WorldWideScience

Sample records for hyperfine structure anomaly

  1. Study of hyperfine anomaly in 9,11Be isotopes

    International Nuclear Information System (INIS)

    Parfenova, Y.; Leclercq-Willain

    2005-01-01

    The study of the hyperfine anomaly of neutron rich nuclei, in particular, neutron halo nuclei, can give a very specific and unique way to measure their neutron distribution and confirm a halo structure. The hyperfine structure anomaly in Be + ions is calculated with a realistic electronic wave function, obtained as a solution of the Dirac equation. In the calculations, the Coulomb potential modified by the charge distribution of the clustered nucleus and three electrons in the configuration 1s 2 2s is used. The nuclear wave function for the 11 Be nucleus is obtained in the core + nucleon model, and that for the 9 Be nucleus is calculated in the three-cluster (α+α + n) model. The aim of this study is to test whether the hyperfine structure anomaly reflects an extended spatial structure of '1 1 Be. The results of the calculations are listed. ε BW is the hyperfine anomaly in the Bohr-Weisskopf effect and δ is the charge structure correction, μ is the calculated magnetic moment, and μ exp is the experimental value of the magnetic moment, Q and Q exp are the calculated and measured values of the quadrupole moment. The results for 9 Be are obtained with two different three-body wave functions (WF1 and WF2) showing the sensitivity of the calculations to the input parameters. The value of ε BW is sensitive to the weights of the states in the nuclear ground state wave function. The total hyperfine anomaly value εε BW +δ in 11 Be differs from that in 9 Be by 25%. This gives a measure of the accuracy of the hyperfine anomaly measurements needed to study the neutron distribution in the Be isotopes. (authors)

  2. Hyperfine structure of six low-lying fine structure levels of 191Ir and 193Ir and the 191Δs193 hyperfine anomaly

    International Nuclear Information System (INIS)

    Buettgenbach, S.; Dicke, R.; Gebauer, H.; Kuhnen, R.; Traeber, F.

    1978-01-01

    The hyperfine interaction constants A and B of six low-lying metastable fine structure states of the two iridium isotopes 191 Ir and 193 Ir and the electronic g-factors of these levels have been measured using the atomic-beam magnetic-resonance method. From the values of the magnetic-dipole interaction constants A, corrected for off-diagonal perturbations, we extracted the hyperfine anomaly of a pure 6s-electron state: 191 Δs 193 = 0.64(7)%. Using nonrelativistic approximations for the effective radial parameters the nuclear electric-quadrupole moments were obtained: Q( 191 Ir) = 0.81(21)b, Q( 193 Ir) = 0.73(19)b (corrected for Sternheimer shielding effects). (orig.) [de

  3. Analysis of Hydrogen Cyanide Hyperfine Spectral Components towards Star Forming Cores

    Directory of Open Access Journals (Sweden)

    Loughnane R. M.

    2011-12-01

    Full Text Available Although hydrogen cyanide has become quite a common molecular tracing species for a variety of astrophysical sources, it, however, exhibits dramatic non-LTE behaviour in its hyperfine line structure. Individual hyperfine components can be strongly boosted or suppressed. If these so-called hyperfine line anomalies are present in the HCN rotational spectra towards low or high mass cores, this will affect the interpretation of various physical properties such as the line opacity and excitation temperature in the case of low mass objects and infall velocities in the case of their higher mass counterparts. Anomalous line ratios are present either through the relative strengths of neighboring hyperfine lines or through the varying widths of hyperfine lines belonging to a particular rotational line. This work involves the first observational investigation of these anomalies in two HCN rotational transitions, J=1→0 and J=3→2, towards both low mass starless cores and high mass protostellar objects. The degree of anomaly in these two rotational transitions is considered by computing the ratios of neighboring hyperfine lines in individual spectra. Results indicate some degree of anomaly is present in all cores considered in our survey, the most likely cause being line overlap effects among hyperfine components in higher rotational transitions.

  4. EFFECTIVE HYPERFINE-STRUCTURE FUNCTIONS OF AMMONIA

    Energy Technology Data Exchange (ETDEWEB)

    Augustovičová, L.; Soldán, P.; Špirko, V., E-mail: spirko@marge.uochb.cas.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, CZ-12116 Prague 2 (Czech Republic)

    2016-06-20

    The hyperfine structure of the rotation-inversion ( v {sub 2} = 0{sup +}, 0{sup −}, 1{sup +}, 1{sup −}) states of the {sup 14}NH{sub 3} and {sup 15}NH{sub 3} ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction. In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.

  5. Anomalies in resonant absorption line profiles of atoms with large hyperfine splitting

    International Nuclear Information System (INIS)

    Parkhomenko, A.I.; Pod'yachev, S.P.; Privalov, T.I.; Shalagin, A.M.

    1997-01-01

    We examine a monochromatic absorption line in the velocity-nonselective excitation of atoms when the components of the hyperfine stricture of the electronic ground states are optically pumped. We show that the absorption lines possess unusual substructures for some values of the hyperfine splitting of the ground state (which exceed the Doppler absorption linewidth severalfold). These substructures in the absorption spectrum are most apparent if the hyperfine structure of the excited electronic state is taken into account. We calculate the absorption spectra of monochromatic light near the D 1 and D 2 lines of atomic rubidium 85,87 Rb. With real hyperfine splitting taken into account, the D 1 and D 2 lines are modeled by 4- and 6-level diagrams, respectively. Finally, we show that atomic rubidium vapor can be successfully used to observe the spectral features experimentally

  6. Theoretical and experimental investigation of atomic radiative lifetimes and hyperfine structures

    International Nuclear Information System (INIS)

    Joensson, Per.

    1992-01-01

    Atomic radiative lifetimes and hyperfine structures as well as other properties, such as total energy and specific mass shift, have been studied theoretically and experimentally. Computer programs to calculate hyperfine structure constants from non-relativistic multiconfiguration Hartree-Fock (MCHF) and relativistic multi-configuration Dirac-Fock (MCDF) wavefunctions have been written. Using these programs large-scale calculations of hyperfine structures in lithium and sodium have been performed. It is shown, that the MCHF method is able to predict hyperfine structures to an accuracy of a few per mille in lithium, whereas for the more complex hyperfine structures to an accuracy of a few per mille in lithium, whereas for the more complex sodium atom an accuracy of a few per cent is obtainable. For lithium convergence of the total energy, ionization energy, specific mass shift and hyperfine parameters has been studied with the MCHF method. Radiative lifetimes and hyperfine structures of excited states in sodium and silver have been experimentally determined using time-resolved laser spectroscopy. By recording the fluorescence light decay curves following VUV excitation, the radiative lifetimes and hyperfine structures of the 7p 2 P states in silver were measured. The delayed-coincidence technique has been used to make very accurate measurements of the radiative lifetimes and hyperfine structures of the lowest P states in sodium and silver

  7. Hyperfine structure of S-states of muonic tritium

    Directory of Open Access Journals (Sweden)

    Martynenko F.A.

    2017-01-01

    Full Text Available On the basis of quasipotential method in quantum electrodynamics we carry out a precise calculation of hyperfine splitting of S-states in muonic tritium. The one-loop and two-loop vacuum polarization corrections, relativistic effects, nuclear structure corrections in first and second orders of perturbation theory are taken into account. The contributions to hyperfine structure are obtained in integral form and calculated analytically and numerically. Obtained results for hyperfine splitting can be used for a comparison with future experimental data of CREMA collaboration.

  8. Hyperfine structure of S-states of muonic deuterium

    Directory of Open Access Journals (Sweden)

    Alexey P. Martynenko

    2015-09-01

    Full Text Available On the basis of quasipotential method in quantum electrodynamics we calculate corrections of order $\\alpha^5$ and $\\alpha^6$ to hyperfine structure of $S$-wave energy levels of muonic deuterium. Relativistic corrections, effects of vacuum polarization in first, second and third orders of perturbation theory, nuclear structure and recoil corrections are taken into account. The obtained numerical values of hyperfine splitting $\\Delta E^{hfs}(1S=50.2814$ meV ($1S$ state and $\\Delta E^{hfs}(2S=6.2804$ meV ($2S$ state represent reliable estimate for a comparison with forthcoming experimental data of CREMA collaboration. The hyperfine structure interval $\\Delta_{12}=8\\Delta E^{hfs}(2S- \\Delta E^{hfs}(1S=-0.0379$ meV can be used for precision check of quantum electrodynamics prediction for muonic deuterium.

  9. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2016-07-28

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structure that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.

  10. Hyperfine structure of muonic lithium ions

    Directory of Open Access Journals (Sweden)

    Alexey P. Martynenko

    2015-06-01

    Full Text Available On the basis of perturbation theory in fine structure constant $\\alpha$ and the ratio of electron to muon masses we calculate recoil corrections of order $\\alpha^4 (M_e/M_\\mu$, $\\alpha^4 (M_e/M_\\mu^2\\ln(M_e/M_\\mu$, $\\alpha^4 (M_e/M_\\mu^2$, $\\alpha^5(m_e/m_\\mu\\ln(m_e/m_\\mu$ to hyperfine splitting of the ground state in muonic lithium ions $(\\mu e ^6_3\\mathrm{Li}^+$ and $(\\mu e ^7_3\\mathrm{Li}^+$. We obtain total results for the ground state small hyperfine splittings in $(\\mu e ^6_3\\mathrm{Li}^+$ $\\Delta\

  11. Hyperfine structure of ScI by infrared Fourier transform spectroscopy

    International Nuclear Information System (INIS)

    Aboussaid, A.; Carleer, M.; Hurtmans, D.; Biemont, E.; Godefroid, M.R.

    1996-01-01

    The spectrum of scandium was recorded in the infrared region using a high resolution Fourier transform spectrometer and a hollow-cathode discharge. Hyperfine structures of the lines connecting the 3d 2 4s and 3d4s4p level systems of Sc 45 I were observed between 4000 and 5000 cm -1 . The structures were not completely resolved but the individual line contributions to the complex profiles were simulated using the 3d 2 4s 4 F J hyperfine structure constants previously measured with a high precision by laser techniques. We investigate the possibility of extracting the hyperfine constants of the 3d4s4p levels from a least-squares fit of the line profiles, assuming a Doppler lineshape and theoretical relative intensities. New results are presented for 12 levels. (orig.)

  12. Spin-torsion effects in the hyperfine structure of methanol

    International Nuclear Information System (INIS)

    Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.

    2015-01-01

    The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling

  13. Investigation of the hyperfine structure of Praseodymium-transitions using laser spectroscopy

    International Nuclear Information System (INIS)

    Shamim Khan

    2011-01-01

    A comprehensive knowledge of the electron levels in an atom is one of the prerequisite for understanding the electron-electron and electron-nucleus interactions inside an atom and for the classification of the atomic spectrum of an element. The spin-orbit interaction is the largest relativistic effect and is responsible for the fine structure splitting in an atom. The hyperfine structure splitting of the fine structure atomic energy levels arise as a result of the interaction between spinning and orbiting electrons and electromagnetic multipole nuclear moments. The electronic ground state configuration of praseodymium 59 Pr 141 is [Xe] 4f 3 6s 2 , with ground state level 4 I 9/2 . Because of its 5 outer electrons Praseodymium has a high density of energy levels which give rise to an extremely line rich emission spectrum. Due to this fact praseodymium serves as an efficient testing ground for hyperfine structure studies. The thesis is mainly devoted to the finding of previously unknown energy levels by the investigation of spectral lines and their hyperfine structures. In a hollow cathode discharge lamp praseodymium atoms and ions in ground and excited states are excited to high lying states by laser light. The excitation source is a tunable ring-dye laser system, operated with Stilbene 3, Rhodamine 6G, Kiton Red, DCM and LD 700. A high resolution Fourier Transform spectrum is used for extracting excitation wavelengths. Then the laser wavelength is tuned to a strong hyperfine component of the spectral line to be investigated, and a search for fluorescence from excited levels is performed. From the observed hyperfine structure pattern, J-values and hyperfine interaction constants A of the combining levels are determined. This information, together with excitation and fluorescence wavelengths, allows us to find the energies of the involved levels. During the course of this dissertation 313 new energy levels of Pr I and 4 new energy levels of Pr II were discovered

  14. Hyperfine structure of the S levels of the muonic helium ion

    International Nuclear Information System (INIS)

    Martynenko, A. P.

    2008-01-01

    Corrections of the α 5 and α 6 orders to the energy spectrum of the hyperfine splitting of the 1S and 2S levels of the muonic helium ion are calculated with the inclusion of the electron vacuum polarization effects, nuclear-structure corrections, and recoil effects. The values ΔE hfs (1S) = -1334.56 meV and ΔE hfs (2S) = -166.62 meV obtained for hyperfine splitting values can be considered as reliable estimates for comparison with experimental data. The hyperfine structure interval Δ 12 = 8ΔE hfs (2S) - ΔE hfs (1S) = 1.64 meV can be used to verify QED predictions

  15. The hyperfine structure - a message from the inner circle

    International Nuclear Information System (INIS)

    Sturesson, L.

    1992-06-01

    Experiment have been performed to determine the lifetimes and the hyperfine structures of excited states in atoms. Decay curves were recorded with the aid of time-resolved laser spectroscopy. From these curves, it was possible to evaluated the lifetimes with high accuracy. In certain cases, the hyperfine structures were also determined with high accuracy form quantum beat signals. The elements studied were lithium, sodium, copper, iron and silver. In favourable cases, the method of delayed coincidence gave uncertainties in lifetime measurements of about 0.5%. The detection of quantum beat signals with frequencies higher than 1 GHz was demonstrated. The effects of non-white excitation and delayed detection on level-crossing signals were also investigated. The method of delayed detection causes a narrowing of the detected signal, though most of the intensity of the signals is lost and it exhibits an oscillatory behaviour due to the gating procedure. The effect of high-intensity beams in combination with optically dense media applied to saturation absorption spectroscopy has been investigated both theoretically and experimentally. In this regime the signals exhibited sharp profiles, with widths narrower than the natural linewidth, duel to the non-linearity of the medium. Also, a strong rejection of the background was achieved. These features make this regime interesting for frequency stabilization purpose. Using wavefunctions calculated with the multi-configuration Hartree-Fock method, the hyperfine structure interaction constants of the 3s 2 S and the 3p 2 P states in 23 Na and the 3s3p 1.3 P and the 3s3d 1.3 D states in 25 Mg, the only stable isotope of magnesium with a hyperfine structure, were determined. (62 refs.) (au)

  16. Hyperfine Structure Measurements of Antiprotonic $^3$He using Microwave Spectroscopy

    CERN Document Server

    Friedreich, Susanne

    The goal of this project was to measure the hyperfine structure of $\\overline{\\text{p}}^3$He$^+$ using the technique of laser-microwave-laser spectroscopy. Antiprotonic helium ($\\overline{\\text{p}}$He$^+$) is a neutral exotic atom, consisting of a helium nucleus, an electron and an antiproton. The interactions of the angular momenta of its constituents cause a hyperfine splitting ({HFS}) within the energy states of this new atom. The 3\\% of formed antiprotonic helium atoms which remain in a metastable, radiative decay-dominated state have a lifetime of about 1-3~$\\mu$s. This time window is used to do spectroscopic studies. The hyperfine structure of $\\overline{\\text{p}}^4$He$^+$ was already extensively investigated before. From these measurements the spin magnetic moment of the antiproton can be determined. A comparison of the result to the proton magnetic moment provides a test of {CPT} invariance. Due to its higher complexity the new exotic three-body system of $\\overline{\\text{p}}^3$He$^+$ is a cross-check...

  17. Hyperfine structure of the S- and P-wave states of muonic deuterium

    International Nuclear Information System (INIS)

    Martynenko, A. P.; Martynenko, G. A.; Sorokin, V. V.; Faustov, R. N.

    2016-01-01

    Corrections of order α"5 and α"6 to the hyperfine structure of the S- and P-wave states of muonic deuteriumwere calculated on the basis of the quasipotential approach in quantum electrodynamics. Relativistic corrections, vacuum-polarization and deuteron-structure effects, and recoil corrections were taken into account in this calculation. The resulting hyperfine-splitting values can be used in a comparison with experimental data obtained by the CREMA Collaboration.

  18. Hyperfine structure of nine levels in two configurations of 93Nb. Pt. 1

    International Nuclear Information System (INIS)

    Buettgenbach, S.; Dicke, R.; Gebauer, H.; Herschel, M.; Meisel, G.

    1975-01-01

    The hyperfine structure of the multiplets 4d 4 5s 6 D and 4d 3 5s 24 F of 93 Nb has been studied by the atomic-beam magnetic-resonance method. After applying corrections due to effects of off-diagonal hyperfine and Zeeman interactions the hyperfine interaction constants A and B and the electron g factors gsub(J) are determined for all nine levels of the two multiplets. (orig.) [de

  19. Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm

    International Nuclear Information System (INIS)

    Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu

    2002-01-01

    Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region

  20. Hyperfine Structure of Spectral Lines of 143Nd+, 145Nd+, 139La+, 141Pr+ and 137Ba+ Investigated by Collinear Laser Ion Beam Spectroscopy

    International Nuclear Information System (INIS)

    Anjum, N.

    2012-01-01

    In this research work the hyperfine structures of spectral lines of barium (Ba) and three lanthanides elements; praseodymium (Pr), lanthanum (La) and neodymium (Nd) have been investigated. The hyperfine splitting factors A and B of the involved levels have been determined with high accuracy and the data are compared with other published results. This research work is divided in four parts. In the 1st part, the hyperfine structures of the spectral lines of the singly ionized praseodymium (Pr II) are investigated by three different laser spectroscopic techniques; laser induced fluorescence (LIF) spectroscopy, inter-modulated saturation spectroscopy and collinear laser ion beam spectroscopy (CLIBS). The 2nd part is concerned with the a control-check of the Marburg mass separator (MARS-II), as it was shifted from the University of Marburg, Germany, to Graz University of Technology in 2002. The check is performed using a well known spectral line 5853.67 Å of the odd isotope of singly ionized barium (137Ba II). In the 3rd part of this work the hyperfine structure of spectral lines of lanthanum-139 ions (139La II) is investigated. The 4th part is devoted to the investigation of the hyperfine structure of spectral lines of two odd isotopes of singly ionized neodymium (143Nd II and 145Nd II) and the determination of the coupling constants A and B of the involved levels. To determine the hyperfine anomaly the ratios of the magnetic dipole constants, i.e A143/A145, and the electric quadrupole constants B143/B145 of the corresponding levels are also calculated. The last three parts of this research project are executed using the high resolution, Doppler reduced method of CLIBS. In CLIBS technique the ions are accelerated by applying a high potential difference (∼ 20 kV). Due to the accelerating cooling (kinematic compression) the spread in velocities in the direction of the flight is reduced several times, hence the Doppler width is reduced. The accelerated ion beam is mass

  1. Measurement of the hyperfine structure of antihydrogen in a beam

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, E., E-mail: ew@antihydrogen.at; Diermaier, M. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria); Juhasz, B. [Lufthansa Systems Hungaria Kft. (Hungary); Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Suzuki, K.; Wuenschek, B.; Zmeskal, J. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria); Federmann, S. [CERN (Switzerland); Kuroda, N. [University of Tokyo, Institute of Physics (Japan); Ulmer, S.; Yamazaki, Y. [RIKEN Advanced Science Institute (Japan)

    2013-03-15

    A measurement of the hyperfine structure of antihydrogen promises one of the best tests of CPT symmetry. We describe an experiment planned at the Antiproton Decelerator of CERN to measure this quantity in a beam of slow antihydrogen atoms.

  2. Towards isotope shift and hyperfine structure measurements of the element nobelium

    Energy Technology Data Exchange (ETDEWEB)

    Chhetri, Premaditya; Lautenschlaeger, Felix; Walther, Thomas [Institut fuer Angewandte Physik, TU Darmstadt, D-64289 Darmstadt (Germany); Laatiaoui, Mustapha [Helmholtz Institut Mainz, D-55099 Mainz (Germany); Block, Michael; Hessberger, Fritz-Peter [Helmholtz Institut Mainz, D-55099 Mainz (Germany); GSI, D-64291 Darmstadt (Germany); Lauth, Werner; Backe, Hartmut [Institut fuer Kernphysik, JGU Mainz, D-55122 Mainz (Germany); Kunz, Peter [TRIUMF, D-V6T2A3 Vancouver (Canada)

    2014-07-01

    Laser spectroscopy on the heaviest elements is of great interest as it allows the study of the evolution of relativistic effects on their atomic structure. In our experiment we exploit the Radiation Detected Resonance Ionization Spectroscopy technique and use excimer-laser pumped dye lasers to search for the first time the {sup 1}P{sub 1} level in {sup 254}No. Etalons will be used in the forthcoming experiments at GSI, Darmstadt, to narrow down the bandwidth of the dye lasers to 0.04 cm{sup -1}, for the determination of the isotope shift and hyperfine splitting of {sup 253,} {sup 255}No. In this talk results from preparatory hyperfine structure studies in nat. ytterbium and the perspectives for future experiments of the heaviest elements are discussed.

  3. Hyperfine structure investigations for the odd-parity configuration system in atomic holmium

    Science.gov (United States)

    Stefanska, D.; Furmann, B.

    2018-02-01

    In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.

  4. Calculation of hyperfine structure constants of small molecules using

    Indian Academy of Sciences (India)

    The Z-vector method in the relativistic coupled-cluster framework is employed to calculate the parallel and perpendicular components of the magnetic hyperfine structure constant of a few small alkaline earth hydrides (BeH, MgH, and CaH) and fluorides (MgF and CaF). We have compared our Z-vector results with the values ...

  5. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  6. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    Science.gov (United States)

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  7. Hyperfine structure studies with the COMPLIS facility

    CERN Document Server

    Crawford, J E; Le Blanc, F; Lunney, M D; Obert, J; Oms, J; Putaux, J C; Roussière, B; Sauvage, J; Zemlyanoi, S G; Verney, D; Pinard, J; Cabaret, L A; Duong, H T; Huber, G; Krieg, M; Sebastian, V; Girod, M; Peru, S; Genevey, J; Ibrahim, F; Lettry, Jacques

    1998-01-01

    COMPLIS is an experimental facility designed to carry out spectroscopic studies on radioisotopes produced by disintegration of elements available at CERN's Booster-ISOLDE on-line isotope separator. During recent series of experimental runs, hyperfine structure measurements have yielded information on nuclear moments and deformations of platinum and iridium isotopes, For the first time, population by alpha -decay from Hg was exploited to investigate /sup 178/-/sup 181/Pt-the most neutron-deficient Pt isotopes yet studied. Successful measurements have recently been carried out on /sup 182-189/Ir. (10 refs).

  8. Hyperfine structure in 5s4d 3D-5snf transitions of 87Sr

    International Nuclear Information System (INIS)

    Bushaw, B.A.; Kluge, H.J.; Lantzsch, J.; Schwalbach, R.; Stenner, J.; Stevens, H.; Wendt, K.; Zimmer, K.

    1993-01-01

    The hyperfine spectra of the 5s4d 3 D 1 -5s20f, 5s4d 3 D 2 -5s23f, and 5s4d 3 D 3 -5s32f transitions of 87 Sr (I=9/2) have been measured by collinear fast beam laser spectroscopy. The structure in the upper configurations is highly perturbed by fine structure splitting that is of comparable size to the hyperfine interaction energy. These perturbations can be adequately treated with conventional matrix diagonalization methods, using the 5s-electron magnetic dipole interaction term a 5s and the unperturbed fine structure splittings as input parameters. Additionally, hyperfine constants for the lower 5s4d 3 D configurations, including the A- and B-factors and a separation of the individual s- and d-electron contributions to these factors, are derived. (orig.)

  9. Hyperfine spectra of the radioactive isotopes 81Kr and 85Kr

    International Nuclear Information System (INIS)

    Cannon, B.D.

    1993-01-01

    Isotope shifts and hyperfine constants are reported for the radioactive isotopes 81 Kr and 85 Kr and the stable isotope 83 Kr. The previously unreported nuclear moments of 81 Kr were determined to be μ I =-0.909(4) nuclear magneton and Q=+0.630(13) b from the hyperfine constants. This work increases the number of transitions for which 85 Kr hyperfine constants and isotope shifts have been measured from 1 to 4. The hyperfine anomaly for krypton reported in the previous measurement of 85 Kr hyperfine constants [H. Gerhardt et al., Hyperfine Interact. 9, 175 (1981)] is not supported by this work. The isotope shifts and hyperfine constants of 83 Kr measured in this work are in excellent agreement with previous work. Saturation spectroscopy was used to study transitions from krypton's metastable 1s 5 state to the 2p 9 , 2p 7 , and 2p 6 states. In saturation spectra, different line shapes were observed for the even- and odd-mass krypton isotopes. This even- versus odd-line-mass shape difference can be explained using the large cross section that has been reported for collisional transfer of the 1s 5 state excitation between krypton atoms. Two-color two-photon laser-induced fluorescence was used to measure the hyperfine spectra of the 1s 5- 4d 4 ' transition using the 2p 9 state as the intermediate state. This technique proved to be more sensitive than saturation spectroscopy

  10. α-spectra hyperfine structure resolution by silicon planar detectors

    International Nuclear Information System (INIS)

    Eremin, V.K.; Verbitskaya, E.M.; Strokan, N.B.; Sukhanov, V.L.; Malyarenko, A.M.

    1986-01-01

    The lines with 13 keV step from the main one is α-spectra of nuclei with an odd number of nucleons take place. Silicon planar detectors n-Si with the operation surface of 10 mm 2 are developed for resolution of this hyperfine structure. The mechanism of losses in detectors for short-range-path particles is analyzed. The results of measurements from detectors with 10 keV resolution are presented

  11. The hyperfine structure constants for the 4s24p and 4s25s states of Ga

    International Nuclear Information System (INIS)

    Wang Qingmin; Dong Chenzhong

    2012-01-01

    The hyperfine structure (hfs) constants for the states 4s 2 4p 2 P 1/2,3/2 and 4s 2 5s 2 S 1/2 of 71 Ga were calculated using the GRASP2K package based on the multiconfiguration Dirac-Fock (MCDF) method. The results indicated that the core polarization effect was important for the hyperfine structure constants. (authors)

  12. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    Science.gov (United States)

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  13. High-precision hyperfine structure measurement in slow atomic ion beams by collinear laser-rf double resonance

    International Nuclear Information System (INIS)

    Amarjit Sen; Childs, W.J.; Goodman, L.S.

    1987-01-01

    A new collinear laser-ion beam apparatus for slow ions (1 to 1.5 keV) has been built for measuring the hyperfine structure of metastable levels of ions with laser-rf double resonance technique. Narrow linewidths of ∼60 kHz (FWHM) have been observed for the first time in such systems. As a first application the hyperfine structure of the 4f 7 ( 8 S 0 )5d 9 D/sub J/ 0 metastable levels of /sup 151,153/Eu + has been measured with high precision. 10 refs., 8 figs

  14. Hyperfine structure in 5s4d [sup 3]D-5snf transitions of [sup 87]Sr

    Energy Technology Data Exchange (ETDEWEB)

    Bushaw, B.A. (Pacific Northwest Lab., Richland, WA (United States)); Kluge, H.J. (Mainz Univ. (Germany). Inst. fuer Physik); Lantzsch, J. (Mainz Univ. (Germany). Inst. fuer Physik); Schwalbach, R. (Mainz Univ. (Germany). Inst. fuer Physik); Stenner, J. (Mainz Univ. (Germany). Inst. fuer Physik); Stevens, H. (Mainz Univ. (Germany). Inst. fuer Physik); Wendt, K. (Mainz Univ. (Germany). Inst. fuer Physik); Zimmer, K. (Mainz Univ. (Germany). Inst. fuer Physik)

    1993-12-01

    The hyperfine spectra of the 5s4d[sup 3]D[sub 1]-5s20f, 5s4d[sup 3]D[sub 2]-5s23f, and 5s4d[sup 3]D[sub 3]-5s32f transitions of [sup 87]Sr (I=9/2) have been measured by collinear fast beam laser spectroscopy. The structure in the upper configurations is highly perturbed by fine structure splitting that is of comparable size to the hyperfine interaction energy. These perturbations can be adequately treated with conventional matrix diagonalization methods, using the 5s-electron magnetic dipole interaction term a[sub 5s] and the unperturbed fine structure splittings as input parameters. Additionally, hyperfine constants for the lower 5s4d[sup 3]D configurations, including the A- and B-factors and a separation of the individual s- and d-electron contributions to these factors, are derived. (orig.)

  15. Experimental Constraints on Polarizability Corrections to Hydrogen Hyperfine Structure

    International Nuclear Information System (INIS)

    Nazaryan, Vahagn; Carlson, Carl E.; Griffioen, Keith A.

    2006-01-01

    We present a state-of-the-art evaluation of the polarizability corrections--the inelastic nucleon corrections--to the hydrogen ground-state hyperfine splitting using analytic fits to the most recent data. We find a value Δ pol =1.3±0.3 ppm. This is 1-2 ppm smaller than the value of Δ pol deduced using hyperfine splitting data and elastic nucleon corrections obtained from modern form factor fits

  16. Hyperfine interactions by Moessbauer effect

    International Nuclear Information System (INIS)

    Constantinescu, S.

    1980-01-01

    Moessbauer spectroscopy has been used to investigate hyperfine interactions in materials endowed with complex electromagnetic crystallographic structures. Such structures (Me 3 B 7 O 13 X boracite-type systems, for instance), equally interesting from both scientific and applications viewpoint, are drawing a special attention lately on account of their being examined by means of increasingly refined experimental techniques. In view of the wide prospects of using these materials in various practical fields, this thesis counts among the studies aiming to ameliorate the methods of processing and determining the Moessbauer spectra parameters, characterized by complex hyperfine interactions, as well as among the studies of electric, magnetic and crystallographic investigation of the Moessbauer nucleus neighbourhood, in boracite-type structures. (author)

  17. Optogalvanic spectroscopy of the hyperfine structure of weak La I lines: discovery of new even parity fine structure levels

    International Nuclear Information System (INIS)

    Siddiqui, Imran; Khan, Shamim; Gamper, B; Windholz, L; Dembczyński, J

    2013-01-01

    The hyperfine structure of weak La I lines was experimentally investigated using laser optogalvanic spectroscopy in a hollow cathode discharge lamp. More than 100 La I lines were investigated and 40 new energy levels were discovered, most of them having even parity. The magnetic hyperfine interaction constants A and in some cases the electric quadrupole interaction constants B for these levels were determined. All the newly discovered levels were confirmed either by additional laser excitations (from other known levels) or by lines in a Fourier transform spectrum which could now be classified. (paper)

  18. cap alpha. -spectra hyperfine structure resolution by silicon planar detectors

    Energy Technology Data Exchange (ETDEWEB)

    Eremin, V K; Verbitskaya, E M; Strokan, N B; Sukhanov, V L; Malyarenko, A M

    1986-10-01

    The lines with 13 keV step from the main one is ..cap alpha..-spectra of nuclei with an odd number of nucleons take place. Silicon planar detectors n-Si with the operation surface of 10 mm/sup 2/ are developed for resolution of this hyperfine structure. The mechanism of losses in detectors for short-range-path particles is analyzed. The results of measurements from detectors with 10 keV resolution are presented.

  19. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom

    Science.gov (United States)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy

    2017-11-01

    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  20. Comprehensive Wavelengths, Energy Levels, and Hyperfine Structure Parameters of Singly-Ionized Iron-Group Elements

    Science.gov (United States)

    Nave, Gillian

    We propose to measure wavelengths, energy levels, and hyperfine structure parameters of Ni II, Mn II, Sc II and other singly-ionized iron-group elements, covering the wavelength range 80 nm to 5500 nm. We shall use archival data from spectrometers at NIST and Kitt Peak National Observatory for spectra above 140 nm. Additional experimental observations will be taken if needed using Fourier transform spectrometers at NIST. Spectra will be taken using our normal incidence grating spectrograph to provide better sensitivity than the FT spectra and to extend the wavelength range down to 80 nm. We aim to produce a comprehensive description of the spectra of all singly-ionized iron- group elements. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. For most singly-ionized iron-group elements available laboratory data have uncertainties an order of magnitude larger than astronomical observations over wide spectra ranges. Some of these laboratory measurements date back to the 1960's. Since then, Fourier transform spectroscopy has made significant progress in improving the accuracy and quantity of data in the UV-vis-IR region, but high quality Fourier transform spectra are still needed for Mn II, Ni II and Sc II. Fourier transform spectroscopy has low sensitivity in the VUV region and is limited to wavelengths above 140 nm. Spectra measured with high-resolution grating spectrographs are needed in this region in order to obtain laboratory data of comparable quality to the STIS and COS spectrographs on the Hubble Space Telescope. Currently, such data exist only for Fe II and Cr II. Lines of Sc II, V II, and Mn II show hyperfine structure, but hyperfine structure parameters have been measured for relatively few lines of these elements. Significant errors can occur if hyperfine structure is neglected when abundances are determined from stellar spectra. Measurements of hyperfine structure parameters will be made using Fourier transform spectroscopy

  1. Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms

    Science.gov (United States)

    Aldegunde, Jesus; Hutson, Jeremy M.

    2018-04-01

    Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.

  2. Hyperfine Structure and Isotope Shifts in Dy II

    Directory of Open Access Journals (Sweden)

    Dylan F. Del Papa

    2017-01-01

    Full Text Available Using fast-ion-beam laser-fluorescence spectroscopy (FIBLAS, we have measured the hyperfine structure (hfs of 14 levels and an additional four transitions in Dy II and the isotope shifts (IS of 12 transitions in the wavelength range of 422–460 nm. These are the first precision measurements of this kind in Dy II. Along with hfs and IS, new undocumented transitions were discovered within 3 GHz of the targeted transitions. These atomic data are essential for astrophysical studies of chemical abundances, allowing correction for saturation and the effects of blended lines. Lanthanide abundances are important in diffusion modeling of stellar interiors, and in the mechanisms and history of nucleosynthesis in the universe. Hfs and IS also play an important role in the classification of energy levels, and provide a benchmark for theoretical atomic structure calculations.

  3. Algebraic structure of chiral anomalies

    International Nuclear Information System (INIS)

    Stora, R.

    1985-09-01

    I will describe first the algebraic aspects of chiral anomalies, exercising however due care about the topological delicacies. I will illustrate the structure and methods in the context of gauge anomalies and will eventually make contact with results obtained from index theory. I will go into two sorts of generalizations: on the one hand, generalizing the algebraic set up yields e.g. gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories; on the other hand most constructions applied to the cohomologies which characterize anomalies easily extend to higher cohomologies. Section II is devoted to a description of the general set up as it applies to gauge anomalies. Section III deals with a number of algebraic set ups which characterize more general types of anomalies: gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories. It also includes brief remarks on σ models and a reminder on the full BRST algebra of quantized gauge theories

  4. Stochastic hyperfine interactions modeling library

    Science.gov (United States)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  5. Manipulating ultracold polar molecules with microwave radiation: The influence of hyperfine structure

    International Nuclear Information System (INIS)

    Aldegunde, J.; Hutson, Jeremy M.; Ran Hong

    2009-01-01

    We calculate the microwave spectra of ultracold 40 K 87 Rb alkali-metal dimers, including hyperfine interactions and in the presence of electric and magnetic fields. We show that microwave transitions may be used to transfer molecules between different hyperfine states, but only because of the presence of nuclear quadrupole interactions. Hyperfine splittings may also complicate the use of ultracold molecules for quantum computing. The spectrum of molecules oriented in electric fields may be simplified dramatically by applying a simultaneous magnetic field.

  6. Design and development of high-resolution atomic beam fluorescence spectroscopy facility for isotope shift and hyperfine structure measurements

    International Nuclear Information System (INIS)

    Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.

    2012-01-01

    A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)

  7. Hyperfine anomalies of HCN in cold dark clouds

    International Nuclear Information System (INIS)

    Walmsley, C.M.; Churchwell, E.; Nash, A.; Fitzpatrick, E.; and Physics Department, University of Illinois at Urbana-Champaign)

    1982-01-01

    We report observations of the J = 1→0 line of HCN measured toward six positions in nearby low-temperature dark clouds. The measured relative intensities of the hyperfine components of the J = 1→0 line are anomalous in that the F = 0→1 transition is stronger than would be expected if all three components (F = 2→1, F = 1→1, F = 0→1) had equal excitation temperatures. Differences of approximately 20% in the populations per sublevel of J = 1 could account for the observations. The results are in contrast to the situation observed in warmer molecular clouds associated with H II regions where the F = 1→1 line is anomalously weak. The apparent overpopulation of J = 1, F = 0 in dark clouds may be related to the phenomenon observed in the J = 1→0 transitions of HCO + and HNC in the same objects where 13 C substituted version of these species is found to be stronger than the 12 C species

  8. New precise measurement of muonium hyperfine structure interval at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Y., E-mail: yueno@radphys4.c.u-tokyo.ac.jp [University of Tokyo, Graduate School of Arts and Sciences (Japan); Aoki, M. [Osaka University, Graduate School of Science (Japan); Fukao, Y. [KEK (Japan); Higashi, Y.; Higuchi, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Iinuma, H.; Ikedo, Y. [KEK (Japan); Ishida, K. [RIKEN (Japan); Ito, T. U. [Japan Atomic Energy Agency (Japan); Iwasaki, M. [RIKEN (Japan); Kadono, R. [KEK (Japan); Kamigaito, O. [RIKEN (Japan); Kanda, S. [University of Tokyo, Department of Physics (Japan); Kawall, D. [University of Massachusetts, Amherst, Department of Physics (United States); Kawamura, N.; Koda, A.; Kojima, K. M. [KEK (Japan); Kubo, M. K. [International Christian University, Graduate School of Arts and Science (Japan); Matsuda, Y. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Mibe, T. [KEK (Japan); and others

    2017-11-15

    MuSEUM is an international collaboration aiming at a new precise measurement of the muonium hyperfine structure at J-PARC (Japan Proton Accelerator Research Complex). Utilizing its intense pulsed muon beam, we expect a ten-fold improvement for both measurements at high magnetic field and zero magnetic field. We have developed a sophisticated monitoring system, including a beam profile monitor to measure the 3D distribution of muonium atoms to suppress the systematic uncertainty.

  9. Fine- and hyperfine structure investigations of the even-parity configuration system of the atomic holmium

    Science.gov (United States)

    Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.

    2018-04-01

    In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.

  10. Improved Study of the Antiprotonic Helium Hyperfine Structure

    CERN Document Server

    Pask, T.; Dax, A.; Hayano, R.S.; Hori, M.; Horvath, D.; Juhasz, B.; Malbrunot, C.; Marton, J.; Ono, N.; Suzuki, K.; Zmeskal, J.; Widmann, E.

    2008-01-01

    We report the initial results from a systematic study of the hyperfine (HF) structure of antiprotonic helium (n,l) = (37,~35) carried out at the Antiproton Decelerator (AD) at CERN. We performed a laser-microwave-laser resonance spectroscopy using a continuous wave (cw) pulse-amplified laser system and microwave cavity to measure the HF transition frequencies. Improvements in the spectral linewidth and stability of our laser system have increased the precision of these measurements by a factor of five and reduced the line width by a factor of three compared to our previous results. A comparison of the experimentally measured transition frequencies with three body QED calculations can be used to determine the antiproton spin magnetic moment, leading towards a test of CPT invariance.

  11. Elucidation of electronic structure by the analysis of hyperfine interactions: The MnH A 7Π-X 7Sigma + (0,0) band

    Science.gov (United States)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1991-08-01

    We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.

  12. High precision measurements of hyperfine structure in Tm II, N2+ and Sc II

    International Nuclear Information System (INIS)

    Mansour, N.B.; Dinneen, T.P.; Young, L.

    1988-01-01

    We have applied the technique of collinear fast-ion-beam laser spectroscopy to measure the hyperfine structure (hfs) in Sc II, Tm II and N 2 + . Laser induced fluorescence was observed from a 50 keV ion beam which was superimposed with the output of an actively stabilized ring dye laser (rms bandwidth 2 and the excited 3d4p configuration of Sc II and in the 4f 13 6s and 4f 13 5d configurations of the Tm II. The fine and hyperfine structure of N 2 + has been observed in the (0,1) and (1,2) band of B 2 Σ/sub u/ + /minus/X 2 Σ/sub g/ + system. Higher resolution measurements of the metastable 3d 2 configuration in Sc II were also made by laser-rf double resonance. The experimental results will be compared with those obtained by multiconfiguration Hartree-Fock ab-initio calculations. 15 refs., 4 figs., 5 tabs

  13. Development of atomic spectroscopy technologies - Hyperfine structure of 2 period atoms using optogalvanic effects

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Nam Ic [Hankuk University of foreign studies, Seoul (Korea)

    2000-03-01

    The source of anomalous broad linewidth of 3{sup 3}P{sub 1},{sub 2},{sub 3}-3{sup 3}D{sub 2},{sub 3},4(3s') transition was explained. The broad optogalvanic spectrum was consisted of two gaussian peaks of different linewidths, and they are separated by 250 MHz. The Narrow peak, which has linewidth of room temperature, is from oxygen atoms already separated, and the shifted broad peak, which has linewidth corresponding to a temperature of 9000 K, is from weakly bound molecular ions. Obtained hyperfine spectrum of fluorine atom at the expected frequency, was too weak to analyze hyperfine structure constants. Microwave discharge might be necessary for higher density of excited state. 16 refs., 11 figs. (Author)

  14. Theoretical hyperfine structures of 19F i and 17O i

    Science.gov (United States)

    Aourir, Nouria; Nemouchi, Messaoud; Godefroid, Michel; Jönsson, Per

    2018-03-01

    Multiconfiguration Hartree-Fock (MCHF) and multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations are performed for the 2 p5P2o , 2 p4(3P ) 3 s 4P , 2 p4(3P ) 3 s 2P , and 2 p4(3P ) 3 p 4So states of 19F i to determine their hyperfine constants. Several computing strategies are considered to investigate electron correlation and relativistic effects. High-order correlation contributions are included in MCHF calculations based on single and double multireference expansions. The largest components of the single reference MCHF wave functions are selected to define the multireference (MR) sets. In this scheme, relativistic corrections are evaluated in the Breit-Pauli approximation. A similar strategy is used for the calculation of MCDHF relativistic wave functions and hyperfine parameters. While correlation and relativistic corrections are found to be rather small for the ground state, we highlight large relativistic effects on the hyperfine constant A3 /2 of 2 p4(3P ) 3 p 4So and, to a lesser extent, on A1 /2 of 2 p4(3P ) 3 s 4P . As expected for such a light system, electron correlation effects dominate over relativity in the calculation of the hyperfine interaction of all other levels considered. We also revisit the hyperfine constants of 2 p3(4S ) 3 s S5o and 2 p3(4S ) 3 p 5P in 17O using similar strategies. The results are found to be in excellent agreement with experiment.

  15. The contribution of pseudoscalar mesons to hyperfine structure of muonic hydrogen

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Kochelev, N.I.; Martynenko, A.P.; Martynenko, F.A.; Faustov, R.N.

    2017-01-01

    In the framework of the quasipotential method in quantum electrodynamics we calculate the contribution of pseudoscalar mesons to the interaction operator of a muon and a proton in muonic hydrogen atom. The parametrization of the transition form factor of two photons into π, η mesons, based on the experimental data on the transition form factors and QCD asymptotics is used. Numerical estimates of the contributions to the hyperfine structure of the spectrum of the S and P levels are presented.

  16. The contribution of pseudoscalar mesons to hyperfine structure of muonic hydrogen

    OpenAIRE

    Dorokhov, A. E.; Kochelev, N. I.; Martynenko, A. P.; Martynenko, F. A.; Faustov, R. N.

    2017-01-01

    In the framework of the quasipotential method in quantum electrodynamics we calculate the contribution of pseudoscalar mesons to the interaction operator of a muon and a proton in muonic hydrogen atom. The parametrization of the transition form factor of two photons into $\\pi$, $\\eta$ mesons, based on the experimental data on the transition form factors and QCD asymptotics is used. Numerical estimates of the contributions to the hyperfine structure of the spectrum of the S and P levels are pr...

  17. Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+

    Science.gov (United States)

    Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.

    2017-12-01

    We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.

  18. Fe dimers: a theoretical study of the hyperfine interactions

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.; Saitovitch, E.M.B.

    1981-01-01

    The electronic structures of diatomic molecules Fe 2 and FeM, where M = Mn, Co, Ni and Cu, are investigated by molecular orbitals calculations using a discrete variational method and a local approximation for the exchange interaction. The one-electron wave functions obtained are used to calculate electric field gradients, electronic charge and spin densities at the Fe nucleus and spin-dipolar hyperfine fields, which are related to measured hyperfine parameters reported from experiments in solid inert-gas matrices. Molecular orbitals energy schemes and population analysis are presented. These and other aspects of the electronic structure of the FeM molecules are used in a qualitative interpretation of the hyperfine data; in some cases, are given suggestions for the ground-state configuration. (Author) [pt

  19. The hyperfine properties of a hydrogenated Fe/V superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Al-Barwani, M.; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Bouziane, K.; Al-Omari, I. [Sultan Qaboos University, Department of Physics, College of Science (Oman)

    2012-03-15

    We study the effect of hydrogen on the electronic, magnetic and hyperfine structures of an iron-vanadium superlattice consisting of three Fe monolayers and nine V monolayers. The contact charge density ({rho}), the contact hyperfine field (B{sub hf}) and the electronic field gradient (EFG) at the Fe sites for different H locations and H fillings are calculated using the first principle full-potential linear-augmented-plane-wave (FP-LAPW) method. It is found that sizeable changes in the hyperfine properties are obtained only when H is in the interface region.

  20. The hyperfine properties of iron-gallium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Al-Azri, Maya [Sultan Qaboos University, Department of Physics (Oman); Al-Barwani, M. [NYU Abu Dhabi (United Arab Emirates)

    2016-12-15

    The hyperfine properties at Fe site in iron-gallium alloy are calculated using the full-potential linear-augmented-plane-waves method. We have calculated the Fermi contact field (B{sub hf}) and isomer shift (δ) at the Fe site versus the number of neighbouring Ga atoms. We found that B{sub hf} decrease whereas δ increases with increasing number of neighbouring G atom. In addition we have calculated the hyperfine properties of FeGa system with DO{sub 3} structure, where various distributions of 4 the Ga atoms in the conventional unit cell are considered (including the regular DO{sub 3} structure). We found that the DO{sub 3} structure has the lowest energy as compared to the other configurations. The two distinct A and D sites of the ordered DO{sub 3} conventional unit cell have two distinct values for B{sub hf} and δ. On changing the atomic arrangement of the Ga atoms within the conventional unit cell, the configuration of the A site is maintained whereas that of the D site becomes imperfect. The contact magnetic hyperfine fields of the D-like sites in the imperfect structures are lower than that of the DO{sub 3}D site.

  1. Hyperfine interactions in iron substituted high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Ellis, D.E.; Saitovitch, E.B.; Lam, D.J.

    1991-01-01

    The hyperfine interactions in Fe substituted copper oxide ternary and quaternary compounds with perovskite-related structures are studied, using the Local Density theory in an embedded cluster approach. The self-consistent electronic structure is examined for Cu and Fe sites in a number of plausible local geometries representative of La 2 Cu O 4 , YBa 2 Cu 3 O 7-δ and related materials. Moessbauer isomer shifts, electric fields gradients, magnetic moments, and contact hyperfine fields are presented for comparison with experiment and discussed in light of lattice structure data. (author)

  2. Hyperfine structure investigation of the first excited state 4Isub(13/2) (5,418-1) in Holmium-165 by the atomic beam resonance method

    International Nuclear Information System (INIS)

    Aldenhoven, R.

    1976-01-01

    By the method of atomic beam resonance the hyperfine structure of the first excited state 4 Isub(13/2) (5418 cm -1 ) of 165 Holmium was studied for the first time. Using a suitable ΔF = 0 transition, the gsub(J)-factor was measured. After a determination of estimates for the hyperfine constants A and B from two suitably chosen ΔF = 0 transitions, the hyperfine splittings have been measured. (orig./WL) [de

  3. Hyperfine structure in the Gd II spectrum and the nuclear electric quadrupole moment of 157Gd

    International Nuclear Information System (INIS)

    Clieves, H.P.; Steudel, A.

    1979-01-01

    The hyperfine structure of 157 Gd was investigated in 20 Gd II lines by means of a photoelectric recording Fabry-Perot interferometer with digital data processing. The hyperfine splitting factors, A and B, were obtained by computer fits to the observed line structures. Using a multiconfigurational set of wave functions in intermediate coupling derived by Wyart, mono-electronic parameters were deduced by a parametric treatment. The nuclear electric quadrupole moment of 157 Gd was evaluated from the quadrupole interaction of the 5d electron in 4f 7 5d6s, the 5d electron in 4f 7 5d6p, and the 6p electron in 4f 7 5d6p. The three values obtained for the quadrupole moment agree very well. The final result, corrected for Sternheimer shielding, is Q( 157 Gd) = 1.34(7) x 10 -24 cm 2 . (orig.) [de

  4. Design of a spin-flip cavity for the measurement of the antihydrogen hyperfine structure

    CERN Document Server

    Kroyer, T

    2008-01-01

    In the framework of the ASACUSA collaboration at the CERN Antiproton Decelerator an experiment for precisely testing the CPT invariance of the hydrogen hyperfine structure is currently being designed. An integral part of the set-up is the 1.42 GHz spin-flipping cavity, which should have a good field homogeneity over the large aperture of the antihydrogen beam. After the evaluation of various approaches a structure based on a resonant stripline is proposed as a concrete cavity design. For this structure the field homogeneity, undesired modes, coupling and power issues are discussed in detail.

  5. Contact hyperfine field of the 4p and 4f series elements (rare-earths)

    International Nuclear Information System (INIS)

    Doi, I.

    1973-01-01

    The Coulomb correlation effect in the description of the contact hyperfine magnetic structure was analysed. The hyperfine magnetic structure was calculated from the spin polarized Hartree-Fock formalism, using the free electron gas approximation to the exchange-correlation energy of the 4p series atoms and some atoms and ions of the 4f series. No one of the analysed approximations to the exchange-correlation energy describes satisfactorily the contact hyperfine magnetic structure of the 4p and 4f series elements, which were studied [pt

  6. Stark effect of the hyperfine structure of ICl in its rovibronic ground state: Towards further molecular cooling

    Science.gov (United States)

    Qing-Hui, Wang; Xu-Ping, Shao; Xiao-Hua, Yang

    2016-01-01

    Hyperfine structures of ICl in its vibronic ground state due to the nuclear spin and electric quadruple interactions are determined by diagonalizing the effective Hamiltonian matrix. Furthermore, the Stark sub-levels are precisely determined as well. The results are helpful for electro-static manipulation (trapping or further cooling) of cold ICl molecules. For example, an electric field of 1000 V/cm can trap ICl molecules less than 637 μK in the lowest hyperfine level. Project supported by the National Natural Science Foundation of China (Grant No. 11034002), the National Basic Research Program of China (Grant No. 2011CB921602), and Qing Lan Project, China.

  7. Calculation of magnetic hyperfine constants

    International Nuclear Information System (INIS)

    Bufaical, R.F.; Maffeo, B.; Brandi, H.S.

    1975-01-01

    The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used

  8. Hyperfine structure of 147,149Sm measured using saturated absorption spectroscopy in combination with resonance-ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Park, Hyunmin; Lee, Miran; Rhee, Yongjoo

    2003-01-01

    The hyperfine structures of four levels of the Sm isotopes have been measured by means of diode-laser-based Doppler-free saturated absorption spectroscopy in combination with a diode-laser-initiated resonance-ionization mass spectroscopy. It was demonstrated that combining the two spectroscopic methods was very effective for the identification and accurate measurement of the spectral lines of atoms with several isotopes, such as the rare-earth elements. From the obtained spectra, the hyperfine constants A and B for the odd-mass isotopes 147 Sm and 149 Sm were determined for four upper levels of the studied transitions.

  9. Unexpected lines due to hyperfine interaction

    International Nuclear Information System (INIS)

    Andersson, Martin

    2009-01-01

    Hyperfine interaction is often viewed as a small perturbation that only broadens or in some cases splits a line into many closely spaced lines. In this work, we present some cases where this picture is obsolete and where the hyperfine interaction makes drastic changes to spectra. Off-diagonal hyperfine interaction introduces a mixing between states which can differ in the J quantum number. In most cases this mixing is very small, but even so it could have a dramatic influence on the spectra. Some metastable levels are sensitive to the hyperfine interaction and we show this by presenting the results for hyperfine-dependent lifetimes of the 3d 9 4s 3 D 3 level along parts of the higher end of the Ni-like iso-electronic sequence. In the absence of a nuclear spin, this level can only decay through a magnetic-octupole transition, but in the presence of a nuclear spin, the off-diagonal hyperfine interaction introduces a mixing with the 3d 9 4s 3 D 2 level and a new electric-quadrupole transition channel is opened. It is shown that this new transition channel in many cases is the dominant one and that the lifetime of the 3 D 3 level is sensitive to hyperfine interaction all along the sequence. An example of other types of states that are sensitive to hyperfine interaction are those belonging to configurations of the type nsn'l' where l≥3. In such systems the levels are close in energy and the open s-shell gives rise to a strong hyperfine interaction. This in turn introduces a large mixing between the hyperfine levels and shows up in the spectra as a large intensity redistribution among the hyperfine lines. We present detailed results for the 4s4d 3 D 2 -4s4f 3 F 2 transitions in Ga ii, and show that by including the hyperfine interaction in a proper way, we could reproduce experimental spectra that had not been possible earlier.

  10. Hyperfine excitation of OH+ by H

    Science.gov (United States)

    Lique, François; Bulut, Niyazi; Roncero, Octavio

    2016-10-01

    The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.

