and at the same time the background increases. However, when multi-collector analysis is utilized, it is necessary to pay special attention to the cross calibration of the detectors. This is a key point in order to have accurate and reproducible isotopic ratios. In isotope ratio mass spectrometry, with regard to the type of detector (i.e. Faraday or Secondary Electron Multiplier, SEM), analytical technique (TIMS, MC-ICP-MS or IRMS) and isotope system of interest, several techniques are currently applied to cross-calibrate the detectors. Specifically, the gain of the Faraday cups is generally stable and only the associated amplifier must be calibrated. For example, on the Thermo Scientific instrument control systems, the 1011 and 1012 ohm amplifiers can easily be calibrated through a fully software controlled procedure by inputting a constant electric signal to each amplifier sequentially [4]. On the other hand, the yield of the SEMs can drift up to 0.2% / hour and other techniques such as peak hopping, standard-sample bracketing and multi-dynamic measurement must be used. Peak hopping allows the detectors to be calibrated by measuring an ion beam of constant intensity across the detectors whereas standard-sample bracketing corrects the drift of the detectors through the analysis of a reference standard of a known isotopic ratio. If at least one isotopic pair of the sample is known, multi-dynamic measurement can be used; in this

  4. The Effect of Aqueous Alteration on Primordial Noble Gases in CM Chondrites

    Science.gov (United States)

    Weimer, D.; Busemann, H.; Alexander, C. M. O'D.; Maden, C.

    2017-07-01

    We have analyzed 32 CM chondrites for their noble gas contents and isotopic compositions and calculated CRE ages. Correlated effects of parent body aqueous alteration with primordial noble gas contents were detected.

  5. Hyperpolarized 3-helium MR imaging of the lungs: testing the concept of a central production facility

    International Nuclear Information System (INIS)

    Beek, E.J.R. van; Schmiedeskamp, J.; Filbir, F.; Heil, W.; Wolf, M.; Otten, E.; Wild, J.M.; Paley, M.N.J.; Fichele, S.; Woodhouse, N.; Swift, A.; Knitz, F.; Mills, G.H.

    2003-01-01

    The aim of this study was to test the feasibility of a central production facility with distribution network for implementation of hyperpolarized 3-helium MRI. The 3-helium was hyperpolarized to 50-65% using a large-scale production facility based at a university in Germany. Using a specially designed transport box, containing a permanent low-field shielded magnet and dedicated iron-free glass cells, the hyperpolarized 3-helium gas was transported via airfreight to a university in the UK. At this location, the gas was used to perform in vivo MR experiments in normal volunteers and patients with chronic obstructive lung diseases. Following initial tests, the transport (road-air-road cargo) was successfully arranged on six occasions (approximately once per month). The duration of transport to imaging averaged 18 h (range 16-20 h), which was due mainly to organizational issues such as working times and flight connections. During the course of the project, polarization at imaging increased from 20% to more than 30%. A total of 4 healthy volunteers and 8 patients with chronic obstructive pulmonary disease were imaged. The feasibility of a central production facility for hyperpolarized 3-helium was demonstrated. This should enable a wider distribution of gas for this novel technology without the need for local start-up costs. (orig.)

  6. Noble gas atmospheric monitoring at reprocessing facilities

    International Nuclear Information System (INIS)

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-01-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data

  7. Regional Ventilation Changes in the Lung: Treatment Response Mapping by Using Hyperpolarized Gas MR Imaging as a Quantitative Biomarker.

    Science.gov (United States)

    Horn, Felix C; Marshall, Helen; Collier, Guilhem J; Kay, Richard; Siddiqui, Salman; Brightling, Christopher E; Parra-Robles, Juan; Wild, Jim M

    2017-09-01

    Purpose To assess the magnitude of regional response to respiratory therapeutic agents in the lungs by using treatment response mapping (TRM) with hyperpolarized gas magnetic resonance (MR) imaging. TRM was used to quantify regional physiologic response in adults with asthma who underwent a bronchodilator challenge. Materials and Methods This study was approved by the national research ethics committee and was performed with informed consent. Imaging was performed in 20 adult patients with asthma by using hyperpolarized helium 3 ( 3 He) ventilation MR imaging. Two sets of baseline images were acquired before inhalation of a bronchodilating agent (salbutamol 400 μg), and one set was acquired after. All images were registered for voxelwise comparison. Regional treatment response, ΔR(r), was calculated as the difference in regional gas distribution (R[r] = ratio of inhaled gas to total volume of a voxel when normalized for lung inflation volume) before and after intervention. A voxelwise activation threshold from the variability of the baseline images was applied to ΔR(r) maps. The summed global treatment response map (ΔR net ) was then used as a global lung index for comparison with metrics of bronchodilator response measured by using spirometry and the global imaging metric percentage ventilated volume (%VV). Results ΔR net showed significant correlation (P treatment effect was detected with all metrics; however, ΔR net showed a lower intersubject coefficient of variation (64%) than all of the other tests (coefficient of variation, ≥99%). Conclusion TRM provides regional quantitative information on changes in inhaled gas ventilation in response to therapy. This method could be used as a sensitive regional outcome metric for novel respiratory interventions. © RSNA, 2017 Online supplemental material is available for this article.

  8. The persistence of natural CO2 accumulations over millennial timescales: Integrating noble gas and reservoir data at Bravo Dome, NM

    Science.gov (United States)

    Akhbari, D.

    2017-12-01

    Bravo Dome, the largest CO2 reservoir in the US, is a hydrogeologically closed system that has stored a very large amount of CO2 on millennial time scales. The pre-production gas pressures in Bravo Dome indicate that the reservoir is highly under-pressured and is divided into separate pressure compartments that do not communicate hydrologically. Previous studies used the noble gas composition at Bravo Dome to constrain the amount of dissolved CO2 into the brine. This CO2 dissolution into brine plays an important role in the observed under-pressure at the reservoir. However, the dissolution rates and transport mechanisms remain unknown. In this study, we are looking into reservoir pressures and noble gas composition in the northeastern section of the reservoir to constrain timescales of CO2 dissolution. We are interested in northeastern part of the reservoir because the largest amount of CO2 was dissolved into brine in this section. Also, we specifically look into the evolution of the CO2/3He and 20Ne concentration during convective CO2 dissolution at Bravo Dome. 20Ne has atmospheric origin and is initially in the brine, while 3He and CO2 have magmatic sources and were introduced with the gas. CO2/3He decreases as more CO2 dissolves into brine, due to the higher solubility of CO2 compare to that of 3He. However, 20Ne concentration in the gas increases due to exsolution of 20Ne from brine into the gas phase. We present 2D numerical simulation that demonstrate the persistence of CO2 over 1Ma and reproduce the observed reservoir pressures and noble gas compositions. Our results indicate that convection is required to produce observed changes in gas composition. But diffusion makes a significant contribution to mass transport.

  9. Improvement of spin-exchange optical pumping of xenon-129 using in situ NMR measurement in ultra-low magnetic field

    Science.gov (United States)

    Takeda, Shun; Kumagai, Hiroshi

    2018-02-01

    Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.

  10. Sensitivity analysis of the noble gas transport and fate model: CASCADR9

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Barker, L.E.

    1994-03-01

    CASCADR9 is a desert alluvial soil site-specific noble gas transport and fate model. Input parameters for CASCADR9 are: man-made source term, background concentration of radionuclides, radon half-life, soil porosity, period of barometric pressure wave, amplitude of barometric pressure wave, and effective eddy diffusivity. Using average flux, total flow, and radon concentration at the 40 day mark as output parameters, a sensitivity analysis for CASCADR9 is carried out, under a variety of scenarios. For each scenario, the parameter to which output parameters are most sensitive are identified

  11. Continuous hyperpolarization with parahydrogen in a membrane reactor

    Science.gov (United States)

    Lehmkuhl, Sören; Wiese, Martin; Schubert, Lukas; Held, Mathias; Küppers, Markus; Wessling, Matthias; Blümich, Bernhard

    2018-06-01

    Hyperpolarization methods entail a high potential to boost the sensitivity of NMR. Even though the "Signal Amplification by Reversible Exchange" (SABRE) approach uses para-enriched hydrogen, p-H2, to repeatedly achieve high polarization levels on target molecules without altering their chemical structure, such studies are often limited to batch experiments in NMR tubes. Alternatively, this work introduces a continuous flow setup including a membrane reactor for the p-H2, supply and consecutive detection in a 1 T NMR spectrometer. Two SABRE substrates pyridine and nicotinamide were hyperpolarized, and more than 1000-fold signal enhancement was found. Our strategy combines low-field NMR spectrometry and a membrane flow reactor. This enables precise control of the experimental conditions such as liquid and gas pressures, and volume flow for ensuring repeatable maximum polarization.

  12. Recent Experimental Advances to Determine (noble) Gases in Waters

    Science.gov (United States)

    Kipfer, R.; Brennwald, M. S.; Huxol, S.; Mächler, L.; Maden, C.; Vogel, N.; Tomonaga, Y.

    2013-12-01

    In aquatic systems noble gases, radon, and bio-geochemically conservative transient trace gases (SF6, CFCs) are frequently applied to determine water residence times and to reconstruct past environmental and climatic conditions. Recent experimental breakthroughs now enable ● to apply the well-established concepts of terrestrial noble gas geochemistry in waters to the minute water amounts stored in sediment pore space and in fluid inclusions (A), ● to determine gas exchange processes on the bio-geochemical relevant time scales of minutes - hours (B), and ● to separate diffusive and advective gas transport in soil air (C). A. Noble-gas analysis in water samples (transport in the pore space and identifying the origin of bio- and geogenic fluids in (un) consolidated sediments [1]. Advanced techniques that combine crushing and sieving speleothem samples in ultra-high-vacuum to a specific grain size allow to separate air and water-bearing fluid inclusions and thus enables noble-gas-based reconstruction of environmental conditions from water masses as small as 1mg [2]. B. The coupling of noble gas analysis with approaches of gas chromatography permits combined analysis of noble gases and other gases species (e.g., SF6, CFCs, O2, N2) from a single water sample. The new method substantially improves ground water dating by SF6 and CFCs as excess air is quantified from the same sample and hence can adequately be corrected for [3]. Portable membrane-inlet mass spectrometers enable the quasi-continuous and real-time analysis of noble gases and other dissolved gases directly in the field, allowing, for instance, quantification of O2 turnover rates on small time scales [4]. C. New technical developments perfect 222Rn analysis in water by the synchronous the determination of the short-lived 220Rn. The combined 220,222Rn analysis sheds light on the emanation behaviour of radon by identifying soil water content to be the crucial control of 220Rn occurrence in the environment

  13. Pressure disequilibria induced by rapid valve closure in noble gas extraction lines

    Science.gov (United States)

    Morgan, Leah; Davidheiser-Kroll, Brett

    2015-01-01

    Pressure disequilibria during rapid valve closures can affect calculated molar quantities for a range of gas abundance measurements (e.g., K-Ar geochronology, (U-Th)/He geochronology, noble gas cosmogenic chronology). Modeling indicates this effect in a system with a 10 L reservoir reaches a bias of 1% before 1000 pipette aliquants have been removed from the system, and a bias of 10% before 10,000 aliquants. Herein we explore the causes and effects of this problem, which is the result of volume changes during valve closure. We also present a solution in the form of an electropneumatic pressure regulator that can precisely control valve motion. This solution reduces the effect to ∼0.3% even after 10,000 aliquants have been removed from a 10 L reservoir.

  14. Pressure disequilibria induced by rapid valve closure in noble gas extraction lines

    Science.gov (United States)

    Morgan, Leah E.; Davidheiser-Kroll, Brett

    2015-06-01

    Pressure disequilibria during rapid valve closures can affect calculated molar quantities for a range of gas abundance measurements (e.g., K-Ar geochronology, (U-Th)/He geochronology, noble gas cosmogenic chronology). Modeling indicates this effect in a system with a 10 L reservoir reaches a bias of 1% before 1000 pipette aliquants have been removed from the system, and a bias of 10% before 10,000 aliquants. Herein we explore the causes and effects of this problem, which is the result of volume changes during valve closure. We also present a solution in the form of an electropneumatic pressure regulator that can precisely control valve motion. This solution reduces the effect to ˜0.3% even after 10,000 aliquants have been removed from a 10 L reservoir.

  15. Method to separate fission noble gases from gaseous wastes of a reprocessing plant for nuclear fuel material

    International Nuclear Information System (INIS)

    Schnez, H.

    1977-01-01

    In order to avoid the high cost expenditure in the separation of fission noble gases from waste gas of the head end, the following economical method is suggested: The fission noble gases released in the solvent - after grinding and burn-up of the nuclear fuel elements and dissolving in HNO 3 - are purified in a known method and collected in an equalizing tank. From here, the fission noble gas quantity necessary as washing gas is recycled into the solvent, so that a part of the fission noble gas quantity flows in a circuit. The quantity of fission noble gas not required for the above is separated from the circuit, compressed and put into a storage container from where it can be put into gas flashs or be recycled in the gas circuit where necessary. Furthermore, the method involves that to separate krypton, the filtered fission noble gas is compressed, cooled and rectified, whereby the krypton mixture taken from the rectification column is stored under high pressure and the gas part containing xenon, occuring as liquid, is at least partly fed back to the solvent. (HPH) [de

  16. Noble gas studies in vapor-growth diamonds: Comparison with shock-produced diamonds and the origin of diamonds in ureilites

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Junichi; Fukunaga, Kazuya; Ito, Keisuke (Kobe Univ. (Japan))

    1991-07-01

    The authors synthesized vapor-trowth diamonds by two kinds of Chemical Vapor Deposition (CVD) using microwave (MWCVD) and hot filament (HFCVD) ionization of gases, and examined elemental abundances and isotopic compositions of the noble gases trapped in the diamonds. It is remarkable that strong differences existed in the noble gas concentrations in the two kinds of CVD diamonds: large amounts of noble gases were trapped in the MWCVD diamonds, but not in the HFCVD diamonds. The heavy noble gases (Ar to Xe) in the MWCVD diamonds were highly fractionated compared with those in the ambient atmosphere, and are in good agreement with the calculated fractionation patterns for plasma at an electron temperature of 7,000-9,000 K. These results strongly suggest that the trapping mechanism of noble gases in CVD diamonds is ion implantation during diamond growth. The degrees of fractionation of heavy noble gases were also in good agreement with those in ureilites. The vapor-growth hypothesis is discussed in comparison with the impact-shock hypothesis as a better model for the origin of diamonds in ureilites. The diamond (and graphite, amorphous carbon, too) may have been deposited on early condensates such as Re, Ir, W, etc. This model explains the chemical features of vein material in ureilites; the refractory siderophile elements are enriched in carbon and noble gases and low in normal siderophiles. The vapor-growth model is also compatible with the oxygen isotopic data of ureilites which suggests that nebular processes are primarily responsible for the composition of ureilites.

  17. A novel method for fission product noble gas sampling

    International Nuclear Information System (INIS)

    Jain, S.K.; Prakash, Vivek; Singh, G.K.; Vinay, Kr.; Awsthi, A.; Bihari, K.; Joyson, R.; Manu, K.; Gupta, Ashok

    2008-01-01

    Noble gases occur to some extent in the Earth's atmosphere, but the concentrations of all but argon are exceedingly low. Argon is plentiful, constituting almost 1 % of the air. Fission Product Noble Gases (FPNG) are produced by nuclear fission and large parts of FPNG is produced in Nuclear reactions. FPNG are b-j emitters and contributing significantly in public dose. During normal operation of reactor release of FPNG is negligible but its release increases in case of fuel failure. Xenon, a member of FPNG family helps in identification of fuel failure and its extent in PHWRs. Due to above reasons it becomes necessary to assess the FPNG release during operation of NPPs. Presently used methodology of assessment of FPNG, at almost all power stations is Computer based gamma ray spectrometry. This provides fission product Noble gases nuclide identification through peak search of spectra. The air sample for the same is collected by grab sampling method, which has inherent disadvantages. An alternate method was developed at Rajasthan Atomic Power Station (RAPS) - 3 and 4 for assessment of FPNG, which uses adsorption phenomena for collection of air samples. This report presents details of sampling method for FPNG and noble gases in different systems of Nuclear Power Plant. (author)

  18. Noble gas mass spectrometry. Application to earth sciences

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Nobuo [Yamagata Univ. (Japan). Faculty of Science

    1983-03-01

    The method for the isotopic analysis of trace noble gas is described briefly, and the theoretical background of the application to earth science is discussed. Furthermore, the measured results of /sup 3/He//sup 4/He ratio in volcanic gases and hot spring gases from various areas in Japan, and /sup 3/He//sup 4/He and /sup 40/Ar//sup 36/Ar ratios in mantle-origi nated rocks and minerals are presented. The examples of the application of these results to the field of earth science are introduced. The magma activity which is specific to the considered volcano is identified from the decrease in /sup 3/He//sup 4/He ratio with the process of volcanic activity. The possibility of earthquake prediction by the measurement of /sup 3/He//sup 4/He ratio is suggested from the measured results of /sup 3/He//sup 4/He ratio in the gas sampled from an earthquake fault. The isotopes of He and Ar in a diamond were analyzed, and from these results, the isotope composition in mantle when the diamond had been formed was estimated. The mantle model that the mantle is constituted from upper depleted mantle and lower fertile mantle is explained, based on the results of the analysis of He and Ar isotopes in various volcanic eruptions.

  19. The influence of noble-gas ion bombardment on the electrical and optical properties of clean silicon surfaces

    International Nuclear Information System (INIS)

    Martens, J.W.D.

    1980-01-01

    A study of the effect of argon and helium ion bombardment on the electrical and optical properties of the clean silicon (211) surface is described. The objective of the study was to determine the effect of noble gas ions on the density of surface states at the clean silicon surface. (Auth.)

  20. NG09 And CTBT On-Site Inspection Noble Gas Sampling and Analysis Requirements

    Science.gov (United States)

    Carrigan, Charles R.; Tanaka, Junichi

    2010-05-01

    A provision of the Comprehensive Test Ban Treaty (CTBT) allows on-site inspections (OSIs) of suspect nuclear sites to determine if the occurrence of a detected event is nuclear in origin. For an underground nuclear explosion (UNE), the potential success of an OSI depends significantly on the containment scenario of the alleged event as well as the application of air and soil-gas radionuclide sampling techniques in a manner that takes into account both the suspect site geology and the gas transport physics. UNE scenarios may be broadly divided into categories involving the level of containment. The simplest to detect is a UNE that vents a significant portion of its radionuclide inventory and is readily detectable at distance by the International Monitoring System (IMS). The most well contained subsurface events will only be detectable during an OSI. In such cases, 37 Ar and radioactive xenon cavity gases may reach the surface through either "micro-seepage" or the barometric pumping process and only the careful siting of sampling locations, timing of sampling and application of the most site-appropriate atmospheric and soil-gas capturing methods will result in a confirmatory signal. The OSI noble gas field tests NG09 was recently held in Stupava, Slovakia to consider, in addition to other field sampling and analysis techniques, drilling and subsurface noble gas extraction methods that might be applied during an OSI. One of the experiments focused on challenges to soil-gas sampling near the soil-atmosphere interface. During withdrawal of soil gas from shallow, subsurface sample points, atmospheric dilution of the sample and the potential for introduction of unwanted atmospheric gases were considered. Tests were designed to evaluate surface infiltration and the ability of inflatable well-packers to seal out atmospheric gases during sample acquisition. We discuss these tests along with some model-based predictions regarding infiltration under different near

  1. Hyperpolarized 129Xe MRI: A viable functional lung imaging modality?

    International Nuclear Information System (INIS)

    Patz, Samuel; Hersman, F. William; Muradian, Iga; Hrovat, Mirko I.; Ruset, Iulian C.; Ketel, Stephen; Jacobson, Francine; Topulos, George P.; Hatabu, Hiroto; Butler, James P.

    2007-01-01

    The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used 3 He as their imaging agent of choice rather than 129 Xe. This preference has been predominantly due to, 3 He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized 129 Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized 129 Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO 2 ) by observation of 129 Xe signal decay. We note that the measurement of pO 2 by observation of 129 Xe signal decay is more complex than that for 3 He because of an additional signal loss mechanism due to interphase diffusion of 129 Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO 2 that accounts for both traditional T 1 decay from pO 2 and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output

  2. Binary-collision-approximation simulation for noble gas irradiation onto plasma facing materials

    International Nuclear Information System (INIS)

    Saito, Seiki; Nakamura, Hiroaki; Takayama, Arimichi; Ito, Atsushi M

    2014-01-01

    A number of experiments show that helium plasma constructs filament (fuzz) structures whose diameter is in nanometer-scale on the tungsten material under the suitable experimental condition. In this paper, binary-collision-approximation-based simulation is performed to reveal the mechanism and the conditions of fuzz formation of tungsten material under plasma irradiation. The irradiation of the plasma of hydrogen, deuterium, and tritium, and also the plasma of noble gas such as helium, neon, and argon atoms are investigated. The possibility of fuzz formation is discussed on the simulation result of penetration depth of the incident atoms

  3. Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas

    International Nuclear Information System (INIS)

    Gentile, C.A.; Blanchard, W.R.; Kozub, T.; Priniski, C.; Zatz, I.; Obenschain, S.

    2009-01-01

    It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (∼ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a 'gas shield' may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the FTF.

  4. Noble gas and carbon isotopes in Mariana Trough basalt glasses

    International Nuclear Information System (INIS)

    Bernard, M.; Jambon, A.; Gamo, T.; Nishio, Y.; Sano, Y.

    1998-01-01

    Noble gas elemental and isotopic compositions have been measured as well as the abundance of C and its isotopic ratios in 11 glasses from submarine pillow basalts collected from the Mariana Trough. The 3 He/ 4 He ratios of 8.22 and 8.51 R atm of samples dredged from the central Mariana Trough (similar18N) agree well with that of the Mid-Ocean Ridge Basalt (MORB) glasses (8.4±0.3 R atm ), whereas a mean ratio of 8.06±0.35 R atm in samples from the northern Mariana Trough (similar20N) is slightly lower than those of MORB. One sample shows apparent excess of 20 Ne and 21 Ne relative to atmospheric Ne, suggesting incorporation of solar-type Ne in the magma source. There is a positive correlation between 3 He/ 4 He and 40 Ar/ 36 Ar ratios, which may be explained by mixing between MORB-type and atmospheric noble gases. Excess 129 Xe is observed in the sample which also shows 20 Ne and 21 Ne excesses. Observed δ 13 C values of similar20N samples vary from -3.76 per thousand to -2.80 per thousand, and appear higher than those of MORB, and the corresponding CO 2 / 3 He ratios are higher than those of MARA samples at similar18N, suggesting C contribution from the subducted slab. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. The interpretation of ellipsometric measurements of ion bombardment of noble gases on semiconductor surfaces

    NARCIS (Netherlands)

    Holtslag, A.H.M.; Slager, U.C.; van Silfhout, Arend

    1985-01-01

    Low energy noble gas ion bombardment and thermal desorption studies were carried out on Si(111) and analysed, in situ, using spectroscopic ellipsometry. The amorphous layer thickness and implanted noble gas fraction were calculated.

  6. 40Ar/39Ar dating of Quaternary volcanic ashes by multi-collection noble gas mass spectrometry: protocols, precision and intercalibration

    DEFF Research Database (Denmark)

    Storey, Michael; Rivera, Tiffany; Flude, Stephanie

    ) higher mass resolution allows hydrocarbon interferences to be pseudo resolved for the different argon isotopes; and (iv) multi-collection, allowing more data to be gathered in a fixed time in comparison with single-collector peak-switching measurements. We evaluate (i) protocols for detector inter......The recent availability of commercial high-resolution, multi-collector, noble gas mass spectrometers equipped with ion-counting electron multipliers provides new opportunities for improved precision in 40Ar/39Ar dating. This is particularly true for single crystal dating of Quaternary aged samples...... where potassium-bearing phenocrysts may contain relatively small amounts of radiogenic 40Ar. In 2005, the Quaternary Dating Laboratory, Roskilde University, installed a Nu-Instruments multi-collector Noblesse noble gas mass spectrometer, which is configured with a Faraday detector and three ion...

  7. Noble gases recycled into the mantle through cold subduction zones

    Science.gov (United States)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.

    2017-08-01

    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  8. Organ protection by the noble gas helium

    NARCIS (Netherlands)

    Smit, K.F.

    2017-01-01

    The aims of this thesis were to investigate whether helium induces preconditioning in humans, and to elucidate the mechanisms behind this possible protection. First, we collected data regarding organ protective effects of noble gases in general, and of helium in particular (chapters 1-3). In chapter

  9. Experience of iodine, caesium and noble gas release from AGR failures

    International Nuclear Information System (INIS)

    Chapman, C.J.; Harris, A.M.; Phillips, M.E.

    1985-01-01

    In the event of a fuel failure in an Advanced Gas Cooled Reactor (AGR), the quantity of fission products available for release to the environment is determined by the transport of fission products in the UO 2 fuel, by the possible retention of fission products in the fuel can interspace and by the deposition of fission products on gas circuit surfaces ('plate-out'). The fission products of principal radiological concern are radioactive caesium (Cs-137 and Cs-134) and iodine (principally I-131). Results are summarised of a number of experiments which were designed to study the release of these fission products from individual fuel failures in the prototype AGR at Windscale. Results are also presented of fission product release from failures in commercial AGRs. Comparisons of measured releases of caesium and iodine relative to the release of the noble gas fission products show that, for some fuel failures, there is a significant retention of caesium and iodine within the fuel can interspace. Under normal conditions circuit deposition reduces caesium and iodine gas concentrations by several orders of magnitude. Differing release behaviour of caesium and iodine from the failures is examined together with subsequent deposition within the sampling equipment. These observations are important factors which must be considered in developing an understanding of the mechanisms involved in circuit deposition. (author)

  10. Photoionization of the outer electrons in noble gas endohedral atoms

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.

    2008-01-01

    We suggest a prominent modification of the outer shell photoionization cross section in noble gas (NG) endohedral atoms NG-C n under the action of the electron shell of fullerene C n . This shell leads to two important effects: a strong enhancement of the cross section due to fullerene shell polarization under the action of the incoming electromagnetic wave and to prominent oscillation of this cross section due to the reflection of a photoelectron from the NG by the fullerene shell. Both factors lead to powerful maxima in the outer shell ionization cross sections of NG-C n , which we call giant endohedral resonances. The oscillator strength reaches a very large value in the atomic scale, 25. We consider atoms of all noble gases except He. The polarization of the fullerene shell is expressed in terms of the total photoabsorption cross section of the fullerene. The photoelectron reflection is taken into account in the framework of the so-called bubble potential, which is a spherical δ-type potential. It is assumed in the derivations that the NG is centrally located in the fullerene. It is also assumed, in accordance with the existing experimental data, that the fullerene radius R C is much larger than the atomic radius r A and the thickness Δ C of the fullerene shell. As was demonstrated recently, these assumptions allow us to represent the NG-C n photoionization cross section as a product of the NG cross section and two well-defined calculated factors

  11. Targets Involved in Cardioprotection by the Non-Anesthetic Noble Gas Helium

    NARCIS (Netherlands)

    Weber, Nina C.; Smit, Kirsten F.; Hollmann, Markus W.; Preckel, Benedikt

    2015-01-01

    Research data from the past decade indicate that noble gases like xenon and helium exert profound cardioprotection when applied before, during or after organ ischemia. Of all noble gases, especially helium, has gained interest in the past years because it does not have an anesthetic "side effect"

  12. Reconstructing temperatures in the Maritime Alps, Italy, since the Last Glacial Maximum using cosmogenic noble gas paleothermometry

    Science.gov (United States)

    Tremblay, Marissa; Spagnolo, Matteo; Ribolini, Adriano; Shuster, David

    2016-04-01

    The Gesso Valley, located in the southwestern-most, Maritime portion of the European Alps, contains an exceptionally well-preserved record of glacial advances during the late Pleistocene and Holocene. Detailed geomorphic mapping, geochronology of glacial deposits, and glacier reconstructions indicate that glaciers in this Mediterranean region responded to millennial scale climate variability differently than glaciers in the interior of the European Alps. This suggests that the Mediterranean Sea somehow modulated the climate of this region. However, since glaciers respond to changes in temperature and precipitation, both variables were potentially influenced by proximity to the Sea. To disentangle the competing effects of temperature and precipitation changes on glacier size, we are constraining past temperature variations in the Gesso Valley since the Last Glacial Maximum (LGM) using cosmogenic noble gas paleothermometry. The cosmogenic noble gases 3He and 21Ne experience diffusive loss from common minerals like quartz and feldspars at Earth surface temperatures. Cosmogenic noble gas paleothermometry utilizes this open-system behavior to quantitatively constrain thermal histories of rocks during exposure to cosmic ray particles at the Earth's surface. We will present measurements of cosmogenic 3He in quartz sampled from moraines in the Gesso Valley with LGM, Bühl stadial, and Younger Dryas ages. With these 3He measurements and experimental data quantifying the diffusion kinetics of 3He in quartz, we will provide a preliminary temperature reconstruction for the Gesso Valley since the LGM. Future work on samples from younger moraines in the valley system will be used to fill in details of the more recent temperature history.

  13. Separation of the fission product noble gases krypton and xenon from dissolver off-gas in reprocessing HTGR-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bohnenstingl, J.; Djoa, S. H.; Laser, M.; Mastera, S.; Merz, E.; Morschl, P.

    1976-04-15

    This paper describes a process developed for the retainment and separation of volatile (3H, 129 +131I) and gaseous (85Kr, Xe) fission products from the off-gas produced during dissolution of HTGR-fuel. To prevent unnecessary dilution of liberated noble gases by surrounding atmosphere, a helium purge-gas cycle is applied to enable a coarse fractionating of krypton and xenon by cold-trapping at about 80 deg K after precleaning the gas stream. The process consists of the following steps: deposition of droplets and solid aerosols; chemisorption of iodine on silver impregnated silica gel; catalytic removal of nitrogen oxides and oxygen; drying of the process gas stream; final filtering of abraded solids; deposition of xenon in solid form at 80 deg K and low subpressure; deposition of krypton in solid form at 80 deg K after compression to about 6 bar; decontamination of 85krypton-containing xenon by batch distillation for eventual industrial utilization; and removal of nitrogen and argon enrichment during continuous operation in the purge-gas stream by inleaking air with charcoal. A continuously operating dissolver vessel, closed to the surrounding atmosphere, yields a very high content of noble gases, e.g., 0.35 vol % krypton and 2.0 vol % xenon. The presented off-gas treatment unit is operated in cold runs with 1/3 of the full capacity and can treat about 1 m3 STP/h helium, corresponding to a quantity of about 10,000 MW(e) HTGR-fuel reprocessing plant.

  14. Separation of the fission product noble gases krypton and xenon from dissolver off-gas in reprocessing HTGR-fuel

    International Nuclear Information System (INIS)

    Bohnenstingl, J.; Djoa, S.H.; Laser, M.; Mastera, S.; Merz, E.; Morschl, P.

    1976-01-01

    This paper describes a process developed for the retainment and separation of volatile ( 3 H, 129+131 I) and gaseous ( 85 Kr, Xe) fission products from the off-gas produced during dissolution of HTGR-fuel. To prevent unnecessary dilution of liberated noble gases by surrounding atmosphere, a helium purge-gas cycle is applied to enable a coarse fractionating of krypton and xenon by cold-trapping at about 80 0 K after precleaning the gas stream. The process consists of the following steps: deposition of droplets and solid aerosols; chemisorption of iodine on silver impregnated silica gel; catalytic removal of nitrogen oxides and oxygen; drying of the process gas stream; final filtering of abraded solids; deposition of xenon in solid form at 80 0 K and low subpressure; deposition of krypton in solid form at 80 0 K after compression to about 6 bar; decontamination of 85 Kr-containing xenon by batch distillation for eventual industrial utilization; and removal of nitrogen and argon enrichment during continuous operation in the purge-gas stream by inleaking air with charcoal. A continuously operating dissolver vessel, closed to the surrounding atmosphere, yields a very high content of noble gases, i.e., 0.35 vol % krypton and 2.0 vol % xenon. The presented off-gas treatment unit is operated in cold runs with 1 / 3 of the full capacity and can treat about 1 m 3 STP/h helium, corresponding to a quantity of about 10,000 MW/sub e/ HTGR-fuel reprocessing plant

  15. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    Science.gov (United States)

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  16. Computational phase diagrams of noble gas hydrates under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Teeratchanan, Pattanasak, E-mail: s1270872@sms.ed.ac.uk; Hermann, Andreas, E-mail: a.hermann@ed.ac.uk [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)

    2015-10-21

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-I{sub h}, ice-I{sub c}, ice-II, and C{sub 0} interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogen hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C{sub 0} water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C{sub 0} hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.

  17. Hyperpolarized Nanodiamond Surfaces.

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Waddington, David E J; Reilly, David J

    2017-01-11

    The widespread use of nanodiamond as a biomedical platform for drug-delivery, imaging, and subcellular tracking applications stems from its nontoxicity and unique quantum mechanical properties. Here, we extend this functionality to the domain of magnetic resonance, by demonstrating that the intrinsic electron spins on the nanodiamond surface can be used to hyperpolarize adsorbed liquid compounds at low fields and room temperature. By combining relaxation measurements with hyperpolarization, spins on the surface of the nanodiamond can be distinguished from those in the bulk liquid. These results are likely of use in signaling the controlled release of pharmaceutical payloads.

  18. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  19. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  20. Noble gas binary mixtures for gas-cooled reactor power plants

    International Nuclear Information System (INIS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2008-01-01

    This paper examines the effects of using noble gases and binary mixtures as reactor coolants and direct closed Brayton cycle (CBC) working fluids on the performance of terrestrial nuclear power plants and the size of the turbo-machines. While pure helium has the best transport properties and lowest pumping power requirement of all noble gases and binary mixtures, its low molecular weight increases the number of stages of the turbo-machines. The heat transfer coefficient for a He-Xe binary mixture having a molecular weight of 15 g/mole is 7% higher than that of helium, and the number of stages in the turbo-machines is 24-30% of those for He working fluid. However, for the same piping and heat exchange components design, the loop pressure losses with He-Xe are ∼3 times those with He. Consequently, for the same reactor exit temperature and pressure losses in piping and heat exchange components, the higher pressure losses in the nuclear reactor decrease the net peak efficiency of the plant with He-Xe working fluid (15 g/mole) by a little more than ∼2% points, at higher cycle compression ratio than with He working fluid

  1. Advancing the use of noble gases in fluid inclusions of speleothems as a palaeoclimate proxy. Method and standardization

    International Nuclear Information System (INIS)

    Papp, L.; Palcsu, L.; Major, Z.; Svingor, E.

    2010-01-01

    Complete text of publication follows. Continental carbonates are essential archives of the past geological and climatological occurrences. Recently, fluid inclusions of carbonates have got into focus of palaeoclimate research. A new approach using temperature dependent gas solubilities might be a way that uses only physical laws, e.g. the Henry's law of solubility and gas partitioning models. The so-called noble gas temperature (NGT) can be calculated from the measured noble gas concentrations. This report describes how our first advancing steps towards obtaining NGT's from fluid inclusions and tiny water amounts have been preformed. To extract the water inclusions from the carbonate matrix, the most suitable treatment is to crush the carbonate under vacuum. The water released from the inclusions is then collected in a cold finger by freezing. The amount of the liberated water is measured via its vapour pressure in a certain volume (Fig. 1). The liberated dissolved noble gases which were in the fluid inclusions are separated by a cryo system, and then admitted into the static mode noble gas mass spectrometer sequentially. The calibration of the noble gas mass spectrometric measurements is performed by means of well known air aliquots. To check the reliability of the whole measurement procedure standard water samples have to be measured. As for standard samples, first we have prepared air equilibrated water (AEW) in conditioned circumstances. We fill copper capillaries with AEW. Having completed the copper capillary assemblage, the AEW is letting flow through the capillary (Fig. 2). The error of such a water determination is less than 1% in case of 1 μl of liquid water (Fig. 1) that allows us to determine accurate noble gas concentrations. The reproducibility of 40 Ar measurements is better than 0.6 %, while those of neon, krypton and xenon isotopes are 0.6-1.6 %, 0.9-2.2 % and 0.8-2.0 %, respectively. Theoretically, these precisions for noble gas concentrations

  2. Long-range interactions of excited He atoms with ground-state noble-gas atoms

    KAUST Repository

    Zhang, J.-Y.

    2013-10-09

    The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition operators. The large-n expansions for the sums over the He oscillator strength divided by the corresponding transition energy are presented for these series. Using the expansions, the C6 coefficients for the systems involving He(131,3S) and He(131,3P) are calculated and found to be in good agreement with directly calculated values.

  3. Hyperpolarized nanodiamond with long spin-relaxation times

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  4. Origin and Processes Highlighted By Noble Gases Geochemistry of Submarine Gas Emissions from Seeps at the Aquitaine Shelf (Bay of Biscay):

    Science.gov (United States)

    Battani, A.; Ruffine, L.; Donval, J. P.; Bignon, L.; Pujol, M.; Levaché, D.

    2014-12-01

    Noble gases are widely used as tracers to both determine fluid origin and identify transfer processes governing fluid flow in natural systems. This work presents the preliminary results and interpretations from submarine gas samples collected during the GAZCOGNE2 cruise (2013). The seepage activity and the spatial distribution of the widespread emission sites encountered at this area are described by (Dupré et al. 2014). Gas composition shows that methane is the dominant species compared to the C2+. The associated δ13C and δD signatures point to a biogenic origin- through CO2 reduction- of the gas. Helium concentrations are very low, ranging from 0.1 and 2.3 ppm, indicating a low residence time of the fluids in the subsurface. However, the resulting helium isotopic ratios are mostly crustal fingerprinted (around 0.02). The R/Ra values sometimes exhibit higher value of 0.2, indicative either an ASW (air saturated water) value, or the fingerprint of ancient mantle helium, the later in agreement with the geological structural context of the Parentis Basin. Most of the samples exhibit a mixing between ASW and air, probably by excess air addition to the initial ASW concentration. The elemental Ne/Ar ratio is remarkably constant for the totality of the samples, with a value typical of ASW (0.2). This result implies that the migrating gas phase is "stripping" the original water matrix from its noble gas content, as described by Gillfillian et al., 2008. This further indicates that an intermediate reservoir of biogenic gas should be present at depth. The GAZCOGNE study is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. References: Dupré, S., L. Berger, N. Le Bouffant, C. Scalabrin, and J. F. Bourillet (2014), Fluid emissions at the Aquitaine Shelf (Bay of Biscay, France): a biogenic origin or the expression of hydrocarbon leakage?, Continental Shelf Research, doi:10.1016/j.csr.2014.07.004. Gilfillan S

  5. Dissolved stable noble gas measurements from primary water of Paks NPP

    International Nuclear Information System (INIS)

    Palcsu, L.; Molnar, M.; Szanto, Zs.; Svingor, E.; Futo, I.; Pinter, T.

    2001-01-01

    A sampling and measuring method of noble gases from the primary water circuit of a VVER type NPP was developed to provide relevant information about the kilter of heating rods and detailed additional information about some working parameters. The helium concentrations and 3 He/ 4 He ratios was used to estimate the content of tritium and alpha emitting isotopes of the primary water. By argon content measurements the air penetration and the required hydrazine amount for the oxygen absorption could be estimated with high accuracy. Continuous monitoring of the concentration and isotope ratios of Xe and Kr in the dissolved gas is proved to be a good tool for high sensitivity detection of small leakage of fuel elements. In case of block-3 xenon surplus was detected. The results indicate possible leakage of fuel rods.(author)

  6. Probing the interaction of noble gases with pristine and nitrogen-doped graphene through Raman spectroscopy

    Science.gov (United States)

    Cunha, Renato; Perea-López, Néstor; Elías, Ana Laura; Fujisawa, Kazunori; Carozo, Victor; Feng, Simin; Lv, Ruitao; dos Santos, Maria Cristina; Terrones, Mauricio; Araujo, Paulo T.

    2018-05-01

    The interactions of adsorbates with graphene have received increasing attention due to its importance in the development of applications involving graphene-based coatings. Here, we present a study of the adsorption of noble gases on pristine and nitrogen-doped graphene. Single-layer graphene samples were synthesized by chemical vapor deposition (CVD) and transferred to transmission electron microscopy (TEM) grids. Several noble gases were allowed to adsorb on the suspended graphene substrate at very low temperatures. Raman spectra show distinct frequency blue shifts in both the 2D and G bands, which are induced by gas adsorption onto high quality single layer graphene (1LG). These shifts, which we associate with compressive biaxial strain in the graphene layers induced by the noble gases, are negligible for nitrogen-doped graphene. Additionally, a thermal depinning transition, which is related to the desorption of a noble gas layer from the graphene surface at low temperatures (ranging from 20 to 35 K), was also observed at different transition temperatures for different noble gases. These transition temperatures were found to be 25 K for argon and 35 K for xenon. Moreover, we were able to obtain values for the compressive biaxial strain in graphene induced by the adsorbed layer of noble gases, using Raman spectroscopy. Ab initio calculations confirmed the correlation between the noble gas-induced strain and the changes in the Raman features observed.

  7. Reservoir Characterization using geostatistical and numerical modeling in GIS with noble gas geochemistry

    Science.gov (United States)

    Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.

    2013-12-01

    The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or

  8. Multi-slice Fractional Ventilation Imaging in Large Animals with Hyperpolarized Gas MRI

    Science.gov (United States)

    Emami, Kiarash; Xu, Yinan; Hamedani, Hooman; Xin, Yi; Profka, Harrilla; Rajaei, Jennia; Kadlecek, Stephen; Ishii, Masaru; Rizi, Rahim R.

    2012-01-01

    Noninvasive assessment of regional lung ventilation is of critical importance in quantifying the severity of disease and evaluating response to therapy in many pulmonary diseases. This work presents for the first time the implementation of a hyperpolarized (HP) gas MRI technique for measuring whole-lung regional fractional ventilation (r) in Yorkshire pigs (n = 5) through the use of a gas mixing and delivery device in supine position. The proposed technique utilizes a series of back-to-back HP gas breaths with images acquired during short end-inspiratory breath-holds. In order to decouple the RF pulse decay effect from ventilatory signal build-up in the airways, regional distribution of flip angle (α) was estimated in the imaged slices by acquiring a series of back-to-back images with no inter-scan time delay during a breath-hold at the tail-end of the ventilation sequence. Analysis was performed to assess the multi-slice ventilation model sensitivity to noise, oxygen and number of flip angle images. The optimal α value was determined based on minimizing the error in r estimation; αopt = 5–6° for the set of acquisition parameters in pigs. The mean r values for the group of pigs were 0.27±0.09, 0.35±0.06, 0.40±0.04 for ventral, middle and dorsal slices, respectively, (excluding conductive airways r > 0.9). A positive gravitational (ventral-dorsal) ventilation gradient effect was present in all animals. The trachea and major conductive airways showed a uniform near-unity r value, with progressively smaller values corresponding to smaller diameter airways, and ultimately leading to lung parenchyma. Results demonstrate the feasibility of measurements of fractional ventilation in large species, and provides a platform to address technical challenges associated with long breathing time scales through the optimization of acquisition parameters in species with a pulmonary physiology very similar to that of human beings. PMID:22290603

  9. Rapid assessment of pulmonary gas transport with hyperpolarized 129Xe MRI using a 3D radial double golden-means acquisition with variable flip angles.

    Science.gov (United States)

    Ruppert, Kai; Amzajerdian, Faraz; Hamedani, Hooman; Xin, Yi; Loza, Luis; Achekzai, Tahmina; Duncan, Ian F; Profka, Harrilla; Siddiqui, Sarmad; Pourfathi, Mehrdad; Cereda, Maurizio F; Kadlecek, Stephen; Rizi, Rahim R

    2018-04-22

    To demonstrate the feasibility of using a 3D radial double golden-means acquisition with variable flip angles to monitor pulmonary gas transport in a single breath hold with hyperpolarized xenon-129 MRI. Hyperpolarized xenon-129 MRI scans with interleaved gas-phase and dissolved-phase excitations were performed using a 3D radial double golden-means acquisition in mechanically ventilated rabbits. The flip angle was either held fixed at 15 ° or 5 °, or it was varied linearly in ascending or descending order between 5 ° and 15 ° over a sampling interval of 1000 spokes. Dissolved-phase and gas-phase images were reconstructed at high resolution (32 × 32 × 32 matrix size) using all 1000 spokes, or at low resolution (22 × 22 × 22 matrix size) using 400 spokes at a time in a sliding-window fashion. Based on these sliding-window images, relative change maps were obtained using the highest mean flip angle as the reference, and aggregated pixel-based changes were tracked. Although the signal intensities in the dissolve-phase maps were mostly constant in the fixed flip-angle acquisitions, they varied significantly as a function of average flip angle in the variable flip-angle acquisitions. The latter trend reflects the underlying changes in observed dissolve-phase magnetization distribution due to pulmonary gas uptake and transport. 3D radial double golden-means acquisitions with variable flip angles provide a robust means for rapidly assessing lung function during a single breath hold, thereby constituting a particularly valuable tool for imaging uncooperative or pediatric patient populations. © 2018 International Society for Magnetic Resonance in Medicine.