  11. Hyperfine interactions measured by nuclear orientation technique

    International Nuclear Information System (INIS)

    Brenier, R.

    1982-01-01

    This report concerns the use of hyperfine interaction to magnetism measurements and to the determination of the nuclear structure of Terbium isotopes by the low temperature nuclear orientation technique. In the first part we show that the rhodium atom does not support any localized moment in the chromium matrix. The hyperfine magnetic field at the rhodium nuclear site follows the Overhauser distribution, and the external applied magnetic field supports a negative Knight shift of 16%. In the second part we consider the structure of neutron deficient Terbium isotopes. We introduce a coherent way of evaluation and elaborate a new nuclear thermometer. The magnetic moments allows to strike on the studied states configuration. The analysis of our results shows a decrease of the nuclear deformation for the lighter isotopes [fr

  12. Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue

    International Nuclear Information System (INIS)

    Schroeder, L.; California Univ., Berkeley, CA; Lawrence Berkeley National Lab., Berkeley, CA

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the AMX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed. (orig.)

  13. [Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue].

    Science.gov (United States)

    Schröder, Leif

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.

  14. Hyperfine structure measurements and discovery of new energy levels in neutral praseodymium

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Siddiqui; Khan, Shamim; Syed, Tanweer Iqbal; Gamper, Bettina; Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)

    2011-07-01

    We present here 14 even and 17 odd parity new energy levels of the neutral praseodymium atom. Free praseodymium atoms in ground and excited states are produced in a hollow cathode discharge lamp by cathode sputtering. The hyperfine structure (hfs) of the spectral lines is investigated by the method of laser induced fluorescence (LIF) spectroscopy. As an example of the method used we discuss briefly the finding of the new level at 27304.431 cm{sup -1}, even parity, J=9/2 and A=690(1) MHz. Laser excitation of the line at 6004.23 Aa is performed and a LIF signal is detected at fluorescence lines 5246.709, 5412.95, 5925.10, 6107.88, 6287.02, 6419.16, and 6620.63 A. The hfs is then recorded digitally and fitted to find reliable values of angular momentum J, magnetic and electric quadrupole hyperfine constants A and B for the combining fine structure levels. Assuming an unknown upper level, a lower level is searched in the data base of known levels, having the J and A values determined from the fit procedure. A level with 10654.11 cm{sup -1}, odd parity, J=7/2 and A=169(2) MHz is found. The energy of the upper level is calculated by adding the center of gravity wave number of the excited line to the energy of the lower level. The existence of the new level is checked by at least one additional laser excitation from another known lower level.

  15. Higher order Stark effect and transition probabilities on hyperfine structure components of hydrogen like atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pal' chikov, V.G. [National Research Institute for Physical-Technical and Radiotechnical Measurements - VNIIFTRI (Russian Federation)], E-mail: vitpal@mail.ru

    2000-08-15

    A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.

  16. Electronic structure of radiation damage centre in zinc silicate from ESR hyperfine data

    International Nuclear Information System (INIS)

    Prasad, C.; Chakravarty, Sulata

    1979-01-01

    The occurrence of an ESR spectrum with six hyperfine components in X-irradiated zinc silicate, Zn 2 SiO was reported earlier. It is known that by the use of the experimental ESR data it is possible to work out the electronic structure of the paramagnetic damage center. The values of the hyperfine parameters A and B have been utilized to calculate the values of f'sub(s) and fsub(sigma), the fractional occupation of the 3s and 3psub(sigma) orbitals of the metal atom by the unpaired electron. The metal atom is 27 Al (I = 5/2, n.a. = 100%) which is present as an impurity in the lattice and occupies silicon sites. The bonding between the metal atom and each of the surrounding oxygen atom is assumed to be of the sigma-type. The values obtained for the fractional occupation are : f'sub(s) = 0.71 x 10sup(-2), fsub(sigma) = 14.65 x10sup(-2). The unpaired electron appears to belong to the ligand atom and is moderately delocalised on the Al atom where it occupies mainly the 3psup(sigma) orbital and not the 3s orbital. (auth.)

  17. Fluctuating hyperfine interactions: computational implementation

    International Nuclear Information System (INIS)

    Zacate, M. O.; Evenson, W. E.

    2010-01-01

    A library of computational routines has been created to assist in the analysis of stochastic models of hyperfine interactions. We call this library the stochastic hyperfine interactions modeling library (SHIML). It provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental hyperfine interaction measurements can be calculated. Example model calculations are included in the SHIML package to illustrate its use and to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A 22 can be neglected.

  18. Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)

  19. Hyperfine splitting in ordinary and muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2018-01-15

    We provide an accurate evaluation of the two-photon exchange correction to the hyperfine splitting of S energy levels in muonic hydrogen exploiting the corresponding measurements in electronic hydrogen. The proton structure uncertainty in the calculation of α{sup 5} contribution is sizably reduced. (orig.)

  20. High-precision QED calculations of the hyperfine structure in hydrogen and transition rates in multicharged ions

    Energy Technology Data Exchange (ETDEWEB)

    Volotka, A.V.

    2006-07-01

    Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and twoelectron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be

  1. High-precision QED calculations of the hyperfine structure in hydrogen and transition rates in multicharged ions

    International Nuclear Information System (INIS)

    Volotka, A.V.

    2006-01-01

    Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and twoelectron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be

  2. Matrix elements of hyperfine structure operators in the SL and jj representations for the s, pN, and dN configurations and the SL-jj transformation

    International Nuclear Information System (INIS)

    Childs, W.J.

    1997-01-01

    Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p N , and d N configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs

  3. Hyperfine structure of electronic levels and the first measurement of the nuclear magnetic moment of {sup 63}Ni

    Energy Technology Data Exchange (ETDEWEB)

    D' yachkov, A.B.; Firsov, V.A.; Gorkunov, A.A.; Labozin, A.V.; Mironov, S.M.; Saperstein, E.E.; Tolokonnikov, S.V.; Tsvetkov, G.O.; Panchenko, V.Y. [National Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-01-15

    Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical 3d{sup 8}4s{sup 2} {sup 3}F{sub 4} → 3d{sup 8}4s4p {sup 3}G{sup o}{sub 3} and 3d{sup 9}4s {sup 3}D{sub 3} → 3d{sup 8}4s4p {sup 3}G{sup o}{sub 3} transitions of {sup 63}Ni and {sup 61}Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of {sup 63}Ni for the first time: μ = +0.496(5)μ{sub N}. The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems. (orig.)

  4. Two-photon exchange correction to the hyperfine splitting in muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2017-12-15

    We reevaluate the Zemach, recoil and polarizability corrections to the hyperfine splitting in muonic hydrogen expressing them through the low-energy proton structure constants and obtain the precise values of the Zemach radius and two-photon exchange (TPE) contribution. The uncertainty of TPE correction to S energy levels in muonic hydrogen of 105 ppm exceeds the ppm accuracy level of the forthcoming 1S hyperfine splitting measurements at PSI, J-PARC and RIKEN-RAL. (orig.)

  5. Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders

    International Nuclear Information System (INIS)

    Moumeni, Hayet; Nemamcha, Abderrafik; Alleg, Safia; Grenèche, Jean Marc

    2013-01-01

    Nanocrystalline Fe–44Co–6Mo (wt.%) powders have been prepared by high-energy ball milling from elemental Fe, Co and Mo pure powders in a P7 planetary ball mill. The obtained powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Mössbauer spectrometry techniques. The influence of milling process and Mo substitution for Co in equiatomic FeCo have been examined in order to study structural evolution and formation mechanism of nanostructured Fe(CoMo) solid solution. XRD results show the formation of a BCC Fe(CoMo) solid solution (a = 0.2874 nm) where unmixed nanocrystalline Mo with a BCC structure is embedded. Disordered Fe(CoMo) solid solution is characterized by a broad hyperfine magnetic field distribution with two regions centered at B 1 = 35.0 T and B 2 = 30.7 T, respectively, attributed to disordered Fe(Co) solid solution and CoMo enriched environments. Prolonged milling and Mo addition cause the decrease of average hyperfine magnetic field while the average isomer shift remains nearly constant. - Highlights: ► BCC nanostructured Fe(CoMo) solid solution is prepared by milling of Fe, Co and Mo. ► Formation mechanism: Co diffusion into Fe lattice and Mo dissolution in Fe(Co). ► Crystallite size of Fe(CoMo) solid solution reaches 11 nm after 24 h of milling. ► Mössbauer analysis reveals 3 components: high field, enriched Co and low field

  6. Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders

    Energy Technology Data Exchange (ETDEWEB)

    Moumeni, Hayet, E-mail: hmoumeni@yahoo.fr [Laboratoire de Chimie Computationnelle et Nanostructures, Département des Sciences de la Matière, Faculté des Mathématiques et de l' Informatique et des Sciences de la Matière, Université 08 Mai 1945 - Guelma, B.P. 401, Guelma 24000 (Algeria); Nemamcha, Abderrafik [Laboratoire d' Analyses Industrielles et Génie des Matériaux, Faculté des Sciences et de la Technologie, Université 08 Mai 1945 - Guelma, B.P. 401, Guelma 24000 (Algeria); Alleg, Safia [Laboratoire de Magnétisme et de Spectroscopie des Solides, Département de Physique, Faculté des Sciences, Université de Annaba, B.P. 12, Annaba 23000 (Algeria); Grenèche, Jean Marc [Laboratoire de Physique de l' Etat Condensé, UMR CNRS 6087, Institut de Recherche en Ingénierie Moléculaire et Matériaux Fonctionnels IRIM2F, FR CNRS 2575, Université du Maine, 72085 Le Mans Cedex 9 (France)

    2013-02-15

    Nanocrystalline Fe–44Co–6Mo (wt.%) powders have been prepared by high-energy ball milling from elemental Fe, Co and Mo pure powders in a P7 planetary ball mill. The obtained powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Mössbauer spectrometry techniques. The influence of milling process and Mo substitution for Co in equiatomic FeCo have been examined in order to study structural evolution and formation mechanism of nanostructured Fe(CoMo) solid solution. XRD results show the formation of a BCC Fe(CoMo) solid solution (a = 0.2874 nm) where unmixed nanocrystalline Mo with a BCC structure is embedded. Disordered Fe(CoMo) solid solution is characterized by a broad hyperfine magnetic field distribution with two regions centered at B{sub 1} = 35.0 T and B{sub 2} = 30.7 T, respectively, attributed to disordered Fe(Co) solid solution and CoMo enriched environments. Prolonged milling and Mo addition cause the decrease of average hyperfine magnetic field while the average isomer shift remains nearly constant. - Highlights: ► BCC nanostructured Fe(CoMo) solid solution is prepared by milling of Fe, Co and Mo. ► Formation mechanism: Co diffusion into Fe lattice and Mo dissolution in Fe(Co). ► Crystallite size of Fe(CoMo) solid solution reaches 11 nm after 24 h of milling. ► Mössbauer analysis reveals 3 components: high field, enriched Co and low field.

  7. First and second trimester screening for fetal structural anomalies.

    Science.gov (United States)

    Edwards, Lindsay; Hui, Lisa

    2018-04-01

    Fetal structural anomalies are found in up to 3% of all pregnancies and ultrasound-based screening has been an integral part of routine prenatal care for decades. The prenatal detection of fetal anomalies allows for optimal perinatal management, providing expectant parents with opportunities for additional imaging, genetic testing, and the provision of information regarding prognosis and management options. Approximately one-half of all major structural anomalies can now be detected in the first trimester, including acrania/anencephaly, abdominal wall defects, holoprosencephaly and cystic hygromata. Due to the ongoing development of some organ systems however, some anomalies will not be evident until later in the pregnancy. To this extent, the second trimester anatomy is recommended by professional societies as the standard investigation for the detection of fetal structural anomalies. The reported detection rates of structural anomalies vary according to the organ system being examined, and are also dependent upon factors such as the equipment settings and sonographer experience. Technological advances over the past two decades continue to support the role of ultrasound as the primary imaging modality in pregnancy, and the safety of ultrasound for the developing fetus is well established. With increasing capabilities and experience, detailed examination of the central nervous system and cardiovascular system is possible, with dedicated examinations such as the fetal neurosonogram and the fetal echocardiogram now widely performed in tertiary centers. Magnetic resonance imaging (MRI) is well recognized for its role in the assessment of fetal brain anomalies; other potential indications for fetal MRI include lung volume measurement (in cases of congenital diaphragmatic hernia), and pre-surgical planning prior to fetal spina bifida repair. When a major structural abnormality is detected prenatally, genetic testing with chromosomal microarray is recommended over

  8. Quark color-hyperfine interactions in baryons

    International Nuclear Information System (INIS)

    Anselmino, M.; Lichtenberg, D.B.

    1990-01-01

    We consider the contribution from the color-hyperfine interaction to the energies of groundstate hadrons, with an emphasis on baryons. We use experimental information about how the color-hyperfine term depends on flavor to make predictions about the masses of baryons containing a heavy quark. We then generalize some relations between color-hyperfine matrix elements in mesons and baryons to obtain a number of additional predictions about the masses of as-yet unobserved baryons. Most of our predictions are in the form of inequalities. (orig.)

  9. Hyperfine magnetic fields of disorder systems by 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.; Lipka, J.

    1994-01-01

    The feasibility of 57 Fe transmission Moessbauer spectroscopy in the study of hyperfine magnetic fields is described with emphasis on amorphous, nanocrystalline and quasicrystalline alloys. Distributions of hyperfine magnetic fields obtained are presented via three-dimensional projects where effects of sample composition, temperature and annealing time on magnetic structure are followed by changes in probability of the field values. This allows magnetic transitions as well as mixed electric-quadrupole and magnetic-dipole interactions to be observed

  10. Analysis of structure of hyperfine poly(3-hydroxybutyrate) fibers (PHB) for controlled drug delivery

    Science.gov (United States)

    Olkhov, A. A.; Kosenko, R. Yu; Markin, V. S.; Zykova, A. K.; Pantyukhov, P. V.; Karpova, S. G.; Iordanskii, A. L.

    2017-12-01

    Hyperfine fibers based on biodegradable poly (3-hydroxybutyrate) with encapsulated drug substance (dipyridamol) were obtained by using electrospinning method. Addition of dipyridamol has a significant effect on geometrical shape and structure of microfibers as well as total porosity of fibrous material. Observation of fibers using scanning electron microscopy (SEM) method showed that without or at lower dipyridamol content (<3%) fibers consisted of interleaved ellipsoid and cylindrical fragments. At higher dipyridamol content (3-5%) anomalous ellipsoid structures did not practically form, and fiber’s shape became cylindrical. The totality of morphological and structural characteristics determined the rate of dipyridamol diffusive transports. The simplified model of drug desorption from fibrous matrix was presented. In current work it was showed that the rate-limiting stage of transport was the diffusion of dipyridamol in the bulk of cylindrical fibers.

  11. Man-made materials : An exciting area for hyperfine-interaction investigation

    International Nuclear Information System (INIS)

    Freeman, A.; Wu, R.

    1996-01-01

    Man-made low-dimensional magnetic systems including surfaces, interfaces and multilayers, have attracted a great amount of attention in the past decade because, as expected, the lowered symmetry and coordination number offer a variety of opportunities for inducing new and exotic phenomena and so hold out the promise of new device applications. Local spin density functional (LSDF) ab initio electronic-structure calculations employing the full-potential -linearized augmented-plane-wave (FLAPW) method have played a key role in the development of this exciting field by not only providing a clearer understanding of the experimental observations but also predicting new systems with desired properties. One of the striking successes of theory in the last decade has been the calculation of hyperfine fields at surfaces and interfaces. Concurrently, several groups have followed the pioneering work of Korecki and Gradmann and have measured hyperfine fields at surfaces and interfaces. In this paper, it is reviewed new features of hyperfine-interaction investigations in man-made materials which are essential because the hyperfine field is not proportional to the magnetization and so interpretations of experiment are totally dependent on theory

  12. Muonium hyperfine structure : An analytical solution to perturbative calculations

    International Nuclear Information System (INIS)

    Wotzasek, C.J.; Gregorio, M.A.; Reinecke, S.

    1982-01-01

    The purely coulombian contribution to the terms of order E sub(F) (α 2 m sub(e)/m sub(μ))ln α - 1 of the hyperfine splitting of muonium is computed. Results agree with those of other authors. The goal of the work was twofold: first, to confirm that contribution; second, and perhaps more important, to check the analytic solution of the relativistic coulombian problem of the Bethe-Salpeter equation with instantaneous kernel. (Author) [pt

  13. Measurement of Nitrogen Hyperfine Structure on the 53 CM (562 MHz) Butyronitrile Line

    Science.gov (United States)

    Dewberry, Christopher T.; Grubbs, Garry S. Grubbs, II; Raphelt, Andrew; Cooke, Stephen A.

    2009-06-01

    Recent improvements to our cavity-based Fourier transform radiofrequency spectrometer will be presented. Amongst other improvements use of Miteq amp, model AMF-6F-00100400-10-10P (0.1 GHz to 4 GHz, 65 dB gain minimum, 1 dB noise figure maximum) together with shielding from an improved Faraday cage have significantly helped us in this regard. Electromagnetic fields within our near-spherical cavity have been modeled and results will be presented. We have been able to easily resolve the nitrogen hyperfine structure on the ^aQ_{0,-1} transition 1_{1,0} ← 1_{1,1} located at 562 MHz. This result will be discussed.

  14. Hyperfine spectroscopic study of Laves phase HfFe2

    International Nuclear Information System (INIS)

    Belosevic-Cavor, J.; Novakovic, N.; Cekic, B.; Ivanovic, N.; Manasijevic, M.

    2004-01-01

    Hyperfine fields in HfFe 2 were measured at 181 Ta probe using the time-differential perturbed angular correlation method (TDPAC) in the temperature range 78-1200 K. Analysis of the spectra revealed two interactions with hyperfine fields of 13.82(7) T and 8.0(2) T, at 293 K. First is ascribed to the interaction at the 8a position in the cubic C15 structure. The second can be assigned to a minor amount of hexagonal C14 phase, or to an irregular position of the probe in the C15 lattice. Results of calculations using LAPW-WIEN97 are in a good agreement with experiment

  15. Spectroscopy Apparatus for the Measurement of The Hyperfine Structure of Antihydrogen

    CERN Document Server

    Malbrunot, C.; Diermaier, M.; Dilaver, N.; Friedreich, S.; Kolbinger, B.; Lehner, S.; Lundmark, R.; Massiczek, O.; Radics, B.; Sauerzopf, C.; Simon, M.; Widmann, E.; Wolf, M.; Wünschek, B.; Zmeskal, J.

    2014-02-04

    The ASACUSA CUSP collaboration at the Antiproton Decelerator (AD) of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. We describe here the latest developments on the spectroscopy apparatus developed to be coupled to the antihydrogen production setup (CUSP).

  16. Systematic model calculations of the hyperfine structure in light and heavy ions

    CERN Document Server

    Tomaselli, M; Nörtershäuser, W; Ewald, G; Sánchez, R; Fritzsche, S; Karshenboim, S G

    2003-01-01

    Systematic model calculations are performed for the magnetization distributions and the hyperfine structure (HFS) of light and heavy ions with a mass close to A ~ 6 208 235 to test the interplay of nuclear and atomic structure. A high-precision measurement of lithium-isotope shifts (IS) for suitable transition, combined with an accurate theoretical evaluation of the mass-shift contribution in the respective transition, can be used to determine the root-mean-square (rms) nuclear-charge radius of Li isotopes, particularly of the halo nucleus /sup 11/Li. An experiment of this type is currently underway at GSI in Darmstadt and ISOLDE at CERN. However, the field-shift contributions between the different isotopes can be evaluated using the results obtained for the charge radii, thus casting, with knowledge of the ratio of the HFS constants to the magnetic moments, new light on the IS theory. For heavy charged ions the calculated n- body magnetization distributions reproduce the HFS of hydrogen-like ions well if QED...

  17. Hyperfine field and electronic structure of magnetite below the Verwey transition

    Czech Academy of Sciences Publication Activity Database

    Řezníček, R.; Chlan, V.; Štěpánková, H.; Novák, Pavel

    2015-01-01

    Roč. 91, č. 12 (2015), "125134-1"-"125134-10" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : hyperfine interactions and isotope effects * density functional theory * local density approximation * gradient and other corrections * nuclear magnetic resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  18. Hyperfine magnetic fields in substituted Finemet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brzózka, K., E-mail: k.brzozka@uthrad.pl [University of Technology and Humanities in Radom, Department of Physics (Poland); Sovák, P. [P.J. Šafárik University, Institute of Physics (Slovakia); Szumiata, T.; Gawroński, M.; Górka, B. [University of Technology and Humanities in Radom, Department of Physics (Poland)

    2016-12-15

    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  19. Ultrahigh-resolution (1+1) photoionization spectroscopy of Kr I: Hyperfine structures, isotope shifts, and lifetimes for the n = 5,6,7 4p5ns Rydberg levels

    International Nuclear Information System (INIS)

    Trickl, T.; Vrakking, M.J.J.; Cromwell, E.; Lee, Y.T.; Kung, A.H.

    1989-01-01

    High-resolution measurements of the hyperfine structures and isotope shifts are reported for Kr I n = 5,6,7 4p 5 ns Rydberg levels, obtained using an extreme-ultraviolet laser with a bandwidth of 210 MHz in a resonant two-photon-ionization scheme. Use of known I 2 frequencies yields an improved absolute calibration of the Kr energy levels by more than one order of magnitude. The nuclear quadrupole hyperfine structure indicates that the 4p 5 6s and 4p 5 7s states are described by a pure jj-coupling scheme, whereas the 4p 5 5s states depart from a pure jj-coupling scheme by 0.37(6)%. The magnetic hyperfine structure shows that the 4p 5 ns states are mixed with 4p 5 n'd states. The isotope shifts can be described as pure mass effects within the precision of our experiment. For the 4p 5 6s and 4p 5 7s states, lifetimes were determined that differ markedly from theoretical literature values

  20. Structural modeling of the Vichada impact structure from interpreted ground gravity and magnetic anomalies

    International Nuclear Information System (INIS)

    Hernandez, Orlando; Khurama, Sait; Alexander, Gretta C

    2011-01-01

    A prominent positive free-air gravity anomaly mapped over a roughly 50-km diameter basin is consistent with a mascon centered on (4 degrades 30 minutes N, 69 degrades 15 minutes W) in the Vichada Department, Colombia, South America. Ground follow up gravity and magnetic anomalies were modeled confirming the regional free air gravity anomalies. These potential field anomalies infer a hidden complex impact basin structure filled with tertiary sedimentary rocks and recent quaternary deposits. Negative Bouguer anomalies of 8 mgals to 15 mgals amplitude are associated with a concentric sedimentary basin with a varying thickness from 100 m to 500 m in the outer rings to 700 m to 1000 m at the center of the impact crater basin. Strong positive magnetic anomalies of 100 nt to 300 nt amplitude infer the presence of a local Precambrian crystalline basement that was affected by intensive faulting producing tectonic blocks dipping to the center of the structure, showing a typical domino structure of impact craters such as that of Sudbury, Ontario, Canada. Basic to intermediate mineralized veins and dikes with contrasting density and magnetic susceptibility properties could be emplaced along these faulting zones, as inferred from local gravity and magnetic highs. The geologic mapping of the area is limited by the flat topography and absence of outcrops/ geomorphologic units. Nevertheless, local normal faults along the inner ring together with radially sparse irregular blocks over flat terrains can be associated with terraced rims or collapse of the inner crater structure and eject blanket, respectively. A detailed airborne electromagnetic survey is recommended to confirm the gravity and magnetic anomalies together with a seismic program to evaluate the economic implications for energy and mineral exploration of the Vichada impact structure.

  1. Hyperfine structure and isotope shift analysis of singly ionized titanium

    Science.gov (United States)

    Bouazza, Safa

    2013-04-01

    The even-parity low configuration system of Ti II has been considered on the basis of the experimental data found in the literature, and its fine structure has been reanalyzed by simultaneous parameterization of one- and two-body interactions for the model space (3d + 4s)3. Furthermore, the main one-electron hyperfine structure parameters for these configurations have been evaluated. For instance, for 3d24s1, a_{3{\\rm{d}}}^{01} = - {\\rm{63}}.{\\rm{2}}\\left( {{\\rm{3}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} and a_{4{\\rm{s}}}^{10} = - {\\rm{984}}.{\\rm{1}}\\left( {{\\rm{7}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} . Field shifts (FS) and specific mass shifts (SMS) of the main Ti II configurations are deduced by means of ab initio estimates combined with a small quantity of experimental isotope shift data available in the literature: FS(3d3) = -63.3 MHz, FS(3d24p1) = -49.7 MHz, FS(3d14s2) = 98.2 MHz, FS(4s24P1) = 163.4 MHz and SMS(3d3) = 1453.3 MHz, SMS(3d14s2) = -2179.7 MHz, …, referred to 3d24s1 for the pair Ti46-Ti48.

  2. Hyperfine structure of the odd parity level system in the terbium atom

    International Nuclear Information System (INIS)

    Stefanska, D; Furmann, B

    2017-01-01

    Within this work new experimental results concerning the hyperfine structure ( hfs ) in the terbium atom are presented, concerning the odd parity levels system, hitherto only scarcely investigated (apart from the ground term). hfs constants A and B for 113 levels were determined for the first time, and for another 16 levels, which already occurred in our earlier works, supplementary results were obtained; additionally, our earlier results for 93 levels were compiled. The hfs of the odd parity levels was investigated using the method of laser induced fluorescence in a hollow cathode discharge. The hfs of 165 spectral lines, where the levels in question were involved as the upper levels, was recorded. Literature values of hfs constants of the even-parity lower levels (including our own earlier results) greatly facilitated the present data evaluation. (paper)

  3. Host material induced hyperfine structure of F{sup +} centres EPR spectra in CaS

    Energy Technology Data Exchange (ETDEWEB)

    Seeman, Viktor, E-mail: viktor.seeman@ut.ee; Dolgov, Sergei; Maaroos, Aarne

    2017-05-15

    The hyperfine structure (HFS) of F{sup +} centres in CaS single crystals due to the interaction with {sup 33}S and {sup 43}Ca nuclei was observed in EPR spectra for the first time. Angular variations of the HFS were measured for rotation of magnetic field in {100} and {110} crystallographic planes. Using measured orientation-dependent EPR spectra and the EPR NMR program, the parameters of the spin Hamiltonian were determined. In case of {sup 33}S nucleus there is a strong dependence of the F{sup +} centre EPR spectrum on the quadrupole term whereas for {sup 43}Ca nucleus this dependence is insignificant.

  4. Hyperfine splitting of the optical lines in the odd isotopes of uranium

    International Nuclear Information System (INIS)

    Gangrskij, Yu.P.; Zemlyanoj, S.G.; Markov, B.N.; Kul'dzhanov, B.K.

    1996-01-01

    The hyperfine structure was studied for two optical transitions in U between the ground state term 5 L 6 and the excited ones 7 M 7 and 7 L 6 . The method of laser resonance fluorescence in the atomic beam was used. The values of constants of hyperfine splitting-magnetic dipole and octupole, electric quadrupole were obtained for odd isotopes 223 U and 235 U. The connection of these constants and atomic and nuclear parameters is discussed. (author). 20 refs., 2 figs., 4 tabs

  5. Hyperfine interactions in the cubic semiconductor CdO

    International Nuclear Information System (INIS)

    Desimoni, J.; Bibiloni, A.G.; Massolo, C.P.; Renteria, M.

    1990-01-01

    The time-differential perturbed angular correlation technique has been applied using 111 In probes, which decay through electron capture to 111 Cd, to study the hyperfine interaction in cubic cadmium oxide, in the temperature range RT--740 degree C (RT denotes room temperature). The main fraction of probes are located in perfect-lattice sites, with null electric field gradient in agreement with crystalline-structure considerations. Around 25% of the total intensity shows an electric-field-gradient distribution around V zz =0. This corresponds to probes located in sites perturbed by the vicinity of oxygen vacancies in the lattice. The temperature-independent behavior of the measured hyperfine parameters is discussed in terms of conductivity and band-structure properties of the semiconductor. No time-dependent interaction arising from nuclear electron-capture aftereffects are seen in this experiment. This is in agreement with a previously reported model of aftereffect processes which states that only holes trapped in impurity levels inside the band gap of the semiconductor can give rise to detectable fluctuating interactions

  6. Hyperfine interactions in the cubic semiconductor CdO

    Energy Technology Data Exchange (ETDEWEB)

    Desimoni, J.; Bibiloni, A.G.; Massolo, C.P.; Renteria, M. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo No. 67, 1900 La Plata, Argentina (AR))

    1990-01-15

    The time-differential perturbed angular correlation technique has been applied using {sup 111}In probes, which decay through electron capture to {sup 111}Cd, to study the hyperfine interaction in cubic cadmium oxide, in the temperature range RT--740 {degree}C (RT denotes room temperature). The main fraction of probes are located in perfect-lattice sites, with null electric field gradient in agreement with crystalline-structure considerations. Around 25% of the total intensity shows an electric-field-gradient distribution around {ital V}{sub {ital zz}}=0. This corresponds to probes located in sites perturbed by the vicinity of oxygen vacancies in the lattice. The temperature-independent behavior of the measured hyperfine parameters is discussed in terms of conductivity and band-structure properties of the semiconductor. No time-dependent interaction arising from nuclear electron-capture aftereffects are seen in this experiment. This is in agreement with a previously reported model of aftereffect processes which states that only holes trapped in impurity levels inside the band gap of the semiconductor can give rise to detectable fluctuating interactions.

  7. Observation of the hyperfine spectrum of antihydrogen

    Science.gov (United States)

    Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2017-08-01

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  8. Observation of the hyperfine spectrum of antihydrogen.

    Science.gov (United States)

    Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Johnson, M A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Mathers, M; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stracka, S; Stutter, G; So, C; Tharp, T D; Thompson, J E; Thompson, R I; van der Werf, D P; Wurtele, J S

    2017-08-02

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 10 13 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10 4 . This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  9. Optical dephasing, hyperfine structure, and hyperfine relaxation associated with the 580.8-nm 7F0-5D0 transition of europium in Eu/sup 3+/:Y2O3

    International Nuclear Information System (INIS)

    Babbitt, W.R.; Lezama, A.; Mossberg, T.W.

    1989-01-01

    We have employed spectral-hole-burning, coherent-transient, and optical-rf double-resonance techniques to measure various parameters associated with the 580.8-nm 7 F 0 - 5 D 0 transition of Eu/sup 3+/ doped into Y 2 O 3 . In particular, we have measured the hyperfine splittings of the terminal levels (for both /sup 151/Eu and /sup 153/Eu), an effective thermalization rate of the ground-state ( 7 F 0 ) hyperfine manifold over the temperature range of ≅4--15 K, and the homogeneous linewidth of the optical transition over the range of ≅14--35 K. Large ratios of inhomogeneous to homogeneous linewidth at elevated temperatures (10 3 at 25 K) and long ground-state hyperfine thermalization times (>30 h at 4 K) make this an interesting crystal in the context of spectrally addressable optical memories

  10. Unravelling the local structure of topological crystalline insulators using hyperfine interactions

    CERN Multimedia

    Phenomena emerging from relativistic electrons in solids have become one the main topical subjects in condensed matter physics. Among a wealth of intriguing new phenomena, several classes of materials have emerged including graphene, topological insulators and Dirac semi-metals. This project is devoted to one such class of materials, in which a subtle distortion of the crystalline lattice drives a material through different topological phases: Z$_{2}$ topological insulator (Z$_{2}$-TI), topological crystalline insulator (TCI), or ferroelectric Rashba semiconductor (FERS). We propose to investigate the local structure of Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te (with $\\textit{x}$ from 0 to 1) using a combination of experimental techniques based on hyperfine interactions: emission Mössbauer spectroscopy (eMS) and perturbed angular correlation spectroscopy (PAC). In particular, we propose to study the effect of composition ($\\textit{x}$ in Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te) on: \\\\ \\\\(1) the mag...

  11. Electronic structure optical spectra and contact hyperfine parameters of CoF64- complex in LiF and KMgF3

    International Nuclear Information System (INIS)

    Albuquerque, E.L. de.

    1975-12-01

    The electronic structure, the optical absorption bands and the magnetic hyperfine contact terms have been calculated for CoF 6 4- cluster in LiF and KMgF 3 using the Self-Consistent-Field Multiple-Scattering Xα Method. The results obtained are compared with experiment and indicate that this scheme is convenient to treat such complex problems. (Author) [pt

  12. Effect of vanadium neighbors on the hyperfine properties of iron-vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Yousif, A.; Gismelseed, A.; Al Rawas, A.; Widatallah, H.; Bouziane, K.; Al-Omari, I. [College of Science, Sultan Qaboos University, Physics Department (Oman)

    2008-06-15

    The electronic and magnetic structures of Fe-V alloys are calculated using the discrete-variational and full-potential linearized-augmented-plane wave methods. The derived hyperfine properties at Fe sites are studied against the number of Fe atoms in the neighbouring shells. As expected the magnetic hyperfine field depends strongly on the number of Fe atoms in the first and second shells of neighbours while its dependence on the variation of atoms in the third shell is weak. The calculated distribution of the magnetic hyperfine fields at the Fe sites, are compared to the experimental data of Krause et al. (Phys Rev B 61:6196-6204, 2000). The contact charge densities and the magnetic moments are also calculated. It was found that the contact charge density increases with increasing V contents and this leads to negative isomer shift on addition of V.

  13. Investigation of transferred hyperfine interactions from 129I and 119Sn by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sanchez, J.-P.

    1976-01-01

    The hyperfine parameters at 129 I have been measured in the series of compounds CrI 3 , CsCrI 3 , MI 2 (M=V, Cr, Mn, Fe, Co, Ni, Cd) and NR 4 FeI 4 (R=ethyl, butyl). They have been interpreted in terms of the charge and spin densities in the ligand valence orbitals. Information about the spin polarization mechanisms as well as about the local magnetic and crystallographic structural arrangements have been furthermore deduced. The 119 Sn hyperfine data in the series of RESn 3 intermetallics have provided information about the magnetic structure and the spin polarization mechanisms [fr

  14. Excited-level lifetimes and hyperfine-structure measurements on ions using collinear laser--ion-beam spectroscopy

    International Nuclear Information System (INIS)

    Jin, J.; Church, D.A.

    1994-01-01

    The mean lifetimes τ of the Ca II 4p 2 P 1/2 and 4p 2 P 3/2 levels, and the 35 Cl II 4p' 1 F 3 level, have been measured by a variant of the collinear laser--ion-beam lifetime technique applied previously to the Ar II 4p' 2 F 7/2 o level [Jian Jin and D. A. Church, Phys. Rev. A 47, 132 (1993)]. The present results are τ(Ca II, 4p 2 P 1/2 )=7.098(0.020) ns, τ(Ca II, 4p 2 P 3/2 )=6.924(0.019) ns, and τ(Cl II, 4p' 1 F 3 ) =11.17(0.06) ns. The experimental lifetimes of these, plus the Ar II 4p' 2 F 7/2 level, are compared with available recent many-electron calculations. Typically 1%--3% differences between measurement and ab initio theory are found, while certain semiempirical calculations are in better agreement with experiment. Data for other precise lifetime measurements on alkali-metal systems are compared with recent ab initio and semiempirical calculations to provide perspective on the Ca II results. The hyperfine structure of the 35 Cl II 3d' 1 G 4 --4p' 1 F 3 transition was also measured and analyzed in the course of the measurements, with the resulting hyperfine-structure constants: A( 1 F 3 )=301.9(0.5) MHz, B( 1 F 3 )=-6.7(0.8) MHz, A( 1 G 4 )=205.1(0.5) MHz, and B( 1 G 4 )=-3.9(2.4) MHz

  15. Wavelengths, energy levels and hyperfine structure of Mn II and Sc II.

    Science.gov (United States)

    Nave, Gillian; Pickering, Juliet C.; Townley-Smith, Keeley I. M.; Hala, .

    2015-08-01

    For many decades, the Atomic Spectroscopy Groups at the National Institute of Standards and Technology (NIST) and Imperial College London (ICL) have measured atomic data of astronomical interest. Our spectrometers include Fourier transform (FT) spectrometers at NIST and ICL covering the region 1350 Å to 5.5 μm and a 10.7-m grating spectrometer at NIST covering wavelengths from 300 - 5000 Å. Sources for these spectra include high-current continuous and pulsed hollow cathode (HCL) lamps, Penning discharges, and sliding spark discharges. Recent work has focused on the measurement and analysis of wavelengths, energy levels, and hyperfine structure (HFS) constants for iron-group elements. The analysis of FT spectra of Cr I, Mn I, and Mn II is being led by ICL and is described in a companion poster [1]. Current work being led by NIST includes the analysis of HFS in Mn II, analysis of Mn II in the vacuum ultraviolet, and a comprehensive analysis of Sc II.Comprehensive HFS constants for Mn II are needed for the interpretation of stellar spectra and incorrect abundances may be obtained when HFS is omitted. Holt et al. [2] have measured HFS constants for 59 levels of Mn II using laser spectroscopy. We used FT spectra of Mn/Ni and Mn/Cu HCLs covering wavelength ranges from 1350 Å to 5.4 μm to confirm 26 of the A constants of Holt et al. and obtain values for roughly 40 additional levels. We aim to obtain HFS constants for the majority of lines showing significant HFS that are observed in chemically-peculiar stars.Spectra of Sc HCLs have been recorded from 1800 - 6700 Å using a vacuum ultraviolet FT spectrometer at NIST. Additional measurements to cover wavelengths above 6700 Å and below 1800 Å are in progress. The spectra are being analyzed by NIST and Alighar Muslim University, India in order to derive improved wavelengths, energy levels, and hyperfine structure parameters.This work was partially supported by NASA, the STFC and PPARC (UK), the Royal Society of the UK

  16. Study of coupled-cluster correlations on electromagnetic transitions and hyperfine structure constants of W VI

    International Nuclear Information System (INIS)

    Bhowmik, Anal; Majumder, Sonjoy; Roy, Sourav; Dutta, Narendra Nath

    2017-01-01

    This work presents precise calculations of important electromagnetic transition amplitudes along with details of their many-body correlations using the relativistic coupled-cluster method. Studies of hyperfine interaction constants, useful for plasma diagnostics, with this correlation exhaustive many-body approach, are another important area of this work. The calculated oscillator strengths of allowed transitions, amplitudes of forbidden transitions and lifetimes are compared with the other theoretical results wherever available and they show a good agreement. Hyperfine constants of different isotopes of W VI, presented in this paper, will be helpful in gaining an accurate picture of the abundances of this element in different astronomical bodies. (paper)

  17. Hyperfine structure and isotope shift of the neutron-rich barium isotopes 139-146Ba and 148Ba

    International Nuclear Information System (INIS)

    Wendt, K.; Ahmad, S.A.; Klempt, W.; Neugart, R.; Otten, E.W.

    1988-01-01

    The hyperfine structure and isotope shift in the 6s 2 S 1/2 -6p 2 P 3/2 line of Ba II (455.4 nm) have been measured by collinear fast-beam laser spectroscopy for the neutron-rich isotopes 139-146 Ba and 148 Ba. Nuclear moments and mean square charge radii of these isotopes have been recalculated. The isotope shift of the isotope 148 Ba (T 1/2 = 0.64 s) could be studied for the first time, yielding δ 2 > 138,148 = 1.245(3) fm 2 . (orig.)

  18. Proceedings of the 2nd KUR symposium on hyperfine interactions

    International Nuclear Information System (INIS)

    Mekata, M.; Minamisono, T.; Kawase, Y.

    1991-10-01

    Hyperfine interactions between a nuclear spin and an electronic spin discovered from hyperfine splitting in atomic optical spectra have been utilized not only for the determination of nuclear parameters in nuclear physics but also for novel experimental techniques in many fields such as solid state physics, chemistry, biology, mineralogy and for diagnostic methods in medical science. Experimental techniques based on hyperfine interactions yield information about microscopic states of matter so that they are important in material science. Probes for material research using hyperfine interactions have been nuclei in the ground state and radioactive isotopes prepared with nuclear reactors or particle accelerators. But utilization of muons generated from accelerators is recently growing. Such wide spread application of hyperfine interaction techniques gives rise to some difficulty in collaboration among various research fields. In these circumstances, the present workshop was planned after four years since the last KUR symposium on the same subject. This report summarizes the contributions to the workshop in order to be available for the studies of hyperfine interactions. (J.P.N.)

  19. Structural, hyperfine and Raman properties of RE2FeSbO7 compounds

    International Nuclear Information System (INIS)

    Berndt, G.; Silva, K.L.; Ivashita, F.F.; Paesano, A.; Blanco, M.C.; Miner, E.V.P.; Carbonio, R.E.; Dantas, S.M.; Ayala, A.P.; Isnard, O.

    2015-01-01

    Highlights: • We prepared monophasic RE 2 FeSbO 7 pyrochlores. • RE 2 FeSbO 7 compounds were characterized regarding crystallographic, vibrational and hyperfine properties. • We find out that a site disorder takes place for the RE’s of larger ionic radii. • Lattice parameters, Raman bands and quadrupole splittings were shown to depend correlatedly on the RE ionic radius. - Abstract: Pyrochlores of the RE 2 FeSbO 7 type were synthesized by ball-milling followed by annealing in free atmosphere at high temperatures. The samples prepared were characterized by X-ray diffraction, Raman spectroscopy and 57 Fe Mössbauer spectroscopy, at room temperature. The results showed that RE 2 FeSbO 7 compounds have a cubic structure, i.e., Fd-3m (#227) space group, and that a site disorder takes place for the RE’s of larger ionic radii. Lattice parameters, Raman bands and quadrupole splittings were shown to depend correlatedly on the RE ionic radius. This behavior is discussed in terms of the pyrochlore crystallographic structure

  20. Hyperfine fields for B and N in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Hamagaki, H; Nakai, K [Tokyo Univ. (Japan). Faculty of Science; Nojiri, Y; Tanihata, I; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Faculty of Science

    1976-11-01

    Hyperfine fields for non-magnetic impurity atoms of /sup 12/B and /sup 12/N in nickel have been investigated using a nuclear resonance method involving ..beta.. decay. The temperature dependence of the hyperfine fields and nuclear spin lattice relaxation time were also studied for /sup 12/B in Ni. Resonances were observed for recoil nuclei produced in the reactions /sup 11/B(d,p)/sup 12/B or /sup 10/B(/sup 3/He,n)/sup 12/N, implanted in polycrystalline Ni foils. A small correction to the Lorentz field was made because of a Co impurity in the Ni foils used. The sign of the hyperfine field was negative for B in Ni and positive for N. This result is in qualitative agreement with hyperfine field systematics for such impurities. Spin lattice relaxation time was determined from the time spectra of the ..beta..-decay asymmetry. Hyperfine fields measured in the given temperature range deviated significantly from the magnetization curve of Ni. At low temperatures spin lattice was long in comparison with /sup 12/B half life (11 ms), but became shorter around Curie temperature Tsub(c) (631 K), increasing again above this temperature. This is due to slowing down of spin fluctuations at a critical point of the ferromagnetic-paramagnetic phase transition.

  1. Resolved nuclear hyperfine structure of muonium in CuCl by means of muon level-crossing resonance

    International Nuclear Information System (INIS)

    Schneider, J.W.; Keller, H.; Odermatt, W.; Puempin, B.; Savic, I.M.; Simmler, H.; Dodds, S.A.; Estle, T.L.; Duvarney, R.C.; Chow, K.; Kadono, R.; Kiefl, R.F.; Li, Q.; Riseman, T.M.; Zhou, H.; Lichti, R.L.; Schwab, C.

    1991-01-01

    Detailed muon level-crossing resonance measurements of Mu I and Mu II centres in single crystals of CuCl are presented. The hyperfine and nuclear hyperfine parameters of the closest two shells of nuclei are remarkably similar for the two centres, indicating that both are located at the same tetrahedral interstitial site with four Cu nearest neighbours and six Cl next-nearest neighbours. About 30% of the total unpaired-electron spin density is located on the muon, about 60% on the four nearest neighbours and the rest on the six next-nearest neighbours, with nothing observable for any other shell. (orig.)

  2. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    Science.gov (United States)

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  3. Nuclear spin of 185Au and hyperfine structure of 188Au

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    The nuclear spin of 185 Au, I = 5/2, and the hyperfine separation of 188 Au, Δγ = +- 2992(30) MHz, have been measured with the atomic-beam magnetic resonance method. The spin of 185 Au indicates a deformed nuclear shape in the ground state. The small magnetic moment of 188 Au is close in value to those of the heavier I = 1 gold isotopes 190 192 194 Au, being located in a typical transition region. (Auth.)

  4. Recoil effects in the hyperfine structure of QED bound states

    International Nuclear Information System (INIS)

    Bodwin, G.T.; Yennie, D.R.; Gregorio, M.A.

    1985-01-01

    The authors give a general discussion of the derivation from field theory of a formalism for the perturbative solution of the relativistic two-body problem. The lowest-order expression for the four-point function is given in terms of a two-particle three-dimensional propagator in a static potential. It is obtained by fixing the loop energy in the four-dimensional formalism at a point which is independent of the loop momentum and is symmetric in the two particle variables. This method avoids awkward positive- and negative-energy projectors, with their attendant energy square roots, and allows one to recover the Dirac equation straightforwardly in the nonrecoil limit. The perturbations appear as a variety of four-dimensional kernels which are rearranged and regrouped into convenient sets. In particular, they are transformed from the Coulomb to the Feynman gauge, which greatly simplifies the expressions that must be evaluated. Although the approach is particularly convenient for the precision analysis of QED bound states, it is not limited to such applications. The authors use it to give the first unified treatment of all presently known recoil corrections to the muonium hyperfine structure and also to verify the corresponding contributions through order α 2 lnαE/sub F/ in positronium. The required integrals are evaluated analytically

  5. Improving the calculation of electron paramagnetic resonance hyperfine coupling tensors for d-block metals

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Kongsted, Jacob; Sauer, Stephan P. A.

    2012-01-01

    Calculation of hyperfine coupling constants (HFCs) of Electron Paramagnetic Resonance from first principles can be a beneficial compliment to experimental data in cases where the molecular structure is unknown. We have recently investigated basis set convergence of HFCs in d-block complexes...... and obtained a set of basis functions for the elements Sc–Zn, which were saturated with respect to both the Fermi contact and spin-dipolar components of the hyperfine coupling tensor [Hedeg°ard et al., J. Chem. Theory Comput., 2011, 7, pp. 4077-4087]. Furthermore, a contraction scheme was proposed leading...

  6. Structure and Hyperfine Interactions in Aurivillius Bi9Ti3Fe5O27 Conventionally Sintered Compound

    International Nuclear Information System (INIS)

    Mazurek, M.; Lisinska-Czekaj, A.; Surowiec, Z.; Jartych, E.; Czekaj, D.

    2011-01-01

    The structure and hyperfine interactions in the Bi 9 Ti 3 Fe 5 O 27 Aurivillius compound were studied using X-ray diffraction and Moessbauer spectroscopy. Samples were prepared by the conventional solid-state sintering method at various temperatures. An X-ray diffraction analysis proved that the sintered compounds formed single phases at temperature above 993 K. Moessbauer measurements have been carried out at room and liquid nitrogen temperatures. Room-temperature Moessbauer spectrum of the Bi 9 Ti 3 Fe 5 O 27 compound confirmed its paramagnetic properties. However, low temperature measurements revealed the additional paramagnetic phase besides the antiferromagnetic one. (authors)

  7. Hyperfine structure of the metastable p-barHe+ atom revealed by a laser-induced (n,l) = (37,35) → (38,34) transition

    International Nuclear Information System (INIS)

    Widmann, E.; Eades, J.; Yamazaki, T.

    1996-11-01

    A precise scan of the previously discovered laser-induced transition (n,l) = (37,35) → (38,34) in p-barHe + revealed a doublet structure with a separation of Δν HF = 1.70 ± 0.05 GHz. This new type of 'hyperfine' splitting is ascribed to the interaction of the antiproton orbital angular momentum and the electron spin. (author)

  8. Mössbauer studies of hyperfine fields in disordered Fe CrAl

    Indian Academy of Sciences (India)

    magnetic hyperfine field, the average hyperfine field follows the ´T Tcµ3 2 law. The paramagnetic part of the hyperfine field is explained in terms of the clustering of Cr ... These alloys offer excellent systems for studying magnetic interactions. Large volumes of studies have been devoted to Heusler alloys bearing the general ...

  9. Numerical Simulations of Hyperfine Transitions of Antihydrogen

    CERN Document Server

    Kolbinger, B.; Diermaier, M.; Lehner, S.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M.C.; Widmann, E.

    2015-02-04

    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.

  10. Numerical simulations of hyperfine transitions of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbinger, B., E-mail: bernadette.kolbinger@oeaw.ac.at; Capon, A.; Diermaier, M.; Lehner, S. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Widmann, E. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria)

    2015-08-15

    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration’s goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.

  11. The contribution of axial-vector mesons to hyperfine structure of muonic hydrogen

    OpenAIRE

    Dorokhov, A. E.; Kochelev, N. I.; Martynenko, A. P.; Martynenko, F. A.; Radzhabov, A. E.

    2017-01-01

    The contribution from the axial-vector meson exchange to the potential of the muon–proton interaction in muonic hydrogen induced by anomalous axial-vector meson coupling to two photon state is calculated. It is shown that such contribution to the hyperfine splitting in muonic hydrogen is large and important for a comparison with precise experimental data. In the light of our result, the proton radius “puzzle” is discussed.

  12. First-principles calculations of Moessbauer hyperfine parameters for solids and large molecules

    International Nuclear Information System (INIS)

    Guenzburger, Diana; Ellis, D.E.; Zeng, Z.

    1997-10-01

    Electronic structure calculations based on Density Functional theory were performed for solids and large molecules. The solids were represented by clusters of 60-100 atoms embedded in the potential of the external crystal. Magnetic moments and Moessbauer hyperfine parameters were derived. (author)

  13. Hyperfine structure and isotope shift of transitions in YbI using UV and deep-UV cw laser light and the angular distribution of fluorescence radiation

    NARCIS (Netherlands)

    Zinkstok, R.T.; van Duijn, E.J.; Witte, S.; Hogervorst, W.

    2002-01-01

    Using the third harmonic of a cw titanium:sapphire laser, the hyperfine structure (HFS) and isotope shift (IS) of three deep-UV transitions of neutral Yb have been measured for the first time. By exploiting the angular distribution of fluorescence radiation, accurate and complete results are

  14. Hyperfine coupling of the iodine {\\boldsymbol{D}}{0}_{{\\boldsymbol{u}}}^{+} and β1 g ion-pair states

    Science.gov (United States)

    Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.

    2018-05-01

    Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.

  15. Hyperfine interactions and structures of ferrous hydroxide and green rust II in sulfated aqueous media

    International Nuclear Information System (INIS)

    Olowe, A.A.; Genin, J.M.R.; Bauer, P.

    1988-01-01

    A sulfated ferrous hydroxide is obtained by mixing NaOH with melanterite depending on the R = [SO 4 -- ]/[OH - ] ratio and leading by oxidation to the green rust II transient compound. Hyperfine parameters are presented. (orig.)

  16. Laser and radiofrequency spectroscopy of the 4d55s5Dsub(0,1,2,3,4) and 4d45s5p5Psub(1,2,3) states in Mo I: Hyperfine structure and isotope shifts

    International Nuclear Information System (INIS)

    Olsson, T.; Fraenkel, L.; Lindgren, I.; Nyberg, A.; Robertsson, L.; Rosen, A.

    1986-01-01

    A series of experiments has been performed to determine the hyperfine structure in the metastable 4d 5 5s 5 Dsub(1,2,3,4) states of Mo I by means of the laser radiofrequency double-resonance technique. Furthermore, hyperfine structure splittings and isotope shifts in seven optical transitions connecting the 4d 5 5s 5 Dsub(0,1,2,3,4) and the 4d 4 5s5p 5 Psub(1,2,3) states were resolved with the high-resolution laser spectroscopy technique. Radial hyperfine structure parameters are deduced for the effective operator within the 5 D states using the configurations 4d 4 5s 2 , 4d 5 5s and 4d 6 as a model space. The isotope shifts are also discussed, utilizing an effective operator, with particular emphasis on the J dependence. (orig.)

  17. Muon contact hyperfine field in metals: A DFT calculation

    Science.gov (United States)

    Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto

    2018-05-01

    In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.

  18. Computation of the hyperfine structure in the (α-μ- e-)0 atom

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Kuchiev, M.Ju.; Yakhontov, V.L.

    1983-01-01

    Computation of the ground-state hyperfine splitting of neutral muonic helium (α-μ - e - ) 0 has been carried out. Account of two terms in the expansion of this quantity in power series of a small parameter #betta# of the order of msub(e)/msub(μ) of the order of 1/200 results in the energy splitting value δ#betta# = 4462.9 MHz in good agreement with previously obtained experimental and theoretical values. (author)

  19. Reanalysis and extension of the MnH A7Π- X7Σ + (0, 0) band: Fine structure and hyperfine-induced rotational branches

    Science.gov (United States)

    Varberg, Thomas D.; Gray, Jeffrey A.; Field, Robert W.; Merer, Anthony J.