  10. Paleotemperatures derived from noble gases dissolved in groundwater and in relation to soil temperature

    International Nuclear Information System (INIS)

    Stute, M.; Sonntag, C.

    1992-01-01

    Measurements of He, Ne, Ar, Kr and Xe dissolved in groundwater at two sites (Bocholt, Germany, and the Great Hungarian Plain) were taken to prove the reliability of noble gas temperatures as indicators of paleotemperatures. Noble gas temperatures of groundwater of Holocene age were found to reflect the annual mean soil temperature in the recharge are with an accuracy close to the precision of measurement (1σ approx. ±0.5 deg. C). Noble gas temperature data demonstrate the influence of vegetation cover on the soil temperature in the infiltration area. Groundwater formed in forests at the Bocholt site shows noble gas temperatures that are 2.2 deg. C lower than the groundwater formed in fields or meadows. The temperature data obtained from groundwater of the Great Hungarian Plain for the last glaciation are ≥ 8.6 deg. C lower than data from recent groundwater for maximum glaciation (approx. 18,000 years ago) and 4.7 ± 1 deg. C lower for the preceding interstadial (approx. 28,000-35,000 years ago). These data permit independent reconstruction of paleoclimatic conditions. (author). 19 refs, 3 figs, 1 tab

  11. Noble Gas Surface Flux Simulations And Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    Signatures from underground nuclear explosions or UNEs are strongly influenced by the containment regime surrounding them. The degree of gas leakage from the detonation cavity to the surface obviously affects the magnitude of surface fluxes of radioxenon that might be detected during the course of a Comprehensive Test Ban Treaty On-Site Inspection. In turn, the magnitude of surface fluxes will influence the downwind detectability of the radioxenon atmospheric signature from the event. Less obvious is the influence that leakage rates have on the evolution of radioxenon isotopes in the cavity or the downwind radioisotopic measurements that might be made. The objective of this letter report is to summarize our attempt to better understand how containment conditions affect both the detection and interpretation of radioxenon signatures obtained from sampling at the ground surface near an event as well as at greater distances in the atmosphere. In the discussion that follows, we make no attempt to consider other sources of radioactive noble gases such as natural backgrounds or atmospheric contamination and, for simplicity, only focus on detonation-produced radioxenon gases. Summarizing our simulations, they show that the decay of radioxenon isotopes (e.g., Xe-133, Xe-131m, Xe-133m and Xe-135) and their migration to the surface following a UNE means that the possibility of detecting these gases exists within a window of opportunity. In some cases, seeps or venting of detonation gases may allow significant quantities to reach the surface and be released into the atmosphere immediately following a UNE. In other release scenarios – the ones we consider here – hours to days may be required for gases to reach the surface at detectable levels. These release models are most likely more characteristic of “fully contained” events that lack prompt venting, but which still leak gas slowly across the surface for periods of months.

  12. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    Science.gov (United States)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  13. Relativistic effects in photoionization time delay near the Cooper minimum of noble-gas atoms

    Science.gov (United States)

    Saha, Soumyajit; Mandal, Ankur; Jose, Jobin; Varma, Hari R.; Deshmukh, P. C.; Kheifets, A. S.; Dolmatov, V. K.; Manson, S. T.

    2014-11-01

    Time delay of photoemission from valence n s , n p3 /2 , and n p1 /2 subshells of noble-gas atoms is theoretically scrutinized within the framework of the dipole relativistic random phase approximation. The focus is on the variation of time delay in the vicinity of the Cooper minima in photoionization of the outer subshells of neon, argon, krypton, and xenon, where the corresponding dipole matrix element changes its sign while passing through a node. It is revealed that the presence of the Cooper minimum in one photoionization channel has a strong effect on time delay in other channels. This is shown to be due to interchannel coupling.

  14. Overview of the physical-chemical properties of the noble gases

    International Nuclear Information System (INIS)

    McKinley, C.

    1973-01-01

    This paper lists the concentrations of noble gases in the atmosphere and the relative abundance of the stable isotopes. Selected physical properties are tabulated; solubilities of noble gases in water and other liquids, and liquid-vapor equilibria data for binary systems containing a noble gas are presented. Adsorption data are tabulated for illustrative conventional adsorbents and are also presented by a Polanyi correlation. Clathration, biochemical effects, and chemical reactivity are highlighted. Analytical procedures are briefly described. Other relatively non-reactive gases present in the atmosphere in trace quantities are mentioned: methane, carbon tetrafluoride, and sulfur hexafluoride.

  15. Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging.

    Science.gov (United States)

    Rao, Madhwesha R; Stewart, Neil J; Griffiths, Paul D; Norquay, Graham; Wild, Jim M

    2018-02-01

    Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 ( 129 Xe). Materials and Methods In vivo imaging with 129 Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129 Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129 Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [ 1 H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129 Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1 H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129 Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. © RSNA, 2017.

  16. A magnetic tunnel to shelter hyperpolarized fluids

    International Nuclear Information System (INIS)

    Milani, Jonas; Vuichoud, Basile; Bornet, Aurélien; Miéville, Pascal; Mottier, Roger; Jannin, Sami; Bodenhausen, Geoffrey

    2015-01-01

    To shield solutions carrying hyperpolarized nuclear magnetization from rapid relaxation during transfer through low fields, the transfer duct can be threaded through an array of permanent magnets. The advantages are illustrated for solutions containing hyperpolarized 1 H and 13 C nuclei in a variety of molecules

  17. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    International Nuclear Information System (INIS)

    William S. Charlton

    1999-01-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels

  18. A magnetic tunnel to shelter hyperpolarized fluids

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Jonas, E-mail: jonas.milani@epfl.ch; Vuichoud, Basile; Bornet, Aurélien; Miéville, Pascal; Mottier, Roger [Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne (Switzerland); Jannin, Sami [Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne (Switzerland); Bruker BioSpin AG, Industriestrasse 26, CH-8117 Fällanden (Switzerland); Bodenhausen, Geoffrey [Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne (Switzerland); Département de Chimie, École Normale Supérieure-PSL Research University, 24 rue Lhomond, F-75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France); CNRS, UMR 7203 LBM, F-75005 Paris (France)

    2015-02-15

    To shield solutions carrying hyperpolarized nuclear magnetization from rapid relaxation during transfer through low fields, the transfer duct can be threaded through an array of permanent magnets. The advantages are illustrated for solutions containing hyperpolarized {sup 1}H and {sup 13}C nuclei in a variety of molecules.

  19. Theoretical prediction of the noble gas complexes HeAuF and NeAuF

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Ab initio calculations were carried out to investigate the structures and the stability of the noble gas complexes HeAuF and NeAuF through MP2 and CCSD(T) methods.The HeAuF was predicted to have a linear structure with weak He-Au covalent bonding,the distance of which is closer to the covalent limit in comparison with the corresponding van der Waals limit.The dissociation energy with respect to He + AuF was found to be 24 and 26 kJ·mol-1 at the CCSD(T)/basis set B and B’ levels,respectively.However,similar calculations for NeAuF indicate that NeAuF is not a stable species.

  20. Echo-planar MR imaging of dissolved hyperpolarized 129Xe. Potential for M angiography

    International Nuclear Information System (INIS)

    Maansson, S.

    2002-01-01

    Purpose: The feasibility of hyperpolarized 129 Xe for fast MR angiography (MRA) was evaluated using the echo-planar imaging (EPI) technique. Material and Methods: Hyperpolarized Xe gas was dissolved in ethanol; a carrier agent with high solubility for Xe (Ostwald solubility coefficient 2.5) and long relaxation times. The dissolved Xe was injected as a bolus into a flow phantom where the mean flow velocity was 15 cm/s. Ultrafast EPI images with 44 ms scan time were acquired of the flowing bolus and the signal-to-noise ratios (SNR) were measured. Results: The relaxation times of hyperpolarized Xe in ethanol were measured to T1=160±11 s and T2 ≅ 20 s. The resulting images of the flowing liquid were of reasonable quality and had an SNR of about 70. Conclusion: Based on the SNR of the obtained Xe EPI images; it was estimated that rapid in vivo MRA with 129 Xe may be feasible; provided that an efficient; biologically acceptable carrier for Xe can be found and polarization levels of more than 25% can be achieved in isotopically enriched 129 Xe

  1. The desorption behaviour of implanted noble gases at low energy on silicon surfaces

    NARCIS (Netherlands)

    Holtslag, A.H.M.; van Silfhout, Arend

    1987-01-01

    Under UHV conditions, clean crystalline Si(111) surfaces have been bombarded mass-selectively at room temperature with noble gas ions, Ne+, Ar+, Kr+, at normal incidence. By means of stepwise heating up to 1050 K the activation energies and desorbed doses of the noble gases have been straight

  2. Noble gas confinement for reactor fuel melting accidents

    International Nuclear Information System (INIS)

    Monson, P.R.

    1984-01-01

    In the unlikely event of a fuel melting accident, radioactive material would be released into the reactor room. This radioactive material would consist of particulate matter, iodine, tritium, and the noble gases krypton and xenon. In the case of reactors with containment domes the gases would be contained for subsequent cleanup. For reactors without contaiment the particulates and the iodine can be effectively removed with HEPA and carbon filters of current technology; however, noble gases cannot be easily removed and would be released to the atmosphere. In either case, it would be highly desirable to have a system that could be brought online to treat this contaminated air to minimize the population dose. A low temperature adsorption system has been developed at the Savannah River Laboratory to remove the airborne radioactive material from such a fuel melting accident. Over two dozen materials have been tested in extensive laboratory studies, and hydrogen mordenite and silver mordenite were found to be the most promising adsorbents. A full-scale conceptual design has also been developed. Results of the laboratory studies and the conceptual design are discussed along with plans for further development of this concept

  3. Noble gas confinement for reactor fuel melting accidents

    International Nuclear Information System (INIS)

    Monson, P.R.

    1985-01-01

    In the unlikely event of a fuel melting accident radioactive material would be released into the reactor room. This radioactive material would consist of particulate matter, iodine, tritium, and the noble gases krypton and xenon. In the case of reactors with containment domes, the gases would be contained for subsequent cleanup. For reactors without containment the particulates and the iodine can be effectively removed with HEPA and carbon filters of current technology; however, noble gases cannot be easily removed and would be released to the atmosphere. In either case, it would be highly desirable to have a system that could be brought online to treat this contaminated air to minimize the population dose. A low temperature adsorption system has been developed at the Savannah River Laboratory to remove the airborne radioactive material from such a fuel melting accident. Over two dozen materials have been tested in extensive laboratory studies, and hydrogen mordensite and silver mordenite were found to be the most promising absorbents. A full-scale conceptual design has also been developed. Results of the laboratory studies and the conceptual design will be discussed along with plans for further development of this concept

  4. Isotopic and noble gas geochemistry in geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B.M.; DePaolo, D.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    The objective of this program is to provide, through isotopic analyses of fluids, fluid inclusions, and rocks and minerals coupled with improved methods for geochemical data analysis, needed information regarding sources of geothermal heat and fluids, the spatial distribution of fluid types, subsurface flow, water-rock reaction paths and rates, and the temporal evolution of geothermal systems. Isotopic studies of geothermal fluids have previously been limited to the light stable isotopes of H, C, and O. However, other isotopic systems such as the noble gases (He, Ne, Ar, Kr and Xe) and reactive elements (e.g. B, N, S, Sr and Pb) are complementary and may even be more important in some geothermal systems. The chemistry and isotopic composition of a fluid moving through the crust will change in space and time in response to varying chemical and physical parameters or by mixing with additional fluids. The chemically inert noble gases often see through these variations, making them excellent tracers for heat and fluid sources. Whereas, the isotopic compositions of reactive elements are useful tools in characterizing water-rock interaction and modeling the movement of fluids through a geothermal reservoir.

  5. Noble Gases as tracers of fluid migration in the Haynesville shale and overlying strata

    Science.gov (United States)

    Byrne, D. J.; Barry, P. H.; Lawson, M.; Ballentine, C. J.

    2017-12-01

    Noble gases are ideal tracers of physical processes and fluid provenance in crustal systems. Due to their inert nature, they are unaffected by chemical alteration, redox, or biological phenomena that fractionate other geochemical tracers. Noble gas analysis has been used to quantify fluid provenance, interactions, and ages in petroleum systems [1,2], but the effects of hydrocarbon migration on noble gas signatures have not been directly observed. The Haynesville Shale (East Texas & Louisiana), is exploited commercially for unconventional shale gas, but also acts as the source-rock for overlying conventional reservoirs. We present noble gas isotope and abundance data in samples collected from 9 natural gas wells sourced from the Haynesville Shale, as well as 21 from reservoirs in the overlying Cotton Valley (n=7), Travis Peak (n=9), and James (n=5) groups. Using a stratigraphic model, we observe systematic changes in the noble gas signatures as the fluids migrate from the Haynesville source rock to the overlying conventional accumulations. Helium isotope ratios (3He/4He) are strongly radiogenic in the Haynesville and stratigraphically older conventional reservoirs, with the younger reservoirs showing evidence of a mantle helium input. Argon isotope ratios (40Ar/36Ar) are strongly correlated with high 3He/4He, suggesting a similar provenance for radiogenic 40Ar and mantle 3He. Concentrations of groundwater-derived 36Ar are consistently higher in the conventional reservoirs than in the Haynesville shale, reflecting the greater interaction with groundwater during migration. However, 20Ne/36Ar ratios are not significantly different, suggesting that solubility-dependent partitioning is not simply dependent on vertical or horizontal migration distance. Krypton and xenon abundances are higher than expected for groundwater in all samples, a phenomenon that has been observed in many other hydrocarbon accumulations [3]. The excess Xe/Kr ratio is highest in the Haynesville

  6. Fluorescence emissions from mixtures of Hg with the noble gases

    International Nuclear Information System (INIS)

    Woodworth, J.R.

    1977-01-01

    Fluorescence emissions from mixtures of Hg with high pressure Xe, Kr, and Ar (approx.1 torr Hg, 10 3 --10 4 torr noble gas) have been studied using a short-pulse relativistic electron beam as an excitation source. Hg--noble gas molecular bands were observed on the red sides of the Hg lines (1849 and 2537 A) as well as on the red sides of the Hg visible lines (7 3 S 1 →6 3 P 0 , 1 , 2 ). Temporal histories and production efficiencies of the molecular emissions were determined and a model was formulated for the time histories of the HgXe 2600 A bands. Possible applications to high power laser systems are discussed

  7. Noble-gas ion sputtering yield of gold and copper: Dependence on the energy and angle of incidence of the projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Oliva-Florio, A.; Baragiola, R.A.; Jakas, M.M.; Alonso, E.V.; Ferron, J.

    1987-02-15

    We have measured the sputtering yield of Au and Cu targets as a function of energy and the angle of incidence of noble-gas projectiles in the energy range 2--50 keV. The experimental results were compared with the analytical theory of sputtering and with computer simulations. Our study indicates that the linear-cascade model is applicable only asymptotically for low nuclear stopping powers.

  8. The degassing history of the Earth: Noble gas studies of Archaean cherts and zero age glassy submarine basalts

    Science.gov (United States)

    Hart, R.; Hogan, L.

    1985-01-01

    Recent noble gas studies suggests the Earth's atmosphere outgassed from the Earth's upper mantle synchronous with sea floor spreading, ocean ridge hydrothermal activity and the formation of continents by partial melting in subduction zones. The evidence for formation of the atmosphere by outgassing of the mantle is the presence of radionuclides H3.-4, Ar-040 and 136 Xe-136 in the atmosphere that were produced from K-40, U and Th in the mantle. How these radionuclides were formed is reviewed.

  9. Development of a hyperpolarized 129Xe system on 3T for the rat lungs

    International Nuclear Information System (INIS)

    Sato, Hiroshi; Enmi, Jun-ichiro; Hayashi, Takuya

    2004-01-01

    MRI (magnetic resonance imaging) with 129 Xe has gained much attention as a diagnostic methodology because of its affinity for lipids and possible polarization. The quantitative estimation of net detectability and stability of hyperpolarized 129 Xe in the dissolved phase in vivo is valuable to the development of clinical applications. The goal of this study was to develop a stable hyperpolarized 129 Xe experimental 3T system to statistically analyze the dissolved-phase 129 Xe signal in the rat lungs. The polarization of 129 Xe with buffer gases at the optical pumping cell was measured under adiabatic fast passage against the temperature of an oven and laser absorption at the cell. The gases were insuffiated into the lungs of Sprague-Dawley rats (n=15, 400-550 g) through an endotracheal tube under spontaneous respiration. Frequency-selective spectroscopy was performed for the gas phase and dissolved phase. We analyzed the 129 Xe signal in the dissolved phase to measure the chemical shift, T 2 * , delay and its ratio in a rat lungs on 3T. The polarizer was able to produce polarized gas (1.1±0.47%, 120 cm 3 ) hundreds of times with the laser absorption ratio (25%) kept constant at the cell. The optimal buffer gas ratio of 25-50% rendered the maximum signal in the dissolved phase. Two dominant peaks of 211.8±0.9 and 201.1±0.6 ppm were observed with a delay of 0.4±0.9 and 0.9±1.0 s from the gas phase spectra. The ratios of their average signal to that of the gas phase were 5.6±5.2% and 4.4±4.7%, respectively. The T 2 * of the air space in the lungs was 2.5±0.5 ms, which was 3.8 times shorter than that in a syringe. We developed a hyperpolarized 129 Xe experimental system using a 3T MRI scanner that yields sufficient volume and polarization and quantitatively analyzed the dissolved-phase 129 Xe signal in the rat lungs. (author)

  10. Development of intense high-energy noble gas ion beams from in-terminal ion injector of tandem accelerator using an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Nakanoya, T.; Hanashima, S.; Takeuchi, S. [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2011-10-21

    An ECRIS-based heavy ion injector was constructed in the high-voltage terminal of JAEA-Tokai Tandem Accelerator to develop new beam species of highly charged noble gas ions. This work was associated with a lot of development to operate the ion source on the 20UR Pelletron high voltage terminal in high pressure SF{sub 6} gas environment. Highly charged ions of N, O, Ne, Ar, Kr and Xe have been accelerated satisfactorily. Operating data integrated during many years long beam delivery service are summarized.

  11. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: A DFT study

    Science.gov (United States)

    Zhao, Chunjiang; Wu, Huarui

    2018-03-01

    Density functional theory calculations are carried out to investigate the adsorption characteristics of methane (CH4), carbon dioxide (CO2), hydrogen (H2), hydrogen sulfide (H2S), nitrogen (N2), and oxygen (O2) on the surface of pyridine-like nitrogen doped graphene (PNG) as well as noble metal (Rh, Pt, Pd) decorated PNG to elaborate their potentials as gas sensors. The adsorption intensities of biogas on noble metal (Rh, Pt, Pd) decorated PNG are in the order of O2> H2S> N2> CH4> CO2> H2, which are corresponded to the order of their sensitivity on surface. Compared with biogas adsorption on pristine PNG, there exist higher adsorption ability, higher charge transfer and higher orbital hybridization upon adsorption on noble metal (Rh, Pt, Pd) decorated PNG. Consequently, the noble metal (Rh, Pt, Pd) decorated PNG can transform the existence of CH4, CO2, H2, H2S, N2, and O2 molecules into electrical signal and they could potentially be used as ideal sensors for detection of biogas in ambient situation.

  12. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    Science.gov (United States)

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  13. Calibration of a Noble Gas Mass Spectrometer with an Atmospheric Argon Standard (Invited)

    Science.gov (United States)

    Prasad, V.; Grove, M.

    2009-12-01

    Like other mass spectrometers, gas source instruments are very good at precisely measuring isotopic ratios but need to be calibrated with a standard to be accurate. The need for calibration arises due to the complicated ionization process which inefficiently and differentially creates ions from the various isotopes that make up the elemental gas. Calibration of the ionization process requires materials with well understood isotopic compositions as standards. Our project goal was to calibrate a noble gas (Noblesse) mass spectrometer with a purified air sample. Our sample obtained from Ocean Beach in San Francisco was under known temperature, pressure, volume, humidity. We corrected the pressure for humidity and used the ideal gas law to calculate the number of moles of argon gas. We then removed all active gasses using specialized equipment designed for this purpose at the United States Geological Survey. At the same time, we measured the volume ratios of various parts of the gas extraction line system associated with the Noblesse mass spectrometer. Using this data, we calculated how much Ar was transferred to the reservoir from the vacuum-sealed vial that contained the purified gas standard. Using similar measurements, we also calculated how much Ar was introduced into the extraction line from a pipette system and how much of this Ar was ultimately expanded into the Noblesse mass spectrometer. Based upon this information, it was possible to calibrate the argon sensitivity of the mass spectrometer. From a knowledge of the isotopic composition of air, it was also possible to characterize how ionized argon isotopes were fractionated during analysis. By repeatedly analyzing our standard we measured a 40Ar Sensitivity of 2.05 amps/bar and a 40Ar/36Ar ratio of 309.2 on the Faraday detector. In contrast, measurements carried out by ion counting using electron multipliers yield a value (296.8) which is much closer to the actual atmospheric 40Ar/36Ar value of 295.5.

  14. A sensitive zinc-activated 129Xe MRI probe

    International Nuclear Information System (INIS)

    Kotera, N.; Delacour, L.; Traore, T.; Buisson, D.A.; Taran, F.; Coudert, S.; Rousseau, B.; Tassali, N.; Leonce, E.; Boutin, C.; Berthault, P.; Brotin, T.; Dutasta, J.P.

    2012-01-01

    Herein we propose the use of hyper-polarized 129 Xe nuclear magnetic resonance (NMR) spectroscopy for the sensitive detection of Zn 2+ ions. To achieve this goal, the noble gas is encapsulated in dedicated host systems bearing a ligand that chelates the Zn 2+ ions. Cryptophanes, aromatic cage molecules made of cyclotriveratrylene groups, are perfectly suited to this purpose as 1) they can easily be rendered water-soluble, 2) the noble gas has a high affinity for their cavity, 3) when xenon is encapsulated, it takes a specific NMR frequency, and 4) xenon exchange in and out of the cavity insures a continuous refreshment of the Xe-cryptophane environment in hyper-polarization. We constructed a powerful 129 Xe NMR-based sensor of Zn 2+ ions, which enables for the first time measurement of Zn 2+ concentrations as low as 100 nm. This high sensitivity was achieved thanks to a smart 129 Xe MRI sensor, where the binding of the ion to the target is accompanied by a change in NMR parameters. We have also demonstrated the importance of working with enantiopure cryptophane derivatives. (O.M.)

  15. Understanding and modulating the high-energy properties of noble-gas hydrides from their long-bonding: an NBO/NRT investigation on HNgCO+/CS+/OSi+ and HNgCN/NC (Ng = He, Ar, Kr, Xe, Rn) molecules.

    Science.gov (United States)

    Zhang, Guiqiu; Song, Junjie; Fu, Lei; Tang, Kongshuang; Su, Yue; Chen, Dezhan

    2018-04-18

    The noble-gas hydrides, HNgX (X is an electronegative atom or fragment), represent potential high-energy materials because their two-body decomposition process, HNgX → Ng + HX, is strongly exoergic. Our previous studies have shown that each member of the HNgX (X = halogen atom or CN/NC fragment) molecules is composed of three leading resonance structures: two ω-bonding structures (H-Ng+ :X- and H:- Ng+-X) and one long-bonding structure (H∧X). The last one paints a novel [small sigma, Greek, circumflex]-type long-bonding picture. The present study focuses on the relationship between this novel bonding motif and the unusual energetic properties. We chose HNgCO+/CS+/OSi+/CN/NC, with the formula HNgAB (Ng = He, Ar, Kr, Xe, Rn; AB = CO+/CS+/OSi+/CN/NC) as the research system. We first investigated the bonding of HNgCO+ and its analogous HNgCS+/OSi+ species using NBO/NRT methods, and quantitatively compared the bonding with that in HNgCN/NC molecules. NBO/NRT results showed that each of the HNgCO+/CS+/OSi+ molecules could be better represented as a resonance hybrid of ω-bonding and long-bonding structures, but the long-bonding is much weaker than that in HNgCN/NC molecules. Furthermore, we introduced the long-bonding concept into the rationalization of the high-energy properties, and found a good correlation between the highly exothermic two-body dissociation channel and the long-bond order, bH-A. We also found that the long-bond order is highly tunable for these noble-gas hydrides due to its dependence on the nature of the electronegative AB fragments or the central noble-gas atoms, Ng. On the basis of these results, we could optimize the energetic properties by changing the long-bonding motif of our studied molecules. Overall, this study shows that the long-bonding model provides an easy way to rationalize and modulate the unusual energy properties of noble-gas hydrides, and that it is helpful to predict some noble-gas hydrides as potential energetic materials.

  16. Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Antonio Tricoli

    2012-05-01

    Full Text Available The structural stability of pure SnO2 nanoparticles and highly sensitive SnO2-SiO2 nanocomposites (0–15 SiO2 wt% has been investigated for conditions relevant to their utilization as chemoresistive gas sensors. Thermal stabilization by SiO2 co-synthesis has been investigated at up to 600 °C determining regimes of crystal size stability as a function of SiO2-content. For operation up to 400 °C, thermally stable crystal sizes of ca. 24 and 11 nm were identified for SnO2 nanoparticles and 1.4 wt% SnO2-SiO2 nanocomposites, respectively. The effect of crystal growth during operation (TO = 320 °C on the sensor response to ethanol has been reported, revealing possible long-term destabilization mechanisms. In particular, crystal growth and sintering-neck formation were discussed with respect to their potential to change the sensor response and calibration. Furthermore, the effect of SiO2 cosynthesis on the cross-sensitivity to humidity of these noble metal-free SnO2-based gas sensors was assessed.

  17. Wide range noble gas radiation monitor

    International Nuclear Information System (INIS)

    Kuhlman, H.S. III; Wyvill, J.R.

    1984-01-01

    The present invention contemplates providing a sample system for effluent from a nuclear process wherein the effluent in a first mode passes through a sample chamber whose noble gases are quantitatively detected. The sample of the first mode is continued until the detector count rate reaches a predetermined maximum. The detector establishes a control signal which is applied to terminate the first mode effluent flow to the chamber, evacuate the chamber to a predetermined value of vacuum and connect the effluent into the sample chamber with a predetermined mode of flow rate different from the rate of the first mode to establish a sample concentration in the chamber within the range of the detector. A subsequent predetermined minimum rate will generate a signal to reconnect the sample chamber to the first mode connection and thereby cycle the system back to its first mode of operation

  18. Volatile elements - water, carbon, nitrogen, noble gases - on Earth

    Science.gov (United States)

    Marty, B.

    2017-12-01

    Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the

  19. Consistent measurements comparing the drift features of noble gas mixtures

    CERN Document Server

    Becker, U; Fortunato, E M; Kirchner, J; Rosera, K; Uchida, Y

    1999-01-01

    We present a consistent set of measurements of electron drift velocities and Lorentz deflection angles for all noble gases with methane and ethane as quenchers in magnetic fields up to 0.8 T. Empirical descriptions are also presented. Details on the World Wide Web allow for guided design and optimization of future detectors.

  20. Production yields of noble-gas isotopes from ISOLDE UC$_{x}$/graphite targets

    CERN Document Server

    Bergmann, U C; Catherall, R; Cederkäll, J; Diget, C A; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Gausemel, H; Georg, U; Giles, T; Hagebø, E; Jeppesen, H B; Jonsson, O C; Köster, U; Lettry, Jacques; Nilsson, T; Peräjärvi, K; Ravn, H L; Riisager, K; Weissman, L; Äystö, J

    2003-01-01

    Yields of He, Ne, Ar, Kr and Xe isotopic chains were measured from UC$_{x}$/graphite and ThC$_{x}$/graphite targets at the PSB-ISOLDE facility at CERN using isobaric selectivity achieved by the combination of a plasma-discharge ion source with a water-cooled transfer line. %The measured half-lives allowed %to calculate the decay losses of neutron-rich isotopes in the %target and ion-source system, and thus to obtain information on the in-target %productions from the measured yields. The delay times measured for a UC$_x$/graphite target allow for an extrapolation to the expected yields of very neutron-rich noble gas isotopes, in particular for the ``NuPECC reference elements'' Ar and Kr, at the next-generation radioactive ion-beam facility EURISOL. \\end{abstract} \\begin{keyword} % keywords here, in the form: keyword \\sep keyword radioactive ion beams \\sep release \\sep ion yields \\sep ISOL (Isotope Separation On-Line) \\sep uranium and thorium carbide targets. % PACS codes here, in the form: \\PACS code \\sep code...

  1. A comparative study on full diagonalization of Hessian matrix and Gradient-only technique to trace out reaction path in doped noble gas clusters using stochastic optimization

    International Nuclear Information System (INIS)

    Biring, Shyamal Kumar; Chaudhury, Pinaki

    2012-01-01

    Highlights: ► Estimation of critical points in Noble-gas clusters. ► Evaluation of first order saddle point or transition states. ► Construction of reaction path for structural change in clusters. ► Use of Monte-Carlo Simulated Annealing to study structural changes. - Abstract: This paper proposes Simulated Annealing based search to locate critical points in mixed noble gas clusters where Ne and Xe are individually doped in Ar-clusters. Using Lennard–Jones (LJ) atomic interaction we try to explore the search process of transformation through Minimum Energy Path (MEP) from one minimum energy geometry to another via first order saddle point on the potential energy surface of the clusters. Here we compare the results based on diagonalization of the full Hessian all through the search and quasi-gradient only technique to search saddle points and construction of reaction path (RP) for three sizes of doped Ar-clusters, (Ar) 19 Ne/Xe,(Ar) 24 Ne/Xe and (Ar) 29 Ne/Xe.

  2. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    Science.gov (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  3. EDO, Doses to Man and Organs from Reactor Operation Noble Gas and Liquid Waste Release

    International Nuclear Information System (INIS)

    Rodenas Diago, Jose; Serradell Garcia, Vicente

    1983-01-01

    1 - Description of problem or function: EDO evaluates individual and collective doses to man from atmospheric releases of noble gases and other gaseous effluents. 2 - Method of solution: The dose calculations are carried out by following the guide- lines of USNRC Regulatory Guide 1.109. Radiation exposure for maximum individuals and population are estimated within 30 km from the nuclear plant. This area is divided into 160 circular trapezoids, to which computations are referred. Four age groups, seven organs for internal dose and two for external dose have been considered. Dose calculations are done through 14 pathways, 7 for liquid effluents, one for noble gases, and 6 for the rest of gaseous effluents. 3 - Restrictions on the complexity of the problem: The following are the maximum dimension sizes preset in the code: 73 radionuclides (other than noble gases); 15 noble gases; 160 circular trapezoids; 31 chemical elements; 4 types of aquatic foods; 15 points of exposure for shorelines; 15 trapezoids influenced by each point; 4 terrestrial food pathways; 100 centres of population. Some of these limits can be varied

  4. EDO, Doses to Man and Organs from Reactor Operation Noble Gas and Liquid Waste Release

    Energy Technology Data Exchange (ETDEWEB)

    Rodenas Diago, Jose; Serradell Garcia, Vicente [Departamento de Ingenieria Nuclear, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica, Camino de Vera 2/n Apartado 2012, Valencia (Spain)

    1983-10-18

    1 - Description of problem or function: EDO evaluates individual and collective doses to man from atmospheric releases of noble gases and other gaseous effluents. 2 - Method of solution: The dose calculations are carried out by following the guide- lines of USNRC Regulatory Guide 1.109. Radiation exposure for maximum individuals and population are estimated within 30 km from the nuclear plant. This area is divided into 160 circular trapezoids, to which computations are referred. Four age groups, seven organs for internal dose and two for external dose have been considered. Dose calculations are done through 14 pathways, 7 for liquid effluents, one for noble gases, and 6 for the rest of gaseous effluents. 3 - Restrictions on the complexity of the problem: The following are the maximum dimension sizes preset in the code: 73 radionuclides (other than noble gases); 15 noble gases; 160 circular trapezoids; 31 chemical elements; 4 types of aquatic foods; 15 points of exposure for shorelines; 15 trapezoids influenced by each point; 4 terrestrial food pathways; 100 centres of population. Some of these limits can be varied.

  5. Line emissions from sonoluminescence in aqueous solutions of halide salts without noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: liang.shi2007@163.com [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: wzchen@nju.edu.cn [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Zhou, Chao; Cui, Weicheng; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-02-20

    Line emissions of trivalent terbium (Tb{sup 3+}) ion were observed from single-bubble sonoluminescence (SL) in an aqueous solution of terbium chloride (TbCl{sub 3}) that contained no noble gas. In addition, sodium (Na) lines were observed in multi-bubble SL in aqueous solutions of various halide salts that contained no noble gas. These observations show that the halide ions, such as Cl{sup −}, Br{sup −}, and I{sup −}, help for line emissions as the noble gases. The intensity of a line emission depends on both the chemical species produced by cavitation bubbles and the temperature of SL bubble that responds to the driving ultrasound pressure. With the increase of driving pressure, some line emissions attached to the continuous spectrum may become increasingly clear, while other line emissions gradually become indistinct. - Highlights: • Line emissions of Tb(III) ions were observed without the presence of noble gases. • The halide ions help to generate a line emission during sonoluminescence. • The intensity of a line emission mainly depends on the bubble's temperature. • The definition of a line emission is related to the temperature of caviation bubble and the kind of host liquid.

  6. Hyperpolarized singlet NMR on a small animal imaging system

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Pileio, Giuseppe; Tayler, Michael C. D.

    2012-01-01

    Nuclear spin hyperpolarization makes a significant advance toward overcoming the sensitivity limitations of in vivo magnetic resonance imaging, particularly in the case of low-gamma nuclei. The sensitivity may be improved further by storing the hyperpolarization in slowly relaxing singlet...... populations of spin- 1/2 pairs. Here, we report hyperpolarized 13C spin order transferred into and retrieved from singlet spin order using a small animal magnetic resonance imaging scanner. For spins in sites with very similar chemical shifts, singlet spin order is sustained in high magnetic field without...... requiring strong radiofrequency irradiation. The demonstration of robust singlet-to-magnetization conversion, and vice versa, on a small animal scanner, is promising for future in vivo and clinical deployments....

  7. Effect of plasma oscillations of C60 collectivized electrons on photoionization of endohedral noble-gas atoms

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Baltenkov, A. S.

    2006-01-01

    It is demonstrated that outer and inner electron shells, including that formed by collectivized electrons of the fullerene C 60 , affects dramatically the cross section of the subvalent ns subshells of the noble-gas endohedral atoms A-C 60 . The calculations are performed within the framework of a very simple, so-called ''orange skin,'' model that makes it possible, in spite of its simplicity, to take into account the modification of the ns subshell due to its interaction with inner and outer atomic shells, as well as with the collectivized electrons of the C 60 . As a concrete example, we consider the Xe 5s electrons completely collectivized by the powerful action of the Xe close and remote multielectron neighboring shells

  8. TANGR2015 Heidelberg. Second international workshop on tracer applications of noble gas radionuclides in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    TANGR2015 is a workshop on the progress in the technique and application of Atom Trap Trace Analyis (ATTA). It is a follow-up to the first TANGR workshop, TANGR2012, which was held at the Argonne National Laboratory, Argonne, USA, in June 2012. It is organized in response to recent technical advances and new applications of Atom Trap Trace Analysis (ATTA), an analytical method for measuring the isotopes {sup 81}Kr, {sup 85}Kr, and {sup 39}Ar. The primary aim of the workshop is to discuss the technical progress of ATTA and thereby enable innovative and timely applications of the noble gas radionuclides to important scientific problems in earth and environmental sciences, e.g. in the fields of groundwater hydrology, glaciology, oceanography, and paleoclimatology.

  9. Modeling the transport and fate of radioactive noble gases in very dry desert alluvium: Realistic scenarios

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1992-01-01

    US DOE Order 5820.2A (1988) requires that a performance assessment of all new and existing low-level radioactive waste management sites be made. An integral part of every performance assessment is the mathematical modeling of the transport and fate of noble gas radionuclides in the gas phase. Current in depth site characterization of the high desert alluvium in Area 5 of the Nevada Test Site (NTS) is showing that the alluvium is very very dry all the way to the water table (240 meters below land surface). The potential for radioactive noble gas (e.g. Rn-220 and Rn-222) transport to the atmosphere from shallow land burial of Thorium and Uranium waste is very high. Objectives of this modeling effort include: Construct a physics based sits specific noble gas transport model; Include induced advection due to barometric pressure changes at the atmospheric boundary layer (thin) - dry desert alluvium interface; User selected option for use of NOAA barometric pressure or a ''home brewed'' barometric pressure wave made up of up to 15 sinusoids and cosinusoids; Use the model to help make engineering decisions on the design of the burial pits and associated closure caps

  10. The role of level anti-crossings in nuclear spin hyperpolarization

    NARCIS (Netherlands)

    Ivanov, Konstantin L.; Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Vieth, Hans Martin; Kaptein, R

    2014-01-01

    Nuclear spin hyperpolarization is an important resource for increasing the sensitivity of NMR spectroscopy and MRI. Signal enhancements can be as large as 3-4 orders of magnitude. In hyperpolarization experiments, it is often desirable to transfer the initial polarization to other nuclei of choice,

  11. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen.

    Science.gov (United States)

    Buchheit, R G; Schreiner, H R; Doebbler, G F

    1966-02-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.

  12. Noble gas geochemistry to monitor CO{sub 2} geological storages; Apports de la geochimie des gaz rares a la surveillance des sites de sequestration geologique de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lafortune, St

    2007-11-15

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO{sub 2} emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO{sub 2} could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO{sub 2} in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO{sub 2} storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO{sub 2} accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  13. Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging.

    Science.gov (United States)

    Pavlovskaya, Galina E; Cleveland, Zackary I; Stupic, Karl F; Basaraba, Randall J; Meersmann, Thomas

    2005-12-20

    For the first time, magnetic resonance imaging (MRI) with hyperpolarized (hp) krypton-83 (83Kr) has become available. The relaxation of the nuclear spin of 83Kr atoms (I = 9/2) is driven by quadrupolar interactions during brief adsorption periods on surrounding material interfaces. Experiments in model systems reveal that the longitudinal relaxation of hp 83Kr gas strongly depends on the chemical composition of the materials. The relaxation-weighted contrast in hp 83Kr MRI allows for the distinction between hydrophobic and hydrophilic surfaces. The feasibility of hp 83Kr MRI of airways is tested in canine lung tissue by using krypton gas with natural abundance isotopic distribution. Additionally, the influence of magnetic field strength and the presence of a breathable concentration of molecular oxygen on longitudinal relaxation are investigated.

  14. A radioactive noble gas quantitative analysis of gaseous effluents from NPP

    International Nuclear Information System (INIS)

    Yanev, Y.; Georgiev, K.; Mavrodiev, V.; Kikarin, B.

    1993-01-01

    The radioactive isotopes of argon, krypton and xenon comprise a substantial part of the gaseous emission of a NPP. A quantitative determination of their specific activity in the controlled area and the gaseous effluents requires a special sampling technique, as well as measurement method. The zeolites and the activated charcoals have a differentiated behaviour towards radioisotopes of argon, krypton and xenon. The isotope fractionation is often a problem, especially with argon and xenon. Some additional difficulties arise due to the irreproductibility of temperature and atmospheric moisture. The present paper describes a method for a spectrometric determination of radioactive noble gases after the cryogenic sampling developed at the Radiochemical laboratory of the Sofia University. The quality control of the method, as well as some special difficulties in its performing are discussed. The estimated minimum detectable activity is 5-10 Bq/m 3 for radioactive noble gases with half-life > 1 hour and sampling time for (resp. gamma-spectrometry) 1 hour. (author)

  15. Hyperpolarized metabolic MR in the study of cardiac function and disease

    DEFF Research Database (Denmark)

    Lauritzen, M. H.; Søgaard, L. V.; Madsen, Pia Lisbeth

    2014-01-01

    Several diseases of the heart have been linked to an insufficient ability to generate enough energy (ATP) to sustain proper heart function. Hyperpolarized magnetic resonance (MR) is a novel technique that can visualize and quantify myocardial energy metabolism. Hyperpolarization enhances the MR...... signal from a biological molecule of interest by more than 10,000 times, making it possible to measure its cellular uptake and conversion in specific enzymatic pathways in real time. We review the role of hyperpolarized MR in identifying changes in cardiac metabolism in vivo, and present the extensive...... literature on hyperpolarized pyruvate that has been used to characterize cardiac disease in various in vivo models, such as myocardial ischemia, hypertension, diabetes, hyperthyroidism and heart failure. The technical aspects of the technique are presented as well as the challenges of translating...

  16. Gas Release as a Deformation Signal

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Radiogenic noble gases are contained in crustal rock at inter and intra granular sites. The gas composition depends on lithology, geologic history, fluid phases, and the aging effect by decay of U, Th, and K. The isotopic signature of noble gases found in rocks is vastly different than that of the atmosphere which is contributed by a variety of sources. When rock is subjected to stress conditions exceeding about half its yield strength, micro-cracks begin to form. As rock deformation progresses a fracture network evolves, releasing trapped noble gases and changing the transport properties to gas migration. Thus, changes in gas emanation and noble gas composition from rocks could be used to infer changes in stress-state and deformation. The purpose of this study has been to evaluate the effect of deformation/strain rate upon noble gas release. Four triaxial experiments were attempted for a strain rate range of %7E10-8 /s (180,000s) to %7E 10-4/s (500s); the three fully successful experiments (at the faster strain rates) imply the following: (1) helium is measurably released for all strain rates during deformation, this release is in amounts 1-2 orders of magnitude greater than that present in the air, and (2) helium gas release increases with decreasing strain rate.

  17. Emitter depletion studies on electrodes of 50 Hz mercury/noble gas discharge lamps during ignition

    International Nuclear Information System (INIS)

    Hoek, W.J. van den; Thijssen, T.L.G.; Heijden, A.J.H. van der; Buijsse, B.; Haverlag, M.

    2002-01-01

    The depletion of emitter from the oxide cathodes during the glow switch starting of the discharge in 50 Hz operated low-pressure mercury/noble gas discharge lamps (fluorescent lamps) has been studied. It follows from pulse ignition studies and computer-controlled ignition experiments that two plasma modes exist during ignition: a glow discharge and a vapour-arc discharge. The occurrence of these modes depends on the point of interruption with respect to the phase of the 50 Hz preheat current. The vapour arc appears to be the dominant mechanism of emitter depletion. The average emitter loss per vapour-arc pulse has been quantified by radioactive Ba tracer experiments. The nature of the vapour arc has been studied by fast photography and SEM. The vapour arc involves dielectric breakdown over the non-conducting oxide mass and gives rise to explosive emitter vapourization. (author)

  18. Optimizing detection of noble gas emission at a former UNE site: sample strategy, collection, and analysis

    Science.gov (United States)

    Kirkham, R.; Olsen, K.; Hayes, J. C.; Emer, D. F.

    2013-12-01

    Underground nuclear tests may be first detected by seismic or air samplers operated by the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). After initial detection of a suspicious event, member nations may call for an On-Site Inspection (OSI) that in part, will sample for localized releases of radioactive noble gases and particles. Although much of the commercially available equipment and methods used for surface and subsurface environmental sampling of gases can be used for an OSI scenario, on-site sampling conditions, required sampling volumes and establishment of background concentrations of noble gases require development of specialized methodologies. To facilitate development of sampling equipment and methodologies that address OSI sampling volume and detection objectives, and to collect information required for model development, a field test site was created at a former underground nuclear explosion site located in welded volcanic tuff. A mixture of SF-6, Xe127 and Ar37 was metered into 4400 m3 of air as it was injected into the top region of the UNE cavity. These tracers were expected to move towards the surface primarily in response to barometric pumping or through delayed cavity pressurization (accelerated transport to minimize source decay time). Sampling approaches compared during the field exercise included sampling at the soil surface, inside surface fractures, and at soil vapor extraction points at depths down to 2 m. Effectiveness of various sampling approaches and the results of tracer gas measurements will be presented.

  19. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration

    International Nuclear Information System (INIS)

    Irudayam, Sheeba Jem; Henchman, Richard H

    2010-01-01

    An equation for the chemical potential of a dilute aqueous solution of noble gases is derived in terms of energies, force and torque magnitudes, and solute and water coordination numbers, quantities which are all measured from an equilibrium molecular dynamics simulation. Also derived are equations for the Gibbs free energy, enthalpy and entropy of hydration for the Henry's law process, the Ostwald process, and a third proposed process going from an arbitrary concentration in the gas phase to the equivalent mole fraction in aqueous solution which has simpler expressions for the enthalpy and entropy changes. Good agreement with experimental hydration free energies is obtained in the TIP4P and SPC/E water models although the solute's force field appears to affect the enthalpies and entropies obtained. In contrast to other methods, the approach gives a complete breakdown of the entropy for every degree of freedom and makes possible a direct structural interpretation of the well-known entropy loss accompanying the hydrophobic hydration of small non-polar molecules under ambient conditions. The noble-gas solutes experience only a small reduction in their vibrational entropy, with larger solutes experiencing a greater loss. The vibrational and librational entropy components of water actually increase but only marginally, negating any idea of water confinement. The term that contributes the most to the hydrophobic entropy loss is found to be water's orientational term which quantifies the number of orientational minima per water molecule and how many ways the whole hydrogen-bond network can form. These findings help resolve contradictory deductions from experiments that water structure around non-polar solutes is similar to bulk water in some ways but different in others. That the entropy loss lies in water's rotational entropy contrasts with other claims that it largely lies in water's translational entropy, but this apparent discrepancy arises because of different

  20. Near transferable phenomenological n-body potentials for noble metals.

    Science.gov (United States)

    Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David

    2017-09-06

    We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.

  1. Energy and resolution calibration of detectors for noble gas β-γ coincidence system

    International Nuclear Information System (INIS)

    Jia Huaimao; Wang Shilian; Li Qi; Wang Jun; Zhao Yungang; Zhang Xinjun; Fan Yuanqing

    2010-01-01

    The β-γ coincidence technique is a kind of important method to detect radioactive xenon isotopes for the Comprehensive Nuclear-Test-Ban Treaty(CTBT). The energy and resolution calibration of detectors is the first key technique. This paper describes in detail the energy and resolution calibration methods of NaI (Tl) and plastic scintillator detectors for the noble gas β-γ coincidence system SAUNA II-Lab. NaI (Tl) detector's energy and resolution for γ-ray were calibrated with γ radioactive point sources. Plastic scintillator detector's energy and resolution for β-ray were calibrated by Compton scattering electrons of 137 Cs 661.66 keV γ-ray. And the results of β-ray energy resolution calibrated by Compton scattering electrons of 137 Cs were compared with the results of conversion electron of 131 Xe m . In conclusion,it is an easy and feasible method of calibrating plastic scintillator detector's energy by Compton scattering electrons of 137 Cs,but detector's resolution calibrated by Compton scattering electrons is higher than factual result. (authors)

  2. Minimisation of noble gas discharge from 99Mo production at ANSTO

    International Nuclear Information System (INIS)

    Blagojevic, N.; Izard, M.

    2001-01-01

    Full text: Molybdenum-99 is one of the most important radionuclides in modem medicine. When loaded on a chromatographic column it forms a generator that produces high specific activity 99m Tc, a radionuclide widely used in nuclear medical imaging. ANSTO has been a main producer of 99 Mo in the Australasian region since the late 1960's and currently ranks as one of the major suppliers of 99m Tc/ 99 Mo generators. At ANSTO 99 Mo is produced from enriched uranium oxide (2.2% 235 U) after a nominal seven day irradiation period in HIFAR, Australia's high flux research reactor. Between four and six targets are processed, four to five times each week depending on the reactor operation timetable. After irradiation the targets are allowed to decay for approximately 6 hours before the uranium dioxide pellets are removed and dissolved in a fully enclosed heated vessel equipped with a reflux column. The dissolver off-gas containing noble gases and iodine isotopes released during this process are vented through a caustic scrubber, a number of iodine traps and finally through a charcoal based Noble Gas Trap (NGT). The uranium solution is passed through an alumina column to separate molybdenum from other elements. The 99 Mo product is eluted from the column with relatively concentrated ammonium hydroxide solution. The product recovery process consists of a volume reduction procedure followed by a recovery step designed to retrieve the product in a minimum volume of dilute nitric acid. The radioactive Xe and Kr discharge was monitored using a Nal(TI) detector based gamma-ray spectrometer system that was interfaced to the internal computer network. The data was collected and sent to the network server at 15-minute intervals using locally written programs that process and database the information. The discharge data is displayed in real time by the use of web browsers found on all networked workstations. The network program is also capable of interrogating the database so that the

  3. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    International Nuclear Information System (INIS)

    Gentile, C.A.; Blanchard, W.R.; Kozub, T.A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-01

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber

  4. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases

    KAUST Repository

    Wang, Hao

    2014-01-01

    In industry, cryogenic rectification for separating xenon from other noble gases such as krypton and argon is an energy and capital intensive process. Here we show that a microporous metal-organic framework, namely Co 3(HCOO)6 is capable of effective capture and separation of xenon from other noble gases. Henry\\'s constant, isosteric heat of adsorption (Qst), and IAST selectivity are calculated based on single component sorption isotherms. Having the highest Qst reported to date, Co 3(HCOO)6 demonstrates high adsorption capacity for xenon and its IAST selectivity for Xe-Kr is the largest among all MOFs investigated to date. To mimic real world conditions, breakthrough experiments are conducted on Xe-Kr binary mixtures at room temperature and 1 atmosphere. The results are consistent with the calculated data. These findings show that Co 3(HCOO)6 is a promising candidate for xenon capture and purification. Our gas adsorption measurements and molecular simulation study also reveal that the adsorption of xenon represents the first example of commensurate adsorption of atomic gases near ambient conditions. © 2014 The Royal Society of Chemistry.

  5. Dynamic coronary MR angiography in a pig model with hyperpolarized water

    DEFF Research Database (Denmark)

    Lipsø, Hans Kasper Wigh; Hansen, Esben Søvsø Szocska; Tougaard, Rasmus Stilling

    2018-01-01

    To investigate dynamic coronary MR angiography using hyperpolarized water as a positive contrast agent. Hyperpolarization can increase the signal by several orders of magnitude, and has recently been translated to human cardiac application. The aim was to achieve large 1 H signal enhancement...... to allow high-resolution imaging of the coronary arteries. Protons in D2 O were hyperpolarized by dissolution dynamic nuclear polarization. A total of 18 mL of hyperpolarized water was injected into the coronary arteries of healthy pigs (N = 9; 3 injections in 3 animals). The MRI images were acquired...... with a gradient-echo sequence in an oblique slab covering the main left coronary arteries with 0.55 mm in-plane resolution. The acquisition time was 870 ms per frame. A more than 200-fold signal enhancement compared with thermally polarized water at 3 T was obtained. Coronary angiographic images with a signal...

  6. Laser-polarized noble gases: a powerful probe for biology, medicine, and subatomic physics

    Science.gov (United States)

    Cates, Gordon

    2010-03-01

    For over a decade, laser-polarized noble gases such as ^3He and ^129Xe have proven useful for a wide range of scientific inquiries. These include investigations of pulmonary disease using the polarized gas as a signal source for magnetic resonance imaging (MRI), measurements of various aspects of nucleon structure, and tests of fundamental symmetries. Early efforts were often limited by expensive and bulky laser systems, but ongoing advancements in solid-state lasers have enabled increasingly large volumes of polarized gas to be produced with steadily improved polarization. Equally important have been advances in the fundamental understanding of spin exchange. This has led, for example, to the introduction of hybrid mixtures of alkali metals that can increase the efficiency of spin exchange by an order of magnitude. As a consequence of these advances, the figure of merit for polarized nuclear targets has increased by roughly three orders of magnitude in comparison to early accelerator-based experiments. And in MRI applications, it has become possible to pursue increasingly sophisticated imaging protocols that provide a wide range of diagnostic information. Even the earliest noble-gas MR images of the gas space of the human lung provided unprecedented resolution. More recent work includes the use of diffusion-sensitizing pulse sequences to study lung microstructure, and tagging techniques that enable the visualization (in real-time MRI movies) of gas flow during breathing. The range of applications of laser-polarized noble gases is continuing to grow, and it is notable that with an improved understanding of the underlying physics, it is quite likely that the capabilities of this useful technology will expand for some time to come.

  7. 3He/4He ratio, noble gas abundance and K-Ar dating of diamonds - an attempt to search for the records of early terrestrial history

    International Nuclear Information System (INIS)

    Ozima, M.; Zashu, S.; Nitoh, O.

    1983-01-01

    The 3 He/ 4 He ratios measured in 27 Southern Africa diamond stones, four from Premier Mine and the rest of unidentified origin, range from 4.2 x 10 -8 to 3.2 x 10 -4 , with three stones above 1 x 10 -4 . We conclude that the initial helium isotopic ratio ( 3 He/ 4 He) 0 in the earth was significantly higher than that of the planetary helium-A ( 3 He/ 4 He = 1.42 x 10 -4 ), but close to the solar helium ( 3 He/ 4 He = approx. 4 x 10 -4 ). The apparent K-Ar ages for the twelve diamonds of unidentified origin show enormously old age, indicating excess argon-40. 3 He/ 4 He evolution in diamonds suggests that the diamonds with the high 3 He/ 4 He ratio (> 2 x 10 -4 ) may be as old as the earth. Noble gas elemental abundance in the diamonds relative to the air noble gas abundance shows monotonic decrease with a decreasing mass number. This paper discusses the implications of these observations on the early solar system and the origin of diamonds. (author)

  8. Noble gases in ten stone meteorites from Antarctica

    International Nuclear Information System (INIS)

    Weber, H.W.; Schultz, L.

    1980-01-01

    The concentrations and isotopic composition of noble gases have been determined in all ten stone meteorites recovered in Antarctica during 1976-1977 by a U.S.-Japanese expedition. From a comparison of spallogenic and radiogenic gas components it is concluded that the chondrites Mt. Baldr (a) and Mt. Baldr (b) belong to the same fall but that all other stone meteorites are individual finds. (orig.)

  9. Low Cost, High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI

    Science.gov (United States)

    2017-10-01

    greater gas polarizations and production amounts/ throughputs- benefiting in particular from the advent of com- pact, high-power, relatively low- cost ...Award Number: W81XWH-15-1-0271 TITLE: Low- Cost , High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI...DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the

  10. Regional alveolar partial pressure of oxygen measurement with parallel accelerated hyperpolarized gas MRI.

    Science.gov (United States)

    Kadlecek, Stephen; Hamedani, Hooman; Xu, Yinan; Emami, Kiarash; Xin, Yi; Ishii, Masaru; Rizi, Rahim

    2013-10-01

    Alveolar oxygen tension (Pao2) is sensitive to the interplay between local ventilation, perfusion, and alveolar-capillary membrane permeability, and thus reflects physiologic heterogeneity of healthy and diseased lung function. Several hyperpolarized helium ((3)He) magnetic resonance imaging (MRI)-based Pao2 mapping techniques have been reported, and considerable effort has gone toward reducing Pao2 measurement error. We present a new Pao2 imaging scheme, using parallel accelerated MRI, which significantly reduces measurement error. The proposed Pao2 mapping scheme was computer-simulated and was tested on both phantoms and five human subjects. Where possible, correspondence between actual local oxygen concentration and derived values was assessed for both bias (deviation from the true mean) and imaging artifact (deviation from the true spatial distribution). Phantom experiments demonstrated a significantly reduced coefficient of variation using the accelerated scheme. Simulation results support this observation and predict that correspondence between the true spatial distribution and the derived map is always superior using the accelerated scheme, although the improvement becomes less significant as the signal-to-noise ratio increases. Paired measurements in the human subjects, comparing accelerated and fully sampled schemes, show a reduced Pao2 distribution width for 41 of 46 slices. In contrast to proton MRI, acceleration of hyperpolarized imaging has no signal-to-noise penalty; its use in Pao2 measurement is therefore always beneficial. Comparison of multiple schemes shows that the benefit arises from a longer time-base during which oxygen-induced depolarization modifies the signal strength. Demonstration of the accelerated technique in human studies shows the feasibility of the method and suggests that measurement error is reduced here as well, particularly at low signal-to-noise levels. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  11. Field dependence of T1 for hyperpolarized [1-13C]pyruvate

    DEFF Research Database (Denmark)

    Chattergoon, N.; Martnez-Santiesteban, F.; Handler, W. B.

    2013-01-01

    conformation and properties of the dissolution media such as buffer composition, solution pH, temperature and magnetic field. We have measured the magnetic field dependence of the spin–lattice relaxation time of hyperpolarized [1-13C]pyruvate using field-cycled relaxometry. [1-13C]pyruvate was hyperpolarized...

  12. Ultrabright multikilovolt x-ray source: saturated amplification on noble gas transition arrays from hollow atom states

    Science.gov (United States)

    Rhodes, Charles K.; Boyer, Keith

    2004-02-17

    An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (.lambda..about.2.9 .ANG.). An estimate of the peak brightness achieved is .about.10.sup.29 .gamma..multidot.s.sup.-1.multidot.mm.sup.-2.multidot.mr.sup.-2 (0.1% Bandwidth).sup.-1, that is .about.10.sup.5 -fold higher than presently available synchotron technology.

  13. EFFECTS OF ALTERNATE ANTIFOAM AGENTS, NOBLE METALS, MIXING SYSTEMS AND MASS TRANSFER ON GAS HOLDUP AND RELEASE FROM NONNEWTONIAN SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, H; Mark Fowley, M; Charles Crawford, C; Michael Restivo, M; Robert Leishear, R

    2007-12-24

    Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger

  14. A comparative study of the broadening effect on rotational lines by methane and noble gases

    International Nuclear Information System (INIS)

    Kircz, J.G.

    1979-01-01

    Line broadening measurements for the mixtures HCl-CH 4 and HCl-CD 4 have been performed and the results of these experiments are reported. Current theoretical models for the systems studied are briefly discussed. In order to identify specific effects the authors have tried to find a generalisation for linewidth cross-sections for the HCl-noble gas systems. This is done in the spirit of the well known corresponding state treatment in statistical mechanics in an attempt to find, in terms of reduced variables, a generalised intermolecular potential for these systems. Extensive calculations on the HCl-Ar and HCl-Kr intermolecular potentials, as derived from linewidth measurements, are reported in an attempt to extract a more exact potential for these systems. The results are compared with other recent results from the literature. The use of a semi-empirical method for the evaluation of the experimental data is described. This empirical method has been used in a comparison between the HCl-noble gas experiments and the present experiments of HCl-methane. The possibility of splitting the observed data into a 'noble gas' part and a 'extra' part due to the intermolecular interactions which result from the coupling of the HCl rotations with the internal degrees of freedom of the methane molecules is discussed. (Auth.)

  15. A novel MR contrast agent for angiography and perfusion: Hyperpolarized water

    DEFF Research Database (Denmark)

    Lipsø, Hans Kasper Wigh

    , hyperpolarized by dissolution Dynamic Nuclear Polarization (d-DNP), can be applied as an MRI contrast agent for angiography and perfusion. The first part of the project focuses on development of a protocol for production of large samples of hyperpolarized protons in D2O. The samples are polarized and dissolved...

  16. 15N Hyperpolarization of Imidazole-15N2 for Magnetic Resonance pH Sensing via SABRE-SHEATH.

    Science.gov (United States)

    Shchepin, Roman V; Barskiy, Danila A; Coffey, Aaron M; Theis, Thomas; Shi, Fan; Warren, Warren S; Goodson, Boyd M; Chekmenev, Eduard Y

    2016-06-24

    15 N nuclear spins of imidazole- 15 N 2 were hyperpolarized using NMR signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH). A 15 N NMR signal enhancement of ∼2000-fold at 9.4 T is reported using parahydrogen gas (∼50% para-) and ∼0.1 M imidazole- 15 N 2 in methanol:aqueous buffer (∼1:1). Proton binding to a 15 N site of imidazole occurs at physiological pH (p K a ∼ 7.0), and the binding event changes the 15 N isotropic chemical shift by ∼30 ppm. These properties are ideal for in vivo pH sensing. Additionally, imidazoles have low toxicity and are readily incorporated into a wide range of biomolecules. 15 N-Imidazole SABRE-SHEATH hyperpolarization potentially enables pH sensing on scales ranging from peptide and protein molecules to living organisms.

  17. Calibration of new measuring systems to detect emissions of radioactive noble gases

    International Nuclear Information System (INIS)

    Winkelmann, I.; Kreiner, H.J.

    1977-12-01

    This report describes the calibration of different systems for the integral measurement of radioactive noble gases and the calibration of a measuring chamber for the detection of individual nuclides of radioactive noble gases in the gaseous effluent of nuclear power plants. For these measuring chambers the calibration factors for Kr-85 and Xe-133 are given as well as the detection limits to be obtained with these measuring systems for several radioactive noble gases present in the gaseous effluent at the stack of nuclear power plants. Calibration factors for Kr-85 and Xe-133 and the detection limits of this measuring method for the detections of individual nuclides of radioactive noble gases in air samples are defined taken wirh a high pressure compressor in pressure flasks an measured on a Ge(Li)-semiconductor spectrometer (pressure flask measuring method). A measuring equipment is described and calibrated which allows simultaneous measurement of activity concentration of radioactive noble gases and radioactive aerosols with a sensitivity of 2 x 10 -7 Ci/m 3 for radioactive gases and 1 x 10 -9 Ci/m 3 for radioactive particulates at a background radiation of 1 R/h. This paper is an additional report to our STH-Bericht 3/76, 'Calibration of measuring equipment for monitoring of gaseous effluents from nuclear power plants', which specifies a procedure for the calibration of measuring chambers for monitoring of gaseous radioactive effluents from nuclear power plants /1/. The calibration system used here makes it possible to simultaneously calibrate several noble gas measuring devices. (orig.) [de

  18. Behaviour of quadrupole mass spectrometer towards noble gases

    International Nuclear Information System (INIS)

    Hasibullah

    1980-01-01

    This paper describes a quadrupole mass spectrometric set-up for noble gas analysis with its potential application to material accountancy at the input accountability tank of a reprocessing facility. Linear dependence of ion source pressure on the inlet pressure was considered to be practicable criterion for the functionality of the instrument. Short term and long term sensitivity variations have also been discussed. No memory effect was observed under the experimental conditions. (author)

  19. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    Duesterhoeft, H.; Pippig, R.

    1986-01-01

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  20. Backfitting of existing nuclear power plants with particulate, iodine and noble gas monitors

    International Nuclear Information System (INIS)

    Marley, M.R.; Geiger, E.L.

    1978-01-01

    A stand-alone microcomputer complete with hardware and software to measure airborne particulate iodine and noble gases is described. This system meets the need at power plants and effluent monitoring. The equipment will accommodate up to 192 channels of input

  1. A fence line noble gas monitoring system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Grasty, R.L.; Hovgaard, J.; LaMarre, J.R

    2001-07-01

    A noble gas monitoring system has been installed at Ontario Power Generations' Pickering Nuclear Generating Station (PNGS) near Toronto, Canada. This monitoring system allows a direct measure of air kerma from external radiation instead of calculating this based on plant emission data and meteorological models. This has resulted in a reduction in the reported effective dose from external radiation by a factor of at least ten. The system consists of nine self-contained units, each with a 7.6 cm x 7.6 cm (3 inch x 3 inch) NaI(Tl) detector that is calibrated for air kerma. The 512-channel gamma ray spectral information is downloaded daily from each unit to a central computer where the data are stored and processed. A spectral stripping procedure is used to remove natural background variations from the spectral windows used to monitor xenon-133 ({sup 133}Xe), xenon-135 ({sup 135}Xe), argon-41 ({sup 41}Ar), and skyshine radiation from the use of radiography sources. Typical monthly minimum detection limits in air kerma are 0.3 nGy for {sup 133}Xe, 0.7 nGy for {sup 135}Xe, 3 nGy for {sup 41}Ar and 2 nGy for skyshine radiation. Based on 9 months of continuous operation, the annualised air kerma due to {sup 133}Xe, {sup 135}Xe and {sup 41}Ar and skyshine radiation were 7 nGy, 8 nGy, 26 nGy and 107 nGy respectively. (author)

  2. 3D Hyperpolarized C-13 EPI with Calibrationless Parallel Imaging

    DEFF Research Database (Denmark)

    Gordon, Jeremy W.; Hansen, Rie Beck; Shin, Peter J.

    2018-01-01

    With the translation of metabolic MRI with hyperpolarized 13C agents into the clinic, imaging approaches will require large volumetric FOVs to support clinical applications. Parallel imaging techniques will be crucial to increasing volumetric scan coverage while minimizing RF requirements and tem...... strategies to accelerate and undersample hyperpolarized 13C data using 3D blipped EPI acquisitions and multichannel receive coils, and demonstrated its application in a human study of [1-13C]pyruvate metabolism....

  3. Making channeling visible: keV noble gas ion trails on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, A; Standop, S; Michely, T [II Physikalisches Institut, Universitaet zu Koeln, D-50937 Koeln (Germany); Rosandi, Y; Urbassek, H M, E-mail: urbassek@rhrk.uni-kl.de [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2011-01-15

    The impact of argon and xenon noble gas ions on Pt(111) in grazing incidence geometry are studied through direct comparison of scanning tunneling microscopy images and molecular dynamics simulations. The energy range investigated is 1-15 keV and the angles of incidence with respect to the surface normal are between 78.5{sup 0} and 88{sup 0}. The focus of the paper is on events where ions gently enter the crystal at steps and are guided in channels between the top most layers of the crystal. The trajectories of the subsurface channeled ions are visible as trails of surface damage. The mechanism of trail formation is analyzed using simulations and analytical theory. Significant differences between Xe{sup +} and Ar{sup +} projectiles in damage, in the onset energy of subsurface channeling as well as in ion energy dependence of trail length and appearance are traced back to the projectile and ion energy dependence of the stopping force. The asymmetry of damage production with respect to the ion trajectory direction is explained through the details of the channel shape and subchannel structure as calculated from the continuum approximation of the channel potential. Measured and simulated channel switching in directions normal and parallel to the surface as well as an increase of ions entering into channels from the perfect surface with increasing angles of incidence are discussed.

  4. Renal MR angiography and perfusion in the pig using hyperpolarized water

    DEFF Research Database (Denmark)

    Lipsø, Hans Kasper Wigh; Hansen, Esben Søvsø Szocska; Tougaard, Rasmus Stilling

    2016-01-01

    at 3 Tesla (T). Approximately 15 mL of hyperpolar-ized water was injected in the renal artery by hand over 4–5 s.Results: A liquid state polarization of 5.3 6 0.9% of 3.8 M pro-tons in 15 mL of deuterium oxide was achieved with a T1of24 6 1 s. This allowed injection through an arterial catheterinto...

  5. Validating excised rodent lungs for functional hyperpolarized xenon-129 MRI.

    Directory of Open Access Journals (Sweden)

    David M L Lilburn

    Full Text Available Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp (129Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp (129Xe. Straightforward hp (129Xe MRI protocols provide residual lung volume (RV data and permit for spatially resolved tracking of small hp (129Xe probe volumes during the inhalation cycle. Hp (129Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies.

  6. Physiological gas exchange mapping of hyperpolarized 129 Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury.

    Science.gov (United States)

    Zanette, Brandon; Stirrat, Elaine; Jelveh, Salomeh; Hope, Andrew; Santyr, Giles

    2018-02-01

    To map physiological gas exchange parameters using dissolved hyperpolarized (HP) 129 Xe in a rat model of regional radiation-induced lung injury (RILI) with spiral-IDEAL and the model of xenon exchange (MOXE). Results are compared to quantitative histology of pulmonary tissue and red blood cell (RBC) distribution. Two cohorts (n = 6 each) of age-matched rats were used. One was irradiated in the right-medial lung, producing regional injury. Gas exchange was mapped 4 weeks postirradiation by imaging dissolved-phase HP 129 Xe using spiral-IDEAL at five gas exchange timepoints using a clinical 1.5 T scanner. Physiological lung parameters were extracted regionally on a voxel-wise basis using MOXE. Mean gas exchange parameters, specifically air-capillary barrier thickness (δ) and hematocrit (HCT) in the right-medial lung were compared to the contralateral lung as well as nonirradiated control animals. Whole-lung spectroscopic analysis of gas exchange was also performed. δ was significantly increased (1.43 ± 0.12 μm from 1.07 ± 0.09 μm) and HCT was significantly decreased (17.2 ± 1.2% from 23.6 ± 1.9%) in the right-medial lung (i.e., irradiated region) compared to the contralateral lung of the irradiated rats. These changes were not observed in healthy controls. δ and HCT correlated with histologically measured increases in pulmonary tissue heterogeneity (r = 0.77) and decreases in RBC distribution (r = 0.91), respectively. No changes were observed using whole-lung analysis. This work demonstrates the feasibility of mapping gas exchange using HP 129 Xe in an animal model of RILI 4 weeks postirradiation. Spatially resolved gas exchange mapping is sensitive to regional injury between cohorts that was undetected with whole-lung gas exchange analysis, in agreement with histology. Gas exchange mapping holds promise for assessing regional lung function in RILI and other pulmonary diseases. © 2017 The Authors. Medical Physics published by Wiley

  7. WE-AB-202-07: Ventilation CT: Voxel-Level Comparison with Hyperpolarized Helium-3 & Xenon-129 MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, B; Marshall, H; Hughes, P; Stewart, N; Horn, F; Collier, G; Norquay, G; Hart, K; Swinscoe, J; Hatton, M; Wild, J; Ireland, R [University of Sheffield, Sheffield (United Kingdom)

    2016-06-15

    Purpose: To compare the spatial correlation of ventilation surrogates computed from inspiratory and expiratory breath-hold CT with hyperpolarized Helium-3 & Xenon-129 MRI in a cohort of lung cancer patients. Methods: 5 patients underwent expiration & inspiration breath-hold CT. Xenon-129 & {sup 1}H MRI were also acquired at the same inflation state as inspiratory CT. This was followed immediately by acquisition of Helium-3 & {sup 1}H MRI in the same breath and at the same inflation state as inspiratory CT. Expiration CT was deformably registered to inspiration CT for calculation of ventilation CT from voxel-wise differences in Hounsfield units. Inspiration CT and the Xenon-129’s corresponding anatomical {sup 1}H MRI were registered to Helium-3 MRI via the same-breath anatomical {sup 1}H MRI. This enabled direct comparison of CT ventilation with Helium-3 MRI & Xenon-129 MRI for the median values in corresponding regions of interest, ranging from finer to coarser in-plane dimensions of 10 by 10, 20 by 20, 30 by 30 and 40 by 40, located within the lungs as defined by the same-breath {sup 1}H MRI lung mask. Spearman coefficients were used to assess voxel-level correlation. Results: The median Spearman’s coefficients of ventilation CT with Helium-3 & Xenon-129 MRI for ROIs of 10 by 10, 20 by 20, 30 by 30 and 40 by 40 were 0.52, 0.56, 0.60 and 0.68 and 0.40, 0.42, 0.52 and 0.70, respectively. Conclusion: This work demonstrates a method of acquiring CT & hyperpolarized gas MRI (Helium-3 & Xenon-129 MRI) in similar breath-holds to enable direct spatial comparison of ventilation maps. Initial results show moderate correlation between ventilation CT & hyperpolarized gas MRI, improving for coarser regions which could be attributable to the inherent noise in CT intensity, non-ventilatory effects and registration errors at the voxel-level. Thus, it may be more beneficial to quantify ventilation at a more regional level.

  8. Radiative response on massive noble gas injection for Runaway suppression in disruptive plasmas

    International Nuclear Information System (INIS)

    Reiter, Bernhard

    2010-01-01

    The most direct way to avoid the formation of a relativistic electron beam under the influence of an electric field in a highly conducting plasma, is to increase the electron density to a value, where the retarding collisional force balances the accelerating one. In a disruptive tokamak plasma, rapid cooling induces a high electric field, which could easily violate the force balance and push electrons into the relativistic regime. Such relativistic electrons, the so-called runaways, accumulate many MeV's and can cause substantial damage when they hit the wall. This thesis is based on the principle of rapidly fueling the plasma for holding the force balance even under the influence of high electric fields typical for disruptions. The method of injecting high amounts of noble gas particles into the plasma from a close distance is put into practice in the ASDEX Upgrade fusion test facility. In the framework of this thesis, a multi-channel photometer system based on 144 AXUV detectors in a toroidal stereo measurement setup was built. It kept its promise to provide new insights into the transport mechanisms in a disruptive plasma under the influence of strong radiative interaction dynamics between injected matter and the hot plasma.

  9. Design of a 15N Molecular Unit to Achieve Long Retention of Hyperpolarized Spin State

    Science.gov (United States)

    Nonaka, Hiroshi; Hirano, Masashi; Imakura, Yuki; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke

    2017-01-01

    Nuclear hyperpolarization is a phenomenon that can be used to improve the sensitivity of magnetic resonance molecular sensors. However, such sensors typically suffer from short hyperpolarization lifetime. Herein we report that [15N, D14]trimethylphenylammonium (TMPA) has a remarkably long spin-lattice relaxation time (1128 s, 14.1 T, 30 °C, D2O) on its 15N nuclei and achieves a long retention of the hyperpolarized state. [15N, D14]TMPA-based hyperpolarized sensor for carboxylesterase allowed the highly sensitive analysis of enzymatic reaction by 15N NMR for over 40 min in phophate-buffered saline (H2O, pH 7.4, 37 °C).

  10. Integrated DWPF Melter System (IDMS) campaign report: The first two noble metals operations

    International Nuclear Information System (INIS)

    Hutson, N.D.; Zamecnik, J.R.; Smith, M.E.; Miller, D.H.; Ritter, J.A.

    1991-01-01

    The Integrated DWPF Melter System (IDMS) is designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas systems. The facility is the first pilot-scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to characterize the processing of noble metals (Pd, Rh, Ru, and Ag) on a large scale, the IDMS will be operated batchstyle for at least nine feed preparation cycles. The first two of these operations are complete. The major observation to date occurred during the second run when significant amounts of hydrogen were evolved during the feed preparation cycle. The runs were conducted between June 7, 1990 and March 8, 1991. This time period included nearly six months of ''fix-up'' time when forced air purges were installed on the SRAT MFT and other feed preparation vessels to allow continued noble metals experimentation

  11. Renal MR angiography and perfusion in the pig using hyperpolarized water.

    Science.gov (United States)

    Wigh Lipsø, Kasper; Hansen, Esben Søvsø Szocska; Tougaard, Rasmus Stilling; Laustsen, Christoffer; Ardenkjaer-Larsen, Jan Henrik

    2017-09-01

    To study hyperpolarized water as an angiography and perfusion tracer in a large animal model. Protons dissolved in deuterium oxide (D 2 O) were hyperpolarized in a SPINlab dissolution dynamic nuclear polarization (dDNP) polarizer and subsequently investigated in vivo in a pig model at 3 Tesla (T). Approximately 15 mL of hyperpolarized water was injected in the renal artery by hand over 4-5 s. A liquid state polarization of 5.3 ± 0.9% of 3.8 M protons in 15 mL of deuterium oxide was achieved with a T 1 of 24 ± 1 s. This allowed injection through an arterial catheter into the renal artery and subsequently high-contrast imaging of the entire kidney parenchyma over several seconds. The dynamic images allow quantification of tissue perfusion, with a mean cortical perfusion of 504 ± 123 mL/100 mL/min. Hyperpolarized water MR imaging was successfully demonstrated as a renal angiography and perfusion method. Quantitative perfusion maps of the kidney were obtained in agreement with literature and control experiments with gadolinium contrast. Magn Reson Med 78:1131-1135, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. In search of the noble gas 3.52 Ga atmospheric signatures

    Science.gov (United States)

    Pujol, M.; Marty, B.; Philippot, P.

    2008-12-01

    nuclear reactions on Xe isotope production, barite from 30m shallower depth in the same core were analyzed. Variable excesses can be linked to spallogenic and cosmogenic reactions ([4] [5] [6]) which allow the primitive Xe isotopic signature to be isolated from subsequent secondary production. Models of the archaean atmospheric noble gas signature can thereby be compared with different theories on primitive atmospheric composition. [1] Staudacher T. Allègre C.J. (1982) EPSL 60, p 389-406 [2] Van Kranendonk MJ., Hickman A.H., Williams I.R. and Nijman W. (2001) Rec.-Geol. Surv. West. Aust. 2001/9, 134 [3] Foriel J., Philippot P., Rey P., Somogyi A., Banks D. and Ménez B. (2004) EPSL, 228, 451-463 [4]Srinivasan B. (1976) EPSL, 31, 129-141 [5]Charalambus S. (1971) Nuclear Physics, A166, 145 [6]Meshik A. P., Hohenberg C. M., Pravdivtseva O. V. and Kapusta Y. (2001) Phys. Rev., C 64, 035205-1 035205-6

  13. Hyperpolarized Water Perfusion in the Porcine Brain – a Pilot Study

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Lipsø, Hans Kasper Wigh; Tougaard, Rasmus Stilling

    2017-01-01

    Dynamic Contrast-Enhanced MR (DCE-MR) perfusion assessment with gadolinium contrast agents is currently the most widely used cerebral perfusion MR method. Hyperpolarized water has recently been shown to succeed 13C probes as angiography probe. In this study, we demonstrate the feasibility...... of hyperpolarized water for visualizing the brain vasculature of a large animal in a clinically relevant setting. In detail, reference perfusion values were obtained and large to small arteries could be identified....

  14. Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14deg N - geodynamic consequences

    International Nuclear Information System (INIS)

    Staudacher, T.; Sarda, P.; Richardson, S.H.; Allegre, C.J.; Sagna, I.; Dmitriev, L.V.

    1989-01-01

    We present a complete noble gas study of mid-oceanic ridge basalt glasses (MORB) from a small ridge segment, centered on an along-strike topographic elevation of the Mid-Atlantic Ridge at about 14deg N. We have found the highest 40 Ar/ 36 Ar ratio ever observed for a MORB glass, i.e. 28,150±330 for sample 2ΠD40, correlated with high 129 Xe/ 130 Xe ratios and the highest noble gas concentrations in a so-called popping-rock, labeled 2ΠD43. The latter sample displays a 4 He/ 40 Ar * ratio of 2.0-2.7, which is close to the production ratio in the mantle due to the radioactive decay of U, Th and K. Hence, this sample probably best represents the elemental noble gas ratios in the mantle, from which we have computed the 4 He concentration in the mantle source of MORB to be 1.5x10 -5 cm 3 STP g -1 . High 4 He/ 3 He ratios in two of the samples from the summit of the topographic high indicate the presence of a U, Th-rich component in the mantle source, possibly old subducted oceanic crust and/or sediments, which could originate in the so-called mesosphere boundary layer. (orig.)

  15. EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

    International Nuclear Information System (INIS)

    Monga, Nikhil; Desch, Steven

    2015-01-01

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H 2 . We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H 2 , He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. As the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M ⊕ of water vapor in the outer solar nebula and protoplanetary disks in H II regions

  16. Recovery and use of fission product noble metals

    International Nuclear Information System (INIS)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value

  17. Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate

    Science.gov (United States)

    Nelson, Sarah J.; Kurhanewicz, John; Vigneron, Daniel B.; Larson, Peder E. Z.; Harzstark, Andrea L.; Ferrone, Marcus; van Criekinge, Mark; Chang, Jose W.; Bok, Robert; Park, Ilwoo; Reed, Galen; Carvajal, Lucas; Small, Eric J.; Munster, Pamela; Weinberg, Vivian K.; Ardenkjaer-Larsen, Jan Henrik; Chen, Albert P.; Hurd, Ralph E.; Odegardstuen, Liv-Ingrid; Robb, Fraser J.; Tropp, James; Murray, Jonathan A.

    2014-01-01

    This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-13C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-fold enhancement in signal relative to conventional magnetic resonance (MR) imaging. When combined with the rapid acquisition of in vivo 13C MR data, it is possible to evaluate the distribution of agents such as [1-13C]pyruvate and its metabolic products lactate, alanine, and bicarbonate in a matter of seconds. Preclinical studies in cancer models have detected elevated levels of hyperpolarized [1-13C]lactate in tumor, with the ratio of [1-13C]lactate/[1-13C]pyruvate being increased in high-grade tumors and decreased after successful treatment. Translation of this technology into humans was achieved by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect 13C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being injected with hyperpolarized [1-13C]pyruvate. The median time to deliver the agent was 66 s, and uptake was observed about 20 s after injection. No dose-limiting toxicities were observed, and the highest dose (0.43 ml/kg of 230 mM agent) gave the best signal-to-noise ratio for hyperpolarized [1-13C]pyruvate. The results were extremely promising in not only confirming the safety of the agent but also showing elevated [1-13C]lactate/[1-13C]pyruvate in regions of biopsy-proven cancer. These findings will be valuable for noninvasive cancer diagnosis and treatment monitoring in future clinical trials. PMID:23946197

  18. Graphene–Noble Metal Nano-Composites and Applications for Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar Basu

    2017-10-01

    Full Text Available Graphene based nano-composites are relatively new materials with excellent mechanical, electrical, electronic and chemical properties for applications in the fields of electrical and electronic devices, mechanical appliances and chemical gadgets. For all these applications, the structural features associated with chemical bonding that involve other components at the interface need in-depth investigation. Metals, polymers, inorganic fibers and other components improve the properties of graphene when they form a kind of composite structure in the nano-dimensions. Intensive investigations have been carried out globally in this area of research and development. In this article, some salient features of graphene–noble metal interactions and composite formation which improve hydrogen gas sensing properties—like higher and fast response, quick recovery, cross sensitivity, repeatability and long term stability of the sensor devices—are presented. Mostly noble metals are effective for enhancing the sensing performance of the graphene–metal hybrid sensors, due to their superior catalytic activities. The experimental evidence for atomic bonding between metal nano-structures and graphene has been reported in the literature and it is theoretically verified by density functional theory (DFT. Multilayer graphene influences gas sensing performance via intercalation of metal and non-metal atoms through atomic bonding.

  19. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-¹³C]pyruvate

    DEFF Research Database (Denmark)

    Nelson, Sarah J; Kurhanewicz, John; Vigneron, Daniel B

    2013-01-01

    This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-¹³C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-f...

  20. Noble Gases in Insoluble Organic Matter in the Very Primitive Meteorites Bells, EET 92042 and GRO 95577

    Science.gov (United States)

    Busemann, H.; Alexander, C. M. O'd.; Nittler, L. R.; Wieler, R.

    2008-03-01

    Noble gas carrier phase Q in several primitive meteorites is not attacked by Pyridine, in contrast to Orgueil, as reported previously. IOM in CR chondrites does not indicate high-temperature alteration in the nebula.

  1. Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate

    Science.gov (United States)

    Cavallari, Eleonora; Carrera, Carla; Aime, Silvio; Reineri, Francesca

    2018-04-01

    The use of [1-13C]pyruvate, hyperpolarized by dissolution-Dynamic Nuclear Polarization (d-DNP), in in vivo metabolic studies has developed quickly, thanks to the imaging probe's diagnostic relevance. Nevertheless, the cost of a d-DNP polarizer is quite high and the speed of hyperpolarization process is relatively slow, meaning that its use is limited to few research laboratories. ParaHydrogen Induced Polarization Side Arm Hydrogenation (PHIP-SAH) (Reineri et al., 2015) is a cost effective and easy-to-handle method that produces 13C-MR hyperpolarization in [1-13C]pyruvate and other metabolites. This work aims to identify the main determinants of the hyperpolarization levels observed in C13-pyruvate using this method. By dissecting the various steps of the PHIP-SAH procedure, it has been possible to assess the role of several experimental parameters whose optimization must be pursued if this method is to be made suitable for future translational steps. The search for possible solutions has led to improvements in the polarization of sodium [1-13C]pyruvate from 2% to 5%. Moreover, these results suggest that observed polarization levels could be increased considerably by an automatized procedure which would reduce the time required for the work-up passages that are currently carried out manually. The results reported herein mean that the attainment of polarization levels suitable for the metabolic imaging applications of these hyperpolarized substrates show significant promise.

  2. Comparison of the tensile bond strength of high-noble, noble, and base metal alloys bonded to enamel.

    Science.gov (United States)

    Sen, D; Nayir, E; Pamuk, S

    2000-11-01

    Although the bond strengths of various resin composite luting materials have been reported in the literature, the evaluation of these systems with various cast alloys of different compositions has not been completely clarified. To evaluate the tensile bond strength of sandblasted high-noble, noble, and base metal alloys bonded to etched enamel by 2 different bonding agents of different chemical composition: Panavia-Ex (BIS-GMA) and Super-Bond (4-META acrylic). Flat enamel surfaces were prepared on buccal surfaces of 60 extracted noncarious human incisors. Teeth were divided into 3 groups of 20 each. Twenty circular disks of 5 mm diameter were prepared for casting for each group. Group I was cast with a high-noble, group II with a noble, and group III with a base metal alloy. The surfaces of the disks were sandblasted with 250 microm Al(2)O(3). Ten disks of each group were bonded to exposed enamel surfaces with Super-Bond and 10 disks with Panavia-Ex as recommended by the manufacturer. The tensile bond strength was measured with an Instron universal testing machine with a crosshead speed of 0.5 mm/min until failure occurred. Two-way ANOVA was used to evaluate the results. The differences in bond strengths of Super-Bond and Panavia-Ex with different alloys were not significant. The highest bond strengths were obtained in base metal alloys, followed by noble and high-noble alloys. These results were significant. Panavia-Ex and Super-Bond exhibited comparable tensile bond strengths. For both luting agents, the highest bond strengths were achieved with base metal alloys and the lowest with high-noble alloys.

  3. On the difference in oscillator strengths of inner shell excitations in noble gases and their alkali neighbors

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Baltenkov, A.S.; Zhuravleva, G.I.

    1995-01-01

    It is demonstrated that the oscillator strength of resonant inner-shell excitation in a noble gas atom is considerably smaller than that in its alkali neighbor because in the latter case the effective charge acting upon excited electron is much bigger. With increase of the excitation's principal quantum number the difference between line intensities in noble gases and their alkali neighbors rapidly disappears. The calculations are performed in the Hartree-Fock approximation and with inclusion of rearrangement effects due to inner vacancy creation and its Auger decay. A paper has been submitted for publication

  4. Measurement of alveolar oxygen partial pressure in the rat lung using Carr-Purcell-Meiboom-Gill spin-spin relaxation times of hyperpolarized 3He and 129Xe at 74 mT.

    Science.gov (United States)

    Kraayvanger, Ryan J; Bidinosti, Christopher P; Dominguez-Viqueira, William; Parra-Robles, Juan; Fox, Matthew; Lam, Wilfred W; Santyr, Giles E

    2010-11-01

    Regional measurement of alveolar oxygen partial pressure can be obtained from the relaxation rates of hyperpolarized noble gases, (3) He and (129) Xe, in the lungs. Recently, it has been demonstrated that measurements of alveolar oxygen partial pressure can be obtained using the spin-spin relaxation rate (R(2) ) of (3) He at low magnetic field strengths (oxygen partial pressure measurements based on Carr-Purcell-Meiboom-Gill R(2) values of hyperpolarized (3) He and (129) Xe in vitro and in vivo in the rat lung at low magnetic field strength (74 mT) are presented. In vitro spin-spin relaxivity constants for (3) He and (129) Xe were determined to be (5.2 ± 0.6) × 10(-6) Pa(-1) sec(-1) and (7.3 ± 0.4) × 10(-6) Pa(-1) s(-1) compared with spin-lattice relaxivity constants of (4.0 ± 0.4) × 10(-6) Pa(-1) s(-1) and (4.3 ± 1.3) × 10(-6) Pa(-1) s(-1), respectively. In vivo experimental measurements of alveolar oxygen partial pressure using (3) He in whole rat lung show good agreement (r(2) = 0.973) with predictions based on lung volumes and ventilation parameters. For (129) Xe, multicomponent relaxation was observed with one component exhibiting an increase in R(2) with decreasing alveolar oxygen partial pressure. Copyright © 2010 Wiley-Liss, Inc.

  5. Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines

    Science.gov (United States)

    Abrajano, T.A.; Sturchio, N.C.; Kennedy, B.M.; Lyon, G.L.; Muehlenbachs, K.; Böhlke, J.K.

    1990-01-01

    Methane-hydrogen gas seeps with mantle-like C and noble gas isotopic characteristics issue from partially serpentinized ultramafic rocks in the Zambales ophiolite, Philippines. New measurements of noble gas and 14C isotope abundances, rock/mixed-volatile equilibrium calculations, and previous chemical and isotopic data suggest that these reduced gases are products of periodotite hydration. The gas seeps are produced in rock-dominated zones of serpentinization, and similar gases may be ubiquitous in ultramafic terranes undergoing serpentinization.

  6. Hyperpolarized H2O MR angiography

    DEFF Research Database (Denmark)

    Ardenkjær-Larsen, Jan Henrik; Laustsen, Christoffer; Bowen, Sean

    2014-01-01

    polarization followed by dissolution in D2O. A water 1H signal enhancement of 77 times compared with 4.7 Tesla was obtained. This corresponds to a polarization of 3.5% for the 3.9 mol/L 1H in D2O . Moreover, a T1 in excess of 20 s was achieved. The use of hyperpolarized water as a contrast agent presents a new...

  7. Carbon and Noble Gas Isotopes in the Tengchong Volcanic Geothermal Area, Yunnan, Southwestern China

    Institute of Scientific and Technical Information of China (English)

    XU Sheng; Shun'ich NAKAI; Hiroshi WAKITA; WANG Xianbin

    2004-01-01

    Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He.Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic area than do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4 ‰ to 1.6 ‰ and from -52.8 ‰ to -2.8 ‰,respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and nearsurface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantlederived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the Tengchong magmatic component. Compared with MORB, this relative low 3He/4He ratio could be fully attributed to either deep crustal contamination, or radioactive aging, or past contamination of the local mantle by U- and Th-rich subducted crustal material.However, a combination of low 3He/4He, high radiogenic 4He/40Ar ratio and identical CO2/3He and δ13Cco2 relative to MORB may suggest addition of prior subductedd crsustal material (ca 1%-2%) to the MORB reservoir around 1.3 Ga ago,which is essentially compatible with the LIL-elements, and Sr-Nd-Pb isotopes of volcanic rocks.