    1992-12-01

    The A7Π- X7Σ + (0, 0) band of MnH at 568 nm has been recorded by laser fluorescence excitation spectroscopy. The original rotational analysis of Nevin [ Proc. R. Irish Acad.48A, 1-45 (1942); 50A, 123-137 (1945)] has been extended with some corrections at low J. Systematic internal hyperfine perturbations in the X7Σ + state, caused by the Δ N = 0, Δ J = ±1 matrix elements of the 55Mn hyperfine term in the Hamiltonian, have been observed in all seven electron spin components over the entire range of N″ studied. These perturbations destroy the "goodness" of J″ as a quantum number, giving rise to hyperfine-induced Δ J = ±2 rotational branches and to observable energy shifts of the most severely affected levels. The A7Π state, with A = 40.5 cm -1 and B = 6.35 cm -1, evolves rapidly from Hund's case ( a) to case ( b) coupling, which produces anomalous branch patterns at low J. A total of 156 rotational branches have been identified and fitted by least squares to an effective Hamiltonian, providing precise values for the rotational and fine structure constants. Values of the principal constants determined in the fit are (1σ errors in units of the last digit are listed in parentheses): The fine structures of the A7Π and X7Σ + states confirm the assignment of the A ← X transition as Mn 4 pπ ← 4 sσ in the presence of a spectator, nonbonding Mn 3 d5 ( 6S) open core.

  20. Energy Levels, wavelengths and hyperfine structure measurements of Sc II

    Science.gov (United States)

    Hala, Fnu; Nave, Gillian

    2018-01-01

    Lines of singly ionized Scandium (Sc II) along with other Iron group elements have been observed [1] in the region surrounding the massive star Eta Carinae [2,3] called the strontium filament (SrF). The last extensive analysis of Sc II was the four-decade old work of Johansson & Litzen [4], using low-resolution grating spectroscopy. To update and extend the Sc II spectra, we have made observation of Sc/Ar, Sc/Ne and Sc/Ge/Ar hollow cathode emission spectrum on the NIST high resolution FT700 UV/Vis and 2 m UV/Vis/IR Fourier transform spectrometers (FTS). More than 850 Sc II lines have been measured in the wavelength range of 187 nm to 3.2 μm. connecting a total of 152 energy levels. The present work also focuses to resolve hyperfine structure (HFS) in Sc II lines. We aim to obtain accurate transition wavelengths, improved energy levels and HFS constants of Sc II. The latest results from work in progress will be presented.Reference[1] Hartman H, Gull T, Johansson S and Smith N 2004 Astron. Astrophys. 419 215[2] Smith N, Morse J A and Gull T R 2004 Astrophys. J. 605 405[3] Davidson K and Humphreys R M 1997 Annu. Rev. Astron. Astrophys. 35[4] Johansson S and Litzén U 1980 Phys. Scr. 22 49

  1. Measurement of the ground-state hyperfine splitting of antihydrogen

    CERN Document Server

    Juhász, B; Federmann, S

    2011-01-01

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, consisting of a cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of ~10−7. The first preliminary measurements of the hyperfine transitions will start in 2011.

  2. Moessbauer study of supertransferred hyperfine field of /sup 119/Sn (Sn/sup 4 +/) in Casub(1-x)Srsub(x)MnO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Takano, M [Konan Univ., Kobe (Japan). Faculty of Science; Takeda, Y; Shimada, M; Matsuzawa, T; Shinjo, T

    1975-09-01

    Casub(1-x)Srsub(x)Mnsub(0.99)Snsub(0.01)O/sub 3/(0<=x<=1) with (nearly) cubic perovskite structures were prepared and the magnetic hyperfine fields of /sup 119/Sn (Sn/sup 4 +/) were measured by the Moessbauer effect. The hyperfine fields arise from unpaired s electron spin densities transferred from Mn/sup 4 +/ ions (supertransferred hyperfine interaction). The hyperfine field for a tin ion was found to depend linearly upon the numbers of Ca/sup 2 +/ and Sr/sup 2 +/ ions in the neighboring divalent cation sites, with proportional coefficients having opposite signs. To explain experimental results two kinds of spin transfer processes contributing to the hyperfine field oppositely to each other have been considered, and spin transfer via a divalent cation is emphasized particularly. The hyperfine field at 0 K for Sn/sup 4 +/ in CaMnO/sub 3/ is -75 kOe, while +20 kOe for Sn/sup 4 +/ in SrMnO/sub 3/.

  3. First-principles calculations of Moessbauer hyperfine parameters for solids and large molecules

    Energy Technology Data Exchange (ETDEWEB)

    Guenzburger, Diana [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Ellis, D.E. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics; Zeng, Z. [Academia Sinica, Hefei, AH (China). Inst. of Solid-State Physics

    1997-10-01

    Electronic structure calculations based on Density Functional theory were performed for solids and large molecules. The solids were represented by clusters of 60-100 atoms embedded in the potential of the external crystal. Magnetic moments and Moessbauer hyperfine parameters were derived. (author) 22 refs., 8 figs., 1 tab.

  4. Comparison between measurements of hyperfine structures of Pr II - lines investigated by collinear laser ion beam spectroscopy (CLIBS) ans saturation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Nadeem; Anjum, Naveed [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria); Optics Labs, Nilore, Islamabad (Pakistan); Huehnermann, Harry [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria); Fachbereich Physik, Univ. Marburg/Lahn (Germany); Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)

    2011-07-01

    Investigation of narrow hyperfine structures needs a reduction of the Doppler broadening of the investigated lines. Here we have used two methods: collinear laser spectroscopy (CLIBS) and laser saturation spectroscopy. In the first method, the Doppler width is reduced by accelerating Pr ions to a high velocity and excitation with a collinear laser beam, while in the second method ions with velocity group zero are selected by nonlinear saturation. In this work the hyperfine spectra of several Pr II lines were investigated using CLIBS. A line width of ca. 60 MHz was measured. The same lines were then investigated in a hollow cathode discharge lamp using intermodulated laser-induced fluorescence spectroscopy. Using this technique a spectral line width of about 200 MHz was achieved. In both methods, the excitation source is a ring dye laser operated with R6G. Using a fit program, magnetic dipole interaction constants A and the electric-quadrupole interaction constants B of the involved levels have been determined in both cases. We discuss advantages and disadvantages of both methods.

  5. Hyperfine-mediated static polarizabilities of monovalent atoms and ions

    International Nuclear Information System (INIS)

    Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.

    2010-01-01

    We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability is required in a number of high-precision experiments, such as microwave atomic clocks and searches for CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order of interaction with the externally applied electric field, the differential polarizability involves an additional contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine interactions. Numerical results are presented for Al, Rb, Cs, Yb + , Hg + , and Fr.

  6. Spin relaxation in nanowires by hyperfine coupling

    International Nuclear Information System (INIS)

    Echeverria-Arrondo, C.; Sherman, E.Ya.

    2012-01-01

    Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons

    OpenAIRE

    Hees, A.; Guéna, J.; Abgrall, M.; Bize, S.; Wolf, P.

    2016-01-01

    We use six years of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but pr...

  8. Anomalies

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1985-08-01

    Anomalies have a diverse impact on many aspects of physical phenomena. The role of anomalies in determining physical structure from the amplitude for π 0 decay to the foundations of superstring theory will be reviewed. 36 refs

  9. Muonium hyperfine parameters in Si1-x Ge x alloys

    International Nuclear Information System (INIS)

    King, Philip; Lichti, Roger; Cottrell, Stephen; Yonenaga, Ichiro

    2006-01-01

    We present studies of muonium behaviour in bulk, Czochralski-grown Si 1- x Ge x alloy material, focusing in particular on the hyperfine parameter of the tetrahedral muonium species. In contrast to the bond-centred species, the hyperfine parameter of the tetrahedral-site muonium centre (Mu T ) appears to vary non-linearly with alloy composition. The temperature dependence of the Mu T hyperfine parameter observed in low-Ge alloy material is compared with that seen in pure Si, and previous models of the Mu T behaviour in Si are discussed in the light of results from Si 1- x Ge x alloys

  10. Microstructural and electron-structural anomalies and high temperature superconductivity

    International Nuclear Information System (INIS)

    Gao, L.; Huang, Z.J.; Bechtold, J.; Hor, P.H.; Chu, C.W.; Xue, Y.Y.; Sun, Y.Y.; Meng, R.L.; Tao, Y.K.

    1989-01-01

    Microstructural and electron-structural anomalies have been found to exist in all HYSs by x-ray diffraction and positron annihilation experiments. These anomalies are induced either by doping near the metal-insulator phase boundary at 300 K, or by cooling the HTSs below T c . This has been taken as evidence for a charge transfer between the CuO 2 -layers and their surroundings, which suggests the importance of charge transfers and implies the importance of charge fluctuations in HTS. Several new compounds with the T'- and T*-phases have been found. Further implications of these observations are discussed

  11. Hyperfine electric parameters calculation in Si samples implanted with {sup 57}Mn→{sup 57}Fe

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Y., E-mail: yabreu@ceaden.edu.cu [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Calle 30 No. 502 e/5ta y 7ma Ave., 11300 Miramar, Playa, La Habana (Cuba); Cruz, C.M.; Piñera, I.; Leyva, A.; Cabal, A.E. [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Calle 30 No. 502 e/5ta y 7ma Ave., 11300 Miramar, Playa, La Habana (Cuba); Van Espen, P. [Departement Chemie, Universiteit Antwerpen, Middelheimcampus, G.V.130, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Van Remortel, N. [Departement Fysica, Universiteit Antwerpen, Middelheimcampus, G.U.236, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2014-07-15

    Nowadays the electronic structure calculations allow the study of complex systems determining the hyperfine parameters measured at a probe atom, including the presence of crystalline defects. The hyperfine electric parameters have been measured by Mössbauer spectroscopy in silicon materials implanted with {sup 57}Mn→{sup 57}Fe ions, observing four main contributions to the spectra. Nevertheless, some ambiguities still remain in the {sup 57}Fe Mössbauer spectra interpretation in this case, regarding the damage configurations and its evolution with annealing. In the present work several implantation environments are evaluated and the {sup 57}Fe hyperfine parameters are calculated. The observed correlation among the studied local environments and the experimental observations is presented, and a tentative microscopic description of the behavior and thermal evolution of the characteristic defects local environments of the probe atoms concerning the location of vacancies and interstitial Si in the neighborhood of {sup 57}Fe ions in substitutional and interstitial sites is proposed.

  12. Experimental and ab initio study of the hyperfine parameters of ZnFe {sub 2}O{sub 4} with defects

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, J. Melo; Salcedo Rodríguez, K. L.; Pasquevich, G. A.; Zélis, P. Mendoza; Stewart, S. J., E-mail: stewart@fisica.unlp.edu.ar; Rodríguez Torres, C. E.; Errico, L. A. [Universidad Nacional de La Plata, IFLP-CCT- La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67 (Argentina)

    2016-12-15

    We present a combined Mössbauer and ab initio study on the influence of oxygen-vacancies on the hyperfine and magnetic properties of the ZnFe {sub 2}O{sub 4} spinel ferrite. Samples with different degree of oxygen-vacancies were obtained from zinc ferrite powder that was thermally treated at different temperatures up to 650 {sup ∘}C under vacuum.Theoretical calculations of the hyperfine parameters, magnetic moments and magnetic alignment have been carried out considering different defects such as oxygen vacancies and cation inversion. We show how theoretical and experimental approaches are complementary to characterize the local structure around Fe atoms and interpret the observed changes in the hyperfine parameters as the level of defects increases.

  13. Hyperfine structure measurements of neutral iodine atom (127I) using Fourier Transform Spectrometry

    Science.gov (United States)

    Ashok, Chilukoti; Vishwakarma, S. R.; Bhatt, Himal; Ankush, B. K.; Deo, M. N.

    2018-01-01

    We report the hyperfine Structure (hfs) splitting observations of neutral iodine atom (II) in the 6000 - 10,000 cm-1 near infrared spectral region. The measurements were carried out using a high-resolution Fourier Transform Spectrometer (FTS), where an electrodeless discharge lamp (EDL), excited using microwaves, was employed as the light source and InGaAs as the light detector. A specially designed setup was used to lower the plasma temperature of the medium so as to reduce the Doppler width and consequently to increase the spectral resolution of hfs components. A total of 183 lines with hfs splitting have been observed, out of which hfs in 53 spectral lines are reported for the first time. On the basis of hfs analysis, we derived the magnetic dipole and electric quadrupole coupling constants, A and B respectively for 30 even and 30 odd energy levels and are compared with the values available in the literature. New hfs values for 5 even and 4 odd levels are also reported here for the first time.

  14. Directionally independent energy gap formation due to the hyperfine interaction

    NARCIS (Netherlands)

    Miyashita, Seiji; Raedt, Hans De; Michielsen, Kristel

    We study energy gap formation at the level-crossing point due to the hyperfine interaction. In contrast to the energy gap induced by the Dzyaloshinskii-Moriya interaction, the gap induced by the hyperfine interaction is independent of the direction of the magnetic field. We also study the dynamics

  15. Delineation of structural lineaments from marine magnetic anomalies off Lawson's Bay (Visakhapatnam), East Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Rao, T.C.S.; Rao, M.M.M.

    Marine magnetic surveys have recorded total field anomalies that correspond to structural lineaments extending from the coast into the sea. The significant anomalies recorded in this area are along wavelength high amplitude negative anomaly...

  16. Continuation-like semantics for modeling structural process anomalies

    Directory of Open Access Journals (Sweden)

    Grewe Niels

    2012-09-01

    Full Text Available Abstract Background Biomedical ontologies usually encode knowledge that applies always or at least most of the time, that is in normal circumstances. But for some applications like phenotype ontologies it is becoming increasingly important to represent information about aberrations from a norm. These aberrations may be modifications of physiological structures, but also modifications of biological processes. Methods To facilitate precise definitions of process-related phenotypes, such as delayed eruption of the primary teeth or disrupted ocular pursuit movements, I introduce a modeling approach that draws inspiration from the use of continuations in the analysis of programming languages and apply a similar idea to ontological modeling. This approach characterises processes by describing their outcome up to a certain point and the way they will continue in the canonical case. Definitions of process types are then given in terms of their continuations and anomalous phenotypes are defined by their differences to the canonical definitions. Results The resulting model is capable of accurately representing structural process anomalies. It allows distinguishing between different anomaly kinds (delays, interruptions, gives identity criteria for interrupted processes, and explains why normal and anomalous process instances can be subsumed under a common type, thus establishing the connection between canonical and anomalous process-related phenotypes. Conclusion This paper shows how to to give semantically rich definitions of process-related phenotypes. These allow to expand the application areas of phenotype ontologies beyond literature annotation and establishment of genotype-phenotype associations to the detection of anomalies in suitably encoded datasets.

  17. Determining hyperfine transitions with electromagnetically induced transparency and optical pumping

    International Nuclear Information System (INIS)

    Lee Yi-Chi; Tsai Chin-Chun; Huang Chen-Han; Chui Hsiang-Chen; Chang Yung-Yung

    2011-01-01

    A system is designed to observe the phenomena of electromagnetically induced transparency and optical pumping in cesium D 1 and D 2 lines at room temperature. When a pump laser is frequency-locked on the top of a hyperfine transition and the frequency of the probe laser scans over another hyperfine transition, a spectrum of V-type electromagnetically induced transparency or an optical pumping can be observed depending on whether the two lasers share a common ground state. Therefore, these results can be used to identify the unknown hyperfine transitions of the D 1 line transitions. For educational purposes, this system is helpful for understanding the electromagnetically induced transparency and the optical pumping

  18. Calculation of the electronic structure optical transitions and contact hyperfine parameters of interstitial hydrogen in alkaline halogen crystals

    International Nuclear Information System (INIS)

    Maciel, A.K.A.

    1977-03-01

    The electronic structure of the interstitial hydrogen atom in KF, NaCl, KCl, and RbCl cristals has been studied using the self-consistent-field multiple-scattering Xα method. In the present calculation a cluster constituted by the hydrogen atom surrounded by its first anion and cation neighbors in a cubic shell has been used. The optical transition energies and hyperfine contact parameters with the interstitial proton and the first shell nuclei have been evaluated. The agreement obtained with the experimental data and the relative independence of the method under variations of its intrinsic parameters, indicate that this method can be adequate to the study of defects in ionic cristals. (author) [pt

  19. Hyperfine interactions of /sup 12/B implanted in ferromagnetic nickel

    Energy Technology Data Exchange (ETDEWEB)

    Hamagaki, H; Nojiri, Y; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Nakai, K

    1979-12-01

    Temperature dependences of hyperfine interactions of /sup 12/B implanted in Ni were investigated in the temperature range of 6 K - 730 K by the NMR method with use of polarized /sup 12/B produced in a nuclear reaction and the asymmetric ..beta.. decay. Two kinds of hyperfine fields with different signs were observed (B sub(hf)sup(+) = +4.161 +- 0.022 kG and B sub(hf)sup(-) = -1.611 +- 0.021 kG at 6 K), which indicated that the implanted /sup 12/B were trapped in two different sites (S/sup +/ and S/sup -/, respectively). The spin-lattice relaxation times T/sub 1/ and the population rates at the two sites were studied. Near the Curie temperature, an effect of critical slowing-down of the spin-spin correlation was observed as steep variation of T/sub 1/. The behavior of local field around T sub(C) was also studied by varying the external field. Results of these experiments near T sub(C) indicate itinerant nature of the electron-spin structure in nickel.

  20. Investigation of the hyperfine properties of deoxy hemoglobin based on its electronic structure obtained by Hartree-Fock-Roothan procedure

    Energy Technology Data Exchange (ETDEWEB)

    Lata, K. Ramani [State University of New York at Albany, Department of Physics (United States); Sahoo, N. [University of Texas M.D. Anderson Cancer Center, Department of Radiation Physics (United States); Dubey, Archana [University of Central Florida, Department of Physics (United States); Scheicher, R. H. [Uppsala University, Condensed Matter Theory Group, Department of Physics and Materials Science (Sweden); Badu, S. R.; Pink, R. H.; Mahato, Dip N. [State University of New York at Albany, Department of Physics (United States); Schulte, A. F.; Saha, H. P. [University of Central Florida, Department of Physics (United States); Maharjan, N. B. [State University of New York at Albany, Department of Physics (United States); Chow, Lee [University of Central Florida, Department of Physics (United States); Das, T. P., E-mail: tpd56@albany.edu [State University of New York at Albany, Department of Physics (United States)

    2008-01-15

    The electronic structure of the heme unit of deoxyhemoglobin including the proximal imidazole has been studied using the first-principles Hartree-Fock procedure. Our results for the {sup 57m}Fe isomer shift and asymmetry parameter are in very good agreement with the values obtained from Moessbauer spectroscopy measurements. The {sup 57m}Fe nuclear quadrupole coupling constant is smaller than the experimental result and possible ways to improve the agreement in the future are discussed. Improved analysis of the Moessbauer data, removing some approximations made for deriving the magnetic hyperfine tensor for the {sup 57m}Fe nucleus, is suggested to allow quantitative comparison with our results in the future.

  1. Axions and anomaly-mediated interactions: the Green-Schwarz and Wess-Zumino vertices at higher orders and g-2 of the muon

    International Nuclear Information System (INIS)

    Armillis, Roberta; Coriano, Claudio; Guzzi, Marco; Morelli, Simone

    2008-01-01

    We present a study of the mechanism of anomaly cancellation using only transverse invariant amplitudes on anomaly diagrams at higher perturbative orders. The method is the realization of the Green-Schwarz (GS) mechanism at field theory level, which restores the Ward identities by a subtraction of the anomaly pole. Some of the properties of the GS vertex are analyzed both in the context of unitarity and of the organization of the related perturbative expansion. We investigate the role played by the GS and the Wess-Zumino vertices in the anomalous magnetic moment of the muon and in the hyperfine splitting of muonium, which are processes that can be accompanied by the exchange of a virtual anomalous extra Z prime and an axion-like particle.

  2. Quarkonium fine-hyperfine splittings and the Lorentz structure of the confining potential with vacuum-polarization corrections

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1980-01-01

    Within the framework of the Poggio-Schnitzer flavor-independent static-potential model with long-distance vacuum-polarization correction, we analyze the Lorentz-Dirac structure of the confinement potential with reference to the charmonium hyperfine splittings. In view of the questionable existence and/or doubtful identity of the X(2830) and chi(3455) states, we give preference to the Lorentz-Dirac character of the confinement potential in the form of an approximately equal admixture of scalar and vector components with no anomalous moment. This in turn predicts the 1 S 0 partners of psi and psi' to be near the 3.0- and 3.6-GeV mass regions, respectively. This also suggests the 1 P 1 state of charmonium is to be found above the 3 P 0 state near the mass region of 3.48 GeV

  3. Magnetic anomaly depth and structural index estimation using different height analytic signals data

    Science.gov (United States)

    Zhou, Shuai; Huang, Danian; Su, Chao

    2016-09-01

    This paper proposes a new semi-automatic inversion method for magnetic anomaly data interpretation that uses the combination of analytic signals of the anomaly at different heights to determine the depth and the structural index N of the sources. The new method utilizes analytic signals of the original anomaly at different height to effectively suppress the noise contained in the anomaly. Compared with the other high-order derivative calculation methods based on analytic signals, our method only computes first-order derivatives of the anomaly, which can be used to obtain more stable and accurate results. Tests on synthetic noise-free and noise-corrupted magnetic data indicate that the new method can estimate the depth and N efficiently. The technique is applied to a real measured magnetic anomaly in Southern Illinois caused by a known dike, and the result is in agreement with the drilling information and inversion results within acceptable calculation error.

  4. Calculation of the hyperfine interaction using an effective-operator form of many-body theory

    International Nuclear Information System (INIS)

    Garpman, S.; Lindgren, I.; Lindgren, J.; Morrison, J.

    1975-01-01

    The effective-operator form of many-body theory is reviewed and applied to the calculation of the hyperfine structure. Numerical results are given for the 2p, 3p, and 4p excited states of Li and the 3p state of Na. This is the first complete calculation of the hyperfine structure using an effective-operator form of perturbation theory. As in the Brueckner-Goldstone form of many-body theory, the various terms in the perturbation expansion are represented by Feynman diagrams which correspond to basic physical processes. The angular part of the perturbation diagrams are evaluated by taking advantage of the formal analogy between the Feynman diagrams and the angular-momentum diagrams, introduced by Jucys et al. The radial part of the diagrams is calculated by solving one- and two-particle equations for the particular linear combination of excited states that contribute to the Feynman diagrams. In this way all second- and third-order effects are accurately evaluated without explicitly constructing the excited orbitals. For the 2p state of Li our results are in agreement with the calculations of Nesbet and of Hameed and Foley. However, our quadrupole calculation disagrees with the work of Das and co-workers. The many-body results for Li and Na are compared with semiempirical methods for evaluating the quadrupole moment from the hyperfine interaction, and a new quadrupole moment of 23 Na is given

  5. Hyperfine interactions of a muoniated ethyl radical in supercritical CO2

    International Nuclear Information System (INIS)

    Cormier, Philip; Taylor, Becky; Ghandi, Khashayar

    2009-01-01

    A muoniated ethyl radical was studied in supercritical carbon dioxide. The muon and the proton hyperfine coupling constants were measured over temperatures ranging from 305 to 475 K, and a density range from 0.2 to 0.7 (g cm -3 ). A decrease was found in the muon hyperfine coupling constants as a function of the density, which can be attributed to the interaction between the CO 2 molecule and the p-orbital of the ethyl radical. The changes to the α-proton and β-proton hyperfine coupling constants with density are attributed to changes in the overall geometry in the formed radical. This system was modeled using quantum calculations.

  6. The hyperfine Paschen–Back Faraday effect

    International Nuclear Information System (INIS)

    Zentile, Mark A; Andrews, Rebecca; Weller, Lee; Adams, Charles S; Hughes, Ifan G; Knappe, Svenja

    2014-01-01

    We investigate experimentally and theoretically the Faraday effect in an atomic medium in the hyperfine Paschen–Back regime, where the Zeeman interaction is larger than the hyperfine splitting. We use a small permanent magnet and a micro-fabricated vapour cell, giving magnetic fields of the order of a tesla. We show that for low absorption and small rotation angles, the refractive index is well approximated by the Faraday rotation signal, giving a simple way to measure the atomic refractive index. Fitting to the atomic spectra, we achieve magnetic field sensitivity at the 10 −4 level. Finally we note that the Faraday signal shows zero crossings which can be used as temperature insensitive error signals for laser frequency stabilization at large detuning. The theoretical sensitivity for 87 Rb is found to be ∼40 kHz °C −1 . (paper)

  7. Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation

    International Nuclear Information System (INIS)

    Li, Rui

    2016-01-01

    The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin; the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field. (paper)

  8. Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3

    Science.gov (United States)

    Akai, Hisazumi; Ogura, Masako

    2015-03-01

    High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  9. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons.

    Science.gov (United States)

    Hees, A; Guéna, J; Abgrall, M; Bize, S; Wolf, P

    2016-08-05

    We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to previous results that were only sensitive to the fine structure constant and improve them by more than an order of magnitude when only a coupling to electromagnetism is assumed.

  10. Structure and Transport Anomalies in Soft Colloids

    KAUST Repository

    Srivastava, Samanvaya

    2013-04-01

    Anomalous trends in nanoparticle correlation and motion are reported in soft nanoparticle suspensions using static and dynamic x-ray scattering measurements. Contrary to normal expectations, we find that particle-particle correlations decrease and particle dynamics become faster as volume fraction rises above a critical particle loading associated with overlap. Our observations bear many similarities to the cascade of structural and transport anomalies reported for complex, network forming molecular fluids such as water, and are argued to share similar physical origins. © 2013 American Physical Society.

  11. Structure of gauge and gravitational anomalies*

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Ginsparg, P.

    1985-01-01

    It is shown how the form of the gauge and gravitational anomalies in quantum field theories may be derived from classical index theorems. The gravitational anomaly in both Einstein and Lorentz form is considered and their equivalence is exhibited. The formalism of gauge and gravitational theories is reviewed using the language of differential geometry, and notions from the theory of characteristic classes necessary for understanding the classical index theorems are introduced. The treatment of known topological results includes a pedagogical derivation of the Wess-Zumino effective Lagrangian in abitrary even dimension. The relation between various forms of the anomaly present in the literature is also clarified

  12. Towards the measurement of the ground-state hyperfine splitting of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2012-12-15

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.

  13. The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED

    Science.gov (United States)

    Schmidt, S.; Billowes, J.; Bissell, M. L.; Blaum, K.; Garcia Ruiz, R. F.; Heylen, H.; Malbrunot-Ettenauer, S.; Neyens, G.; Nörtershäuser, W.; Plunien, G.; Sailer, S.; Shabaev, V. M.; Skripnikov, L. V.; Tupitsyn, I. I.; Volotka, A. V.; Yang, X. F.

    2018-04-01

    The hyperfine structure splitting in the 6p3 3/2 4S → 6p2 7 s 1/2 4P transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ (208Bi) = + 4.570 (10)μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of -67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.

  14. Ab initio calculations of the {sup 33}S 3p{sup 4} {sup 3}P{sub J} and {sup 33}S{sup -}/{sup 37,} {sup 35}Cl 3p{sup 5} {sup 2}P{sup o}{sub J} hyperfine structures

    Energy Technology Data Exchange (ETDEWEB)

    Carette, T; Godefroid, M R, E-mail: tcarette@ulb.ac.be, E-mail: mrgodef@ulb.ac.be [Chimie Quantique et Photophysique, CP160/09, Universite Libre de Bruxelles, Avenue FD Roosevelt 50, B-1050 Brussels (Belgium)

    2011-05-28

    We present highly correlated multi-configuration Hartree-Fock (MCHF) calculations of the hyperfine structure of the 3p{sup 5} {sup 2}P{sup o}{sub J} levels of {sup 33}S{sup -} and {sup 35,} {sup 37}Cl. We obtain good agreement with observation. The hyperfine structure of the neutral sulphur {sup 33}S 3p{sup 4} {sup 3}P{sub J} lowest multiplet that has never been measured to the knowledge of the authors is also estimated theoretically. We discuss some interesting observations made on the description of the atomic core in MCHF theory.

  15. Theoretical study of Moessbauer hyperfine parameters of Fe bound to ammonia

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1995-01-01

    The first-principles Discrete Variational method was employed to study the species formed by the interaction of an Fe atom and ammonia. Total energy calculations were performed for several configurations. The hyperfine parameters isomer shift, quadrupole splitting and magnetic hyperfine were calculated for the ground state found, and compared to reported experimental values obtained by Moessbauer spectroscopy in frozen ammonia. (author). 14 refs, 1 tab

  16. Paramagnetic hyperfine interactions of iron in solid ammonia from Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Litterst, F.J.; Saitovitch, E.M.B.; Terra, J.

    1988-01-01

    Moessbauer studies on highly dilute 57 Fe in solid ammonia are reported. The hyperfine parameters of the paramagnetic reaction product FeNH 3 point to a nearly atomic configuration of iron [Ar]3d 7 4s. The electronic spin relaxation slows down rapidly under application of an external magnetic field. The field dependence of the magnetic hyperfine patterns indicates a strong axial magnetic anisotropy. (author) [pt

  17. Hyperfine Fields on Actinide Impurities in Ferromagnetic Fe and Ni Hosts

    International Nuclear Information System (INIS)

    Oliveira, A.L. de; Oliveira, N.A. de; Troper, A.

    2003-01-01

    We discuss the local magnetic moments and magnetic hyperfine fields on actinide impurities diluted in Fe and Ni hosts. One adopts a Anderson- Moriya model in which a localized 5f level is hybridized with a spin polarized and charge perturbed d-conduction band. Our self-consistent numerical calculations for the hyperfine fields on the impurity sites are in good agreement with the available experimental data. (author)

  18. Relativistic coupled-cluster-theory analysis of energies, hyperfine-structure constants, and dipole polarizabilities of Cd+

    Science.gov (United States)

    Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.

    2018-02-01

    Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.

  19. Hyperfine Interaction Studies on Y, Zr, Nb, Mo, Rh, In and Xe in Co

    International Nuclear Information System (INIS)

    Seewald, G.; Zech, E.; Ratai, H.; Schmid, R.; Stadler, R.; Schramm, O.; Koenig, C.; Hinfurtner, B.; Hagn, E.; Deicher, M.; Eder, R.; Forkel-Wirth, D.

    2004-01-01

    Nuclear magnetic resonance on oriented nuclei and modulated adiabatic fast passage on oriented nuclei measurements were performed on several 4d and 5sp impurities in polycrystalline Co(fcc) foils and Co(hcp) single crystals. The hyperfine fields of Y and Zr in Co(fcc), the hyperfine fields of Y, Zr, Nb, Mo, Rh, In and Xe in Co(hcp), the electric field gradients of Zr, Nb and In in Co(hcp), and the nuclear spin-lattice relaxations of Zr, Nb, Rh and In in Co(hcp) were determined. The dependence of the hyperfine fields and electric field gradients in Co(hcp) on the angle between the magnetization and the c axis was investigated in most cases. The magnetic-field dependence of the spin-lattice relaxation was studied for Nb, Rh and In in Co(hcp), applying the magnetic field perpendicular to the c axis. The known hyperfine interaction parameters of the4d and 5sp impurities in Co(fcc) and Co(hcp) are summarized. The new results provide a more detailed picture of the hyperfine interaction in Co.

  20. The hyperfine spectrum of hydrogen dimers

    International Nuclear Information System (INIS)

    Verberne, J.F.C.

    1979-01-01

    The authors' aim was to obtain the level scheme for the hydrogen dimers and to investigate the angle dependent interactions by analyzing the zero magnetic field hyperfine spectrum of the ortho-ortho and ortho-para species. The results were tested by several recent semi-empirical and ab initio potentials. (Auth.)

  1. Hyperfine-Interaction-Driven Suppression of Quantum Tunneling at Zero Field in a Holmium(III) Single-Ion Magnet.

    Science.gov (United States)

    Chen, Yan-Cong; Liu, Jun-Liang; Wernsdorfer, Wolfgang; Liu, Dan; Chibotaru, Liviu F; Chen, Xiao-Ming; Tong, Ming-Liang

    2017-04-24

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm -1 . The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from 165 Ho (I=7/2) with a natural abundance of 100 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hyperfine interactions of a muoniated ethyl radical in supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cormier, Philip; Taylor, Becky [Department of Chemistry, Mount Allison University, Sackville, New Brunswick, E4L 1G8 (Canada); Ghandi, Khashayar, E-mail: kghandi@mta.c [Department of Chemistry, Mount Allison University, Sackville, New Brunswick, E4L 1G8 (Canada)

    2009-04-15

    A muoniated ethyl radical was studied in supercritical carbon dioxide. The muon and the proton hyperfine coupling constants were measured over temperatures ranging from 305 to 475 K, and a density range from 0.2 to 0.7 (g cm{sup -3}). A decrease was found in the muon hyperfine coupling constants as a function of the density, which can be attributed to the interaction between the CO{sub 2} molecule and the p-orbital of the ethyl radical. The changes to the alpha-proton and beta-proton hyperfine coupling constants with density are attributed to changes in the overall geometry in the formed radical. This system was modeled using quantum calculations.

  3. Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue; Hyperfeinstruktur-Analyse in der Magnetresonanzspektroskopie: von astrophysikalischen Messungen zu endogenen Biosensoren in menschlichem Gewebe

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, L. [Deutsches Krebsforschungszentrum, Heidelberg (Germany). Medizinische Physik in der Radiologie; California Univ., Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab., Berkeley, CA (United States). Dept. of Chemistry

    2007-07-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the AMX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed. (orig.)

  4. The hyperfine fields at 181Ta in HfFe2

    International Nuclear Information System (INIS)

    Cekic, B.; Ivanovic, N.; Manasijevic, M.; Koicki, S.; Koteski, V.; Cavor, J.; Radisavljevic, I.; Milosevic, Z.; Novakovic, N.

    2001-01-01

    The hyperfine fields (HFF) in the polycrystalline HfFe 2 binary compound consisting the two various phases MgCu 2 and MgZn 2 , were measured at 181 Ta probe ion sites by gamma-gamma time differential perturbed angular correlations (TDPAC) technique in a wide temperature range. The origin of the hyperfine magnetic field is discussed taking in account the coordination of the 181 Ta probe ion, its core polarization and the polarization of conduction electrons around the 181 Ta site in both phases. (author)

  5. Fine and hyperfine structure spectra of the ultra-violet 23S → 53P transition in 4He and 3He with a frequency doubled CW ring laser, detected via associative ionization

    International Nuclear Information System (INIS)

    Runge, S.; Pesnelle, A.; Perdrix, M.; Sevin, D.; Wolffer, N.; Watel, G.

    1982-01-01

    High resolution laser spectroscopy coupled to a sensitive method of detection via mass analysis of He + 2 ions produced in He(5 3 P) + He(1 1 S) collisions, is used to obtain the fine and hyperfine spectra of the ultra-violet He 2 3 S → 5 3 P transition. A cw tunable UV radiation around 294.5 nm is generated by intracavity frequency doubling a Rhodamine 6G single mode ring dye laser using an ADA crystal. Both spectra enable fine and hyperfine structures to be determined within a few MHz. The magnetic dipole coupling constant A of the 5 3 P term of 3 He is found to be -4326 +- 9 MHz (-0.1443 +- 0.0003 cm -1 ). (orig.)

  6. Anomaly-sensitive dictionary learning for structural diagnostics from ultrasonic wavefields.

    Science.gov (United States)

    Druce, Jeffrey M; Haupt, Jarvis D; Gonella, Stefano

    2015-07-01

    This paper proposes a strategy for the detection and triangulation of localized anomalies, such as defects, inclusions, or damage zones, in solid and structural media. The method revolves around the construction of sparse representations of the structure's ultrasonic wavefield response, which are obtained by learning instructive dictionaries that form a suitable basis for the response data. The resulting sparse coding problem is cast as a modified dictionary learning task with additional spatial sparsity constraints enforced on the atoms of the learned dictionaries, which provide them with the ability to unveil anomalous regions in the physical domain. The proposed methodology is model-agnostic, i.e., it forsakes the need for a physical model and requires virtually no a priori knowledge of the material properties. This characteristic makes the approach especially powerful for anomaly identification in systems with unknown or highly heterogeneous property distribution, for which a material model is unsuitable or unreliable. The method is tested against synthetically generated data as well as experimental data acquired using a scanning laser Doppler vibrometer.

  7. Hyperfine relaxation of an optically pumped cesium vapor

    International Nuclear Information System (INIS)

    Tornos, J.; Amare, J.C.

    1986-01-01

    The relaxation of hyperfine orientation indirectly induced by optical pumping with a σ-polarized D 1 -light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D 0 = 0.101 +- 0.010 cm 2 s -1 at 0 0 C and 760 Torr; relaxation cross section by Cs-Ar collisions, σ/sub c/ = (104 +- 5) x 10 -23 cm 2 ; relaxation cross section by Cs-Cs (spin exchange) collisions, σ/sub e//sub x/ = (1.63 +- 0.13) x 10 -14 cm 2

  8. Hyperfine structure of the X 2Σ+ ground state of Ca 35Cl and Ca 37Cl by molecular-beam, laser-rf double resonance

    International Nuclear Information System (INIS)

    Childs, W.J.; Cok, D.R.; Goodman, L.S.

    1982-01-01

    The hyperfine structure of the X 2 Σ + state of Ca 35 Cl and Ca 37 Cl, unresolved in previous studies, has been investigated in detail by the molecular-beam, laser-rf, double-resonance technique. Results for the spin-rotation interaction and the dipole and quadrupole hfs constants are given in the form of Dunham coefficients so that the N'' and v'' dependence of each constant can be explicitly exhibited. The results, after dividing out the purely nuclear effects, fall between the corresponding values for CaF and CaBr, as expected

  9. High-precision, systematic study of hyperfine structure in the 4f/sup N/6s2 configuration of the neutral rare earths

    International Nuclear Information System (INIS)

    Childs, W.J.; Goodman, L.S.; Pfeufer, V.

    1983-01-01

    Although the hyperfine structure (hfs) of many-electron atoms has been studied intensively in recent years, it is still difficult to distinguish between the competing effects of relativity and configuration interaction. The 4f/sup N/6s 2 configuration of the neutral rare earths is of particular interest because (a) the low-lying terms are relatively free of configuration interaction, and (b) trends can be examined systematically as one proceeds through the long 4f-shell. The procedure is to deduce, from the measured hfs constants of low levels, the underlying hyperfine radial integrals for comparison with ab initio predictions. Since some of these integrals are extremely sensitive to any configuration interaction and others are not, it is possible to determine both the extent and type of configuration interaction present in some cases. Prior to the start of the present research no precise hfs information existed for the entire second half of the 4f shell of the rare earths. The present measurements were designed both to provide such data and to make possible a systematic study of the hfs throughout the 4f shell. The atomic-beam, laser-rf, double-resonance method was used for the measurements. With this technique, the occurrence of a radiofrequency transition between atomic hfs levels is detected by noting an increase in the laser-induced fluorescence

  10. Hyperfine-interaction-driven suppression of quantum tunneling at zero field in a holmium(III) single-ion magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan-Cong; Liu, Jun-Liang; Chen, Xiao-Ming; Tong, Ming-Liang [Key Lab. of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen Univ., Guangzhou (China); Wernsdorfer, Wolfgang [Institut Neel, CNRS and Universite Joseph Fournier, Grenoble (France); Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany); Physikalisches Institut, Karlsruhe Institute of Technology (Germany); Liu, Dan; Chibotaru, Liviu F. [Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven (Belgium)

    2017-04-24

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm{sup -1}. The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from {sup 165}Ho (I=7/2) with a natural abundance of 100 %. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Flux-ratio anomalies from discs and other baryonic structures in the Illustris simulation

    Science.gov (United States)

    Hsueh, Jen-Wei; Despali, Giulia; Vegetti, Simona; Xu, Dandan; Fassnacht, Christopher D.; Metcalf, R. Benton

    2018-04-01

    The flux ratios in the multiple images of gravitationally lensed quasars can provide evidence for dark matter substructure in the halo of the lensing galaxy if the flux ratios differ from those predicted by a smooth model of the lensing galaxy mass distribution. However, it is also possible that baryonic structures in the lensing galaxy, such as edge-on discs, can produce flux-ratio anomalies. In this work, we present the first statistical analysis of flux-ratio anomalies due to baryons from a numerical simulation perspective. We select galaxies with various morphological types in the Illustris simulation and ray trace through the simulated haloes, which include baryons in the main lensing galaxies but exclude any substructures, in order to explore the pure baryonic effects. Our ray-tracing results show that the baryonic components can be a major contribution to the flux-ratio anomalies in lensed quasars and that edge-on disc lenses induce the strongest anomalies. We find that the baryonic components increase the probability of finding high flux-ratio anomalies in the early-type lenses by about 8 per cent and by about 10-20 per cent in the disc lenses. The baryonic effects also induce astrometric anomalies in 13 per cent of the mock lenses. Our results indicate that the morphology of the lens galaxy becomes important in the analysis of flux-ratio anomalies when considering the effect of baryons, and that the presence of baryons may also partially explain the discrepancy between the observed (high) anomaly frequency and what is expected due to the presence of subhaloes as predicted by the cold dark matter simulations.

  12. Hyperfine interaction studies with pulsed heavy-ion beams

    International Nuclear Information System (INIS)

    Raghavan, P.

    1985-01-01

    Heavy-ion reactions using pulsed beams have had a strong impact on the study of hyperfine interactions. Unique advantages offered by this technique have considerably extended the scope, detail and systematic range of its applications beyond that possible with radioactivity or light-ion reaction. This survey will cover a brief description of the methodological aspects of the field and recent applications to selected problems in nuclear and solid state physiscs illustrating its role. These include measurements of nuclear magnetic and electric quadrupole moments of high spin isomers, measurements of hyperfine magnetic fields at impurities in 3d and rare-earths ferromagnetic hosts, studies of paramagnetic systems, especially those exhibiting valence instabilities, and investigations of electric field gradients of impurities in noncubic metals. Future prospects of this technique will be briefly assessed. (orig.)

  13. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    Science.gov (United States)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  14. Study of hyperfine parameters in Co-doped tin dioxide using PAC spectroscopy

    International Nuclear Information System (INIS)

    Ramos, Juliana M.; Carbonari, Artur W.; Martucci, Thiago; Costa, Messias S.; Saxena, Rajendra N.; Vianden, R.; Kessler, P.; Geruschke, T.; Steffens, M.

    2011-01-01

    PAC technique has been used to measure the hyperfine interactions in nano-structured powder samples of semiconducting SnO 2 doped with Co. The aim of this work is to compare the results of PAC measurements using two different techniques of introducing the radioactive 111 In probe nuclei in the sample of SnO 2 doped with Co. The perturbed gamma-gamma angular correlation (PAC) spectroscopy is used for the measurements of the magnetic hyperfine field (MHF) and the electric field gradient (EFG) at 111 Cd sites in SnO 2 doped with 1% and 2% Co. The measurement of EFG is used to study the defects introduced in the semiconductor material and also for the identification of different phases formed within the compound. The techniques utilized for introducing the radioactive 111 In in the sample are the ion-implantation using radioactive ion beam of 111 In and the chemical process in which 111 InCl 3 solution is added during the preparation of SnO 2 doped with Co using sol gel method. The ion-implantation of 111 In in SnO 2 doped with Co was carried out using the University of Bonn ion-implanter with beam energy of 160 keV. The PAC measurements were carried out with four BaF 2 detector gamma spectrometer in the temperature range of 10-295 K. The results show no significant difference in the values of hyperfine parameters. Both techniques show practically the same electric quadrupole interaction for the substitutional site. The results were compared with previous PAC and Moessbauer measurements of SnO 2 powder samples using 111 In- 111 Cd probe. (author)

  15. On-line hyperfine structure and isotope shift measurements with diffuse light collection and photon burst detection

    International Nuclear Information System (INIS)

    Lassen, J.; Benck, E.C.; Schuessler, H.A.

    1997-01-01

    An experiment is presently being set up which combines collinear-fast-beam laser spectroscopy with photon burst spectroscopy. Selectivity is provided by the large kinetic isotope shifts together with the practically Doppler free linewidth of the fluorescence from the fast atom beam. The photon burst detection, based on photon correlations in the resonance fluorescence, increases the sensitivity, so that on-line optical isotope shift and hyperfine structure measurements on low intensity radioactive beams become feasible. In order to improve photon burst detection the solid angle of detection and the observation time have to be optimized. To this end a diffuse reflecting cavity has been designed and built, which collects fluorescence over a 45 cm length of the beam and covers the full solid angle. The light collection efficiency of the cavity is calculated to be about 45%. The cavity is being tested with a 11 keV beam of krypton atoms, probing the near infrared transitions in our apparatus at Texas A ampersand M University. copyright 1997 American Institute of Physics

  16. Hyperfine interaction measurements on ceramics: PZT revisited

    International Nuclear Information System (INIS)

    Guarany, Cristiano A.; Araujo, Eudes B.; Silva, Paulo R.J.; Saitovitch, Henrique

    2007-01-01

    The solid solution of PbZr 1- x Ti x O 3 , known as lead-zirconate titanate (PZT), was probably one of the most studied ferroelectric materials, especially due to its excellent dielectric, ferroelectric and piezoelectric properties. The highest piezoelectric coefficients of the PZT are found near the morphotropic phase boundary (MPB) (0.46≤x≤0.49), between the tetragonal and rhombohedral regions of the composition-temperature phase diagram. Recently, a new monoclinic phase near the MPB was observed, which can be considered as a 'bridge' between PZT's tetragonal and rhombohedral phases. This work is concerned with the study of the structural properties of the ferroelectric PZT (Zr/Ti=52/48, 53/47) by hyperfine interaction (HI) measurements obtained from experiments performed by using the nuclear spectroscopy time differential perturbed angular correlation (TDPAC) in a wide temperature range

  17. Gravity anomaly and crustal structure characteristics in North-South Seismic Belt of China

    Science.gov (United States)

    Shen, Chongyang; Xuan, Songtbai; Yang, Guangliang; Wu, Guiju

    2017-04-01

    The North-South Seismic Belt (NSSB) is the binary system boundary what is formed by the western Indian plate subduction pushing and the eastern west Pacific asthenosphere rising, and it is one of the three major seismic belts (Tianshan, Taiwan and NSSB) and mainly located between E102°and E107°. And it is mainly composed of topographic gradient zones, faults, cenozoic basins and strong earthquake zones, which form two distinct parts of tectonic and physical features in the west and east. The research results of geophysical and deep tectonic setting in the NSSB show that it is not only a gravity anomaly gradient zone, it is but also a belt of crustal thickness increasing sharply westward of abrupt change. Seismic tomography results show that the anomaly zone is deeper than hundreds of kilometers in the NSSB, and the composition and structure of the crust are more complex. We deployed multiple Gravity and GNSS synchronous detection profiles in the NSSB, and these profiles crossed the mainly faults structure and got thousands of points data. In the research, source analysis, density structure inversion, residual gravity related imaging and normalized full gradient methods were used, and analyzed gravity field, density and their structure features in different positions, finally obtained the crustal density structure section characteristics and depth structure differences. The research results showed that the gravity Bouguer anomaly is similar to the existing large scale result. The Bouguer anomaly is rising significantly from west to east, its trend variation coincides well with the trend change of Moho depth, which is agreeing with the material flows to the peripheral situation of the Tibetan plateau. The obvious difference changes of the residual anomaly is relative to the boundary of structure or main tectonics, it's also connected with the stop degree of the eurasian plate when the material migrates around. The density structure of the gravity profiles mainly

  18. Complete analytic results for radiative-recoil corrections to ground-state muonium hyperfine splitting

    International Nuclear Information System (INIS)

    Karshenboim, S.G.; Shelyuto, V.A.; Eides, M.E.

    1988-01-01

    Analytic expressions are obtained for radiative corrections to the hyperfine splitting related to the muon line. The corresponding contribution amounts to (Z 2 a) (Za) (m/M) (9/2 ζ(3) - 3π 2 ln 2 + 39/8) in units of the Fermi hyperfine splitting energy. A complete analytic result for all radiative-recoil corrections is also presented

  19. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    Science.gov (United States)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  20. Proceedings of 4 conference on hyperfine interaction spectroscopic investigations

    International Nuclear Information System (INIS)

    Shpinel', V.S.

    1992-01-01

    Results of theoretical and experimental investigations on nuclear-spectroscopy of hyperfine interactions are presented. Possibility of the data use for technological and materials sceince problems is demonstrated

  1. On the origin of discontinuity of the hyperfine fields at {sup 57}Fe nuclei in bulk iron and aerosol Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu.I. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, 119991, GSP-1, Moscow (Russian Federation); Shafranovsky, E.A., E-mail: shafr@chph.ras.r [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, 119991, GSP-1, Moscow (Russian Federation); Casas, Ll. [Departament de Geologia, Universitat Autonoma de Barcelona, Edifici C, Campus de la UAB, 08193 Bellaterra (Spain); Molins, E. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Spain)

    2011-03-14

    Advancing the early work in which a discontinuity of hyperfine fields at {sup 57}Fe nuclei in bulk iron and in aerosol Fe nanoparticles has been revealed by analyzing their Moessbauer spectra the present Letter evidences that the existence of several peaks in the hyperfine distribution (HFD) for bulk Fe is caused with the internal magnetic fields owing to its multidomain structure whereas aerosol Fe nanoparticles are single-domain and show only a unique peak in HFD. This argument has been corroborated by transformation of the HFD pattern for Fe foil after applying the external magnetic field of 0.03 T.

  2. Nuclear hyperfine structure of muonium in CuCl resolved by means of avoided level crossing

    International Nuclear Information System (INIS)

    Schneider, J.W.; Celio, M.; Keller, H.; Kuendig, W.; Odermatt, W.; Puempin, B.; Savic, I.M.; Simmler, H.; Estle, T.L.; Schwab, C.; Kiefl, R.F.; Renker, D.

    1990-01-01

    We report detailed avoided-level-crossing spectra of a muonium center (Mu II ) in single-crystal CuCl in a magnetic field range of 4--5 T and at a temperature of 100 K. The hyperfine parameters of the muon and the closest two shells of nuclei indicate that this center consists of muonium at a tetrahedral interstice with four Cu nearest neighbors and six Cl next-nearest neighbors and that the spin density is appreciable on the muon and on the ten neighboring nuclei but negligible elsewhere

  3. Isostatic and Decompensative Gravity Anomalies of the Arabian Plate and Surrounding Regions: a Key for the Crustal Structure

    Science.gov (United States)

    Kaban, M. K.; El Khrepy, S.; Al-Arifi, N. S.

    2016-12-01

    The isostatic anomalies are often considered as one of the most useful correction of the gravity field for investigation of the upper crust structure in many practical applications. By applying this correction, a substantial part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomaly, can be removed. With this approach, it is not even necessary to know the deep density structure of the crust and upper mantle in details; it is sufficient to prescribe some type of compensation (regional vs. local) and a compensation depth. However, even when all the parameters are chosen correctly, this reduction of the gravity field does not show the full gravity effect of unknown anomalies in the crust. The last ones should be also compensated to some extent; therefore their impact is substantially reduced by the isostatic compensation. Long ago (Cordell et al., 1991), it was suggested a so-called decompensative correction of the isostatic anomalies, which provides a possibility to separate these effects. However, the decompensative correction is very sensitive to the parameters of the compensation scheme. In the present study we analyse the ways to choose these parameters and extend this approach by assuming a possibility for the regional compensation via elastic deformations of the lithosphere. Based on this technique, we estimate the isostatic and decompensative anomalies for the Arabian plate and surrounding regions. The parameters of the isostatic model are chosen based on previous studies. It was demonstrated that the decompensative correction is very significant at the mid-range wavelengths and may exceed 100 mGal, therefore ignoring this effect would lead to wrong conclusions about the upper crust structure. The total amplitude of the decompensative anomalies reaches ±250 mGal, evidencing for both, large density anomalies of the upper crust (including sediments) and strong isostatic disturbances of the lithosphere. These results improve

  4. Measurement of the hyperfine structure of the 31D2, 41D2, 51D2 levels of helium 3

    International Nuclear Information System (INIS)

    Lemery, H.; Hamel, J.; Barrat, J.-P.

    1981-01-01

    It is well known that, in a discharge in 3 He, the nuclear spins in the ground state can be oriented through metastability exchange, by optical pumping of the metastable 2 3 S 1 atoms. The orientation is transmitted to the other levels excited in the discharge. If the nuclear spins in the ground state are submitted to magnetic resonance, the light emitted from these excited states is modulated at the R.F. field frequency. The degree of modulation is important only near a level crossing, in zero field or in non-zero field. This method has been used to determine the hyperfine structure of the 3 1 D 2 , 4 1 D 2 , 5 1 D 2 levels. The results are in good agreement with those of previous measurements and with theoretical predictions [fr

  5. Contour of the Lsub(a) line of hydrogen-like ions in a dense plasma with take into account the hyperfine structure and Lamb shift

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Godunov, A.L.; Zemtsov, Yu.K.

    1985-01-01

    A theory of the contour of the Lsub(α) line of hydrogen-like ions in a dense plasma is developed by taking into account the hyperfine structure and Lamb and density shifts of levels. The effects of the ion microfield on the impact electron contribution to the widths and the radiative transition probabilities are taken into account. The ion microfield distribution function is found by taking into account the ion correlations. Results are presented of numerical calculations of the line contours for the Ne10, Al13 and Ar18 ions in a wide range of electron concentration

  6. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    International Nuclear Information System (INIS)

    Karna, S.P.

    1997-01-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society

  7. Determination of nuclear moments and nuclear radii changes of the metastable silverisotopes sup(108m)Ag and sup(110m)Ag from the hyperfine structure of silver-I-resonance lines

    International Nuclear Information System (INIS)

    Meier, T.

    1973-01-01

    The hyperfine structure of the resonance lines of the metastable silver isotopes sup(108m), sup(110m)Ag were investigated by means of optical interference spectroscopy. Both radioactive silver isotopes were obtained by irradiating isotope-pure 107 Ag or 109 Ag with neutrons in the reactor. In spite of the slight enrichment of the isotopes to be investigated compared to the stable isotopes ( [de

  8. Comment on contact contributions to the magnetic hyperfine interaction of rare-earth impurities in iron

    International Nuclear Information System (INIS)

    Bernas, H.

    1977-01-01

    The influence of the strong d character of the Fe conduction band on the hyperfine interaction of dilute rare earth impurities is emphasized, and the contact contributions are estimated. Apparent inconsistencies between hyperfine field measurements for Eu and Gd in Fe are noted

  9. Hyperfine interaction measurements on ceramics: PZT revisited

    Energy Technology Data Exchange (ETDEWEB)

    Guarany, Cristiano A. [Universidade Estadual Paulista (Unesp), Departmento de Fisica Quimica, Caixa Postal 31, 15.385-000 Ilha Solteira, SP (Brazil); Araujo, Eudes B. [Universidade Estadual Paulista (Unesp), Departmento de Fisica Quimica, Caixa Postal 31, 15.385-000 Ilha Solteira, SP (Brazil); Silva, Paulo R.J. [Centro Brasileiro de Pesquisas Fisicas-Rua Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ (Brazil); Saitovitch, Henrique [Centro Brasileiro de Pesquisas Fisicas-Rua Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ (Brazil)]. E-mail: henrique@cbpf.br

    2007-02-01

    The solid solution of PbZr{sub 1-} {sub x} Ti {sub x} O{sub 3}, known as lead-zirconate titanate (PZT), was probably one of the most studied ferroelectric materials, especially due to its excellent dielectric, ferroelectric and piezoelectric properties. The highest piezoelectric coefficients of the PZT are found near the morphotropic phase boundary (MPB) (0.46{<=}x{<=}0.49), between the tetragonal and rhombohedral regions of the composition-temperature phase diagram. Recently, a new monoclinic phase near the MPB was observed, which can be considered as a 'bridge' between PZT's tetragonal and rhombohedral phases. This work is concerned with the study of the structural properties of the ferroelectric PZT (Zr/Ti=52/48, 53/47) by hyperfine interaction (HI) measurements obtained from experiments performed by using the nuclear spectroscopy time differential perturbed angular correlation (TDPAC) in a wide temperature range.

  10. Study of hyperfine parameters in Co-doped tin dioxide using PAC spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Juliana M.; Carbonari, Artur W.; Martucci, Thiago; Costa, Messias S.; Saxena, Rajendra N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vianden, R.; Kessler, P.; Geruschke, T.; Steffens, M., E-mail: vianden@hiskp.uni-bonn.d [Rheinische Friedrich-Wilhelms-Universitaet Bonn (HISKP- Bonn) (Germany). Helmholtz - Institut fuer Strahlen- und Kernphysik

    2011-07-01

    PAC technique has been used to measure the hyperfine interactions in nano-structured powder samples of semiconducting SnO{sub 2} doped with Co. The aim of this work is to compare the results of PAC measurements using two different techniques of introducing the radioactive {sup 111}In probe nuclei in the sample of SnO{sub 2} doped with Co. The perturbed gamma-gamma angular correlation (PAC) spectroscopy is used for the measurements of the magnetic hyperfine field (MHF) and the electric field gradient (EFG) at {sup 111}Cd sites in SnO{sub 2} doped with 1% and 2% Co. The measurement of EFG is used to study the defects introduced in the semiconductor material and also for the identification of different phases formed within the compound. The techniques utilized for introducing the radioactive {sup 111}In in the sample are the ion-implantation using radioactive ion beam of {sup 111}In and the chemical process in which {sup 111}InCl{sub 3} solution is added during the preparation of SnO{sub 2} doped with Co using sol gel method. The ion-implantation of {sup 111}In in SnO{sub 2} doped with Co was carried out using the University of Bonn ion-implanter with beam energy of 160 keV. The PAC measurements were carried out with four BaF{sub 2} detector gamma spectrometer in the temperature range of 10-295 K. The results show no significant difference in the values of hyperfine parameters. Both techniques show practically the same electric quadrupole interaction for the substitutional site. The results were compared with previous PAC and Moessbauer measurements of SnO{sub 2} powder samples using {sup 111}In-{sup 111}Cd probe. (author)

  11. MAGSAT anomaly map and continental drift

    Science.gov (United States)

    Lemouel, J. L. (Principal Investigator); Galdeano, A.; Ducruix, J.

    1981-01-01

    Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.

  12. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    Science.gov (United States)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong

    2016-07-01

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  13. Hyperfine interactions, the key to multiquark physics?

    International Nuclear Information System (INIS)

    Likpink, H.J.

    1988-01-01

    Clues in the search for a fundamental description of hadron physics based on QCD may be obtained from a phenomenological constituent quark model in which the color-electric force binds quarks into saturated color-singlet hadrons, and finer details of the spectrum and multiquark physics are dominated by the color-magnetic hyperfine interaction. 47 refs

  14. Hyperfine interactions, the key to multiquark physics

    Energy Technology Data Exchange (ETDEWEB)

    Likpink, H.J.

    1988-08-08

    Clues in the search for a fundamental description of hadron physics based on QCD may be obtained from a phenomenological constituent quark model in which the color-electric force binds quarks into saturated color-singlet hadrons, and finer details of the spectrum and multiquark physics are dominated by the color-magnetic hyperfine interaction. 47 refs.

  15. Hyperfine fields at 89Y nuclei in Y(Fesub(1-x)Tsub(x))2 (T=V, Mn, Co, Ni, Al) with low concentrations x

    International Nuclear Information System (INIS)

    Ichinose, Kazuyoshi; Yoshie, Hiroshi; Nagai, Hiroyuki; Tsujimura, Akira; Fujiwara, Katsuyuki.

    1983-01-01

    NMR of 89 Y nuclei in Y(Fesub(1-x)Tsub(x)) 2 (T=V, Mn, Co, Ni, Al) has been observed at 4.2K. Well-resolved satellite structures of Y resonance appear in these compounds. This shows that the Y hyperfine field is mainly due to the magnetic nearest neighbor atoms. The magnetic moment of T atoms is estimated by two methods: (i) the contribution of T atoms to the hyperfine field is proportional to the magnetic moments of Fe and T atoms and (ii) the well known empirical relation between the hyperfine field and the mean magnetic moment of alloys is used. These results are in good agreement with those in dilute T-Fe alloys except for T=Mn. The intensity ratio of satellite peaks is discussed based upon a statistical distribution of Fe and T atoms. (author)

  16. Calculations of hyperfine interactions in transition metal compounds in the local density approximation

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.

    1982-01-01

    A survey is made of some theoretical calculations of electrostatic and magnetic hyperfine interactions in transition metal compounds and complex irons. The molecular orbital methods considered are the Multiple Scattering and Discrete Variational, in which the local Xα approximation for the exchange interaction is employed. Emphasis is given to the qualitative informations, derived from the calculations, relating the hyperfine parameters to characteristics of the chemical bonds. (Author) [pt

  17. Investigation of ferromagnetic spinel semiconductors by hyperfine interactions of implanted nuclear probes

    CERN Document Server

    Samokhvalov, V; Dietrich, M; Schneider, F; Tiginyanu, I M; Tsurkan, V; Unterricker, S

    2003-01-01

    The semiconducting ferromagnetic spinel compounds CdCr//2Se //4, CdCr //2S//4, HgCr//2Se//4 and CuCr//2Se//4 (metallic) were investigated by the perturbed angular correlations (PAC) method with the radioactive probes **1**1**1In, **1**1**1**mCd, **1**1**1Ag, **1**1**7Cd, **1**9**9**mHg and **7**7Br. The probes were implanted at the ISOLDE on-line separator (CERN-Geneva) into single crystals. From the time dependence of the PAC spectra and the measured hyperfine interaction parameters: electric field gradient and magnetic hyperfine field, the probe positions and the thermal behavior of the probes could be determined. Cd, Ag and Hg are substituted at the A-site, In at the A- and B-site in the semiconducting compounds and Br at the anion position. Electric and magnetic hyperfine fields were used as test quantities for theoretical charge and spin density distributions of LAPW calculations (WIEN97).

  18. Vibrational Averaging of the Isotropic Hyperfine Coupling Constants for the Methyl Radical

    Science.gov (United States)

    Adam, Ahmad; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2014-06-01

    Electronic contributions to molecular properties are often considered as the major factor and usually reported in the literature without ro-vibrational corrections. However, there are many cases where the nuclear motion contributions are significant and even larger than the electronic contribution. In order to obtain accurate theoretical predictions, nuclear motion effects on molecular properties need to be taken into account. The computed isotropic hyperfine coupling constants for the nonvibrating methyl radical CH_3 are far from the experimental values. For CH_3, we have calculated the vibrational-state-dependence of the isotropic hyperfine coupling constant in the electronic ground state. The vibrational wavefunctions used in the averaging procedure were obtained variationally with the TROVE program. Analytical representations for the potential energy surfaces and the hyperfine coupling constant surfaces are obtained in least-squares fitting procedures. Thermal averaging has been carried out for molecules in thermal equilibrium, i.e., with Boltzmann-distributed populations. The calculation methods and the results will be discussed in detail.

  19. Heat capacity anomalies associated with structural transformations in. beta. -W and perovskite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R [Brookhaven National Lab., Upton, NY; Ho, J C

    1977-01-01

    The similarity of the heat capacity anomalies, often observed with structural transformations driven by soft phonons, in both ..beta..-W and perovskite compounds is discussed referring to our recent work on V/sub 3/Si and RbCaF/sub 3/.

  20. Ab initio calculations of torsionally mediated hyperfine splittings in E states of acetaldehyde

    Science.gov (United States)

    Xu, Li-Hong; Reid, E. M.; Guislain, B.; Hougen, J. T.; Alekseev, E. A.; Krapivin, I.

    2017-12-01

    Quantum chemistry packages can be used to predict with reasonable accuracy spin-rotation hyperfine interaction constants for methanol, which contains one methyl-top internal rotor. In this work we use one of these packages to calculate components of the spin-rotation interaction tensor for acetaldehyde. We then use torsion-rotation wavefunctions obtained from a fit to the acetaldehyde torsion-rotation spectrum to calculate the expected magnitude of hyperfine splittings analogous to those observed at relatively high J values in the E symmetry states of methanol. We find that theory does indeed predict doublet splittings at moderate J values in the acetaldehyde torsion-rotation spectrum, which closely resemble those seen in methanol, but that the factor of three decrease in hyperfine spin-rotation constants compared to methanol puts the largest of the acetaldehyde splittings a factor of two below presently available Lamb-dip resolution.

  1. The Lagrangian structure of ozone mini-holes and potential vorticity anomalies in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    P. M. James

    2002-06-01

    Full Text Available An ozone mini-hole is a synoptic-scale area of strongly reduced column total ozone, which undergoes a growth-decay cycle in association with baroclinic weather systems. The tracks of mini-hole events recorded during the TOMS observation period over the Northern Hemisphere provide a database for building anomaly fields of various meteorological parameters, following each mini-hole center in a Lagrangian sense. The resulting fields provide, for the first time, a complete mean Lagrangian picture of the three-dimensional structure of typical ozone mini-holes in the Northern Hemisphere. Mini-holes are shown to be associated with anomalous warm anticyclonic flow in the upper troposphere and cold cyclonic anomalies in the middle stratosphere. Ascending air columns occur upstream and descent downstream of the mini-hole centers. Band-pass filtering is used to reveal the transient synoptic nature of mini-holes embedded within larger scale circulation anomalies. Significant correlations between ozone and Ertel’s potential vorticity on isentropes (IPV both near the tropopause and in the middle stratosphere are shown and then utilized by reconstructing the Lagrangian analysis to follow local IPV anomalies instead of ozone minima. By using IPV as a proxy for ozone, the geopotential anomaly dipolar structure in the vertical characteristic of mini-holes is shown to result from a superposition of two largely independent dynamical components, stratospheric and tropospheric, typically operating on different time scales. Hence, ozone mini-holes may be viewed primarily as phenomena of coincidence.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; synoptic-scale meteorology

  2. The Lagrangian structure of ozone mini-holes and potential vorticity anomalies in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    P. M. James

    Full Text Available An ozone mini-hole is a synoptic-scale area of strongly reduced column total ozone, which undergoes a growth-decay cycle in association with baroclinic weather systems. The tracks of mini-hole events recorded during the TOMS observation period over the Northern Hemisphere provide a database for building anomaly fields of various meteorological parameters, following each mini-hole center in a Lagrangian sense. The resulting fields provide, for the first time, a complete mean Lagrangian picture of the three-dimensional structure of typical ozone mini-holes in the Northern Hemisphere. Mini-holes are shown to be associated with anomalous warm anticyclonic flow in the upper troposphere and cold cyclonic anomalies in the middle stratosphere. Ascending air columns occur upstream and descent downstream of the mini-hole centers. Band-pass filtering is used to reveal the transient synoptic nature of mini-holes embedded within larger scale circulation anomalies. Significant correlations between ozone and Ertel’s potential vorticity on isentropes (IPV both near the tropopause and in the middle stratosphere are shown and then utilized by reconstructing the Lagrangian analysis to follow local IPV anomalies instead of ozone minima. By using IPV as a proxy for ozone, the geopotential anomaly dipolar structure in the vertical characteristic of mini-holes is shown to result from a superposition of two largely independent dynamical components, stratospheric and tropospheric, typically operating on different time scales. Hence, ozone mini-holes may be viewed primarily as phenomena of coincidence.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; synoptic-scale meteorology

  3. Analysis of renal anomalies in VACTERL association.

    Science.gov (United States)

    Cunningham, Bridget K; Khromykh, Alina; Martinez, Ariel F; Carney, Tyler; Hadley, Donald W; Solomon, Benjamin D

    2014-10-01

    VACTERL association refers to a combination of congenital anomalies that can include: vertebral anomalies, anal atresia, cardiac malformations, tracheo-esophageal fistula with esophageal atresia, renal anomalies (typically structural renal anomalies), and limb anomalies. We conducted a description of a case series to characterize renal findings in a cohort of patients with VACTERL association. Out of the overall cohort, 48 patients (with at least three component features of VACTERL and who had abdominal ultrasound performed) met criteria for analysis. Four other patients were additionally analyzed separately, with the hypothesis that subtle renal system anomalies may occur in patients who would not otherwise meet criteria for VACTERL association. Thirty-three (69%) of the 48 patients had a clinical manifestation affecting the renal system. The most common renal manifestation (RM) was vesicoureteral reflux (VUR) in addition to a structural defect (present in 27%), followed by unilateral renal agenesis (24%), and then dysplastic/multicystic kidneys or duplicated collected system (18% for each). Twenty-two (88%) of the 25 patients with a structural RM had an associated anorectal malformation. Individuals with either isolated lower anatomic anomalies, or both upper and lower anatomic anomalies were not statistically more likely to have a structural renal defect than those with isolated upper anatomic anomalies (p = 0.22, p = 0.284, respectively). Given the high prevalence of isolated VUR in our cohort, we recommend a screening VCUG or other imaging modality be obtained to evaluate for VUR if initial renal ultrasound shows evidence of obstruction or renal scarring, as well as ongoing evaluation of renal health. © 2014 Wiley Periodicals, Inc.

  4. PSO (Particle Swarm Optimization) for Interpretation of Magnetic Anomalies Caused by Simple Geometrical Structures

    Science.gov (United States)

    Essa, Khalid S.; Elhussein, Mahmoud

    2018-04-01

    A new efficient approach to estimate parameters that controlled the source dimensions from magnetic anomaly profile data in light of PSO algorithm (particle swarm optimization) has been presented. The PSO algorithm has been connected in interpreting the magnetic anomaly profiles data onto a new formula for isolated sources embedded in the subsurface. The model parameters deciphered here are the depth of the body, the amplitude coefficient, the angle of effective magnetization, the shape factor and the horizontal coordinates of the source. The model parameters evaluated by the present technique, generally the depth of the covered structures were observed to be in astounding concurrence with the real parameters. The root mean square (RMS) error is considered as a criterion in estimating the misfit between the observed and computed anomalies. Inversion of noise-free synthetic data, noisy synthetic data which contains different levels of random noise (5, 10, 15 and 20%) as well as multiple structures and in additional two real-field data from USA and Egypt exhibits the viability of the approach. Thus, the final results of the different parameters are matched with those given in the published literature and from geologic results.

  5. Aortic dilatation in patients with Turner's syndrome without structural cardiac anomaly.

    Science.gov (United States)

    Alami Laroussi, Nassiba; Dahdah, Nagib; Dallaire, Frédéric; Thérien, Johanne; Fournier, Anne

    2016-03-01

    Dilatation of the ascending aorta is described in Turner's syndrome with variable prevalence (6.8-32%). Reported series typically include patients with associated cardiac anomalies. To characterise the prevalence, age of onset, and the progress of dilatation of the ascending aorta in Turner's syndrome patients free of structural cardiac anomalies. Potential risk factors such as karyotype and growth hormone therapy were analysed for correlation with aortic dilatation. We carried out a retrospective study with data collected from medical records and echocardiography studies. Patients with Tuner's syndrome followed-up between 1992 and 2010 with at least two echocardiography studies were eligible. Patients with previous cardiac surgery or under anti-hypertensive medication were excluded. Ascending aorta diameter measurements were adjusted for body surface area, and dilatation was defined as Z-score>2. The study population consisted of 44 patients, aged 11.9±7.4 years at the first echocardiogram and 17.9±7.3 years at the last follow-up, with a follow-up duration of 6.0±3.7 years. A total of 13 (29.5%) patients exhibited aortic dilatation during follow-up, suggesting an actuarial estimate of the freedom from aortic dilatation dropping from 86 to 70% and then to 37% at 10, 20, and 30 years of age, respectively. There was no statistically significant impact of karyotype or growth hormone therapy on aortic Z-score progression. The prevalence of dilatation of the ascending aorta in Turner's syndrome patients free of structural aortic anomalies is comparable with published data with associated lesions. Growth hormone therapy and karyotype had no significant impact; however, longitudinal follow-up is warranted.

  6. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    Chiral anomalies; gauge theories; bundles; connections; quantum field ... The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. ... Current Issue : Vol.

  7. Congenital anomalies of the spine: radiologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jung Kyu; Kim, Sang Won; Ryu, Kyung Nam [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2003-04-01

    Congenital anomalies of the spine are frequent and variable. Some are restricted to skeletal structures, while others involve combine neural tube defects or are associated with other multi-systemic disorders. Structural spinal anomalies can be classified according to their location: 1) the vertebral body, 2) the articular process, 3) the lamina with spinous process, 4) the pars interarticularis, 5) the facet joint, 6) the pedicle, or 7) other. Because of similarities between these congenital anomalies and (a) secondary changes involving infection or joint disease and (b) deformities resulting from trauma and uncertain tumorous conditions, significant confusion can occur during diagnosis. Moreover, since the anomalies often give rise to both functional impairment and cosmetic problem, appropriate treatment relies crucially on accurate diagnosis. The authors illustrate the pathogenesis and radiologic findings of the relatively common spinal anomalies confined to skeletal structures.

  8. Calculation of hyperfine constants for the H center in LiF

    International Nuclear Information System (INIS)

    Alencar, P.T.S.

    1975-01-01

    The EPR and the ENDOR hyperfine parameters for the H center in LiF are calculated assuming that the F - 2 central molecule is a simplified model for the electronic structure of this deffect. The best theoretical fitting was obtained by relaxing the ions neighboring the central molecule. We have obtained relaxations which are in agreement with the physical nature of this deffect, but for some ions the results have shown that a better wave functions for the unpaired electrons must be used. The results and the limitations of the suggested model, are discussed proposing a more realistic description for the deffect, than the F - 2 central molecule model

  9. Structural material anomaly detection system using water chemistry data

    International Nuclear Information System (INIS)

    Asakura, Yamato; Nagase, Makoto; Uchida, Shunsuke; Ohsumi, Katsumi.

    1992-01-01

    The concept of an advanced water chemistry diagnosis system for detection of anomalies and preventive maintenance of system components is proposed and put into a concrete form. Using the analogy to a medical inspection system, analyses of water chemistry change will make it possible to detect symptoms of anomalies in system components. Then, correlations between water chemistry change and anomaly occurrence in the components of the BWR primary cooling system are analyzed theoretically. These fragmentary correlations are organized and reduced to an algorithm for the on-line diagnosis system using on-line monitoring data, pH and conductivity. By using actual plant data, the on-line diagnosis model system is verified to be applicable for early and automatic finding of the anomaly cause and for timely supply of much diagnostic information to plant operators. (author)

  10. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    Energy Technology Data Exchange (ETDEWEB)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Ilyushin, V. V.; Mescheryakov, A. A. [Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Chervonopraporna 4, 61002 Kharkov (Ukraine); Alekseev, E. A. [Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Chervonopraporna 4, 61002 Kharkov (Ukraine); Quantum Radiophysics Department of V. N. Karazin Kharkiv National University, Svobody Square 4, 61022 Kharkov (Ukraine); Hougen, J. T., E-mail: jon.hougen@nist.gov [Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8441 (United States); Xu, Li-Hong [Department of Physics and Centre for Laser, Atomic, and Molecular Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5 (Canada)

    2016-07-14

    This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  11. Hyperfine electron-nuclear interactions in the frame of the Density Functional and of the Density Matrix Methods

    International Nuclear Information System (INIS)

    Pavlov, R.L.; Pavlov, L.I.; Raychev, P.P.; Garistov, V.P.; Dimitrova-Ivanovich, M.

    2002-01-01

    The matrix elements and expectation values of the hyperfine interaction operators are presented in a form suitable for numerical implementation in density matrix methods. The electron-nuclear spin-spin (dipolar and contact) interactions are considered, as well as the interaction between nuclear spin and electron-orbital motions. These interactions from the effective Breit-Pauli Hamiltonian determine the hyperfine structure in ESR spectra and contribute to chemical shifts in NMR. Applying the Wigner-Eckart theorem in the irreducible tensor-operator technique and the spin-space separation scheme, the matrix elements and expectation values of these relativistic corrections are expressed in analytical form. The final results are presented as products, or sums of products, of factors determined by the spin and (or) angular momentum symmetry and a spatial part determined by the action of the symmetrized tensor-operators on the normalized matrix or function of the spin or charge distribution.

  12. First principles density functional calculation of magnetic moment and hyperfine fields of dilute transition metal impurities in Gd host

    International Nuclear Information System (INIS)

    Mohanta, S.K.; Mishra, S.N.; Srivastava, S.K.

    2014-01-01

    We present first principles calculations of electronic structure and magnetic properties of dilute transition metal (3d, 4d and 5d) impurities in a Gd host. The calculations have been performed within the density functional theory using the full potential linearized augmented plane wave technique and the GGA+U method. The spin and orbital contributions to the magnetic moment and the hyperfine fields have been computed. We find large magnetic moments for 3d (Ti–Co), 4d (Nb–Ru) and 5d (Ta–Os) impurities with magnitudes significantly different from the values estimated from earlier mean field calculation [J. Magn. Magn. Mater. 320 (2008) e446–e449]. The exchange interaction between the impurity and host Gd moments is found to be positive for early 3d elements (Sc–V) while in all other cases an anti-ferromagnetic coupling is observed. The trends for the magnetic moment and hyperfine field of d-impurities in Gd show qualitative difference with respect to their behavior in Fe, Co and Ni. The calculated total hyperfine field, in most cases, shows excellent agreement with the experimental results. A detailed analysis of the Fermi contact hyperfine field has been made, revealing striking differences for impurities having less or more than half filled d-shell. The impurity induced perturbations in host moments and the change in the global magnetization of the unit cell have also been computed. The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. - Highlights: • Detailed study of transition metal impurities in ferromagnetic Gd has been carried out. • The trends in impurity magnetic moment are qualitatively different from Fe, Co and Ni. • The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. • Experimental trend in a hyperfine field has been reproduced successfully

  13. New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle

    Science.gov (United States)

    Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.

    2018-03-01

    A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  14. New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.

    Science.gov (United States)

    Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V

    2018-03-02

    A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  15. Hyperfine field distributions in disordered Mn2CoSn and Mn2NiSn ...

    Indian Academy of Sciences (India)

    Unknown

    Jha S, Seyoum H M, Demarco M, Julian G M, Stubbs D A,. Blue J W, Silva M T X and Vasquez A 1983 Hyperfine Inter- act. 15/16 685. Ritcey S P and Dunlap R A 1984 J. Appl. Phys. 55 2051. Surikov V V, Zhordochkin V N and Astakhova T Yu 1990. Hyperfine Interact. 59 469. Webster P J and Ziebeck K R A 1973 J. Phys.

  16. Energy, fine structure, and hyperfine structure of the core-excited states 1s2s2pnp 5P (n = 2-5) and 1s2p2mp 5S (m = 2-5) for Li- ion

    International Nuclear Information System (INIS)

    Wang, Z.B.; Gou, B.C.; Chen, F.

    2006-01-01

    The relativistic energies, the oscillator strength, and the lifetimes of high-lying core-excited states 1s2s2pnp 5 P (n=2-5) and 1s2p 2 mp 5 S 0 (m=2-5) of Li - ion are calculated with the saddle-point variational method and restricted variation method. The fine structure and the hyperfine structure of the core-excited states for this system are also explored. The results are compared with other theoretical and experimental data in the literature. The energy obtained in this work are much lower than the others previously published whereas the wavelengths and radiative life-times are in agreement

  17. Hyperfine structure of the MnH X 7Sigma + state: A large gas-to-matrix shift in the Fermi contact interaction

    Science.gov (United States)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1990-06-01

    Sub-Doppler spectra of the A 7Π-X 7Σ+ (0,0) band of gas phase MnH near 5680 Å were recorded by intermodulated fluorescence spectroscopy. The spectra reveal hyperfine splittings arising from both the 55Mn and 1H nuclear spins. Internal hyperfine perturbations have been observed between the different spin components of the ground state at low N`. From a preliminary analysis of several rotational lines originating from the isolated and unperturbed F1(J`=3) spin component of the X 7Σ+(N`=0) level, the 55Mn Fermi contact interaction in the ground state has been measured as bF=Aiso =276(1) MHz. This value is 11% smaller than the value obtained by Weltner et al. from an electron-nuclear double resonance (ENDOR) study of MnH in an argon matrix at 4 K. This unprecedented gas-to-matrix shift in the Fermi contact parameter is discussed.

  18. Hyperfine structure of the MnH X 7Σ+ state: A large gas-to-matrix shift in the Fermi contact interaction

    International Nuclear Information System (INIS)

    Varberg, T.D.; Field, R.W.; Merer, A.J.

    1990-01-01

    Sub-Doppler spectra of the A 7 Π--X 7 Σ + (0,0) band of gas phase MnH near 5680 A were recorded by intermodulated fluorescence spectroscopy. The spectra reveal hyperfine splittings arising from both the 55 Mn and 1 H nuclear spins. Internal hyperfine perturbations have been observed between the different spin components of the ground state at low N double-prime. From a preliminary analysis of several rotational lines originating from the isolated and unperturbed F 1 (J double-prime=3) spin component of the X 7 Σ + (N double-prime=0) level, the 55 Mn Fermi contact interaction in the ground state has been measured as b F =A iso =276(1) MHz. This value is 11% smaller than the value obtained by Weltner et al. from an electron-nuclear double resonance (ENDOR) study of MnH in an argon matrix at 4 K. This unprecedented gas-to-matrix shift in the Fermi contact parameter is discussed

  19. Analysis of Renal Anomalies in VACTERL Association

    OpenAIRE

    Cunningham, Bridget K.; Khromykh, Alina; Martinez, Ariel F.; Carney, Tyler; Hadley, Donald W.; Solomon, Benjamin D.

    2014-01-01

    VACTERL association refers to a combination of congenital anomalies that can include: Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula with esophageal atresia, Renal anomalies (typically structural renal anomalies), and Limb anomalies. We conducted a description of a case series to characterize renal findings in a cohort of patients with VACTERL association. Out of the overall cohort, 48 patients (with at least 3 component features of VACTERL and who had ab...

  20. Anomalous behavior of the magnetic hyperfine field at 140Ce impurities at La sites in LaMnSi2

    Science.gov (United States)

    Domienikan, C.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2018-05-01

    Magnetic hyperfine field has been measured in the orthorhombic intermetallic compound LaMnSi2 with perturbed angular correlation (PAC) spectroscopy using radioactive 140La(140Ce) nuclear probes. Magnetization measurements were also carried out in this compound with MPSM-SQUID magnetometer. Samples of LaMnSi2 compound were prepared by arc melting the component metals with high purity under argon atmosphere followed by annealing at 1000°C for 60 h under helium atmosphere and quenching in water. X-ray analysis confirmed the samples to be in a single phase with correct crystal structure expected for LaMnSi2 compound. The radioactive 140La (T1/2 = 40 h) nuclei were produced by direct irradiation of the sample with neutrons in the IEA-R1 nuclear research reactor at IPEN with a flux of ˜ 1013 n cm-2s-1 for about 3 - 4 min. The PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 10 K and 400 K. Temperature dependence of the hyperfine field, Bhf was found to be anomalous. A modified two-state model explained this anomalous behavior where the effective magnetic hyperfine field at 140Ce is believed to have two contributions, one from the unstable localized spins at Ce impurities and another from the magnetic Mn atoms of the host. The competition of these two contributions explains the anomalous behavior observed for the temperature dependence of the magnetic hyperfine field at 140Ce. The ferromagnetic transition temperature (TC) of LaMnSi2 was determined to be 400(1) K confirming the magnetic measurements.

  1. Temperature dependence of the μ+ hyperfine field in ferromagnets

    International Nuclear Information System (INIS)

    Nagamine, K.; Nirhida, N.; Hayano, R.S.; Yamazaki, T.; Brewes, J.H.; Fleming, D.G.

    1977-01-01

    The temperature dependences of the μ + hyperfine fields in Ni and in Fe were found to deviate from that of the saturation magnetization in opposite senses. Difference in the screening mechanism of conduction electrons around the μ + is considered, among several possible explanations. (Auth.)

  2. Nose Structure Delineation of Bouguer Anomaly as the Interpretation Basis of Probable Hydrocarbon Traps: A Case Study on the Mainland Area of Northwest Java Basin

    Directory of Open Access Journals (Sweden)

    Kamtono Kamtono

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i3.144Two important aspects in the exploration of oil and gas are technology and exploration concepts, but the use of technology is not always suitable for areas with geological conditions covered by young volcanic sediments or limestone. The land of the Northwest Java Basin is mostly covered by young volcanic products, so exploration using seismic methods will produce less clear image resolution. To identify and interpret the subsurface structure and the possibility of hydrocarbon trap, gravity measurements have been carried out. Delineation of nose structures of a Bouguer anomaly map was used to interpret the probability of hydrocarbon traps. The result of the study shows that the gravity anomalies could be categorized into three groups : low anomaly (< 34 mgal, middle anomaly (34 - 50 mgal, and high anomaly (> 50 mgal. The analysis of Bouguer anomaly indicates that the low anomaly is concentrated in Cibarusa area as a southern part of Ciputat Subbasin, and in Cikampek area. The result of delineation of the Bouguer anomaly map shows the nose structures existing on Cibinong-Cileungsi and Pangkalan-Bekasi Highs, while delineation of residual anomaly map shows the nose structures occurs on Cilamaya-Karawang high. Locally, the gas fields of Jatirangon and Cicauh areas exist on the flank of the nose structure of Pangkalan-Bekasi High, while the oil/gas field of Northern Cilamaya is situated on the flank of the nose structure of Cilamaya-Karawang High. The concept of fluid/gas migration concentrated on nose structures which are delineated from gravity data can be applied in the studied area. This concept needs to be tested in other oil and gas field areas.

  3. Experimental and theoretical study of the hyperfine structure in the lower configurations in 45Sc II

    International Nuclear Information System (INIS)

    Villemoes, P.; van Leeuwen, R.; Arnesen, A.; Heijkenskjoeld, F.; Kastberg, A.; Larsson, M.O.; Kotochigova, S.A.

    1992-01-01

    We have measured the hyperfine structure (hfs) of 12 levels in the configurations 3d4s, 3d 2 , and 3d4p in singly ionized scandium by collinear fast-ion-beam--laser spectroscopy. The hfs of the four levels in the configuration 3d4s has to our knowledge not been measured before. From these levels the ions were excited to levels in the 3d4p configuration by the frequency-doubled output of a ring dye laser with an intracavity mounted LiIO 3 crystal. Levels in the 3d 2 configuration were excited to levels in the 3d4p configuration with visible laser light. The resulting magnetic dipole (A) and electric quadrupole (B) hfs constants are analyzed in Sandars-Beck effective-operator formalism. The multiconfiguration Dirac-Fock method has been used to calculate the hfs constants for levels in the configurations 3d4s, 3d5s, 3d6s, 3d 2 , and 3d4p. Within the framework of the configuration-interaction method, an approach is presented for the calculation of the core polarization, which uses a virtual basis set localized inside the core. For all levels, this approach gives better results compared to previously published calculations

  4. Influence of radiation damage evolution on hyperfine interactions of implanted impurities: 169Tm and 175Lu in Fe

    International Nuclear Information System (INIS)

    Thome, L.; Bernas, H.; Meunier, R.

    1978-01-01

    The hyperfine interaction of 169 Tm and 175 Lu implanted in Fe and annealed, or implanted at high temperatures, was studied by time-integral and time-differential perturbed angular correlation experiments. The heat treatment was performed in order to modify the impurity-radiation damage interaction in the sample. Comparison of our results with other hyperfine interaction results on rare earths implanted in iron shows that after room-temperature implantation, all the implanted nuclei experience the same hyperfine interaction. The annealing-and implantation-temperature dependences of the fraction of nuclei experiencing this hyperfine interaction are significantly different. The results are interpreted in terms of precipitation of an increasing proportion of implanted impurities. A discussion of their relation to the implanted impurity lattice location is presented in a companion paper

  5. Hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements; Etude du couplage hyperfin dans les alliages gadolinium-praseodyme par mesures de chaleur specifique

    Energy Technology Data Exchange (ETDEWEB)

    Michel, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    We have studied the hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements down to 0.3 K. In the first part we describe the apparatus used to perform our measurements. The second part is devoted to some theoretical considerations. We have studied in detail the case of praseodymium which is an exception in the rare earth series. The third part shows the results we have obtained. (author) [French] Nous avons etudie le couplage hyperfin d'alliages de gadolinium-praseodyme par des mesures de chaleur specifique jusqu'a 0.3 K. Dans la premiere partie de cette etude nous decrivons le dispositif experimental. La deuxieme partie est consacree a des considerations theoriques. Nous avons etudie en detail le cas du praseodyme qui est une exception dans la serie des terres rares. La troisieme partie est consacree aux resultats experimentaux. (auteur)

  6. Model-independent determination of the two-photon exchange contribution to hyperfine splitting in muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Peset, Clara; Pineda, Antonio [Grup de Física Teòrica, Dept. Física and IFAE-BIST, Universitat Autònoma de Barcelona,E-08193 Bellaterra (Barcelona) (Spain)

    2017-04-11

    We obtain a model-independent prediction for the two-photon exchange contribution to the hyperfine splitting in muonic hydrogen. We use the relation of the Wilson coefficients of the spin-dependent dimension-six four-fermion operator of NRQED applied to the electron-proton and to the muon-proton sectors. Their difference can be reliably computed using chiral perturbation theory, whereas the Wilson coefficient of the electron-proton sector can be determined from the hyperfine splitting in hydrogen. This allows us to give a precise model-independent determination of the Wilson coefficient for the muon-proton sector, and consequently of the two-photon exchange contribution to the hyperfine splitting in muonic hydrogen, which reads δĒ{sub pμ,HF}{sup TPE}(nS)=−(1/(n{sup 3}))1.161(20) meV. Together with the associated QED analysis, we obtain a prediction for the hyperfine splitting in muonic hydrogen that reads E{sub pμ,HF}{sup th}(1S)=182.623(27) meV and E{sub pμ,HF}{sup th}(2S)=22.8123(33) meV. The error is dominated by the two-photon exchange contribution.

  7. On Newton-Cartan trace anomalies

    International Nuclear Information System (INIS)

    Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe

    2016-01-01

    We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2+1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z=2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3+1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.

  8. On Newton-Cartan trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Auzzi, Roberto [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); INFN Sezione di Perugia,Via A. Pascoli, 06123 Perugia (Italy); Baiguera, Stefano [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); TIFPA - INFN, c/o Dipartimento di Fisica, Università di Trento,38123 Povo (Italy)

    2016-02-01

    We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2+1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z=2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3+1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.

  9. Paternal psychological response after ultrasonographic detection of structural fetal anomalies with a comparison to maternal response: a cohort study.

    Science.gov (United States)

    Kaasen, Anne; Helbig, Anne; Malt, Ulrik Fredrik; Naes, Tormod; Skari, Hans; Haugen, Guttorm Nils

    2013-07-12

    In Norway almost all pregnant women attend one routine ultrasound examination. Detection of fetal structural anomalies triggers psychological stress responses in the women affected. Despite the frequent use of ultrasound examination in pregnancy, little attention has been devoted to the psychological response of the expectant father following the detection of fetal anomalies. This is important for later fatherhood and the psychological interaction within the couple. We aimed to describe paternal psychological responses shortly after detection of structural fetal anomalies by ultrasonography, and to compare paternal and maternal responses within the same couple. A prospective observational study was performed at a tertiary referral centre for fetal medicine. Pregnant women with a structural fetal anomaly detected by ultrasound and their partners (study group,n=155) and 100 with normal ultrasound findings (comparison group) were included shortly after sonographic examination (inclusion period: May 2006-February 2009). Gestational age was >12 weeks. We used psychometric questionnaires to assess self-reported social dysfunction, health perception, and psychological distress (intrusion, avoidance, arousal, anxiety, and depression): Impact of Event Scale. General Health Questionnaire and Edinburgh Postnatal Depression Scale. Fetal anomalies were classified according to severity and diagnostic or prognostic ambiguity at the time of assessment. Median (range) gestational age at inclusion in the study and comparison group was 19 (12-38) and 19 (13-22) weeks, respectively. Men and women in the study group had significantly higher levels of psychological distress than men and women in the comparison group on all psychometric endpoints. The lowest level of distress in the study group was associated with the least severe anomalies with no diagnostic or prognostic ambiguity (p < 0.033). Men had lower scores than women on all psychometric outcome variables. The correlation in

  10. Measurement of the hyperfine magnetic field on rhodium in chromium

    International Nuclear Information System (INIS)

    Peretto, P.; Teisseron, G.; Berthier, J.

    1978-01-01

    Hyperfine magnetic field of rhodium in a chromium matrix is studied. Anisotropy of rhodium 100 is + 0.17. Time dependence of angular correlation is given with a sample containing 145 ppm of rhodium despite the short life [fr

  11. Muons as hyperfine interaction probes in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, Khashayar, E-mail: kghandi@triumf.ca; MacLean, Amy [Mount Allison University, Department of Chemistry & Biochemistry (Canada)

    2015-04-15

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described.

  12. Muons as hyperfine interaction probes in chemistry

    International Nuclear Information System (INIS)

    Ghandi, Khashayar; MacLean, Amy

    2015-01-01

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described

  13. Hyperfine field distribution of Fe83B17 glassy metal

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.

    1990-01-01

    Convolutions of Gaussian and Lorentzian lines are proposed to fit the Moessbauer spectrum of Fe 83 B 17 metallic glass. The hyperfine field distribution is constructed from three Gaussian lines corresponding to the individual line pairs. (author). 1 fig., 7 refs

  14. Fetal renal anomalies : diagnosis, management, and outcome

    NARCIS (Netherlands)

    Damen-Elias, Henrica Antonia Maria

    2004-01-01

    In two to three percent of fetuses structural anomalies can be found with prenatal ultrasound investigation. Anomalies of the urinary tract account for 15 to 20% of these anomalies with a detection rate of approximately of 90%. In Chapter 2, 3 and 4 we present reference curves for size and growth

  15. Self-energy correction to the hyperfine splitting for excited states

    International Nuclear Information System (INIS)

    Wundt, B. J.; Jentschura, U. D.

    2011-01-01

    The self-energy corrections to the hyperfine splitting is evaluated for higher excited states in hydrogenlike ions using an expansion in the binding parameter Zα, where Z is the nuclear-charge number and α is the fine-structure constant. We present analytic results for D, F, and G states, and for a number of highly excited Rydberg states, with principal quantum numbers in the range 13≤n≤16, and orbital angular momenta l=n-2 and l=n-1. A closed-form analytic expression is derived for the contribution of high-energy photons, valid for any state with l≥2 and arbitrary n, l, and total angular momentum j. The low-energy contributions are written in the form of generalized Bethe logarithms and evaluated for selected states.

  16. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence.

    Science.gov (United States)

    Fallahi, P; Yilmaz, S T; Imamoğlu, A

    2010-12-17

    We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.

  17. Structural properties and hyperfine characterization of Sn-substituted goethites

    Energy Technology Data Exchange (ETDEWEB)

    Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin

  18. 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia-Eurasia collision (Iran)

    Science.gov (United States)

    Jiménez-Munt, I.; Fernãndez, M.; Saura, E.; Vergés, J.; Garcia-Castellanos, D.

    2012-09-01

    The aim of this work is to propose a first-order estimate of the crustal and lithospheric mantle geometry of the Arabia-Eurasia collision zone and to separate the measured Bouguer anomaly into its regional and local components. The crustal and lithospheric mantle structure is calculated from the geoid height and elevation data combined with thermal analysis. Our results show that Moho depth varies from ˜42 km at the Mesopotamian-Persian Gulf foreland basin to ˜60 km below the High Zagros. The lithosphere is thicker beneath the foreland basin (˜200 km) and thinner underneath the High Zagros and Central Iran (˜140 km). Most of this lithospheric mantle thinning is accommodated under the Zagros mountain belt coinciding with the suture between two different mantle domains on the Sanandaj-Sirjan Zone. The regional gravity field is obtained by calculating the gravimetric response of the 3-D crustal and lithospheric mantle structure obtained by combining elevation and geoid data. The calculated regional Bouguer anomaly differs noticeably from those obtained by filtering or just isostatic methods. The residual gravity anomaly, obtained by subtraction of the regional components to the measured field, is analyzed in terms of the dominating upper crustal structures. Deep basins and areas with salt deposits are characterized by negative values (˜-20 mGal), whereas the positive values are related to igneous and ophiolite complexes and shallow basement depths (˜20 mGal).

  19. Geoelectrical Characterization of the Punta Banda System: A Possible Structural Control for the Geothermal Anomalies

    Science.gov (United States)

    Arango-Galvan, C.; Flores-Marquez, E.; Prol-Ledesma, R.; Working Group, I.

    2007-05-01

    The lack of sufficient drinking water in México has become a very serious problem, especially in the northern desert regions of the country. In order to give a real solution to this phenomenon the IMPULSA research program has been created to develope novel technologies based on desalination of sea and brackish water using renewable sources of energy to face the problem. The Punta Banda geothermal anomaly is located towards the northern part of Baja California Peninsula (Mexico). High water temperatures in some wells along the coast depicted a geothermal anomaly. An audiomagnetotelluric survey was carried out in the area as a preliminary study, both to understand the process generating these anomalous temperatures and to assess its potential exploitation to supply hot water to desalination plants. Among the electromagnetic methods, the audiomagnetotellurics (AMT) method is appropriated for deep groundwater and geothermal studies. The survey consisted of 27 AMT stations covering a 5 km profile along the Agua Blanca Fault. The employed array allowed us to characterize the geoelectrical properties of the main structures up to 500 m depth. Two main geoelectrical zones were identified: 1) a shallow low resistivity media located at the central portion of the profile, coinciding with the Maneadero valley and 2) two high resitivity structures bordering the conductive zone possibly related to NS faulting, already identified by previous geophysical studies. These results suggest that the main geothermal anomalies are controlled by the dominant structural regime in the zone.

  20. Quadrupole hyperfine structure and splitting of Δ-levels in the microwave spectra of KOH, RbOH and CsOH in the 100 GHz region

    International Nuclear Information System (INIS)

    Kuijpers, P.; Dymanus, A.; Toerring, T.

    1977-01-01

    Hyperfine structure of rotational transitions of KOH, RbOH and CsOH in various v 2 - and l-states has been carefully measured in the 100 GHz range. From the observed splittings and broadenings information about quadrupole coupling constant (eqQ) of the K nucleus in KOH and about the spacing (Esub(Δ) - Esub(Σ)) between Σ and Δ levels in the vibrational spectrum of KOH, RbOH and CsOH has been derived. The measured value of the eqQ of KOH is close to that of KF. The separation between Σ and Δ levels is found to be rather similar for the group of the alkali hydroxides increasing gradually when progressing from LiOH to CsOH. (orig.) [de

  1. Moessbauer investigation of magnetic hyperfine fields near bivalent Eu compounds under high pressure

    International Nuclear Information System (INIS)

    Abd Elmeguid, M.

    1979-01-01

    The paper deals with the pressure or volume dependence of hyperfine interactions of magnetically ordered, bivalent europium compounds. Emphasis is laid on the investigation of the pressure or volume dependence of magnetic hyperfine fields as they are found at the nuclear site of 151 Eu or of diamagnetic 119 Sn or 197 Au probe atoms. The measurements were carried out with the aid of the gamma resonance of 151 Eu (21.6 keV) 119 Sn (23.8 keV) and 167 Au (77.4 keV) at low temperatures and external pressures up to 65 kbar. (orig./WBU) [de

  2. Hyperfine interactions studies in perovskite oxides of the type LaMO3 (M = Fe, Cr, Mn and Co)

    International Nuclear Information System (INIS)

    Junqueira, Astrogildo de Carvalho

    2004-01-01

    ABO 3 -type perovskite oxides have ideal cubic structure and usually show distortions to the orthorhombic or rombohedric symmetry. The A and B siteshave 12-fold and 6-fold oxygen coordination, respectively. Distortions of thecubic structure give rise to new electric, structural and magnetic propertieswhich have great technological and scientific interests. Magnetic dipole and electric quadrupole hyperfine interaction measurements were obtained using 111 In -> 111 Cd , 181 Hf -> 181 Ta e 140 La -> 140 Ceradioactive nuclei substituting for the A or B sites via Perturbed Angulargamma-gamma Correlation technique (1-4) . LaMO 3 (M = Fe, Cr, Mn and Co)samples were prepared through the chemical route known as Sol-Gel techniqueand analyzed with x-ray diffraction. Both 111 In and 181 Hf nuclei wereintroduced in to the sample during the chemical procedure and the 140 Lawas obtained by irradiating with neutrons in the IPEN reactor the natural Lapresent in the samples. One of the aims of this work was the analysis of theElectric Field Gradient (EFG) in the A and B sites as function oftemperature, crystal structure or the electronic characteristic of thetransition metal in the B site. The temperature range of the measurements wasabout from 4 K to 1400 K. The experimental EFG showed to be dependent of thesite occupation and the nuclear probe used in the measurements. Spintransition phenomena were also observed in LaCoO 3 samples, which confirmed amodel used to interpret the spin properties in such compound.Crystallographic phase transition effects on the hyperfine parameters inperovskites where M = Fe, Cr and K4n were also analyzed. An additional aim ofthis work was to carry out measurements in the antiferromagnetic region ofthe systems with M = Fe, Cr and Mn using the three radioactive nuclei. Theresults for the magnetic interaction measurements showed a strong influenceof the substitutional sites in the supertransferred magnetic hyperfine fieldfor all the three probe nuclei

  3. Measurement and modeling of hyperfine parameters in ferroic materials

    CERN Document Server

    Gonçalves, João Nuno; Correia, J G

    This thesis presents the results of perturbed angular correlation (PAC) experiments , an experimental technique which measures the hyperfine interaction at probes (radioactive ions implanted in the materials to study), from which one infers local information on an atomic scale. Furthermore, abinitio calculations using density functional theory electronic obtain results that directly complement the experiments, and are also used for theoretical research. These methods were applied in two families of materials. The manganites, with the possible existence of magnetic, charge, orbital and ferroelectric orders, are of fundamental and technological interest. The experimental results are obtained in the alkaline-earth manganites (Ca, Ba, Sr), with special interest due to the structural variety of possible polymorphs. With probes of Cd and In the stability of the probe and its location in a wide temperature range is established and a comparison with calculations allows the physical interpretation of the results. Cal...

  4. Determination of hyperfine-induced transition rates from observations of a planetary nebula.

    Science.gov (United States)

    Brage, Tomas; Judge, Philip G; Proffitt, Charles R

    2002-12-31

    Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios.

  5. Studies of hyperfine magnetic fields in transition metals by radioactive ion implantation

    International Nuclear Information System (INIS)

    Kawase, Yoichi; Uehara, Shin-ichi; Nasu, Saburo; Ni Xinbo.

    1994-01-01

    In order to investigate hyperfine magnetic fields in transition metals by a time-differential perturbed angular correlation (TDPAC) technique, radioactive probes of 140 Cs obtained by KUR-ISOL have been implanted on transition metals of Fe, Ni and Co. Lamor precessions of 140 Ce used as a probe nucleus have been observed clearly and the hyperfine fields have been determined precisely corresponding to implanted sites in host metal. The irradiation effects caused by implantation have been examined by annealing the irradiated specimen at about 723 K. Some of the Lamor precessions have disappeared by the annealing. Discussions have been made on the occupied sites after implantation and the recovery process of induced damages by annealing. (author)

  6. Characteristics of uranium geological anomaly in Northern Guangdong province

    International Nuclear Information System (INIS)

    Wang Xinwu; Cheng Danping

    2001-01-01

    The geological anomaly characteristics of uranium deposit region in northern Guangdong are discussed on the aspects of uranium source, structure and thermal activity. Uranium deposits usually occur in the uranium-rich background field. Structure activity provides favourable places for the transportation and precipitation of uranium. Uranium deposits are formed in the central and edge of frequent thermal activity. The assembled entropy anomaly field is the synthetical display for above three anomaly. The biggest assembled entropy anomaly is the most favourable space field for forming uranium deposit

  7. Split and Compensated Hyperfine Fields in Magnetic Metal Clusters

    International Nuclear Information System (INIS)

    Nakamura, H.; Chudo, H.; Shiga, M.; Kohara, T.

    2004-01-01

    As prominent characteristics of magnetic metal cluster found in vanadium sulfides, we point out marked separation and compensation of the hyperfine field at the nuclear site; these are in somewhat discordance with the common sense for 3d transition-metal magnets, where the on-site isotropic field, scaling the ordered moment magnitude, is dominant.

  8. Effect of nanocrystallization on the electrical conductivity enhancement and Moessbauer hyperfine parameters of iron based glasses

    Energy Technology Data Exchange (ETDEWEB)

    El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, Faculty of Education, Suez Canal University, Al-Arish 45511, North Sinaa (Egypt); Ibrahim, F.A. [Department of Physics, Faculty of Education, Suez Canal University, Al-Arish 45511, North Sinaa (Egypt); Mostafa, A.G.; Hassaan, M.Y. [Department of Physics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo (Egypt)

    2010-09-15

    Selected glasses of Fe{sub 2}O{sub 3}-PbO{sub 2}-Bi{sub 2}O{sub 3} system have been transformed into nanomaterials by annealing at temperature close to crystallization temperature (T{sub c}) for 1 h. The effects of the annealing of the present samples on its structural and electrical properties were studied by Moessbauer spectroscopy, transmission electron micrograph (TEM), differential scanning calorimeter (DSC) and dc conductivity ({sigma}). Moessbauer spectroscopy was used in order to determine the states of iron and its hyperfine structure. The effect of nanocrystalization on the Moessbauer hyperfine parameters did not exhibit significant modifications in present glasses. However, in case of glass ceramic nanocrystals show a distinct decrease in the quadrupole splitting ({Delta}) is observed, reflecting an evident decrease in the distortion of structural units like FeO{sub 4} units. In general, the Moessbauer parameters of the nano-crystalline phase exhibit tendency to increase with PbO{sub 2} content. TEM of as-quenched glasses confirm the homogeneous and essentially featureless morphology. TEM of the corresponding glass ceramic nanocrystals indicates nanocrystals embedded in the glassy matrix with average particle size of about 32 nm. The crystallization temperature (T{sub c}) was observed to decrease with PbO{sub 2} content. The glass ceramic nanocrystals obtained by annealing at T{sub c} exhibit improvement of electrical conductivity up to four orders of magnitude than the starting glasses. This considerable improvement of electrical conductivity after nanocrystallization is attributed to formation of defective, well-conducting phases 'easy conduction paths' along the glass-crystallites interfaces.

  9. Magnetic hyperfine field at a Cd impurity diluted in RCo{sub 2} at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.L. de, E-mail: alexandre.oliveira@ifrj.edu.br [Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Campus Nilópolis – RJ (Brazil); Chaves, C.M., E-mail: cmch@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro (Brazil); Oliveira, N.A. de [Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Brazil); Troper, A. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro (Brazil)

    2015-06-15

    The local magnetic moments and the magnetic hyperfine fields at an s–p Cd impurity diluted in inter-metallic Laves phase compounds RCo{sub 2} (R=Gd, Tb) at finite temperatures are calculated. For other rare earth elements (light or heavy) the pure compounds display a magnetic first order transition and are not describable by our formalism. The host has two coupled lattices (R and Co) both having itinerant d electrons but only the rare earth lattice has localized f electrons. They all contribute to the magnetization of the host and also to the local moment and to the magnetic hyperfine field at the impurity. The investigation of magnetic hyperfine field in these materials then provides valuable information on the d-itinerant electrons and also on the localized (4f) magnetic moments. For the d–d electronic interaction we use the Hubbard–Stratonovich identity thus allowing the employment of functional integral in the static saddle point approximation. Our model reproduces quite well the experimental data. - Highlights: • A functional integral method in the static limit, producing site disorder, is used. • The site disorder is treated with the coherent potential approximation (CPA) • A Friedel sum rule gives a self-consistency condition for the impurity energy. • The experimental curve of hyperfine fields×temperature is very well reproduced.