  8. Light Noble Gases and a Cosmic Ray Exposure Age for the Bunburra Rockhole Meteorite

    Czech Academy of Sciences Publication Activity Database

    Meier, M.M.M.; Bland, P.A.; Welten, K.C.; Spurný, Pavel; Baur, H.; Wieler, R.

    2009-01-01

    Roč. 44, Supplement (2009), A138-A138 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /72./. Nancy, 13.06.2009-18.06.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : Bunburra Rockhole * light noble gas * concentration Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.253, year: 2009

  9. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  10. Josephinite. A terrestrial alloy with radiogenic xenon-129 and the noble gas imprint of iron meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Downing, R G; Hennecke, E W; Manuel, O K [Missouri Univ., Rolla (USA). Dept. of Chemistry

    1977-12-01

    Analyses of noble gases released by stepwise heating of Josephinite reveal two radiogenic components, radiogenic /sup 129/Xe asymptotically equals 1 x 10/sup -12/ ccSTP/g and radiogenic /sup 40/Ar asymptotically equals 1 x 10/sup -6/ cc STP/g, and the following components of trapped noble gases: He with /sup 3/He//sup 4/He asymptotically equals 4 x 10/sup -5/, Ne with /sup 20/Ne//sup 22/Ne=10.5, Ar with /sup 40/Ar//sup 36/Ar=3 x 10/sup 2/, and Kr and Xe with isotopic compositions similar to those observed in iron meteorites. The excess of /sup 40/Ar and literature values of K in bulk Josephinite yield and apparent K-Ar age of asymptotically equals 4.6 x 10/sup 9/ years.

  11. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Palomares, R.I.; Dayman, K.J.; Landsberger, S.; Biegalski, S.R.; Soderquist, C.Z.; Casella, A.J.; Brady Raap, M.C.; Schwantes, J.M.

    2015-01-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO 2 fuel dissolved in nitric acid and UO 2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. - Highlights: • The noble metal phase was chemically extracted from spent nuclear fuel and analyzed non-destructively. • Noble metal phase nuclides and long-lived iodine were identified and quantified using neutron activation analysis. • Activation to shorter-lived radionuclides allowed rapid analysis of long-lived fission products in spent fuel using gamma spectrometry

  12. Record of the solar corpuscular radiation in minerals from lunar soils - A comparative study of noble gases and tracks

    International Nuclear Information System (INIS)

    Wieler, R.; Etique, P.

    1980-01-01

    A comparative study is made of trapped light noble gases and solar flare tracks in mineral separates from lunar soils in an investigation aimed at detecting possible temporal variations of the ratio between solar flare and solar wind activity. He, Ne, Ar and solar flare tracks are measured on plagioclase separates of 12 surface soils and two Apollo 15 drill core samples, and track density histograms are compared with gas concentration distributions obtained from aliquot samples. Results show that solar wind Ar is probably well retained in all minerals. He, Ne, and Ar are not saturated macroscopically, and semi-microscopic or microscopic saturation is very rare for Ar, even in gas-rich plagioclase populations. All grains contain trapped noble gases, even in relatively gas-poor mineral populations, and for clean minerals in the size range of 150-200 microns, the time between the first and last surface exposure is in the order of 10 to the 7th to 10 to the 8th years

  13. Quantitative 1H and hyperpolarized 3He magnetic resonance imaging: Comparison in chronic obstructive pulmonary disease and healthy never-smokers

    International Nuclear Information System (INIS)

    Owrangi, Amir M.; Wang, Jian X.; Wheatley, Andrew; McCormack, David G.; Parraga, Grace

    2014-01-01

    Objective: The aim of this study was to quantitatively evaluate the relationship between short echo time pulmonary 1 H magnetic resonance imaging (MRI) signal intensity (SI) and 3 He MRI apparent diffusion coefficients (ADC), high-resolution computed tomography (CT) measurements of emphysema, and pulmonary function measurements. Materials and methods: Nine healthy never-smokers and 11 COPD subjects underwent same-day plethysmography, spirometry, short echo time ((TE) = 1.2 ms) 1 H and diffusion-weighted hyperpolarized 3 He MRI (b = 1.6 s/cm 2 ) at 3.0 T. In addition, for COPD subjects only, CT densitometry was also performed. Results: Mean 1 H SI was significantly greater for never-smokers (12.1 ± 1.1 arbitrary units (AU)) compared to COPD subjects (10.9 ± 1.3 AU, p = 0.04). The 1 H SI AP-gradient was also significantly greater for never-smokers (0.40 AU/cm, R 2 = 0.94) compared to COPD subjects (0.29 AU/cm, R 2 = 0.968, p = 0.05). There was a significant correlation between 1 H SI and 3 He ADC (r = −0.58, p = 0.008) and significant correlations between 1 H MR SI and CT measurements of emphysema (RA 950 , r = −0.69, p = 0.02 and HU 15 , r = 0.66, p = 0.03). Conclusions: The significant and moderately strong relationship between 1 H SI and 3 He ADC, as well as between 1 H SI and CT measurements of emphysema suggests that these imaging methods and measurements may be quantifying similar tissue changes in COPD and that pulmonary 1 H SI may be used to monitor emphysema as a complement to CT and noble gas MRI

  14. Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases

    Science.gov (United States)

    Warr, Oliver; Sherwood Lollar, Barbara; Fellowes, Jonathan; Sutcliffe, Chelsea N.; McDermott, Jill M.; Holland, Greg; Mabry, Jennifer C.; Ballentine, Christopher J.

    2018-02-01

    We show that fluid volumes residing within the Precambrian crystalline basement account for ca 30% of the total groundwater inventory of the Earth (> 30 million km3). The residence times and scientific importance of this groundwater are only now receiving attention with ancient fracture fluids identified in Canada and South Africa showing: (1) microbial life which has existed in isolation for millions of years; (2) significant hydrogen and hydrocarbon production via water-rock reactions; and (3) preserving noble gas components from the early atmosphere. Noble gas (He, Ne, Ar, Kr, Xe) abundance and isotopic compositions provide the primary evidence for fluid mean residence time (MRT). Here we extend the noble gas data from the Kidd Creek Mine in Timmins Ontario Canada, a volcanogenic massive sulfide (VMS) deposit formed at 2.7 Ga, in which fracture fluids with MRTs of 1.1-1.7 Ga were identified at 2.4 km depth (Holland et al., 2013); to fracture fluids at 2.9 km depth. We compare here the Kidd Creek Mine study with noble gas compositions determined in fracture fluids taken from two mines (Mine 1 & Mine 2) at 1.7 and 1.4 km depth below surface in the Sudbury Basin formed by a meteorite impact at 1.849 Ga. The 2.9 km samples at Kidd Creek Mine show the highest radiogenic isotopic ratios observed to date in free fluids (e.g. 21Ne/22Ne = 0.6 and 40Ar/36Ar = 102,000) and have MRTs of 1.0-2.2 Ga. In contrast, resampled 2.4 km fluids indicated a less ancient MRT (0.2-0.6 Ga) compared with the previous study (1.1-1.7 Ga). This is consistent with a change in the age distribution of fluids feeding the fractures as they drain, with a decreasing proportion of the most ancient end-member fluids. 129Xe/136Xe ratios for these fluids confirm that boreholes at 2.4 km versus 2.9 km are sourced from hydrogeologically distinct systems. In contrast, results for the Sudbury mines have MRTs of 0.2-0.6 and 0.2-0.9 Ga for Mines 1 and 2 respectively. While still old compared to almost all

  15. Light absorption during alkali atom-noble gas atom interactions at thermal energies: a quantum dynamics treatment.

    Science.gov (United States)

    Pacheco, Alexander B; Reyes, Andrés; Micha, David A

    2006-10-21

    The absorption of light during atomic collisions is treated by coupling electronic excitations, treated quantum mechanically, to the motion of the nuclei described within a short de Broglie wavelength approximation, using a density matrix approach. The time-dependent electric dipole of the system provides the intensity of light absorption in a treatment valid for transient phenomena, and the Fourier transform of time-dependent intensities gives absorption spectra that are very sensitive to details of the interaction potentials of excited diatomic states. We consider several sets of atomic expansion functions and atomic pseudopotentials, and introduce new parametrizations to provide light absorption spectra in good agreement with experimentally measured and ab initio calculated spectra. To this end, we describe the electronic excitation of the valence electron of excited alkali atoms in collisions with noble gas atoms with a procedure that combines l-dependent atomic pseudopotentials, including two- and three-body polarization terms, and a treatment of the dynamics based on the eikonal approximation of atomic motions and time-dependent molecular orbitals. We present results for the collision induced absorption spectra in the Li-He system at 720 K, which display both atomic and molecular transition intensities.

  16. The influence of the dispersion corrections on the performance of DFT method in modeling HNgY noble gas molecules and their complexes

    Science.gov (United States)

    Cukras, Janusz; Sadlej, Joanna

    2018-01-01

    The letter reports a comparative assessment of the usefulness of the two different Grimme's corrections for evaluating dispersion interaction (DFT-D3 and DFT-D3BJ) for the representative molecules of the family of noble-gas hydrides HXeY and their complexes with the HZ molecules, where Y and Z are F/Cl/OH/SH. with special regard to the dispersion term calculated by means of the symmetry-adapted perturbation theory (at the SAPT0 level). The results indicate that despite differences in the total interactions energy (DFT + corrections) versus SAPT0 results, the sequence of contributions of the individual dispersion terms is still maintained. Both dispersion corrections perform similarly and they improve the results suggesting that it is worthwhile to include them in calculations.

  17. Hyperpolarized 3He apparent diffusion coefficient MRI of the lung: reproducibility and volume dependency in healthy volunteers and patients with emphysema

    DEFF Research Database (Denmark)

    Diaz, S.; Casselbrant, I.; Piitulainen, E.

    2008-01-01

    PURPOSE: To measure the apparent diffusion coefficient (ADC) of hyperpolarized (HP) (3)He gas using diffusion weighted MRI in healthy volunteers and patients with emphysema and examine the reproducibility and volume dependency. MATERIALS AND METHODS: A total of eight healthy volunteers and 16...... patients with emphysema were examined after inhalation of HP (3)He gas mixed with nitrogen (N(2)) during breathhold starting from functional residual capacity (FRC) in supine position. Coronal diffusion-sensitized MR images were acquired. Each subject was imaged on three separate days over a seven...... in mean ADC with increased inhaled gas volume was observed in both groups. CONCLUSION: Mean ADC and SD of HP (3)He MRI is reproducible and discriminates well between healthy controls and patients with emphysema at the higher gas volume. This method is robust and may be useful to gain new insights...

  18. Ion permeabilities in mouse sperm reveal an external trigger for SLO3-dependent hyperpolarization.

    Directory of Open Access Journals (Sweden)

    Julio C Chávez

    Full Text Available Unlike most cells of the body which function in an ionic environment controlled within narrow limits, spermatozoa must function in a less controlled external environment. In order to better understand how sperm control their membrane potential in different ionic conditions, we measured mouse sperm membrane potentials under a variety of conditions and at different external K(+ concentrations, both before and after capacitation. Experiments were undertaken using both wild-type, and mutant mouse sperm from the knock-out strain of the sperm-specific, pH-sensitive, SLO3 K(+ channel. Membrane voltage data were fit to the Goldman-Hodgkin-Katz equation. Our study revealed a significant membrane permeability to both K(+ and Cl(- before capacitation, as well as Na(+. The permeability to both K(+ and Cl(- has the effect of preventing large changes in membrane potential when the extracellular concentration of either ion is changed. Such a mechanism may protect against undesired shifts in membrane potential in changing ionic environments. We found that a significant portion of resting membrane potassium permeability in wild-type sperm was contributed by SLO3 K(+ channels. We also found that further activation of SLO3 channels was the essential mechanism producing membrane hyperpolarization under two separate conditions, 1 elevation of external pH prior to capacitation and 2 capacitating conditions. Both conditions produced a significant membrane hyperpolarization in wild-type which was absent in SLO3 mutant sperm. Hyperpolarization in both conditions may result from activation of SLO3 channels by raising intracellular pH; however, demonstrating that SLO3-dependent hyperpolarization is achieved by an alkaline environment alone shows that SLO3 channel activation might occur independently of other events associated with capacitation. For example sperm may undergo stages of membrane hyperpolarization when reaching alkaline regions of the female genital tract

  19. The Behavior and Effects of the Noble Metals in the DWPF Melter System

    International Nuclear Information System (INIS)

    Smith, M.E.; Bickford, D.F.

    1997-01-01

    Governments worldwide have committed to stabilization of high-level nuclear waste (HLW) by vitrification to a durable glass form for permanent disposal. All of these nuclear wastes contain the fission-product noble metals: ruthenium, rhodium, and palladium. SRS wastes also contain natural silver from iodine scrubbers. Closely associated with the noble metals are the fission products selenium and tellurium which are chemical analogs of sulfur and which combine with noble metals to influence their behavior and properties. Experience has shown that these melt insoluble metals and their compounds tend to settle to the floor of Joule-heated ceramic melters. In fact, almost all of the major research and production facilities have experienced some operational problem which can be associated with the presence of dense accumulations of these relatively conductive metals and/or their compounds. In most cases, these deposits have led to a loss of production capability, in some cases, to the point that melter operation could not continue. HLW nuclear waste vitrification facilities in the United States are the Department of Energy's Defense Waste Processing Facility (DWPF) at the Savannah River Site, the planned Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the operating West Valley Demonstration Project (WVDP) at West Valley, NY. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. An extensive noble metals testing program was begun in 1990. The objectives of this task were to explore the effects of the noble metals on the DWPF melter feed preparation and waste vitrification processes. This report focuses on the vitrification portion of the test program

  20. H3(+) as a trap for noble gases-3: multiple trapping of neon, argon, and krypton in X(n)H3(+) (n = 1-3).

    Science.gov (United States)

    Pauzat, F; Ellinger, Y; Pilmé, J; Mousis, O

    2009-05-07

    Recent studies on the formation of XH(3)(+) noble gas complexes have shown strategic implications for the composition of the atmospheres of the giant planets as well as for the composition of comets. One crucial factor in the astrophysical process is the relative abundances of the noble gases versus H(3)(+). It is the context in which the possibility for clustering with more than one noble gas (X(n)H(3)(+) up to n = 3) has been investigated for noble gases X ranging from neon to krypton. In order to assert our results, a variety of methods have been used including ab initio coupled cluster CCSD and CCSD(T), MP2, and density functional BH&HLYP levels of theory. All complexes with one, two, and three noble gases are found to be stable in the Ne, Ar, and Kr families. These stable structures are planar with the noble gases attached to the apices of the H(3)(+) triangle. The binding energy of the nth atom, defined as the X(n)H(3)(+) --> X(n-1)H(3)(+) + X reaction energy, increases slightly with n varying from 1 to 3 in the neon series, while it decreases in the argon series and shows a minimum for n = 2 in the krypton series. The origin of this phenomenon is to be found in the variations in the respective vibrational energies. A topological analysis of the electron localization function shows the importance of the charge transfer from the noble gases toward H(3)(+) as a driving force in the bonding along the series. It is also consistent with the increase in the atomic polarizabilities from neon to krypton. Rotational constants and harmonic frequencies are reported in order to provide a body of data to be used for the detection in laboratory prior to space observations. This study strongly suggests that the noble gases could be sequestered even in an environment where the H(3)(+) abundance is small.

  1. Modeling non-linear kinetics of hyperpolarized [1-(13)C] pyruvate in the crystalloid-perfused rat heart

    NARCIS (Netherlands)

    Mariotti, E.; Orton, M. R.; Eerbeek, O.; Ashruf, J. F.; Zuurbier, C. J.; Southworth, R.; Eykyn, T. R.

    2016-01-01

    Hyperpolarized (13)C MR measurements have the potential to display non-linear kinetics. We have developed an approach to describe possible non-first-order kinetics of hyperpolarized [1-(13)C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass

  2. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications

    Science.gov (United States)

    Hughes-Riley, Theodore; Six, Joseph S.; Lilburn, David M. L.; Stupic, Karl F.; Dorkes, Alan C.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-12-01

    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs.

  3. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications☆

    Science.gov (United States)

    Hughes-Riley, Theodore; Six, Joseph S.; Lilburn, David M.L.; Stupic, Karl F.; Dorkes, Alan C.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs. PMID:24135800

  4. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoqi Zhao

    Full Text Available Abstract Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the body. Evidence exhibits that HCN channels play critical roles in the generation and conduction of the electrical impulse and the physiopathological process of some cardiac diseases. They may constitute promising drug targets in the treatment of these cardiac diseases. Pharmacological treatment targeting HCN channels is of benefit to these cardiac conditions.

  5. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    International Nuclear Information System (INIS)

    Li, Y.; Krieger, J.B.; Norman, M.R.; Iafrate, G.J.

    1991-01-01

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it is believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP

  6. The atmospheric inventory of Xenon and noble cases in shales The plastic bag experiment

    Science.gov (United States)

    Bernatowicz, T. J.; Podosek, F. A.; Honda, M.; Kramer, F. E.

    1984-01-01

    A novel trapped gas analysis protocol is applied to five shales in which the samples are sealed in air to eliminate the possibility of gas loss in the preanalysis laboratory vacuum exposure of a conventional protocol. The test is aimed at a determination concerning the hypothesis that atmospheric noble gases occur in the same proportion as planetary gases in meteorites, and that the factor-of-23 deficiency of air Xe relative to planetary Xe is made up by Xe stored in shales or other sedimentary rocks. The results obtained do not support the shale hypothesis.

  7. Accelerated Fractional Ventilation Imaging with Hyperpolarized Gas MRI

    Science.gov (United States)

    Emami, Kiarash; Xu, Yinan; Hamedani, Hooman; Profka, Harrilla; Kadlecek, Stephen; Xin, Yi; Ishii, Masaru; Rizi, Rahim R.

    2013-01-01

    PURPOSE To investigate the utility of accelerated imaging to enhance multi-breath fractional ventilation (r) measurement accuracy using HP gas MRI. Undersampling shortens the breath-hold time, thereby reducing the O2-induced signal decay and allows subjects to maintain a more physiologically relevant breathing pattern. Additionally it may improve r estimation accuracy by reducing RF destruction of HP gas. METHODS Image acceleration was achieved by using an 8-channel phased array coil. Undersampled image acquisition was simulated in a series of ventilation images and images were reconstructed for various matrix sizes (48–128) using GRAPPA. Parallel accelerated r imaging was also performed on five mechanically ventilated pigs. RESULTS Optimal acceleration factor was fairly invariable (2.0–2.2×) over the range of simulated resolutions. Estimation accuracy progressively improved with higher resolutions (39–51% error reduction). In vivo r values were not significantly different between the two methods: 0.27±0.09, 0.35±0.06, 0.40±0.04 (standard) versus 0.23±0.05, 0.34±0.03, 0.37±0.02 (accelerated); for anterior, medial and posterior slices, respectively, whereas the corresponding vertical r gradients were significant (P fractional ventilation measurement with HP gas MRI. PMID:23400938

  8. Acute hypertensive stress imaged by cardiac hyperpolarized [1-C]pyruvate magnetic resonance

    DEFF Research Database (Denmark)

    Tougaard, Rasmus Stilling; Hansen, Esben Søvsø Szocska; Laustsen, Christoffer

    2018-01-01

    PURPOSE: Deranged metabolism is now recognized as a key causal factor in a variety of heart diseases, and is being studied extensively. However, invasive methods may alter metabolism, and conventional imaging techniques measure tracer uptake but not downstream metabolism. These challenges may...... be overcome by hyperpolarized MR, a noninvasive technique currently crossing the threshold into human trials. The aim of this study was to image metabolic changes in the heart in response to endogastric glucose bolus and to acute hypertension. METHODS: Five postprandial pigs were scanned with hyperpolarized.......008) and ejection fraction decreased from 54 ± 2% to 47 ± 6% (P = 0.03) The hemodynamic changes were accompanied by increases in the hyperpolarized [1-13C]pyruvate MR derived ratios of lactate/alanine (from 0.58 ± 0.13 to 0.78 ± 0.06, P = 0.03) and bicarbonate/alanine (from 0.55 ± 0.12 to 0.91 ± 0.14, P = 0...

  9. Fixing noble gas in zeolites

    International Nuclear Information System (INIS)

    Rocha Dorea, A.L. da.

    1980-09-01

    In order to increase safety during the long-term storage of Kr-85 it has been proposed to encaosulate this gas in zeolite 5A. Due to the decay heat of Kr-85 it is expected, however, that the inorganic matrix will be at an increased temperature over several decades. Below 600 0 C only very small Kr-desorption rates are observed when a linear temperature gradient is applied to a loaded 5A zeolite sample. If heating is interrupted and the temperature kept konstant at a certain value (>600 0 C), it is observed that the desorption rate either decreased below the detection limit or stayed constant at some measurable value. The overall activation energy in the temperature range 570 0 C-745 0 C is found to be 250 kJ/mol. At temperature above 790 0 C the total encapsulated gas is rapidly liberated. No significant leakage was apparent from zeolite 5A samples containing between 19 and 57 cm 3 STP Kr/g kept at 200 0 C for up to 2500 h and 400 0 C for up to 3500 h. From these studies it is found that type 5A zeolites are particularly suitable as a matrix for the inmobilization of Kr-85. (Author) [pt

  10. X-radiation effect on the hyperpolarization of cells, the adeninenucleotide content and the distribution of sodium and potassium ions

    Energy Technology Data Exchange (ETDEWEB)

    Frol' kis, V V [Akademiya Meditsinskikh Nauk Ukrainskoj SSR, Kiev. Inst. Gerontologii

    1975-03-01

    X-radiation prevents the progress of hyperpolarization of muscle and liver cells caused by hormones (estradioldipropyonate, deoxycorticosteron-acetate and insulin) and by the loss of blood. X-radiation offsets the redistribution of K/sup +/ and Na/sup +/ ions caused by hyperpolarization and does not change the level of ATP, ADP, CP and Pi. X-radiation is suggested to affect the hyperpolarization and the ionic shifts via the system of protein biosynthesis.

  11. Martian fluid and Martian weathering signatures identified in Nakhla, NWA 998 and MIL 03346 by halogen and noble gas analysis

    Science.gov (United States)

    Cartwright, J. A.; Gilmour, J. D.; Burgess, R.

    2013-03-01

    We report argon (Ar) noble gas, Ar-Ar ages and halogen abundances (Cl, Br, I) of Martian nakhlites Nakhla, NWA 998 and MIL 03346 to determine the presence of Martian hydrous fluids and weathering products. Neutron-irradiated samples were either crushed and step-heated (Nakhla only), or simply step-heated using a laser or furnace, and analysed for noble gases using an extension of the 40Ar-39Ar technique to determine halogen abundances. The data obtained provide the first isotopic evidence for a trapped fluid that is Cl-rich, has a strong correlation with 40ArXS (40ArXS = 40Armeasured - 40Arradiogenic) and displays 40ArXS/36Ar of ˜1000 - consistent with the Martian atmosphere. This component was released predominantly in the low temperature and crush experiments, which may suggest a fluid inclusion host. For the halogens, we observe similar Br/Cl and I/Cl ratios between the nakhlites and terrestrial reservoirs, which is surprising given the absence of crustal recycling, organic matter and frequent fluid activity on Mars. In particular, Br/Cl ratios in our Nakhla samples (especially olivine) are consistent with previously analysed Martian weathering products, and both low temperature and crush analyses show a similar trend to the evaporation of seawater. This may indicate that surface brines play an important role on Mars and on halogen assemblages within Martian meteorites and rocks. Elevated I/Cl ratios in the low temperature NWA 998 and MIL 03346 releases may relate to in situ terrestrial contamination, though we are unable to distinguish between low temperature terrestrial or Martian components. Whilst estimates of the amount of water present based on the 36Ar concentrations are too high to be explained by a fluid component alone, they are consistent with a mixed-phase inclusion (gas and fluid) or with shock-implanted Martian atmospheric argon. The observed fluid is dilute (low salinity, but high Br/Cl and I/Cl ratios), contains a Martian atmospheric component

  12. Vermont Yankee advanced off-gas system (AOG)

    International Nuclear Information System (INIS)

    Littlefield, P.S.; Miller, S.R.; DerHagopian, H.

    1975-01-01

    Early in 1971 the Vermont Yankee Nuclear Power Corporation decided to modify the existing off-gas delay system to reduce the release of noble gas isotopes from its boiling water reactor. This modification included a subsystem for recombining the radiolytic hydrogen and oxygen from the reactor and a series of adsorber tanks filled with activated carbon to delay the noble gas isotopes from the condenser air ejectors. The off-gas system and its operating history from initial operation in November 1973 to the present time are described. Data are also presented on the measured dynamic adsorption coefficient of the ambient carbon subsystem. Laboratory adsorption tests were conducted on the carbon prior to AOG startup and the results are compared with the effective coefficients obtained under operating conditions. (U.S.)

  13. Ab initio molecular orbital studies of the vibrational spectra of the van der Waals complexes of boron trifluoride with the noble gases.

    Science.gov (United States)

    Ford, Thomas A

    2005-05-01

    The molecular structures, interaction energies, charge transfer properties and vibrational spectra of the van der Waals complexes formed between boron trifluoride and the noble gases neon, argon, krypton and xenon have been computed using second and fourth order Møller-Plesset perturbation theory and the Los Alamos National Laboratory LANL2DZ basis set. The complexes are all symmetric tops, with the noble gas atom acting as a sigma electron donor along the C3 axis of the BF3 molecule. The interaction energies are all vanishingly small, and the amount of charge transferred in each case is of the order of 0.01e. The directions of the wavenumber shifts of the symmetric bending (nu2) and antisymmetric stretching (nu3) modes of the BF3 fragment confirm those determined experimentally, and the shifts are shown to correlate well with the polarizability of the noble gas atom and the inverse sixth power of the intermonomer separation. The nu2 mode is substantially more sensitive to complexation than the nu3 vibration.

  14. Noble magnetic barriers in the ASDEX UG tokamak

    Science.gov (United States)

    Ali, Halima; Punjabi, Alkesh; Vazquez, Justin

    2010-02-01

    The second-order perturbation method of creating invariant tori inside chaos in Hamiltonian systems (Ali, H.; Punjabi, A. Plasma Phys. Contr. F. 2007, 49, 1565-1582) is applied to the axially symmetric divertor experiment upgrade (ASDEX UG) tokamak to build noble irrational magnetic barriers inside chaos created by resonant magnetic perturbations (m, n)=(3, 2)+(4, 3), with m and n the poloidal and toroidal mode numbers of the Fourier expansion of the magnetic perturbation. The radial dependence of the Fourier modes is ignored. The modes are considered to be locked and have the same amplitude δ. A symplectic mathematical mapping in magnetic coordinates is used to integrate magnetic field line trajectories in the ASDEX UG. Tori with noble irrational rotational transform are the last ones to be destroyed by perturbation in Hamiltonian systems. For this reason, noble irrational magnetic barriers are built inside chaos, and the strongest noble irrational barrier is identified. Three candidate locations for the strongest noble barrier in ASDEX UG are selected. All three candidate locations are chosen to be roughly midway between the resonant rational surfaces ψ32 and ψ43. ψ is the magnetic coordinate of the flux surface. The three candidate surfaces are the noble irrational surfaces close to the surface with q value that is a mediant of q=3/2 and 4/3, q value of the physical midpoint of the two resonant surfaces, and the q value of the surface where the islands of the two perturbing modes just overlap. These q values of the candidate surfaces are denoted by q MED, q MID, and q OVERLAP. The strongest noble barrier close to q MED has the continued fraction representation (CFR) [1;2,2,1∞] and exists for δ≤2.6599×10-4; the strongest noble barrier close to q MID has CFR [1;2,2,2,1∞] and exists for δ≤4.6311×10-4; and the strongest noble barrier close to q OVERLAP has CFR [1;2,2,6,2,1∞] and exists for δ≤1.367770×10-4. From these results, the strongest

  15. Hyperpolarized 2-oxoglutarate as metabolic agent in mr

    DEFF Research Database (Denmark)

    2015-01-01

    Hyperpolarized 1-13C-2-oxoglutarate as contrast agent in13C Magnetic Resonance diagnostic technique (13C-MRI) for use in the diagnosis of cancer. In particular, upon administration of said 1-13C-2-oxoglutarate, signals of 1-13C-glutamate are detected. More in particular, different MR signals from13...

  16. Ionic channels and membrane hyperpolarization in human macrophages

    NARCIS (Netherlands)

    Ince, C.; van Duijn, B.; Ypey, D. L.; van Bavel, E.; Weidema, F.; Leijh, P. C.

    1987-01-01

    Microelectrode impalement of human macrophages evokes a transient hyperpolarizing response (HR) of the membrane potential. This HR was found to be dependent on the extracellular concentration of K+ but not on that of Na+ or Cl-. It was not influenced by low temperature (12 degrees C) or by 0.2 mM

  17. Magnetic Resonance Angiography in the Pig using Hyperpolarized Water

    DEFF Research Database (Denmark)

    Lipsø, Hans Kasper Wigh; Bowen, Sean; Laustsen, Christoffer

    , the magnetization achievable with hyperpolarized water is superior to other nuclei. Methods A 1 mL sample of 50% water and 50% glycerol with 30 mM TEMPO is polarized in a Spinlab (GE Healthcare) at 5 T, 0.9 K, 139.9 GHz for an hour. The sample is rapidly dissolved in 16 mL deoxygenized dissolution medium (DM......Introduction Magnetic Resonance Angiography (MRA) is an important tool in diagnostics of medical conditions such as emboli, stenosis and aneurysms. Sub-millimetre resolution can be obtained with proton imaging, and further optimization can be obtained with Gd-based blood pool agents1. However......, the acquisition time is several minutes, and conventional MRA methods thus fail to image within a single respiration or heartbeat and therefore suffers from motion artefacts. We demonstrate that hyperpolarized (HP) water can be used as an imaging agent to provide subsecond angiographies in pigs. Previous work...

  18. Noble-Metal Chalcogenide Nanotubes

    Directory of Open Access Journals (Sweden)

    Nourdine Zibouche

    2014-10-01

    Full Text Available We explore the stability and the electronic properties of hypothetical noble-metal chalcogenide nanotubes PtS2, PtSe2, PdS2 and PdSe2 by means of density functional theory calculations. Our findings show that the strain energy decreases inverse quadratically with the tube diameter, as is typical for other nanotubes. Moreover, the strain energy is independent of the tube chirality and converges towards the same value for large diameters. The band-structure calculations show that all noble-metal chalcogenide nanotubes are indirect band gap semiconductors. The corresponding band gaps increase with the nanotube diameter rapidly approaching the respective pristine 2D monolayer limit.

  19. 77 FR 70159 - Marble River, LLC v. Noble Clinton Windpark I, LLC, Noble Ellenburg Windpark, LLC, Noble...

    Science.gov (United States)

    2012-11-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-20-000] Marble River... Commission's (Commission) Rules of Practice and Procedure, Marble River, LLC (Marble River or Complainant.... (NYISO or Respondent), alleging that Noble failed to pay Marble River for headroom created by common...

  20. Submarine Alkalic Lavas Around the Hawaiian Hotspot; Plume and Non-Plume Signatures Determined by Noble Gases

    Science.gov (United States)

    Hanyu, T.; Clague, D. A.; Kaneoka, I.; Dunai, T. J.; Davies, G. R.

    2004-12-01

    Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism. Samples were collected by dredging or using submersibles from the Kauai Channel between Oahu and Kauai, north of Molokai, northwest of Niihau, Southwest Oahu, South Arch and North Arch volcanic fields. Sites located downstream from the center of the hotspot have 3He/4He ratios close to MORB at about 8 Ra, demonstrating that the magmas erupted at these sites had minimum contribution of volatiles from a mantle plume. In contrast, the South Arch, located upstream of the hotspot on the Hawaiian Arch, has 3He/4He ratios between 17 and 21 Ra, indicating a strong plume influence. Differences in noble gas isotopic characteristics between alkalic volcanism downstream and upstream of the hotspot imply that upstream volcanism contains incipient melts from an upwelling mantle plume, having primitive 3He/4He. In combination with lithophile element isotopic data, we conclude that the most likely source of the upstream magmatism is depleted asthenospheric mantle that has been metasomatised by incipient melt from a mantle plume. After major melt extraction from the mantle plume during production of magmas for the shield stage, the plume material is highly depleted in noble gases and moderately depleted in lithophile elements. Partial melting of the depleted mantle impregnated by melts derived from this volatile depleted plume source may explain the isotopic characteristics of the downstream alkalic magmatism.

  1. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    Science.gov (United States)

    2015-12-01

    production in the presence of oxygen (11, 12). Increased glycolysis facilitates the uptake and incorporation of nutrients and biomass needed for cell... shell coil; (d) Hyperpolarized lactate images overlaid on T2 weighted anatomical images, clearly depicting the tumor voxels (Figure 5). As shown in

  2. Hyperpolarized C-13 MRS Cardiac Metabolism Studies in Pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Hartwig, V.; Frijia, F.

    2012-01-01

    Cardiac metabolism assessment with hyperpolarized 13C magnetic resonance spectroscopy in pig models requires the design of dedicated coils capable of providing large field of view with high signal-to-noise ratio (SNR) data. This work presents a comparison between a commercial 13C quadrature...

  3. Structural energetics of noble metals

    International Nuclear Information System (INIS)

    Mujibur Rahman, S.M.

    1982-06-01

    Structural energetics of the noble metals, namely Cu, Ag, and Au are investigated by employing a single-parameter pseudopotential. The calculations show that the lowest energy for all of these metals corresponds to FCC - their observed crystal structure. The one-electron contribution to the free energy is found to dominate the structural prediction for these metals. The present investigation strongly emphasizes that the effects due to band hybridization and core-core exchange play a significant role on the structural stability of the noble metals. (author)

  4. Biochemical and structural analysis of the hyperpolarization-activated K(+) channel MVP.

    Science.gov (United States)

    Randich, Amelia M; Cuello, Luis G; Wanderling, Sherry S; Perozo, Eduardo

    2014-03-18

    In contrast to the majority of voltage-gated ion channels, hyperpolarization-activated channels remain closed at depolarizing potentials and are activated at hyperpolarizing potentials. The basis for this reverse polarity is thought to be a result of differences in the way the voltage-sensing domain (VSD) couples to the pore domain. In the absence of structural data, the molecular mechanism of this reverse polarity coupling remains poorly characterized. Here we report the characterization of the structure and local dynamics of the closed activation gate (lower S6 region) of MVP, a hyperpolarization-activated potassium channel from Methanococcus jannaschii, by electron paramagnetic resonance (EPR) spectroscopy. We show that a codon-optimized version of MVP has high expression levels in Escherichia coli, is purified as a stable tetramer, and exhibits expected voltage-dependent activity when reconstituted in liposomes. EPR analysis of the mid to lower S6 region revealed positions exhibiting strong spin-spin coupling, indicating that the activation gate of MVP is closed at 0 mV. A comparison of local environmental parameters along the activation gate for MVP and KcsA indicates that MVP adopts a different closed conformation. These structural details set the stage for future evaluations of reverse electromechanical coupling in MVP.

  5. Biochemical and Structural Analysis of the Hyperpolarization-Activated K+ Channel MVP

    Science.gov (United States)

    2015-01-01

    In contrast to the majority of voltage-gated ion channels, hyperpolarization-activated channels remain closed at depolarizing potentials and are activated at hyperpolarizing potentials. The basis for this reverse polarity is thought to be a result of differences in the way the voltage-sensing domain (VSD) couples to the pore domain. In the absence of structural data, the molecular mechanism of this reverse polarity coupling remains poorly characterized. Here we report the characterization of the structure and local dynamics of the closed activation gate (lower S6 region) of MVP, a hyperpolarization-activated potassium channel from Methanococcus jannaschii, by electron paramagnetic resonance (EPR) spectroscopy. We show that a codon-optimized version of MVP has high expression levels in Escherichia coli, is purified as a stable tetramer, and exhibits expected voltage-dependent activity when reconstituted in liposomes. EPR analysis of the mid to lower S6 region revealed positions exhibiting strong spin–spin coupling, indicating that the activation gate of MVP is closed at 0 mV. A comparison of local environmental parameters along the activation gate for MVP and KcsA indicates that MVP adopts a different closed conformation. These structural details set the stage for future evaluations of reverse electromechanical coupling in MVP. PMID:24490868

  6. Laser heating of large noble gas clusters: from the resonant to the relativistic interaction regimes

    Energy Technology Data Exchange (ETDEWEB)

    Gumbrell, E T; Moore, A S; Clark, E L; Garbett, W J; Comley, A J; Edwards, R D; Eagleton, R E [Plasma Physics Division, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Lazarus, J A; Nilson, P M; Robinson, J S; Hohenberger, M; Symes, D R; Smith, R A [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Clarke, R J [Rutherford Appleton Laboratory, Chilton OX11 0QX (United Kingdom)], E-mail: edward.gumbrell@awe.co.uk, E-mail: r.a.smith@imperial.ac.uk

    2008-12-15

    Wide-ranging measurements of sub-picosecond laser interactions with large noble gas cluster targets have been conducted in order to help clarify the nature and extent of the underlying laser-plasma heating. Within the sub-relativistic vacuum irradiance range of 10{sup 16}-10{sup 17} W cm{sup -2}, we find that electron temperatures measured with continuum x-ray spectroscopy exhibit a pronounced multi-keV enhancement. Analysis indicates this behaviour to be consistent with collisional or collisionless resonant heating mechanisms. We also present the first measurements of laser-to-cluster energy deposition at relativistic vacuum irradiances, our data demonstrating absorption fractions of 90% or more. Optical probing was used to resolve the onset of a supersonic ionization front resulting from this very high absorption, and shows that despite significant pre-focus heating, the greatest plasma energy densities can be generated about the vacuum focus position. Electron energy spectra measurements confirm that laser-plasma super-heating occurs, and together with ion data establish that relativistic laser-plasma coupling in atomic clusters can take place without significant MeV particle beam production. In conjunction with optical self-emission data, the optical probing also indicates laser pre-pulse effects at peak vacuum irradiance of 5 x 10{sup 19} W cm{sup -2}. Laser absorption, plasma heating and energy transport data are supported throughout with analytical and numerical modelling.

  7. Noble Gas Inventory of Micrometeorites Collected at the Transantarctic Mountains (TAM) and Indications for Their Provenance

    Science.gov (United States)

    Ott, U.; Baecker, B.; Folco, L.; Cordier, C.

    2016-01-01

    A variety of processes have been considered possibly contributing the volatiles including noble gases to the atmospheres of the terrestrial planets (e.g., [1-3]). Special consideration has been given to the concept of accretion of volatile-rich materials by the forming planets. This might include infalling planetesimals and dust, and could include material from the outer asteroid belt, as well as cometary material from the outer solar system. Currently, the dominant source of extraterrestrial material accreted by the Earth is represented by micrometeorites (MMs) with sizes mostly in the 100-300 micron range [3, 4]). Their role has been assessed by [3], who conclude that accretion of early micrometeorites played a major role in the formation of the terrestrial atmosphere and oceans. We have therefore set out to investigate in more detail the inventory of noble gases in MMs. Here we summarize some of our results obtained on MMs collected in micrometeorite traps of the Transantarctic Mountains [5].

  8. Quantitative {sup 1}H and hyperpolarized {sup 3}He magnetic resonance imaging: Comparison in chronic obstructive pulmonary disease and healthy never-smokers

    Energy Technology Data Exchange (ETDEWEB)

    Owrangi, Amir M., E-mail: aowrangi@robats.ca [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Canada N6A 5K8 (Canada); Graduate Program in Biomedical Engineering, The University of Western Ontario, London (Canada); Wang, Jian X., E-mail: jxwang@robats.ca [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Canada N6A 5K8 (Canada); Applied Science Laboratories, General Electric Healthcare (Canada); Wheatley, Andrew, E-mail: awheat@imaging.robarts.ca [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Canada N6A 5K8 (Canada); McCormack, David G., E-mail: David.Mccormack@lhsc.on.ca [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Canada N6A 5K8 (Canada); Division of Respirology, Department of Medicine, The University of Western Ontario, London (Canada); Parraga, Grace, E-mail: gparraga@robats.ca [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Canada N6A 5K8 (Canada); Graduate Program in Biomedical Engineering, The University of Western Ontario, London (Canada); Department of Medical Imaging, The University of Western Ontario, London (Canada); Department of Medical Biophysics, The University of Western Ontario, London (Canada)

    2014-01-15

    Objective: The aim of this study was to quantitatively evaluate the relationship between short echo time pulmonary {sup 1}H magnetic resonance imaging (MRI) signal intensity (SI) and {sup 3}He MRI apparent diffusion coefficients (ADC), high-resolution computed tomography (CT) measurements of emphysema, and pulmonary function measurements. Materials and methods: Nine healthy never-smokers and 11 COPD subjects underwent same-day plethysmography, spirometry, short echo time ((TE) = 1.2 ms) {sup 1}H and diffusion-weighted hyperpolarized {sup 3}He MRI (b = 1.6 s/cm{sup 2}) at 3.0 T. In addition, for COPD subjects only, CT densitometry was also performed. Results: Mean {sup 1}H SI was significantly greater for never-smokers (12.1 ± 1.1 arbitrary units (AU)) compared to COPD subjects (10.9 ± 1.3 AU, p = 0.04). The {sup 1}H SI AP-gradient was also significantly greater for never-smokers (0.40 AU/cm, R{sup 2} = 0.94) compared to COPD subjects (0.29 AU/cm, R{sup 2} = 0.968, p = 0.05). There was a significant correlation between {sup 1}H SI and {sup 3}He ADC (r = −0.58, p = 0.008) and significant correlations between {sup 1}H MR SI and CT measurements of emphysema (RA{sub 950}, r = −0.69, p = 0.02 and HU{sub 15}, r = 0.66, p = 0.03). Conclusions: The significant and moderately strong relationship between {sup 1}H SI and {sup 3}He ADC, as well as between {sup 1}H SI and CT measurements of emphysema suggests that these imaging methods and measurements may be quantifying similar tissue changes in COPD and that pulmonary {sup 1}H SI may be used to monitor emphysema as a complement to CT and noble gas MRI.

  9. Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material for ²⁹Si Magnetic Resonance Imaging.

    Science.gov (United States)

    Seo, Hyeonglim; Choi, Ikjang; Whiting, Nicholas; Hu, Jingzhe; Luu, Quy Son; Pudakalakatti, Shivanand; McCowan, Caitlin; Kim, Yaewon; Zacharias, Niki; Lee, Seunghyun; Bhattacharya, Pratip; Lee, Youngbok

    2018-05-20

    Porous silicon nanoparticles have recently garnered attention as potentially-promising biomedical platforms for drug delivery and medical diagnostics. Here, we demonstrate porous silicon nanoparticles as contrast agents for ²⁹Si magnetic resonance imaging. Size-controlled porous silicon nanoparticles were synthesized by magnesiothermic reduction of silica nanoparticles and were surface activated for further functionalization. Particles were hyperpolarized via dynamic nuclear polarization to enhance their ²⁹Si MR signals; the particles demonstrated long ²⁹Si spin-lattice relaxation (T₁) times (~ 25 mins), which suggests potential applicability for medical imaging. Furthermore, ²⁹Si hyperpolarization levels were sufficient to allow ²⁹Si MRI in phantoms. These results underscore the potential of porous silicon nanoparticles that, when combined with hyperpolarized magnetic resonance imaging, can be a powerful theragnostic deep tissue imaging platform to interrogate various biomolecular processes in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Genealogical series method. Hyperpolar points screen effect

    International Nuclear Information System (INIS)

    Gorbatov, A.M.

    1991-01-01

    The fundamental values of the genealogical series method -the genealogical integrals (sandwiches) have been investigated. The hyperpolar points screen effect has been found. It allows one to calculate the sandwiches for the Fermion systems with large number of particles and to ascertain the validity of the iterated-potential method as well. For the first time the genealogical-series method has been realized numerically for the central spin-independent potential

  11. Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals

    Science.gov (United States)

    Bourg, I. C.; Gadikota, G.; Dazas, B.

    2016-12-01

    Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).

  12. Cryogenic separation of krypton and xenon from dissolver off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Bohnenstingl, J.; Heidendael, M.; Laser, M.; Mastera, S.; Merz, E.

    1976-03-15

    Although the release of fission product noble gas Kr-85 has not posed a health problem to date, a process is being developed for the removal and storage of fission product noble gases from dissolution process stream of fuel reprocessing. The separation process described for noble gas in air being proved in semi-technical scale includes cryogenic distillation and consists of the following steps: (1) removal of 129 +131iodine on silver-coated silica gel; (2) deposition of particulate materials by HEPA-filters; (3) elimination of O2 and NOx by catalytic conversion with H2/ to N2 and H2O; (4) drying of the gas stream with molecular sieve; (5) deposition of xenon in solid form at about 80 K, while the remaining gas components are liquified; (6) enrichment of Kr by low temperature distillation of liquid-gas mixture; (7) withdrawal of the highly enriched Kr-fraction at the bottom of the still to be bottled in pressurized steel cylinders for final disposal; and (8) purification of Kr-85 contaminated Xe for further industrial reuse by batch distillation.