  10. Isotope effects in interstellar molecules by chemical hyperfine interaction

    International Nuclear Information System (INIS)

    Haberkorn, R.; Michel-Beyerle, M.E.

    1977-01-01

    If free radicals recombine on grain surfaces, not only the different masses of isotopes but also their differing nuclear spin moments (e.g. 12 C/ 13 C, 14 N/ 15 N, 17 O/ 18 O) may imply variations in the recombination probability due to hyperfine interaction. This mechanism has not been accounted for so far. (orig.) [de

  11. Pure nuclear reflexes and combined hyperfine interactions in YIG

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, H; Eisberg, R; Alp, E; Rueffer, R; Gerdau, E; Lauer, S; Trautwein, A X; Grodzicki, M; Vera, A

    1983-01-01

    Moessbauer spectra of oriented YIG single crystals were taken and the numerical analysis using the transmission integral yielded a consistent set of hyperfine interaction parameters. They are in good agreement with theoretical values obtained by MO-calculations which included clusters up to 62 ions. Finally pure nuclear reflexes are predicted for single crystals and two theoretical spectra are given.

  12. Cryogenic tunable microwave cavity at 13GHz for hyperfine spectroscopy of antiprotonic helium

    International Nuclear Information System (INIS)

    Sakaguchi, J.; Gilg, H.; Hayano, R.S.; Ishikawa, T.; Suzuki, K.; Widmann, E.; Yamaguchi, H.; Caspers, F.; Eades, J.; Hori, M.; Barna, D.; Horvath, D.; Juhasz, B.; Torii, H.A.; Yamazaki, T.

    2004-01-01

    For the precise measurement of the hyperfine structure of antiprotonic helium, microwave radiation of 12.9GHz frequency is needed, tunable over +/-100MHz. A cylindrical microwave cavity is used whose front and rear faces are meshed to allow the antiprotons and laser beams to enter. The cavity is embedded in a cryogenic helium gas target. Frequency tuning of ∼300MHz with Q values of 2700-3000 was achieved using over-coupling and an external triple stub tuner. We also present Monte-Carlo simulations of the stopping distribution of antiprotons in the low-density helium gas using the GEANT4 package with modified energy loss routines

  13. Structural model Soapaga failure from spectral correlation and magnetic gravity anomalies in the eastern cordillera, Colombia

    International Nuclear Information System (INIS)

    Rodriguez Diana Marcela; Hernandez Orlando; Kammer Andreas

    2009-01-01

    The aim of this research is to apply spectral correlation, local favorability indexes and Poisson's theorem as numerical methods for data processing and interpretation of potential field data associated with structural features; these techniques are applied to theoretical and real gravity and magnetic data of the Soapaga fault, located in the Boyaca Department, in the eastern Andean Mountains. Theoretical data of the Soapaga fault was obtained by forward modeling of geological and structural sections. Real data of the Soapaga fault included compiled gravity data and acquired magnetic data along four profiles oriented perpendicular to the fault. As a result, the geometry of the fault and its structural characteristics were obtained by interactive forward and inverse modeling. This methodology allows highlighting anomaly trends associated with density and magnetic susceptibility contrast that occur along the Soapaga fault zone. Additionally, this work provides a quantitative approach to establish the relationship between gravity and magnetic anomalies, supported by a rigorous mathematical methodology rather than isolated data interpretation to better understand the gravity and magnetic signatures of outcropping and hidden structural features.

  14. Derivation of the electric dipole--dipole interaction as an electric hyperfine interaction

    International Nuclear Information System (INIS)

    Parker, G.W.

    1986-01-01

    The electric dipole--dipole interaction is derived by assuming that the electron and proton in hydrogen have intrinsic electric dipole moments that interact to give an electric hyperfine interaction. The electric field at the proton due to the electron's presumed dipole moment then gives rise to a contact type term for l = 0 and the normal dipole--dipole term for lnot =0. When combined with our previous derivation of the magnetic hyperfine interaction [Am. J. Phys. 52, 36 (1984)], which used a similar approach, these derivations provide a unified treatment of the interaction of electric and magnetic dipoles. As an application of these results, the product of the electron's and proton's dipole moments is estimated to be less than 10 -29 e 2 cm 2

  15. Mixing of the lowest-lying qqq configurations with JP =1/2- in different hyperfine interaction models

    Science.gov (United States)

    Chen, Jia; An, Chunsheng; Chen, Hong

    2018-02-01

    We investigate mixing of the lowest-lying qqq configurations with JP = 1/2- caused by the hyperfine interactions between quarks mediated by Goldstone Boson Exchange, One Gluon Exchange, and both Goldstone Boson and One Gluon exchange, respectively. The first orbitally excited nucleon, Σ, Λ and Ξ states are considered. Contributions of both the contact term and tensor term are taken into account. Our numerical results show that mixing of the studied configurations in the two employed hyperfine interaction models are very different. Therefore, the present results, which should affect the strong and electromagnetic decays of baryon resonances, may be used to examine the present employed hyperfine interaction models. Supported by National Natural Science Foundation of China (11675131,11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)

  16. Hyperfine fields and spin relaxation of Ce in GdAl2 and DyAl2

    International Nuclear Information System (INIS)

    Waeckelgaard, E.; Karlsson, E.; Lindgren, B.; Mayer, A.

    1987-04-01

    We have investigated the ferromagnetic state of the cubic intermetallic compounds GdAl 2 and DyAl 2 with the 140 Ce nuclei using DPAC. The local fields of Ce are for the lowest measured temperatures B eff (30 K) = 54(2) T for GdAl 2 and B eff (12.5 K) = 27(1) T for DyAl 2 which are considerably lower than the hyperfine field measured for a free Ce ion (183 T). By introducing a crystal field, of cubic symmetry, a lower hyperfine field is obtained which is in quantitative agreement with the local field of Ce in GdAl 2 . For DyAl 2 an additional effect, represented by a non-magnetic level below the lowest magnetic level, may explain a further reduction of the hyperfine field. Two models relating to a Kondo non-magnetic state of Ce are discussed. Spin relaxation in the paramagnetic state are also studied and compared with observations of the same systems measured with μSR. (authors)

  17. Improving Anomaly Detection for Text-Based Protocols by Exploiting Message Structures

    Directory of Open Access Journals (Sweden)

    Christian M. Mueller

    2010-12-01

    Full Text Available Service platforms using text-based protocols need to be protected against attacks. Machine-learning algorithms with pattern matching can be used to detect even previously unknown attacks. In this paper, we present an extension to known Support Vector Machine (SVM based anomaly detection algorithms for the Session Initiation Protocol (SIP. Our contribution is to extend the amount of different features used for classification (feature space by exploiting the structure of SIP messages, which reduces the false positive rate. Additionally, we show how combining our approach with attribute reduction significantly improves throughput.

  18. Lifshitz anomalies, Ward identities and split dimensional regularization

    Energy Technology Data Exchange (ETDEWEB)

    Arav, Igal; Oz, Yaron; Raviv-Moshe, Avia [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,55 Haim Levanon street, Tel-Aviv, 69978 (Israel)

    2017-03-16

    We analyze the structure of the stress-energy tensor correlation functions in Lifshitz field theories and construct the corresponding anomalous Ward identities. We develop a framework for calculating the anomaly coefficients that employs a split dimensional regularization and the pole residues. We demonstrate the procedure by calculating the free scalar Lifshitz scale anomalies in 2+1 spacetime dimensions. We find that the analysis of the regularization dependent trivial terms requires a curved spacetime description without a foliation structure. We discuss potential ambiguities in Lifshitz scale anomaly definitions.

  19. Lifshitz anomalies, Ward identities and split dimensional regularization

    International Nuclear Information System (INIS)

    Arav, Igal; Oz, Yaron; Raviv-Moshe, Avia

    2017-01-01

    We analyze the structure of the stress-energy tensor correlation functions in Lifshitz field theories and construct the corresponding anomalous Ward identities. We develop a framework for calculating the anomaly coefficients that employs a split dimensional regularization and the pole residues. We demonstrate the procedure by calculating the free scalar Lifshitz scale anomalies in 2+1 spacetime dimensions. We find that the analysis of the regularization dependent trivial terms requires a curved spacetime description without a foliation structure. We discuss potential ambiguities in Lifshitz scale anomaly definitions.

  20. Electrical detection of hyperfine interactions in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Felix

    2012-12-15

    The main focus of this work was the measurement of hyperfine interactions of defects in silicon using EDMR. We combined the high sensitivity of EDMR when compared to conventional ESR with the two most commonly used methods for the measurement of hyperfine interactions: ESEEM and ENDOR. We first demonstrated the electrical detection of ESEEM by measuring the hyperfine interactions of {sup 31}P donors in Si:P with {sup 29}Si nuclear spins. We then apply EDESEEM to P{sub b0} defects at the Si/SiO{sub 2} interface. In isotopically engineered, we observe an ESEEM modulation with a characteristic beating caused by {sup 29}Si nuclei at 4th and 5th nearest neighbor lattice sites. Then we combine pulsed ENDOR with the high sensitivity of EDMR (EDENDOR). First we demonstrate the measurement of {sup 31}P nuclear spin hyperfine transitions and the coherent manipulation and readout of the {sup 31}P nuclear spins under continuous illumination with above bandgap light. We further show that the EDENDOR method can be greatly improved by switching off the illumination during the microwave and rf pulses. This improves the signal-to-noise ratio by two orders of magnitude and removes the non-resonant background induced by the strong rf pulse allowing to measure ENDOR with a sensitivity <3000 nuclear spins. We apply EDENDOR to the {sup 31}P-P{sub b0} spin system and the {sup 31}P-SL1 spin system allowing us to compare the hyperfine interactions of bulk and interface-near donors. The pulsed illumination also makes spectroscopy of the {sup 31}P{sup +} nuclear spin possible, which due to its long coherence time of 18 ms compared to 280 {mu}s for the {sup 31}P{sub 0} nuclear spin, might be a candidate for a nuclear spin memory. In the last part, we devise a scheme for the hyperpolarization of {sup 31}P nuclei by combining pulsed optical excitation and pulsed ENDOR and demonstrate a {sup 31}P nuclear spin polarization of more than 50%. Crucial for these experiments was the development of a

  1. Electrical detection of hyperfine interactions in silicon

    International Nuclear Information System (INIS)

    Hoehne, Felix

    2012-01-01

    The main focus of this work was the measurement of hyperfine interactions of defects in silicon using EDMR. We combined the high sensitivity of EDMR when compared to conventional ESR with the two most commonly used methods for the measurement of hyperfine interactions: ESEEM and ENDOR. We first demonstrated the electrical detection of ESEEM by measuring the hyperfine interactions of 31 P donors in Si:P with 29 Si nuclear spins. We then apply EDESEEM to P b0 defects at the Si/SiO 2 interface. In isotopically engineered, we observe an ESEEM modulation with a characteristic beating caused by 29 Si nuclei at 4th and 5th nearest neighbor lattice sites. Then we combine pulsed ENDOR with the high sensitivity of EDMR (EDENDOR). First we demonstrate the measurement of 31 P nuclear spin hyperfine transitions and the coherent manipulation and readout of the 31 P nuclear spins under continuous illumination with above bandgap light. We further show that the EDENDOR method can be greatly improved by switching off the illumination during the microwave and rf pulses. This improves the signal-to-noise ratio by two orders of magnitude and removes the non-resonant background induced by the strong rf pulse allowing to measure ENDOR with a sensitivity 31 P-P b0 spin system and the 31 P-SL1 spin system allowing us to compare the hyperfine interactions of bulk and interface-near donors. The pulsed illumination also makes spectroscopy of the 31 P + nuclear spin possible, which due to its long coherence time of 18 ms compared to 280 μs for the 31 P 0 nuclear spin, might be a candidate for a nuclear spin memory. In the last part, we devise a scheme for the hyperpolarization of 31 P nuclei by combining pulsed optical excitation and pulsed ENDOR and demonstrate a 31 P nuclear spin polarization of more than 50%. Crucial for these experiments was the development of a lock-in detection scheme for pEDMR, which improves the signal-to-noise ratio by one order of magnitude by removing low

  2. 1H NMR spectra of vertebrate [2Fe-2S] ferredoxins. Hyperfine resonances suggest different electron delocalization patterns from plant ferredoxins

    International Nuclear Information System (INIS)

    Skjeldal, L.; Markley, J.L.; Coghlan, V.M.; Vickery, L.E.

    1991-01-01

    The authors report the observation of paramagnetically shifted (hyperfine) proton resonances from vertebrate mitochondrial [2Fe-2S] ferredoxins. The hyperfine signals of human, bovine, and chick [2Fe-2S] ferredoxins are described and compared with those of Anabena 7120 vegetative ferredoxin, a plant-type [2Fe-2S] ferredoxin studied previously. The hyperfine resonances of the three vertebrate ferredoxins were very similar to one another both in the oxidized state and in the reduced state, and slow (on the NMR scale) electron self-exchange was observed in partially reduced samples. For the oxidized vertebrate ferredoxins, hyperfine signals were observed downfield of the diamagnetic envelope from +13 to +50 ppm, and the general pattern of peaks and their anti-Curie temperature dependence are similar to those observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed both upfield (-2 to -18 ppm) and downfield (+15 to +45 ppm), and all were found to exhibit Curie-type temperature dependence. These results indicate that the contact-shifted resonances in the reduced vertebrate ferredoxins detect different spin magnetization from those in the reduced plant ferredoxins and suggest that plant and vertebrate ferredoxins have fundamentally different patterns of electron delocalization in the reduced [2Fe-2S] center

  3. Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen

    CERN Document Server

    Olin, Arthur

    2015-01-01

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  4. Kinetic models in spin chemistry. 1. The hyperfine interaction

    DEFF Research Database (Denmark)

    Mojaza, M.; Pedersen, J. B.

    2012-01-01

    Kinetic models for quantum systems are quite popular due to their simplicity, although they are difficult to justify. We show that the transformation from quantum to kinetic description can be done exactly for the hyperfine interaction of one nuclei with arbitrary spin; more spins are described w...... induced enhancement of the reaction yield. (C) 2012 Elsevier B.V. All rights reserved....

  5. Observation of hyperfine transitions in trapped ground-state antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: A. Olin for the ALPHA Collaboration

    2015-08-15

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4 parts in 10{sup 3}. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  6. Fine and hyperfine collisional excitation of C6H by He

    Science.gov (United States)

    Walker, Kyle M.; Lique, François; Dawes, Richard

    2018-01-01

    Hydrogenated carbon chains have been detected in interstellar and circumstellar media and accurate modelling of their abundances requires collisional excitation rate coefficients with the most abundant species. Among them, the C6H molecule is one of the most abundant towards many lines of sight. Hence, we determined fine and hyperfine-resolved rate coefficients for the excitation of C6H(X2Π) due to collisions with He. We present the first interaction potential energy surface for the C6H-He system, obtained from highly correlated ab initio calculations and characterized by a large anisotropy due to the length of the molecule. We performed dynamical calculations for transitions among the first fine structure levels (up to J = 30.5) of both spin-orbit manifolds of C6H using the close-coupling method, and rate coefficients are determined for temperatures ranging from 5 to 100 K. The largest rate coefficients for even ΔJ transitions conserve parity, while parity-breaking rate coefficients are favoured for odd ΔJ. Spin-orbit changing rate coefficients are several orders of magnitude lower than transitions within a single manifold. State-to-state hyperfine-resolved cross-sections for the first levels (up to J = 13.5) in the Ω = 3/2 spin-orbit manifold are deduced using recoupling techniques. Rate coefficients are obtained and the propensity rule ΔJ = ΔF is seen. These new data will help determine the abundance of C6H in astrophysical environments such as cold dense molecular clouds, star-forming regions and circumstellar envelopes, and will help in the interpretation of the puzzling C6H-/C6H abundance ratios deduced from observations.

  7. Magnetic hyperfine field at caesium in iron

    International Nuclear Information System (INIS)

    Ashworth, C.J.; Back, P.; Stone, N.J.; White, J.P.; Ohya, S.

    1990-01-01

    We report temperature dependence of nuclear orientation (NO), and the first observation of NMR/ON on Cs in iron. 132,136 Cs were implanted at room temperature into polycrystalline and single crystal iron. NO values for the (average) magnetic hyperfine field B hf (CsFe) are close to 34 T, intermediate between the value of 40.7 T found in on-line samples made at mK temperatures and the NMR/ON value of 27.8(2) T. The latter studies. The site/field distribution is briefly discussed. (orig.)

  8. Hyperphagia, mild developmental delay but apparently no structural brain anomalies in a boy without SOX3 expression.

    Science.gov (United States)

    Helle, Johan Robert; Barøy, Tuva; Misceo, Doriana; Braaten, Øivind; Fannemel, Madeleine; Frengen, Eirik

    2013-05-01

    The transcription factor SOX3 is widely expressed in early vertebrate brain development. In humans, duplication of SOX3 and polyalanine expansions at its C-terminus may cause intellectual disability and hypopituitarism. Sox3 knock-out mice show a variable phenotype including structural and functional anomalies affecting the branchial arches and midline cerebral structures such as the optic chiasm and the hypothalamo-pituitary axis. SOX3 is claimed to be required in normal brain development and function in mice and humans, as well as in pituitary and craniofacial development. We report on an 8-year-old boy with a 2.1 Mb deletion in Xq27.1q27.2, which was found to be inherited from his healthy mother. To our knowledge, this is the smallest deletion including the entire SOX3 gene in a male reported to date. He is mildly intellectually disabled with language delay, dysarthria, behavior problems, minor facial anomalies, and hyperphagia. Hormone levels including growth, adrenocorticotropic and thyroid stimulating hormones are normal. Magnetic resonance imaging (MRI) at age 6 years showed no obvious brain anomalies. Genetic redundancy between the three members of the B1 subfamily of SOX proteins during early human brain development likely explains the apparently normal development of brain structures in our patient who is nullisomic for SOX3. Copyright © 2012 Wiley Periodicals, Inc.

  9. Skyrmions and anomalies

    International Nuclear Information System (INIS)

    Rho, M.

    1987-02-01

    The author summarizes the works presented at the meeting on skyrmions and anomalies. He divides the principal issues of this workshop into five categories: QCD effective lagrangians, chiral bags and the Cheshire cat principle, strangeness problem, phenomenology, mathematical structure

  10. Muon zero point motion and the hyperfine field in nickel

    International Nuclear Information System (INIS)

    Elzain, M.E.

    1984-09-01

    It is argued that the effect of zero point motion of muons in Ni is to induce local vibrations of the neighbouring Ni atoms. This local vibration reduces the Hubbard correlation and hence decreases the net spin per atom. This acts back to reduce the hyperfine field at the muon site. (author)

  11. Doping effects on the structural, magnetic, and hyperfine properties of Gd-doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Coelho-Júnior, H.; Aquino, J. C. R.; Aragón, F. H. [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Hidalgo, P. [Universidade de Brasília, Faculdade Gama-FGA, Setor Central Gama (Brazil); Cohen, R.; Nagamine, L. C. C. M. [Universidade de São Paulo, Instituto de Física (Brazil); Coaquira, J. A. H., E-mail: coaquira@unb.br; Silva, S. W. da [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Brito, H. F. [Universidade de São Paulo, Instituto de Química (Brazil)

    2014-12-15

    In this work we present the study of the structural, magnetic, and hyperfine properties of Gd-doped SnO{sub 2} nanoparticles synthesized by a polymer precursor method. The X-ray diffraction data analysis shows the formation of the rutile-type structure in all samples with Gd content from 1.0 to 10.0 mol%. The mean crystallite size is ∼11 nm for the 1.0 mol% Gd-doped samples and it shows a decreasing tendency as the Gd content is increased. The analysis of magnetic measurements indicates the coexistence of ferromagnetic and paramagnetic phases for the 1.0 mol% Gd-doped sample; however, above that content, only a paramagnetic phase is observed. The ferromagnetic phase observed in the 1.0 mol% Gd-doped sample has been assigned to the presence of bound magnetic polarons which overlap to create a spin-split impurity band. Room-temperature {sup 119}Sn Mössbauer measurements reveal the occurrence of strong electric quadrupole interactions. It has been determined that the absence of magnetic interactions even for 1.0 mol% Gd-doped sample has been related to the weak magnetic field associated to the exchange interaction between magnetic ions and the donor impurity band. The broad distribution of electric quadrupole interactions are attributed to the several non-equivalent surroundings of Sn{sup 4+} ions provoked by the entrance of Gd{sup 3+} ions and to the likely presence of Sn{sup 2+} ions. The isomer shift seems to be nearly independent of the Gd content for samples with Gd content below 7.5 mol%.

  12. Coronary anomalies: what the radiologist should know*

    Science.gov (United States)

    Neves, Priscilla Ornellas; Andrade, Joalbo; Monção, Henry

    2015-01-01

    Coronary anomalies comprise a diverse group of malformations, some of them asymptomatic with a benign course, and the others related to symptoms as chest pain and sudden death. Such anomalies may be classified as follows: 1) anomalies of origination and course; 2) anomalies of intrinsic coronary arterial anatomy; 3) anomalies of coronary termination. The origin and the proximal course of anomalous coronary arteries are the main prognostic factors, and interarterial course or a coronary artery is considered to be malignant due its association with increased risk of sudden death. Coronary computed tomography angiography has become the reference method for such an assessment as it detects not only anomalies in origination of these arteries, but also its course in relation to other mediastinal structures, which plays a relevant role in the definition of the therapeutic management. Finally, it is essential for radiologists to recognize and characterize such anomalies. PMID:26379322

  13. Invesigation of prevalence of dental anomalies by using digital panoramic radiographs.

    Science.gov (United States)

    Bilge, Nebiha Hilal; Yeşiltepe, Selin; Törenek Ağırman, Kübra; Çağlayan, Fatma; Bilge, Osman Murat

    2017-09-21

    This study was performed to evaluate the prevalence of all types and subtypes of dental anomalies among 6 to 40 year-old patients by using panoramic radiographs. This cross-sectional study was conducted by analyzing digital panoramic radiographs of 1200 patients admitted to our clinic in 2014. Dental anomalies were examined under 5 types and 16 subtypes. Dental anomalies were divided into five types: (a) number (including hypodontia, oligodontia and hyperdontia); (b) size (including microdontia and macrodontia); (c) structure (including amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia); (d) position (including transposition, ectopia, displacement, impaction and inversion); (e) shape (including fusion-gemination, dilaceration and taurodontism); RESULTS: The prevalence of dental anomalies diagnosed by panoramic radiographs was 39.2% (men (46%), women (54%)). Anomalies of position (60.8%) and shape (27.8%) were the most common types of abnormalities and anomalies of size (8.2%), structure (0.2%) and number (17%) were the least in both genders. Anomalies of impaction (45.5%), dilacerations (16.3%), hypodontia (13.8%) and taurodontism (11.2%) were the most common subtypes of dental anomalies. Taurodontism was more common in the age groups of 13-19 years. The age range of the most frequent of all other anomalies was 20-29. Anomalies of tooth position were the most common type of dental anomalies and structure anomalies were the least in this Turkish dental population. The frequency and type of dental anomalies vary within and between populations, confirming the role of racial factors in the prevalence of dental anomalies. Digital panoramic radiography is a very useful method for the detection of dental anomalies.

  14. Hyperfine field calculations: search for muon stopping sites in Fe3O4

    International Nuclear Information System (INIS)

    Boekema, C.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.

    1983-01-01

    Muon Spin Rotation (μSR) results for magnetite (Fe 3 O 4 ) are analyzed and discussed. At room temperature, a μSR signal is observed due to the presence of an internal magnetic field (Bsub(int)) at the muon site. External transverse field measurements show that Bsub(int) is parallel to the magnetic spin direction, the direction in zero applied field. Calculations of the hyperfine field to pinpoint muon stopping sites in magnetite show that the local field contains supertransfer (covalent) and dipolar field contributions. The implanted muons appear to stop at sites structurally similar to those reported for hematite (α-Fe 2 O 3 ), where muon-oxygen bond formation was strongly indicated. (Auth.)

  15. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  16. THE HYPERFINE STRUCTURE OF THE ROTATIONAL SPECTRUM OF HDO AND ITS EXTENSION TO THE THz REGION: ACCURATE REST FREQUENCIES AND SPECTROSCOPIC PARAMETERS FOR ASTROPHYSICAL OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina [Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy); Alonso, José Luis [Grupo de Espectroscopía Molecular (GEM), Unidad Asociada CSIC, Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Universidad de Valladolid, E-47005 Valladolid (Spain); Gauss, Jürgen, E-mail: cristina.puzzarini@unibo.it [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany)

    2015-06-10

    The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hf splittings in astronomical spectra has been discussed.

  17. Isotope effect in the Knight shift of potassium

    International Nuclear Information System (INIS)

    Sahm, W.; Schwenk, A.

    1975-01-01

    The Knight shifts of the potassium isotopes 39 K and 41 K were determined with high accuracy: Ksup((39)) = 0.274 35(10)% and Ksup((41)) = 0.274 93(12)%. The relative isotope effect ΔK/K = -0.210 (20)% is in agreement with the hyperfine structure anomaly 39 Δ 41 . (orig.) [de

  18. Biogeochemical anomaly above oil-containing structures in an arid zone. [Growth stimulation of plants by sodium naphthenate used for prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, O.M.

    1983-01-01

    Visual biological anomalies above the oil-containing structures are characterized by bright green coloring of the vegetation cover, gigantism of the plants, extended vegetation period of the plants, deformity of the plants, etc. Biological anomalies are associated with geological features and are observed only above the zone of fault disorders of the earth's crust, above deep faults. A conclusion is drawn about the presence above the oil-bearing structures in the arid zone of a biogeochemical anomaly whose origin is explained by the biological activity of oil and its derivatives. The petroleum growth matter is the sodium salt of naphthene acid, a growth stimulator of plants and animals. The oils of the USSR contain 0.8-4.8% naphthene acids, which effuse through the faults into the root area levels of the soil. As a result of stimulation of growth and development by the petroleum growth matter, the vegetation period of the plants is prolonged. Under the influence of natural petroleum growth substances, the height and productivity of the anomalous plants increases 2-3-fold. Formation and manifestation of signs of biogeochemical anomalies above the oil-bearing structures in the arid zone predetermine the following conditions: presence of fault disorders of the earth's crust; salinity of the root area of the soil layer necessary for neutralization of the naphthene acids with subsequent formation of the biologically active naphthenates; aridity of the desert landscape; plain relief excluding color diversity in vegetation cover because of nonuniform wetting, etc. The established biogeochemical anomaly can be used in prospecting and exploration of oil, gas and bitumen, and also in determining the fault disorders of the earth's crust.

  19. A Qualitative Interpretation of Residual Magnetic Anomaly using ...

    African Journals Online (AJOL)

    A Qualitative Interpretation of Residual Magnetic Anomaly using Ground ... The magnetic data was collected using a G816 proton precision magnetometer. ... Analysis of residual anomaly graph reveals the existence of some structural features ...

  20. Characterization of the hyperfine interaction of the excited D50 state of Eu3 +:Y2SiO5

    Science.gov (United States)

    Cruzeiro, Emmanuel Zambrini; Etesse, Jean; Tiranov, Alexey; Bourdel, Pierre-Antoine; Fröwis, Florian; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael

    2018-03-01

    We characterize the europium (Eu3 +) hyperfine interaction of the excited state (D50) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under a weak external magnetic field (up to 10 mT) for various field orientations. On the basis of the determined Hamiltonian, we discuss the possibility to predict optical transition probabilities between hyperfine levels for the F70⟷D50 transition. The obtained results provide necessary information to realize an optical quantum memory scheme which utilizes long spin coherence properties of 3 + 151Eu :Y2SiO5 material under external magnetic fields.

  1. Hyperfine interaction measurements in biological compounds: the case of hydroxyapatite

    International Nuclear Information System (INIS)

    Leite Neto, Osmar Flavio da Silveira

    2014-01-01

    The use o nanoparticles in current medicine are under intense investigation. The possible advantages proposed by these systems are very impressive and the results may be quite schemer. In this scenario, the association of nanoparticles with radioactive materials (radionuclide) may be the most important step since the discovery of radioactive for nuclear medicine and radiopharmacy, especially for cancer targeting and therapy. The hyperfine interaction of the nuclear probe 111 Cd in the Hydroxyapatite compounds has been investigated by perturbed angular correlation (PAC) spectroscopy in room temperature for the hydroxyapatite made in the temperatures of 90°C, 35°C and with Ho doped, both thermalized and not. The thermalized samples were heated to T= 1273 K for 6 h. The 111 Cd was broadcast in the structure of the material by diffusion, closing in quartz tubes were heated – together with the radioactive PAC probe 111 In/ 111 Cd to T = 1073 K for 12 h. In not thermalized samples the PAC spectra indicate a distribution of frequency, but in the thermalized samples, the PAC spectra shows the presence of β-tri calcium phosphate in the structure of this kind of Hydroxyapatite. (author)

  2. Situs anomalies on prenatal MRI

    International Nuclear Information System (INIS)

    Nemec, Stefan F.; Brugger, Peter C.; Nemec, Ursula; Bettelheim, Dieter; Kasprian, Gregor; Amann, Gabriele; Rimoin, David L.; Graham, John M.; Prayer, Daniela

    2012-01-01

    Objective: Situs anomalies refer to an abnormal organ arrangement, which may be associated with severe errors of development. Due regard being given to prenatal magnetic resonance imaging (MRI) as an adjunct to ultrasonography (US), this study sought to demonstrate the in utero visualization of situs anomalies on MRI, compared to US. Materials and methods: This retrospective study included 12 fetuses with situs anomalies depicted on fetal MRI using prenatal US as a comparison modality. With an MRI standard protocol, the whole fetus was assessed for anomalies, with regard to the position and morphology of the following structures: heart; venous drainage and aorta; stomach and intestines; liver and gallbladder; and the presence and number of spleens. Results: Situs inversus totalis was found in 3/12 fetuses; situs inversus with levocardia in 1/12 fetuses; situs inversus abdominis in 2/12 fetuses; situs ambiguous with polysplenia in 3/12 fetuses, and with asplenia in 2/12 fetuses; and isolated dextrocardia in 1/12 fetuses. Congenital heart defects (CHDs), vascular anomalies, and intestinal malrotations were the most frequent associated malformations. In 5/12 cases, the US and MRI diagnoses were concordant. Compared to US, in 7/12 cases, additional MRI findings specified the situs anomaly, but CHDs were only partially visualized in six cases. Conclusions: Our initial MRI results demonstrate the visualization of situs anomalies and associated malformations in utero, which may provide important information for perinatal management. Using a standard protocol, MRI may identify additional findings, compared to US, which confirm and specify the situs anomaly, but, with limited MRI visualization of fetal CHDs.

  3. Investigation of hyperfine interactions in DNA nitrogenous bases using perturbed angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Silva, Andreia dos Santos; Carbonari, Artur Wilson; Lapolli, Andre Luis; Saxena, Rajendra Narain; Saitovitch, Henrique

    2013-01-01

    Perturbed γγ angular correlations (PAC) spectroscopy has been used to study the DNA nitrogenous bases (adenine, cytosine, guanine, thymine), using 111 In→ 111 Cd and 111m Cd→ 111 Cd probe nuclei. One of the advantages of applying PAC technique to biological molecules is that the experiments can be carried out on molecules in aqueous solution [1], approaching the function of molecules under conditions that are close to in vivo conditions. The measurements were carried out for DNA nitrogenous bases molecules at 295 K and 77 K in order to investigate dynamic and static hyperfine interactions, respectively. The interpretation of the results was based on the measurements of dynamic interaction characterized by the decay constant from which valuable information on the macroscopic behavior of the molecules was obtained [2; 3]. On the other hand, PAC measurements at low temperature showed interaction frequency (ν Q ), asymmetry parameter (η) and the distribution of the quadrupole frequency (δ). These parameters provide a local microscopic description of the chemical environment in the neighborhood of the probe nuclei. Results showed differences in the hyperfine interactions of probe nuclei bound to the studied biomolecules. Such differences were observed by variations in the hyperfine parameters, which depended on the type of biomolecule and the results also showed that the probe nuclei bounded at the molecules in some cases and at others did not. (author)

  4. Mapping Shear-wave Velocity Structures of the "African Anomaly" Along a Northwest to Southeast Arc From New Zealand to the Mid-Atlantic Ridge

    Science.gov (United States)

    Frodsham, A. E.; Wen, L.

    2006-12-01

    A previous study [Wang and Wen, 2006] investigated the geometry and shear velocity structure of the "African Anomaly" along a great circle arc from the East Pacific Rise to the Japan Sea, and concluded the anomaly extends 1300 km above the core-mantle boundary, that the sides of the anomaly slope towards the apex and has velocity deviations of -5% in the base and -2% to -3% in the mid-lower mantle. Wang and Wen [2004] also reported on the very low velocity province that forms the base of the "African Anomaly" and its lateral extent, but the northern edge of the anomaly was poorly constrained because of the nature of the seismic data. In this presentation we focus on the nature of the anomaly in a cross-section of the mantle along a great arc, from New Zealand, to the Mid-Atlantic Ridge off the coast of Newfoundland, centered over the anomaly. In particular, we focus on the northern edge of the "African Anomaly" where a paucity of large, deep focus earthquakes makes seismic arrivals from the northwest difficult to analyze. We map the lateral extent, thickness, and shear velocity structures of the "African Anomaly" on the basis of forward travel time and waveform modeling of direct S, ScS, and SKS waves. Seismic data used in this study were collected from PASSCAL arrays: KAAPVAAL seismic array (operating years 1997-1999), Tanzania seismic array (1994- 1995), Ethiopia/Kenya seismic array (2000-2002), and the Global Seismographic Network (1994-2002). We minimize uncertainty from earthquake mislocation by relocation of the earthquakes using a global tomographic shear wave velocity model and also correct for heterogeneities outside the anomaly. We explore various methods of data processing, such as frequency filtration, low fold stacking, and cross correlation, to best interpret the arrival times of the various seismic phases and constrain the nature of the "African Anomaly" along a northwest to southeast cross-section.

  5. Progress towards antihydrogen hyperfine spectroscopy in a beam

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, Eberhard [Stefan Meyer Institute for Subatomic Physics, Vienna (Austria); Collaboration: ASACUSA CUSP collaboration

    2014-07-01

    The spectroscopy of antihydrogen promises one of the most precise tests of CPT symmetry. The ASACUSA CUSP collaboration at the Antiproton Decelerator of CERN is preparing an experiment to measure the ground-state hyperfine structure GS-HFS of antihydrogen, since this quantity is one of the most precisely determined transitions in ordinary hydrogen (relative accuracy ∝10{sup -12}). The experiment uses a Rabi-type atomic beam apparatus consisting of a source of spin-polarized antihydrogen (a so-called cusp trap), a microwave cavity to induce a spin flip, a superconducting sextuple magnet for spin analysis, and an antihydrogen detector. In this configuration, a relative accuracy of better than 10{sup -6} can be obtained. This precision will already allow to be sensitive to finite size effects of the antiproton, provided its magnetic moment will measured to higher precision, which is in progress by two collaborations at the AD. The recent progress in producing a beam of antihydrogen atoms and in the development of the apparatus as well as ways to further improve the accuracy by using the Ramsey method of separated oscillatory fields are presented.

  6. Weak-interaction contributions to hyperfine splitting and Lamb shift

    International Nuclear Information System (INIS)

    Eides, M.I.

    1996-01-01

    Weak-interaction contributions to hyperfine splitting and the Lamb shift in hydrogen and muonium are discussed. The problem of sign of the weak-interaction contribution to HFS is clarified, and simple physical arguments that make this sign evident are presented. It is shown that weak-interaction contributions to HFS in hydrogen and muonium have opposite signs. A weak-interaction contribution to the Lamb shift is obtained. copyright 1996 The American Physical Society

  7. Hyperfine field at 111Cd nuclei in Heusler alloys

    International Nuclear Information System (INIS)

    Styczen, B.; Walus, W.; Szytula, A.

    1978-01-01

    The magnitudes and signs of the hyperfine fields in the ordered ferromagnetic Heusler Alloys X 2 MnZ and XMnZ (where X is Cu, Ni, Pd while Z is In, Sn and Sb) have been investigated at liquid nitrogen and room temperatures using TDPAC method. Their signs have been found to be negative. The results have been compared with the predictions of Caroll-Blandin and Cambell-Blandin models and RKKY theory. (Auth)

  8. Assignment of hyperfine shifted haem methyl carbon resonances in paramagnetic low-spin met-cyano complex of sperm whale myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yasuhiko

    1987-09-28

    The hyperfine shifted resonances arising from all four individual haem carbons of the paramagnetic low-spin met-cyano complex of sperm whale myoglobin have been clearly identified and assigned for the first time with the aid of /sup 1/H-/sup 13/C heteronuclear chemical shift correlated spectroscopy. Alteration of the in-plane symmetry of the electronic structure of haem induced by the ligation of proximal histidyl imidazole spreads the haem carbon resonances to 32 ppm at 22/sup 0/C, indicating the sensitivity of those resonances to the haem electronic/molecular structure. Those resonances are potentially powerful probes in characterizing the nature of haem electronic structure. 25 refs.; 2 figs.; 1 table.

  9. International summer school on hyperfine interactions and physics with oriented nuclei - 1985. Pt.1,2

    International Nuclear Information System (INIS)

    Rotter, M.

    1985-01-01

    Part I and part II are presented of the contributions submitted to the International study meeting on physics with oriented nuclei and of papers from the International summer school on hyperfine interactions. The contributions and papers are devoted to the present status and further development of low temperature nuclear orientation of short-lived nuclei with emphasis on online techniques. The following topics are covered: nuclear orientation, NMR/ON, level mixing and level crossing resonances, laser spectroscopy, Moessbauer spectroscopy, polarization phenomena in low, medium and high energy physics, applications of hyperfine interaction techniques in nuclear physics, atomic physics, solid state physics, biology and materials research. (Z.J.)

  10. Hyperfine structure of 87,89Sr 5s4d3D-5snf transitions in collinear fast beam RIMS

    International Nuclear Information System (INIS)

    Bushaw, B. A.; Kluge, H.-J.; Lantzsch, J.; Schwalbach, R.; Schwarz, M.; Stenner, J.; Stevens, H.; Wendt, K.; Zimmer, K.

    1995-01-01

    The title transition, with n=20, 23, and 32 were measured for stable 87 Sr and the observed hfs was interpreted and strong hyperfine mixing of all four terms 1 F3 and 3 F2,3,4 in the upper configuration. The results of the analysis were used to predict the hfs for the radioactive isotope 89 Sr. Measurement were then performed on samples containing 10 9 atoms 89 Sr. The positions and intensities of the hfs components selected for study were found to agree well with the predicted values

  11. Isotope Shifts and Hyperfine Structure in the[Xe]4f(7)5d 6s(2) D-2(J)->[Xe]4f(7)5d 6s 6p F-9(J+1) Transitions of Gadolinium

    International Nuclear Information System (INIS)

    Blaum, K.; Bushaw, Bruce A.; Diel, S; Geppert, Ch; Kuschnick, A; Muller, P.; Nortershauser, W.; Schmitt, A.; Wendt, K.

    1999-01-01

    High-resolution resonance ionization mass spectrometry has been used to measure isotope shifts and hyperfine structure in all[Xe] 4f 7 5d 6s2 9DJ ---[Xe] 4f 7 5d 6s 6p 9FJ+1 (J= 2-6) and the[Xe] 4f 7 5d 6s2 9D6---[Xe] 4f 7 5d 6s 6p 9D5 transitions of gadolinium (Gd I). Gadolinium atoms in an atomic beam were excited with a tunable single-frequency laser in the wavelength range of 422 - 429 nm. Resonant excitation was followed by photoionization with the 363.8 nm line of an argon ion laser and resulting ions were mass separated and detected with a quadrupole mass spectrometer. Isotope shifts for all stable gadolinium isotopes in these transitions have been measured for the first time. Additionally, the hyperfine structure constants of the upper states have been derived for the isotopes 155, 157Gd and are compared with previous work. Using prior experimental values for the mean nuclear charge radii, derived from the combination of muonic atoms and electron scattering data, field shift a nd specific mass shift coefficients for the investigated transitions have been determined and nuclear charge parameters l for the minor isotopes 152, 154Gd have been calculated

  12. Hyperfine transition in 209Bi80+—one step forward

    International Nuclear Information System (INIS)

    Sánchez, R; Andelkovic, Z; Geithner, W; König, K; Litvinov, Yu A; Maaß, B; Ullmann, J; Geppert, Ch; Gorges, Ch; Lochmann, M; Nörtershäuser, W; Schmidt, S; Vollbrecht, J; Hannen, V; Dax, A; Hammen, M; Kaufmann, S; Meisner, J; Schmidt, M; Murböck, T

    2015-01-01

    The hyperfine transitions in lithium-like and hydrogen-like bismuth were remeasured by direct laser spectroscopy at the experimental storage ring. For this we have now employed a voltage divider which enabled us to monitor the electron cooler voltage in situ. This will improve the experimental accuracy by about one order of magnitude with respect to our previous measurement using the same technique. (paper)

  13. Quantum anomalies in nodal line semimetals

    Science.gov (United States)

    Burkov, A. A.

    2018-04-01

    Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure topology. Their unusual observable properties may often be understood in terms of quantum anomalies. In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly, which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals, namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding anomalous response.

  14. Waterlike anomalies in a two-dimensional core-softened potential

    Science.gov (United States)

    Bordin, José Rafael; Barbosa, Marcia C.

    2018-02-01

    We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density, and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities is due the competition between the two length scales in the potential at higher densities, the anomalous region is related to the reentrance of the melting line.

  15. Identifying Threats Using Graph-based Anomaly Detection

    Science.gov (United States)

    Eberle, William; Holder, Lawrence; Cook, Diane

    Much of the data collected during the monitoring of cyber and other infrastructures is structural in nature, consisting of various types of entities and relationships between them. The detection of threatening anomalies in such data is crucial to protecting these infrastructures. We present an approach to detecting anomalies in a graph-based representation of such data that explicitly represents these entities and relationships. The approach consists of first finding normative patterns in the data using graph-based data mining and then searching for small, unexpected deviations to these normative patterns, assuming illicit behavior tries to mimic legitimate, normative behavior. The approach is evaluated using several synthetic and real-world datasets. Results show that the approach has high truepositive rates, low false-positive rates, and is capable of detecting complex structural anomalies in real-world domains including email communications, cellphone calls and network traffic.

  16. Multi-Level Anomaly Detection on Time-Varying Graph Data

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, Robert A [ORNL; Collins, John P [ORNL; Ferragut, Erik M [ORNL; Laska, Jason A [ORNL; Sullivan, Blair D [ORNL

    2015-01-01

    This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating probabilities at finer levels, and these closely related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, this multi-scale analysis facilitates intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. To illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.

  17. Hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements

    International Nuclear Information System (INIS)

    Michel, J.

    1969-01-01

    We have studied the hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements down to 0.3 K. In the first part we describe the apparatus used to perform our measurements. The second part is devoted to some theoretical considerations. We have studied in detail the case of praseodymium which is an exception in the rare earth series. The third part shows the results we have obtained. (author) [fr

  18. Hyperfine magnetic fields at 111Cd in Heusler alloys

    International Nuclear Information System (INIS)

    Styczen, B.; Szytula, A.; Walus, W.

    1977-01-01

    The magnitudes and signs of the hyperfine magnetic field on 111 Cd nuclei at Z sites in the ordered ferromagnetic Heusler alloys X 2 MnZ and XMnZ (where X is Cu, Ni, Pd while Z is In, Sn and Sb) have been investigated at liquid nitrogen and room temperatures using TDPAC method. Their signs have been found to be negative. The results have been compared with the predictions of Caroli-Blandin and Campbell-Blandin models and RKKY theory. (author)

  19. Dynamic hyperfine interactions in {sup 111}In({sup 111}Cd)-doped ZnO semiconductor: PAC results supported by ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Emiliano L., E-mail: munoz@fisica.unlp.edu.ar [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina); Mercurio, Marcio E.; Cordeiro, Moacir R.; Pereira, Luciano F.D.; Carbonari, Artur W. [Instituto de Pesquisas Energeticas y Nucleares-IPEN-CNEN/SP, Sao Paulo (Brazil); Renteria, Mario [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina)

    2012-08-15

    In this work, we present results of Time-Differential {gamma}-{gamma} Perturbed-Angular-Correlations (PAC) experiments performed in {sup 111}Cd-doped ZnO semiconductor. The PAC technique has been applied in order to characterize the electric-field-gradient (EFG) tensor at ({sup 111}In (EC){yields}) {sup 111}Cd nuclei located, as was later demonstrated, at defect-free cation sites of the ZnO host structure. The PAC experiments were performed in the temperature range of 77-1075 K. At first glance, the unexpected presence of low-intensity dynamic hyperfine interactions was observed, which were analyzed with a perturbation factor based on the Baeverstam and Othaz model. The experimental EFG results were compared with ab initio calculations performed with the Full-Potential Augmented Plane Wave plus local orbital (FP-APW+lo) method, in the framework of the Density Functional Theory (DFT), using the Wien2K code. The presence of the dynamic hyperfine interactions has been analyzed enlightened by the FP-APW+lo calculations of the EFG performed as a function of the charge state of the cell. We could correlate the large strength of the dynamic hyperfine interaction with the strong variation of the EFG due to changes in the electronic charge distribution in the Cd vicinity during the time-window of the PAC measurement. It was also revealed that the Cd impurity decays to a final stable neutral charge state (Cd{sup 2+}) fast enough (in few ns) to produce the nearly undamped observed PAC spectra.

  20. Coherent control of two individual electron spins and influence of hyperfine coupling in a double quantum dot

    International Nuclear Information System (INIS)

    Tarucha, S; Obata, T; Pioro-Ladriere, M; Brunner, R; Shin, Y-S; Kubo, T; Tokura, Y

    2011-01-01

    Electric dipole spin resonance of two individual electrons and the influence of hyperfine coupling on the spin resonance are studied for a double quantum dot equipped with a micro-magnet. The spin resonance occurs by oscillating the electron in each dot at microwave (MW) frequencies in the presence of a micro-magnet induced stray field. The observed continuous wave (CW) and time-resolved spin resonances are consistent with calculations in which the MW induced AC electric field and micro-magnet induced stray field are taken into account. The influence of hyperfine coupling causes an increase and broadening of the respective CW spin resonance peaks through dynamical nuclear polarization when sweeping up the magnetic field. This behaviour appears stronger for the larger of the two spin resonance peaks and in general becomes more pronounced as the MW power increases, both reflecting that the electron-nuclei interaction is more efficient for the stronger spin resonance. In addition the hyperfine coupling effect only becomes pronounced when the MW induced AC magnetic field exceeds the fluctuating nuclear field.

  1. Hyperfine field calculations: search for muon stopping sites in Fe/sub 3/O/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Boekema, C. (Texas Tech Univ., Lubbock (USA)); Denison, A.B. (Wyoming Univ., Laramie (USA)); Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E. (Los Alamos National Lab., NM (USA))

    1983-12-01

    Muon Spin Rotation (..mu..SR) results for magnetite (Fe/sub 3/O/sub 4/) are analyzed and discussed. At room temperature, a ..mu..SR signal is observed due to the presence of an internal magnetic field (Bsub(int)) at the muon site. External transverse field measurements show that Bsub(int) is parallel to the magnetic spin direction, the <111> direction in zero applied field. Calculations of the hyperfine field to pinpoint muon stopping sites in magnetite show that the local field contains supertransfer (covalent) and dipolar field contributions. The implanted muons appear to stop at sites structurally similar to those reported for hematite (..cap alpha..-Fe/sub 2/O/sub 3/), where muon-oxygen bond formation was strongly indicated.

  2. Hyperfine splitting in positronium to O(α7me). One-photon annihilation contribution

    International Nuclear Information System (INIS)

    Baker, M.; Penin, A.A.; Karlsruher Institut fuer Technologie; Piclum, J.; RWTH Aachen; Steinhauser, M.

    2014-02-01

    We present the complete result for the O(α 7 m e ) one-photon annihilation contribution to the hyperfine splitting of the ground state energy levels in positronium. Numerically it increases the prediction of quantum electrodynamics by 217±1 kHz.

  3. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de [Fakultät Mathematik und Naturwissenschaften, Physikalische und Theoretische Chemie, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Yachmenev, Andrey; Yurchenko, Sergei N. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  4. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    Science.gov (United States)

    Adam, Ahmad Y.; Yachmenev, Andrey; Yurchenko, Sergei N.; Jensen, Per

    2015-12-01

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant's equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  5. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    International Nuclear Information System (INIS)

    Adam, Ahmad Y.; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2015-01-01

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH 3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH 3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role

  6. Some recoil corrections to the hydrogen hyperfine splitting

    International Nuclear Information System (INIS)

    Bodwin, G.T.; Yennie, D.R.

    1988-01-01

    We compute all of the recoil corrections to the ground-state hyperfine splitting in hydrogen, with the exception of the proton polarizability, that are required to achieve an accuracy of 1 ppm. Our approach includes a unified treatment of the corrections that would arise from a pointlike Dirac proton and the corrections that are due to the proton's non-QED structure. Our principal new results are a calculation of the relative order-α 2 (m/sub e//m/sub p/) contributions that arise from the proton's anomalous magnetic moment and a systematic treatment of the relative order-α(m/sub e//m/sub p/) contributions that arise from form-factor corrections. In the former calculation we introduce some new technical improvements and are able to evaluate all of the expressions analytically. In the latter calculation, which has been the subject of previous investigations by other authors, we express the form-factor corrections in terms of two-dimensional integrals that are convenient for numerical evaluation and present numerical results for the commonly used dipole parametrization of the form factors. Because we use a parametrization of the form factors that differs slightly from the ones used in previous work, our numerical results are shifted from older ones by a small amount

  7. Global magnetic anomaly and aurora of Neptune

    International Nuclear Information System (INIS)

    Cheng, A.F.

    1990-01-01

    The large offset and tilt of Neptune's dipole magnetic field combine to create a global magnetic anomaly, analogous to but much more important than Earth's South Atlantic Anomaly. Energetic particle precipitation loss within the Neptune anomaly creates atmospheric drift shadows within which particle fluxes are greatly reduced. The energetic particle dropout observed by Voyager near closest approach occurred near the predicted times when Voyager passed within the atmospheric drift shadow. Extremely soft, structured bursts of ions and electrons within the drift shadow may result from plasma wave-induced pitch angle scattering of trapped particles confined near the magnetic equator. The dropout does not necessarily imply that Voyager passed through an Earth-like discrete auroral zone, as earlier reported. The ion and electron fluxes observed within the dropout period correspond to particles that must precipitate to Neptune's atmosphere within the anomaly region. This anomaly precipitation can account for a major portion of the ultraviolet emissions previously identified as Neptune aurora

  8. Modeling of the Foca-Uzunada magnetic anomaly and thermal structure in the gulf of Izmir, western Turkey

    Science.gov (United States)

    Aydemir, Attila; Bilim, Funda; Cifci, Gunay; Okay, Seda

    2018-05-01

    The Gulf of Izmir (GoI) is one of the largest gulfs in the Aegean Sea, Turkey. There is a large magnetic anomaly extending in the NE-SW direction between Foca and Uzunada (Uzun Island) in the gulf. Previously, Curie Point Depth (CPD), geothermal gradient, heat-flow and radiogenic heat production maps of the onshore part of the Aegean region were constructed from the aeromagnetic data. In this study, the same maps except radiogenic heat production map are presented for the offshore part and the largest magnetic anomaly in the northern part of the gulf is focused, particularly. As a result, the thermal structure of GoI is clearly defined and according to the results of this study, CPD values were found from 7 km in the NE of Foca to 10 km through the south of the gulf. The geothermal gradient values vary between 50 and 80 °C/km. Maximum heat flow values around the anomaly are calculated as 200 and 215 mW/m2 according to the thermal conductivity coefficients of 2.5 W m-1 K-1 and 2.7 W m-1 K-1, respectively. Although the anomaly is located in the Izmir Gulf; CPD, geothermic gradient, heat flow anomalies are shifted through the north of Foca and Aliaga towns in the Candarli Bay. This prominent anomaly in the Gulf of Izmir is associated with the magmatics that were encountered at 969 m in the Foca-1 well although it was drilled about 2 km away from the outermost closed contour of the magnetic anomaly. The anomaly is also modeled three dimensionally (3D) in this study. In the model map, the top of the causative body is completely located in the outer part of the gulf, and is very shallow at about 0.5 km while its bottom is inclined through the west of Cigli and Menemen. From this viewpoint, it is possible to suggest that the causative body is inclined through the Foca Peninsula. However, its closed contours are in the NE direction, through the Candarli Bay. Top depth of the causative body is also calculated from the basement horizon on the seismic sections crossing this

  9. Gravitational anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Leutwyler, H; Mallik, S

    1986-12-01

    The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.

  10. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  11. Towards Measuring the Ground State Hyperfine Splitting of Antihydrogen -- A Progress Report

    CERN Document Server

    Sauerzopf, C.

    2016-06-20

    We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.

  12. Dephasing and hyperfine interaction in carbon nanotubes double quantum dots

    DEFF Research Database (Denmark)

    Reynoso, Andres Alejandro; Flensberg, Karsten

    2012-01-01

    We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....

  13. Relativistic DFT calculations of hyperfine coupling constants in the 5d hexafluorido complexes

    DEFF Research Database (Denmark)

    Haase, Pi Ariane Bresling; Repisky, Michal; Komorovsky, Stanislav

    2018-01-01

    We have investigated the performance of the most popular relativistic density functional theory methods, zeroth order regular approximation (ZORA) and 4-component Dirac-Kohn-Sham (DKS), in the calculation of the recently measured hyperfine coupling constants of ReIV and IrIV in their hexafluorido...

  14. Adler-Bardeen Theorem for the Axial Anomaly and the First Moment of the Polarized Virtual Photon Structure Function

    International Nuclear Information System (INIS)

    Ueda, Takahiro; Sasaki, Ken; Uematsu, Tsuneo

    2007-01-01

    The Adler-Bardeen theorem for the axial anomaly is extensively used to calculate the next-to-next-to-leading order (αα s 2 ) corrections to the first moment of the polarized virtual photon structure function g 1 γ (x,P 2 ,Q 2 )

  15. Electron plasmas as a diagnostic tool for hyperfine spectroscopy of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, T.; Thompson, R. I. [Department of Physics and Astronomy, University of Calgary, Calgary AB, T2N 1N4 (Canada); Amole, C.; Capra, A.; Menary, S. [Department of Physics and Astronomy, York University, Toronto ON, M3J 1P3 (Canada); Ashkezari, M. D.; Hayden, M. E. [Department of Physics, Simon Fraser University, Burnaby BC, V5A 1S6 (Canada); Baquero-Ruiz, M.; Fajans, J.; Little, A.; So, C.; Wurtele, J. S. [Department of Physics, University of California, Berkeley, CA 94720-7300 (United States); Bertsche, W. [School of Physics and Astronomy, University of Manchester, M13 9PL Manchester, UK and The Cockcroft Institute, WA4 4AD Warrington (United Kingdom); Bowe, P. D.; Hangst, J. S.; Rasmussen, C. O. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Cesar, C. L.; Silveira, D. M. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Charlton, M. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); and others

    2013-03-19

    Long term magnetic confinement of antihydrogen atoms has recently been demonstrated by the ALPHA collaboration at CERN, opening the door to a range of experimental possibilities. Of particular interest is a measurement of the antihydrogen spectrum. A precise comparison of the spectrum of antihydrogen with that of hydrogen would be an excellent test of CPT symmetry. One prime candidate for precision CPT tests is the ground-state hyperfine transition; measured in hydrogen to a precision of nearly one part in 10{sup 12}. Effective execution of such an experiment with trapped antihydrogen requires precise knowledge of the magnetic environment. Here we present a solution that uses an electron plasma confined in the antihydrogen trapping region. The cyclotron resonance of the electron plasma is probed with microwaves at the cyclotron frequency and the subsequent heating of the electron plasma is measured through the plasma quadrupole mode frequency. Using this method, the minimum magnetic field of the neutral trap can be determined to within 4 parts in 10{sup 4}. This technique was used extensively in the recent demonstration of resonant interaction with the hyperfine levels of trapped antihydrogen atoms.

  16. Holonomy anomalies

    International Nuclear Information System (INIS)

    Bagger, J.; Nemeschansky, D.; Yankielowicz, S.

    1985-05-01

    A new type of anomaly is discussed that afflicts certain non-linear sigma models with fermions. This anomaly is similar to the ordinary gauge and gravitational anomalies since it reflects a topological obstruction to the reparametrization invariance of the quantum effective action. Nonlinear sigma models are constructed based on homogeneous spaces G/H. Anomalies arising when the fermions are chiral are shown to be cancelled sometimes by Chern-Simons terms. Nonlinear sigma models are considered based on general Riemannian manifolds. 9 refs

  17. Coronary artery anomalies in Turner Syndrome.

    Science.gov (United States)

    Viuff, Mette H; Trolle, Christian; Wen, Jan; Jensen, Jesper M; Nørgaard, Bjarne L; Gutmark, Ephraim J; Gutmark-Little, Iris; Mortensen, Kristian H; Gravholt, Claus Højbjerg; Andersen, Niels H

    Congenital heart disease, primarily involving the left-sided structures, is often seen in patients with Turner Syndrome. Moreover, a few case reports have indicated that coronary anomalies may be more prevalent in Turner Syndrome than in the normal population. We therefore set out to systematically investigate coronary arterial anatomy by computed tomographic coronary angiography (coronary CTA) in Turner Syndrome patients. Fifty consecutive women with Turner Syndrome (mean age 47 years [17-71]) underwent coronary CTA. Patients were compared with 25 gender-matched controls. Coronary anomaly was more frequent in patients with Turner Syndrome than in healthy controls [20% vs. 4% (p = 0.043)]. Nine out of ten abnormal cases had an anomalous left coronary artery anatomy (absent left main trunk, n = 7; circumflex artery originating from the right aortic sinus, n = 2). One case had a tubular origin of the right coronary artery above the aortic sinus. There was no correlation between the presence of coronary arterial anomalies and karyotype, bicuspid aortic valve, or other congenital heart defects. Coronary anomalies are highly prevalent in Turner Syndrome. The left coronary artery is predominantly affected, with an absent left main coronary artery being the most common anomaly. No hemodynamically relevant coronary anomalies were found. Copyright © 2016 Society of Cardiovascular Computed Tomography. All rights reserved.

  18. f-electron-nuclear hyperfine-coupled multiplets in the unconventional charge order phase of filled skutterudite PrRu4P12

    International Nuclear Information System (INIS)

    Aoki, Yuji; Namiki, Takahiro; Saha, Shanta R.; Sato, Hideyuki; Tayama, Takashi; Sakakibara, Toshiro; Shiina, Ryousuke; Shiba, Hiroyuki; Sugawara, Hitoshi

    2011-01-01

    The filled skutterudite PrRu 4 P 12 is known to undergo an unconventional charge order phase transition at 63 K, below which two sublattices with distinct f-electron crystalline-electric-field ground states are formed. In this paper, we study experimentally and theoretically the properties of the charge order phase at very low temperature, particularly focusing on the nature of the degenerate triplet ground state on one of the sublattices. First, we present experimental results of specific heat and magnetization measured with high quality single crystals. In spite of the absence of any symmetry breaking, the specific heat shows a peak structure at T p =0.30 K in zero field; it shifts to higher temperatures as the magnetic field is applied. In addition, the magnetization curve has a remarkable rounding below 1 T. Then, we study the origin of these experimental findings by considering the hyperfine interaction between 4f electron and nuclear spin. We demonstrate that the puzzling behaviors at low temperatures can be well accounted for by the formation of 4f-electron-nuclear hyperfine-coupled multiplets, the first thermodynamical observation of its kind. (author)

  19. Theory of long-range interactions for Rydberg states attached to hyperfine-split cores

    Science.gov (United States)

    Robicheaux, F.; Booth, D. W.; Saffman, M.

    2018-02-01

    The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).

  20. Hyperfine interaction mechanism of magnetic field effects in sequential fluorophore and exciplex fluorescence.

    Science.gov (United States)

    Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I

    2013-03-28

    The magnetic field effect on the fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is theoretically explored in the framework of Integral Encounter Theory. It is assumed that the excited fluorophore is equilibrated with the exciplex that reversibly dissociates into the radical-ion pair. The magnetic field sensitive stage is the spin conversion in the resulting geminate radical-ion pair, (1, 3)[D(+)...A(-)] that proceeds due to hyperfine interaction. We confirm our earlier conclusion (obtained with a rate description of spin conversion) that in the model with a single nucleus spin 1/2 the magnitude of the Magnetic Field Effect (MFE) also vanishes in the opposite limits of low and high dielectric permittivity of the solvent. Moreover, it is shown that MFE being positive at small hyperfine interaction A, first increases with A but approaching the maximum starts to decrease and even changes the sign.

  1. Influence of annealing on structure and magnetic properties of Laves phase HfFe2

    International Nuclear Information System (INIS)

    Belosevic-Cavor, J.; Cekic, B.; Novakovic, N.; Ivanovic, N.; Manasijevic, M.

    2004-01-01

    Hyperfine fields (HFF) in a polycrystalline HfFe 2 binary compound were measured at 181 Ta probe ion sites using the time differential perturbed angular correlation (TDPAC) method. Analysis of TDPAC spectra obtained in measurements revealed two components. One of them corresponded to the magnetic perturbation with the value B hf1 (Ta) = 13.82(7) T at room temperature and it was ascribed to the interaction at the regular position of Hf in the cubic C15 (MgCu 2 -type) structure of the HfFe 2 compound. The second component with hyperfine field value of B hf2 (Ta) = 8.0(2) T is probably due to the presence of a minor amount of the hexagonal C14 (MgZn 2 -type) structure. Measurements showed that it had come to a change in the ratio of different components of TDPAC spectra with annealing, but the values for hyperfine fields for both components have not changed significantly. The origin of the hyperfine magnetic field and its difference in the two structures (C14 and C15) were discussed taking into account crystal structure effects. (orig.)

  2. Lasers in nuclear physics

    International Nuclear Information System (INIS)

    Inamura, T.T.

    1988-01-01

    The hyperfine interaction has been reviewed from a point of view of nuclear physics. Recent progress of nuclear spectroscopy with lasers is presented as one of laser studies of fundamental physics currently pursued in Japan. Especially, the hyperfine anomaly is discussed in connection with the origin of nuclear magnetism. (author)

  3. Hyperfine splitting of low-lying heavy baryons

    Energy Technology Data Exchange (ETDEWEB)

    Harada, M.; Qamar, A.; Schechter, J. [Syracuse Univ., NY (United States). Dept. of Physics; Sannino, F. [Syracuse Univ., NY (United States). Dept. of Physics]|[Dipartimento di Scienze Fisiche and Istituto Nazionale di Fisica Nucleare, Mostra D`Oltremare Pad. 19, 80125, Napoli (Italy); Weigel, H. [Institute for Theoretical Physics, Tuebingen University, Auf der Morgenstelle 14, D-72076, Tuebingen (Germany)

    1997-11-10

    We calculate the next-to-leading order contribution to the masses of the heavy baryons in the bound-state approach for baryons containing a heavy quark. These 1/N{sub C} corrections arise when states of good spin and isospin are generated from the background soliton of the light meson fields. Our study is motivated by the previously established result that light vector meson fields are required for this soliton in order to reasonably describe the spectrum of both the light and the heavy baryons. We note that the inclusion of light vector mesons significantly improves the agreement of the predicted hyperfine splitting with experiment. A number of aspects of this somewhat complicated calculation are discussed in detail. (orig.). 33 refs.

  4. Measurement of the magnetic hyperfine field at the 181 Ta site in nickel matrix

    International Nuclear Information System (INIS)

    Saxena, R.N.; Carbonari, A.W.; Pendl Junior, W.; Attili, R.N.; Kenchian, G.; Soares, J.C.A.C.R.; Moreno, M.S.

    1990-01-01

    The hyperfine magnetic field on the Ta 181 nucleus were determined using the gamma-gamma perturbed angular correlation method, on a nickel matrix, with a 133-482 KeV cascade from the Hf- 181 beta minus decay. (L.C.J.A.)

  5. Radiative nonrecoil nuclear finite size corrections of order α(Zα)5 to the hyperfine splitting of S-states in muonic hydrogen

    International Nuclear Information System (INIS)

    Faustov, R.N.; Martynenko, A.P.; Martynenko, G.A.; Sorokin, V.V.

    2014-01-01

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.

  6. Kohn Anomaly and Phase Stability in Group VB Transition Metals

    Directory of Open Access Journals (Sweden)

    Alexander Landa

    2018-03-01

    Full Text Available In the periodic table, only a few pure metals exhibit lattice or magnetic instabilities associated with Fermi surface nesting, the classical examples being α-U and Cr. Whereas α-U displays a strong Kohn anomaly in the phonon spectrum that ultimately leads to the formation of charge density waves (CDWs, Cr is known for its nesting-induced spin density waves (SDWs. Recently, it has become clear that a pronounced Kohn anomaly and the corresponding softening in the elastic constants is also the key factor that controls structural transformations and mechanical properties in compressed group VB metals—materials with relatively high superconducting critical temperatures. This article reviews the current understanding of the structural and mechanical behavior of these metals under pressure with an introduction to the concept of the Kohn anomaly and how it is related to the important concept of Peierls instability. We review both experimental and theoretical results showing different manifestations of the Kohn anomaly in the transverse acoustic phonon mode TA (ξ00 in V, Nb, and Ta. Specifically, in V the anomaly triggers a structural transition to a rhombohedral phase, whereas in Nb and Ta it leads to an anomalous reduction in yield strength.

  7. Anomaly-free models for flavour anomalies

    Science.gov (United States)

    Ellis, John; Fairbairn, Malcolm; Tunney, Patrick

    2018-03-01

    We explore the constraints imposed by the cancellation of triangle anomalies on models in which the flavour anomalies reported by LHCb and other experiments are due to an extra U(1)^' gauge boson Z^' . We assume universal and rational U(1)^' charges for the first two generations of left-handed quarks and of right-handed up-type quarks but allow different charges for their third-generation counterparts. If the right-handed charges vanish, cancellation of the triangle anomalies requires all the quark U(1)^' charges to vanish, if there are either no exotic fermions or there is only one Standard Model singlet dark matter (DM) fermion. There are non-trivial anomaly-free models with more than one such `dark' fermion, or with a single DM fermion if right-handed up-type quarks have non-zero U(1)^' charges. In some of the latter models the U(1)^' couplings of the first- and second-generation quarks all vanish, weakening the LHC Z^' constraint, and in some other models the DM particle has purely axial couplings, weakening the direct DM scattering constraint. We also consider models in which anomalies are cancelled via extra vector-like leptons, showing how the prospective LHC Z^' constraint may be weakened because the Z^' → μ ^+ μ ^- branching ratio is suppressed relative to other decay modes.

  8. Effect of attractive interactions on the water-like anomalies of a core-softened model potential.

    Science.gov (United States)

    Pant, Shashank; Gera, Tarun; Choudhury, Niharendu

    2013-12-28

    It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.

  9. Branchial anomalies: diagnosis and management.

    Science.gov (United States)

    Prasad, Sampath Chandra; Azeez, Arun; Thada, Nikhil Dinaker; Rao, Pallavi; Bacciu, Andrea; Prasad, Kishore Chandra

    2014-01-01

    Objective. To find out the incidence of involvement of individual arches, anatomical types of lesions, the age and sex incidence, the site and side of predilection, the common clinical features, the common investigations, treatment, and complications of the different anomalies. Setting. Academic Department of Otolaryngology, Head and Neck Surgery. Design. A 10 year retrospective study. Participants. 30 patients with clinically proven branchial anomalies including patients with bilateral disease totaling 34 lesions. Main Outcome Measures. The demographical data, clinical features, type of branchial anomalies, and the management details were recorded and analyzed. Results and Observations. The mean age of presentation was 18.67 years. Male to female sex ratio was 1.27 : 1 with a male preponderance. Of the 34 lesions, maximum incidence was of second arch anomalies (50%) followed by first arch. We had two cases each of third and fourth arch anomalies. Only 1 (3.3%) patients of the 30 presented with lesion at birth. The most common pathological type of lesions was fistula (58.82%) followed by cyst. 41.18% of the lesions occurred on the right side. All the patients underwent surgical excision. None of our patients had involvement of facial nerve in first branchial anomaly. All patients had tracts going superficial to the facial nerve. Conclusion. Confirming the extent of the tract is mandatory before any surgery as these lesions pass in relation to some of the most vital structures of the neck. Surgery should always be the treatment option. injection of dye, microscopic removal and inclusion of surrounding tissue while excising the tract leads to a decreased incidence of recurrence.

  10. Branchial Anomalies: Diagnosis and Management

    Science.gov (United States)

    Azeez, Arun; Thada, Nikhil Dinaker; Rao, Pallavi; Prasad, Kishore Chandra

    2014-01-01

    Objective. To find out the incidence of involvement of individual arches, anatomical types of lesions, the age and sex incidence, the site and side of predilection, the common clinical features, the common investigations, treatment, and complications of the different anomalies. Setting. Academic Department of Otolaryngology, Head and Neck Surgery. Design. A 10 year retrospective study. Participants. 30 patients with clinically proven branchial anomalies including patients with bilateral disease totaling 34 lesions. Main Outcome Measures. The demographical data, clinical features, type of branchial anomalies, and the management details were recorded and analyzed. Results and Observations. The mean age of presentation was 18.67 years. Male to female sex ratio was 1.27 : 1 with a male preponderance. Of the 34 lesions, maximum incidence was of second arch anomalies (50%) followed by first arch. We had two cases each of third and fourth arch anomalies. Only 1 (3.3%) patients of the 30 presented with lesion at birth. The most common pathological type of lesions was fistula (58.82%) followed by cyst. 41.18% of the lesions occurred on the right side. All the patients underwent surgical excision. None of our patients had involvement of facial nerve in first branchial anomaly. All patients had tracts going superficial to the facial nerve. Conclusion. Confirming the extent of the tract is mandatory before any surgery as these lesions pass in relation to some of the most vital structures of the neck. Surgery should always be the treatment option. injection of dye, microscopic removal and inclusion of surrounding tissue while excising the tract leads to a decreased incidence of recurrence. PMID:24772172

  11. A robust background regression based score estimation algorithm for hyperspectral anomaly detection

    Science.gov (United States)

    Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei

    2016-12-01

    Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement

  12. Hyperfine interaction studies of radon in some metals and metal oxides with the alpha-gamma angular correlation method

    International Nuclear Information System (INIS)

    Orre, B.; Norlin, L.O.; Johansson, K.; Falk, F.; Thun, J.E.

    1975-11-01

    The α-γ angular correlation method has been applied to 226 Ra and 224 Ra decay with emphasis on source and backing preparations. A simple method to prepare sources suitable for hyperfine interaction studies has been developed, namely to implant the 224 Ra activity into the backing by recoil implantation in vacuum from a 228 Th source. A high voltage should be applied, which considerably improved the profile of the implantation. The hyperfine interactions in Fe,Co,Gd,Ni were measured and analysed according to a random static quadrupole interaction combined with an aligned magnetic interaction. (Auth.)

  13. Solvent polarity effects on hyperfine couplings of cyclohexadienyl-type radicals

    International Nuclear Information System (INIS)

    Vujosevic', D.; Scheuermann, R.; Dilger, H.; Tucker, I.M.; Martyniak, A.; McKenzie, I.; Roduner, E.

    2006-01-01

    In this study muon-spin rotation (μSR) serves as a tool for sensitive monitoring of the environment of muoniated radicals in isotropic liquids. A systematic investigation of the behaviour of the hyperfine coupling constants of cyclohexadienyl-type radicals is performed, and it is found that they are in linear dependence on solvent polarity, with certain deviations. These deviations are discussed in detail. It is found that with increasing length of the hydroxyalkyl substituent group the perturbation of the phenyl ring becomes smaller

  14. Solvent polarity effects on hyperfine couplings of cyclohexadienyl-type radicals

    Energy Technology Data Exchange (ETDEWEB)

    Vujosevic' , D. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Scheuermann, R. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Dilger, H. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Tucker, I.M. [Unilever Research and Development, Port Sunlight, Wirral CH63 3JW (United Kingdom); Martyniak, A. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); McKenzie, I. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Roduner, E. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)]. E-mail: e.rodunder@ipc.uni-stuttgart.de

    2006-03-31

    In this study muon-spin rotation ({mu}SR) serves as a tool for sensitive monitoring of the environment of muoniated radicals in isotropic liquids. A systematic investigation of the behaviour of the hyperfine coupling constants of cyclohexadienyl-type radicals is performed, and it is found that they are in linear dependence on solvent polarity, with certain deviations. These deviations are discussed in detail. It is found that with increasing length of the hydroxyalkyl substituent group the perturbation of the phenyl ring becomes smaller.

  15. Delineating Potential Karst Water-Bearing Structures based on Resistivity Anomalies and Microtremor Analyses-A Case Study in Yunnan Province, China

    Science.gov (United States)

    Gan, F.; Su, C.; Liu, W.; Zhao, W.

    2016-12-01

    Heterogeneity, anisotropy and rugged landforms become challenges for geophysicists to locate drilling site by water-bearing structure profiling in Karst region. If only one geophysical method is used to achieve this objective, low resistivity anomalies deduced to be water-rich zones could actually be zones rich in marl and shale. In this study, integrated geophysical methods were used to locate a favorable drilling position for the provision of karst water to Juede village, which had been experiencing severe water shortages over a prolonged period. According to site conditions and hydrogeological data, appropriate geophysical profiles were conducted, approximately perpendicular to the direction of groundwater flow. In general, significant changes in resistivity occur between water-filled caves/ fractures and competent rocks. Thus, electrical and electromagnetic methods have been widely applied to search for karst groundwater indirectly. First, electrical resistivity tomography was carried out to discern shallow resistivity distributions within the profile where the low resistivity anomalies were of most interest. Second, one short profile of audio-frequency magnetotelluric survey was used to ascertain the vertical and horizontal extent of these low resistivity anomalies. Third, the microtremor H/V spectral ratio method was applied to identify potential water-bearing structures from low resistivity anomalies and to differentiate these from the interference of marl and shale with low resistivity. Finally, anomalous depths were estimated by interpreting Schlumberger sounding data to determine an optimal drilling site. The study shows that karst hydrogeology and geophysical methods can be effectively integrated for the purposes of karst groundwater exploration.

  16. Prevalence and distribution of dental anomalies in orthodontic patients.

    Science.gov (United States)

    Montasser, Mona A; Taha, Mahasen

    2012-01-01

    To study the prevalence and distribution of dental anomalies in a sample of orthodontic patients. The dental casts, intraoral photographs, and lateral panoramic and cephalometric radiographs of 509 Egyptian orthodontic patients were studied. Patients were examined for dental anomalies in number, size, shape, position, and structure. The prevalence of each dental anomaly was calculated and compared between sexes. Of the total study sample, 32.6% of the patients had at least one dental anomaly other than agenesis of third molars; 32.1% of females and 33.5% of males had at least one dental anomaly other than agenesis of third molars. The most commonly detected dental anomalies were impaction (12.8%) and ectopic eruption (10.8%). The total prevalence of hypodontia (excluding third molars) and hyperdontia was 2.4% and 2.8%, respectively, with similiar distributions in females and males. Gemination and accessory roots were reported in this study; each of these anomalies was detected in 0.2% of patients. In addition to genetic and racial factors, environmental factors could have more important influence on the prevalence of dental anomalies in every population. Impaction, ectopic eruption, hyperdontia, hypodontia, and microdontia were the most common dental anomalies, while fusion and dentinogenesis imperfecta were absent.

  17. 61Ni Moessbauer study of the surface hyperfine magnetic field in nickel

    International Nuclear Information System (INIS)

    Stadnik, Z.M.; Stroink, G.; Griesbach, P.; Guetlich, P.; Kohara, T.

    1988-01-01

    61 Ni Moessbauer measurements have been performed at 4.2 K on spherical Ni particles with an average diameter of 100 and 30 A, covered with a protective layer of SiO. Their spectra contain a surface component with a significantly reduced hyperfine magnetic field as compared with the field in the bulk. This result confirms recent theoretical predictions. (orig.)

  18. Fermion doubling on a lattice and topological aspects of chiral anomaly

    International Nuclear Information System (INIS)

    Goswami, G.; Bandyopadhyay, P.

    1997-01-01

    The problem of fermion doubling on a lattice has been discussed here from the specific geometrical properties of a lattice structure and topological aspects of chiral anomaly. It is argued that there cannot be chiral anomaly on a lattice and as such there cannot be any conserved charge. This unveils the root cause of fermion doubling, and the unwanted fermions just reflect the geometrical properties of a lattice and may be viewed as to represent the open-quotes fictitiousclose quotes chiral spinors associated with the lattice structure which make chiral fermions anomaly free. copyright 1997 American Institute of Physics

  19. Aggregate frequency width, nuclear hyperfine coupling and Jahn-Teller effect of Cu2+ impurity ion ESR in SrLaAlO4 dielectric resonator at 20 millikelvin

    Science.gov (United States)

    Hosain, M. A.; Le Floch, J.-M.; Krupka, J.; Tobar, M. E.

    2018-01-01

    The impurity paramagnetic ion, Cu2+ substitutes Al in the SrLaAlO4 single crystal lattice, this results in a CuO6 elongated octahedron, and the resulting measured g-factors satisfy four-fold axes variation condition. The aggregate frequency width of the electron spin resonance with the required minimum level of impurity concentration has been evaluated in this single crystal SrLaAlO4 at 20 millikelvin. Measured parallel hyperfine constants, A\\Vert Cu , were determined to be -155.7×10-4~cm-1, ~ -163.0×10-4~cm-1, ~ -178.3×10-4~cm-1 and -211.1×10-4~cm-1 at 9.072~GHz~(WGH4, 1, 1) for the nuclear magnetic quantum number M_I=+\\frac{3}{2}, +\\frac{1}{2}, -\\frac{1}{2} , and -\\frac{3}{2} respectively. The anisotropy of the hyperfine structure reveals the characteristics of the static Jahn-Teller effect. The second-order-anisotropy term, ˜ (\\fracspin{-orbit~coupling}{10D_q}){\\hspace{0pt}}2 , is significant and cannot be disregarded, with the local strain dominating over the observed Zeeman-anisotropy-energy difference. The Bohr electron magneton, β=9.23× 10-24 JT-1 , (within -0.43% so-called experimental error) has been found using the measured spin-Hamiltonian parameters. Measured nuclear dipolar hyperfine structure parameter P\\Vert=12.3×10-4~cm-1 shows that the mean inverse third power of the electron distance from the nucleus is ≃ 5.23 a.u. for Cu2+ ion in the substituted Al3+ ion site assuming nuclear electric quadruple moment Q=-0.211 barn.

  20. Towards measuring the ground state hyperfine splitting of antihydrogen – a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sauerzopf, C., E-mail: clemens.sauerzopf@oeaw.ac.at; Capon, A. A.; Diermaier, M. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Dupré, P. [Atomic Physics Laboratory, RIKEN (Japan); Higashi, Y. [University of Tokyo, Institute of Physics, Graduate School of Arts and Sciences (Japan); Kaga, C. [Hiroshima University, Graduate School of Advanced Sciences of Matter (Japan); Kolbinger, B. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Leali, M. [Università di Brescia, Dipartimento di Ingegneria dell’ Informazione (Italy); Lehner, S. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Rizzini, E. Lodi [Università di Brescia, Dipartimento di Ingegneria dell’ Informazione (Italy); Malbrunot, C. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Mascagna, V. [Università di Brescia, Dipartimento di Ingegneria dell’ Informazione (Italy); Massiczek, O. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Murtagh, D. J.; Nagata, Y.; Radics, B. [Atomic Physics Laboratory, RIKEN (Japan); Simon, M. C.; Suzuki, K. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Tajima, M. [University of Tokyo, Institute of Physics, Graduate School of Arts and Sciences (Japan); Ulmer, S. [Ulmer Initiative Research Unit, RIKEN (Japan); and others

    2016-12-15

    We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.

  1. Prevalence and distribution of selected dental anomalies among saudi children in Abha, Saudi Arabia.

    Science.gov (United States)

    Yassin, Syed M

    2016-12-01

    Dental anomalies are not an unusual finding in routine dental examination. The effect of dental anomalies can lead to functional, esthetic and occlusal problems. The Purpose of the study was to determine the prevalence and distribution of selected developmental dental anomalies in Saudi children. The study was based on clinical examination and Panoramic radiographs of children who visited the Pediatric dentistry clinics at King Khalid University College of Dentistry, Saudi Arabia. These patients were examined for dental anomalies in size, shape, number, structure and position. Data collected were entered and analyzed using statistical package for social sciences version. Of the 1252 children (638 Boys, 614 girls) examined, 318 subjects (25.39%) presented with selected dental anomalies. The distribution by gender was 175 boys (27.42%) and 143 girls (23.28%). On intergroup comparison, number anomalies was the most common anomaly with Hypodontia (9.7%) being the most common anomaly in Saudi children, followed by hyperdontia (3.5%). The Prevalence of size anomalies were Microdontia (2.6%) and Macrodontia (1.8%). The prevalence of Shape anomalies were Talon cusp (1.4%), Taurodontism (1.4%), Fusion (0.8%).The prevalence of Positional anomalies were Ectopic eruption (2.3%) and Rotation (0.4%). The prevalence of structural anomalies were Amelogenesis imperfecta (0.3%) Dentinogenesis imperfecta (0.1%). A significant number of children had dental anomaly with Hypodontia being the most common anomaly and Dentinogenesis imperfecta being the rare anomaly in the study. Early detection and management of these anomalies can avoid potential orthodontic and esthetic problems in a child. Key words: Dental anomalies, children, Saudi Arabia.

  2. Helium Pressure Shift of the Hyperfine Clock Transition in Hg-201(+)

    Science.gov (United States)

    Larigani, S. Taghavi; Burt, E. A.; Tjoelker, R. L.

    2010-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave atomic clock: Hg-199(+) and Hg-201(+). We are investigating the viability of a trapped ion clock based on Hg-201(+) in a configuration that uses a buffer gas to increase ion loading efficiency and counter ion heating from rf trapping fields. Traditionally, either helium or neon is used as the buffer gas at approx. 10(exp -5) torr to confine mercury ions near room temperature. In addition to the buffer gas, other residual background gasses such as H2O, N2, O2, CO, CO2, and CH2 may be present in trace quantities. Collisions between trapped ions and buffer gas or background gas atoms/molecules produce a momentary shift of the ion clock transition frequency and constitute one of the largest systematic effects in this type of clock. Here we report an initial measurement of the He pressure shift in Hg-201(+) and compare this to Hg-199(+).

  3. Hyperfine characterization of the Ba Ti1-x Hfx O3 for x = 0.20

    International Nuclear Information System (INIS)

    Ayala, Alexandro; Lopez-Garcia, Alberto

    1996-01-01

    It is known that the cation substitution in perovskites produce changes in the macroscopic properties of these materials. A case to study is for example the influence of cation B partially substituted by cation B ' when ABO 3 is ferroelectric, and A B ' O 3 is paraelectric. In this work the system Ba Ti 1-x Hf x O 3 with x = 0.05, 0.10, 0.15 and 0.20 is studied by Perturbed Angular Correlations (Pac) in order to obtain microscopic information through the electric field gradient tensor (EFG) produced by electrons close to probes. Two hyperfine quadrupole interactions were detected. One interaction associated to probes with defects originated during the nuclear processes after neutron irradiation, and the other are located in B sites. At R T, the hyperfine parameters are analyzed in terms of Hf concentration. (author)

  4. Study of hyperfine interactions in V2O3 by angular correlation

    International Nuclear Information System (INIS)

    Jesus Silva, P.R. de.

    1985-01-01

    The hyperfine interaction in v 2 O 3 in function of temperature by measurements of time differential perturbed angular correlation is studied. The samples presented quadrupole interaction in the probe center, Cd 111 immediatelly after sintering, when reduced in H 2 flux at 800 0 C. A pure electric quadrupole interaction at the metallic phase and a combined interaction of magnetic dipole and electric quadrupole at the insulating antiferromagnetic phase, were observed. The electric field gradient undergoes abrupt variation at the metal-insulating transition at T=160 0 K from 8.2x10 17 v/cm 2 at the insulating phase to 6.3x10 17 v/cm 2 in the metallic phase, however varies smoothly with the temperature at T=450 0 K when variations in resistivity also occur. At metallic phase the electric field increases with the temperature enhacement. The hyperfine magnetic field of Cd 111 at antiferromagnetic phase of V 2 O 3 has a saturation value of 15(1) KOe and performes an angle of β=68(2) 0 with the main component direction of electric field gradient. (M.C.K.) [pt

  5. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    Science.gov (United States)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-04-01

    Gd_2Fe_{17-x}Si_x (x = 0.25 , 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17} -type structure (space group R\\bar{3}m ). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R-R, M-M and R-M (R—rare earth, M—transition metal) have been determined from M(T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6c, 9d, 18f, and 18h of the R\\bar{3} m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h} . The mean hyperfine field decreases with the Si content.

  6. Magnetic hyperfine interactions of U2 center in CaF2, SrF2 and BaF2

    International Nuclear Information System (INIS)

    Graf, C.J.F.

    1976-02-01

    The magnetic hyperfine parameters of the U 2 center in CaF 2 , SeF 2 and BaF 2 , using a molecular orbitals scheme have been calculated. The need for the inclusion of mechanisms such as Pauli Repulsion and Covalence in order to describe the electronic structure of the defect has been shown. In the molecular orbitals model a weak covalence parameter has been phenomenologically introduced, mixing the is atomic wavefunction of hydrogen with a properly symmetrized linear combination of 2p F - functions centered on the ions of the first fluorine shell. The results obtained are compared with experimental measurements of EPR and ENDOR. (Author) [pt

  7. Efficacy of very fast simulated annealing global optimization method for interpretation of self-potential anomaly by different forward formulation over 2D inclined sheet type structure

    Science.gov (United States)

    Biswas, A.; Sharma, S. P.

    2012-12-01

    Self-Potential anomaly is an important geophysical technique that measures the electrical potential due natural source of current in the Earth's subsurface. An inclined sheet type model is a very familiar structure associated with mineralization, fault plane, groundwater flow and many other geological features which exhibits self potential anomaly. A number of linearized and global inversion approaches have been developed for the interpretation of SP anomaly over different structures for various purposes. Mathematical expression to compute the forward response over a two-dimensional dipping sheet type structures can be described in three different ways using five variables in each case. Complexities in the inversion using three different forward approaches are different. Interpretation of self-potential anomaly using very fast simulated annealing global optimization has been developed in the present study which yielded a new insight about the uncertainty and equivalence in model parameters. Interpretation of the measured data yields the location of the causative body, depth to the top, extension, dip and quality of the causative body. In the present study, a comparative performance of three different forward approaches in the interpretation of self-potential anomaly is performed to assess the efficacy of the each approach in resolving the possible ambiguity. Even though each forward formulation yields the same forward response but optimization of different sets of variable using different forward problems poses different kinds of ambiguity in the interpretation. Performance of the three approaches in optimization has been compared and it is observed that out of three methods, one approach is best and suitable for this kind of study. Our VFSA approach has been tested on synthetic, noisy and field data for three different methods to show the efficacy and suitability of the best method. It is important to use the forward problem in the optimization that yields the

  8. Fine-hyperfine splittings of quarkonium levels in an effective power-law potential

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N; Jena, S N [Utkal Univ., Bhubaneswar (India). Dept. of Physics

    1980-12-01

    We have shown that an effective non-coulombic power-law potential generating spin dependence through scalar and vector exchanges in almost equal proportions along with a very small or zero quark anomalous moment can describe very satisfactorily the up-to-date data on the fine-hyperfine levels and the leptonic width ratios of the vector mesons in the cc and bb families in a flavour independent manner.

  9. Mixed hyperfine interaction in amorphous Fe-Zr sputtered films in external magnetic field - a 57Fe Moessbauer study

    International Nuclear Information System (INIS)

    Fries, S.M.; Crummenauer, J.; Wagner, H.-G.; Gonser, U.; Chien, C.L.

    1986-01-01

    Conventional 57 Fe-Moessbauer spectroscopy provides only information about the magnitude of the splitting QS in the case of electric quadrupole hyperfine interaction, but not on the sign of the main component of the electric field gradient (EFG) or the asymmetry parameter which are sensitive to the local environment of the 57 Fe nuclei. This kind of information is obtained by measurements in external magnetic fields. In the case of amorphous Fe-Zr sputtered films mixed hyperfine interaction leads to a clear change in the behaviour of the Zr-rich and the Fe-rich alloys, indicating the existence of magnetic clusters in the Fe-rich samples. (Auth.)

  10. Light-front view of the axial anomaly

    International Nuclear Information System (INIS)

    Ji, C.; Rey, S.

    1996-01-01

    Motivated by an apparent puzzle of the light-front vacua incompatible with the axial anomaly, we have considered the two-dimensional massless Schwinger model for an arbitrary interpolating angle of Hornbostel close-quote s interpolating quantization surface. By examining spectral deformation of the Dirac sea under an external electric field semiclassically, we have found that the axial anomaly is quantization angle independent. This indicates an intricate nontrivial vacuum structure present even in the light-front limit. copyright 1996 The American Physical Society

  11. Properties of the geoelectric structure that promote the detection of electrotelluric anomalies. The case of Ioannina, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Makris, J. P. [Technological Educational Institute of Crete, Dept. of Electronics (Branch of Chania), Chalepa, Chania, Crete (Greece)

    2001-04-01

    The reliable detection and identification of electrotelluric anomalies that could be considered as precursory phenomena of earthquakes become fundamental aspects of earthquake prediction research. Special arrangements, in local and/or regional scale, of the geoelectric structure beneath the measuring point, may act as natural realtime filters on the ULF electrotelluric data improving considerably the signal to magnetotelluric-noise ratio of anomalies originated by probably non-magnetotelluric sources. Linear polarization, i.e. local channelling of the electric field on the surface is expected in cases where 3D-local inhomogeneities, producing strong shear distortion, are present in the vicinity of the monitoring site and/or when a 2D-regional geoelectrical setting exhibits high anisotropy. By assuming different generation mechanisms and modes of propagation for the electrotelluric anomalies that could be considered earthquake precursory phenomena, a rotationally originated residual electrotelluric field results, eliminating background magnetotelluric-noise and revealing hidden transient variations that could be associated to earthquakes. The suggested method is applicable in real-time data collection, thus simplifies and accelerates the tedious task of identification of suspicious signals. As an indicative example, the case of Ioannina (located in Northwestern Greece) is presented. The local polarization of the electrotelluric field varies dramatically even at neighboring points although the regional geoelectric strike direction does not change.

  12. Anomaly observed in Moessbauer spectra near the neel temperature of FeBr sub 2

    CERN Document Server

    Naili Di

    2003-01-01

    In several decades, iron(II) bromide (FeBr sub 2) has been investigated as a typical Ising-type antiferromagnet by several kinds of experimental techniques. By the Moessbauer measurements, it was normally observed that only the magnetic spectrum appeared just below Neel temperature in FeBr sub 2. However, we found the anomalous spectra, in which paramagnetic component coexisted with magnetic one near Neel temperature. For two kinds of single crystal FeBr sub 2 samples, IM and IIM, we determined the Moessbauer parameters of the observed spectra by the computer analyses: the relative absorption intensity I sub p of the paramagnetic component to the total absorption area of the best fitting spectrum and the value of the hyperfine field H sub h sub f of the magnetic component and values of the quadrupole splitting 1/2 centre dot e sup 2 qQ of the magnetic and the paramagnetic components. The temperature variation of H sub h sub f is unique and the same as that observed for the sample in which the anomaly was not ...

  13. Radiative nonrecoil nuclear finite size corrections of order α(Zα){sup 5} to the hyperfine splitting of S-states in muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Faustov, R.N. [Dorodnicyn Computing Centre, Russian Academy of Science, Vavilov Str. 40, 119991 Moscow (Russian Federation); Martynenko, A.P. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation); Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086 Samara (Russian Federation); Martynenko, G.A.; Sorokin, V.V. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation)

    2014-06-02

    On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα){sup 5} to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.

  14. Nuclear hyperfine interactions and chemical bonding in high TC superconductors

    International Nuclear Information System (INIS)

    Danon, J.

    1987-01-01

    Nuclear quadrupole resonances of Cu 63 and Fe 57 Moessbauer spectroscopy of the high temperature superconductor YBa 2 Cu 3 O 7-γ e described together with synchrotron radiation studies of the copper oxidation states in this material. The Moessbauer spectra of 57 Fe in the two distinct crystallographic sites of the Cu atoms in YBa 2 Cu 3 O 7-γ are very similar from the quadrupole coupling point of view although exhibiting markedly different values for the isomer shift. The role of oxygen vacancies in the hyperfine interactions is discussed. (author) [pt

  15. Hyperfine properties of La(V{sub 1−x}Fe{sub x})O{sub 3} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tupan, L. F. S.; Ivashita, F. F.; Barco, R. [Universidade Estadual de Maringá (Brazil); Hallouche, B. [Universidade de Santa Cruz do Sul (Brazil); Paesano, A., E-mail: paesano@wnet.com.br [Universidade Estadual de Maringá (Brazil)

    2017-11-15

    LaV{sub 1−x}Fe{sub x}O{sub 3} perovskites were synthesized in the vanadium-rich concentration range (i.e., x < 0.5) and characterized structurally and for the hyperfine properties of the iron nuclear probe. The aim of this investigation was to better understand the physical transformations that take place in the undoped compound (LaVO{sub 3}) at low temperatures. For that, X-ray diffraction analysis and, more extensively, {sup 57}Fe Mössbauer spectroscopy were applied. The results revealed that the LaV{sub 1}-xFexO{sub 3} vanadium-rich perovskites are orthorhombic at RT, and their lattice parameters decrease with increasing vanadium concentration. Lowering the temperature, the system becomes magnetic, with the iron moment freezing progressively. The presence of two magnetic subspectral components obtained at the lowest measurement temperatures suggests that the vanadium-rich samples, including LaVO{sub 3}, undergo a phase transition from an orthorhombic to a monoclinic structure at low temperatures.

  16. Global gravitational anomalies

    International Nuclear Information System (INIS)

    Witten, E.

    1985-01-01

    A general formula for global gauge and gravitational anomalies is derived. It is used to show that the anomaly free supergravity and superstring theories in ten dimensions are all free of global anomalies that might have ruined their consistency. However, it is shown that global anomalies lead to some restrictions on allowed compactifications of these theories. For example, in the case of O(32) superstring theory, it is shown that a global anomaly related to π 7 (O(32)) leads to a Dirac-like quantization condition for the field strength of the antisymmetric tensor field. Related to global anomalies is the question of the number of fermion zero modes in an instanton field. It is argued that the relevant gravitational instantons are exotic spheres. It is shown that the number of fermion zero modes in an instanton field is always even in ten dimensional supergravity. (orig.)

  17. Chiral effective-field theory of the nucleon spin structure

    Science.gov (United States)

    Pascalutsa, Vladimir

    2017-01-01

    I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].

  18. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Liu, F.; Ruden, P. P. [University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  19. Second rank direction cosine spherical tensor operators and the nuclear electric quadrupole hyperfine structure Hamiltonian of rotating molecules

    Science.gov (United States)

    di Lauro, C.

    2018-03-01

    Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.

  20. Unusual extension of the first branchial cleft anomaly.

    Science.gov (United States)

    Ada, Mehmet; Korkut, Nazim; Güvenç, M Güven; Acioğlu, Engin; Yilmaz, Süleyman; Cevikbaş, Uğur

    2006-03-01

    First branchial cleft is the only branchial structure that persists as the external ear canal, while all other clefts are resorbed. Incomplete obliteration and the degree of closure cause the varied types of first branchial cleft anomalies. They were classified based on the anatomical and histological features. We present an unusual type of first branchial cleft anomaly involving the external auditory canal, the middle ear and the nasopharynx through the eustachian tube.

  1. Fine-hyperfine splittings of quarkonium levels in an effective power-law potential

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1980-01-01

    We have shown that an effective non-coulombic power-law potential generating spin dependence through scalar and vector exchanges in almost equal proportions along with a very small or zero quark anomalous moment can describe very satisfactorily the up-to-date data on the fine-hyperfine levels and the leptonic width ratios of the vector mesons in the cc and bb families in a flavour independent manner. (orig.)

  2. Delineation of structural lineaments from marine magnetic anomalies off Jonnalakonda, East Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, K.V.L.N.S.; Rao, T.C.S.; Rao, D.G.

    to charnockitic bodies occurring at shallow depth around 0.37 to 0.4 km and (2) the high frequency and amplitude anomalies near to the coast are trending north west-south east direction. The well developed magnetic anomaly is interpreted following automated Werner...

  3. Orbital hyperfine interaction and qubit dephasing in carbon nanotube quantum dots

    Science.gov (United States)

    Palyi, Andras; Csiszar, Gabor

    2015-03-01

    Hyperfine interaction (HF) is of key importance for the functionality of solid-state quantum information processing, as it affects qubit coherence and enables nuclear-spin quantum memories. In this work, we complete the theory of the basic hyperfine interaction mechanisms (Fermi contact, dipolar, orbital) in carbon nanotube quantum dots by providing a theoretical description of the orbital HF. We find that orbital HF induces an interaction between the nuclear spins of the nanotube lattice and the valley degree of freedom of the electrons confined in the quantum dot. We show that the resulting nuclear-spin-electron-valley interaction (i) is approximately of Ising type, (ii) is essentially local, in the sense that an effective atomic interaction strength can be defined, and (iii) has a strength that is comparable to the combined strength of Fermi contact and dipolar interactions. We argue that orbital HF provides a new decoherence mechanism for single-electron valley qubits and spin-valley qubits in a range of multi-valley materials. We explicitly evaluate the corresponding inhomogeneous dephasing time T2* for a nanotube-based valley qubit. We acknowledge funding from the EU Marie Curie CIG-293834, OTKA Grant PD 100373, and EU ERC Starting Grant CooPairEnt 258789. AP is supported by the Janos Bolyai Scholarship of the Hungarian Academy of Sciences.

  4. Very low temperature studies of hyperfine effects in metals. [Progress report

    International Nuclear Information System (INIS)

    Weyhmann, W.

    1985-01-01

    We are using nuclei through the hyperfine coupling as a probe of magnetic interactions in metallic systems, emphasizing the role conduction electrons play. Three types of systems are of interest to us: nuclear singlet ground state intermetallic compounds, very dilute magnetic impurities in non-magnetic metals, and itinerant ferromagnets. The nuclear ordering in singlet ground state alloys of praseodymium appears to be analogous to electronic ordering in rare earth metals, with the RKKY interaction moderating the indirect exchange in both cases. We are measuring the static and dynamic properties of these materials both to study rare earth ordering, since only first order effects should play a role in the nuclear case, and to develop the sub-millikelvin refrigeration capabilities of these materials. Using this cooling power, we propose studying the local moment of Mn based Kondo systems at millikelvin and sub-millikelvin temperatures. Kondo systems with a Kondo temperature below 0.1 K have the advantage that magnetic saturation can be achieved with available magnets. We propose studying both the local magnetization as measured with nuclear orientation and the macroscopic magnetization measured with SQUID magnetometry. We also propose searching for electron polarization effects in itinerant ferromagnets using nuclear orientation. Induced hyperfine fields of less than 1 k0e can be detected at 1 mK

  5. Hyperfine interactions: the past, the present and the future

    Energy Technology Data Exchange (ETDEWEB)

    Langouche, Guido, E-mail: guido.langouche@kuleuven.be [Katholieke Universiteit Leuven, Physics Department, Institute of Nuclear and Radiation Physics (Belgium)

    2008-01-15

    Five major hyperfine interaction techniques, detected by nuclear radiation, originated in the short time span between 1950 and 1965. The coincidence with the demographic expansion, especially in Europe, of university education led to the creation of many new research laboratories applying these promising techniques in solid state physics, chemistry and biology. Since the turn of century many of the early pioneers are going into retirement, leading to a decline in activities in Europe, compensated in some degree by an increase in activities outside Europe. The organisation of the 2007 HI/NQI-conference was impeccable and took place in a superb setting. Thanks to all those involved in its organization.

  6. Determination of hyperfine fields and atomic ordering in NiMnFeGe exhibiting martensitic transformation

    Directory of Open Access Journals (Sweden)

    Satuła Dariusz

    2015-03-01

    Full Text Available The hyperfine fields and atomic ordering in Ni1−xFexMnGe (x = 0.1, 0.2, 0.3 alloys were investigated using X-ray diffraction and Mössbauer spectroscopy at room temperature. The X-ray diffraction measurements show that the samples with x = 0.2, 0.3 crystallized in the hexagonal Ni2In-type of structure, whereas in the sample with x = 0.1, the coexistence of two phases, Ni2In- and orthorhombic TiNiSi-type of structures, were found. The Mössbauer spectra measured with x = 0.2, 0.3 show three doublets with different values of isomer shift (IS and quadrupole splitting (QS related to three different local surroundings of Fe atoms in the hexagonal Ni2In-type structure. It was shown that Fe atoms in the hexagonal Ni2In-type structure of as-cast Ni1−xFexMnGe alloys are preferentially located in Ni sites and small amount of Fe is located in Mn and probably in Ge sites. The spectrum for x = 0.1 shows the doublets in the central part of spectrum and a broad sextet. The doublets originate from the Fe atoms in the paramagnetic state of hexagonal Ni2In-type structure, whereas the sextet results from the Fe atoms in orthorhombic TiNiSi-type structure.

  7. Kohn anomalies in superconductors

    International Nuclear Information System (INIS)

    Flatte, M.E.

    1994-01-01

    The detailed behavior of phonon dispersion curves near momenta which span the electronic Fermi sea in a superconductor is presented. An anomaly, similar to the metallic Kohn anomaly, exists in a superconductor's dispersion curves when the frequency of the photon spanning the Fermi sea exceeds twice the superconducting energy gap. This anomaly occurs at approximately the same momentum but is stronger than the normal-state Kohn anomaly. It also survives at finite temperature, unlike the metallic anomaly. Determination of Fermi-surface diameters from the location of these anomalies, therefore, may be more successful in the superconducting phase than in the normal state. However, the superconductor's anomaly fades rapidly with increased phonon frequency and becomes unobservable when the phonon frequency greatly exceeds the gap. This constraint makes these anomalies useful only in high-temperature superconductors such as La 1.85 Sr 0.15 CuO 4

  8. Magnetism, chemical bonding and hyperfine properties in the nanoscale antiferromagnet [Fe(O Me)2(O2 C C H2 Cl)]10

    International Nuclear Information System (INIS)

    Zeng, Z.; Duan, Y.; Guenzburger, Diana

    1996-09-01

    The electronic and magnetic properties of the nanometer-size antiferromagnet (the ferric wheel molecule) are investigated with the first-principles spin-polarized Discrete Variational Method, in the framework of Density Functional theory. Magnetic moments, densities of the states and charge and spin-density maps are obtained. The Moessbauer hyperfine parameters Isomer shift, Quadrupole Splitting and Hyperfine Field are obtained from the calculations and compared to reported experimental values when available. (author). 33 refs., 8 figs., 4 tabs

  9. Ab Initio Calculation of Hyperfine Interaction Parameters: Recent Evolutions, Recent Examples

    International Nuclear Information System (INIS)

    Cottenier, Stefaan; Vanhoof, Veerle; Torumba, Doru; Bellini, Valerio; Cakmak, Mehmet; Rots, Michel

    2004-01-01

    For some years already, ab initio calculations based on Density Functional Theory (DFT) belong to the toolbox of the field of hyperfine interaction studies. In this paper, the standard ab initio approach is schematically sketched. New features, methods and possibilities that broke through during the past few years are listed, and their relation to the standard approach is explained. All this is illustrated by some highlights of recent ab initio work done by the Nuclear Condensed Matter Group at the K.U.Leuven.

  10. Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems

    International Nuclear Information System (INIS)

    Tanner, Carol E.

    2005-01-01

    Financial support of this research project has lead to advances in the study of atomic structure through precision measurements of atomic lifetimes, energy splittings, and transitions energies. The interpretation of data from many areas of physics and chemistry requires an accurate understanding of atomic structure. For example, scientists in the fields of astrophysics, geophysics, and plasma fusion depend on transition strengths to determine the relative abundances of elements. Assessing the operation of discharges and atomic resonance line filters also depends on accurate knowledge of transition strengths. Often relative transition strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. Precision measurements of atomic lifetimes and energy splittings also provide fundamentally important atomic structure information. Lifetimes of allowed transitions depend most strongly on the electronic wave function far from the nucleus. Alternatively, hyperfine splittings give important information about the electronic wave function in the vicinity of the nucleus as well as the structure of the nucleus. Our main focus throughout this project has been the structure of atomic cesium because of its connection to the study of atomic parity nonconservation (PNC). The interpretation of atomic PNC experiments in terms of weak interaction coupling constants requires accurate knowledge of the electronic wave function near the nucleus as well as far from the nucleus. It is possible to address some of these needs theoretically with sophisticated many-electron atomic structure calculations. However, this program has been able to address these needs experimentally with a precision that surpasses current theoretical accuracy. Our measurements also play the important role of providing a means for testing the accuracy of many-electron calculations and guiding further theoretical development, Atomic systems such as cesium, with a single electron

  11. Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Carol E.

    2005-03-04

    Financial support of this research project has lead to advances in the study of atomic structure through precision measurements of atomic lifetimes, energy splittings, and transitions energies. The interpretation of data from many areas of physics and chemistry requires an accurate understanding of atomic structure. For example, scientists in the fields of astrophysics, geophysics, and plasma fusion depend on transition strengths to determine the relative abundances of elements. Assessing the operation of discharges and atomic resonance line filters also depends on accurate knowledge of transition strengths. Often relative transition strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. Precision measurements of atomic lifetimes and energy splittings also provide fundamentally important atomic structure information. Lifetimes of allowed transitions depend most strongly on the electronic wave function far from the nucleus. Alternatively, hyperfine splittings give important information about the electronic wave function in the vicinity of the nucleus as well as the structure of the nucleus. Our main focus throughout this project has been the structure of atomic cesium because of its connection to the study of atomic parity nonconservation (PNC). The interpretation of atomic PNC experiments in terms of weak interaction coupling constants requires accurate knowledge of the electronic wave function near the nucleus as well as far from the nucleus. It is possible to address some of these needs theoretically with sophisticated many-electron atomic structure calculations. However, this program has been able to address these needs experimentally with a precision that surpasses current theoretical accuracy. Our measurements also play the important role of providing a means for testing the accuracy of many-electron calculations and guiding further theoretical development, Atomic systems such as cesium, with a single electron

  12. Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep-sea basins

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.