  13. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.

    Science.gov (United States)

    Quillin, M L; Breyer, W A; Griswold, I J; Matthews, B W

    2000-09-29

    To investigate the relative importance of size and polarizability in ligand binding within proteins, we have determined the crystal structures of pseudo wild-type and cavity-containing mutant phage T4 lysozymes in the presence of argon, krypton, and xenon. These proteins provide a representative sample of predominantly apolar cavities of varying size and shape. Even though the volumes of these cavities range up to the equivalent of five xenon atoms, the noble gases bind preferentially at highly localized sites that appear to be defined by constrictions in the walls of the cavities, coupled with the relatively large radii of the noble gases. The cavities within pseudo wild-type and L121A lysozymes each bind only a single atom of noble gas, while the cavities within mutants L133A and F153A have two independent binding sites, and the L99A cavity has three interacting sites. The binding of noble gases within two double mutants was studied to characterize the additivity of binding at such sites. In general, when a cavity in a protein is created by a "large-to-small" substitution, the surrounding residues relax somewhat to reduce the volume of the cavity. The binding of xenon and, to a lesser degree, krypton and argon, tend to expand the volume of the cavity and to return it closer to what it would have been had no relaxation occurred. In nearly all cases, the extent of binding of the noble gases follows the trend xenon>krypton>argon. Pressure titrations of the L99A mutant have confirmed that the crystallographic occupancies accurately reflect fractional saturation of the binding sites. The trend in noble gas affinity can be understood in terms of the effects of size and polarizability on the intermolecular potential. The plasticity of the protein matrix permits repulsion due to increased ligand size to be more than compensated for by attraction due to increased ligand polarizability. These results have implications for the mechanism of general anesthesia, the migration

  14. μ+ thermalization and muonium formation in noble gases

    International Nuclear Information System (INIS)

    Fleming, D.G.; Mikula, R.J.; Garner, D.M.; British Columbia Univ., Vancouver

    1981-01-01

    One energy loss mechanism in μ + thermalization (in gases) is that due to charge exchange, in which muonium is repeatedly formed and lost in a series of charge-exchange cycles μ + +e - reversible Mu, a process which depends on the ionization potential of the moderator gas but one in which no depolarization of the μ + is expected at approx. 1 atm. pressure. However, if the time between collisions in a given energy regime can be made sufficiently long then additional depolarization may occur, which can provide further information on the charge-exchange process itself. Extensive data showing this effect has been found in gases; results for the noble gases are presented. (orig.)

  15. Noble gases in nuclear medicine

    International Nuclear Information System (INIS)

    Calderon, M.; Burdine, J.A.

    1973-01-01

    Radioactive noble gases have made a significant contribution to diagnostic nuclear medicine. In the area of regional assessment of pulmonary function, 133 Xe has had its greatest clinical impact. Following a breath of 133 Xe gas, pulmonary ventilation can be measured using a scintillation camera or other appropriate radiation detector. If 133 Xe dissolved in saline is injected intravenously, both pulmonary capillary perfusion and ventilation can be measured since 90 percent of the highly insoluble xenon escapes into the alveoli during the first passage through the lungs. Radionuclide pulmonary function tests provide the first qualitative means of assessing lung ventilation and blood flow on a regional basis, and have recently been extended to include quantification of various parameters of lung function by means of a small computer interfaced to the scintillation camera. 133 Xe is also used in the measurement of organ blood flow following injection into a vessel leading into an organ such as the brain, heart kidneys, or muscles

  16. On the effect of oxygen flooding on the detection of noble gas ions in a SIMS instrument

    Czech Academy of Sciences Publication Activity Database

    Williams, P.; Franzreb, K.; Sobers Jr., R. C.; Lorinčík, Jan

    2010-01-01

    Roč. 268, 17-18 (2010), s. 2758-2765 ISSN 0168-583X Institutional research plan: CEZ:AV0Z20670512 Keywords : SIMS * noble gases * uranium Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.042, year: 2010

  17. Pressure effect in the X-ray intrinsic position resolution in noble gases and mixtures

    CERN Document Server

    Azevedo, C.D.R.

    2016-12-13

    A study of the gas pressure effect in the position resolution of an interacting X- or gamma-ray photon in a gas medium is performed. The intrinsic position resolution for pure noble gases (Argon and Xenon) and their mixtures with CO2 and CH4 were calculated for several gas pressures (1-10bar) and for photon energies between 5.4 and 60.0 keV, being possible to establish a linear match between the intrinsic position resolution and the inverse of the gas pressure in that energy range. In order to evaluate the quality of the method here described, a comparison between the available experimental data and the calculated one in this work, is done and discussed. In the majority of the cases, a strong agreement is observed.

  18. A catalyzing phantom for reproducible dynamic conversion of hyperpolarized [1-¹³C]-pyruvate.

    Science.gov (United States)

    Walker, Christopher M; Lee, Jaehyuk; Ramirez, Marc S; Schellingerhout, Dawid; Millward, Steven; Bankson, James A

    2013-01-01

    In vivo real time spectroscopic imaging of hyperpolarized ¹³C labeled metabolites shows substantial promise for the assessment of physiological processes that were previously inaccessible. However, reliable and reproducible methods of measurement are necessary to maximize the effectiveness of imaging biomarkers that may one day guide personalized care for diseases such as cancer. Animal models of human disease serve as poor reference standards due to the complexity, heterogeneity, and transient nature of advancing disease. In this study, we describe the reproducible conversion of hyperpolarized [1-¹³C]-pyruvate to [1-¹³C]-lactate using a novel synthetic enzyme phantom system. The rate of reaction can be controlled and tuned to mimic normal or pathologic conditions of varying degree. Variations observed in the use of this phantom compare favorably against within-group variations observed in recent animal studies. This novel phantom system provides crucial capabilities as a reference standard for the optimization, comparison, and certification of quantitative imaging strategies for hyperpolarized tracers.

  19. A catalyzing phantom for reproducible dynamic conversion of hyperpolarized [1-¹³C]-pyruvate.

    Directory of Open Access Journals (Sweden)

    Christopher M Walker

    Full Text Available In vivo real time spectroscopic imaging of hyperpolarized ¹³C labeled metabolites shows substantial promise for the assessment of physiological processes that were previously inaccessible. However, reliable and reproducible methods of measurement are necessary to maximize the effectiveness of imaging biomarkers that may one day guide personalized care for diseases such as cancer. Animal models of human disease serve as poor reference standards due to the complexity, heterogeneity, and transient nature of advancing disease. In this study, we describe the reproducible conversion of hyperpolarized [1-¹³C]-pyruvate to [1-¹³C]-lactate using a novel synthetic enzyme phantom system. The rate of reaction can be controlled and tuned to mimic normal or pathologic conditions of varying degree. Variations observed in the use of this phantom compare favorably against within-group variations observed in recent animal studies. This novel phantom system provides crucial capabilities as a reference standard for the optimization, comparison, and certification of quantitative imaging strategies for hyperpolarized tracers.

  20. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    Science.gov (United States)

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  1. Volatiles (H, C, N, O, noble gases) in comets as tracers of early solar system events (Invited)

    Science.gov (United States)

    Marty, B.

    2013-12-01

    Volatiles (H, C, N, O, noble gases) present the largest variations in their relative abundances and, importantly, in their isotopic ratios, among solar system elements. The original composition of the protosolar nebula has been investigated through the measurements of primitive meteorites and of in-situ (e.g. Galileo probe analysis of the Jupiter's atmosphere) and sample-return (Genesis, recovery and analysis of solar wind) missions. The protosolar gas was poor in deuterium, in 15N and in 17,18O. Variations among solar system reservoir reach several hundreds of percents for the D/H and 15N/14N ratios. These variations are possibly : (i) due to interactions between XUV photons of the proto-Sun and the-dust, (ii) result from low temperature ion-molecule reactions, or (iii) constitute an heritage on interstellar volatiles trapped in dust (e.g., organics). Likewise, noble gases are elementally and isotopically (1% per amu for xenon) fractionated with respect to the composition of the solar wind (our best proxy for the protosolar nebula composition). Cometary matter directly measured on coma, or in Stardust material, or in IDPs, seems to present among the largest heterogeneities in their stable isotope compositions but knowledge on their precise compositions of the different phases and species is partial and mosty lacking. Among the several important issues requiring a better knowledge of cometary volatiles are the origin(s) of volatile elements on Earth and Moon, on Mars and on Venus, understanding large scale circulation of matter between hot and frozen zones, and the possibility of interstellar heritage for organics. Critical measurements to be made by the next cometary missions include the value of the D/H ratio in water ice, in NH3 and organics. Nitrogen is particularly interesting as cometary HCN and CN are rich in 15N, but an isotoppe mass balance will require to measure the main host species (N2 ?). Noble gases are excellent tracers of physical processes

  2. Fluconazole treatment hyperpolarizes the plasma membrane of Candida cells

    Czech Academy of Sciences Publication Activity Database

    Elicharová, Hana; Sychrová, Hana

    2013-01-01

    Roč. 51, č. 8 (2013), s. 785-798 ISSN 1369-3786 R&D Projects: GA ČR GAP302/12/1151 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : drug resistance * fluconazol * yeast * hyperpolarization Subject RIV: EE - Microbiology, Virology Impact factor: 2.261, year: 2013

  3. Characterization of Chemical Exchange Using Relaxation Dispersion of Hyperpolarized Nuclear Spins.

    Science.gov (United States)

    Liu, Mengxiao; Kim, Yaewon; Hilty, Christian

    2017-09-05

    Chemical exchange phenomena are ubiquitous in macromolecules, which undergo conformational change or ligand complexation. NMR relaxation dispersion (RD) spectroscopy based on a Carr-Purcell-Meiboom-Gill pulse sequence is widely applied to identify the exchange and measure the lifetime of intermediate states on the millisecond time scale. Advances in hyperpolarization methods improve the applicability of NMR spectroscopy when rapid acquisitions or low concentrations are required, through an increase in signal strength by several orders of magnitude. Here, we demonstrate the measurement of chemical exchange from a single aliquot of a ligand hyperpolarized by dissolution dynamic nuclear polarization (D-DNP). Transverse relaxation rates are measured simultaneously at different pulsing delays by dual-channel 19 F NMR spectroscopy. This two-point measurement is shown to allow the determination of the exchange term in the relaxation rate expression. For the ligand 4-(trifluoromethyl)benzene-1-carboximidamide binding to the protein trypsin, the exchange term is found to be equal within error limits in neutral and acidic environments from D-DNP NMR spectroscopy, corresponding to a pre-equilibrium of trypsin deprotonation. This finding illustrates the capability for determination of binding mechanisms using D-DNP RD. Taking advantage of hyperpolarization, the ligand concentration in the exchange measurements can reach on the order of tens of μM and protein concentration can be below 1 μM, i.e., conditions typically accessible in drug discovery.

  4. Pulmonary hyperpolarized (129) Xe morphometry for mapping xenon gas concentrations and alveolar oxygen partial pressure: Proof-of-concept demonstration in healthy and COPD subjects.

    Science.gov (United States)

    Ouriadov, A; Farag, A; Kirby, M; McCormack, D G; Parraga, G; Santyr, G E

    2015-12-01

    Diffusion-weighted (DW) hyperpolarized (129) Xe morphometry magnetic resonance imaging (MRI) can be used to map regional differences in lung tissue micro-structure. We aimed to generate absolute xenon concentration ([Xe]) and alveolar oxygen partial pressure (pA O2 ) maps by extracting the unrestricted diffusion coefficient (D0 ) of xenon as a morphometric parameter. In this proof-of-concept demonstration, morphometry was performed using multi b-value (0, 12, 20, 30 s/cm(2) ) DW hyperpolarized (129) Xe images obtained in four never-smokers and four COPD ex-smokers. Morphometric parameters and D0 maps were computed and the latter used to generate [Xe] and pA O2 maps. Xenon concentration phantoms estimating a range of values mimicking those observed in vivo were also investigated. Xenon D0 was significantly increased (P = 0.035) in COPD (0.14 ± 0.03 cm(2) /s) compared with never-smokers (0.12 ± 0.02 cm(2) /s). COPD ex-smokers also had significantly decreased [Xe] (COPD = 8 ± 7% versus never-smokers = 13 ± 8%, P = 0.012) and increased pA O2 (COPD = 18 ± 3% versus never-smokers = 15 ± 3%, P = 0.009) compared with never-smokers. Phantom measurements showed the expected dependence of D0 on [Xe] over the range of concentrations anticipated in vivo. DW hyperpolarized (129) Xe MRI morphometry can be used to simultaneously map [Xe] and pA O2 in addition to providing micro-structural biomarkers of emphysematous destruction in COPD. Phantom measurements of D0 ([Xe]) supported the hypotheses that differences in subjects may reflect differences in functional residual capacity. © 2014 Wiley Periodicals, Inc.

  5. Diffusion and release of noble gas and halogen fission products with several days half-life in UO2 particle

    International Nuclear Information System (INIS)

    Fang Chao

    2013-01-01

    The exact solutions of diffusion and release model of noble gas and halogen fission products in UO 2 particle of HTGR were built under the conditions of adsorption effect and other physical processes. The corresponding release fractions (F(t)) and the ratio of release and productive amounts (R(t)/B (t)) of fission products were also derived. Furthermore, the F(t) and R(t)/B(t) of 131 I, 131 IXe m , 133 Xe and 133 Xe m whose half-lifes are several days in UO 2 particle with the exact solutions, approximate solutions and corresponding numerical solutions under different temperature histories of reactor core were investigated. The results show that the F(t) and R(t)/B(t) are different in numerical values unless the time of release is long enough. The properties of conservation of exact solutions are much more reasonable than the ones of approximate solutions. It is also found that the results of exact solutions approach the actual working conditions more than the approximate and numerical solutions. (author)

  6. Noble Metal Nanoparticles for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Pedro V. Baptista

    2012-02-01

    Full Text Available In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory.

  7. Apparent rate constant mapping using hyperpolarized [1-(13) C]pyruvate

    DEFF Research Database (Denmark)

    Khegai, O.; Schulte, R. F.; Janich, M. A.

    2014-01-01

    Hyperpolarization of [1-13C]pyruvate in solution allows real-time measurement of uptake and metabolism using MR spectroscopic methods. After injection and perfusion, pyruvate is taken up by the cells and enzymatically metabolized into downstream metabolites such as lactate, alanine, and bicarbona...

  8. The Induction of Noble Rot (Botrytis cinerea Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega

    Directory of Open Access Journals (Sweden)

    Stefano Negri

    2017-06-01

    Full Text Available The natural or induced development of noble rot caused by the fungus Botrytis cinerea during the late stages of grapevine (Vitis vinifera L. berry ripening is used in some traditional viticulture areas to produce high-quality wines such as Sauternes and Tokaji. In this research, we wanted to verify if by changing the environmental conditions during post-harvest withering we could induce the noble rot development on harvested berries in order to positively change the wine produced from withered Garganega berries. Therefore, we exposed the berries to postharvest withering under normal or artificially humid conditions, the latter to induce noble rot. The presence of noble rot symptoms was associated with the development of B. cinerea in the berries maintained under humid conditions. The composition of infected and non-infected berries was investigated by untargeted metabolomics using liquid chromatography/mass spectrometry. We also explored the effects of the two withering methods on the abundance of volatile organic compounds in wine by yeast-inoculated micro-fermentation followed by targeted gas chromatography/mass spectrometry. These experiments revealed significant metabolic differences between berries withered under normal and humid conditions, indicating that noble rot affects berry metabolism and composition. As well as well-known botrytization markers, we detected two novel lipids that have not been observed before in berries infected with noble rot. Unraveling the specific metabolic profile of berries infected with noble rot may help to determine the compounds responsible for the organoleptic quality traits of botrytized Garganega wines.

  9. Modeling the cathode region of noble gas mixture discharges using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Donko, Z.; Janossy, M.

    1992-10-01

    A model of the cathode dark space of DC glow discharges was developed in order to study the effects caused by mixing small amounts (≤2%) of other noble gases (Ne, Ar, Kr and Xe) to He. The motion of charged particles was described by Monte Carlo simulation. Several discharge parameters (electron and ion energy distribution functions, electron and ion current densities, reduced ionization coefficients, and current density-voltage characteristics) were obtained. Small amounts of admixtures were found to modify significantly the discharge parameters. Current density-voltage characteristics obtained from the model showed good agreement with experimental data. (author) 40 refs.; 14 figs

  10. Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research

    Directory of Open Access Journals (Sweden)

    John Kurhanewicz

    2011-02-01

    Full Text Available A major challenge in cancer biology is to monitor and understand cancer metabolism in vivo with the goal of improved diagnosis and perhaps therapy. Because of the complexity of biochemical pathways, tracer methods are required for detecting specific enzyme-catalyzed reactions. Stable isotopes such as 13C or 15N with detection by nuclear magnetic resonance provide the necessary information about tissue biochemistry, but the crucial metabolites are present in low concentration and therefore are beyond the detection threshold of traditional magnetic resonance methods. A solution is to improve sensitivity by a factor of 10,000 or more by temporarily redistributing the populations of nuclear spins in a magnetic field, a process termed hyperpolarization. Although this effect is short-lived, hyperpolarized molecules can be generated in an aqueous solution and infused in vivo where metabolism generates products that can be imaged. This discovery lifts the primary constraint on magnetic resonance imaging for monitoring metabolism—poor sensitivity—while preserving the advantage of biochemical information. The purpose of this report was to briefly summarize the known abnormalities in cancer metabolism, the value and limitations of current imaging methods for metabolism, and the principles of hyperpolarization. Recent preclinical applications are described. Hyperpolarization technology is still in its infancy, and current polarizer equipment and methods are suboptimal. Nevertheless, there are no fundamental barriers to rapid translation of this exciting technology to clinical research and perhaps clinical care.

  11. A Bacterial Toxin with Analgesic Properties: Hyperpolarization of DRG Neurons by Mycolactone.

    Science.gov (United States)

    Song, Ok-Ryul; Kim, Han-Byul; Jouny, Samuel; Ricard, Isabelle; Vandeputte, Alexandre; Deboosere, Nathalie; Marion, Estelle; Queval, Christophe J; Lesport, Pierre; Bourinet, Emmanuel; Henrion, Daniel; Oh, Seog Bae; Lebon, Guillaume; Sandoz, Guillaume; Yeramian, Edouard; Marsollier, Laurent; Brodin, Priscille

    2017-07-18

    Mycolactone, a polyketide molecule produced by Mycobacterium ulcerans , is the etiological agent of Buruli ulcer. This lipid toxin is endowed with pleiotropic effects, presents cytotoxic effects at high doses, and notably plays a pivotal role in host response upon colonization by the bacillus. Most remarkably, mycolactone displays intriguing analgesic capabilities: the toxin suppresses or alleviates the pain of the skin lesions it inflicts. We demonstrated that the analgesic capability of mycolactone was not attributable to nerve damage, but instead resulted from the triggering of a cellular pathway targeting AT₂ receptors (angiotensin II type 2 receptors; AT₂R), and leading to potassium-dependent hyperpolarization. This demonstration paves the way to new nature-inspired analgesic protocols. In this direction, we assess here the hyperpolarizing properties of mycolactone on nociceptive neurons. We developed a dedicated medium-throughput assay based on membrane potential changes, and visualized by confocal microscopy of bis-oxonol-loaded Dorsal Root Ganglion (DRG) neurons. We demonstrate that mycolactone at non-cytotoxic doses triggers the hyperpolarization of DRG neurons through AT₂R, with this action being not affected by known ligands of AT₂R. This result points towards novel AT₂R-dependent signaling pathways in DRG neurons underlying the analgesic effect of mycolactone, with the perspective for the development of new types of nature-inspired analgesics.

  12. Quantification of regional early stage gas exchange changes using hyperpolarized {sup 129}Xe MRI in a rat model of radiation-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Doganay, Ozkan, E-mail: ozkan.doganay@oncology.ox.ac.uk [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom); Stirrat, Elaine [Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8 (Canada); McKenzie, Charles [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Schulte, Rolf F. [General Electric Global Research, Munich 85748 (Germany); Santyr, Giles E. [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G1L7 (Canada)

    2016-05-15

    Purpose: To assess the feasibility of hyperpolarized (HP) {sup 129}Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. Methods: The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gy irradiation to the right lung using a {sup 60}Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (L{sub PT}) and relative blood volume (V{sub RBC}) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Results: Statistically significant differences in L{sub PT} and V{sub RBC} were observed between the irradiated and non-irradiated cohorts. In particular, L{sub PT} of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, V{sub RBC} of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the

  13. A gas-phase reactor powered by solar energy and ethanol for H2 production

    International Nuclear Information System (INIS)

    Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Perathoner, Siglinda; Centi, Gabriele

    2014-01-01

    In the view of H 2 as the future energy vector, we presented here the development of a homemade photo-reactor working in gas phase and easily interfacing with fuel cell devices, for H 2 production by ethanol dehydrogenation. The process generates acetaldehyde as the main co-product, which is more economically advantageous with respect to the low valuable CO 2 produced in the alternative pathway of ethanol photoreforming. The materials adopted as photocatalysts are based on TiO 2 substrates but properly modified with noble (Au) and not-noble (Cu) metals to enhance light harvesting in the visible region. The samples were characterized by BET surface area analysis, Transmission Electron Microscopy (TEM) and UV–visible Diffusive Reflectance Spectroscopy, and finally tested in our homemade photo-reactor by simulated solar irradiation. We discussed about the benefits of operating in gas phase with respect to a conventional slurry photo-reactor (minimization of scattering phenomena, no metal leaching, easy product recovery, etc.). Results showed that high H 2 productivity can be obtained in gas phase conditions, also irradiating titania photocatalysts doped with not-noble metals. - Highlights: • A gas-phase photoreactor for H 2 production by ethanol dehydrogenation was developed. • The photocatalytic behaviours of Au and Cu metal-doped TiO 2 thin layers are compared. • Benefits of operating in gas phase with respect to a slurry reactor are presented. • Gas phase conditions and use of not-noble metals are the best economic solution

  14. Production of noble gas isotopes by proton-induced reactions on bismuth

    International Nuclear Information System (INIS)

    Leya, I.; David, J.-C.; Leray, S.; Wieler, R.; Michel, R.

    2008-01-01

    We measured integral thin target cross sections for the proton-induced production of He-, Ne-, Ar-, Kr- and Xe-isotopes from bismuth (Bi) from the respective reaction thresholds up to 2.6 GeV. Here we present 275 cross sections for 23 nuclear reactions. The production of noble gas isotopes from Bi is of special importance for design studies of accelerator driven systems (EA/ADS) and nuclear spallation sources. For experiments with proton energies above 200 MeV the mini-stack approach was used instead of the stacked-foil technique in order to minimise the influences of secondary particles on the residual nuclide production. Comparing the cross sections for Bi to the data published recently for Pb indicates that for 4 He the cross sections for Bi below 200 MeV are up to a factor of 2-3 higher than the Pb data, which can be explained by the production of α-decaying Po-isotopes from Bi but not from Pb. Some of the cross sections for the production of 21 Ne from Bi are affected by recoil effects from neighboured Al-foils, which compromises a study of a possible lowering of the effective Coulomb-barrier. The differences in the excitation functions between Pb and Bi for Kr- and Xe-isotopes can be explained by energy-dependent higher fission cross sections for Bi compared to Pb. The experimental data are compared to results from the theoretical nuclear model codes INCL4/ABLA and TALYS. The INCL4/ABLA system describes the cross sections for the production of 4 He-, Kr- and Xe-isotopes reasonably well, i.e. mostly within a factor of a few. In contrast, the model completely fails describing 21 Ne, 22 Ne, 36 Ar and 38 Ar, which are produced via spallation and/or multifragmentation. The TALYS code is only able to accurately predict reaction thresholds. The absolute values are either significantly over- or underestimated. Consequently, the comparison of measured and modelled thin target cross sections clearly indicates that experimental data are still needed because the

  15. Magneto-optical Kerr spectroscopy of noble metals

    Science.gov (United States)

    Uba, L.; Uba, S.; Antonov, V. N.

    2017-12-01

    Magneto-optical (MO) response of the noble metals Cu, Ag, and Au in the joint experimental and ab initio theoretical study is reported. The magneto-optical polar Kerr effect (MOKE) spectra of the noble-metal films were measured with the high sensitivity in the applied magnetic field of 1.5 T over the photon energy range 0.74-5.8 eV. Complete set of the optical conductivity tensor elements was determined precisely from the MOKE and the optical spectra measured at the same energy points. The importance of the off-diagonal intraband Drude-type transitions is demonstrated explicitly for each noble metal and found to be a substantial contribution to the observed spectra. It is shown that the first-principles calculations using the spin-polarized fully relativistic Dirac linear-muffin-tin-orbital method with the inclusion of correlation effects by GGA+U approach reproduce well the experimental spectra and allow to explain the microscopic origin of the noble metals' magneto-optical response in terms of interband transitions. Although the energy band structures of Cu, Ag, and Au are very similar, there are some distinctive differences in bandwidths and the energy positions of the bands (especially in X and L symmetry points), mainly due to different spin-orbit splitting and differences in the spatial extent of 3 d , 4 d , and 5 d valence wave functions of noble metals. It was found that the small differences in the band positions lead to significant differences in the MO properties of three noble metals. Although the spin-orbit interaction in Au is about six times larger than in Cu, and approximately two times larger than in Ag, the absolute value of Kerr rotation in Au is of the same magnitude as in Cu and one order of magnitude smaller as compared to Ag. The sharp Kerr effect spectral peak in Ag is not due to the electronic interband transitions, but rather to the plasma-edge splitting. The band-by-band decomposition of the Cu, Ag, and Au MO spectra is presented and the

  16. On the neutralization of noble gas ions in low energy ion scattering

    International Nuclear Information System (INIS)

    Draxler, M.

    2003-04-01

    The set-up ACOLISSA has been set to operation. It was thoroughly tested and found to completely fulfill the requirements for the measurement of charge integrated and of ion TOF-LEIS spectra. Charge integrated scattering spectra in LEIS exhibit a surface peak in many experimental conditions. It was shown that the appearance of this peak is due to a reduced energy width of the contribution from the surface layer and partly due to a reduced energy loss in the surface layer as compared to deeper layers. In the regime of strong multiple scattering, both reasons reflect the fact, that scattering from surface atoms occurs practically exclusively by single binary collisions, while plural and multiple scattering set in in the subsurface layers. As a consequence, only the surface layer and to some extent also the second layer will contribute to the surface peak. Experiment as well as simulation show this behavior, so that other possible reasons for the appearance of a surface peak (e.g. channeling) can safely be ruled out. At high energies, when the multiple scattering half width angle is small, surface effects are mainly caused by electronic stopping and become small, as observed in both, experiment and simulation. In this regime, the energy spectrum is well described by the single scattering spectrum. From the present thesis one can draw the following conclusions concerning the neutralization of noble gas ions at metal surfaces: below the threshold for collision induced processes (CIN, CIR) Ε Εth), P+ is governed by local processes (collision induced neutralization and collision induced reionization) and by a non-local process (Auger neutralization), and thus depends on the energy as well as on vperp. From experiments like the one presented here, where the ion energy as well as the scattering geometry are varied, the process parameters of the neutralization can uniquely be determined for any system. These findings are generally valid and reveal the relevance of different

  17. State and trends of ionization gas analysis. 3

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Grosse, H.J.; Popp, P.

    1980-01-01

    Theory, properties, and main fields of application of noble gas detectors are discussed. The theory and design of the indirect electron mobility detector is presented. Conclusions are drawn with regard to possibilities of further development of detectors for the ionization gas analysis

  18. Integrated environmental modeling system for noble gas releases at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cooper, R.E.

    1973-01-01

    The Savannah River Plant (SRP) is a large nuclear complex engaged in varied activities and is the AEC's major site for the production of weapons material. As a result of these activities, there are continuous and intermittent releases of radioactive gases to the atmosphere. Of these releases, the noble gases constitute about 11 percent of the total man-rem exposure to the population out to a distance of 100 km. Although SRP has an extensive radiological monitoring program, an environmental modeling system is necessary for adequately estimating effects on the environment. The integrated environmental modeling system in use at SRP consists of a series of computer programs that generate and use a library of environmental effects data as a function of azimuth and distance. Annual average atmospheric dispersion and azimuthal distribution of material assumed to be released as unit sources is estimated from a 2-year meteorological data base--assuming an arbitrary point of origin. The basic library of data consists of: ground-level concentrations according to isotope, and whole body gamma dose calculations that account for the total spatial distribution at discrete energy levels. These data are normalized to tritium measurements, and are subsequently used to generate similar library data that pertain to specific source locations, but always with respect to the same population grid. Thus, the total additive effects from all source points, both on- and off-site, can be estimated. The final program uses the library data to estimate population exposures for specified releases and source points for the nuclides of interest (including noble gases). Multiple source points are considered within a single pass to obtain the integrated effects from all sources

  19. MO-G-18C-03: Evaluation of Deformable Image Registration for Lung Motion Estimation Using Hyperpolarized Gas Tagging MRI

    International Nuclear Information System (INIS)

    Huang, Q; Zhang, Y; Liu, Y; Hu, L; Yin, F; Cai, J; Miller, W

    2014-01-01

    Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE. Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different

  20. MO-G-18C-03: Evaluation of Deformable Image Registration for Lung Motion Estimation Using Hyperpolarized Gas Tagging MRI

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q; Zhang, Y [Duke University, Durham, NC (United States); Liu, Y [Duke University (United States); Hu, L; Yin, F; Cai, J [Duke University Medical Center, Durham, NC (United States); Miller, W [University of Virginia, Charlottesville, VA (United States)

    2014-06-15

    Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE. Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different

  1. Utilization of the noble gases in studies of underground nuclear detonations

    International Nuclear Information System (INIS)

    Smith, C.F.

    1973-01-01

    The Livermore Gas Diagnostics Program employs a number of rare gas isotopes, both stable and radioactive, in its investigations of the phenomenology of underground nuclear detonations. Radioactive gases in a sample are radiochemically purified by elution chromatography, and the separated gases are radioassayed by gamma-ray spectrometry and by internal or thin-window beta proportional counting. Concentrations of the stable gases are determined by mass-spectrometry, following chemical removal of the reactive gases in the sample. The most general application of the noble gases is as device fraction indicators to provide a basis for estimating totals of chimney-gas components. All of the stable rare gases, except argon, have been used as tracers, as have xenon-127 and krypton-85. Argon-37 and krypton-85 have proven to be of particular value in the absence of a good tracer material as reference species for studies of chimney-gas chemistry. The rate of mixing of chimney gases, and the degree to which the sampled gas truly represents the underground gas mixture, can be studied with the aid of the fission-product gases. Radon-222 and helium are released to the cavity from the surrounding rock, and are, therefore, useful in studies of the interaction of the detonation with the surrounding medium

  2. Gas jet disruption mitigation studies on Alcator C-Mod

    International Nuclear Information System (INIS)

    Granetz, R.; Whyte, D.G.; Izzo, V.A.; Biewer, T.; Reinke, M.L.; Terry, J.; Bader, A.; Bakhtiari, M.; Jernigan, T.; Wurden, G.

    2006-01-01

    Damaging effects of disruptions are a major concern for Alcator C-Mod, ITER and future tokamak reactors. High-pressure noble gas jet injection is a mitigation technique which potentially satisfies the operational requirements of fast response time and reliability, while still being benign to subsequent discharges. Disruption mitigation experiments using an optimized gas jet injection system are being carried out on Alcator C-Mod to study the physics of gas jet penetration into high pressure plasmas, as well as the ability of the gas jet impurities to convert plasma energy into radiation on timescales consistent with C-Mod's fast quench times, and to reduce halo currents given C-Mod's high-current density. The dependence of impurity penetration and effectiveness on noble gas species (He, Ne, Ar, Kr) is also being studied. It is found that the high-pressure neutral gas jet does not penetrate deeply into the C-Mod plasma, and yet prompt core thermal quenches are observed on all gas jet shots. 3D MHD modelling of the disruption physics with NIMROD shows that edge cooling of the plasma triggers fast growing tearing modes which rapidly produce a stochastic region in the core of the plasma and loss of thermal energy. This may explain the apparent effectiveness of the gas jet in C-Mod despite its limited penetration. The higher-Z gases (Ne, Ar, Kr) also proved effective at reducing halo currents and decreasing thermal deposition to the divertor surfaces. In addition, noble gas jet injection proved to be benign for plasma operation with C-Mod's metal (Mo) wall, actually improving the reliability of the startup in the following discharge

  3. A density functional theory study of magneto-electric Jones birefringence of noble gases, furan homologues, and mono-substituted benzenes

    International Nuclear Information System (INIS)

    Fahleson, Tobias; Norman, Patrick; Coriani, Sonia; Rizzo, Antonio; Rikken, Geert L. J. A.

    2013-01-01

    We report on the results of a systematic ab initio study of the Jones birefringence of noble gases, of furan homologues, and of monosubstituted benzenes, in the gas phase, with the aim of analyzing the behavior and the trends within a list of systems of varying size and complexity, and of identifying candidates for a combined experimental/theoretical study of the effect. We resort here to analytic linear and nonlinear response functions in the framework of time-dependent density functional theory. A correlation is made between the observable (the Jones constant) and the atomic radius for noble gases, or the permanent electric dipole and a structure/chemical reactivity descriptor as the para Hammett constant for substituted benzenes

  4. A combined application of hydrochemical, isotope and noble gas methods for determining the origin and age of mineral waters; Kompleksowe zastosowanie metod hydrochemicznych, izotopowych i gazow szlachetnych dla okreslenia genezy i wieku wod mineralnych

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, A. [Institute of Nuclear Physics, Cracow (Poland); Weise, S.M. [GSF-Institut fuer Hydrologie, Oberscheissheim (Germany); Osenbruck, K. [Heidelberg Univ. (Germany); Matenko, T. [P.O. Uzdrowisko Busko-Solec, Busko-Zdroj (Poland); Grabczak, J. [Akademia Ekonomiczna, Wroclaw (Poland)

    1996-12-31

    Chemical data indicate that mineral waters of Busko and Solec Spas are related to leaching of gypsum and salt inclusions at the some time. Sulfide rich shallow water is shown by isotope and noble gas methods to be of an interglacial or interstadial origin, whereas deep saline water(sulfate reach in Busko and Sulfide reach in Solec) is of the pre-Quaternary origin, from the periods after the last sea transgression in the Badenian. (author). 10 refs, 2 figs.

  5. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  6. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    Science.gov (United States)

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  7. Long-term deconditioning of gas-filled surge arresters

    Science.gov (United States)

    Stanković, Koviljka; Brajović, Dragan; Alimpijević, Mališa; Lončar, Boris

    2016-07-01

    The aim of this paper is to identify parameters that influence the long-term deconditioning effect of gas-filled surge arrester (GFSA) and to provide practical recommendations for mitigating this effect. Namely, after some period of time, on order of hours or days, during which there is no activation due to overvoltage, the deconditioning of GFSA occurs. This effect was observed experimentally within the paper. The observed parameters that could influence the long-term deconditioning effect were the following: shape of voltage load, gas type, gas pressure, interelectrode distance, electrode material, electrode surface topography as well as GFSA design such as two- or three-electrode configuration. According to the results obtained, it has been shown that the occurrence of long-term deconditioning in an insulating system, insulated by a noble gas at a subpressure and with small interelectrode distances, is a phenomenon that always occurs when the insulating system is at rest for about an hour. It has been found that the type of noble gas does not influence the long-term deconditioning. Analysis of such insulating systems' parameters, with a prospect of being used as GFSAs, has demonstrated that this phenomenon is less pronounced at higher pressures (for the same value of the pressure (p) and interelectrode distance (d) product) and for electrodes with microscopically embossed surfaces. According to the results that were obtained by noble gases and their mixtures, as well as the results that were obtained by mixtures of SF6 gas with noble gasses, it can be claimed with confidence that the effect of the long-term deconditioning is an electrode effect. It has also been established that the deconditioning effect does not depend on the electrode material except in the case of electrodes made out of noble metals, which reduce the effect. Based on these results, it can be recommended that the working point of GFSAs be set (according to the DC breakdown voltage value) at a

  8. International Conference on LIght Detection in Noble Elements

    CERN Document Server

    2016-01-01

    The objective of the Light Detection in Noble Elements (LIDINE) 2015 conference is to promote discussion between the members of the particle and nuclear physics communities about light and charge collection in detectors based on liquid or gaseous noble elements, xenon and argon being the most common, but neon and helium also in use, and represented at this conference. The neutrino physics, ultra-cold neutron study, dark matter search, and medical physics communities all utilize noble-based detector technologies, recording UV scintillation and/or ionization. Therefore, this will be an interdisciplinary opportunity for information exchange, and a chance for each of these communities enumerated above, in the U.S. as well as abroad, to expand their technical knowledge bases.

  9. Transferability and accuracy by combining dispersionless density functional and incremental post-Hartree-Fock theories: Noble gases adsorption on coronene/graphene/graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Bartolomei, Massimiliano [Instituto de Física Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Stoll, Hermann [Institut für Theoretische Chemie, Universität Stuttgart, D-70550 Stuttgart (Germany)

    2015-11-21

    The accuracy and transferability of the electronic structure approach combining dispersionless density functional theory (DFT) [K. Pernal et al., Phys. Rev. Lett. 103, 263201 (2009)] with the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)], are validated for the interaction between the noble-gas Ne, Ar, Kr, and Xe atoms and coronene/graphene/graphite surfaces. This approach uses the method of increments for surface cluster models to extract intermonomer dispersion-like (2- and 3-body) correlation terms at coupled cluster singles and doubles and perturbative triples level, while periodic dispersionless density functionals calculations are performed to estimate the sum of Hartree-Fock and intramonomer correlation contributions. Dispersion energy contributions are also obtained using DFT-based symmetry-adapted perturbation theory [SAPT(DFT)]. An analysis of the structure of the X/surface (X = Ne, Ar, Kr, and Xe) interaction energies shows the excellent transferability properties of the leading intermonomer correlation contributions across the sequence of noble-gas atoms, which are also discussed using the Drude oscillator model. We further compare these results with van der Waals-(vdW)-corrected DFT-based approaches. As a test of accuracy, the energies of the low-lying nuclear bound states supported by the laterally averaged X/graphite potentials (X = {sup 3}He, {sup 4}He, Ne, Ar, Kr, and Xe) are calculated and compared with the best estimations from experimental measurements and an atom-bond potential model using the ab initio-assisted fine-tuning of semiempirical parameters. The bound-state energies determined differ by less than 6–7 meV (6%) from the atom-bond potential model. The crucial importance of including incremental 3-body dispersion-type terms is clearly demonstrated, showing that the SAPT(DFT) approach effectively account for these terms. With the deviations from the best experimental-based estimations smaller than 2.3 meV (1.9%), the

  10. HARAD, Decay Isotope Concentration from Atmospheric Noble-Gas Release

    International Nuclear Information System (INIS)

    Moore, R.E.

    1986-01-01

    1 - Description of problem or function: HARAD calculates concentrations of radioactive daughters in air following the atmospheric release of a parent radionuclide for a variety of release heights and meteorological conditions. It can be applied most profitably to the assessment of doses to man from the noble gases such as Rn-222, Rn-220, and Xe and Kr isotopes. These gases can produce significant quantities of short-lived particulate daughters in an airborne plume, which are the major contributors to dose. The simultaneous processes of radioactive decay, buildup and environmental loss due to wet and dry deposition on ground surfaces are calculated for a daughter chain in an airborne plume as it is dispersed downwind from a point of release of a parent. 2 - Method of solution: The code evaluates the analytic solution to the set of coupled first order differential equations describing time variation of the concentration of a chain of radionuclides. The analytic solutions assume that the coefficient describing the fractional rate of dry deposition is constant with time. To account for the variation the time coordinate is automatically divided into intervals and a set of average values are used. 3 - Restrictions on the complexity of the problem: - The maximum length of decay chain is 10 nuclides; calculations can be made at a maximum of 24 downwind distances

  11. High-resolution (noble) gas time series for aquatic research

    Science.gov (United States)

    Popp, A. L.; Brennwald, M. S.; Weber, U.; Kipfer, R.

    2017-12-01

    We developed a portable mass spectrometer (miniRUEDI) for on-site quantification of gas concentrations (He, Ar, Kr, N2, O2, CO2, CH4, etc.) in terrestrial gases [1,2]. Using the gas-equilibrium membrane-inlet technique (GE-MIMS), the miniRUEDI for the first time also allows accurate on-site and long-term dissolved-gas analysis in water bodies. The miniRUEDI is designed for operation in the field and at remote locations, using battery power and ambient air as a calibration gas. In contrast to conventional sampling and subsequent lab analysis, the miniRUEDI provides real-time and continuous time series of gas concentrations with a time resolution of a few seconds.Such high-resolution time series and immediate data availability open up new opportunities for research in highly dynamic and heterogeneous environmental systems. In addition the combined analysis of inert and reactive gas species provides direct information on the linkages of physical and biogoechemical processes, such as the air/water gas exchange, excess air formation, O2 turnover, or N2 production by denitrification [1,3,4].We present the miniRUEDI instrument and discuss its use for environmental research based on recent applications of tracking gas dynamics related to rapid and short-term processes in aquatic systems. [1] Brennwald, M.S., Schmidt, M., Oser, J., and Kipfer, R. (2016). Environmental Science and Technology, 50(24):13455-13463, doi: 10.1021/acs.est.6b03669[2] Gasometrix GmbH, gasometrix.com[3] Mächler, L., Peter, S., Brennwald, M.S., and Kipfer, R. (2013). Excess air formation as a mechanism for delivering oxygen to groundwater. Water Resources Research, doi:10.1002/wrcr.20547[4] Mächler, L., Brennwald, M.S., and Kipfer, R. (2013). Argon Concentration Time-Series As a Tool to Study Gas Dynamics in the Hyporheic Zone. Environmental Science and Technology, doi: 10.1021/es305309b

  12. Feasibility, tolerability and safety of pediatric hyperpolarized {sup 129}Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Walkup, Laura L.; Watters, Erin; Ruppert, Kai [Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati, OH (United States); Thomen, Robert P.; Woods, Jason C. [Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati, OH (United States); Washington University in St. Louis, Department of Physics, St. Louis, MO (United States); Akinyi, Teckla G.; Cleveland, Zackary I. [Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati, OH (United States); University of Cincinnati, Biomedical Engineering Program, Cincinnati, OH (United States); Clancy, John P. [Cincinnati Children' s Hospital Medical Center, Division of Pulmonary Medicine, Cincinnati, OH (United States)

    2016-11-15

    Hyperpolarized {sup 129}Xe is a promising contrast agent for MRI of pediatric lung function, but its safety and tolerability in children have not been rigorously assessed. To assess the feasibility, safety and tolerability of hyperpolarized {sup 129}Xe gas as an inhaled contrast agent for pediatric pulmonary MRI in healthy control subjects and in children with cystic fibrosis. Seventeen healthy control subjects (ages 6-15 years, 11 boys) and 11 children with cystic fibrosis (ages 8-16 years, 4 boys) underwent {sup 129}Xe MRI, receiving up to three doses of {sup 129}Xe gas prepared by either a commercially available or a homebuilt {sup 129}Xe polarizer. Subject heart rate and SpO{sub 2} were monitored for 2 min post inhalation and compared to resting baseline values. Adverse events were reported via follow-up phone call at days 1 and 30 (range ±7 days) post-MRI. All children tolerated multiple doses of {sup 129}Xe, and no children withdrew from the study. Relative to baseline, most children who received a full dose of gas for imaging (10 of 12 controls and 8 of 11 children with cystic fibrosis) experienced a nadir in SpO{sub 2} (mean -6.0 ± standard deviation 7.2%, P≤0.001); however within 2 min post inhalation SpO{sub 2} values showed no significant difference from baseline (P=0.11). There was a slight elevation in heart rate (mean +6.6 ± 13.9 beats per minute [bpm], P=0.021), which returned from baseline within 2 min post inhalation (P=0.35). Brief side effects related to the anesthetic properties of xenon were mild and quickly resolved without intervention. No serious or severe adverse events were observed; in total, four minor adverse events (14.3%) were reported following {sup 129}Xe MRI, but all were deemed unrelated to the study. The feasibility, safety and tolerability of {sup 129}Xe MRI has been assessed in a small group of children as young as 6 years. SpO{sub 2} changes were consistent with the expected physiological effects of a short anoxic breath

  13. Novel methods and applications of NMR and MRI. Low-power RF excitation and hyperpolarized Xenon-129

    International Nuclear Information System (INIS)

    Amor, Nadia

    2012-01-01

    Since their discovery in the middle of the last century, Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) have become an important and very versatile tool in industry, medicine, and basic research. The aim of this work is to explore possible improvements and new applications of NMR methods. First, a recently introduced excitation NMR pulse sequence, termed Frank sequence excitation, which allows for significant reduction of rf-excitation power, is systematically analyzed and compared to conventional NMR in detail. Furthermore, its feasibility for MRI is investigated and advantages as well as drawbacks in comparison to standard MRI are discussed. The second part focuses on new biomedical applications of hyperpolarized (HP) 129 Xe which not only offers a signal enhancement of several orders of magnitude but also provides new contrast mechanisms. A setup for continuous dissolution of HP 129 Xe gas into blood and other fluids is optimized and analyzed quantitatively by NMR and MRI. On the basis of these results, blood-dissolved HP 129 Xe is used to investigate blood-gas dynamics, as well as the rheological behavior of blood.

  14. Photo-Ionization of Noble Gases: A Demonstration of Hybrid Coupled Channels Approach

    Directory of Open Access Journals (Sweden)

    Vinay Pramod Majety

    2015-01-01

    Full Text Available We present here an application of the recently developed hybrid coupled channels approach to study photo-ionization of noble gas atoms: Neon and Argon. We first compute multi-photon ionization rates and cross-sections for these inert gas atoms with our approach and compare them with reliable data available from R-matrix Floquet theory. The good agreement between coupled channels and R-matrix Floquet theory show that our method treats multi-electron systems on par with the well established R-matrix theory. We then apply the time dependent surface flux (tSURFF method with our approach to compute total and angle resolved photo-electron spectra from Argon with linearly and circularly polarized 12 nm wavelength laser fields, a typical wavelength available from Free Electron Lasers (FELs.

  15. Quantification of regional early stage gas exchange changes using hyperpolarized "1"2"9Xe MRI in a rat model of radiation-induced lung injury

    International Nuclear Information System (INIS)

    Doganay, Ozkan; Stirrat, Elaine; McKenzie, Charles; Schulte, Rolf F.; Santyr, Giles E.

    2016-01-01

    Purpose: To assess the feasibility of hyperpolarized (HP) "1"2"9Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. Methods: The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gy irradiation to the right lung using a "6"0Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (L_P_T) and relative blood volume (V_R_B_C) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Results: Statistically significant differences in L_P_T and V_R_B_C were observed between the irradiated and non-irradiated cohorts. In particular, L_P_T of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, V_R_B_C of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the MRI measurements for both

  16. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation.

    Science.gov (United States)

    Stupic, K F; Elkins, N D; Pavlovskaya, G E; Repine, J E; Meersmann, T

    2011-07-07

    The (83)Kr magnetic resonance (MR) relaxation time T(1) of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary (83)Kr T(1) relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) (83)Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp (83)Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured (83)Kr T(1) relaxation times. The longitudinal (83)Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T(1) = 1.3 s and T(1) = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the (83)Kr T(1) relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of (83)Kr as a biomarker for evaluating lung function.

  17. Detection of gas atoms with carbon nanotubes

    Science.gov (United States)

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  18. A whiff of nebular gas in Titan's atmosphere - Potential implications for the conditions and timing of Titan's formation

    Science.gov (United States)

    Glein, Christopher R.

    2017-09-01

    In situ data from the GCMS instrument on the Huygens probe indicate that Titan's atmosphere contains small amounts of the primordial noble gases 36Ar and 22Ne (tentative detection), but it is unknown how they were obtained by the satellite. Based on the apparent similarity in the 22Ne/36Ar (atom) ratio between Titan's atmosphere and the solar composition, a previously neglected hypothesis for the origin of primordial noble gases in Titan's atmosphere is suggested - these species may have been acquired near the end of Titan's formation, when the moon could have gravitationally captured some nebular gas that would have been present in its formation environment (the Saturnian subnebula). These noble gases may be remnants of a primary atmosphere. This could be considered the simplest hypothesis to explain the 22Ne/36Ar ratio observed at Titan. However, the 22Ne/36Ar ratio may not be exactly solar if these species can be fractionated by external photoevaporation in the solar nebula, atmospheric escape from Titan, or sequestration on the surface of Titan. While the GCMS data are consistent with a 22Ne/36Ar ratio of 0.05 to 2.5 times solar (1σ range), simple estimates that attempt to account for some of the effects of these evolutionary processes suggest a sub-solar ratio, which may be depleted by approximately one order of magnitude. Models based on capture of nebular gas can explain why the GCMS did not detect any other primordial noble gas isotopes, as their predicted abundances are below the detection limits (especially for 84Kr and 132Xe). It is also predicted that atmospheric Xe on Titan should be dominated by radiogenic 129Xe if the source of primordial Xe is nebular gas. Of order 10-2-10-1 bar of primordial H2 may have been captured along with the noble gases from a gas-starved disk, but this H2 would have quickly escaped from the initial atmosphere. To have the opportunity to capture nebular gas, Titan should have formed within ∼10 Myr of the formation of the

  19. Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2: a DFT study

    Science.gov (United States)

    Chen, Dachang; Zhang, Xiaoxing; Tang, Ju; Cui, Hao; Li, Yi

    2018-02-01

    We explored the adsorption of SO2, SOF2, and SO2F2 on Pt- or Au-doped MoS2 monolayer based on density functional theory. The adsorption energy, adsorption distance, charge transfer as well as density of states were discussed. SO2 and SOF2 exhibit strong chemical interactions with Pt-doped MoS2 based on large adsorption energy, charge transfer, and changes of electron orbitals in gas molecule. SO2 also shows obvious chemisorption on Au-doped MoS2 with apparent magnetism transfer from Au to gas molecules. The adsorption of SO2F2 on Pt-MoS2 and SOF2 on Au-MoS2 exhibits weaker chemical interactions and SO2F2 losses electrons when adsorbed on Pt-MoS2 which is different from other gas adsorption. The adsorption of SO2F2 on Au-MoS2 represents no obvious chemical interaction but physisorption. The gas-sensing properties are also evaluated based on DFT results. This work could provide prospects and application value for typical noble metal-doped MoS2 as gas-sensing materials.

  20. The role of helium and other noble gases in the modelling of geothermal systems

    International Nuclear Information System (INIS)

    Hulston, J.R.

    1994-01-01

    A model of the geothermal system in which deep circulating groundwater containing noble gases at air saturated water concentrations mixes with hot fluids of mantle origin at depth is described. It is proposed that the 3 He/heat ratio should be similar to that observed in mid-ocean ridge systems, in which case the 3 He to atmospheric argon ratio in geothermal discharges would be an indicator o the likely heat content of a system. As a first test of this hypothesis the noble gas results of Mazor et al. (1990) have been presented as the 3 He/heat ratios for Wairakei and early Mokai wells and fumaroles. Their simplified boiling model has been used to correct for the effects of gas-water separation which occurs in underground boiling. At Wairakei, the resultant range of 3 He/heat values is 140-8500 atoms 3 He mW -1 s -1 , similar (except for the lowest values) to the range measured in mid ocean ridges. Further work is needed, but the available data show that the technique has promise for the modelling of deep geothermal systems and providing input to simulation models currently being used in reservoir engineering. The technique has potential to distinguish between stored heat systems and renewing systems. (author). 8 refs., 2 figs., 1 tab

  1. The retention of radioactive noble gases in nuclear power stations by means of activated charcoal delay systems. A status report

    International Nuclear Information System (INIS)

    Schroeder, H.J.

    1983-01-01

    Since the beginning of the 1970s off-gas systems using activated charcoal have been used in BWRs and PWRs to minimize the release of radioactive noble gases and the resultant exposure of the environment. In practice, the power-related noble gas emission rate achieved is 1-10 Ci/MWa in the case of BWRs and 0.1-1 Ci/MWa for PWRs. The systems are relatively simple in design and operators state that they are easy and cheap to run. The activated charcoal used shows no signs of becoming spent and, if protected from humidity, retains its full efficiency. On the basis of the information to hand it has never been necessary to replace it. Experience to date suggests that a charge of activated charcoal can last the life of the facility as a whole. All knowledge and experience gained so far indicate that off-gas systems using activated delay systems for BWR facilities are indispensable and must therefore be considered an integral part of such facilities. Capital expenditure amounts to approximately 1% of the total cost and should, therefore, not be unacceptable. In PWRs off-gas systems using pressure vessels as delay trains are in competition with off-gas systems based on activated charcoal delay systems. The activated charcoal systems have proved themselves and their use, which involves capital expenditure equivalent to approximately of 0.5% to the overall cost, can be recommended without reservation

  2. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  3. Large dose hyperpolarized water with dissolution-DNP at high magnetic field

    DEFF Research Database (Denmark)

    Lipsø, Hans Kasper Wigh; Bowen, Sean; Rybalko, Oleksandr

    2016-01-01

    was polarized and dissolved in a fluid path compatible with clinical polarizers. The volume of hyperpolarized water produced by this method enables angiography and perfusion measurements in large animals, as well as NMR experiments for studies of e.g. proton exchange and polarization transfer to other nuclei....

  4. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules

    Directory of Open Access Journals (Sweden)

    Christian Hundshammer

    2018-02-01

    Full Text Available pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (pKa. Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the pKa of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1-13C]serine amide and [1-13C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei (13C, 15N, 31P with high sensitivity up to 4.8 ppm/pH and we show that 13C spins can be hyperpolarized with dissolution dynamic polarization (DNP. Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  5. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.

    Science.gov (United States)

    Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz

    2018-02-15

    pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  6. Gas geochemistry studies at the gas hydrate occurrence in the permafrost environment of Mallik (NWT, Canada)

    Science.gov (United States)

    Wiersberg, T.; Erzinger, J.; Zimmer, M.; Schicks, J.; Dahms, E.; Mallik Working Group

    2003-04-01

    We present real-time mud gas monitoring data as well as results of noble gas and isotope investigations from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. Mud gas monitoring (extraction of gas dissolved in the drill mud followed by real-time analysis) revealed more or less complete gas depth profiles of Mallik 4L-38 and Mallik 5L-38 wells for N_2, O_2, Ar, He, CO_2, H_2, CH_4, C_2H_6, C_3H_8, C_4H10, and 222Rn; both wells are approx. 1150 m deep. Based on the molecular and and isotopic composition, hydrocarbons occurring at shallow depth (down to ˜400 m) are mostly of microbial origin. Below 400 m, the gas wetness parameter (CH_4/(C_2H_6 + C_3H_8)) and isotopes indicate mixing with thermogenic gas. Gas accumulation at the base of permafrost (˜650 m) as well as δ13C and helium isotopic data implies that the permafrost inhibits gas flux from below. Gas hydrate occurrence at Mallik is known in a depth between ˜890 m and 1100 m. The upper section of the hydrate bearing zone (890 m--920 m) consists predominantly of methane bearing gas hydrates. Between 920 m and 1050 m, concentration of C_2H_6, C_3H_8, and C_4H10 increases due to the occurrence of organic rich sediment layers. Below that interval, the gas composition is similar to the upper section of the hydrate zone. At the base of the hydrate bearing zone (˜1100 m), elevated helium and methane concentrations and their isotopic composition leads to the assumption that gas hydrates act as a barrier for gas migration from below. In mud gas

  7. Noble gases from solar energetic particles revealed by closed system stepwise etching of lunar soil minerals

    International Nuclear Information System (INIS)

    Wieler, R.; Baur, H.; Signer, P.

    1986-01-01

    He, Ne, and Ar abundances and isotopic ratios in plagioclase and pyroxene separates from lunar soils were determined using a closed system stepwise etching technique. This method of noble gas release allows one to separate solar wind (SW) noble gases from those implanted as solar energetic particles (SEP). SEP-Ne with 20 Ne/ 22 Ne = 11.3 +- 0.3 is present in all samples studied. The abundances of SEP-Ne are 2-4 orders of magnitude too high to be explained exclusively as implanted solar flare gas. The major part of SEP-Ne possibly originates from solar 'suprathermal ions' with energies < 0.1 MeV/amu. The isotopic composition of Ne in these lower energy SEP is, however, probably identical to that of real flare Ne. The suggestion that SEP-Ne might have the same isotopic composition as planetary Ne and thus possibly represent an unfractionated sample of solar Ne is not tenable. SW-Ne retained in plagioclase and pyroxene is less fractionated than has been deduced by total fusion analyses. Ne-B is a mixture of SW-Ne and SEP-Ne rather than fractionated SW-Ne. In contrast to SEP-Ne, SEP-Ar has probably a very similar composition as SW-Ar. (author)

  8. Applications of noble gas radiation detectors to counter-terrorism

    International Nuclear Information System (INIS)

    Vanier, Peter E.; Forman, Leon

    2002-01-01

    Radiation detectors are essential tools in the detection, analysis and disposition of potential terrorist devices containing hazardous radioactive and/or fissionable materials. For applications where stand-off distance and source shielding are limiting factors, large detectors have advantages over small ones. The ability to distinguish between Special Nuclear Materials and false-positive signals from natural or man-made benign sources is also important. Ionization chambers containing compressed noble gases, notably xenon and helium-3, can be scaled up to very large sizes, improving the solid angle for acceptance of radiation from a distant source. Gamma spectrometers using Xe have a factor of three better energy resolution than NaI scintillators, allowing better discrimination between radioisotopes. Xenon detectors can be constructed so as to have extremely low leakage currents, enabling them to operate for long periods of time on batteries or solar cells. They are not sensitive to fluctuations in ambient temperature, and are therefore suitable for deployment in outdoor locations. Position-sensitive 3He chambers have been built as large as 3000 cm2, and with spatial resolution of less than 1 mm. Combined with coded apertures made of cadmium, they can be used to create images of thermal neutron sources. The natural background of spallation neutrons from cosmic rays generates a very low count rate, so this instrument could be quite effective at identifying a man-made source, such as a spontaneous fission source (Pu) in contact with a moderator (high explosive)

  9. Feasibility, tolerability and safety of pediatric hyperpolarized "1"2"9Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis

    International Nuclear Information System (INIS)

    Walkup, Laura L.; Watters, Erin; Ruppert, Kai; Thomen, Robert P.; Woods, Jason C.; Akinyi, Teckla G.; Cleveland, Zackary I.; Clancy, John P.

    2016-01-01

    Hyperpolarized "1"2"9Xe is a promising contrast agent for MRI of pediatric lung function, but its safety and tolerability in children have not been rigorously assessed. To assess the feasibility, safety and tolerability of hyperpolarized "1"2"9Xe gas as an inhaled contrast agent for pediatric pulmonary MRI in healthy control subjects and in children with cystic fibrosis. Seventeen healthy control subjects (ages 6-15 years, 11 boys) and 11 children with cystic fibrosis (ages 8-16 years, 4 boys) underwent "1"2"9Xe MRI, receiving up to three doses of "1"2"9Xe gas prepared by either a commercially available or a homebuilt "1"2"9Xe polarizer. Subject heart rate and SpO_2 were monitored for 2 min post inhalation and compared to resting baseline values. Adverse events were reported via follow-up phone call at days 1 and 30 (range ±7 days) post-MRI. All children tolerated multiple doses of "1"2"9Xe, and no children withdrew from the study. Relative to baseline, most children who received a full dose of gas for imaging (10 of 12 controls and 8 of 11 children with cystic fibrosis) experienced a nadir in SpO_2 (mean -6.0 ± standard deviation 7.2%, P≤0.001); however within 2 min post inhalation SpO_2 values showed no significant difference from baseline (P=0.11). There was a slight elevation in heart rate (mean +6.6 ± 13.9 beats per minute [bpm], P=0.021), which returned from baseline within 2 min post inhalation (P=0.35). Brief side effects related to the anesthetic properties of xenon were mild and quickly resolved without intervention. No serious or severe adverse events were observed; in total, four minor adverse events (14.3%) were reported following "1"2"9Xe MRI, but all were deemed unrelated to the study. The feasibility, safety and tolerability of "1"2"9Xe MRI has been assessed in a small group of children as young as 6 years. SpO_2 changes were consistent with the expected physiological effects of a short anoxic breath-hold, and other mild side effects were

  10. Measurements of the diffusion and reflection coefficients of Cd(1S0) in noble gases

    International Nuclear Information System (INIS)

    Rudecki, P.; Domyslawska, J.

    2003-01-01

    A new method of simultaneous determining of the diffusion coefficient and the reflection coefficient of atoms from the reservoir walls is presented. The diffusion coefficient of cadmium atoms in the ground state in buffer noble gas atoms such as Ne, Ar, Kr and Xe and reflection coefficient of Cd atoms from the quartz cell wall in the temperature range 350-550 K were determined. Experimental values diffusion coefficient are compared with theoretical ones calculated from a available potentials. (author)

  11. Evaluation of thermodynamic properties of solubility of noble gases in nitrogen tetroxide

    International Nuclear Information System (INIS)

    Drugachenok, M.A.; Baklaj, A.A.; Basharina, L.P.

    1986-01-01

    The Henry constants and Gibbs energies of dissolution of noble gases in nitrogen tetroxide have been calculated on the basis of the theory of infinitely dilute solutions. A satisfactory agreement between the calculated and experimental results has been obtained. With the increase of the gas atomic mass, enthalpy of solubility decreases monotonously, so that the process of krypton and xenon slubility in nitrogen tetroxide occurs with heat release. Xenon solubility rises with the increase of temperature. Argon solubility in the condition of operation of the loop plant condenser involves investigation of kinetic behaviour of this process

  12. Role of endothelium-derived hyperpolarization in the vasodilatation of rat intrarenal arteries

    DEFF Research Database (Denmark)

    Pinilla, Estéfano; Sánchez-Pina, Ana; Muñoz Picos, Mercedes

    2016-01-01

    Background and purpose: Endothelium-dependent vasodilation plays an important role in the regulation of vascular tone in different vascular beds. Besides the release of prostacyclin (PGI2) and nitric oxide (NO), the endothelium mediates vasodilation through endothelium-derived hyperpolarization (...

  13. Transmit-Only/Receive-Only Radiofrequency System for Hyperpolarized 13C MRS Cardiac Metabolism Studies in Pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Frijia, F.; Hartwig, V.

    2013-01-01

    Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables metabolic activity mapping, providing a powerful tool for the study of the heart physiology, but requires the development of dedicated radiofrequency coils, capable of providing large field of view with high signal......-to-noise ratio (SNR) data. This work describes the simulations and the tests of a transmit-only (TX) volume coil/receive-only (RX) surface coil both designed for hyperpolarized studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model for coil performance...

  14. Ex vivo hyperpolarized MR spectroscopy on isolated renal tubular cells: A novel technique for cell energy phenotyping.

    Science.gov (United States)

    Juul, Troels; Palm, Fredrik; Nielsen, Per Mose; Bertelsen, Lotte Bonde; Laustsen, Christoffer

    2017-08-01

    It has been demonstrated that hyperpolarized 13 C MR is a useful tool to study cultured cells. However, cells in culture can alter phenotype, which raises concerns regarding the in vivo significance of such findings. Here we investigate if metabolic phenotyping using hyperpolarized 13 C MR is suitable for cells isolated from kidney tissue, without prior cell culture. Isolation of tubular cells from freshly excised kidney tissue and treatment with either ouabain or antimycin A was investigated with hyperpolarized MR spectroscopy on a 9.4 Tesla preclinical imaging system. Isolation of tubular cells from less than 2 g of kidney tissue generally resulted in more than 10 million live tubular cells. This amount of cells was enough to yield robust signals from the conversion of 13 C-pyruvate to lactate, bicarbonate and alanine, demonstrating that metabolic flux by means of both anaerobic and aerobic pathways can be quantified using this technique. Ex vivo metabolic phenotyping using hyperpolarized 13 C MR in a preclinical system is a useful technique to study energy metabolism in freshly isolated renal tubular cells. This technique has the potential to advance our understanding of both normal cell physiology as well as pathological processes contributing to kidney disease. Magn Reson Med 78:457-461, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Filamentous fungi associated with natural infection of noble rot on withered grapes.

    Science.gov (United States)

    Lorenzini, M; Simonato, B; Favati, F; Bernardi, P; Sbarbati, A; Zapparoli, G

    2018-05-02

    The effects of noble rot infection of grapes on the characteristics of different types of wine, including Italian passito wine, are well known. Nevertheless, there is still little information on filamentous fungi associated with noble-rotten grapes. In this study, withered Garganega grapes for passito wine production, naturally infected by noble rot, were analyzed and compared to sound grapes. Skin morphology and fungal population on berry surfaces were analyzed. Scanning electron microscopy analysis revealed microcracks, germination conidia and branched hyphae on noble-rotten berries. Penicillium, Aureobasidium and Cladosporium were the most frequent genera present. Analysis of single berries displayed higher heterogeneity of epiphytic fungi in those infected by noble-rot than in sound berries. Penicillium adametzoides, Cladosporium cladospoirioides and Coniochaeta polymorpha were recovered. These, to the best of our knowledge, had never been previously isolated from withered grapes and, for C. polymorpha, from grapevine. This study provided novel data on noble rot mycobiota and suggests that fungi that co-habit with B. cinerea could have an important role on grape and wine quality. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Hyperpolarized 13C MR imaging detects no lactate production in mutant IDH1 gliomas: Implications for diagnosis and response monitoring

    Directory of Open Access Journals (Sweden)

    Myriam M. Chaumeil

    2016-01-01

    Full Text Available Metabolic imaging of brain tumors using 13C Magnetic Resonance Spectroscopy (MRS of hyperpolarized [1-13C] pyruvate is a promising neuroimaging strategy which, after a decade of preclinical success in glioblastoma (GBM models, is now entering clinical trials in multiple centers. Typically, the presence of GBM has been associated with elevated hyperpolarized [1-13C] lactate produced from [1-13C] pyruvate, and response to therapy has been associated with a drop in hyperpolarized [1-13C] lactate. However, to date, lower grade gliomas had not been investigated using this approach. The most prevalent mutation in lower grade gliomas is the isocitrate dehydrogenase 1 (IDH1 mutation, which, in addition to initiating tumor development, also induces metabolic reprogramming. In particular, mutant IDH1 gliomas are associated with low levels of lactate dehydrogenase A (LDHA and monocarboxylate transporters 1 and 4 (MCT1, MCT4, three proteins involved in pyruvate metabolism to lactate. We therefore investigated the potential of 13C MRS of hyperpolarized [1-13C] pyruvate for detection of mutant IDH1 gliomas and for monitoring of their therapeutic response. We studied patient-derived mutant IDH1 glioma cells that underexpress LDHA, MCT1 and MCT4, and wild-type IDH1 GBM cells that express high levels of these proteins. Mutant IDH1 cells and tumors produced significantly less hyperpolarized [1-13C] lactate compared to GBM, consistent with their metabolic reprogramming. Furthermore, hyperpolarized [1-13C] lactate production was not affected by chemotherapeutic treatment with temozolomide (TMZ in mutant IDH1 tumors, in contrast to previous reports in GBM. Our results demonstrate the unusual metabolic imaging profile of mutant IDH1 gliomas, which, when combined with other clinically available imaging methods, could be used to detect the presence of the IDH1 mutation in vivo.

  17. Lipopolysaccharide hyperpolarizes guinea pig airway epithelium by increasing the activities of the epithelial Na(+) channel and the Na(+)-K(+) pump.

    Science.gov (United States)

    Dodrill, Michael W; Fedan, Jeffrey S

    2010-10-01

    Earlier, we found that systemic administration of lipopolysaccharide (LPS; 4 mg/kg) hyperpolarized the transepithelial potential difference (V(t)) of tracheal epithelium in the isolated, perfused trachea (IPT) of the guinea pig 18 h after injection. As well, LPS increased the hyperpolarization component of the response to basolateral methacholine, and potentiated the epithelium-derived relaxing factor-mediated relaxation responses to hyperosmolar solutions applied to the apical membrane. We hypothesized that LPS stimulates the transepithelial movement of Na(+) via the epithelial sodium channel (ENaC)/Na(+)-K(+) pump axis, leading to hyperpolarization of V(t). LPS increased the V(t)-depolarizing response to amiloride (10 μM), i.e., offset the effect of LPS, indicating that Na(+) transport activity was increased. The functional activity of ENaC was measured in the IPT after short-circuiting the Na(+)-K(+) pump with basolateral amphotericin B (7.5 μM). LPS had no effect on the hyperpolarization response to apical trypsin (100 U/ml) in the Ussing chamber, indicating that channel-activating proteases are not involved in the LPS-induced activation of ENaC. To assess Na(+)-K(+) pump activity in the IPT, ENaC was short-circuited with apical amphotericin B. The greater V(t) in the presence of amphotericin B in tracheas from LPS-treated animals compared with controls revealed that LPS increased Na(+)-K(+) pump activity. This finding was confirmed in the Ussing chamber by inhibiting the Na(+)-K(+) pump via extracellular K(+) removal, loading the epithelium with Na(+), and observing a greater hyperpolarization response to K(+) restoration. Together, the findings of this study reveal that LPS hyperpolarizes the airway epithelium by increasing the activities of ENaC and the Na(+)-K(+) pump.

  18. The Noble Gas Abundances in the Coma of Comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA

    Science.gov (United States)

    Rubin, M.; Altwegg, K.; Balsiger, H. R.; Berthelier, J. J.; Briois, C.; Combi, M. R.; De Keyser, J.; Fiethe, B.; Fuselier, S. A.; Gasc, S.; Gombosi, T. I.; Hansen, K. C.; Jäckel, A.; Kopp, E.; Korth, A.; Mall, U.; Marty, B.; Mousis, O.; Owen, T.; Reme, H.; Schuhmann, M.; Schroeder, I. R. H. G.; Semon, T.; Tzou, C. Y.; Waite, J. H., Jr.; Wurz, P.

    2017-12-01

    The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA), the mass spectrometer suite on board the European Space Agency's Rosetta mission, was dedicated to the measurement of the volatiles in the coma of comet 67P/Churyumov-Gerasimenko (67P) [1]. Among many other species, ROSINA DFMS, the Double Focusing Mass Spectrometer, detected and quantified the three noble gases argon, krypton, and xenon including their major isotopes [2,3]. Noble gases provide important clues to the physical and chemical conditions during and possibly even before and after the comet's formation in the early solar system. Furthermore, measurements of the isotope ratios provide constraints on the amount of cometary material brought to Earth and its early atmosphere. In this presentation, we will report on the measured coma densities and derived nucleus bulk abundances of these three noble gases and investigate correlations with other volatiles. Furthermore, we will discuss the measured isotope ratios and the implications of these results. AcknowledgementsUoB was funded by the State of Bern, the Swiss National Science Foundation and by the European Space Agency PRODEX Programme. Work at MPS was funded by the Max-Planck Gesellschaft and BMWI (contract 50QP1302), at Southwest Research institute by Jet Propulsion Laboratory (subcontract #1496541 and JPL subcontract to JWH NAS703001TONMO710889), at the University of Michigan by NASA (contract JPL-1266313). This work has been supported through the A*MIDEX project from the French National Research Agency (ANR) (n° ANR-11-IDEX- 0001-02) and by CNES grants at IRAP, LATMOS, LPC2E, LAM, CRPG, by the European Research Council (grant no. 267255 to B. Marty) and at BIRA-IASB by the Belgian Science Policy Office via PRODEX/ROSINA PEA C4000107705. References[1] Balsiger, H., et al., Rosina - Rosetta orbiter spectrometer for ion and neutral analysis. Space Science Reviews. 128, 745-801, 2007. [2] Balsiger, H., et al., Detection of argon in the

  19. Hyperpolarization moves S4 sensors inward to open MVP, a methanococcal voltage-gated potassium channel.

    Science.gov (United States)

    Sesti, Federico; Rajan, Sindhu; Gonzalez-Colaso, Rosana; Nikolaeva, Natalia; Goldstein, Steve A N

    2003-04-01

    MVP, a Methanococcus jannaschii voltage-gated potassium channel, was cloned and shown to operate in eukaryotic and prokaryotic cells. Like pacemaker channels, MVP opens on hyperpolarization using S4 voltage sensors like those in classical channels activated by depolarization. The MVP S4 span resembles classical sensors in sequence, charge, topology and movement, traveling inward on hyperpolarization and outward on depolarization (via canaliculi in the protein that bring the extracellular and internal solutions into proximity across a short barrier). Thus, MVP opens with sensors inward indicating a reversal of S4 position and pore state compared to classical channels. Homologous channels in mammals and plants are expected to function similarly.

  20. Market penetration of natural gas in Europe

    International Nuclear Information System (INIS)

    Haas, R.; Wirl, F.

    1992-01-01

    The strategy of restricting natural gas to noble uses (directive of EEC and endorsed by the IEA) impeded gas expansion despite substantial upward revisions in the assessment of available resources. However, increasing environmental concern slowly but gradually undermines this strategy because natural gas serves as a substitute for costly abatement. This article discusses the prospect of future natural gas consumption considering economic and ecological facts as well as strategic and political considerations. In fact, we argue that inconsistent political interventions first seriously lowered gas penetration but now favor its use

  1. Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI

    Science.gov (United States)

    Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian

    2005-04-01

    Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CT (μCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.

  2. Engineering noble metal nanomaterials for environmental applications

    Science.gov (United States)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-04-01

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  3. Engineering noble metal nanomaterials for environmental applications.

    Science.gov (United States)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-05-07

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  4. Novel methods and applications of NMR and MRI. Low-power RF excitation and hyperpolarized Xenon-129

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Nadia

    2012-07-01

    Since their discovery in the middle of the last century, Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) have become an important and very versatile tool in industry, medicine, and basic research. The aim of this work is to explore possible improvements and new applications of NMR methods. First, a recently introduced excitation NMR pulse sequence, termed Frank sequence excitation, which allows for significant reduction of rf-excitation power, is systematically analyzed and compared to conventional NMR in detail. Furthermore, its feasibility for MRI is investigated and advantages as well as drawbacks in comparison to standard MRI are discussed. The second part focuses on new biomedical applications of hyperpolarized (HP) {sup 129}Xe which not only offers a signal enhancement of several orders of magnitude but also provides new contrast mechanisms. A setup for continuous dissolution of HP {sup 129}Xe gas into blood and other fluids is optimized and analyzed quantitatively by NMR and MRI. On the basis of these results, blood-dissolved HP {sup 129}Xe is used to investigate blood-gas dynamics, as well as the rheological behavior of blood.

  5. Interaction of noble-metal fission products with pyrolytic silicon carbide

    International Nuclear Information System (INIS)

    Lauf, R.J.; Braski, D.N.

    1982-01-01

    Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain layers of pyrolytic carbon and silicon carbide, which act as a miniature pressure vessel and form the primary fission product barrier. Of the many fission products formed during irradiation, the noble metals are of particular interest because they interact significantly with the SiC layer and their concentrations are somewhat higher in the low-enriched uranium fuels currently under consideration. To study fission product-SiC interactions, particles of UO 2 or UC 2 are doped with fission product elements before coating and are then held in a thermal gradient up to several thousand hours. Examination of the SiC coatings by TEM-AEM after annealing shows that silver behaves differently from the palladium group

  6. Primordial domains in the depleted upper mantle identified by noble gases in MORBs

    Science.gov (United States)

    Tucker, J.; Mukhopadhyay, S.; Langmuir, C. H.; Hamelin, C.; Fuentes, J.

    2017-12-01

    The distribution of noble gas isotopic compositions in the mantle provides important constraints on the large-scale mantle evolution, as noble gases can trace the interaction between degassed, or processed, mantle domains and undegassed, or primitive, mantle domains. Data from the radiogenic He, Ne, Ar and Xe isotopic systems have shown that plume-related lavas sample relatively undegassed mantle domains, and the recent identification of isotopic anomalies in the short-lived I-Xe and Hf-W isotopic systems in plume-related lavas further suggests that these domains may be ancient, dating back to Earth's accretion. However, little is known about the potential variability of the heavy noble gas systems and the distribution of undegassed domains in the ambient upper mantle not influenced by plumes. Here, we present new high-precision He, Ne, Ar, and Xe isotopic data for a series of MORBs from a depleted section of the subtropical north Mid-Atlantic Ridge, distant from any known plume influence. Some samples have extremely low (unradiogenic) 4He/3He, 21Ne/22Ne, 40Ar/36Ar, and 129Xe/130Xe ratios, including some of the lowest values ever determined for MORBs. Such unradiogenic compositions are reminiscent of OIBs and plume-influenced E-MORBs, suggesting the presence of a relatively undegassed or primitive reservoir in the source of these depleted MORBs. The He, Ne, and Ar isotopic systems are sensitive to the long-term degassing history, suggesting that this domain in the MORB source is ancient. The 129Xe/130Xe ratio is sensitive to degassing only during the first 100 Ma of Earth history, suggesting that some of the isotopic character of these samples has been preserved since Earth's accretion. Together, these observations suggest that primordial or undegassed material is not only sampled in plumes-related lavas, but also normal, depleted MORBs. Along with data from E-MORBs in the southern EPR (Kurz et al., 2005), southern MAR (Sarda et al., 2000), and equatorial MAR

  7. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.

    Science.gov (United States)

    Khrustalev, K; Popov, V Yu; Popov, Yu S

    2017-08-01

    We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Recovery of noble metals from fission products

    International Nuclear Information System (INIS)

    Jenson, G.A.; Platt, A.M.; Mellinger, G.B.; Bjorklund, W.J.

    1982-11-01

    Scoping studies were started in 1979 to develop a cost-effective, waste-management-compatible process to extract noble metals from fission products. The process, involving the reaction with glassmelting chemicals, a metal oxide (PbO), and a reducing agent (charcoal), was demonstrated for recovering noble metals from simulated high-level waste oxides. The process has now been demonstrated on a laboratory scale (100 g) using irradiated fuels. Recoveries in the recovered lead averaged 80% for Pd, 60% for Rh, and 14% Ru. The resulting glass product was homogeneous in appearance, and the chemical durability was comparable to other waste oxides

  9. Imaging regional metabolic changes in the ischemic rat heart in vivo using hyperpolarized(1-13C)Pyruvate

    DEFF Research Database (Denmark)

    Lauritzen, Mette Hauge; Magnusson, Peter; Laustsen, Christoffer

    2017-01-01

    in the in vivo rat heart in an open-chest model of ischemia reperfusion. Hyperpolarized MRI enables new possibilities for evaluating changes in cardiac metabolism noninvasively and in real time, which potentially could be used for research to evaluate new treatments and metabolic interventions for myocardial......We evaluated the use of hyperpolarized 13C magnetic resonance imaging (MRI) in an open-chest rat model of myocardial infarction to image regional changes in myocardial metabolism. In total, 10 rats were examined before and after 30 minutes of occlusion of the left anterior descending coronary...

  10. Diatomic infrared gas-dynamic laser

    International Nuclear Information System (INIS)

    Mckenzie, R.L.

    1971-01-01

    A laser is provided which utilizes the infrared vibration rotation transitions of a diatomic gas such as carbon monoxide. The laser action is produced by an active diatomic gas such as carbon monoxide mixed with a vibrationally resonant pumping gas such as nitrogen. In addition, a noble gas such as argon may be employed as a third gas in the mixture. The gas mixture contains from 1 to 80 vol percent of the active gas based on the pumping gas, and the third gas, if used, can constitute up to 90 percent of the total gas volume. A number of significantly different wavelengths can be produced by the laser. A single laser may contain several optical resonators at different locations, so that the desired wave length can be selected at will

  11. Synthesis of long T silicon nanoparticles for hyperpolarized Si magnetic resonance imaging

    DEFF Research Database (Denmark)

    Atkins, T.M.; Ganguly, S.; Kauzlarich, S.M.

    2013-01-01

    silicide (Na Si) and silicon tetrachloride (SiCl) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted Si spin-lattice relaxation (T) times (>600 s), which are retained after hyperpolarization by low...

  12. Probing cardiac metabolism by hyperpolarized 13C MR using an exclusively endogenous substrate mixture and photo-induced nonpersistent radicals

    DEFF Research Database (Denmark)

    Bastiaansen, Jessica A M; Yoshihara, Hikari A I; Capozzi, Andrea

    2018-01-01

    dissolved, and the radical-free hyperpolarized solution was rapidly transferred into an injection pump located inside a 9.4T scanner. The hyperpolarized solution was injected in healthy rats to measure cardiac metabolism in vivo. Ultraviolet irradiation created nonpersistent radicals in a mixture containing......To probe the cardiac metabolism of carbohydrates and short chain fatty acids simultaneously in vivo following the injection of a hyperpolarized 13 C-labeled substrate mixture prepared using photo-induced nonpersistent radicals. Droplets of mixed [1-13 C]pyruvic and [1-13 C]butyric acids were frozen...... into glassy beads in liquid nitrogen. Ethanol addition was investigated as a means to increase the polarization level. The beads were irradiated with ultraviolet light and the radical concentration was measured by ESR spectroscopy. Following dynamic nuclear polarization in a 7T polarizer, the beads were...

  13. Use of a 3-MV proton accelerator for study of noble gases, including laser ionization of excited states

    International Nuclear Information System (INIS)

    Hurst, G.S.; Judish, J.P.; Nayfeh, M.H.; Parks, J.E.; Payne, M.G.; Wagner, E.B.

    1974-01-01

    The use of a pulsed 3-MV accelerator to study energy pathways in the noble gases is described. The objectives of pathways research are to obtain (1) information on the spectrum of excited states produced by a charged particle in a noble gas, (2) the rate of decay of the various states through various channels as a function of gas pressure, and (3) the modification of the decay channels due to the introduction of foreign species. A new energy pathways model is presented for helium as a general illustration. A method for the study of excited states, using a laser ionization technique is reported. Use is made of a laser which is tuned to a resonance transition between the desired excited state and some higher excited state. Photons in the same pulse photoionize the higher excited state; thus the ionization current vs photon wavelength has a resonance structure. Absolute yields of selected excited states can be obtained whenever the photon fluence per pulse is large enough to saturate the ionization current. A general summary is given of experimental facilities which include a 3-MV Van de Graaff accelerator, electronics for measuring radiation lifetimes, vacuum ultraviolet spectrometers, and a pulsed laser facility for direct study of excited states. Finally, the relevance of pathways research to (1) the interaction of radiation with matter, (2) the development of gas lasers, and (3) methods of ultrasensitive elemental analysis is pointed out

  14. High Voltage in Noble Liquids for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, B. [Fermilab; Bernard, E. [Yale U.; Faham, C. H. [LBL, Berkeley; Ito, T. M. [Los Alamos; Lundberg, B. [Maryland U.; Messina, M. [Columbia U.; Monrabal, F. [Valencia U., IFIC; Pereverzev, S. P. [LLNL, Livermore; Resnati, F. [Zurich, ETH; Rowson, P. C. [SLAC; Soderberg, M. [Fermilab; Strauss, T. [Bern U.; Tomas, A. [Imperial Coll., London; Va' vra, J. [SLAC; Wang, H. [UCLA

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  15. T1 nuclear magnetic relaxation dispersion of hyperpolarized sodium and cesium hydrogencarbonate-13 C.

    Science.gov (United States)

    Martínez-Santiesteban, Francisco M; Dang, Thien Phuoc; Lim, Heeseung; Chen, Albert P; Scholl, Timothy J

    2017-09-01

    In vivo pH mapping in tissue using hyperpolarized hydrogencarbonate- 13 C has been proposed as a method to study tumor growth and treatment and other pathological conditions related to pH changes. The finite spin-lattice relaxation times (T 1 ) of hyperpolarized media are a significant limiting factor for in vivo imaging. Relaxation times can be measured at standard magnetic fields (1.5 T, 3.0 T etc.), but no such data are available at low fields, where T 1 values can be significantly shorter. This information is required to determine the potential loss of polarization as the agent is dispensed and transported from the polarizer to the MRI scanner. The purpose of this study is to measure T 1 dispersion from low to clinical magnetic fields (0.4 mT to 3.0 T) of different hyperpolarized hydrogencarbonate formulations previously proposed in the literature for in vivo pH measurements. 13 C-enriched cesium and sodium hydrogencarbonate preparations were hyperpolarized using dynamic nuclear polarization, and the T 1 values of different samples were measured at different magnetic field strengths using a fast field-cycling relaxometer and a 3.0 T clinical MRI system. The effects of deuterium oxide as a dissolution medium for sodium hydrogencarbonate were also analyzed. This study finds that the cesium formulation has slightly shorter T 1 values compared with the sodium preparation. However, the higher solubility of cesium hydrogencarbonate- 13 C means it can be polarized at greater concentration, using less trityl radical than sodium hydrogencarbonate- 13 C. This study also establishes that the preparation and handling of sodium hydrogencarbonate formulations in relation to cesium hydrogencarbonate is more difficult, due to the higher viscosity and lower achievable concentrations, and that deuterium oxide significantly increases the T 1 of sodium hydrogencarbonate solutions. Finally, this work also investigates the influence of pH on the spin-lattice relaxation of cesium

  16. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    Directory of Open Access Journals (Sweden)

    Popov E.N.

    2015-01-01

    Full Text Available Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  17. Noble Estate Self-Government in Russia: Between the State and Civil Society

    Directory of Open Access Journals (Sweden)

    Alexander Yu. Morozov

    2016-10-01

    Full Text Available This article is devoted to assessing the role of noble self-governance in the history of Russia. According to Boris Mironov, before the Great Reforms of the 1860s, each noble assembly was a part of civil society. This point of view has aroused objections and debate among Russian historians. Morozov analyzed the historiographical aspect of the problem and demonstrated the impact of the socio-political context of their scientific work on Russian historians. In his opinion, from a purely legal point of view, there is reason to conclude that the autonomy of noble assemblies increased in the first half of the 19th century. However, the question of the extent to which these opportunities were realized in practice has been poorly studied. In the literature, there are examples of effective methods of influencing the government at the noble assemblies despite legal restrictions, as well as examples of noble assemblies that did not restrain the arbitrariness of the crown authority, did not protect their members from its abuse, and did not serve as the expression of public opinion. Mironov’s attempt to place in doubt the fact of the widespread presence of absenteeism seems unconvincing to Morozov. However, he agrees with Mironov that after 1861, the nobility really became a part of civil society, because the activity of noble organizations increased substantially in many different directions, including the political. For almost half a century of its history, the noble corporate organization evolved from a traditional institution into a civil one, which retained many features of traditional organization.

  18. Quantified pH imaging with hyperpolarized (13) C-bicarbonate.

    Science.gov (United States)

    Scholz, David Johannes; Janich, Martin A; Köllisch, Ulrich; Schulte, Rolf F; Ardenkjaer-Larsen, Jan H; Frank, Annette; Haase, Axel; Schwaiger, Markus; Menzel, Marion I

    2015-06-01

    Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method-based errors, and applied in vivo. In vitro and in vivo (13) C mapping were performed for various flip angles for bicarbonate (BiC) and CO2 with spectral-spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction. After optimizing the signal to noise ratio of the hyperpolarized (13) C-bicarbonate, error estimation of the spectral-spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (< 0.2). Quantification of pH maps shows negligible impact of the residual bicarbonate signal. pH maps reflect the induction of acute metabolic alkalosis. Inflamed, infected regions exhibit lower pH. Hyperpolarized (13) C-bicarbonate pH mapping was shown to be sensitive in the biologically relevant pH range. The mapping of pH was applied to healthy in vivo organs and interpreted within inflammation and acute metabolic alkalosis models. © 2014 Wiley Periodicals, Inc.

  19. Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186

    Science.gov (United States)

    Srinivasan, P.; McCubbin, F. M.; Rahman, Z.; Keller, L. P.; Agee, C. B.

    2016-01-01

    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approximately 576-867 degrees Centigrade. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Me-tallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120-degree triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3 plus, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study.

  20. Probing the porosity of cocrystallized MCM-49/ZSM-35 zeolites by hyperpolarized 129Xe NMR.

    Science.gov (United States)

    Liu, Yong; Zhang, Weiping; Xie, Sujuan; Xu, Longya; Han, Xiuwen; Bao, Xinhe

    2008-01-31

    One- and two-dimensional 129Xe NMR spectroscopy has been employed to study the porosity of cocrystallized MCM-49/ZSM-35 zeolites under the continuous flow of hyperpolarized xenon gas. It is found by variable-temperature experiments that Xe atoms can be adsorbed in different domains of MCM-49/ZSM-35 cocrystallized zeolites and the mechanically mixed counterparts. The exchange of Xe atoms in different types of pores is very fast at ambient temperatures. Even at very low temperature two-dimensional exchange spectra (EXSY) show that Xe atoms still undergo much faster exchange between MCM-49 and ZSM-35 analogues in the cocrystallized zeolites than in the mechanical mixture. This demonstrates that the MCM-49 and ZSM-35 analogues in cocrystallized zeolites may be stacked much closer than in the physical mixture, and some parts of intergrowth may be formed due to the partially similar basic structure of MCM-49 and ZSM-35.

  1. Natural gas industry at the 2020 prospects

    International Nuclear Information System (INIS)

    Chabrelie, M.F.

    2006-01-01

    Natural gas was for a long time reserved to the most noble uses in the industry. However, natural gas, which get a priori no captive market, has progressively imposed itself in all possible energy uses. The gas resources and abundant enough to represent the main contribution of the energy industry of the 21 century. With intrinsic qualities which make it an energy less polluting than the other fossil fuels, natural gas is the commercial energy source with the highest potential growth in the energy status of the future. (J.S.)

  2. Noble gas separation methods for radioactivity retention in nuclear facilities

    International Nuclear Information System (INIS)

    Lehmer, W.; Schiller, H.

    1976-01-01

    The possibilities of applying process techniques in order to reduce gas-borne activity by means of different gas separation processes are looked at and their effectiveness are critically compared. (HP/LN) [de

  3. Single and multiple ionization of noble gas atoms by H0 impact

    International Nuclear Information System (INIS)

    Sarkadi, L.; Gulyas, L.; Herczku, P.; Kovacs, S.T.S.; Koever, A.