    Content-Type text/plain; charset=UTF-8 202 Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep... will undertake either regional, reconnaissance or detail gravity surveys. We generally deal with free air gravity anomalies in oceans. The free air gravity anomalies mostly mimic the seabed configuration and at times, the deviation observed in the free air...

  13. Introduction to anomalies

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.

    1986-01-01

    These lectures are dedicated to the study of the recent progress and implications of anomalies in quantum field theory. In this introduction the author recapitulates some of the highlights in the history of the subject. The outline of these lectures is as follows: Section II contains a quick review of spinors in Euclidean and Minkowski space, some other group theory results relevant for the computation of anomalies in various dimensions, and an exposition of the index theorem. Section III starts the analysis of fermion determinants and chiral effective actions by deriving the non-Abelian anomaly from index theory. Using the results of Section II, the anomaly cancellation recently discovered by Green and Schwarz will be presented in Section IV as well as the connection of these results of Section III with the descent equations and the Wess-Zumino-Witten Lagrangians. Section V contains the generalization of anomalies to σ-models and some of its application in string theory. Section VI will deal with the anomalies from the Hamiltonian point of view. An exact formula for the imaginary part of the effective action for chiral fermions in the presence of arbitrary external gauge and gravitational fields will be derived in Section VII, and used in Section VIII for the study of global anomalies. 85 references

  14. Anomaly matching conditions and the moduli space of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Dotti, G.; Manohar, A.V.

    1998-01-01

    The structure of the moduli space of N=1 supersymmetric gauge theories is analyzed from an algebraic geometric viewpoint. The connection between the fundamental fields of the ultraviolet theory, and the gauge-invariant composite fields of the infrared theory is explained in detail. The results are then used to prove an anomaly matching theorem. The theorem is used to study anomaly matching for supersymmetric QCD, and can explain all the known anomaly matching results for this case. (orig.)

  15. Deep structure of the Tristan-Gough plume revealed by geoid anomalies

    Science.gov (United States)

    Maia, M.; Flamme, J.; Cadio, C.; Lalancette, M. F.; Metivier, L.; Pajot-Métivier, G.; Diament, M.

    2017-12-01

    The origin of the hotspot Tristan da Cunha located at the southwestern end of Walvis Ridge in the Atlantic Ocean is still a controversial topic. We especially question on the nature of the involved geodynamical processes and on their origin depth. The latest results based on local seismic and magnetic data (Schlömer et al., 2016; Baba et al., 2016; Geissler et al., 2016) suggest the existence of a plume coming from the mid-mantle in the southwest of the archipelago. Here we give a regional view of mantle dynamics patterns in the area by using the high-quality satellite geoid data. To extract the mantle signature, we estimate the crustal and lithospheric signals of the ocean basin and South American and African continents, which contribute to mid- and long-wavelengths in the total geoid. We pay particular attention to the modeling of continental margins and their effects on the residual geoid signal. In addition, we explore a large density values set derived from petrological and geochemical studies in the calculation of the lithospheric geoid model. After subtracting the lithospheric signature to the EGM2008 geoid, we apply a multi-scale analysis, which unfolds the different components of the geoid residual signal. The analysis underlines a set of positive anomalies at 200-400 km in the study area, notably in north and west of Tristan de Cunha, and a positive anomaly at 700-1100 km scale in the southwest of the archipelago. These patterns do not change by using different lithospheric geoid models, which allow us to evaluate the reliability of the residual geoid anomalies. These results indicate the existence of small-scale density anomalies in the upper mantle and a larger scale density anomaly in the mid-mantle. Our study suggests that a large dome toped by plume clusters could be a good candidate to explain the volcanism of Tristan da Cunha.Schlömer et al., 2016 Hunting for the Tristan mantle plume..., EPSL, http://dx.doi.org/10.1016/j.epsl.2016.12.028Baba et

  16. Chiral anomalies and differential geometry

    International Nuclear Information System (INIS)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references

  17. Clustering and Recurring Anomaly Identification: Recurring Anomaly Detection System (ReADS)

    Science.gov (United States)

    McIntosh, Dawn

    2006-01-01

    This viewgraph presentation reviews the Recurring Anomaly Detection System (ReADS). The Recurring Anomaly Detection System is a tool to analyze text reports, such as aviation reports and maintenance records: (1) Text clustering algorithms group large quantities of reports and documents; Reduces human error and fatigue (2) Identifies interconnected reports; Automates the discovery of possible recurring anomalies; (3) Provides a visualization of the clusters and recurring anomalies We have illustrated our techniques on data from Shuttle and ISS discrepancy reports, as well as ASRS data. ReADS has been integrated with a secure online search

  18. Tracheobronchial Branching Anomalies

    International Nuclear Information System (INIS)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick; Park, A Young

    2010-01-01

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  19. Tracheobronchial Branching Anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of); Park, A Young [Soonchunhyang University College of Medicine, Asan (Korea, Republic of)

    2010-04-15

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  20. Nonrelativistic hyperfine splitting in muonic helium by adiabatic perturbation theory

    International Nuclear Information System (INIS)

    Drachman, R.J.

    1980-01-01

    Huang and Hughes have recently discussed the hyperfine splitting Δν of muonic helium (α ++ μ - e - ) using a variational approach. In this paper, the Born-Oppenheimer approximation is used to simplify the evaluation of Δν in the nonrelativistic limit. The first-order perturbed wave function of the electron is obtained in closed form by slightly modifying the method used by Dalgarno and Lynn. The result Δν=4450 MHz, is quite close to the published result of Huang and Hughes 4455.2 +- 1 MHz, which required a very large Hylleraas expansion as well as considerable extrapolation

  1. Isotope shifts and hyperfine splittings in 144-154Sm I

    International Nuclear Information System (INIS)

    England, J.G.; Grant, I.S.; Newton, G.W.A.; Walker, P.M.

    1990-01-01

    The isotope shifts and hyperfine splittings have been measured in 144-154 Sm I using the crossed-beam laser fluorescence method. Transitions at 598.98 nm and 570.68 nm were investigated for all isotopes except 146 Sm and 153 Sm, in which measurements were only obtained at 570.68 nm. Laser-induced fluorescence has not previously been reported for 145 Sm. The magnetic dipole and electric quadrupole moments of the odd isotopes and the changes in mean square radii of the even ones are shown to be consistent with the information obtained from nuclear spectroscopy. (author)

  2. Branchial anomalies in children.

    Science.gov (United States)

    Bajaj, Y; Ifeacho, S; Tweedie, D; Jephson, C G; Albert, D M; Cochrane, L A; Wyatt, M E; Jonas, N; Hartley, B E J

    2011-08-01

    Branchial cleft anomalies are the second most common head and neck congenital lesions seen in children. Amongst the branchial cleft malformations, second cleft lesions account for 95% of the branchial anomalies. This article analyzes all the cases of branchial cleft anomalies operated on at Great Ormond Street Hospital over the past 10 years. All children who underwent surgery for branchial cleft sinus or fistula from January 2000 to December 2010 were included in this study. In this series, we had 80 patients (38 female and 42 male). The age at the time of operation varied from 1 year to 14 years. Amongst this group, 15 patients had first branchial cleft anomaly, 62 had second branchial cleft anomaly and 3 had fourth branchial pouch anomaly. All the first cleft cases were operated on by a superficial parotidectomy approach with facial nerve identification. Complete excision was achieved in all these first cleft cases. In this series of first cleft anomalies, we had one complication (temporary marginal mandibular nerve weakness. In the 62 children with second branchial cleft anomalies, 50 were unilateral and 12 were bilateral. In the vast majority, the tract extended through the carotid bifurcation and extended up to pharyngeal constrictor muscles. Majority of these cases were operated on through an elliptical incision around the external opening. Complete excision was achieved in all second cleft cases except one who required a repeat excision. In this subgroup, we had two complications one patient developed a seroma and one had incomplete excision. The three patients with fourth pouch anomaly were treated with endoscopic assisted monopolar diathermy to the sinus opening with good outcome. Branchial anomalies are relatively common in children. There are three distinct types, first cleft, second cleft and fourth pouch anomaly. Correct diagnosis is essential to avoid inadequate surgery and multiple procedures. The surgical approach needs to be tailored to the type

  3. Branchial cleft anomalies and their mimics: computed tomographic evaluation

    International Nuclear Information System (INIS)

    Harnsberger, H.R.; Mancuso, A.A.; Muraki, A.S.; Byrd, S.E.; Dillon, W.P.; Johnson, L.P.; Hanafee, W.N.

    1984-01-01

    A review was made of the clinical records and radiographic examinations of 38 patients with neck lesions clinically suspected of being branchial cleft anomalies. The impact of computed tomography in this sometimes confusing clinical picture was assessed and CT criteria for diagnosing branchial cleft anomalies (BCAs) and differentiating them from their mimics were identified. Seventeen branchial cleft anomalies and 21 BCA mimics were evaluated. A definitive CT diagnosis of second branchial cleft cysts based on characteristic morphology, location, and displacement of surrounding structures was possible in 80% of cases. CT was found to be the best radiographic examination in making a definitive diagnosis of BCA if a neck mass was present

  4. Congenital renal anomalies in cloacal exstrophy: Is there a difference?

    Science.gov (United States)

    Suson, K D; Inouye, B; Carl, A; Gearhart, J P

    2016-08-01

    Cloacal exstrophy (CE) is the most severe manifestation of the epispadias-exstrophy spectrum. Previous studies have indicated an increased rate of renal anomalies in children with classic bladder exstrophy (CBE). Given the increased severity of the CE defect, it was hypothesized that there would be an even greater incidence among these children. The primary objective was to characterize renal anatomy in CE patients. Two secondary objectives were to compare these renal anatomic findings in male and female patients, and female patients with and without Müllerian anomalies. An Institutional Review Board-approved retrospective review of 75 patients from an institutional exstrophy database. Data points included: age at analysis, sex, and renal and Müllerian anatomy. Abnormal renal anatomy was defined as a solitary kidney, malrotation, renal ectopia, congenital cysts, duplication, and/or proven obstruction. Abnormal Müllerian anatomy was defined as uterine or vaginal duplication, obstruction, and/or absence. The Summary Table presents demographic data and renal anomalies. Males were more likely to have renal anomalies. Müllerian anomalies were present in 65.7% of female patients. Girls with abnormal Müllerian anatomy were 10 times more likely to have renal anomalies than those with normal Müllerian anatomy (95% CI 1.1-91.4, P = 0.027). Patients with CE had a much higher rate of renal anomalies than that reported for CBE. Males and females with Müllerian anomalies were at greater risk than females with normal uterine structures. Mesonephric and Müllerian duct interaction is required for uterine structures to develop normally. It has been proposed that women with both Müllerian and renal anomalies be classified separately from other uterine malformations on an embryonic basis. In these patients, an absent or dysfunctional mesonephric duct has been implicated as potentially causal. This provided an embryonic explanation for uterine anomalies in female CE patients

  5. Exploration of geomagnetic field anomaly with balloon for geophysical research

    Science.gov (United States)

    Jia, Wen-Kui

    The use of a balloon to explore the geomagnetic field anomaly in the area east of Beijing is demonstrated. The present results are compared with those of aerial surveys. Descriptions are given of the fluxgate magnetometer, the sensor's attitude control and measurement, and data transmission and processing. At an altitude of about 30 km, a positive anomaly of the vertical component of about 100 nanoteslas was measured. The results suggest that, for this particular area, the shallow layer of a small-scale geological structure differs from the deep layer of a large-scale geological structure.

  6. Parity anomalies in gauge theories in 2 + 1 dimensions

    International Nuclear Information System (INIS)

    Rao, S.; Yahalom, R.

    1986-01-01

    We show that the introduction of massless fermions in an abelian gauge theory in 2+1 dimensions does not lead to any parity anomaly despite a non-commutativity of limits in the structure function of the odd part of the vacuum polarization tensor. However, parity anomaly does exist in non-abelian theories due to a conflict between gauge invariance under large gauge transformations and the parity symmetry. 6 refs

  7. Control of inhomogeneous atomic ensembles of hyperfine qudits

    DEFF Research Database (Denmark)

    Mischuck, Brian Edward; Merkel, Seth T.; Deutsch, Ivan H.

    2012-01-01

    We study the ability to control d-dimensional quantum systems (qudits) encoded in the hyperfine spin of alkali-metal atoms through the application of radio- and microwave-frequency magnetic fields in the presence of inhomogeneities in amplitude and detuning. Such a capability is essential...... to the design of robust pulses that mitigate the effects of experimental uncertainty and also for application to tomographic addressing of particular members of an extended ensemble. We study the problem of preparing an arbitrary state in the Hilbert space from an initial fiducial state. We prove...... that inhomogeneous control of qudit ensembles is possible based on a semianalytic protocol that synthesizes the target through a sequence of alternating rf and microwave-driven SU(2) rotations in overlapping irreducible subspaces. Several examples of robust control are studied, and the semianalytic protocol...

  8. Moessbauer effect study of hyperfine interaction of /sup 161/Dy and /sup 151/Eu in tungsten bronzes Dysub(0. 18) WO/sub 3/ and Eusub(0. 18) WO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Kisynska, K

    1979-01-01

    The Moessbauer technique was used to investigate the hyperfine interaction of /sup 161/Dy and /sup 151/Eu in cubic rare earth tungsten bronzes: Dysub(0.18)WO/sub 3/ and Eusub(0.18)WO/sub 3/. Well resolved hfs spectrum was obtained at 4.2 K for Dysub(0.18)WO/sub 3/. The effective hf field approximation sufficed to interpret the spectrum. The obtained hyperfine interaction parameters were: -g/sub 0/..beta..sub(N)Hsub(eff)=(805+-19) Mc/s and e/sup 2/qQ/sub 0//4 = (506+-56) Mc/s. These results imply that ground doublet of Dy/sup +3/ ion in bronze is a Kramers doublet Vertical Bar+-15/2> with asymmetrical hyperfine tensor Asub(z) non equal to 0, Asub(x) = Asub(y) = 0 and that local crystalline field at RE metal in tungsten bronze at 4.2 K cannot be cubic. From ME absorption spectra of Eusub(0.18)WO/sub 3/ taken at 4.2 K, 78 K and 300 K the values of quadrupole interaction constants for bronze lattice and its temperature dependence were obtained. These data indicate that a phase transition from the high temperature ideal perovskite structure to a distorted one occurs in RE bronzes and that the distortion concerns the nearest tungsten-oxygen environment of RE ion.

  9. Application of isostatic gravity anomaly in the Yellow Sea area

    Science.gov (United States)

    Hao, Z.; Qin, J.; Huang, W.; Wu, X.

    2017-12-01

    In order to study the deep crustal structure of the Yellow Sea area, we used the Airy-Heiskanen model to calculate the isostatic gravity anomaly of this area. Based on the Bouguer gravity anomaly and water depth data of this area, we chose the calculating parameters as standard crustal thickness 30 km, crust-mantle density difference 0.6g/cm3and grid spacing 0.1°×0.1°. This study reveals that there are six faults and four isostatic negative anomalies in the study area. The isostatic anomalies in much of Yellow Sea areas give priority to those with positive anomalies. The isostatic anomalies in North Yellow Sea are higher than South Yellow Sea with Jiashan-Xiangshui fault as the boundary. In the north of the study area, isostatic anomalies are characterized by large areas of positive anomaly. The change is relatively slow, and the trends give priority to the trend NE or NEE. In the middle of the north Yellow Sea basin, there is a local negative anomaly, arranged as a string of beads in NE to discontinuous distribution. Negative anomaly range is small, basically corresponds to the region's former Cenozoic sedimentary basin position. To the south of Jiashan-Xiangshui fault and west of Yellow Sea eastern margin fault, including most of the south Yellow Sea and Jiangsu province, the isostatic anomalies are lower. And the positive and negative anomalies are alternative distribution, and negative anomaly trap in extensive development. The trends give priority to NE, NEE, both to the NW. On the basis of the characteristics of isostatic gravity anomalies, it is concluded that the Yellow Sea belongs to continental crustal isostatic area whose isostatic anomalies is smooth and slow. ReferencesHeiskanen, W. A., F. A. V. Meinesz, and S. A. Korff (1958), The Earth and Its Gravity Field, McGraw-Hill, New York. Meng, X. J., X. H. Zhang, and J. Y. Yang (2014), Geophysical survey in eastern China seas and the characteristics of gravity and magnetic fields, Marine Geoglogy

  10. Magnetic anomalies of offshore Krishna–Godavari basin, eastern continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, K.V.; Murthy, I.V.R.; Krishna, K.S.; Murthy, K.S.R.; Subrahmanyam, A.S.; Rao, M.M.M.

    with the volcanic material. Inversion of the magnetic and gravity anomalies was also carried out to establish the similarity of anomalies of the two geological features (structural high on the margin and the 85 degrees E Ridge) and their interpretations. In both...

  11. Investigation of hyperfine interactions in DNA and antibody of different lineages of mice infected by T. cruzi by perturbed gamma-gamma angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Silva, Andreia dos Santos

    2012-01-01

    In the present work perturbed angular correlation (PAC) spectroscopy was used to measured electric quadrupole interactions in DNA biomolecules of different mice lineages (A/J, C57BL/6, B6AF1, BXA1 e BXA2), samples of different isotypes of immunoglobulin G (IgG1, IgG2a e IgG2b) and active portions of complete and fragmented immunoglobulin responsible by the immune response. Electric quadrupole interactions were also measured in DNA nitrogenous bases (adenine, cytosine, guanine, thymine). PAC measurements were performed using 111 In → 111C d; 111mC d → 111 Cd; 111 Ag → 111 Cd; e 181 Hf → 181 Ta as probe nuclei, and carried out at room temperature and liquid nitrogen temperature, in order to investigate dynamic and static hyperfine interactions, respectively. The biomolecule samples were directly marked with the radioactive parent nuclei, whose atom link to a certain site in the biomolecules. The biological materials as well as the probe nuclei were chosen to investigate the possibility to use PAC spectroscopy to measure hyperfine parameters at nuclei from metallic elements bound to biomolecules (including the use of different probe nuclei produced in the decay of parent nuclei of four different metals) and also to study the behavior of different biomolecules by means of the measured hyperfine parameters. Results show differences in the hyperfine interactions of probe nuclei bound to the studied biomolecules. Such differences were observed by variations in the hyperfine parameters, which depend on the type of biomolecule and the results also show that the probe nuclei atom bound to the molecule in some cases and in others do not. (author)

  12. A Survey on Anomaly Based Host Intrusion Detection System

    Science.gov (United States)

    Jose, Shijoe; Malathi, D.; Reddy, Bharath; Jayaseeli, Dorathi

    2018-04-01

    An intrusion detection system (IDS) is hardware, software or a combination of two, for monitoring network or system activities to detect malicious signs. In computer security, designing a robust intrusion detection system is one of the most fundamental and important problems. The primary function of system is detecting intrusion and gives alerts when user tries to intrusion on timely manner. In these techniques when IDS find out intrusion it will send alert massage to the system administrator. Anomaly detection is an important problem that has been researched within diverse research areas and application domains. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. From the existing anomaly detection techniques, each technique has relative strengths and weaknesses. The current state of the experiment practice in the field of anomaly-based intrusion detection is reviewed and survey recent studies in this. This survey provides a study of existing anomaly detection techniques, and how the techniques used in one area can be applied in another application domain.

  13. Combined ion beam and hyperfine interaction studies of LiNbO3 single crystals

    International Nuclear Information System (INIS)

    Marques, J.G.; Kling, A.; Soares, J.C.; Rebouta, L.

    1999-01-01

    A review of recent studies of LiNbO 3 crystals doped with Hf and Mg,Hf combining high precision RBS/channelling, PIXE/channelling and hyperfine interaction techniques is presented. The lattice location of Hf was found to depend strongly on the dopant concentration, crystal stoichiometry and Mg co-doping level. At low concentrations Hf occupies Li sites in congruent crystals, while it occupies both Li and Nb sites for higher doping levels or in near-stoichiometric crystals. Co-doping with Mg also forces a split location of Hf in Li and Nb sites and when the MgO amount exceeds 4.5 mol% Hf occupies only Nb sites. Neutron irradiation of these crystals displaces Hf from its initial lattice site and leads to a strong decrease of the Nb site fraction. The results are discussed in the framework of the Li and Nb vacancy models currently proposed in the literature for the defect structure of LiNbO 3 . (author)

  14. Systematic study of hyperfine fields in Rh2 Y Z type Heusler alloys with 119 Sn impurity using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ramos, S.M.M.

    1985-01-01

    The magnetic hyperfine fields in the Heusler alloys Rh 2 Mn .98 Ge Sn 02 , Rh 2 Mn Ge .98 Sn .02 , Rh 2 Mn Pb .98 Sn .02 and Rh 2 Mn Sn has been studied by 119 Sn Moessbauer spectroscopy at 293 K, 77 K, 4.2 K and 293 K with applied external magnetic field. The results show that when one compare the magnetic hyperfine fields systematic with the Heusler alloys X 2 Mn Z (X = Co, Ni, Cu, Pd, and Z = s p metal), this systematic is similar to the Co alloys, although can not explained by the currents models for the Heusler alloys. (author)

  15. Hyperfine interactions of {beta}-emitter {sup 12}N in TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukiko [Osaka Univ., Toyonaka (Japan). Faculty of Science; Izumikawa, Takuji; Tanigaki, Minoru [and others

    1997-03-01

    Hyperfine interactions of {beta}-emitter {sup 12}N (I{sup {pi}} = 1{sup -}, T{sub 1/2} 11ms) in TiO{sub 2} has been studied. A {beta}-NMR spectrum on the polarized {sup 12}N implanted in TiO{sub 2} shows that {sup 12}N are located at two different sites and maintain about 100% of initial polarization. These are the first phenomena observed in ionic crystals. (author)

  16. Detection of short-term anomaly using parasitic discrete wavelet transform

    International Nuclear Information System (INIS)

    Nagamatsu, Takashi; Gofuku, Akio

    2013-01-01

    A parasitic discrete wavelet transform (P-DWT) that has a large flexibility in design of the mother wavelet (MW) and a high processing speed was applied for simulation and measured anomalies. First, we applied the P-DWT to detection of the short-term anomalies. Second, we applied the P-DWT to detection of the collision of pump using the pump diagnostic experiment equipment that was designed taking into consideration the structure of the pump used for the water-steam system of the fast breeder reactor 'Monju'. The vibration signals were measured by the vibration sensor attached to the pump when injecting four types of small objects (sphere, small sphere, cube, and rectangular parallelepiped). Anomaly detection was performed by calculating the fast wavelet instantaneous correlation using the parasitic filter that was constructed on the basis of the measured signals. The results suggested that the anomalies could be detected for all types of the supposed anomalies. (author)

  17. Systematic Measurements of the Bohr-Weisskopf Effect at ISOLDE

    CERN Multimedia

    2002-01-01

    Nuclear electric and magnetic structure properties are measurable by high-resolution atomic spectroscopy through isotope shifts and the Bohr-Weisskopf effect (hyperfine structure anomalies). \\\\ \\\\ The greatest value of these measurements is when made systematically over a large number of isotopes. This has been done in the case of isotopes shifts most extensively by the experiment at ISOLDE. To date the magnetic distribution studies are few and isolated. Here we propose to intitiate a program at ISOLDE to measure hfs anomalies systematically. The experiments, requiring high-precision data on magnetic dipole constants as well as on nuclear g-factors, will be done by atomic-beam magnetic resonance with the use of laser excitation for polarization of the beam and a sixpole magnet acting as an analyser. \\\\ \\\\ The heavy alkali elements are the most promising candidates for hfs anomaly studies because of the large effect expected, the high production yields at ISOLDE and most importantly, the interesting variations...

  18. Prevalence and distribution of selected developmental dental anomalies in an Indian population.

    Science.gov (United States)

    Gupta, Saurabh K; Saxena, Payal; Jain, Sandhya; Jain, Deshraj

    2011-06-01

    The purpose of this study was to determine the prevalence of developmental dental anomalies in an Indian population and to statistically analyze the distribution of these anomalies. The study was based on clinical examination, evaluation of dental casts, and panoramic radiographs of 1123 Indian subjects (572 males, 551 females), who visited the outpatient clinic at Government Dental College, Indore between November 2009 and September 2010, after obtaining their informed consent. These patients were examined for the following developmental dental anomalies: shape anomalies (microdontia, talon cusp, dens evaginatus, fusion, taurodontism), number anomalies (hypodontia, oligodontia, anodontia), structural anomalies (amelogenesis imperfecta, dentinogenesis imperfecta) and positional anomalies (ectopic eruption, rotation, impaction). The percentages of these anomalies were assessed for the whole group and compared using statistical analysis. Among the 1123 subjects, a total of 385 individuals (34.28%) presented with the selected developmental dental anomalies. The distribution by sex was 197 males (34.44%), and 188 females (34.06%). Out of the total 1123 individuals, 351 (31.26%) exhibited at least one anomaly, 28 (2.49 %) showed two anomalies and 6 (0.53%) displayed more than two anomalies. P values indicated that the dental anomalies were statistically independent of sex. On intergroup comparison, positional anomalies were significantly most prevalent (P dental anomaly was rotation (10.24%), followed by ectopic eruption (7.93%). The next common group was number anomalies. The most common number anomaly was hypodontia (4.19%), which had a higher frequency than hyperdontia (2.40%). Analyzing the next prevalent group of shape anomalies, microdontia (2.58%) was found to be the most common, followed by taurodontism (2.49%), dens evaginatus (2.40%) and talon cusp (0.97%). Dentinogenesis imperfecta (0.09%) was the rarest, followed by amelogenesis imperfecta (0.27%) and fusion

  19. The effect of scale on the interpretation of geochemical anomalies

    Science.gov (United States)

    Theobald, P.K.; Eppinger, R.G.; Turner, R.L.; Shiquan, S.

    1991-01-01

    conduits for mineralizing fluids. At a larger scale, the linear, northeast-trending anomalies can be shown to result from a series of discrete mineralized systems with different ages and mineral assemblages. The linear pattern of anomalies disintegrates. A regional geochemical survey in the Sonoran Desert in southwestern Arizona displays a cluster of samples anomalous in Pb, Mo, Bi and W. In detail, the original regional anomaly separates into four discrete anomalous areas, each with its own distinctive suite of elements, geographic distribution and age of mineralization. A prominent regional gold anomaly in the Gobi Desert, Xinjiang, Peoples Republic of China, extends southeastward for 30 km from known lode gold deposits. Because the anomaly cuts both lithologic units and the structural grain, and because it parallels the prevailing direction of high-velocity winds, it was originally attributed to eolian dispersion. In detail, the regional anomaly consists of several east-west-trending anomalies, parallel to local lithology and structure that most likely reflect independent sources of lode gold. The regional anomaly results from smoothing of an en-echelon set of local anomalies. These examples emphasize that interpretation of regional anomalies must be tempered to consider regional-sized geologic features. Attempts to overinterpret anomalies by assigning deposit-scale attributes to regional anomalies can lead to confusion and incorrect interpretations. Potential targets that can be readily resolved only at intermediate or detailed scales of study may be overlooked. ?? 1991.

  20. Chemically induced dynamic nuclear polarization in systems containing large hyperfine coupling constants

    International Nuclear Information System (INIS)

    Roth, H.D.; Hutton, R.S.; Hwang, Kuochu; Turro, N.J.; Welsh, K.M.

    1989-01-01

    Nuclear spin polarization effects induced in radical pairs with one or more strong ( 13 C) hyperfine coupling constants have been evaluated. The pairs were generated by photoinduced α-cleavage or hydrogen abstraction reactions of carbonyl compounds. Several examples illustrate how changes in the magnetic field strength (H 0 ) and the g-factor difference (Δg) affect the general appearance of the resulting CIDNP multiplets. The results bear out an earlier caveat concerning the qualitative interpretation of CIDNP effects observed for multiplets

  1. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.

    Science.gov (United States)

    Ballance, C J; Harty, T P; Linke, N M; Sepiol, M A; Lucas, D M

    2016-08-05

    We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8  μs and 520  μs, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.

  2. [Selective neck dissection for treating recurrent branchial anomalies].

    Science.gov (United States)

    Chen, Liangsi; Song, Xinhan; Zhang, Siyi; Han, Zhijuan; Luo, Xiaoning; Chen, Shaohua; Zhan, Jiandong

    2011-01-01

    To evaluate the role of selective neck dissection in the treatment of recurrent branchial anomalies. The clinical data of 18 patients with recurrent branchial anomalies were retrospectively analyzed. In accordance with the embryologic and anatomic features of branchial anomalies, different types of selective neck dissection were applied. With dissection and protection of important vessels, nerves and other structures, enbloc resection principles were applied to extirpate branchial lesions, scarrings and inflammatory granuloma during the operation. Of all 18 patients, 16 cases were healed with primary healing, 2 cases with local incision infection were healed after dressing changes. A temporary facial nerve paralysis occurred in 1 case with recurrent first branchial cleft fistula postoperatively, and completely recovered 2 months after operation. A postoperative temporary vocal cord paralysis occurred in 1 case with recurrent fourth branchial cleft fistula, and totally recuperated 1 month after operation. No recurrences were found in all 18 cases with a follow-up period of 12-78 months (average 35 months). Selective neck dissection is a safe and effective surgical procedure for the radical treatment of recurrent branchial anomalies.

  3. Moessbauer investigation of static-disorder crystalline media. V. Hyperfine fields' dispersion in static-disordered crystalline media of tetragonal and trigonal iron germanates

    International Nuclear Information System (INIS)

    Constantinescu, S.

    2007-01-01

    The refined 57 Fe Moessbauer spectra of some static-disordered crystalline media (with melilite and Ca-gallate structure) evidenced observable electric and magnetic crystal field dispersions. It is the fifth in a series of papers published previously in the same journal on this subject. The data of crystalline hyperfine fields and their dispersion parameters have calculated using the modeling procedure given in a paper by Kaminskii, et al. published in 1986. The obtained values of the magnetic and quadrupole splitting parameters compared with to experimental data showed the possibility to predict the crystal fields' dispersion. (author)

  4. Hyperfine interaction in the Autler-Townes effect: The formation of bright, dark, and chameleon states

    Science.gov (United States)

    Kirova, T.; Cinins, A.; Efimov, D. K.; Bruvelis, M.; Miculis, K.; Bezuglov, N. N.; Auzinsh, M.; Ryabtsev, I. I.; Ekers, A.

    2017-10-01

    This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983), 10.1103/PhysRevA.27.906] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ΩS. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3 p3 /2 and 4 d5 /2 states by the strong laser field and probed by a weak laser field on the 3 s1 /2-3 p3 /2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states—states that change their appearance in the AT spectrum, behaving as bright states at small to moderate ΩS, and fading from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the 3 p3 /2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.

  5. Partial duplication of head--a rare congenital anomaly.

    Science.gov (United States)

    Hemachandran, Manikkapurath; Radotra, Bishan Dass

    2004-10-01

    Duplication of notochord results in rare congenital anomalies like double headed monsters, with or without trunk/limb duplication, depending upon the extent of notochordal abnormality. Here we describe the morphological abnormalities in a case of partial duplication of cranial structures with fusion of the two. Autopsy findings suggest that the bifurcation of the neural tube took place around 4th to 6th week of gestation. There are only few reports in English literature describing the autopsy findings of such an anomaly, which is termed as Diprosopus triophthalmus in the modern literature.

  6. Hyperfine interactions and some thermomagnetic properties of amorphous FeZr(CrNbBCu alloys

    Directory of Open Access Journals (Sweden)

    Łukiewska Agnieszka

    2017-06-01

    Full Text Available In this research, we studied the magnetic phase transition by Mössbauer spectroscopy and using vibrating sample magnetometer for amorphous Fe86-xZr7CrxNb2Cu1B4 (x = 0 or 6 alloys in the as-quenched state and after accumulative annealing in the temperature range 600-750 K. The Mössbauer investigations were carried out at room and nitrogen temperatures. The Mössbauer spectra of the investigated alloys at room temperature are characteristic of amorphous paramagnets and have a form of asymmetric doublets. However, at nitrogen temperature, the alloys behave like ferromagnetic amorphous materials. The two components are distinguished in the spectrum recorded at both room and nitrogen temperatures. The low field component in the distribution of hyperfine field induction shifts towards higher field with the annealing temperature. It is assumed that during annealing at higher temperature, due to diffusion processes, the grains of α-Fe are created in the area corresponding to this component. Both investigated alloys show the invar effect and the decrease of hyperfine field induction after annealing at 600 K for 10 min is observed. It is accompanied by the lowering of Curie temperature.

  7. In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy.

    Science.gov (United States)

    Diermaier, M; Jepsen, C B; Kolbinger, B; Malbrunot, C; Massiczek, O; Sauerzopf, C; Simon, M C; Zmeskal, J; Widmann, E

    2017-06-12

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of ν HF =1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10 -9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.

  8. Prevalence of dental anomalies in the permanent dentition of children with Down syndrome.

    Science.gov (United States)

    Sekerci, Ahmet Ercan; Cantekin, Kenan; Aydinbelge, Mustafa; Ucar, Faruk İzzet

    2014-01-01

    The purpose of this study was to evaluate the prevalence of various congenital dental anomalies in the permanent dentition of Turkish children with Down syndrome. The sample consisted of 216 diagnostic records of children diagnosed with Down syndrome. All subjects had a clinical examination as well as radiographs and photographs taken. Anomalies in the permanent dentition were documented. There was a high incidence of dental anomalies, the most frequent being taurodontism (81 percent), rotation (28 percent), hypodontia (26 percent), tooth impaction (18 percent), ectopic eruption (14 percent), microdontia (13 percent), and hyperdontia (9 percent). Differences in prevalence of congenitally missing teeth, structural anomalies, and positional anomalies reached a statistically significant level regarding gender (Panomalies affecting the permanent dentition, and, in most cases, individuals presented with more than one anomaly.

  9. Using EVT for Geological Anomaly Design and Its Application in Identifying Anomalies in Mining Areas

    Directory of Open Access Journals (Sweden)

    Feilong Qin

    2016-01-01

    Full Text Available A geological anomaly is the basis of mineral deposit prediction. Through the study of the knowledge and characteristics of geological anomalies, the category of extreme value theory (EVT to which a geological anomaly belongs can be determined. Associating the principle of the EVT and ensuring the methods of the shape parameter and scale parameter for the generalized Pareto distribution (GPD, the methods to select the threshold of the GPD can be studied. This paper designs a new algorithm called the EVT model of geological anomaly. These study data on Cu and Au originate from 26 exploration lines of the Jiguanzui Cu-Au mining area in Hubei, China. The proposed EVT model of the geological anomaly is applied to identify anomalies in the Jiguanzui Cu-Au mining area. The results show that the model can effectively identify the geological anomaly region of Cu and Au. The anomaly region of Cu and Au is consistent with the range of ore bodies of actual engineering exploration. Therefore, the EVT model of the geological anomaly can effectively identify anomalies, and it has a high indicating function with respect to ore prospecting.

  10. Prevalence of dental anomalies among 7- to 35-year-old people in Hamadan, Iran in 2012-2013 as observed using panoramic radiographys

    International Nuclear Information System (INIS)

    Shokri, A bbas; Poorolajal, Jalal; Khajeh, Samira; Faramarzi, Farhad; Kahnamoui, Hanieh Mogaver

    2014-01-01

    This study was performed to evaluate the prevalence of all types and subtypes of dental anomalies among 7- to 35-year-old patients by using panoramic radiographs. This cross-sectional study was conducted on 1649 people in Hamadan City, in 2012-2013. The prevalence of four types and 12 subtypes of dental anomalies was evaluated by two observers separately by using panoramic radiography. Dental anomalies were divided into four types: (a) shape (including fusion, taurodontism, and dens invagination); (b) number (including hypodontia, oligodontia, and hyperdontia); (c) structure (including amelogenesis imperfecta, dentinogenesis imperfecta, and dentin dysplasia); and (d) position (including displacement, impaction, and dilacerations). The reliability between the two observers was 79.56% according to the Kappa statistics. The prevalence of dental anomalies diagnosed by panoramic radiographs was 29%. Anomalies of position and number were the most common types of abnormalities, and anomalies of shape and structure were the least in both genders. Anomalies of impaction (44.76%), dilacerations (21.11%), hypodontia (15.88%), taurodontism (9.29%), and hyperdontia (6.76%) were the most common subtypes of dental anomalies. The anomalies of shape and number were more common in the age groups of 7-12 years and 13-15 years, respectively, while the anomalies of structure and position were more common among the other age groups. Anomalies of tooth position were the most common type of dental anomalies, and structure anomalies were the least in this Iranian population. The frequency and type of dental anomalies vary within and between populations, confirming the role of racial factors in the prevalence of dental anomalies.

  11. Prevalence of dental anomalies among 7- to 35-year-old people in Hamadan, Iran in 2012-2013 as observed using panoramic radiographs.

    Science.gov (United States)

    Shokri, Abbas; Poorolajal, Jalal; Khajeh, Samira; Faramarzi, Farhad; Kahnamoui, Hanieh Mogaver

    2014-03-01

    This study was performed to evaluate the prevalence of all types and subtypes of dental anomalies among 7- to 35-year-old patients by using panoramic radiographs. This cross-sectional study was conducted on 1649 people in Hamadan City, in 2012-2013. The prevalence of four types and 12 subtypes of dental anomalies was evaluated by two observers separately by using panoramic radiography. Dental anomalies were divided into four types: (a) shape (including fusion, taurodontism, and dens invagination); (b) number (including hypodontia, oligodontia, and hyperdontia); (c) structure (including amelogenesis imperfecta, dentinogenesis imperfecta, and dentin dysplasia); and (d) position (including displacement, impaction, and dilacerations). The reliability between the two observers was 79.56% according to the Kappa statistics. The prevalence of dental anomalies diagnosed by panoramic radiographs was 29%. Anomalies of position and number were the most common types of abnormalities, and anomalies of shape and structure were the least in both genders. Anomalies of impaction (44.76%), dilacerations (21.11%), hypodontia (15.88%), taurodontism (9.29%), and hyperdontia (6.76%) were the most common subtypes of dental anomalies. The anomalies of shape and number were more common in the age groups of 7-12 years and 13-15 years, respectively, while the anomalies of structure and position were more common among the other age groups. Anomalies of tooth position were the most common type of dental anomalies, and structure anomalies were the least in this Iranian population. The frequency and type of dental anomalies vary within and between populations, confirming the role of racial factors in the prevalence of dental anomalies.

  12. Prevalence of dental anomalies among 7- to 35-year-old people in Hamadan, Iran in 2012-2013 as observed using panoramic radiographys

    Energy Technology Data Exchange (ETDEWEB)

    Shokri, A bbas; Poorolajal, Jalal; Khajeh, Samira; Faramarzi, Farhad; Kahnamoui, Hanieh Mogaver [Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of)

    2014-03-15

    This study was performed to evaluate the prevalence of all types and subtypes of dental anomalies among 7- to 35-year-old patients by using panoramic radiographs. This cross-sectional study was conducted on 1649 people in Hamadan City, in 2012-2013. The prevalence of four types and 12 subtypes of dental anomalies was evaluated by two observers separately by using panoramic radiography. Dental anomalies were divided into four types: (a) shape (including fusion, taurodontism, and dens invagination); (b) number (including hypodontia, oligodontia, and hyperdontia); (c) structure (including amelogenesis imperfecta, dentinogenesis imperfecta, and dentin dysplasia); and (d) position (including displacement, impaction, and dilacerations). The reliability between the two observers was 79.56% according to the Kappa statistics. The prevalence of dental anomalies diagnosed by panoramic radiographs was 29%. Anomalies of position and number were the most common types of abnormalities, and anomalies of shape and structure were the least in both genders. Anomalies of impaction (44.76%), dilacerations (21.11%), hypodontia (15.88%), taurodontism (9.29%), and hyperdontia (6.76%) were the most common subtypes of dental anomalies. The anomalies of shape and number were more common in the age groups of 7-12 years and 13-15 years, respectively, while the anomalies of structure and position were more common among the other age groups. Anomalies of tooth position were the most common type of dental anomalies, and structure anomalies were the least in this Iranian population. The frequency and type of dental anomalies vary within and between populations, confirming the role of racial factors in the prevalence of dental anomalies.

  13. Do retractile testes have anatomical anomalies?

    Science.gov (United States)

    Anderson, Kleber M.; Costa, Suelen F.; Sampaio, Francisco J.B.; Favorito, Luciano A.

    2016-01-01

    ABSTRACT Objectives: To assess the incidence of anatomical anomalies in patients with retractile testis. Materials and Methods: We studied prospectively 20 patients (28 testes) with truly retractile testis and compared them with 25 human fetuses (50 testes) with testis in scrotal position. We analyzed the relations among the testis, epididymis and patency of the processus vaginalis (PV). To analyze the relations between the testis and epididymis, we used a previous classification according to epididymis attachment to the testis and the presence of epididymis atresia. To analyze the structure of the PV, we considered two situations: obliteration of the PV and patency of the PV. We used the Chi-square test for contingency analysis of the populations under study (p patent processus vaginalis and epididymal anomalies. PMID:27564294

  14. arXiv Algebraic Cycles and Local Anomalies in F-Theory

    CERN Document Server

    Bies, Martin; Weigand, Timo

    2017-11-16

    We introduce a set of identities in the cohomology ring of elliptic fibrations which are equivalent to the cancellation of gauge and mixed gauge-gravitational anomalies in F-theory compactifications to four and six dimensions. The identities consist in (co)homological relations between complex codimension-two cycles. The same set of relations, once evaluated on elliptic Calabi-Yau three-folds and four-folds, is shown to universally govern the structure of anomalies and their Green-Schwarz cancellation in six- and four-dimensional F-theory vacua, respectively. We furthermore conjecture that these relations hold not only within the cohomology ring, but even at the level of the Chow ring, i.e. as relations among codimension-two cycles modulo rational equivalence. We verify this conjecture in non-trivial examples with Abelian and non-Abelian gauge groups factors. Apart from governing the structure of local anomalies, the identities in the Chow ring relate different types of gauge backgrounds on elliptically fibre...

  15. Assessment of placental stiffness using acoustic radiation force impulse elastography in pregnant women with fetal anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Alan, Bircan; Goya, Cemil; Tunc, Senem; Teke, Memik; Hattapoglu, Salih [Dicle University Medical Faculty, Diyarbakir (Turkmenistan)

    2016-04-15

    We aimed to evaluate placental stiffness measured by acoustic radiation force impulse (ARFI) elastography in pregnant women in the second trimester with a normal fetus versus those with structural anomalies and non-structural findings. Forty pregnant women carrying a fetus with structural anomalies diagnosed sonographically at 18-28 weeks of gestation comprised the study group. The control group consisted of 34 healthy pregnant women with a sonographically normal fetus at a similar gestational age. Placental shear wave velocity (SWV) was measured by ARFI elastography and compared between the two groups. Structural anomalies and non-structural findings were scored based on sonographic markers. Placental stiffness measurements were compared among fetus anomaly categories. Doppler parameters of umbilical and uterine arteries were compared with placental SWV measurements. All placental SWV measurements, including minimum SWV, maximum SWV, and mean SWV were significantly higher in the study group than the control group ([0.86 ± 0.2, 0.74 ± 0.1; p < 0.001], [1.89 ± 0.7, 1.59 ± 0.5; p = 0.04], and [1.26 ± 0.4, 1.09 ± 0.2; p = 0.01]), respectively. Placental stiffness evaluated by ARFI elastography during the second trimester in pregnant women with fetuses with congenital structural anomalies is higher than that of pregnant women with normal fetuses.

  16. Dental anomalies associated with unilateral and bilateral cleft lip and palate.

    Science.gov (United States)

    Qureshi, Wafa A; Beiraghi, Soraya; Leon-Salazar, Vladimir

    2012-01-01

    The purpose of this study was to compare the prevalence of dental anomalies in the primary and permanent dentition of patients with unilateral (UCLP) and bilateral (BCLP) cleft lip with or without palate. One hundred two complete clinical records were randomly selected for review from a university-based cleft palate clinic. Only nonsyndromic UCLP and BCLP cases were further selected for analysis of dental anomalies. The prevalence of 9 dental categories, including anomalies in number, crown structure, position, and maxillary-mandibular relationship, was assessed and compared between UCLP and BCLP cases using Fisher's exact test. Of the 102 charts evaluated, there were 67 cases of UCLP and 29 cases of BCLP for a total of 96 cases. There was a high prevalence of dental anomalies in primary and permanent teeth; 93% of UCLP cases and 96% of BCLP cases presented with at least 1 dental anomaly. Significant differences ( P dental anomalies associated with orofacial clefts regardless of whether they are unilateral or bilateral cleft lip with or without palate.

  17. Analysis of genitourinary anomalies in patients with VACTERL (Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, Limb abnormalities) association.

    Science.gov (United States)

    Solomon, Benjamin D; Raam, Manu S; Pineda-Alvarez, Daniel E

    2011-06-01

    The goal of this study was to describe a novel pattern of genitourinary (GU) anomalies in VACTERL association,which involves congenital anomalies affecting the vertebrae,anus, heart, trachea and esophagus, kidneys, and limbs.We collected clinical data on 105 patients diagnosed with VACTERL association and analyzed a subset of 89 patients who met more stringent inclusion criteria. Twenty-one percent of patients have GU anomalies, which are more severe (but not more frequent) in females. Anomalies were noted in patients without malformations affecting the renal, lower vertebral, or lower gastrointestinal systems. There should be a high index of suspicion for the presence of GU anomalies even in patients who do not have spatially similar malformations.

  18. Radiologic analysis of congenital limb anomalies

    International Nuclear Information System (INIS)

    Chung, Hong Jun; Kim, Ok Hwa; Shinn, Kyung Sub; Kim, Nam Ae

    1994-01-01

    Congenital limb anomalies are manifested in various degree of severity and complexity bearing conclusion for description and nomenclature of each anomaly. We retrospectively analyzed the roentgenograms of congenital limb anomalies for the purpose of further understanding of the radiologic manifestations based on the embryonal defect and also to find the incidence of each anomaly. Total number of the patients was 89 with 137 anomalies. Recently the uniform system of classification for congenital anomalies of the upper limb was adopted by International Federation of Societies for Surgery of the Hand (IFSSH), which were categorized as 7 classifications. We used the IFSSH classification with some modification as 5 classifications; failure of formation of parts, failure of differentiation of parts, duplications, overgrowth and undergrowth. The patients with upper limb anomalies were 65 out of 89(73%), lower limb were 21(24%), and both upper and lower limb anomalies were 3(4%). Failure of formation was seen in 18%, failure of differentiation 39%, duplications 39%, overgrowth 8%, and undergrowth in 12%. Thirty-five patients had more than one anomaly, and 14 patients had intergroup anomalies. The upper limb anomalies were more common than lower limb. Among the anomalies, failure of differentiation and duplications were the most common types of congenital limb anomalies. Patients with failure of formation, failure of differentiation, and undergrowth had intergroup association of anomalies, but duplication and overgrowth tended to be isolated anomalies

  19. Fetal central nervous system anomalies: fast MRI vs ultrasonography

    International Nuclear Information System (INIS)

    Yang Wenzhong; Xia Liming; Yang Minjie; Feng Dingyi; Hu Junwu; Zou Mingli; Wang Chengyuan; Chen Xinlin; Yang Xiaohong

    2006-01-01

    Objective: To evaluate the ability of fast MRI to detect fetal central nervous system (CNS) anomalies and to compare its performance with that of prenatal ultrasonography (US). Methods Forty-eight pregnant women were detected by conventional prenatal US and MRI. Twenty-two fetuses with CNS anomalies were conformed by autopsy and follow-up. The MR and US appearances of fetal CNS structure were compared to each other and to that of autopsy. Results: A total of 26 CNS anomalies were identified by autopsy (n=17) and follow-up (n=9) including anencephaly (n=6), rachischisis (n=2), encephalocele (n=3), congenital hydrocephalus (n=7), alobar holoprosencephaly (n=1), porencephalia (n=3), arachnoid cyst (n=2) and choroids plexus cyst (n=2). US diagnosed 24 CNS anomalies, the correct diagnostic rate was 92.3%, the false-positive rate was 3.8%, the missed-diagnostic rate was 3.8%. MRI diagnosed 23 CNS anomalies, the correct-diagnostic rate was 88.5%, the false-positive rate was 3.8% ,the missed-diagnostic rate was 7.7%. There was no difference between US and MRI (P>0.05), but MRI have larger FOV, higher tissues resolution, and can demonstrate gray-white matter in detail. Conclusions: MR imaging has a similar sensitivity to that of US in the detection of fetal CNS anomalies. (authors)

  20. Dental Anomalies: An Update

    Directory of Open Access Journals (Sweden)

    Fatemeh Jahanimoghadam

    2016-01-01

    Full Text Available Dental anomalies are usual congenital malformation that can happen either as isolated findings or as a part of a syndrome. Developmental anomalies influencing the morphology exists in both deciduous and permanent dentition and shows different forms such as gemination, fusion, concrescence, dilaceration, dens evaginatus (DE, enamel pearls, taurodontism or peg-shaped laterals. All These anomalies have clinical significance concerning aesthetics, malocclusion and more necessary preparing of the development of dental decays and oral diseases. Through a search in PubMed, Google, Scopus and Medline, a total of eighty original research papers during 1928-2016 were found with the keywords such as dental anomaly, syndrome, tooth and hypodontia. One hundred review titles were identified, eighty reviews were retrieved that were finally included as being relevant and of sufficient quality. In this review, dental anomalies including gemination, fusion, concrescence, dilaceration, dens invaginatus, DE, taurodontism, enamel pearls, fluorosis, peg-shaped laterals, dentinal dysplasia, regional odontodysplasia and hypodontia are discussed. Diagnosing dental abnormality needs a thorough evaluation of the patient, involving a medical, dental, familial and clinical history. Clinical examination and radiographic evaluation and in some of the cases, specific laboratory tests are also needed. Developmental dental anomalies require careful examination and treatment planning. Where one anomaly is present, clinicians should suspect that other anomalies may also be present. Moreover, careful clinical and radiographical examination is required. Furthermore, more complex cases need multidisciplinary planning and treatment.

  1. Study of the hyperfine magnetic field at Ta181 site in the Heusler Co2 Sc Sn, Co2 Sc Ga and Co2 Hf Sn alloys

    International Nuclear Information System (INIS)

    Attili, R.N.

    1992-01-01

    The hyperfine magnetic fields acting on 181 Ta nuclei at the Sc and Hf sites have been measured in Heusler alloys Co 2 Sc Sn and Co 2 Sc Ga and Co 2 Hf Sn using the Time Differential Perturbed γ-γ Angular Correlation (TDPAC) technique. The measurements were carried out using an automatic spectrometer consisting of two Ba F 2 detectors and the conventional electronics. The magnitude of hyperfine magnetic field at 181 Ta was measured for all the alloys. The signs of the were determined in the cases of Co 2 Sc Sn and Co 2 Hf Sn alloys by performing the Perturbed Angular Correlation measurements with an external polarizing magnetic field of ≅ 5 k Gauss. The hyperfine magnetic fields obtained are -187,6± 3,3 and 90,0 ± 2,1 kOe measured at 77 K for Co 2 Sc Sn and Co 2 Sc Ga alloys respectively, and -342,4 ± 10,1 kOe measured at the room temperature for Co 2 Hf Sn alloy. These results are discussed and compared with the hyperfine magnetic field systematics in Co-based Heusler alloy. (author)

  2. Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb

    Science.gov (United States)

    Brown, Natalie C.; Brown, Kenneth R.

    2018-05-01

    Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .

  3. Structural and psychosocial correlates of birth order anomalies in schizophrenia and homicide.

    Science.gov (United States)

    Schug, Robert A; Yang, Yaling; Raine, Adrian; Han, Chenbo; Liu, Jianghong

    2010-12-01

    Birth order--a unique index of both neurodevelopmental and/or psychosocial factors in the pathogenesis of psychiatric disorder--remains largely unexplored in violent schizophrenia. We examined whether murderers with schizophrenia would demonstrate birth order anomalies, distinguishing them from both nonviolent schizophrenia patients and murderers without schizophrenia. Self-report birth order, psychosocial history data (i.e., maternal birth age, family size, parental criminality, parental SES), and structural magnetic resonance imaging data were collected from normal controls, nonviolent schizophrenia patients, murderers with schizophrenia, murderers without schizophrenia, and murderers with psychiatric conditions other than schizophrenia at a brain hospital in Nanjing, China. Results indicated that murderers with schizophrenia were characterized by significantly increased (i.e., later) birth order compared with both nonviolent schizophrenia patients and murderers without schizophrenia. Additionally, birth order was negatively correlated with gray matter volume in key frontal subregions for schizophrenic murderers, and was negatively correlated with parental SES. Findings may suggest biological, psychosocial, or interactional trajectories which may lead to a homicidally violent outcome in schizophrenia.

  4. Phase Transitions, Geometrothermodynamics, and Critical Exponents of Black Holes with Conformal Anomaly

    Directory of Open Access Journals (Sweden)

    Jie-Xiong Mo

    2014-01-01

    Full Text Available We investigate the phase transitions of black holes with conformal anomaly in canonical ensemble. Some interesting and novel phase transition phenomena have been discovered. It is shown that there are striking differences in both Hawking temperature and phase structure between black holes with conformal anomaly and those without it. Moreover, we probe in detail the dependence of phase transitions on the choice of parameters. The results show that black holes with conformal anomaly have much richer phase structure than those without it. There would be two, only one, or no phase transition points depending on the parameters. The corresponding parameter regions are derived both numerically and graphically. Geometrothermodynamics are built up to examine the phase structure we have discovered. It is shown that Legendre invariant thermodynamic scalar curvature diverges exactly where the specific heat diverges. Furthermore, critical behaviors are investigated by calculating the relevant critical exponents. And we prove that these critical exponents satisfy the thermodynamic scaling laws.