    2012-01-01

    Complete text of publication follows. The understanding of the mechanisms of collisions between energetic charged particles and neutral atoms is of fundamental significance, and it has large importance in many research fields (plasma physics, astrophysics, materials science, etc.), as well as in number of practical applications. In the present work we measured total direct ionization and electron loss cross sections for the collisions of H 0 atoms with noble gas atoms (He, Ne, Ar, Kr) in the energy range 75-300 keV. The experiment was carried out at the 1.5 MV Van de Graaff accelerator of Atomki by coincident detection of the recoil target ions and the charge-state analyzed scattered projectiles. With this study we wished to obtain information about the role played by the electron of the H 0 projectile in the process of the single and multiple vacancy production induced by the collision. For this purpose we repeated the measurements also with proton projectile under the same experimental conditions. For calibration of the measuring system and normalization of our data we used the cross section values of Ref. [1]. The experimental results were analysed with using the classical trajectory Monte Carlo (CTMC) method. CTMC describes well the experimental data for both projectiles for the single vacancy creation, however we observed increasing deviation between the theory and experiment with increasing number of the created vacancies, as well as with decreasing atomic number of the target atoms. Fig. 1 shows our results obtained for the single, double and triple ionization (q = 1, 2, 3) of Kr at H 0 impact for the two cases when the outgoing projectile is H 0 (a) and H + (b), i.e., for pure ionization of the target, and ionization of the target with simultaneous electron loss of the projectile. The curves in the figure were obtained by two versions of the three-body CTMC theory: a conventional model (dashed curves); and a model taking partially account of the many

  4. Ultrafast Mid-IR Nonlinear Optics in Gas-filled Hollow-core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Habib, Selim

    Invention of hollow-core fiber has been proven an ideal medium to study light-gas interaction. Tight confinement of light inside hollowcore fiber allows unremitting and tailored interaction between light and gas over long distances. In this work, we used a special kind of hollowcore fiber − hollow......-core anti-resonant (HC-AR) fiber to study the various nonlinear effects filled with Raman free noble gas. One of the main striking features of HC-AR fiber is that ∼99.99% light can be guided inside the central hollow-core region, which significantly enhances damage threshold level. HC-AR fiber can sustain...... be tuned by simply changing the pressure of the gas while at the same time providing extremely wide transparency ranges. In this thesis, we propose several low-loss broadband guidance HC-AR fibers and investigate soliton-plasma dynamics using HC-AR fiber filled with noble gas in the mid-IR. The combined...

  5. The behavior and effects of the noble metals in the DWPF melter system

    International Nuclear Information System (INIS)

    Hutson, N.D.; Smith, M.E.

    1992-01-01

    Fission-product noble metals have caused severe operating problems in numerous worldwide waste vitrification facilities. These dense, highly conductive noble metals have tended to accumulate on the floor of joule-heated glass melters causing electrical distortions which have, in some occurrences, rendered the melter inoperable. A pilot scale vitrification research facility at the U.S. Department of Energy's Savannah River Laboratory has been operated for more than a year with simulated feed streams containing noble metals. In this paper the behavior of these noble metals in the melter system and final glass product and their effects on the scaled DWPF-type melter are discussed

  6. Dissolved gas concentrations of the geothermal fluids in Taiwan

    Science.gov (United States)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  7. Effective collision frequency of electrons in noble gases

    International Nuclear Information System (INIS)

    Baille, P.; Chang, J.-S.; Claude, A.; Yau, A.W.; Hobson, R.M.; Ogram, G.L.

    1981-01-01

    The electron-neutral collision frequency in the noble gases has been calculated using recent numerical results for momentum transfer cross sections by assuming a Maxwellian distribution of electron velocities. In all these gases, except for argon, good agreement is obtained with most previously published experimental and theoretical data. Mean free path, mobilities and diffusion coefficients are also calculated from the resulting effective collision frequencies. The empirical formulae are presented for an electron temperature dependence of the electron-neutral collision frequency for all noble gases up to Tsub(e) < approximately 25.000 K. (author)

  8. Diffusion of hyperpolarized {sup 129}Xe in the lung: a simplified model of {sup 129}Xe septal uptake and experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Patz, Samuel; Muradyan, Iga; Dabaghyan, Mikayel; Washko, George R; Hatabu, Hiroto; Butler, James P [Center for Pulmonary Functional Imaging, Departments of Radiology and Pulmonary Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Hrovat, Mirko I, E-mail: patz@bwh.harvard.edu [Mirtech, Inc., Brockton, MA 02301 (United States)

    2011-01-15

    We used hyperpolarized {sup 129}Xe NMR to measure pulmonary alveolar surface area per unit gas volume S{sub A}/V{sub gas}, alveolar septal thickness h and capillary transit time {tau}, three critical determinants of the lung's primary role as a gas exchange organ. An analytical solution for a simplified diffusion model is described, together with a modification of the xenon transfer contrast imaging technique utilizing 90{sup 0} radio-frequency pulses applied to the dissolved phase, rather than traditional 180{sup 0} pulses. With this approach, three-dimensional (3D) maps of S{sub A}/V{sub gas} were obtained. We measured global S{sub A}/V{sub gas}, h and {tau} in four normal subjects, two subjects with mild interstitial lung disease (ILD) and two subjects with mild chronic obstructive pulmonary disease (COPD). In normals, S{sub A}/V{sub gas} decreased with increasing lung volume from {approx}320 to 80 cm{sup -1}; both h{approx}13 {mu}m and {tau}{approx}1.5 s were relatively constant. For the two ILD subjects, h was, respectively, 36 and 97% larger than normal, quantifying an increased gas/blood tissue barrier; S{sub A}/V{sub gas} and {tau} were normal. The two COPD subjects had S{sub A}/V{sub gas} values {approx}25% that of normals, quantifying septal surface loss in emphysema; h and {tau} were normal. These are the first noninvasive, non-radiation-based, quantitative measurements of h and {tau} in patients with pulmonary disease.

  9. Dynamically Decoupled 13C Spins in Hyperpolarized Nanodiamond

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David; Reilly, David

    The spin-spin relaxation time, T2, which determines how long a quantum state remains coherent, is an important factor for many applications ranging from MRI to quantum computing. A common technique used in quantum information technology to extend the T2, involves averaging out certain noise spectra via dynamical decoupling sequences. Depending on the nature of the noise in the system, specific sequences, such as CPMG, UDD or KDD, can be tailored to optimize T2. Here we combine hyperpolarization techniques and dynamical decoupling sequences to extend the T2 of 13C nuclear spins in nanodiamond by three orders of magnitude.

  10. Behavior of shut-down dose rate of recirculation piping of BWR under noble metal application

    International Nuclear Information System (INIS)

    Fuse, Motomasa; Nagase, Makoto; Aizawa, Motohiro; Wada, Yoichi; Ishida, Kazushige; Hosokawa, Hideyuki; Hettiarachchi, Samson; Weber, Christoph

    2014-01-01

    The cause of shut-down dose rate change of the recirculation piping observed in KKM (Kern Kraftwerk Mühleberg) after application of noble metal injection method is analyzed. The plant experienced the sharp decrease of piping dose rate in the cycle just after the application of noble metal(classic NobleChem TM ) and re-buildup of radioactivity in the subsequent several cycles. After the application of online noble metal injection (online NobleChem TM ), gradual decrease of dose rate has been observed. The presence of a certain amount of noble metal on the iron rich oxide film promotes the dissolution of the oxide under hydrogen addition, resulting in a decrease of deposited noble metal on the oxide film surface as well as of radioactive species in the film. Under the condition of lower amount of noble metal on the surface oxides, the oxidant species, especially hydrogen peroxide, slightly increases facilitating the re-growth of iron rich oxides along with re-buildup of radioactivity. After the application of online noble metal injection during each cycle, gradual dissolution of iron rich oxides and gradual decrease of radioactivity in the oxides proceed to decrease the piping dose rate. In the radioactivity decreasing phase, the presence of zinc is considered to assist the suppression of radioactivity buildup in the oxide film. From the analysis, treating piping surface with platinum after chemical decontamination process is expected to work well for suppression of the piping dose rate. (author)

  11. Radioactive gases monitor system: tritium, radon, noble gases

    International Nuclear Information System (INIS)

    Egey, J.Z.; Matatagui, E.

    2015-01-01

    A system for monitoring the radioactive gases tritium, radon and noble gases is described. We present the description of the sensor and the associated electronics that have been developed to monitor the presence of radioactive gases in air or other gaseous effluents. The system has a high sensitivity and a wide range of operation. The sensor is an ionization chamber, featuring the internal circulation of the gas to monitor and the associated electronics has a resolution better than 10 E-15A (fA). It allows the detection of the individual pulses that are produced during the alpha decay of radon and its daughter elements. The measurement system is made up of a commercial data acquisition system connected to a computer. The acquired data is presented on a graphical display and it is stored for later processing and analysis. We have a system that is of simple construction and versatile. Here we present the experimental results. (authors) [es

  12. Chromatographic separation of radioactive noble gases from xenon

    Science.gov (United States)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  13. Hydrocarbon-Rich Groundwater above Shale-Gas Formations: A Karoo Basin Case Study.

    Science.gov (United States)

    Eymold, William K; Swana, Kelley; Moore, Myles T; Whyte, Colin J; Harkness, Jennifer S; Talma, Siep; Murray, Ricky; Moortgat, Joachim B; Miller, Jodie; Vengosh, Avner; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enhanced unconventional hydrocarbon recovery but raised environmental concerns related to water quality. Because most basins targeted for shale-gas development in the USA have histories of both active and legacy petroleum extraction, confusion about the hydrogeological context of naturally occurring methane in shallow aquifers overlying shales remains. The Karoo Basin, located in South Africa, provides a near-pristine setting to evaluate these processes, without a history of conventional or unconventional energy extraction. We conducted a comprehensive pre-industrial evaluation of water quality and gas geochemistry in 22 groundwater samples across the Karoo Basin, including dissolved ions, water isotopes, hydrocarbon molecular and isotopic composition, and noble gases. Methane-rich samples were associated with high-salinity, NaCl-type groundwater and elevated levels of ethane, 4 He, and other noble gases produced by radioactive decay. This endmember displayed less negative δ 13 C-CH 4 and evidence of mixing between thermogenic natural gases and hydrogenotrophic methane. Atmospheric noble gases in the methane-rich samples record a history of fractionation during gas-phase migration from source rocks to shallow aquifers. Conversely, methane-poor samples have a paucity of ethane and 4 He, near saturation levels of atmospheric noble gases, and more negative δ 13 C-CH 4 ; methane in these samples is biogenic and produced by a mixture of hydrogenotrophic and acetoclastic sources. These geochemical observations are consistent with other basins targeted for unconventional energy extraction in the USA and contribute to a growing data base of naturally occurring methane in shallow aquifers globally, which provide a framework for evaluating environmental concerns related to unconventional energy development (e.g., stray gas). © 2018, National Ground Water Association.

  14. Structural and plasmonic properties of noble metal doped ZnO nanomaterials

    Science.gov (United States)

    Pathak, Trilok K.; Swart, H. C.; Kroon, R. E.

    2018-04-01

    Noble metal doped ZnO has been synthesized by the combustion method and the effect of different metals (Ag, Au, Pd) on the structural, morphological, optical, photoluminescence and localized surface plasmon resonance (LSPR) properties has been investigated. X-ray diffraction analysis revealed that the ZnO had a hexagonal wurtzite structure and the crystallite sizes were affected by the doping. The formation of noble metal nanoparticles (NPs) was investigated using transmission electron microscopy and diffuse reflectance spectra. The LSPR of the metallic NPs was predicted using Mie theory calculations. The absorption spectra were calculated using the Kubelka-Munk function and the optical bandgap varied from 3.06 to 3.18 eV for the different doping materials. The experimental results suggest that the origin of enhanced emission was due to direct interaction between the laser photons and the noble material NPs which in turn leads to photoemission transfer of electrons from the noble metals NPs to the conduction band of ZnO.

  15. Oxygen-enhanced magnetic resonance ventilation imaging of lung

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Chen Qun; Hatabu, Hiroto

    2001-01-01

    The oxygen-enhanced magnetic resonance (MR) ventilation imaging is a new technique, and the full extent of its physiological significance has not been elucidated. This review article includes background on (1) respiratory physiology; (2) mechanism and optimization of oxygen-enhanced MR imaging technique; (3) recent applications in animal and human models; and (4) merits and demerits of the technique in comparison with hyperpolarized noble gas MR ventilation imaging. Application of oxygen-enhanced MR ventilation imaging to patients with pulmonary diseases has been very limited. However, we believe that further basic studies, as well as clinical applications of this new technique will define the real significance of oxygen-enhanced MR ventilation imaging in the future of pulmonary functional imaging and its usefulness for diagnostic radiology

  16. The Inert and the Noble

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 3. The Inert and the Noble. A G Samuelson. Article-in-a-Box Volume 4 Issue 3 March 1999 pp 3-5 ... Author Affiliations. A G Samuelson1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India.

  17. 16-Channel surface coil for 13C-hyperpolarized spectroscopic imaging of cardiac metabolism in pig heart

    DEFF Research Database (Denmark)

    Frijia, Francesca; Santarelli, Maria Filomena; Koellisch, Ulrich

    2016-01-01

    Magnetic resonance spectroscopy (MRS) of hyperpolarized 13C pyruvate and its metabolites in large animal models is a powerful tool for assessing cardiac metabolism in patho-physiological conditions. In 13C studies, a high signal-to-noise ratio (SNR) is crucial to overcome the intrinsic data quality...... both targets. In this study, a 16-channel receive surface coil was designed for 13C hyperpolarized studies of the pig heart with a clinical 3-T scanner. The coil performance was characterized by phantom experiments and compared with that of a birdcage coil used in transmit/receive mode. Segmental...... of the 16-channel coil is recommended for studies of septal and anterior LV walls....

  18. A prediction of the inert gas solubilities in stoichiometric molten UO2

    International Nuclear Information System (INIS)

    Gunnerson, F.S.; Cronenberg, A.W.

    1975-01-01

    To analyze the effect of fission gas behaviour on fast reactor fuels during a hypothetical overpower transient, the solubility characteristics of the noble gases in molten UO 2 have been assessed. To accomplish this, a theoretical estimation of such solubilities is made by determining the reversible work required to introduce a hard sphere, the size of the gas atom, into the liquid solvent. Results indicate that the solubility of the noble gases in molten UO 2 is quite low, the molar fraction of gas-to-liquid being approximately 10 -6 . Such a low solubility of fission gases suggests that for preirradiated fuels, added swelling or formation may occur upon melting. In addition, such low solubility potential indicates that the fission gases do not play an appreciable role in the fragmentation of molten UO 2 upon quenching in sodium coolant. (Auth.)

  19. On the methodology of radiochemical neutron activation analysis of noble metals

    International Nuclear Information System (INIS)

    Chai, C.F.; Ma, S.L.; Mao, X.Y.; Liao, K.N.; Liu, W.C.

    1986-01-01

    Two different radiochemical procedures were developed: chelate ion resin exchange and amine solvent extraction. Two kinds of new Chinese chelate resins (NANKAI-3926 and BEI-5) and a new long-chain primary amine N 1923 were compared with Srafion NMRR and the tertiary amine N 235 in absorption performance of noble metals, respectively. Influences of various experimental conditions, e.g. sample digestion, acidity, equilibrium time, as well as elution of noble metals, on analytical sensitivity and chemical yield were discussed. Combining with neutron activation, the radiochemical separation procedures developed were used to determine the noble metal contents in the geological samples from Permina/Triassic boundary in South China. (author)

  20. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    Science.gov (United States)

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-03-22

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  1. MO-DE-206-03: Quantifying Metabolism with Hyperpolarized MR

    Energy Technology Data Exchange (ETDEWEB)

    Bankson, J. [The University of Texas M.D. Anderson Cancer Center (United States)

    2016-06-15

    In this symposium jointly sponsored by the World Molecular Imaging Society (WMIS) and the AAPM, luminary speakers on imaging metabolism will discuss three impactful topics. The first presentation on Cellular Metabolism of FDG will be given by Guillem Pratx (Stanford). This presentation will detail new work on looking at how the most common molecular imaging agent, fluoro-deoxy-glucose is metabolized at a cellular level. This will be followed by a talk on an improved approach to whole-body PET imaging by Simon Cherry (UC Davis). Simon’s work on a new whole-body PET imaging system promises to have dramatic improvement in our ability to detect and characterize cancer using PET. Finally, Jim Bankson (MD Anderson) will discuss extremely sophisticated approaches to quantifying hyperpolarized-13-C pyruvate metabolism using MR imaging. This technology promises to compliment the exquisite sensitivity of PET with an ability to measure not just uptake, but tumor metabolism. Learning Objectives: Understand the metabolism of FDG at a cellular level. Appreciate the engineering related to a novel new high-sensitivity whole-body PET imaging system. Understand the process of hyperpolarization, how pyruvate relates to metabolism and how advanced modeling can be used to better quantify this data. G. Pratx, Funding: 5R01CA186275, 1R21CA193001, and Damon Runyon Cancer Foundation. S. Cherry, National Institutes of Health; University of California, Davis; Siemens Medical SolutionsJ. Bankson, GE Healthcare; NCI P30-CA016672; CPRIT PR140021-P5.

  2. Santa Lucia (2008) (L6) Chondrite, a Recent Fall: Composition, Noble Gases, Nitrogen and Cosmic Ray Exposure Age

    Science.gov (United States)

    Mahajan, Ramakant R.; Varela, Maria Eugenia; Joron, Jean Louis

    2016-04-01

    The Santa Lucia (2008)—one the most recent Argentine meteorite fall, fell in San Juan province, Argentina, on 23 January 2008. Several masses (total ~6 kg) were recovered. Most are totally covered by fusion crust. The exposed interior is of light-grey colour. Chemical data [olivine (Fa24.4) and low-Ca pyroxene (En77.8 Fs20.7 Wo1.6)] indicate that Santa Luica (2008) is a member of the low iron L chondrite group, corresponding to the equilibrated petrologic type 6. The meteorite name was approved by the Nomenclature Committee (NomCom) of the Meteoritical Society (Meteoritic Bulletin, no. 97). We report about the chemical composition of the major mineral phases, its bulk trace element abundance, its noble gas and nitrogen data. The cosmic ray exposure age based on cosmogenic 3He, 21Ne, and 38Ar around 20 Ma is comparable to one peak of L chondrites. The radiogenic K-Ar age of 2.96 Ga, while the young U, Th-He are of 1.2 Ga indicates that Santa Lucia (2008) lost radiogenic 4He more recently. Low cosmogenic (22Ne/21Ne)c and absence of solar wind noble gases are consistent with irradiation in a large body. Heavy noble gases (Ar/Kr/Xe) indicated trapped gases similar to ordinary chondrites. Krypton and neon indicates irradiation in large body, implying large pre-atmospheric meteoroid.

  3. Recovery of noble metals from HLLW using photocatalytic reduction

    International Nuclear Information System (INIS)

    Nishi, T.; Uetake, N.; Kawamura, F.; Yusa, H.

    1987-01-01

    In high-level liquid waste (HLLW) from fuel reprocessing plants, noble metals (palladium, rhodium, and ruthenium), which account for ∼ 10 wt% of fission products, exist as ions. These metals are very useful as catalytic material in automobile exhaust systems and other chemical processes, but they are rare in nature, making their recovery from fission products highly desirable. The ions of noble metals in solution have the feature that their reduction potential from ion to metal is relatively high compared with that of other fission product ions, so they can be selectively separated as a metal by a reduction process. The authors think a photoreduction process using a photocatalysts, which functions as photon-electron conversion agent, is suitable for the recovery of noble metals from HLLW for three reasons: (1) this process uses no reduction agents, which usually degrade the nitric acid, so that coprecipitation of other fission products does not occur. (2) The reactions are induced by light, which does not contaminate the reaction system, and in contrast with ordinary photo-redox reactions, the quantum yield is quite high. (3) As the photocatalyst does not change in the reaction, it can be used again and again. The report shows the results of fundamental experiments on the application of photocatalytic reduction to the recovery of noble metal ions in nitric acid solution

  4. μ opioid receptor activation hyperpolarizes respiratory-controlling Kölliker-Fuse neurons and suppresses post-inspiratory drive.

    Science.gov (United States)

    Levitt, Erica S; Abdala, Ana P; Paton, Julian F R; Bissonnette, John M; Williams, John T

    2015-10-01

    In addition to reductions in respiratory rate, opioids also cause aspiration and difficulty swallowing, indicating impairment of the upper airways. The Kölliker-Fuse (KF) maintains upper airway patency and a normal respiratory pattern. In this study, activation of μ opioid receptors in the KF reduced respiratory frequency and tidal volume in anaesthetized rats. Nerve recordings in an in situ preparation showed that activation of μ opioid receptors in the KF eliminated the post-inspiration phase of the respiratory cycle. In brain slices, μ opioid agonists hyperpolarized a distinct population (61%) of KF neurons by activation of an inwardly rectifying potassium conductance. These results suggest that KF neurons that are hyperpolarized by opioids could contribute to opioid-induced respiratory disturbances, particularly the impairment of upper airways. Opioid-induced respiratory effects include aspiration and difficulty swallowing, suggesting impairment of the upper airways. The pontine Kölliker-Fuse nucleus (KF) controls upper airway patency and regulates respiration, in particular the inspiratory/expiratory phase transition. Given the importance of the KF in coordinating respiratory pattern, the mechanisms of μ opioid receptor activation in this nucleus were investigated at the systems and cellular level. In anaesthetized, vagi-intact rats, injection of opioid agonists DAMGO or [Met(5) ]enkephalin (ME) into the KF reduced respiratory frequency and amplitude. The μ opioid agonist DAMGO applied directly into the KF of the in situ arterially perfused working heart-brainstem preparation of rat resulted in robust apneusis (lengthened low amplitude inspiration due to loss of post-inspiratory drive) that was rapidly reversed by the opioid antagonist naloxone. In brain slice preparations, activation of μ opioid receptors on KF neurons hyperpolarized a distinct population (61%) of neurons. As expected, the opioid-induced hyperpolarization reduced the excitability of

  5. Time-dependent behavior of positrons in noble gases

    International Nuclear Information System (INIS)

    Wadehra, J.M.

    1990-01-01

    Both equilibrium and nonequilibrium behaviors of positrons in several noble gases are reviewed. Our novel procedure for obtaining the time-dependent behavior of various swarm parameters -- such as the positron drift velocity, average positron energy, positron annihilation rate (or equivalently Z eff ) etc. -- for positrons in pure ambient gases subjected to external electrostatic fields is described. Summaries of time-dependent as well as electric field-dependent results for positron swarms in various noble gases are presented. New time-dependent results for positron swarms in neon are also described in detail. 36 refs., 4 figs., 3 tabs

  6. The prevalent synthesis of one-dimensional noble metal nanostructures based on sulfonated polyaniline at room temperature

    International Nuclear Information System (INIS)

    Xia Youyi

    2011-01-01

    We describe a prevalent method of synthesizing one-dimensional (1D) noble metal nanostructures (silver nanobelts and palladium nanowires) by treatment of corresponding noble metal ions only in the presence of the conductive sulfonated polyaniline without using any other reducing agents or energies. The results show that the sulfonated polyaniline provides the dual reductant and “soft template” roles to promoting noble metal ions to form shape-controlled 1D noble metal nanostructures in high yield. The employed approach may also shed some light on the preparation of other noble metal nanostructure by using conductive polymer.

  7. First-principles dynamics treatment of light emission in collisions between alkali-metal atom and noble-gas atom collisions at 10keV

    Science.gov (United States)

    Pacheco, Alexander B.; Reyes, Andrés; Micha, David A.

    2006-12-01

    Collision-induced light emission during the interaction of an alkali-metal atom and a noble-gas atom is treated within a first-principles, or direct, dynamics approach that calculates a time-dependent electric dipole for the whole system, and spectral emission cross sections from its Fourier transform. These cross sections are very sensitive to excited diatomic potentials and a source of information on their shape. The coupling between electronic transitions and nuclear motions is treated with atomic pseudopotentials and an electronic density matrix coupled to trajectories for the nuclei. A recently implemented pseudopotential parametrization scheme is used here for the ground and excited states of the LiHe system, and to calculate state-to-state dipole moments. To verify the accuracy of our new parameters, we recalculate the integral cross sections for the LiHe system in the keV energy regime and obtain agreement with other results from theory and experiment. We further present results for the emission spectrum from 10keV Li(2s)+He collisions, and compare them to experimental values available in the region of light emitted at 300-900nm .

  8. Effect of hydration on the organo-noble gas molecule HKrCCH: role of krypton in the stabilization of hydrated HKrCCH complexes.

    Science.gov (United States)

    Biswas, Biswajit; Singh, Prashant Chandra

    2015-11-11

    The effect of hydration on the fluorine free organo-noble gas compound HKrCCH and the role of krypton in the stabilization of the hydrated HKrCCH complexes have been investigated using the quantum chemical calculations on the HKrCCH-(H2O)n=1-6 clusters. Structure and energetics calculations show that water stabilizes HKrCCH through the π hydrogen bond in which the OH group of water interacts with the C[triple bond, length as m-dash]C group of HKrCCH. A maximum of four water molecules can directly interact with the C[triple bond, length as m-dash]C of HKrCCH and after that only inter-hydrogen bonding takes place between the water molecules indicating that the primary hydration shell contains four water molecules. Atom in molecule analysis depicts that π hydrogen bonded complexes of the hydrated HKrCCH are cyclic structures in which the OKr interaction cooperates in the formation of strong O-HC[triple bond, length as m-dash]C interaction. Structure, energetics and charge analysis clearly established that krypton plays an important role in the stabilization as well as the formation of the primary hydration shell of hydrated HKrCCH complexes.

  9. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Shaikh Ali, Anaam

    2016-01-01

    to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based

  10. Brain Imaging Using Hyperpolarized 129Xe Magnetic Resonance Imaging.

    Science.gov (United States)

    Chahal, Simrun; Prete, Braedan R J; Wade, Alanna; Hane, Francis T; Albert, Mitchell S

    2018-01-01

    Hyperpolarized (HP) 129 Xe magnetic resonance imaging (MRI) is a novel iteration of traditional MRI that relies on detecting the spins of 1 H. Since 129 Xe is a gaseous signal source, it can be used for lung imaging. Additionally, 129 Xe dissolves in the blood stream and can therefore be detectable in the brain parenchyma and vasculature. In this work, we provide detailed information on the protocols that we have developed to image 129 Xe within the brains of both rodents and human subjects. © 2018 Elsevier Inc. All rights reserved.

  11. Hyperpolarization-activated current (In is reduced in hippocampal neurons from Gabra5-/- mice.

    Directory of Open Access Journals (Sweden)

    Robert P Bonin

    Full Text Available Changes in the expression of γ-aminobutyric acid type A (GABAA receptors can either drive or mediate homeostatic alterations in neuronal excitability. A homeostatic relationship between α5 subunit-containing GABAA (α5GABAA receptors that generate a tonic inhibitory conductance, and HCN channels that generate a hyperpolarization-activated cation current (Ih was recently described for cortical neurons, where a reduction in Ih was accompanied by a reciprocal increase in the expression of α5GABAA receptors resulting in the preservation of dendritosomatic synaptic function. Here, we report that in mice that lack the α5 subunit gene (Gabra5-/-, cultured embryonic hippocampal pyramidal neurons and ex vivo CA1 hippocampal neurons unexpectedly exhibited a decrease in Ih current density (by 40% and 28%, respectively, compared with neurons from wild-type (WT mice. The resting membrane potential and membrane hyperpolarization induced by blockade of Ih with ZD-7288 were similar in cultured WT and Gabra5-/- neurons. In contrast, membrane hyperpolarization measured after a train of action potentials was lower in Gabra5-/- neurons than in WT neurons. Also, membrane impedance measured in response to low frequency stimulation was greater in cultured Gabra5-/- neurons. Finally, the expression of HCN1 protein that generates Ih was reduced by 41% in the hippocampus of Gabra5-/- mice. These data indicate that loss of a tonic GABAergic inhibitory conductance was followed by a compensatory reduction in Ih. The results further suggest that the maintenance of resting membrane potential is preferentially maintained in mature and immature hippocampal neurons through the homeostatic co-regulation of structurally and biophysically distinct cation and anion channels.

  12. Ovariectomy increases the participation of hyperpolarizing mechanisms in the relaxation of rat aorta.

    Directory of Open Access Journals (Sweden)

    Ana Sagredo

    Full Text Available This study examines the downstream NO release pathway and the contribution of different vasodilator mediators in the acetylcholine-induced response in rat aorta 5-months after the loss of ovarian function. Aortic segments from ovariectomized and control female Sprague-Dawley rats were used to measure: the levels of superoxide anion, the superoxide dismutases (SODs activity, the cGMP formation, the cGMP-dependent protein kinase (PKG activity and the involvement of NO, cGMP, hydrogen peroxide and hyperpolarizing mechanisms in the ACh-induced relaxation. The results showed that ovariectomy did not alter ACh-induced relaxation; incubation with L-NAME, a NO synthase inhibitor, decreased the ACh-induced response to a lesser extent in aorta from ovariectomized than from control rats, while ODQ, a guanylate cyclase inhibitor, decreased that response to a similar extent; the blockade of hyperpolarizing mechanisms, by precontracting arteries with KCl, decreased the ACh-induced response to a greater extent in aortas from ovariectomized than those from control rats; catalase, that decomposes hydrogen peroxide, decreased the ACh-induced response only in aorta from ovariectomized rats. In addition, ovariectomy increased superoxide anion levels and SODs activity, decreased cGMP formation and increased PKG activity. Despite the increased superoxide anion and decreased cGMP in aorta from ovariectomized rats, ACh-induced relaxation is maintained by the existence of hyperpolarizing mechanisms in which hydrogen peroxide participates. The greater contribution of hydrogen peroxide in ACh-induced relaxation is due to increased SOD activity, in an attempt to compensate for increased superoxide anion formation. Increased PKG activity could represent a redundant mechanism to ensure vasodilator function in the aorta of ovariectomized rats.

  13. NOBLE - Flexible concept recognition for large-scale biomedical natural language processing.

    Science.gov (United States)

    Tseytlin, Eugene; Mitchell, Kevin; Legowski, Elizabeth; Corrigan, Julia; Chavan, Girish; Jacobson, Rebecca S

    2016-01-14

    Natural language processing (NLP) applications are increasingly important in biomedical data analysis, knowledge engineering, and decision support. Concept recognition is an important component task for NLP pipelines, and can be either general-purpose or domain-specific. We describe a novel, flexible, and general-purpose concept recognition component for NLP pipelines, and compare its speed and accuracy against five commonly used alternatives on both a biological and clinical corpus. NOBLE Coder implements a general algorithm for matching terms to concepts from an arbitrary vocabulary set. The system's matching options can be configured individually or in combination to yield specific system behavior for a variety of NLP tasks. The software is open source, freely available, and easily integrated into UIMA or GATE. We benchmarked speed and accuracy of the system against the CRAFT and ShARe corpora as reference standards and compared it to MMTx, MGrep, Concept Mapper, cTAKES Dictionary Lookup Annotator, and cTAKES Fast Dictionary Lookup Annotator. We describe key advantages of the NOBLE Coder system and associated tools, including its greedy algorithm, configurable matching strategies, and multiple terminology input formats. These features provide unique functionality when compared with existing alternatives, including state-of-the-art systems. On two benchmarking tasks, NOBLE's performance exceeded commonly used alternatives, performing almost as well as the most advanced systems. Error analysis revealed differences in error profiles among systems. NOBLE Coder is comparable to other widely used concept recognition systems in terms of accuracy and speed. Advantages of NOBLE Coder include its interactive terminology builder tool, ease of configuration, and adaptability to various domains and tasks. NOBLE provides a term-to-concept matching system suitable for general concept recognition in biomedical NLP pipelines.

  14. Noble Gases in the Lunar Meteorites Calcalong Creek and QUE 93069

    Science.gov (United States)

    Swindle, T. D.; Burkland, M. K.; Grier, J. A.

    1995-09-01

    Although the world's collections contain comparable numbers of martian and lunar meteorites (about 10 each), their ejection histories seem to be quite different [1]. We have sampled no more than four martian craters, but almost every one of the lunar meteorites apparently represents a separate cratering event. Furthermore, most lunar meteorites were apparently ejected from the top meter of the surface, unlike any of the martian meteorites. We have measured noble gases in two bulk samples of the lunar meteorite QUE93069 and three of Calcalong Creek, ranging in size from 7 to 15 mg. Averaged results are given in Table 1. Both meteorites contain solar-wind-implanted noble gas. QUE 93069, which is a mature anorthositic regolith breccia [2], contains amounts comparable to the most gas-rich lunar meteorites. The relatively low 40Ar/36Ar ratios of both meteorites suggest surface exposures no more than 2.5 Ga ago [3]. Calcalong Creek has readily observable spallogenic gas. The 131Xe/126Xe ratio of 4.8+/-0.3 corresponds to an average shielding depth of slightly more than 40 gm/cm^2 [4]. In common with many lunar breccias, Calcalong Creek has been exposed to cosmic rays for several hundred Ma (calculations based on [4] and [5]). The 3He apparent exposure age is much shorter, suggesting diffusive loss of He. To determine the detailed exposure history, it is necessary to have measurements of cosmogenic radionuclides. Our samples were too small to measure 81Kr, but [6] have measured 10Be, 26Al and 36Cl. Their data are consistent with either extended exposure at data, requiring several hundred Ma of exposure at an average depth of 40-50 gm/cm^2, are clearly more consistent with the first scenario. The only other lunar meteorite which could have been ejected at the same time is MAC 88104/5 [1], but the chemical differences between the two make it highly unlikely that they come from the same event. It is difficult to determine the amount of spallogenic gas in QUE 93069 because of

  15. The gas industry in the year 2020

    International Nuclear Information System (INIS)

    Chabrelie, M.F.

    2006-01-01

    Having been reserved for decades primarily for the more noble uses of industry, natural gas, which basically has no captive market, is now the energy of choice in a multitude of applications. Although gas resources are limited in the very long term, they are yet sufficiently abundant to make a major contribution to the energy industry of the 21. century. Endowed with intrinsic qualities that make it less pollutant than its competitors, natural gas is the commercial energy harboring the strongest growth potential in the future energy balance. (author)

  16. The gas industry in the year 2020

    Energy Technology Data Exchange (ETDEWEB)

    Chabrelie, M.F

    2006-07-01

    Having been reserved for decades primarily for the more noble uses of industry, natural gas, which basically has no captive market, is now the energy of choice in a multitude of applications. Although gas resources are limited in the very long term, they are yet sufficiently abundant to make a major contribution to the energy industry of the 21. century. Endowed with intrinsic qualities that make it less pollutant than its competitors, natural gas is the commercial energy harboring the strongest growth potential in the future energy balance. (author)

  17. Geochemical monitoring using noble gases and carbon isotopes: study of a natural reservoir

    International Nuclear Information System (INIS)

    Jeandel, E.

    2008-12-01

    To limit emissions of greenhouse gases in the atmosphere, CO 2 geological sequestration appears as a solution in the fight against climate change. The development of reliable monitoring tools to ensure the sustainability and the safety of geological storage is a prerequisite for the implementation of such sites. In this framework, a geochemical method using noble gas and carbon isotopes geochemistry has been tested on natural and industrial analogues. The study of natural analogues from different geological settings showed systematic behaviours of the geochemical parameters, depending on the containment sites, and proving the effectiveness of these tools in terms of leak detection and as tracers of the behaviour of CO 2 . Moreover, an experience of geochemical tracing on a natural gas storage has demonstrated that it is possible to identify the physical-chemical processes taking place in the reservoir to a human time scale, increasing interest in the proposed tool and providing general information on its use. (author)

  18. Approximation of the characteristics of ion drift in parent gas

    Energy Technology Data Exchange (ETDEWEB)

    Golyatina, R. I.; Maiorov, S. A., E-mail: mayorov-sa@mail.ru [Russian Academy of Science, Prokhorov General Physics Institute (Russian Federation)

    2017-01-15

    The drift velocities of noble-gas and mercury ions in a constant homogeneous electric field are calculated using Monte Carlo simulations. The ion mobility is analyzed as a function of the field strength and gas temperature. The fitting parameters for calculating the drift velocity by the Frost formula at gas temperatures of 4.2, 77, 300, 1000, and 2000 K are obtained. A general approximate formula for the drift velocity as a function of the reduced field and gas temperature is derived.

  19. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  20. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    Science.gov (United States)

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  1. Hyperpolarized 1-13C Pyruvate Imaging of Porcine Cardiac Metabolism shift by GIK Intervention

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Tougaard, Rasmus Stilling; Mikkelsen, Emmeli

    to evaluate the general feasibility to detect an imposed shift in metabolic substrate utilization during metabolic modulation with glucose, insulin and potassium (GIK) infusion. This study demonstrates that hyperpolarized 13C-pyruvate, in a large animal, is a feasible method for cardiac studies, and...

  2. Characterization and flip angle calibration of 13C surface coils for hyperpolarization studies

    DEFF Research Database (Denmark)

    Hansen, Rie Beck; Gutte, Henrik; Larsen, Majbrit M E

    The aim of the present work is to address the challenge of optimal The aim of the present work is to address the challenge of optimal flflip angle calibration of ip angle calibration of C surface coils in C surface coils in hyperpolarization studies. To this end, we characterize the spatial pro h...

  3. Properties of noble gases and binary mixtures for closed Brayton Cycle applications

    International Nuclear Information System (INIS)

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-01

    A review is conducted of the properties of the noble gases, helium, neon, argon, krypton and xenon, and their binary mixtures at pressures from 0.1 to 20 MPa and temperatures up to 1400 K. An extensive database of experimental measurements is compiled and used to develop semi-empirical properties correlations. The correlations accurately account for the effects of pressure and temperature on the thermodynamic and transport properties of these gases for potential uses in space (∼2 MPa and up to 1400 K) and terrestrial (∼7.0 MPa and up to 1200 K) applications of Closed Brayton Cycle (CBC). The developed correlations are based on the Chapman-Enskog kinetic theory for dilute gases, and on the application of the law of corresponding states to account for the dependence of properties on pressure. The correlations use the critical temperature and density of the gases as scaling parameters, and their predictions are compared with the compiled database. At temperatures ≥400 K and pressures ≤2 MPa in CBC space power systems, He and Ne, and the binary mixtures of He-Xe and He-Kr with molecular weights ≤40 g/mole behave essentially like a perfect gas, and the error of neglecting the effect of pressure on their compressibility factor, specific heats and transport properties is ≤1%. At a typical operating pressure of 7.0 MPa and up to 1200 K in terrestrial CBC power plants, neglecting the effect of pressure can result in ∼4% error in the properties of noble gases and the binary mixtures of He-Xe and He-Kr with molecular weights ≤40 g/mole, and as much as 20% error for pure argon. Therefore, when operating at pressures >2.0 MPa and/or using noble gases or binary mixtures with molecular weights > 40 g/mole, the present correlations should be used to accurately predict the thermodynamic and transport properties

  4. A continuous-flow, high-throughput, high-pressure parahydrogen converter for hyperpolarization in a clinical setting.

    Science.gov (United States)

    Hövener, Jan-Bernd; Bär, Sébastien; Leupold, Jochen; Jenne, Klaus; Leibfritz, Dieter; Hennig, Jürgen; Duckett, Simon B; von Elverfeldt, Dominik

    2013-02-01

    Pure parahydrogen (pH(2) ) is the prerequisite for optimal pH(2) -based hyperpolarization experiments, promising approaches to access the hidden orders of magnitude of MR signals. pH(2) production on-site in medical research centers is vital for the proliferation of these technologies in the life sciences. However, previously suggested designs do not meet our requirements for safety or production performance (flow rate, pressure or enrichment). In this article, we present the safety concept, design and installation of a pH(2) converter, operated in a clinical setting. The apparatus produces a continuous flow of four standard liters per minute of ≈98% enriched pH(2) at a pressure maximum of 50 bar. The entire production cycle, including cleaning and cooling to 25 K, takes less than 5 h, only ≈45 min of which are required for actual pH(2) conversion. A fast and simple quantification procedure is described. The lifetimes of pH(2) in a glass vial and aluminum storage cylinder are measured to be T(1C) (glass vial) =822 ± 29 min and T(1C) (Al cylinder) =129 ± 36 days, thus providing sufficiently long storage intervals and allowing the application of pH(2) on demand. A dependence of line width on pH(2) enrichment is observed. As examples, (1) H hyperpolarization of pyridine and (13) C hyperpolarization of hydroxyethylpropionate are presented. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Protonated ions as systemic trapping agents for noble gases: From electronic structure to radiative association.

    Science.gov (United States)

    Ozgurel, O; Pauzat, F; Pilmé, J; Ellinger, Y; Bacchus-Montabonel, M-C; Mousis, O

    2017-10-07

    The deficiencies of argon, krypton, and xenon observed in the atmosphere of Titan as well as anticipated in some comets might be related to a scenario of sequestration by H 3 + in the gas phase at the early evolution of the solar nebula. The chemical process implied is a radiative association, evaluated as rather efficient in the case of H 3 + , especially for krypton and xenon. This mechanism of chemical trapping might not be limited to H 3 + only, considering that the protonated ions produced in the destruction of H 3 + by its main competitors present in the primitive nebula, i.e., H 2 O, CO, and N 2 , might also give stable complexes with the noble gases. However the effective efficiency of such processes is still to be proven. Here, the reactivity of the noble gases Ar, Kr, and Xe, with all protonated ions issued from H 2 O, CO, and N 2 , expected to be present in the nebula with reasonably high abundances, has been studied with quantum simulation method dynamics included. All of them give stable complexes and the rate coefficients of their radiative associations range from 10 -16 to 10 -19 cm 3 s -1 , which is reasonable for such reactions and has to be compared to the rates of 10 -16 to 10 -18 cm 3 s -1 , obtained with H 3 + . We can consider this process as universal for all protonated ions which, if present in the primitive nebula as astrophysical models predict, should act as sequestration agents for all three noble gases with increasing efficiency from Ar to Xe.

  6. Technology and products of gas companies; Gas gaisha no Technology and Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-10

    This paper presents the latest technology and products of gas companies. `Newly developed gas table for one-push automatic fish broiling` of Tokyo Gas Co. `Catalytic technology for decomposing dioxin generated by incinerator to make it harmless` of Osaka Gas Co. `Newly developed strong and kindly shower head` of Tokyo Gas Co. By laying fish on a sensor in a grill and appropriately setting upper and lower heating levers, user can skillfully broil fish only by pushing an ignition button. A temperature sensor attached to the center of a grill catches a change in surface temperature of fish, and automatically sets an appropriate broiling time according to the kind and volume of fish. A finish buzzer and automatic extinction mechanism are prepared. The technology decomposes dioxin in exhaust gas of incinerators to make it harmless. The catalyst is prepared by dispersing noble metal or oxide of several angstroms into activated carbon fibers. The shower head can switch hot water power by a control handle

  7. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.

    Science.gov (United States)

    Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A

    2016-04-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  8. Detection of tobacco smoke deposition by hyperpolarized krypton-83 MRI.

    Science.gov (United States)

    Cleveland, Zackary I; Pavlovskaya, Galina E; Stupic, Karl F; Wooten, Jan B; Repine, John E; Meersmann, Thomas

    2008-02-01

    Despite the importance of the tobacco smoke particulate matter in the lungs to the etiology of pulmonary disease in cigarette smokers, little is currently known about the spatial distribution of particle deposition or the persistence of the resulting deposits in humans, and no satisfactory technique currently exists to directly observe tobacco smoke condensate in airways. In this proof-of-principle work, hyperpolarized (hp) 83Kr MRI and NMR spectroscopy are introduced as probes for tobacco smoke deposition in porous media. A reduction in the hp-83Kr longitudinal (T1) relaxation of up to 95% under near-ambient humidity, pressure and temperature conditions was observed when the krypton gas was brought into contact with surfaces that had been exposed to cigarette smoke. This smoke-induced acceleration of the 83Kr self-relaxation was observed for model glass surfaces that, in some experiments, were coated with bovine lung surfactant extract. However, a similar effect was not observed with hp-(129)Xe indicating that the 83Kr sensitivity to smoke deposition was not caused by paramagnetic species but rather by quadrupolar relaxation due to high adsorption affinity for the smoke deposits. The 83Kr T1 differences between smoke-treated and untreated surfaces were sufficient to produce a strong contrast in variable flip angle FLASH hp-83Kr MRI, suggesting that hp-83Kr may be a promising contrast agent for in vivo pulmonary MRI.

  9. Combined Hyperpolarized 13C-pyruvate MRS and 18F-FDG PET (HyperPET) Estimates of Glycolysis in Canine Cancer Patients

    DEFF Research Database (Denmark)

    Hansen, Adam E.; Gutte, Henrik; Holst, Pernille

    2018-01-01

    13C Magnetic Resonance Spectroscopy (MRS) using hyperpolarized 13C-labeled pyruvate as a substrate offers a measure of pyruvate-lactate interconversion and is thereby a marker of the elevated aerobic glycolysis (Warburg effect) generally exhibited by cancer cells. Here, we aim to compare hyperpol......13C Magnetic Resonance Spectroscopy (MRS) using hyperpolarized 13C-labeled pyruvate as a substrate offers a measure of pyruvate-lactate interconversion and is thereby a marker of the elevated aerobic glycolysis (Warburg effect) generally exhibited by cancer cells. Here, we aim to compare...