  5. Anomaly cancellation and smooth non-Kahler solutions in heterotic string theory

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Fu Jixiang; Tseng, L.-S.; Yau, S.-T.

    2006-01-01

    We show that six-dimensional backgrounds that are T 2 bundle over a Calabi-Yau two-fold base are consistent smooth solutions of heterotic flux compactifications. We emphasize the importance of the anomaly cancellation condition which can only be satisfied if the base is K3 while a T 4 base is excluded. The conditions imposed by anomaly cancellation for the T 2 bundle structure, the dilaton field, and the holomorphic stable bundles are analyzed and the solutions determined. Applying duality, we check the consistency of the anomaly cancellation constraints with those for flux backgrounds of M-theory on eight-manifolds

  6. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    Science.gov (United States)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave

  7. Hyperfine interactions associated with iron substitute superconducting oxides

    International Nuclear Information System (INIS)

    Ellis, D.E.; Dunlap, B.D.; Saitovitch, E.B.; Azevedo, I.S.; Scorzelli, R.B.; Kimball, C.W.

    1988-01-01

    Theoretical and experimental Moessbauer spectroscopy studies have been made concerning charge and spin densities and magnetic hyperfine fields (H hf in iron-substituted superconducting oxides. Calculations were carried out in the self-consistent-field embedded cluster model using local density theory (SCF-Xα) with a variational atomic orbital basis. Spectral densities and changes in charge and spin density were monitored around neighboring Cu sites, as well as Fe impurity site, in La 2 Cu 1-x Fe x O 4 and YBa 2 Cu 3-x Fe x O 7-y compounds. Moessbauer isomer shifts (IS), quadrupole splittings (QS) and H hf are obtained by fitting multiline models to the observed spectra and are compared with SCF-Xα results for specific lattice sites. The influence of oxygen vacancies and partial oxygen disorder is modelled and compared with the experimental data on variable oxygen content and disorder. (author)

  8. The Holographic Weyl anomaly

    CERN Document Server

    Henningson, M; Henningson, Mans; Skenderis, Kostas

    1998-01-01

    We calculate the Weyl anomaly for conformal field theories that can be described via the adS/CFT correspondence. This entails regularizing the gravitational part of the corresponding supergravity action in a manner consistent with general covariance. Up to a constant, the anomaly only depends on the dimension d of the manifold on which the conformal field theory is defined. We present concrete expressions for the anomaly in the physically relevant cases d = 2, 4 and 6. In d = 2 we find for the central charge c = 3 l/ 2 G_N in agreement with considerations based on the asymptotic symmetry algebra of adS_3. In d = 4 the anomaly agrees precisely with that of the corresponding N = 4 superconformal SU(N) gauge theory. The result in d = 6 provides new information for the (0, 2) theory, since its Weyl anomaly has not been computed previously. The anomaly in this case grows as N^3, where N is the number of coincident M5 branes, and it vanishes for a Ricci-flat background.

  9. Integrated geophysical investigations for the delineation of source and subsurface structure associated with hydro-uranium anomaly: A case study from South Purulia Shear Zone (SPSZ), India

    Science.gov (United States)

    Sharma, S. P.; Biswas, A.

    2012-12-01

    South Purulia Shear Zone (SPSZ) is an important region for prospecting of uranium mineralization. Geological studies and hydro-uranium anomaly suggest the presence of Uranium deposit around Raghunathpur village which lies about 8 km north of SPSZ. However, detailed geophysical investigations have not been carried out in this region for investigation of uranium mineralization. Since surface signature of uranium mineralization is not depicted near the location, a deeper subsurface source is expected for hydro uranium anomaly. To delineate the subsurface structure and to investigate the origin of hydro-uranium anomaly present in the area, Vertical Electrical Sounding (VES) using Schlumberger array and Gradient Resistivity Profiling (GRP) were performed at different locations along a profile perpendicular to the South Purulia Shear Zone. Apparent resistivity computed from the measured sounding data at various locations shows a continuously increasing trend. As a result, conventional apparent resistivity data is not able to detect the possible source of hydro uranium anomaly. An innovative approach is applied which depicts the apparent conductivity in the subsurface revealed a possible connection from SPSZ to Raghunathpur. On the other hand resistivity profiling data suggests a low resistive zone which is also characterized by low Self-Potential (SP) anomaly zone. Since SPSZ is characterized by the source of uranium mineralization; hydro-uranium anomaly at Raghunathpur is connected with the SPSZ. The conducting zone has been delineated from SPSZ to Raghunathpur at deeper depths which could be uranium bearing. Since the location is also characterized by a low gravity and high magnetic anomaly zone, this conducting zone is likely to be mineralized zone. Keywords: Apparent resistivity; apparent conductivity; Self Potential; Uranium mineralization; shear zone; hydro-uranium anomaly.

  10. Algebraic structure and topological origin of anomalies

    International Nuclear Information System (INIS)

    Stora, R.

    1984-01-01

    These notes are organized as follows. Section II is devoted to the introduction of Faddeev Popov ghosts and the Slavnov operation in the expression of the Wess Zumino consistency condition. The ''Russian formula'' is then established and shown to provide solutions of the desired type - all solutions in four dimensional renormalizable theories. Section III is devoted to the derivation of the Cartan homotopy formula in the general non commutative form given by B. Zumino. The Wess Zumino lagrangian is then exhibited by a simple application of the formula. Section IV provides a description of the Alvarez Gaume - Witten gravitational anomalies as an application of the above mentioned formulae which was carried out by T. Schucker, F. Langouche and myself after the school was over. Section V gives a sketchy view of Ramadas and Atiyah-Singer's constructions

  11. Isostatic models and isostatic gravity anomalies of the Arabian plate and surroundings

    Science.gov (United States)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2015-04-01

    Isostaic anomalies represent one of the most useful "geological" reduction of the gravity field. With the isostatic correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. This correction is based on the fact that a major part of the near-surface load is compensated by variations of the lithosphere boundaries (chiefly the Moho and LAB) and by density variations within the crust and upper mantle. It is usually supposed that it is less important to a first order, what is the actual compensation model when reducing the effect of compensating masses, since their total weight is exactly opposite to the near-surface load. We compare several compensating models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which can not be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also the predicted "isostatic" Moho is very different from the existing observations. The second group of the isostatic models includes the Moho, which is based on existing seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). In this way we minimize regional anomalies over the Arabian plate. The residual local anomalies well correspond to tectonic structure of the plate. Still very significant anomalies are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  12. Calculation of the hyperfine constants of Vk center in CaF2, SrF2 and BaF2

    International Nuclear Information System (INIS)

    Bufaical, R.F.

    1975-03-01

    The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated, assuming a phenomenological model, based on the F 2 central molecule, to describe the wave function of the defect. The introduction of covalence, with the ions neighboring the central molecule, have shown that this is a better description for the defect than a simple central molecule model. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of these neighboring ions, which have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different methods have been used. A better description for the wave function of the defect is suggested

  13. First-principles investigation of elastic anomalies in niobium at high pressure and temperature

    Science.gov (United States)

    Wang, Yi X.; Geng, Hua Y.; Wu, Q.; Chen, Xiang R.; Sun, Y.

    2017-12-01

    Niobium does not show any structure transition up to very high pressures. Nonetheless, by using density functional theory, we demonstrate in this work that it exhibits striking softening in elastic moduli C44 and C' at a pressure from 20 to 150 GPa. A novel anomaly softening in C44 from 275 to 400 GPa is also predicted. The physics behind these two anomalies is elaborated by electronic structure calculations, which revealed that they are actually different—first one directly relates to an underlying rhombohedral distortion whereas the latter originates in an electronic topological transition. The large magnitude of the softening leads to a remarkable elastic anisotropy in both the shear and the Young's moduli of Nb. Further investigation shows that thermo-electrons have an important role in these anomalies. This effect has not been noticed before. With increased electronic temperature, it is found that all anomalies (both the elastic softening and anisotropy) in Nb are gradually diminished, effectively giving rise to a temperature-induced hardening phenomenon.

  14. Theoretical study of hyperfine fields due to S-P and transition impurities in gadolinium matrix

    International Nuclear Information System (INIS)

    Santos Leal, C.E. dos.

    1985-01-01

    This work presents a systematic theoretical study for the hyperfine field due to diluted s-p-and transition impurities in metallic gadolinium matrices. The peculiarities de a gadolinium matrix are shown, they are characterized by a semi-completed 4f-shell, which is far from (below) the energetic levels such as the type s-p and d-conduction bands. (author)

  15. Investigation of Pr I lines by a simulation of their hyperfine patterns: discovery of new levels

    International Nuclear Information System (INIS)

    Uddin, Zaheer; Siddiqui, Imran; Shamim, Khan; Windholz, L; Zafar, Roohi; Sikander, Rubeka

    2012-01-01

    Hyperfine structure (hf) patterns of unclassified spectral lines of the praseodymium atom, as appear in a high-resolution Fourier transform spectrum, have been simulated. In this way, the J-values and hf constants of the levels involved in the transitions were determined. Assuming that so far only one unknown level is participating in the transition, these constants were used to identify the known level. The second unknown level was found by performing subtraction or addition of the wave number of the transition to the wave number of the known level. The existence of the new level was then checked by explaining other unclassified lines with respect to the wave number and the hf pattern. In this way, 19 new levels of the praseodymium atom were discovered and are presented in this paper. In some cases, the accuracy of the hf constants was improved by laser-induced fluorescence spectroscopy.

  16. Vertical distribution and population structure of Calanus finmarchicus at station India (59°N, 19°W) during the passage of the great salinity anomaly, 1971 1975

    Science.gov (United States)

    Irigoien, Xabier

    2000-01-01

    Abundance, vertical distribution and stage composition of Calanus finmarchicus was analysed for a period of four and half years, 1971-1975, based on data collected at weather station India in the North Atlantic (59°N, 19°W). The passage of the Great Salinity Anomaly in the area was reflected by a decrease in the salinity from 1973 to 1975. Calanus finmarchicus arrives at the surface by the end of March and stays in the upper 50 m, but with a stage segregation in the vertical distribution, until the descent periods at the end of May-June and in August-September. During this period two or three cohorts develop, apparently in close relation with the phytoplankton pulses. Abundance is highly variable, with maximum values ranging from 8770 ind m -2 in 1974 to 56,541 ind m -2 in 1973. There was no clear effect of the Great Salinity Anomaly, the maximum abundance occurring the year the Great Salinity Anomaly arrived, 1973, and the minimum values occurring the next year, 1974, when the effect of the Great Salinity Anomaly was well established. However, the structure of the population seems to have been affected during the Great Salinity Anomaly. Possible interactions between phytoplankton blooms, the Great Salinity Anomaly and C. finmarchicus population dynamics are discussed.

  17. A source of antihydrogen for in-flight hyperfine spectroscopy

    CERN Document Server

    Kuroda, N; Murtagh, D J; Van Gorp, S; Nagata, Y; Diermaier, M; Federmann, S; Leali, M; Malbrunot, C; Mascagna, V; Massiczek, O; Michishio, K; Mizutani, T; Mohri, A; Nagahama, H; Ohtsuka, M; Radics, B; Sakurai, S; Sauerzopf, C; Suzuki, K; Tajima, M; Torii, H A; Venturelli, L; Wünschek, B; Zmeskal, J; Zurlo, N; Higaki, H; Kanai, Y; Lodi Rizzini, E; Nagashima, Y; Matsuda, Y; Widmann, E; Yamazaki, Y

    2014-01-01

    Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy.

  18. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data

    Science.gov (United States)

    Goldstein, Markus; Uchida, Seiichi

    2016-01-01

    Anomaly detection is the process of identifying unexpected items or events in datasets, which differ from the norm. In contrast to standard classification tasks, anomaly detection is often applied on unlabeled data, taking only the internal structure of the dataset into account. This challenge is known as unsupervised anomaly detection and is addressed in many practical applications, for example in network intrusion detection, fraud detection as well as in the life science and medical domain. Dozens of algorithms have been proposed in this area, but unfortunately the research community still lacks a comparative universal evaluation as well as common publicly available datasets. These shortcomings are addressed in this study, where 19 different unsupervised anomaly detection algorithms are evaluated on 10 different datasets from multiple application domains. By publishing the source code and the datasets, this paper aims to be a new well-funded basis for unsupervised anomaly detection research. Additionally, this evaluation reveals the strengths and weaknesses of the different approaches for the first time. Besides the anomaly detection performance, computational effort, the impact of parameter settings as well as the global/local anomaly detection behavior is outlined. As a conclusion, we give an advise on algorithm selection for typical real-world tasks. PMID:27093601

  19. Constants of hyperfine interaction of lanthanoid-phosphorus for [LnCl2Hmpa4]BPh4 composition compounds from data on 1H and 31P NMR

    International Nuclear Information System (INIS)

    Skopenko, V.V.; Amirkhanov, V.M.; Turov, A.V.; Trachevskij, V.V.

    1991-01-01

    By the method of 1 H and 31 P NMR at 233 and 298 K acetone solutions of lanthanide complexes of the composition [LnCl 2 Hmpa 4 ]BPh 4 (Hmpa=OP[N(CH 3 ) 2 ] 3 , Ln=La, Ce-Lu) have been considered. Two series of complexes having similar structure of coordination sphere (Ln=Pr-Ho and Ln=Er-Yb) are revealed and for each series the values of hyperfine interaction constants, which are 0.49 and 0.28 MHz respectively, have been determined

  20. Global aspects of gauge anomalies

    International Nuclear Information System (INIS)

    Zhang, H.

    1988-01-01

    This dissertation discusses the global aspects of gauge anomalies in even dimensions. After a very brief description of local gauge anomalies, the possible global gauge anomalies for various gauge theories are discussed using homotopy theory. One of the main results obtained in a general formula for the SU(n - k) global gauge anomaly coefficient in arbitrary 2n dimensions. The result is expressed in terms of the James number of the Stiefel manifold SU(n + 1)/SU(n - k) and the generalized Dynkin indices. From this, the possibilities of SU(n), SU(n - 1), and SU(2) global gauge anomalies in arbitrary 2n dimensions have been determined. We have also determined the possibilities of global gauge anomalies for the gauge groups SP(2N) and SO(N) in certain general dimensions, as well as for the exceptional gauge groups in specific dimensions. Moreover, several general propositions are formulated and proved which are very useful in the study of global gauge anomalies

  1. The magnetic hyperfine field in the 181Ta site in the Co2HfAl and Co2HfGa Heusler alloys

    International Nuclear Information System (INIS)

    Silva, R. da.

    1979-01-01

    The hyperfine magnetic fields at 181 Ta nuclei in Heusler alloys Co 2 HfZ (Z=Al, Ga) have been measured using the time differential perturbed gamma-gamma angular correlation (TDPAC) method. The hyperfine fields obtained from these measurements at the liquid nitrogen temperature are -189 and +- 150 kOersted for Co 2 HfAl and Co 2 HfGa, respectively. The concept that the hyperfine field at the Y site is similar to the solute fields in Fe, Co, Ni and Gd matrices is corroborated. We have verified that ratios H sub(hf) sub(Ta)/T sub(c) and H sub(hf) sub(Ta)μ sub(Co) in Co 2 HfZ compounds (Z=Al, Ga, Sn) do not depend on the nature of Z element. However a dependence in the value of observed field with the s-p element in Z site was noticed. We feel that the samples are not completely ordered cubic as observed by the quadrupole interaction measurements. The results are interpreted in terms of the Campbell-Blandin formalism, and it is shown that the spin polarization of conduction electrons at Hf and Ta have opposite signs. (Author) [pt

  2. Hyperfine interactions in ferromagnetic materials and magnetic properties of 1fsub(7/2) nuclei

    International Nuclear Information System (INIS)

    Bozek, E.

    1976-01-01

    Hyperfine interactions of light nuclei recoil-implanted into iron, nickel and cobalt were studied using the perturbed integral angular distribution IMPAD. Isomeric states of lifetimes within the nanosecond range were excited in the following reactions: 28 Si 14 N, xn, yp 37 Ar, 39 K, 40 K; 27 Al 16 O, xn, yp 41 K, 41 Ca. In all cases except implantation of potassium isotopes into nickel observed shifts of angular distribution were found much smaller than the ones calculated using the known values of g factors, livetimes and strengths of the hyperfine fields. This effect can be explained under the assumption that only a fraction of nuclei feel the full magnetic field. Different fractions obtained for 40 K and 41 K suggest a migration process on a ns time scale. The magnetic moments of isomeric nuclear states excited in reaction 27 Al 14 N, p 36 Cl, 24 Mg 19 F, 2pn 40 K and 48 Ca, 2n 50 Ti were measured using the perturbed integral angular distribution technique - IPAD in an external magnetic field. The g factors for the investigated states were interpreted on the base of the shell model, assuming the effective magnetic moments associated with shell model orbitals dsub(3/2) and fsub(7/2). (author)

  3. On the algebraic structure of covariant anomalies and covariant Schwinger terms

    International Nuclear Information System (INIS)

    Kelnhofer, G.

    1992-01-01

    A cohomological characterization of covariant anomalies and covariant Schwinger terms in an anomalous Yang-Mills theory is formulated and w ill be geometrically interpreted. The BRS and anti-BRS transformations are defined as purely differential geometric objects. Finally the covariant descent equations are formulated within this context. (author)

  4. Hyperfine interactions in MnAs studied by perturbed angular correlations of $\\gamma$-rays using the probe $^{77}$Br $\\rightarrow ^{77}$Se and first principles calculations for MnAs and other Mn pnictides

    CERN Document Server

    Gonçalves, J N; Correia, J G; Lopes, A M L

    2011-01-01

    The MnAs compound shows a first-order transition at T$_{c}$≈ 42$^{\\circ}$C, and a second-order transition at T$_{t}$ ≈120$^{\\circ}$C. The first-order transition, with structural (hexagonal-orthorhombic), magnetic (FM-PM) and electrical conductivity changes, is associated to magnetocaloric, magnetoelastic, and magnetoresistance effects. We report a study in a large temperature range from −196$^{\\circ}$C up to 140$^{\\circ}$C, using the $\\gamma\\!-\\!\\gamma$ perturbed angular correlations method with the radioactive probe $^{77}$Br→$^{77}$Se, produced at the ISOLDE-CERN facility. The electric field gradients and magnetic hyperfine fields are determined across the first- and second-order phase transitions encompassing the pure and mixed phase regimes in cooling and heating cycles. The temperature irreversibility of the 1st order phase transition is seen locally, at the nanoscopic scale sensitivity of the hyperfine field, by its hysteresis, detailing and complementing information obtained with macroscopic me...

  5. Studies of the hyperfine interaction in semiconducting or isolating oxides on the examples HfO2, Ga2O3, and Al2O3

    International Nuclear Information System (INIS)

    Steffens, Michael

    2014-01-01

    On the example of the three oxide compounds of the hafnium, gallium, and aluminium among others the method of the perturbed γ-γ angular correlation (PAC) was applied in dependence on the sample temperature. Applied were thereby the PAC probe nuclei 111 Cd and 181 Ga, which were inserted in the samples by ion implantation or proced by neutron activation in the samples. In HfO 2 thereby especially the hyperfine interaction of thin layers with thicknesses from 2.7 to 17 nm and 100 nm were studied. Strongly disagreeing field gradients and a great influence of the sample surface on the measurement are shown. It could be shown that ν qO x should scale with the layer thickness of the oxide and that the temperature-dependent behaviour, which is influenced by the thermal expansion of the lattice, underlies also this scaling. Conditioned by the neighbourhood to the surface at high temperature oxygen can escape from the samples and so degrade the oxide. The studied Ga 2 O 3 layers were produced by oxidation of GaN at 1223 K in air. The structure of the oxide layer was thereby stepwise pursued with the PAC and could be modelled with an exponential time dependence. The oxidation was repeated with several samples at equal absolute oxidation time but different partition in intermediate steps. Altogether the result were shown as reproducable, the occuring differences of the hyperfine interactions are probably given by external quantities fluctuating in the oxidation. The measurement of the Al 2 O 3 sample in the PAC furnace and cryostat represents mainly a reproduction of the preceding experiments of Penner et al. In this materials the attempt held the spotlight to manipulate the temperature-dependent behaviour of the hyperfine interaction by additional doping. Over the experiments of the single materials was set the more precise consideration of dynamic hyperfine interactions on the probe nucleus 111 Cd. In the spin-correlation functions R(t) these were manifested by an

  6. Anomalies on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Arkani-Hamed, Nima; Cohen, Andrew G.; Georgi, Howard

    2001-03-16

    We discuss the form of the chiral anomaly on an S1/Z2 orbifold with chiral boundary conditions. We find that the 4-divergence of the higher-dimensional current evaluated at a given point in the extra dimension is proportional to the probability of finding the chiral zero mode there. Nevertheless the anomaly, appropriately defined as the five dimensional divergence of the current, lives entirely on the orbifold fixed planes and is independent of the shape of the zero mode. Therefore long distance four dimensional anomaly cancellation ensures the consistency of the higher dimensional orbifold theory.

  7. Anomaly Detection in Gas Turbine Fuel Systems Using a Sequential Symbolic Method

    Directory of Open Access Journals (Sweden)

    Fei Li

    2017-05-01

    Full Text Available Anomaly detection plays a significant role in helping gas turbines run reliably and economically. Considering the collective anomalous data and both sensitivity and robustness of the anomaly detection model, a sequential symbolic anomaly detection method is proposed and applied to the gas turbine fuel system. A structural Finite State Machine is used to evaluate posterior probabilities of observing symbolic sequences and the most probable state sequences they may locate. Hence an estimation-based model and a decoding-based model are used to identify anomalies in two different ways. Experimental results indicate that both models have both ideal performance overall, but the estimation-based model has a strong robustness ability, whereas the decoding-based model has a strong accuracy ability, particularly in a certain range of sequence lengths. Therefore, the proposed method can facilitate well existing symbolic dynamic analysis- based anomaly detection methods, especially in the gas turbine domain.

  8. Magnetism, chemical bonding and hyperfine properties in the nanoscale antiferromagnet [Fe(O Me){sub 2}(O{sub 2} C C H{sub 2} Cl)]{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Z.; Duan, Y.; Guenzburger, Diana [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-09-01

    The electronic and magnetic properties of the nanometer-size antiferromagnet (the ferric wheel molecule) are investigated with the first-principles spin-polarized Discrete Variational Method, in the framework of Density Functional theory. Magnetic moments, densities of the states and charge and spin-density maps are obtained. The Moessbauer hyperfine parameters Isomer shift, Quadrupole Splitting and Hyperfine Field are obtained from the calculations and compared to reported experimental values when available. (author). 33 refs., 8 figs., 4 tabs.

  9. First branchial groove anomaly.

    Science.gov (United States)

    Kumar, M; Hickey, S; Joseph, G

    2000-06-01

    First branchial groove anomalies are very rare. We report a case of a first branchial groove anomaly presented as an infected cyst in an 11-month-old child. Management of such lesions is complicated because of their close association with the facial nerve. Surgical management must include identification and protection of the facial nerve. Embryology and facial nerve disposition in relation to the anomaly are reviewed.

  10. The magnetic structure on the ground state of the equilateral triangular spin tube

    International Nuclear Information System (INIS)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    2016-01-01

    The ground state of the frustrated equilateral triangular spin tube CsCrF_4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by "1"9F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  11. Hyperfine electric parameters calculation in Si samples irradiated with 57Mn

    International Nuclear Information System (INIS)

    Abreu, Y.; Cruz, C. M.; Pinnera, I.; Leyva, A.; Van Espen, P.; Perez, C.

    2011-01-01

    The radiation damage created in silicon crystalline material by 57 Mn→ 57 Fe ion implantation was characterized by Moessbauer spectroscopy showing three main lines, assigned to: substitutional, interstitial and a damage configuration sites of the implanted ions. The hyperfine electric parameters, Quadrupole Splitting and Isomer Shift, were calculated for various implantation environments. In the calculations the full potential linearized-augmented plane-wave plus local orbitals (L/APW+lo) method as embodied in the WIEN2k code was used. Good agreement was found between the experimental and the calculated values for some implantation configurations; suggesting that the implantation environments could be similar to the ones proposed by the authors. (Author)

  12. On Certain Conceptual Anomalies in Einstein's Theory of Relativity

    Directory of Open Access Journals (Sweden)

    Crothers S. J.

    2008-01-01

    Full Text Available There are a number of conceptual anomalies occurring in the Standard exposition of Einstein's Theory of Relativity. These anomalies relate to issues in both mathematics and in physics and penetrate to the very heart of Einstein's theory. This paper reveals and amplifies a few such anomalies, including the fact that Einstein's field equations for the so-called static vacuum configuration, $R_{mu u} = 0$, violates his Principle of Equivalence, and is therefore erroneous. This has a direct bearing on the usual concept of conservation of energy for the gravitational field and the conventional formulation for localisation of energy using Einstein's pseudo-tensor. Misconceptions as to the relationship between Minkowski spacetime and Special Relativity are also discussed, along with their relationships to the pseudo-Riemannian metric manifold of Einstein's gravitational field, and their fundamental geometric structures pertaining to spherical symmetry.

  13. Does the visibility of a congenital anomaly affect maternal-infant attachment levels?

    Science.gov (United States)

    Boztepe, Handan; Ay, Ayşe; Kerimoğlu Yıldız, Gizem; Çınar, Sevil

    2016-10-01

    To determine whether congenital anomaly visibility affects maternal-infant attachment levels. The study population consisted of mothers who had infants with cleft lip/palate or congenital heart anomalies who were receiving treatment in a university hospital. The data were collected using the Structured Questionnaire Form and the Maternal Attachment Inventory. Statistically significant differences in maternal-infant attachment levels were observed between infants with cleft lips/palates and healthy infants and between infants with congenital heart anomalies and healthy infants. It is important to apply appropriate nursing interventions for these mothers during the postpartum period. © 2016, Wiley Periodicals, Inc.

  14. Self-potential anomalies in some Italian volcanic areas

    Directory of Open Access Journals (Sweden)

    C. Silenziario

    1996-06-01

    Full Text Available The study of Self-Potential (SP space and time variations in volcanic areas may provide useful information on both the geometrical structure of the volcanic apparatuses and the dynamical behaviour of the feeding and uprising systems. In this paper, the results obtained on the islands of Vulcano (Eolian arc and Ponza (Pontine archipelago and on the Mt. Somma-Vesuvius complex are shown. On the island of Vulcano and on the Mt. Somma-Vesuvius apparatus areal SP surveys were performed with the aim of evidencing anomalies closely associated to the zones of major volcanic activity. On the island of Vulcano a profile across the fumaroles along the crater rim of the Fossa Cone was also carried out in order to have a direct relationship between fumarolic fracture migration and flow rate and SP anomaly space and time variations. The areal survey on the island of Ponza, which is considered an inactive area, is assumed as a reference test with which to compare the amplitude and pattern of the anomalies in the active areas. A tentative interpretation of the SP anomalies in volcanic areas is suggested in terms of electrokinetic phenomena, related to the movement of fluids of both volcanic and non-volcanic origin.

  15. Bilateral branchial cleft anomaly type two and type three seen together

    OpenAIRE

    Ali Okan Gürsel; Yusuf Eren; Vefa Kınış; Cüneyt Kucur

    2012-01-01

    Branchial apparatus begins to develop at about secondweek of gestation and each complex will transform intodifferent structures in the head and neck. Branchial cleftanomalies develop due to defect in the closure of thesestructures by time. Branchial cleft anomalies may be diagnosedat any age but most of them are seen in pediatricpopulation. Although, branchial cleft anomalies are frequentlyseen, bilateral cases, which have been reportedare very rare. We present a 14 years old boy who wasdiagn...

  16. Negative muon spin precession measurement of the hyperfine states of muonic sodium

    International Nuclear Information System (INIS)

    Brewer, J.H.; Ghandi, K.; Froese, A.M.; Fryer, B.A.

    2005-01-01

    Both hyperfine states of muonic 23 Na and the rate R of conversion between them have been observed directly in a high field negative muon spin precession experiment using a backward muon beam with transverse spin polarization. The result in metallic sodium, R=13.7±2.2 μs -1 , is consistent with Winston's prediction in 1963 based on Auger emission of core electrons, and with the measurements of Gorringe et al. in Na metal, but not with their smaller result in NaF. In NaOH we find R=23.5±8 μs -1 , leaving medium-dependent effects ambiguous

  17. Measurement of the hyperfine structure of the 4d2D3/2,5/2 levels and isotope shifts of the 4p2P3/2->4d2D3/2 and 4p2P3/2->4d2D5/2 transitions in gallium 69 and 71

    International Nuclear Information System (INIS)

    Rehse, Steven J.; Fairbank, William M.; Lee, Siu Au

    2001-01-01

    The hyperfine structure of the 4d 2 D 3/2,5/2 levels of 69,71 Ga is determined. The 4p 2 P 3/2 ->4d 2 D 3/2 (294.50-nm) and 4p 2 P 3/2 ->4d 2 D 5/2 (294.45-nm) transitions are studied by laser-induced fluorescence in an atomic Ga beam. The hyperfine A constant measured for the 4d 2 D 5/2 level is 77.3±0.9 MHz for 69 Ga and 97.9± 0.7 MHz for 71 Ga (3σ errors). The A constant measured for the 4d 2 D 3/2 level is -36.3±2.2 MHz for 69 Ga and -46.2±3.8 MHz for 71 Ga. These measurements correct sign errors in the previous determination of these constants. For 69 Ga the hyperfine B constants measured for the 4d 2 D 5/2 and the 4d 2 D 3/2 levels are 5.3±4.1 MHz and 4.6±4.2 MHz, respectively. The isotope shift is determined to be 114±8 MHz for the 4p 2 P 3/2 ->4d 2 D 3/2 transition and 115±7 MHz for the 4p 2 P 3/2 ->4d 2 D 5/2 transition. The lines of 71 Ga are shifted to the blue. This is in agreement with previous measurement. [copyright] 2001 Optical Society of America

  18. Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C291[NV]-H172 diamond cluster hosting nitrogen-vacancy center

    International Nuclear Information System (INIS)

    Nizovtsev, A P; Ya Kilin, S; Pushkarchuk, A L; Pushkarchuk, V A; Jelezko, F

    2014-01-01

    Single nitrogen-vacancy (NV) centers in diamond coupled to neighboring nuclear spins are promising candidates for room-temperature applications in quantum information processing, quantum sensing and metrology. Here we report on a systematic density functional theory simulation of hyperfine coupling of the electronic spin of the NV center to individual 13 C nuclear spins arbitrarily disposed in the H-terminated C 291 [NV] - H 172 cluster hosting the NV center. For the ‘families’ of equivalent positions of the 13 C atom in diamond lattices around the NV center we calculated hyperfine characteristics. For the first time the data are given for a system where the 13 C atom is located on the NV center symmetry axis. Electron paramagnetic resonance transitions in the coupled electron–nuclear spin system 14 NV- 13 C are analyzed as a function of the external magnetic field. Previously reported experimental data from Dréau et al (2012 Phys. Rev. B 85 134107) are described using simulated hyperfine coupling parameters. (paper)

  19. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  20. Two- and three-dimensional CT evaluation of sacral and pelvic anomalies

    International Nuclear Information System (INIS)

    Kuhlman, J.E.; Fishman, E.K.; Magid, D.

    1988-01-01

    Pelvic anomalies are difficult to evaluate with standard techniques. Detailed knowledge of the existing pelvic structures and musculature is essential for successful repair. The authors evaluated 12 patients with complex malformations of the pelvis using two- and three-dimensional imaging. The anomalies included bladder exstrophy (n = 4), cloacal exstrophy (n = 1), duplicated and absent sacrum (n = 3), myelomeningoceles (n = 2), and diastrophic dwarfism (n = 2). The two-dimensional images consisted of sequential coronal and sagittal reconstructions that could be reviewed dynamically on screen. Three-dimensional images were generated on the Pixar imaging computer with use of volumetric rendering. Two- and three-dimensional CT proved complementary in the evaluation of pelvic anomalies, providing optimal information from transaxial CT data

  1. Long-term sedimentary recycling of rare sulphur isotope anomalies.

    Science.gov (United States)

    Reinhard, Christopher T; Planavsky, Noah J; Lyons, Timothy W

    2013-05-02

    The accumulation of substantial quantities of O2 in the atmosphere has come to control the chemistry and ecological structure of Earth's surface. Non-mass-dependent (NMD) sulphur isotope anomalies in the rock record are the central tool used to reconstruct the redox history of the early atmosphere. The generation and initial delivery of these anomalies to marine sediments requires low partial pressures of atmospheric O2 (p(O2); refs 2, 3), and the disappearance of NMD anomalies from the rock record 2.32 billion years ago is thought to have signalled a departure from persistently low atmospheric oxygen levels (less than about 10(-5) times the present atmospheric level) during approximately the first two billion years of Earth's history. Here we present a model study designed to describe the long-term surface recycling of crustal NMD anomalies, and show that the record of this geochemical signal is likely to display a 'crustal memory effect' following increases in atmospheric p(O2) above this threshold. Once NMD anomalies have been buried in the upper crust they are extremely resistant to removal, and can be erased only through successive cycles of weathering, dilution and burial on an oxygenated Earth surface. This recycling results in the residual incorporation of NMD anomalies into the sedimentary record long after synchronous atmospheric generation of the isotopic signal has ceased, with dynamic and measurable signals probably surviving for as long as 10-100 million years subsequent to an increase in atmospheric p(O2) to more than 10(-5) times the present atmospheric level. Our results can reconcile geochemical evidence for oxygen production and transient accumulation with the maintenance of NMD anomalies on the early Earth, and suggest that future work should investigate the notion that temporally continuous generation of new NMD sulphur isotope anomalies in the atmosphere was likely to have ceased long before their ultimate disappearance from the rock record.

  2. The local structure and magnetic interactions between Fe3+ and V4+ ions in lithium–phosphate glasses

    International Nuclear Information System (INIS)

    Andronache, Constantin I.

    2012-01-01

    Electron Paramagnetic Resonance (EPR) provides a useful tool not only as a probe of local structure and short range order in glasses, but also of magnetic interactions in the glasses containing suitable magnetic ions. We have analyzed the spectra of xFe 2 O 3 ·(100 − x)[P 2 O 5 ·Li 2 O] and x(Fe 2 O 3 ·V 2 O 5 )·(100 − x)[P 2 O 5 ·Li 2 O] glass systems, with 0 2 O 5 ·Li 2 O] stands for 50Li 2 O·50P 2 O 5 glass composition. For samples x > 50 mol % a study indicates the presence of crystalline α Fe 2 O 3 in the glasses. Observed spectra have resonance lines centered at g ∼ 4.3 and g ∼ 2.0 typical for Fe 3+ and V 4+ ions present in the oxide glasses. For low contend of transition metal (TM) oxides (Fe 2 O 3 or V 2 O 5 ·Fe 2 O 3 ) the spectra present a hyperfine structure typical for isolated V 4+ ions. With the increasing of TM content, the EPR absorption signal showing hyperfine structure superposed by a broad line without hyperfine structure characteristic for clustered ions. At high TM content, the vanadium hyperfine structure disappears and only the broad line can be observed in the spectra. -- Highlights: ► Lithium phosphate glass with Fe and V ions were investigated by means of EPR. ► The composition dependence of line intensity were investigated. ► The spin Hamiltonian parameters for VO 2+ were evaluated.

  3. Anteverted internal auditory canal as an inner ear anomaly in patients with craniofacial microsomia.

    Science.gov (United States)

    L'Heureux-Lebeau, Bénédicte; Saliba, Issam

    2014-09-01

    Craniofacial microsomia involves structure of the first and second branchial arches. A wide range of ear anomalies, affecting external, middle and inner ear, has been described in association with this condition. We report three cases of anteverted internal auditory canal in patients presenting craniofacial microsomia. This unique internal auditory canal orientation was found on high-resolution computed tomography of the temporal bones. This internal auditory canal anomaly is yet unreported in craniofacial anomalies. Copyright © 2014. Published by Elsevier Ireland Ltd.

  4. Hyperfine magnetic fields for 5d impurities in iron: pre-equilibrium effects, texture and the Aharoni effect

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Bezakova, E.

    1998-01-01

    Static magnetic hyperfine fields acting on impurities recoil-implanted into ferromagnetic hosts following heavy-ion induced reactions have been studied using the implantation perturbed angular correlation (IMPAC) technique to determine the magnetic moments of subnanosecond excited states in neutron-deficient nuclei. Problems, which in time-integral measurements cannot always be treated independently were studied and include: (i) corrections for the transient field effect, (ii) whether the hyperfine field is parallel to the applied field, (iii) whether the implanted nuclei all experience the same magnetic interaction, (iv) the time the static field takes to reach equilibrium after implantation. The focus here is on pre-equilibrium phenomena associated with the implantation process and the direction of the internal magnetic field at implanted impurities after equilibrium is reached. It was found that the internal field does become increasingly misaligned with respect to external field direction at fields below 0.08 T. This is due to the incomplete saturation of the foil and not to the microscopic effect as proposed by Aharoni

  5. 6d, Coulomb branch anomaly matching

    Science.gov (United States)

    Intriligator, Kenneth

    2014-10-01

    6d QFTs are constrained by the analog of 't Hooft anomaly matching: all anomalies for global symmetries and metric backgrounds are constants of RG flows, and for all vacua in moduli spaces. We discuss an anomaly matching mechanism for 6d theories on their Coulomb branch. It is a global symmetry analog of Green-Schwarz-West-Sagnotti anomaly cancellation, and requires the apparent anomaly mismatch to be a perfect square, . Then Δ I 8 is cancelled by making X 4 an electric/magnetic source for the tensor multiplet, so background gauge field instantons yield charged strings. This requires the coefficients in X 4 to be integrally quantized. We illustrate this for theories. We also consider the SCFTs from N small E8 instantons, verifying that the recent result for its anomaly polynomial fits with the anomaly matching mechanism.

  6. On Certain Conceptual Anomalies in Einstein's Theory of Relativity

    Directory of Open Access Journals (Sweden)

    Crothers S. J.

    2008-01-01

    Full Text Available There are a number of conceptual anomalies occurring in the Standard exposition of Einstein’s Theory of Relativity. These anomalies relate to issues in both mathematics and in physics and penetrate to the very heart of Einstein’s theory. This paper reveals and amplifies a few such anomalies, including the fact that Einstein’s field equations for the so-called static vacuum configuration, R = 0 , violates his Principle of Equiv- alence, and is therefore erroneous. This has a direct bearing on the usual concept of conservation of energy for the gravitational field and the conventional formulation for localisation of energy using Einstein’s pseudo-tensor. Misconceptions as to the relationship between Minkowski spacetime and Special Relativity are also discussed, along with their relationships to the pseudo-Riemannian metric manifold of Einstein’s gravitational field, and their fundamental geometric structures pertaining to spherical symmetry.

  7. Pressure induced anomalies in an As-Al-Te glass

    International Nuclear Information System (INIS)

    Mohan, Murali; Giridhar, A.; Mahadevan, Sudha

    1995-01-01

    The pressure and temperature dependences of the electrical resistance of As 34.4 Al 4 Te 61.6 and As 16.67 Al 16.67 Te 66.66 glasses have been investigated using an opposed anvil setup. The resistance of the glasses exhibit ∼ 10 6 fold decrease with increasing pressure up to 7 GPa at 300 K. This behaviour can be traced to the corresponding changes with pressure of the activation energy for electrical conduction, ΔE(p). The As 34.4 Al 4 Te 61.6 glass exhibits pressure induced anomalies at 2 GPa in the pressure variation of ΔE(p) and the pressure coefficient of electrical resistance. Such an anomaly is not seen for the As 16.67 Al 16.67 Te 66.66 glass. The anomalies point to a pressure induced morphological structural transformation in the As 34.4 Al 4 Te 61.6 glass. (author)

  8. Magnetic hyperfine fields on 181Ta at the Nb and V sites in Heusler alloys CO2YAL (Y=NB,V)

    International Nuclear Information System (INIS)

    Pendl Junior, W.

    1990-01-01

    Magnetic hyperfine fields (MHF) acting on sup(181)Ta at the Nb and V sites have been determined in the Heusler alloys Co sub(2) NbA1 and Co sub(2) VA1 by the time differential perturbed angular correlation (TDPAC) technique utilizing the well known 133-482 Kev gamma cascade in sup(181)Ta. The measurement were carried out using an automatic spectrometer consisting of three NaI(T1) detectors and a fast-slow coincidence system. The measurements were performed at 77 K with and without an externally applied magnetic field ( ∼ 4.5 KGauss) to determine the sign as well as the magnitude of the hyperfine fields in both alloys. For the alloy Co sub(2) NbA1 a unique field of -138(4) KOe was observed whereas in the case of Co sub(2)VA1 two distinct magnetic sites were observed. The present result show that approximately 24% of the sup(181)Ta atoms in this alloy probe a field of -116(4) KOe while the other ∼ 76% of the atoms feel -83(3) KOe. Present data along with the existing results on similar alloys Co sub(2)T1,Hf,Zr (Al,Ga,Sn) are discussed and compared with the magnetic hyperfine field systematics in Heusler alloys. (author)

  9. Hyperfine interactions in dilute Se doped Fe{sub x}Sb{sub 1−x} bulk alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Mitesh, E-mail: miteshsarkar-msu@yahoo.com; Agrawal, Naveen [The M. S. University of Baroda, Department of Physics (India); Chawda, Mukesh [Polytechnic, The M. S. University of Baroda, Department of Applied Physics (India)

    2016-12-15

    Hyperfine Interaction technique like Moessbauer spectroscopy is a very sensitive tool to study the local probe interactions in Iron doped alloys and compounds. We report here the Moessbauer study of the effect of Fe concentration variations in dilute magnetic semiconducting Se{sub 0.004}Fe{sub x}Sb{sub 1−x} alloys for x = 0.002, 0.004 and 0.008. The materials were characterized using X-ray diffraction technique (XRD), Fourier Transform Infra-red spectroscopy (FTIR), Neutron depolarization and Moessbauer spectroscopy. The FTIR result shows the semiconducting behavior of the alloys with band gap of 0.18 eV. From Moessbauer spectroscopy two magnetic sites (A and B) were observed. The value of hyperfine magnetic fields (HMF) of ∼ 308 kOe (site A) and 270 kOe (site B) was constant with increase in Fe concentration. A nonmagnetic interaction was also observed with quadrupole splitting (QS) of 1.26 mm/sec (site C) for x = 0.004 and x = 0.008. The Neutron depolarization studies indicate that the clusters of Fe or Fe based compounds having net magnetic moments with a size greater than 100 Å is absent.

  10. Temperature dependence of the magnetic hyperfine field at an s–p impurity diluted in RNi_2

    International Nuclear Information System (INIS)

    Oliveira, A.L. de; Chaves, C.M.; Oliveira, N.A. de; Troper, A.

    2016-01-01

    We study the formation of local magnetic moments and magnetic hyperfine fields at an s–p impurity diluted in intermetallic Laves phase compounds RNi_2 (R=Nd, Sm, Gd, Tb, Dy) at finite temperatures. We start with a clean host and later the impurity is introduced. The host has two-coupled (R and Ni) sublattice Hubbard Hamiltonians but the Ni sublattice can be disregarded because its d band, being full, is magnetically ineffective. Also, the effect of the 4f electrons of R is represented by the polarization they produce on the d band. This leaves us with a lattice of effective rare earth R-ions with polarized electrons. For the dd electronic interaction we use the Hubbard–Stratonovich identity in a functional integral approach in the static saddle point approximation. - Highlights: • Functional integral method in the static limit, producing site disorder, is used. • The site disorder is treated with the Coherent Potential Approximation (CPA). • Non magnetic Ni generates an effective lattice with only a polarized R d band. • The effective R lattice differ from the pure R metal: Results and Discussions. • The experimental curve of hyperfine fields × temperature are very well reproduced.

  11. Renal anomalies in congenital heart disease

    International Nuclear Information System (INIS)

    Lee, Byung Hee; Kim, In One; Yeon, Kyung Mo; Yoon, Yong Soo

    1987-01-01

    In general, the incidence of urinary tract anomalies in congenital heart disease is higher than that in general population. So authors performed abdominal cineradiography in 1045 infants and children undergoing cineangiographic examinations for congenital heart disease, as a screening method for the detection, the incidence, and the nature of associated urinary tract anomalies. The results were as follows: 1. The incidence of urinary tract anomaly associated with congenital heart disease was 4.1% (<2% in general population). 2. Incidence of urinary tract anomalies was 4.62% in 671 acyanotic heart diseases, 3.20% in 374 cyanotic heart diseases. 3. There was no constant relationship between the type of cardiac anomaly and the type of urinary tract anomaly

  12. Dental anomalies and dental age assessment in treated children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Khojastepour, L; Zareifar, S; Ebrahimi, M

    2014-01-01

    This cross sectional study was performed to evaluate dental ages and incidence of dental anomalies in children treated for acute lymphoblastic leukemia (ALL). A total of 25 ALL patient who passed at least 2 years of chemotherapy and 25 healthy sex and age matched children were evaluated. Dental age as well as dental anomalies in shape, size, number, and structure was recorded based on their panoramic radiographies which were taken for dental purposes. The number of dental anomalies significantly increased in ALL treated children. Seven ALL cases (28%) in compression to only one (4%) in control group had at least one dental anomaly. However, there was neither statistically significant differences between the mean of dental (p=0.32) and chronologic age (p=0.12) in both groups, nor between dental age of cases and control group (p=0.62).The age at the onset of treatment as well as treatment durations has not affected dental age and the incidence of dental anomalies significantly (pdental anomaly. Dental age, maturity, and development process however seems to be independent from chemotherapy.

  13. Coulomb artifacts and bottomonium hyperfine splitting in lattice NRQCD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada); Penin, A.A. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology,Wolfgang-Gaede-Strasse 1, 76128 Karlsruhe (Germany); Rayyan, A. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada)

    2017-02-16

    We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a “naïve” perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the radiatively improved lattice NRQCD (DOI: 10.1103/PhysRevD.92.054502; Arxiv:1309.5797). We show that the correct matching procedure which provides full control over discretization errors is based on the asymptotic expansion of the lattice theory about the continuum limit, which gives M{sub Υ(1S)}−M{sub η{sub b(1S)}}=52.9±5.5 MeV (DOI: 10.1103/PhysRevD.92.054502).

  14. Development of the negative gravity anomaly of the 85 E Ridge ...

    Indian Academy of Sciences (India)

    2Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India. 3National ... different crust-sediment structural configurations of the ridge that were existing at three geological ages, ... characteristic negative gravity anomaly and com- ... to determine the crustal structure and isostatic.

  15. Detection of Anisotropic Hyperfine Components of Chemically Prepared Carotenoid Radical Cations:1D and 2D ESEEM and Pulsed ENDOR Study

    International Nuclear Information System (INIS)

    Konovalova, Tatyana A.; Dikanov, Sergei A.; Bowman, Michael K.; Kispert, Lowell D.

    2001-01-01

    Canthaxanthin and 8'-apo-B-caroten-8'-al radical cations chemically prepared on activated silica-alumina and in CH2CI2 solution containing A1C13 were studied by pulsed EPR and ENDOR spectroscopies. Both the 1D three-pulse ESEEM and the 2D HYSCORE spectra of the carotenoid-A1C13 mixtures exhibited the 27 A1 nuclei peak at 3.75 MHz. This indicates electron-transfer interactions between carotenoids and A1III ions resulting in the formation and stabilization of carotenoid radical cations. Davies ENDOR measurements of the canthaxanthin radical cation on silica-alumina determined the hyperfine couplings of B protons belonging to three different methyl groups with ahI=2.6 MHz, aH2=8.6MHz, and ah3 ca. 13 MHz. The principal components of the proton hyperfine tensors were obtained from HYSCORE spectra in A1C13 solutions and on the solid support. Identification of the protons was made on the basis of isotropic hyperfine couplings determined by RHF-INDO/SP molecular orbital calculations. In frozen A1C13 solution, the C(7, 7')Ha and C(14, 14')-Ha a protons were observed for Canthaxanthin and the C(8 or 14')-Ha, C(15')-Ha were observed for 8'-apo-B-caroten-8'-al. On the silica-alumina support, the C(10, 10')-Ha, C(11, 11')-Ha, and C(15,15')-Ha a protons were measured for Canthaxanthin and the C(12)-Ha and C(15')-Ha were measured for 8' apo-B-caroten-8'-al. Some protons with large isotropic couplings (> 10 MHz) determined from HYSCORE analysis could be assigned to B protons, but the principal components of their hyperfine tensors are much more anisotropic than those reported previously for B protons. We suggest that cis/trans isomerization of carotenoids on silica-alumina results in stabilization of di-cis isomers with large isotropic couplings for some a protons which are comparable to those of B protons

  16. RARE BRANCHIAL ARCH ANOMALIES

    Directory of Open Access Journals (Sweden)

    Jayanta Kumar

    2016-03-01

    Full Text Available AIM Amongst the branchial arch anomalies third arch anomaly occurs rarely and more so the fourth arch anomalies. We present our experience with cases of rare branchial arch anomalies. PATIENTS AND METHODS From June 2006 to January 2016, cases having their external opening in the lower third of sternocleidomastoid muscle with the tract going through thyroid gland and directing to pyriform sinus (PFS or cysts with internal opening in the PFS were studied. RESULTS No fourth arch anomaly was encountered. One cyst with internal opening which later on formed a fistula, three fistulae from beginning and two sinuses were encountered. The main stay of diagnosis was the fistula in the PFS and the tract lying posterior to the internal carotid artery. Simple excision technique with a small incision around the external opening was done. There was no recurrence. CONCLUSION Third arch fistula is not very rare as it was thought. Internal fistula is found in most of the cases. Though radiological investigations are helpful, fistulae can be diagnosed clinically and during operation. Extensive operation of the neck, mediastinum and pharynx is not required.

  17. The Green-Schwarz mechanism and geometric anomaly relations in 2d (0,2) F-theory vacua

    Science.gov (United States)

    Weigand, Timo; Xu, Fengjun

    2018-04-01

    We study the structure of gauge and gravitational anomalies in 2d N = (0 , 2) theories obtained by compactification of F-theory on elliptically fibered Calabi-Yau 5-folds. Abelian gauge anomalies, induced at 1-loop in perturbation theory, are cancelled by a generalized Green-Schwarz mechanism operating at the level of chiral scalar fields in the 2d supergravity theory. We derive closed expressions for the gravitational and the non-abelian and abelian gauge anomalies including the Green-Schwarz counterterms. These expressions involve topological invariants of the underlying elliptic fibration and the gauge background thereon. Cancellation of anomalies in the effective theory predicts intricate topological identities which must hold on every elliptically fibered Calabi-Yau 5-fold. We verify these relations in a non-trivial example, but their proof from a purely mathematical perspective remains as an interesting open problem. Some of the identities we find on elliptic 5-folds are related in an intriguing way to previously studied topological identities governing the structure of anomalies in 6d N = (1 , 0) and 4d N = 1 theories obtained from F-theory.

  18. Algorithms for Anomaly Detection - Lecture 1

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The concept of statistical anomalies, or outliers, has fascinated experimentalists since the earliest attempts to interpret data. We want to know why some data points don’t seem to belong with the others: perhaps we want to eliminate spurious or unrepresentative data from our model. Or, the anomalies themselves may be what we are interested in: an outlier could represent the symptom of a disease, an attack on a computer network, a scientific discovery, or even an unfaithful partner. We start with some general considerations, such as the relationship between clustering and anomaly detection, the choice between supervised and unsupervised methods, and the difference between global and local anomalies. Then we will survey the most representative anomaly detection algorithms, highlighting what kind of data each approach is best suited to, and discussing their limitations. We will finish with a discussion of the difficulties of anomaly detection in high-dimensional data and some new directions for anomaly detec...

  19. Algorithms for Anomaly Detection - Lecture 2

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The concept of statistical anomalies, or outliers, has fascinated experimentalists since the earliest attempts to interpret data. We want to know why some data points don’t seem to belong with the others: perhaps we want to eliminate spurious or unrepresentative data from our model. Or, the anomalies themselves may be what we are interested in: an outlier could represent the symptom of a disease, an attack on a computer network, a scientific discovery, or even an unfaithful partner. We start with some general considerations, such as the relationship between clustering and anomaly detection, the choice between supervised and unsupervised methods, and the difference between global and local anomalies. Then we will survey the most representative anomaly detection algorithms, highlighting what kind of data each approach is best suited to, and discussing their limitations. We will finish with a discussion of the difficulties of anomaly detection in high-dimensional data and some new directions for anomaly detec...

  20. Gravity anomalies, seismic structure and geothermal history of the Central Alps

    International Nuclear Information System (INIS)

    Kissling, E.; Mueller, S.; Werner, D.

    1983-01-01

    A new interpretation of the gravity anomalies in the Swiss Alps from the geothermal point of view is presented. The regional gravity distribution is partly caused by the topography of the crust-mantle boundary. Taking 0.5 g/cm 3 as the average density contrast between crust and mantle the Bouguer map of Switzerland contains a residual field which indicates a density anomaly in the mantle. This finding, results from seismic surface-wave investigations, and P-wave travel time observations can be interpreted as a consequence of the genesis of the Alps. A kinematic model of the Alps has been constructed simulating the mass displacements during the last 40 m.y. In this two-dimensional model the subsidence of cold mantle material is taken into consideration forming a ''lithospheric root''. Based on this kinematic model the temperature distribution in the moving medium can be calculated, taking into account the radiogenic heat sources. From the calculated temperatures field at present time the thermally induced density deviation can be determined. This density effect can explain the residual gravity field with a maximum value of about + 50 mgal