  10. Phase dependency of electrotonic spread of hyperpolarizing current pulses in the rabbit sinoatrial node

    NARCIS (Netherlands)

    Duivenvoorden, J. J.; Bouman, L. N.; Bukauskas, F. F.; Opthof, T.; Jongsma, H. J.

    1990-01-01

    Electrotonic current spread in the SA node of the rabbit was measured by means of hyperpolarizing current pulses (1 to 10 microA, 60 ms), which were injected intracellularly through a K(+)-perfused suction electrode. The pulses were applied at the beginning, middle or end of the diastolic

  11. Ab initio study of the trapping of polonium on noble metals

    Science.gov (United States)

    Rijpstra, Kim; Van Yperen-De Deyne, Andy; Maugeri, Emilio Andrea; Neuhausen, Jörg; Waroquier, Michel; Van Speybroeck, Veronique; Cottenier, Stefaan

    2016-04-01

    In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic 210Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po2, PoBi and PoPb on this gold filter.

  12. Ab initio study of the trapping of polonium on noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Rijpstra, Kim; Van Yperen-De Deyne, Andy [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Maugeri, Emilio Andrea; Neuhausen, Jörg [Laboratory for Radiochemistry, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Waroquier, Michel; Van Speybroeck, Veronique [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Cottenier, Stefaan, E-mail: stefaan.cottenier@ugent.be [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Department of Materials Science and Engineering, Ghent University, Technologiepark 903, 9052 Ghent (Belgium)

    2016-04-15

    In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic {sup 210}Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po{sub 2}, PoBi and PoPb on this gold filter.

  13. Acute afterload-imposed change in porcine cardiac metabolism imaged by hyperpolarized [1-13C]Pyruvate

    DEFF Research Database (Denmark)

    Tougaard, Rasmus Stilling; Søvsø Szocska Hansen, Esben; Laustsen, Christoffer

    Deranged metabolism is now considered a key causal factor in heart failure and has therefore gained considerable scientific interest. The novel technique hyperpolarized MR has emerged as a leading methodological candidate to study these derangements. We employed a clinically relevant, large animal...

  14. TH-CD-202-09: Free-Breathing Proton MRI Functional Lung Avoidance Maps to Guide Radiation Therapy

    International Nuclear Information System (INIS)

    Capaldi, D; Sheikh, K; Parraga, G; Hoover, D; Yaremko, B; Palma, D

    2016-01-01

    Purpose: Pulmonary functional MRI using inhaled gas contrast agents was previously investigated as a way to identify well-functioning lung in patients with NSCLC who are clinical candidates for radiotherapy. Hyperpolarized noble-gas ( 3 He and 129 Xe) MRI has also been optimized to measure functional lung information, but for a number of reasons, the clinical translation of this approach to guide radiotherapy planning has been limited. As an alternative, free-breathing pulmonary 1H MRI using clinically available MRI systems and pulse sequences provides a non-contrast-enhanced method to generate both ventilation and perfusion maps. Free-breathing 1 H MRI exploits non-rigid registration and Fourier decomposition of MRI signal intensity differences (Bauman et al., MRM, 2009) that may be generated during normal tidal breathing. Here, our objective was to generate free-breathing 1 H MRI ventilation and lung function avoidance maps in patients with NSCLC as a way to guide radiation therapy planning. Methods: Stage IIIA/IIIB NSCLC patients (n=8, 68±9yr) provided written informed consent to a randomized controlled clinical trial ( https://clinicaltrials.gov/ct2/show/NCT02002052 ) that aimed to compare outcomes related to image-guided versus conventional radiation therapy planning. Hyperpolarized 3 He/ 129 Xe and dynamic free tidal-breathing 1 H MRI were acquired as previously described (Capaldi et al., Acad Radiol, 2015). Non-rigid registration was performed using the modality-independent-neighbourhood-descriptor (MIND) deformable approach (Heinrich et al., Med Image Anal, 2012). Ventilation-defect-percent ( 3 He:VDP He , 129 Xe:VDP Xe , Free-breathing- 1 H:VDP FB ) and the corresponding ventilation maps were compared using Pearson correlation coefficients (r) and the Dice similarity coefficient (DSC). Results: VDP FB was significantly related to VDP He (r=.71; p=.04) and VDP Xe (r=.80; p=.01) and there were also strong spatial relationships (DSC He /DSC Xe =89±3%/77±11

  15. The predicted effectiveness of noble metal treatment at the Chinshan boiling water reactor

    International Nuclear Information System (INIS)

    Yeh Tsungkuang; Chu Fang; Chang Ching; Huang Chiashen

    2000-01-01

    The technique of noble metal treatment (NMT) available in a form of noble metal cooling (NMC) or noble metal chemical addition (NMCA), was introduced to enhance effectiveness of hydrogen water chemistry. Since it is technically difficult to gain access to an entire primary heat transport circuit (PHTC) of a BWR and monitor variation on electrochemical corrosion potential (ECP), a question whether the NMC technology is indeed effective for lowering the ECP of every location in a BWR is not still well understood at the moment. Then, computer modeling is so far the best tool to help investigate effectiveness of the NMT along PHCT of the BWR. Here was discussed on how the computer model was calibrated by using measured chemistry data obtained from No. 2 unit (BWR) in the Kuosheng Plant. The effect of noble metal treatment coupled with hydrogen water chemistry has been quantitatively molded, on a base of two different sets of ECD enhancement data. It was predicted that No. 1 unit in the Chinshan could be protected by noble metal treatment with lower [H 2 ] FW . In the case of competitive enhancing factors for the ECDs of oxygen reduction, hydrogen peroxide reduction, and hydrogen oxidation reactions, HWC had always to be present for noble metal treatment to be effective for protecting a reactor. Otherwise, according to a model calculation based upon the results from Kim's work, the ECP might instead be increased due to the enhanced reduction reaction rate of oxygen and hydrogen peroxide, especially in the near core regions. (G.K.)

  16. Oxidation behaviour of noble-metal inclusions in used UO2 nuclear fuel

    International Nuclear Information System (INIS)

    McEachern, R.

    1997-07-01

    The literature on the chemistry of the noble-metal (Mo-Rh-Ru-Pd-Tc) inclusions found in used nuclear fuel has been reviewed. The Mo-Ru-Pd phase diagram is reasonably well understood, and the pseudoternary Mo-(Tc+Ru)-Rh+Pd) system can be used to qualitatively understand the phase chemistry of the noble-metal inclusions. The kinetics of the oxidation reaction are not particularly well understood, but they are of limited applicability to understanding the properties of used fuel. In contrast, it is important to determine the thermodynamic activity of molybdenum in noble-metal inclusions, so that analysis of their molybdenum content can be used as a probe of the local oxygen potential of the used fuel. (author)

  17. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...

  18. Probing early tumor response to radiation therapy using hyperpolarized [1-¹³C]pyruvate in MDA-MB-231 xenografts.

    Directory of Open Access Journals (Sweden)

    Albert P Chen

    Full Text Available Following radiation therapy (RT, tumor morphology may remain unchanged for days and sometimes weeks, rendering anatomical imaging methods inadequate for early detection of therapeutic response. Changes in the hyperpolarized [1-¹³C]lactate signals observed in vivo following injection of pre-polarized [1-¹³C]pyruvate has recently been shown to be a marker for tumor progression or early treatment response. In this study, the feasibility of using ¹³C metabolic imaging with [1-¹³C]pyruvate to detect early radiation treatment response in a breast cancer xenograft model was demonstrated in vivo and in vitro. Significant decreases in hyperpolarized [1-¹³C]lactate relative to [1-¹³C]pyruvate were observed in MDA-MB-231 tumors 96 hrs following a single dose of ionizing radiation. Histopathologic data from the treated tumors showed higher cellular apoptosis and senescence; and changes in the expression of membrane monocarboxylate transporters and lactate dehydrogenase B were also observed. Hyperpolarized ¹³C metabolic imaging may be a promising new tool to develop novel and adaptive therapeutic regimens for patients undergoing RT.

  19. Effect of membrane hyperpolarization induced by a K+ channel opener on histamine-induced Ca2+ mobilization in rabbit arterial smooth muscle.

    Science.gov (United States)

    Watanabe, Y; Suzuki, A; Suzuki, H; Itoh, T

    1996-03-01

    1. The role of membrane hyperpolarization on agonist-induced contraction was investigated in intact and alpha-toxin-skinned smooth muscles of rabbit mesenteric artery by use of the ATP-sensitive K+ channel opener, (-)-(3S,4R)-4-(N-acetyl-N-hydroxyamino)-6-cyano-3,4-dihydro-2,2- dimethyl-2H-1-benzopyran-3-ol (Y-26763), and either histamine (Hist) or noradrenaline (NA). 2. Hist (3 microM) and NA (10 microM) both produced a phasic, followed by a tonic increase in intracellular Ca2+ concentration ([Ca2+]i) and force. Y-26763 (10 microM) potently inhibited the NA-induced phasic and tonic increase in [Ca2+]i and force. In contrast, Y-26763 attenuated the Hist-induced phasic increase in [Ca2+]i and force but had almost no effect on the tonic response. However, ryanodine-treatment of muscles in order to inhibit the function of intracellular Ca2+ storage sites altered the action of Y-26763 which now attenuated the Hist-induced tonic increase in [Ca2+]i and force in a concentration-dependent manner (at concentrations > 1 microM). Glibenclamide (10 microM) attenuated the inhibitory action of Y-26763. 3. Hist (3 microM) depolarized the smooth muscle cells to the same extent as NA (10 microM). In the absence of either agonist, Y-26763 (over 30 nM) hyperpolarized the membrane and glibenclamide inhibited this hyperpolarization. Y-26763 (10 microM) almost abolished the NA-induced membrane depolarization, but only slightly attenuated the Hist-induced membrane depolarization in which the delta (delta) value (the difference before and after application of Hist) was not modified by any concentration of Y-26763. In ryanodine-treated smooth muscle cells, Y-26763 hyperpolarized the membrane and potently inhibited the membrane depolarization induced by Hist. 4. In ryanodine-treated muscle, Y-26763 had no measurable effect on the Hist-induced [Ca2+]i-force relationship. Y-26763 also had no apparent effect on the myofilament Ca(2+)-sensitivity in the presence of Hist in alpha

  20. The end of a noble narrative?

    DEFF Research Database (Denmark)

    Manners, Ian James; Murray, Philomena

    2015-01-01

    of the forerunner to the current EU we ask if this noble narrative of war and peace, which is at the heart of European integration, at an end. We argue that this principled account is likely to remain just one of several narratives of European integration, but with its reputation somewhat tarnished. Fresh...

  1. Investigating tumor perfusion and metabolism using multiple hyperpolarized 13C compounds: HP001, pyruvate and urea

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Larson, Peder E.Z.; Hu, Simon

    2012-01-01

    The metabolically inactive hyperpolarized agents HP001 (bis-1,1-(hydroxymethyl)-[1-13C]cyclopropane-d8) and urea enable a new type of perfusion magnetic resonance imaging based on a direct signal source that is background-free. The addition of perfusion information to metabolic information obtained...... (T1=95 s ex vivo, 32 s in vivo at 3 T) using a pulse sequence with balanced steady-state free precession and ramped flip angle over time for efficient utilization of the hyperpolarized magnetization and three-dimensional echo-planar spectroscopic imaging of urea copolarized with [1-13C...... of separate dynamic HP001 imaging and copolarized pyruvate/urea imaging were compared. A strong and significant correlation (R=0.73, P=.02) detected between the urea and HP001 data confirmed the value of copolarizing urea with pyruvate for simultaneous assessment of perfusion and metabolism....

  2. Imaging cerebral 2-ketoisocaproate metabolism with hyperpolarized (13)C Magnetic Resonance Spectroscopic Imaging

    DEFF Research Database (Denmark)

    Butt, Sadia Asghar; Søgaard, Lise Vejby-Christensen; Magnusson, Peter O.

    2012-01-01

    The branched chain amino acid transaminase (BCAT) has an important role in nitrogen shuttling and glutamate metabolism in the brain. The purpose of this study was to describe the cerebral distribution and metabolism of hyperpolarized 2-keto[1-(13)C]isocaproate (KIC) in the normal rat using magnet...... & Metabolism advance online publication, 28 March 2012; doi:10.1038/jcbfm.2012.34....

  3. Noble gases as cardioprotectants - translatability and mechanism

    NARCIS (Netherlands)

    Smit, Kirsten F.; Weber, Nina C.; Hollmann, Markus W.; Preckel, Benedikt

    2015-01-01

    Several noble gases, although classified as inert substances, exert a tissue-protective effect in different experimental models when applied before organ ischaemia as an early or late preconditioning stimulus, after ischaemia as a post-conditioning stimulus or when given in combination before,

  4. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET)

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E.; Henriksen, Sarah T.

    2015-01-01

    named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13CCO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use......In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and 18F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have...... of 13C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of 13C-pyruvate to 13C-lactate. In this study, we combined it with 18F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence...

  5. Structural changes of noble metal catalysts during ignition and extinction of the partial oxidation of methane studied by advanced QEXAFS techniques

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; Beier, M.; Kimmerle, B.

    2009-01-01

    The dynamics of the ignition and extinction of the catalytic partial oxidation (CPO) of methane to hydrogen and carbon monoxide over Pt-Rh/Al2O3 and Pt/Al2O3 were studied in the subsecond timescale using quick-EXAFS with a novel cam-driven X-ray monochromator employing Si(111) and Si(311) crystals...... to discuss the potential and limitation of this technique in catalysis and related areas. With respect to the noble metal catalysed partial oxidation of methane, several interesting observations were made: structural changes during ignition were-independent of the chosen reaction conditions......-significantly faster than during the extinction of the reaction. The dynamic behavior of the catalysts was dependent on the flow conditions and the respective noble metal component(s). Higher reaction gas flow led to a faster ignition process. While the ignition over Pt-Rh/Al2O3 occurred at lower temperature than over...

  6. Treatment Of Mercury Target Off-Gas At SNS

    International Nuclear Information System (INIS)

    DeVore, Joe R.; Freeman, David W.

    2007-01-01

    The Spallation Neutron Source (SNS) is the first operational spallation source to use liquid Mercury as a target material. This paper describes the treatment system to remove volatile spallation products from a Helium purge stream that emanates from the Mercury target and adjustments made to achieve design goals in response to phenomena experienced during initial operations. The Helium stream is treated to remove volatile spallation products prior to environmental release because of its activity level as these accumulate in the gas space in the Mercury Loop. Unanticipated local dose rates were noted in treatment system components during low power startup. Gamma scanning of these components identified the presence of nineteen noble gas isotopes and their daughters, indicating that the doses resulted from noble gas sorption. Treatment of this equipment with stable Xenon greatly reduced but did not eliminate these. Significant moisture was also encountered in the system, resulting in the plugging of the system cold trap. Changes to some of the system equipment were required together with moisture elimination from components to which moisture was sorbed. Necessary re-configuration of Mercury pump components presented additional requirements and system control changes to accommodate system operation at reduced pressure. The Off-Gas Treatment System has been successfully operated since April, 2006. System availability and removal effectiveness have been high. Operational issues occurring during the first year of operation have been resolved.

  7. Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging.

    Science.gov (United States)

    Kaushik, S Sivaram; Freeman, Matthew S; Cleveland, Zackary I; Davies, John; Stiles, Jane; Virgincar, Rohan S; Robertson, Scott H; He, Mu; Kelly, Kevin T; Foster, W Michael; McAdams, H Page; Driehuys, Bastiaan

    2013-09-01

    Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P exchange caused by differences in lung inflation and posture.

  8. Noble Metal/Ceramic Composites in Flame Processes

    DEFF Research Database (Denmark)

    Schultz, Heiko; Madler, Lutz; Strobel, Reto

    conditions influence the resulting noble metal particles size in those systems [1]. For every specific application the particle size and the metal/metal oxide interaction affect the performance of these nano-composite materials [2]. Recently, aerosol processes have been successfully used to produce platinum...

  9. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  10. In vivo single-shot (13)C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    DEFF Research Database (Denmark)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas

    2014-01-01

    are necessary. Several approaches have been customized for hyperpolarized (13)C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based...... temporal) data sets were obtained at 7T from a murine lymphoma tumor model....

  11. Transport Properties of operational gas mixtures used at LHC

    CERN Document Server

    Assran, Yasser

    2011-01-01

    This report summarizes some useful data on the transport characteristics of gas mixtures which are required for detection of charged particles in gas detectors. We try to replace Freon used for RPC detector in the CMS experiment with another gas while maintaining the good properties of the Freon gas mixture unchanged. We try to switch to freonless gas mixture because Freon is not a green gas, it is very expensive and its availability is decreasing. Noble gases like Ar, He, Ne and Xe (with some quenchers like carbon dioxide, methane, ethane and isobutene) are investigated. Transport parameters like drift velocity, diffusion, Townsend coefficient, attachment coefficient and Lorentz angle are computed using Garfield software for different gas mixtures and compared with experimental data.

  12. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot1[OPEN

    Science.gov (United States)

    Collins, Thomas S.; Vicente, Ariel R.; Doyle, Carolyn L.; Ye, Zirou; Allen, Greg; Heymann, Hildegarde

    2015-01-01

    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. PMID:26450706

  13. Christian Values and Noble Ideas of Rank and their Consequences on Symbolic Acts

    Directory of Open Access Journals (Sweden)

    Gerd ALTHOFF

    2007-12-01

    Full Text Available In the Middle Ages a Christian system of values met the values of a noble warrior society. Although these two systems had completely different conceptions of norms, they adapted from each other certain values and symbolic forms to express these values.The development of this adaptation is depicted by treating the Christian values misericordia, humilitas and clementia. In which way did the noble warrior society take up these values and how did these norms possibly change?Misericordia, for example, became an essential part of noble behaviour, but the fundamental idea of Christian misericordia was changed. Helping the poor was often motivated by the nobles’ will to prove his mercy, not by personal compassion.Although the value of humilitas implied a sharp contrast to the values of honor and rank, one can find forms of expression, which revealed a noble’s or ruler’s humility. With his humble behaviour one proved one’s qualification and legitimacy. Humility was expressed with symbolic forms of expression like walking barefoot and in penitential clothes or making footfalls. Similarly, these forms were used in inner-secular communication to acknowledge the existing order of rank.The ritual of deditio combines the values humilitas and clementia. The author describes this ritual as a pre-arranged stage-play, in which the one’s humility granted the other’s clemency. These ‘stage-plays’ had only little in common with the original Christian virtues, but this way several elements of the Christian virtue system influenced the noble behaviour pattern.En la edad media el sistema de valores cristiano confluye con el de una sociedad noble guerrera. Aunque ambos sistemas tuvieron dos concepciones de normas completamente diferentes, sin embargo, cada uno de ellos adapto ciertos valores y sus expresiones simbólicas del otro.El desarrollo de esta adaptación es descrito a través de los valores cristianos de misericordia, humilitas y clementia

  14. Nanodiamond-enhanced MRI via in situ hyperpolarization

    Science.gov (United States)

    Waddington, David E. J.; Sarracanie, Mathieu; Zhang, Huiliang; Salameh, Najat; Glenn, David R.; Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Walsworth, Ronald L.; Reilly, David J.; Rosen, Matthew S.

    2017-04-01

    Nanodiamonds are of interest as nontoxic substrates for targeted drug delivery and as highly biostable fluorescent markers for cellular tracking. Beyond optical techniques, however, options for noninvasive imaging of nanodiamonds in vivo are severely limited. Here, we demonstrate that the Overhauser effect, a proton-electron polarization transfer technique, can enable high-contrast magnetic resonance imaging (MRI) of nanodiamonds in water at room temperature and ultra-low magnetic field. The technique transfers spin polarization from paramagnetic impurities at nanodiamond surfaces to 1H spins in the surrounding water solution, creating MRI contrast on-demand. We examine the conditions required for maximum enhancement as well as the ultimate sensitivity of the technique. The ability to perform continuous in situ hyperpolarization via the Overhauser mechanism, in combination with the excellent in vivo stability of nanodiamond, raises the possibility of performing noninvasive in vivo tracking of nanodiamond over indefinitely long periods of time.

  15. Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange

    Science.gov (United States)

    2016-09-12

    G. R.; Duckett, S. B.; Spiess , H. W.; Schreiber, L. M.; Münnemann, K. Continuous Proton Hyperpolarization Via SABRE and Hollow Fibre Membranes. Proc...M.; Kindervater, P.; Raich, H.-P.; Bargon, J.; Spiess , H. W.; Muennemann, K. Continuous H-1 and C-13 Signal Enhancement in NMR Spectroscopy and MRI

  16. The efficacy of noble metal alloy urinary catheters in reducing catheter-associated urinary tract infection

    Directory of Open Access Journals (Sweden)

    Alanood Ahmed Aljohi

    2016-01-01

    Results: A 90% relative risk reduction in the rate of CAUTI was observed with the noble metal alloy catheter compared to the standard catheter (10 vs. 1 cases, P = 0.006. When considering both catheter-associated asymptomatic bacteriuria and CAUTI, the relative risk reduction was 83% (12 vs. 2 cases, P = 0.005. In addition to CAUTI, the risk of acquiring secondary bacteremia was lower (100% for the patients using noble metal alloy catheters (3 cases in the standard group vs. 0 case in the noble metal alloy catheter group, P = 0.24. No adverse events related to any of the used catheters were recorded. Conclusion: Results from this study revealed that noble metal alloy catheters are safe to use and significantly reduce CAUTI rate in ICU patients after 3 days of use.

  17. Radiochemistry as a (rho)R Diagnostic with the RAGS Gas Collection System

    International Nuclear Information System (INIS)

    Nelson, S.L.; Shaughnessy, D.A.; Schneider, D.H.; Stoeffl, W.; Moody, K.J.; Cerjan, C.; Stoyer, M.A.; Bernstein, L.A.; Bleuel, D.L.; Hoffman, R.

    2010-01-01

    Radiochemical diagnostic techniques such as gas-phase capsule debris analysis may prove to be successful methods for establishing the success or failure of ignition experiments at the National Ignition Facility (NIF). Samples in the gas phase offer the most direct method of collection by simply pumping out the large target chamber following a NIF shot. The target capsules will be prepared with dopants which will produce radioactive noble gas isotopes upon activation with neutrons. We have designed and constructed the Radchem Apparatus for Gas Sampling (RAGS) in order to collect post-shot gaseous samples for NIF capsule diagnostics. The design of RAGS incorporates multiple stages intended to purify, transfer, and count the radioactive decays from gaseous products synthesized in NIF experiments. At the moment the dopant of choice is 124 Xe, which will undergo (n,γ) and (n, 2n) reactions to produce 125 Xe and 123 Xe. The half-lives of each are on the order of multiple hours and are suitable for long-term gamma-counting. These isotopes and the rest of the gases evolved in a NIF shot will be drawn through the NIF turbo pumps, past the temporarily shuttered cryo pumps (to aid our collection efficiency), and towards the first main portion of the RAGS system: the pre-cleaner. The pre-cleaner will consist of a water removal system, a series of heated getter cartridges to remove most other impurities such as N 2 , O 2 , CO 2 , etc., and a residual gas analyzer (RGA) to monitor vacuum quality. The noble gases will flow through the precleaner and into the second stage of the system: the cryo collector. This cryo collector consists of a main cryo head for noble gas collection which will operate for approximately five minutes post-shot. Afterwards a valve will close and isolate the pre-cleaner, while the cryo head warms to release the Xe gas to one of two locations - either a second cryo station for in-situ gamma counting, or to a small cooled gas bottle for removal and

  18. Noble gases, nitrogen, cosmic ray exposure history and mineralogy of Beni M'hira (L6) chondrite

    Science.gov (United States)

    Mahajan, Ramakant R.; Nejia, Laridhi Ouazaa; Ray, Dwijesh; Naik, Sekhar

    2018-03-01

    The concentrations and isotopic composition of noble gases helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon(Xe) and nitrogen were measured in the Beni M'hira L6 chondrite. The cosmic ray exposure age of Beni M'hira is estimated of 15.6 ± 3.7 (Ma). The radiogenic age, of around 485 ± 64 Ma, derived from 4He, and of around 504 ± 51 Ma from 40Ar, suggests an age resetting indicating the event impact. The heavy noble gases (Ar, Kr and Xe) concentrations imply that the gas is a mixture of trapped component Q and solar wind. The measured nitrogen abundance of 0.74 ppm and the isotopic signature of δ15N = 14.6‰ are within the range of ordinary chondrites. The homogeneous chemical composition of olivine (Fa:26 ± 0.25) and low-Ca pyroxene (Fs:22.4 ± 0.29) suggest that the Beni M'hira meteorite is an equilibrated chondrite. This is further corroborated by strong chondrule-matrix textural integration (lack of chondrules, except a few relict clast). Shock metamorphism generally corresponds to S5 (>45 GPa), however, locally disequilibrium melting (shock-melt veins) suggests, that the peak shock metamorphism was at ∼75 GPa, 950 °C.

  19. Exploiting level anti-crossings for efficient and selective transfer of hyperpolarization in coupled nuclear spin systems

    NARCIS (Netherlands)

    Pravdivtsev, A.N.; Yurkovskaya, A.V.; Kaptein, R.; Miesel, K.; Vieth, H.-M.; Ivanov, K.L.

    2013-01-01

    Spin hyperpolarization can be coherently transferred to other nuclei in field-cycling NMR experiments. At low magnetic fields spin polarization is redistributed in a strongly coupled network of spins. Polarization transfer is most efficient at fields where level anti-crossings (LACs) occur for the

  20. Natural Death and the Noble Savage.

    Science.gov (United States)

    Walter, Tony

    1995-01-01

    The belief that dying and grieving are natural processes is widely held in modern bereavement care. Examines four assumption often made in this connection: (1) most primitive cultures deal with death in an accepting way; (2) this way is different than our own; (3) it is a good and noble way; and (4) traditional societies see death as natural. (JBJ)

  1. Tantalum oxide-based compounds as new non-noble cathodes for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Ishihara, Akimitsu; Tamura, Motoko; Matsuzawa, Koichi; Mitsushima, Shigenori; Ota, Ken-ichiro

    2010-01-01

    Tantalum oxide-based compounds were examined as new non-noble cathodes for polymer electrolyte fuel cell. Tantalum carbonitride powder was partially oxidized under a trace amount of oxygen gas at 900 o C for 4 or 8 h. Onset potential for oxygen reduction reaction (ORR) of the specimen heat-treated for 8 h was 0.94 V vs. reversible hydrogen electrode in 0.1 mol dm -3 sulfuric acid at 30 o C. The partial oxidation of tantalum carboniride was effective to enhance the catalytic activity for the ORR. The partially oxidized specimen with highest catalytic activity had ca. 5.25 eV of ionization potential, indicating that there was most suitable strength of the interaction of oxygen and tantalum on the catalyst surface.

  2. Selective noble gases monitoring

    International Nuclear Information System (INIS)

    Janecka, S.; Jancik, O.; Kapisovsky, V.; Kubik, I.; Sevecka, S.

    1995-01-01

    The monitoring of leak releases from ventilation stack of NPP requires a system by several orders more sensitive then currently used radiometer Kalina, designed to cover the range up to a design-based accident. To reach this goal a noble gases monitor with a germanium detector (MPVG) has been developed. It enables nuclide selective monitoring of current value of volume activity of particular nuclides in ventilation stack and daily releases of noble gases (balancing). MPVG can be viewed as a system build of three levels of subsystem: measuring level; control level; presentation level. Measuring level consists of gamma-spectroscopy system and operational parameters monitoring unit (flow rate, temperature, humidity). Control level provides communication between presentation and measuring level, acquisition of operational parameters and power supply. The presentation level of MPVG enables: 1) the measured data storage in predetermined time intervals; 2) the presentation of measured and evaluated values of radiation characteristics. The monitored radionuclides - default set: argon-41, krypton-85m, krypton-87, krypton-88, krypton-89, xenon-131m, xenon-133, xenon-133m, xenon-135, xenon-135m, xenon-137 and xenon-138. The values of volume activities observed at maximum releases have been approximately ten times higher. In that case in balancing some other nuclides exceed corresponding detection limits: 88 Kr(67; 22) Bq/m 3 ; 85m Kr(17; 7) Bq/m 3 ; 135m Xe(7.1; 0.5) Bq/m 3 ; 138 Xe(5.9; 0.9) Bq/m 3 . (J.K.)

  3. Selective noble gases monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Janecka, S; Jancik, O; Kapisovsky, V; Kubik, I; Sevecka, S [Nuclear Power Plants Research Institute, a.s., Trnava (Slovakia)

    1996-12-31

    The monitoring of leak releases from ventilation stack of NPP requires a system by several orders more sensitive then currently used radiometer Kalina, designed to cover the range up to a design-based accident. To reach this goal a noble gases monitor with a germanium detector (MPVG) has been developed. It enables nuclide selective monitoring of current value of volume activity of particular nuclides in ventilation stack and daily releases of noble gases (balancing). MPVG can be viewed as a system build of three levels of subsystem: measuring level; control level; presentation level. Measuring level consists of gamma-spectroscopy system and operational parameters monitoring unit (flow rate, temperature, humidity). Control level provides communication between presentation and measuring level, acquisition of operational parameters and power supply. The presentation level of MPVG enables: 1) the measured data storage in predetermined time intervals; 2) the presentation of measured and evaluated values of radiation characteristics. The monitored radionuclides - default set: argon-41, krypton-85m, krypton-87, krypton-88, krypton-89, xenon-131m, xenon-133, xenon-133m, xenon-135, xenon-135m, xenon-137 and xenon-138. The values of volume activities observed at maximum releases have been approximately ten times higher. In that case in balancing some other nuclides exceed corresponding detection limits: {sup 88}Kr(67; 22) Bq/m{sup 3}; {sup 85m}Kr(17; 7) Bq/m{sup 3}; {sup 135m}Xe(7.1; 0.5) Bq/m{sup 3}; {sup 138}Xe(5.9; 0.9) Bq/m{sup 3}. (J.K.).

  4. Effects of halogens on interactions between a reduced TiO{sub 2} (110) surface and noble metal atoms: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Kohei, E-mail: k-tada@aist.go.jp [Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577 (Japan); Koga, Hiroaki [Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo Ohara, Nishikyo, Kyoto, 615-8245 (Japan); Hayashi, Akihide; Kondo, Yudai; Kawakami, Takashi; Yamanaka, Shusuke [Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Okumura, Mitsutaka [Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo Ohara, Nishikyo, Kyoto, 615-8245 (Japan)

    2017-07-31

    Highlights: • We investigated the halogen effect on the interactions of noble metals with TiO{sub 2}. • Halogen atoms inhibit electron transfer from TiO{sub 2} to noble metals. • Iodine stabilizes the adsorption of noble metals especially for Ag and Cu. • Electron transfer from the TiO{sub 2} is effective in anchoring Au and Pt atoms. • Covalent interaction with the support is effective in anchoring Ag and Cu atoms. - Abstract: Using DFT calculation, we investigate the effects of halogens on the interactions between rutile TiO{sub 2} (110) and noble metal atoms (Au, Ag, Cu, Pt, and Pd). Fluorine, chlorine, and bromine atoms occupy the oxygen defect sites of TiO{sub 2}, decreasing the stability of noble metal atoms on the surface. This decrease occurs because the halogens inhibit electron transfer from TiO{sub 2} to the noble metal atoms; the electron transfer from reduced TiO{sub 2} to the noble metal atom stabilizes the noble metal atom adsorption. In contrast, iodine strengthens the interactions between TiO{sub 2} and some noble metal atoms, namely Ag and Cu. This stabilization occurs because of the covalent interaction between iodine-doped TiO{sub 2} and the noble metal atom. Therefore, the stabilization is explained well by chemical hardness. This result suggests that iodine-doping of a TiO{sub 2} surface would be an effective method for the preparation of highly stabilized noble metal clusters.

  5. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  6. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    Science.gov (United States)

    Vacquand, Christèle; Deville, Eric; Beaumont, Valérie; Guyot, François; Sissmann, Olivier; Pillot, Daniel; Arcilla, Carlo; Prinzhofer, Alain

    2018-02-01

    This paper proposes a comparative study of reduced gas seepages occurring in ultrabasic to basic rocks outcropping in ophiolitic complexes based on the study of seepages from Oman, the Philippines, Turkey and New Caledonia. This study is based on analyses of the gas chemical composition, noble gases contents, stable isotopes of carbon, hydrogen and nitrogen. These seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct types of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These types are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich type, associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 types. H2-bearing gases are either associated with ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and alkaline conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4. The N2-rich type is notably associated with relatively high contents of crustal 4He and in this gas type N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  7. Investigating tumor perfusion by hyperpolarized (13) C MRI with comparison to conventional gadolinium contrast-enhanced MRI and pathology in orthotopic human GBM xenografts

    DEFF Research Database (Denmark)

    Park, Ilwoo; von Morze, Cornelius; Lupo, Janine M

    2016-01-01

    glioblastoma (GBM) model for the characterization of tumor perfusion and compared with standard Gd-based dynamic susceptibility contrast (DSC) MRI data and immunohistochemical analysis from resected brains. Distinct HMCP perfusion characteristics were observed within the GBM tumors compared with contralateral...... for tumor that exhibited high levels of hyperpolarized HMCP signal. The results from this study have demonstrated that hyperpolarized HMCP data can be used as an indicator of tumor perfusion in an orthotopic xenograft model for GBM. Magn Reson Med, 2016. © 2016 Wiley Periodicals, Inc....

  8. Fast dynamic ventilation MRI of hyperpolarized 129 Xe using spiral imaging.

    Science.gov (United States)

    Doganay, Ozkan; Matin, Tahreema N; Mcintyre, Anthony; Burns, Brian; Schulte, Rolf F; Gleeson, Fergus V; Bulte, Daniel

    2018-05-01

    To develop and optimize a rapid dynamic hyperpolarized 129 Xe ventilation (DXeV) MRI protocol and investigate the feasibility of capturing pulmonary signal-time curves in human lungs. Spiral k-space trajectories were designed with the number of interleaves N int  = 1, 2, 4, and 8 corresponding to voxel sizes of 8 mm, 5 mm, 4 mm, and 2.5 mm, respectively, for field of view = 15 cm. DXeV images were acquired from a gas-flow phantom to investigate the ability of N int  = 1, 2, 4, and 8 to capture signal-time curves. A finite element model was constructed to investigate gas-flow dynamics corroborating the experimental signal-time curves. DXeV images were also carried out in six subjects (three healthy and three chronic obstructive pulmonary disease subjects). DXeV images and numerical modelling of signal-time curves permitted the quantification of temporal and spatial resolutions for different numbers of spiral interleaves. The two-interleaved spiral (N int  = 2) was found to be the most time-efficient to obtain DXeV images and signal-time curves of whole lungs with a temporal resolution of 624 ms for 13 slices. Signal-time curves were well matched in three healthy volunteers. The Spearman's correlations of chronic obstructive pulmonary disease subjects were statistically different from three healthy subjects (P spiral demonstrates the successful acquisition of DXeV images and signal-time curves in healthy subjects and chronic obstructive pulmonary disease patients. Magn Reson Med 79:2597-2606, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc

  9. Preparation and Heat-Treatment of DWPF Simulants With and Without Co-Precipitated Noble Metals

    International Nuclear Information System (INIS)

    Koopman, David C.:Eibling, Russel E

    2005-01-01

    The Savannah River National Laboratory is in the process of investigating factors suspected of impacting catalytic hydrogen generation in the Chemical Process Cell of the Defense Waste Processing Facility, DWPF. Noble metal catalyzed hydrogen generation in simulation work constrains the allowable acid addition operating window in DWPF. This constraint potentially impacts washing strategies during sludge batch preparation. It can also influence decisions related to the addition of secondary waste streams to a sludge batch. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Parallel preparations of two sludge simulants targeting the composition of Sludge Batch 3 were performed in order to evaluate the impact of the form of noble metals. Identical steps were used except that one simulant had dissolved palladium, rhodium, and ruthenium present during the precipitation of the insoluble solids. Noble metals were trimmed into the other stimulant prior to process tests. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The simulants were used as feeds for Sludge Receipt and Adjustment Tank, SRAT, process simulations. The following conclusions were drawn from the simulant preparation work: (1) The first preparation of a waste slurry simulant with co-precipitated noble metals was successful, based on the data obtained. It appears that 99+% of the noble metals were retained in the simulant. (2) Better control of carbonate, hydroxide, and post-wash trim chemical additions is needed before the new method of simulant preparation will be as reproducible as the old method. (3) The two new

  10. High pressure gas spheres for neutron and photon experiments

    Science.gov (United States)

    Rupp, G.; Petrich, D.; Käppeler, F.; Kaltenbaek, J.; Leugers, B.; Reifarth, R.

    2009-09-01

    High pressure gas spheres have been designed and successfully used in several nuclear physics experiments on noble gases. The pros and cons of this solution are the simple design and the high reliability versus the fact that the density is limited to 40-60% of liquid or solid gas samples. Originally produced for neutron capture studies at keV energies, the comparably small mass of the gas spheres were an important advantage, which turned out to be of relevance for other applications as well. The construction, performance, and operation of the spheres are described and examples for their use are presented.

  11. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.-C.

    1981-01-01

    A method is described for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. The method involves a sequence of adsorption and desorption steps which are specified. Particular reference is made to the separation of xenon and krypton from the off-gas stream, and to the use of silver-exchanged mordenite as the adsorbent. (U.K.)

  12. Noble metal behavior during melting of simulated high-level nuclear waste glass feeds

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Noble metals and their oxides can settle in waste glass melters and cause electrical shorting. Simulate waste feeds from Hanford, Savannah River, and Kernforschungszentrum Karlsruhe were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C and examined by electron microscopy to determine shapes, sizes, and distribution of noble metal particles as a function of temperature. Individual noble metal particles and agglomerates of rhodium (Rh), ruthenium (RuO 2 ), and palladium (Pd), as well as their alloys, were seen. The majority of particles and agglomerates were generally less than 10 μm; however, large agglomerations (up to 1 mm) were found in the German feed. 5 refs., 6 figs., 2 tabs

  13. Attempt of groundwater dating using the drilled rock core. 1. Development of the rock sampling method for measurement of noble gases dissolved in interstitial water in rock

    International Nuclear Information System (INIS)

    Mahara, Yasunori

    2002-01-01

    Groundwater dating in low permeable rock is very difficult and impracticable, because we take a very long time to collect groundwater sample in a borehole and have to invest much fund in production of the in-situ groundwater sampler and in operation of it. If we can directly measure noble gases dissolved in interstitial groundwater in rock core, we have a big merit to estimate groundwater resident time easy. In this study, we designed and produced a high vacuum container to let dissolved noble gases diffuse until reaching in equilibrium, and we made a handling manual of the rock core into the container and a procedure to vacuum out air from the sealed container. We compared data sets of noble gas concentration obtained from rock cores and groundwater sample collected from boreholes in-situ. The measured rocks are pumice-tuff rock, mud rock and hornfels, which have their permeabilities of 10 -6 cm/s, 10 -9 cm/s and 10 -11 cm/s, respectively. Consequently, we evaluated the rock core method is better than the in-situ groundwater sampling method for low permeable rock. (author)

  14. Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells.

    Science.gov (United States)

    Soto-Cerrato, Vanessa; Manuel-Manresa, Pilar; Hernando, Elsa; Calabuig-Fariñas, Silvia; Martínez-Romero, Alicia; Fernández-Dueñas, Víctor; Sahlholm, Kristoffer; Knöpfel, Thomas; García-Valverde, María; Rodilla, Ananda M; Jantus-Lewintre, Eloisa; Farràs, Rosa; Ciruela, Francisco; Pérez-Tomás, Ricardo; Quesada, Roberto

    2015-12-23

    Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.

  15. NMR and MRI of continuously dissolved hyperpolarized {sup 129}Xe by means of hollow fibers

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Nadia; Kueppers, Markus; Bluemich, Bernhard [ITMC of RWTH Aachen University (Germany); Hamilton, Kathrin; Schmitz-Rode, Thomas; Steinseifer, Ulrich [HIA of RWTH Aachen University (Germany); Appelt, Stephan [Research Center Juelich (Germany)

    2011-07-01

    Various methods of hyperpolarizing (HP) spin systems have been developed during the last years to increase the intrinsically low sensitivity of NMR by several orders of magnitude. Among them is the hyperpolarization of {sup 129}Xe via Spin Exchange Optical Pumping (SEOP). NMR of HP {sup 129}Xe is of great interest because of its good solubility and its very sensitive chemical shift. The main obstacle for many applications is the efficient and continuous dissolution into carrier agents without formation of foams or bubbles. It has been overcome by the so-called ''xenonizer'' setups. They mainly consist of commercially available hollow fiber membranes typically used in clinical oxygenators. A purpose-built xenonizer setup has been developed and analyzed in detail by NMR spectroscopy and MRI for varying fiber materials as well as for different fluids, including bio-relevant fluids such as blood, plasma, and erythrocytes. As a result, the xenonizer technology could be further understood and improved, and new applications of HP {sup 129}Xe for medical NMR were explored.

  16. Polymer-noble metal nanocomposites: Review

    CSIR Research Space (South Africa)

    Folarin, OM

    2011-09-01

    Full Text Available because of their multi-functionality, ease of process-ability, potential for large-scale manufacturing, significantly lighter than metals, ease of synthesis when compared to the oxide/noble metal multi-layers (Gass et al., 2006; Lee et al., 2003.... their easy aggregation arising from their high surface free energy (Lee et al., 2006). In the design of nanocomposites, one must consider the properties of the polymer matrix as well as the stability of the nanoparticles and more importantly...

  17. Techniques for the quantitative analysis of fission-product noble metals

    International Nuclear Information System (INIS)

    Lautensleger, A.W.; Hara, F.T.

    1982-08-01

    Analytical procedures for the determination of ruthenium, rhodium, and palladium in precursor waste, solvent metal, and final glass waste forms have been developed. Two procedures for the analysis of noble metals in the calcine and glass waste forms are described in this report. The first is a fast and simple technique that combines inductively coupled argon plasma atomic emission spectrometry (ICP) and x-ray fluorescence techniques and can only be used on nonradioactive materials. The second procedure is based on a noble metal separation step, followed by an analysis using ICP. This second method is more complicated than the first, but it will work on radioactive materials. Also described is a procedure for the ICP analysis of noble metals in the solvent metal matrix. The only solvent metal addressed in this procedure is lead, but with minor changes the procedure could be applied to any of the solvent metals being considered in the Pacific Northwest Laboratory (PNL) extraction process. A brief explanation of atomic spectroscopy and the ICP analytical process, as well as of certain aspects of ICP performance (interelement spectral line interferences and certain matrix effects) is given

  18. Cover gas purification in the German LMFBR-programme

    International Nuclear Information System (INIS)

    Schillings, K.-L.; Wagner, J.; Stade, K. Ch.

    1987-01-01

    A specific problem of sodium-cooled reactor plants is the purity of the noble gas argon which is used to protect the liquid alkali metal sodium in its systems in order to avoid or reduce disagreeable reactions between sodium and gaseous compounds like moisture or air and organic products like oil and grease. But as this contact cannot completely be excluded, we have to recycle such soiled cover gas. Simultaneously this procedure has to correct the release of radioactivity. Therefore the cover gas purification of primary systems of reactor plants contains the removal of the inorganic chemical disposal and of the nuclear waste. (author)

  19. Electrospun Polymer Nanofibers Decorated with Noble Metal Nanoparticles for Chemical Sensing.

    Science.gov (United States)

    Chen, Chen; Tang, Yongan; Vlahovic, Branislav; Yan, Fei

    2017-12-01

    The integration of different noble metal nanostructures, which exhibit desirable plasmonic and/or electrocatalytic properties, with electrospun polymer nanofibers, which display unique mechanical and thermodynamic properties, yields novel hybrid nanoscale systems of synergistic properties and functions. This review summarizes recent advances on how to incorporate noble metal nanoparticles into electrospun polymer nanofibers and illustrates how such integration paves the way towards chemical sensing applications with improved sensitivity, stability, flexibility, compatibility, and selectivity. It is expected that further development of this field will eventually make a wide impact on many areas of research.

  20. Hyperpolarized Xenon Nuclear Magnetic Resonance (NMR of Building Stone Materials

    Directory of Open Access Journals (Sweden)

    Michele Mauri

    2012-09-01

    Full Text Available We have investigated several building stone materials, including minerals and rocks, using continuous flow hyperpolarized xenon (CF-HP NMR spectroscopy to probe the surface composition and porosity. Chemical shift and line width values are consistent with petrographic information. Rare upfield shifts were measured and attributed to the presence of transition metal cations on the surface. The evolution of freshly cleaved rocks exposed to the atmosphere was also characterized. The CF-HP 129Xe NMR technique is non-destructive and it could complement currently used techniques, like porosimetry and microscopy, providing additional information on the chemical nature of the rock surface and its evolution.